
 1 

Title: Polygenic type 2 diabetes prediction at the limit of common variant detection 

 

Running title: T2D polygenic prediction 

 

Jason L. Vassy
1,2,3

, Marie-France Hivert
1,4,5

, Bianca Porneala
6
, Marco Dauriz

1,6,7
, Jose C. 

Florez
1
,
8,9

, Josée Dupuis
10,11

, David S. Siscovick
12

, Myriam Fornage
13

, , Laura J. Rasmussen-

Torvik
14

, Claude Bouchard
15

, James B. Meigs
1,6

* 

 

*Corresponding author: James B. Meigs, MD, MPH, General Medicine Division, Massachusetts 

General Hospital, 50 Staniford Street, 9
th

 floor, Boston, MA 02104; tel. 617-724-3203; fax 617-

724-3455; e-mail: jmeigs@partners.org 

 

1. Harvard Medical School, Boston, MA; 2. Section of General Internal Medicine, VA Boston 

Healthcare System, Boston, MA; 3. Division of General Internal Medicine and Primary Care, 

Brigham and Women’s Hospital, Boston, MA; 4. Department of Population Medicine, Harvard 

Pilgrim Health Care Institute, Boston, MA; 5. Division of Endocrinology, Department of 

Medicine, Université de Sherbrooke, Sherbrooke, QC; 6. General Medicine Division, 

Massachusetts General Hospital, Boston, MA; 7. Division of Endocrinology and Metabolic 

Diseases, Department of Medicine, University of Verona Medical School and Hospital Trust of 

Verona, Verona, Italy; 8. Diabetes Research Center (Diabetes Unit), and Center for Human 

Genetic Research, Massachusetts General Hospital, Boston, MA; 9. Program in Medical and 

Population Genetics, Broad Institute, Cambridge, MA; 10. Department of Biostatistics, Boston 

University School of Public Health; 11. National Heart, Lung, and Blood Institute's Framingham 

Heart Study; 12. Cardiovascular Health Research Unit, Departments of Medicine and 

Epidemiology, University of Washington, Seattle, WA; 13. Center for Human Genetics, 

University of Texas Health Science Center at Houston, Houston, TX; 14. Department of 

Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; 15. 

Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State 

University System, Baton Rouge, LA 

 

Word count: 4257 

Tables: 5 

Figures: 2 

 

 

Page 1 of 47 Diabetes

 Diabetes Publish Ahead of Print, published online February 11, 2014



 2 

Abstract 

 

Genome-wide association studies (GWAS) may have reached their limit of detecting common 

type 2 diabetes (T2D)-associated genetic variation.  We evaluated the performance of current 

polygenic T2D prediction.  Using data from the Framingham Offspring (FOS) and the Coronary 

Artery Risk in Young Adults (CARDIA) studies, we tested three hypotheses: 1) a 62-locus 

genotype risk score (GRSt) improves T2D prediction compared to previous less inclusive GRSt; 

2) separate β-cell and insulin resistance GRS (GRSβ and GRSIR) independently predict T2D; and 

3) the relationships between T2D and GRSt, GRSβ, or GRSIR do not differ between blacks and 

whites.  Among 1650 young white adults in CARDIA, 820 young black adults in CARDIA, and 

3,471 white middle-aged adults in FOS, cumulative T2D incidence was 5.9%, 14.4%, and 

12.9%, respectively, over 25 years.  The 62-locus GRSt was significantly associated with 

incident T2D in all three groups.  In FOS but not CARDIA, the 62-locus GRSt improved the 

model C statistic (0.698 and 0.726 for models without and with GRSt, respectively, p<0.001); it 

did not materially improve risk reclassification in either study.  Results were similar among 

blacks compared with whites.  The GRSβ, but not GRSIR, predicted incident T2D among FOS 

and CARDIA whites.  At the end of the era of common variant discovery for T2D, polygenic 

scores can predict T2D in whites and blacks but do not outperform clinical models.  Further 

optimization of polygenic prediction may require novel analytic methods including less common 

as well as functional variants. 
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Introduction 

 

Type 2 diabetes (T2D) is a common complex disease with both genetic and environmental 

determinants.  Risk factors including overnutrition, sedentary behavior, and lack of physical 

exercise, make the disease amenable to prevention through lifestyle modification(1; 2), but the 

most effective behavior change programs can be cost-intensive(3).  As the genome-wide 

association study (GWAS) era has discovered dozens of genetic loci associated with T2D risk, 

there has been hope that genotype might help clinicians and public health practitioners target 

limited prevention resources to those at greatest risk.  Although genotype predicts incident 

T2D(4-9), studies using limited genetic information from the first waves of GWAS have 

demonstrated that the addition of genotype to T2D prediction models based upon routinely 

measured clinical risk factors(6; 10; 11) does not substantively improve risk stratification(4; 8; 

9).   

 

The DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium recently 

published the largest T2D GWAS meta-analysis to date (DIAGRAMv3), identifying many 

additional common variants associated with T2D and bringing the total number of independent 

T2D loci to 65(12).  Together, these loci explained about 5.7% of the variance in genetic 

susceptibility to T2D.  DIAGRAMv3 also modeled the theoretical existence of 488 additional 

common variants likely associated with T2D on the arrays used in their analyses but with effect 

sizes too small for detection.  These hundreds of single-nucleotide polymorphisms (SNPs) would 

increase the proportion of explained T2D susceptibility to 10.7%.  Subsequent models using 

genome-wide complex trait analysis suggested that 63% of T2D susceptibility might be 

Page 3 of 47 Diabetes



 4 

attributable to common genetic variation in the full set of GWAS SNPs(12).  Still, current 

GWAS methodology is likely nearing its limit(13; 14) to identify the additional specific common 

SNPs associated with T2D.  Recent analyses have suggested that even a tripling of the GWAS 

discovery sample size would not materially increase the C statistic of polygenic T2D models(15).  

Ongoing next-generation sequencing efforts may identify additional variants with major allele 

frequency >1%, although SNP genotype and imputation data from GWAS arrays have likely 

already captured most of this common variation.     

 

Thus, the 65 DIAGRAMv3 loci may represent the majority of common and significant T2D-

association genetic variants expected to be identified.  If so, it is opportune to evaluate the 

performance of currently available genetic information for T2D risk prediction and classification.  

The additional loci discovered in DIAGRAMv3 may improve polygenic T2D prediction over 

previous attempts using polygenic models with fewer loci(4; 5; 9; 16).  Because GWAS use a 

cross-sectional case-control design, it is important to determine how well these loci prospectively 

predict incident T2D.  Moreover, polygenic models may be improved by taking into 

consideration the biological pathways underlying these T2D-associated loci.  Though most of 

these remain to be elucidated, some functional studies and analyses of more specific metabolic 

phenotypes have implicated some loci in pancreatic β-cell dysfunction or, less commonly, insulin 

resistance(17; 18).  Individuals carrying a high genetic burden for both β-cell dysfunction and 

insulin resistance might be at especially high risk of developing T2D.  Finally, although 

DIAGRAMv3 used data from populations of mostly European ancestry, it is important for 

clinical practice and public health to know whether these associations hold in non-white 

populations.   
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Research design and methods 

 

We used data from the Framingham Offspring (FOS) and the Coronary Artery Risk 

Development in Young Adults (CARDIA) studies to examine the performance of updated 

polygenic prediction models for T2D among young and middle-aged adults of European and 

African ancestry.  We tested three primary hypotheses.  First, we hypothesized that an updated 

total genotype risk score (GRSt) with up to 65 T2D-associated risk loci improves the prediction 

of incident T2D in young and middle-aged adulthood, compared to previously published scores 

with fewer loci.  We examined both genotype-only and genotype-plus-clinical prediction models.  

Second, because β-cell dysfunction and insulin resistance represent two distinct pathways in the 

pathogenesis of T2D, we hypothesized that separate GRS comprised of SNPs postulated to 

influence β-cell or insulin resistance (GRSβ and GRSIR) independently predict incident T2D.  In 

subsidiary analyses, we investigated whether GRSβ and GRSIR together exhibit a multiplicative 

effect on T2D risk and whether the association between T2D risk and GRSβ or GRSIR varies 

between lean and obese individuals.  Third, we hypothesized that the relationships between 

incident T2D and GRSt, GRSβ, or GRSIR do not differ between black and white individuals.  

 

Study participants 

Both FOS and CARDIA are large well-described prospective cohort studies(19-21).  The FOS 

began in 1971 and consists of offspring of the original Framingham Heart Study participants and 

their spouses.  At the first examination, FOS participants were between 5 and 70 years of age.  

They were examined again after eight years and then every four years thereafter through 
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examination 8 (2005-2008).  The CARDIA Study is a multicenter prospective study of 5,115 

white and black participants recruited in 1985-1986 from four United States cities(20; 21).  

Participants were aged 18 to 30 years at the baseline examination and have been invited to 

participate in serial follow-up examinations over the subsequent 25 years.  Written informed 

consent was obtained from all FOS and CARDIA participants, and the institutional review board 

at each participating center approved the original studies.  We limited the present analyses to 

FOS and CARDIA participants with at least two study examinations, genotype information, and 

baseline data available for all predictors of interest.  We excluded any participant with diabetes 

or pregnancy at the baseline examination.  CARDIA participants who reported diabetes 

treatment exclusively with insulin during the observation period were considered to have type 1 

diabetes and were also excluded from analyses.  We did not apply this exclusion to the older 

FOS cohort; greater than 99% of the FOS diabetes cases are type 2(11).  The Partners Human 

Research Committee approved these analyses.     

 

Type 2 diabetes 

The primary outcome was incident T2D during the observation period.  Each FOS examination 

included an assessment of medical history, a physical examination, and a fasting blood 

sample(22).  All CARDIA study visits included an updated medical history assessment, 

including medications, and fasting glucose was measured at Years 0, 7, 10, 15, 20, and 25.  We 

defined T2D in FOS and CARDIA by a fasting plasma glucose ≥7.0 mmol/L (≥126 mg/dL) or 

report of taking diabetes medications(9; 10).   

 

Clinical risk factors and covariates 
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Data collection methods in FOS and CARDIA have been described previously(19; 21).  We 

considered a study participant to have a positive parental history of diabetes if he/she reported on 

a family history questionnaire that one or both parents had diabetes(23). Fasting plasma glucose 

and lipid levels were measured as described previously(22; 24). All FOS participants were white, 

and in CARDIA race was determined by self-report (black or white). 

 

Genotyping and genotype risk scores 

Details of the genotyping and quality of FOS and CARDIA samples have been published 

previously(25-27).  In previous reports, we calculated GRSt consisting of all the T2D-associated 

loci known at the time: 17- and 40-SNP GRSt in FOS and a 38-SNP GRSt in CARDIA(4; 9; 16).    

In the present analyses, we updated these GRSt to include as many of the 65 index SNPs or their 

proxies as were available at the confirmed or newly identified loci from DIAGRAMv3(12) 

(Table 1 and Figure 1), using previously reported methods(4; 9; 16).  For each locus for each 

individual, we prioritized inclusion of the following information into the GRSt, in order: 

genotyped data at the index SNP, imputed data at the index SNP, and then genotyped data at a 

suitable proxy for the index SNP.  We used SNAP (http://www.broadinstitute.org/mpg/snap/) to 

identify proxy SNPs, as needed, defined as being in linkage equilibrium with the index SNP 

(r
2
≥0.5) in the HapMap II release 22 CEU reference population.  Of the 65 loci, genotyped or 

imputed data were available for 62 of the index SNPs for the FOS and CARDIA studies.  No 

genotype information was available for rs11063069 at CCND2, rs11651052 at HNF1B (TCF2), 

or rs8108269 at GIPR.  Whites and blacks in CARDIA had genotyped or imputed data for these 

same 62 loci.  For FOS and CARDIA whites, we calculated GRSt as the weighted sum of the 

number of risk alleles (0, 1, or 2) at each of the available loci, weighted by its effect size (beta) 
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from DIAGRAMv3.  Because no sufficiently large T2D GWAS in people of African ancestry 

exists from which to derive locus effect sizes, we used an unweighted GRSt for CARDIA blacks, 

calculated by summing the risk alleles across the loci.   

 

Additionally, we used prior genetic and physiologic evidence to categorize the loci as associated 

predominantly with β-cell function or insulin resistance (Supplementary Table 1).  We identified 

20 predominantly β-cell associated SNPs by 1) their significant effect on HOMA-β (beta<-0.008; 

p<0.05) in the most recent Meta-Analysis of Glucose and Insulin-related traits Consortium 

(MAGIC)(12) and/or 2) a significant effect (p<0.05) on one of the β-cell function indices(18): 

insulinogenic index or acute insulin response.  We identified 10 predominantly insulin 

resistance-related SNPs by 1) their significant association with HOMA-IR (p<0.05) in the 

MAGIC data(12), 2) significant association with fasting insulin in the MAGIC GWAS 

conditional on BMI or BMI-SNP interaction(28), and/or 3) evidence of association with insulin 

resistance-related traits such as lower high-density lipoprotein (HDL) cholesterol, higher 

triglycerides, higher BMI, and higher waist-to-hip ratio(18).  Similar to the GRSt, we calculated 

separate β-cell (GRSβ) and insulin resistance (GRSIR) genotype risk scores, with each locus 

weighted in whites by the same effect size as in the GRSt.  For CARDIA blacks, we calculated 

unweighted GRSβ and GRSIR. 

 

Statistical analysis 

We constructed logistic and proportional-hazards regression models for incident T2D using 

similar statistical methods as in our previous FOS and CARDIA analyses, respectively 

(Supplementary methods)(4; 9; 16).  In each study, we constructed regression models for 
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incident T2D as a function of GRS, sex, and age (demographic model) and GRS, sex, age, and 

risk factors routinely measured in clinical practice (clinical model: parental history of diabetes 

(yes vs. no), BMI, systolic blood pressure, fasting plasma glucose, and log-transformed HDL 

cholesterol and triglyceride levels).  We used C statistics and continuous net reclassification 

improvement (NRI) indices to compare prediction models with and without genotype 

information (29-32).  To examine the relationship between β-cell and insulin resistance 

genotype, we also performed the models above with 1) GRSβ alone, 2) GRSIR alone, 3) GRSβ 

and GRSIR, and 4) GRSβ, GRSIR, and a GRSβ x GRSIR interaction term.  Further, we examined 

the relationship between genotype and BMI in two ways: 1) the inclusion of an interaction term 

between each GRS and an indicator variable for obesity (BMI ≥ 30 kg/m
2
 vs. BMI < 30 kg/m

2
) 

and 2) analyses stratified by BMI category (BMI ≥ 30 kg/m
2
 vs. BMI < 30 kg/m

2
).  To test the 

hypothesis that the association between each GRS and T2D risk does not differ between whites 

and blacks, we meta-analyzed the regression beta coefficients from FOS and CARDIA whites 

and then used a t-test to compare the result to the corresponding beta in CARDIA blacks.  We 

considered odds ratios and hazard ratios as statistically significant at p<0.05. 

 

Results 

 

Participant characteristics and incident type 2 diabetes 

Among the 3,869 FOS participants, 11,358 person-periods from 3,471 individuals were eligible 

for the present analyses.  In CARDIA, 1650 white and 820 black individuals with 50,309 total 

person-years of follow-up were eligible.  Table 2 shows the baseline participant 

characteristics.  In FOS, there were 446 incident cases of T2D (cumulative incidence 12.9%) 
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over a mean 25.6 years of follow-up.  In the younger CARDIA cohort, among whites there were 

97 T2D cases (cumulative incidence 5.9%) over a mean follow-up of 24.2 years, and among 

blacks there were 118 cases (cumulative incidence 14.4%) over a mean follow-up of 23.4 years. 

 

GRSt and prediction of incident type 2 diabetes 

The mean 62-SNP GRSt was greater among T2D cases than non-cases in FOS (p<0.001), 

CARDIA whites (p<0.001), and CARDIA blacks (p=0.01; Table 3).  Among all three cohorts, 

each GRSt was significantly associated with incident T2D in both the demographic and clinical 

prediction models (Tables 4 and 5).  In the demographic models in FOS, each additional 

weighted allele in the 17-, 40-, and 62-SNP GRSt was associated with an increased odds for 

incident T2D of 11% (7-15%), 8% (6-11%), and 8% (6-10%), respectively.  Among CARDIA 

whites, each additional weighted allele in the 38- and 62-SNP GRSt was associated with an 

increase in the adjusted hazard for incident T2D of 12% (6-18%) and 7% (3-12%); the 

corresponding increases among CARDIA blacks were 5% (0-11%) and 5% (1-9%).  The 

addition of each successive SNP to the GRSt lowered the per-allele odds ratio for incident T2D in 

FOS (Figure 1).  The addition of the 62-SNP GRSt to the demographic and clinical prediction 

models in FOS weakly improved risk reclassification [continuous NRI 0.286 (0.192, 0.380) and 

0.256 (0.162, 0.351), respectively] (Table 4).  Reclassification was moderate among FOS 

individuals younger than 50 years and weak among those 50 years or older (Table 4).  

Reclassification was not markedly higher in the younger CARDIA cohort.  Among CARDIA 

whites, the addition of the 62-SNP GRSt to the demographic and clinical models resulted in a 

continuous NRI of 0.311 (0.088, 0.525) and 0.306 (0.073, 0.517), respectively.  Similarly, the 

resulting NRI among CARDIA blacks were 0.243 (0.031, 0.455) and 0.296 (0.098, 0.513), 
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respectively.  Compared to our previous GRSt consisting of fewer loci, the 62-SNP GRSt 

increased model C statistics but did not increase the NRI in FOS (Table 4); NRI in CARDIA 

whites and blacks were generally higher than with the 38-SNP GRSt but still indicated weak 

reclassification improvement (Table 5).  The effect size of the 62-SNP GRSt did not differ 

between whites (meta-analyzed between FOS and CARDIA) and CARDIA blacks in either the 

demographic or clinical model (all p>0.05) (Supplementary Table 6).  The demographic models 

with the 17-, 40-, and 62-SNP GRSt explained only 2.0%, 2.1%, and 2.2% of the variance in 

T2D risk in FOS.  In CARDIA whites, the 38- and 62-SNP GRSt explained 1.7% and 1.5% of 

risk variance, respectively, and in CARDIA blacks they explained 1.5% and 1.6%, respectively.  

Figure 2 shows the C statistics the demographic and clinical models with and without the 62-

SNP GRSt.   

 

GRSβ and GRSIR and type 2 diabetes prediction 

Among FOS and CARDIA whites, those with incident T2D had a higher mean GRSβ (p<0.05 for 

both cohorts), but not GRSIR, compared with non-cases.  In contrast, CARDIA blacks with 

incident T2D had a higher mean GRSIR (p=0.03), but not GRSβ, than non-cases (Supplementary 

Table 2).  Among whites in FOS and CARDIA, GRSβ was associated with incident T2D in the 

demographic and clinical models (Supplementary Tables 3 and 4).  The GRSβ was not associated 

with T2D among CARDIA blacks, although the between-race difference in effect size was not 

statistically significant (Supplementary Tables 5 and 6).  The GRSIR was associated with T2D 

among whites after meta-analysis of the FOS and CARDIA results in the demographic model 

only.  It was not associated with T2D among CARDIA blacks, although this effect did not 
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statistically differ from that in whites (Supplementary Tables 3-6).  We found no evidence of a 

multiplicative interaction between GRSβ and GRSIR for T2D risk (all p>0.05).  

 

BMI stratification 

In BMI-stratified models in both FOS and CARDIA, GRSβ was associated with incident T2D 

among both non-obese and obese subgroups (Supplementary Tables 7 and 8).  In contrast, GRSIR 

was not significantly associated with T2D in either subgroup in either study.  In models adjusted 

for age, sex, and (for CARDIA) race, there were no statistically significant interactions between 

obesity and GRSt, GRSβ, or GRSIR (Supplementary Tables 9-10).  The effect sizes of GRSβ were 

1.14 (1.09, 1.19) and 1.10 (1.05, 1.15) in lean and obese individuals in FOS, respectively, and 

1.08 (1.04, 1.11) and 1.10 (1.06, 1.14) in the lean and obese in CARDIA, respectively. 

 

Discussion 

 

In clinical medicine and public health, there is great interest in identifying individuals and 

population subgroups at increased T2D risk before disease onset.  Genotype has a certain appeal 

as a risk predictor, as germline genetic code is fixed from birth.  The largest T2D GWAS meta-

analysis to date(12) may include all of the common T2D-associated loci of at least modest effect 

size that can be expected to be specifically identified.  If so, it marks an appropriate time to 

evaluate the contribution of known common genetic variation to such risk stratification.  Using 

data from two large well-characterized prospective cohort studies, we have shown that a 

polygenic score, GRSt, consisting of 62 of the known T2D-associated loci, is significantly 

associated with incident T2D over 25 years of observation.  
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First, we hypothesized that the inclusion of a greater number of T2D-associated loci in the GRSt 

would improve T2D prediction, compared to less inclusive GRSt and to a clinical prediction 

model.  Our prior analyses in FOS and CARDIA demonstrated that GRSt consisting of up to 40 

loci do predict incident T2D from young and middle adulthood but do not improve upon clinical 

models, as measured by C statistics and NRI indices(4; 9; 16).  An updated risk score might 

improve prediction for at least two reasons.  First, a greater number of loci should explain a 

larger proportion of the heritability of T2D.  Second, we updated the weight we used for each 

locus in our GRSt based on the effect sizes from the largest T2D GWAS meta-analysis to 

date(12).  For each locus discovered in previous smaller GWAS, the larger sample size of the 

DIAGRAMv3 discovery set should reduce the error around its effect size on T2D risk(33).  The 

greater precision of these weights might improve the ability of the composite GRSt to distinguish 

future T2D cases from non-cases.  In the present analyses, we found that the addition of a greater 

number of loci to the GRSt steadily improved the C-statistic of the simple demographic 

prediction model in FOS but not in CARDIA.  These polygenic models, using only data 

available from birth (sex, genotype, and age), achieved C statistics of 0.6-0.7, comparable to 

other non-genetic T2D prediction models(5-7).  However, the inclusion of multiple clinical risk 

factors to the prediction models overwhelmed any additional improvement in discrimination 

from genotype information, even though all GRSt remained significantly associated with incident 

T2D after adjustment for these factors.  Moreover, we did not find evidence that additional SNPs 

improved risk reclassification over the less inclusive GRSt.  Indeed, among FOS participants, the 

updated 62-SNP GRSt lowered the NRI in the demographic and clinical models compared to a 

40-SNP GRSt, although it did perform better than the 17-SNP GRSt.  An exception to this 
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observation occurred among black young adults in CARDIA.  Compared to our previous 38-SNP 

GRSt, the 62-SNP GRSt increased the NRI from 0.083 to 0.243 in the demographic model and 

from 0.164 to 0.296 in the clinical model.  Nonetheless, the magnitudes of these NRI still 

indicate weak reclassification improvement.  Moreover, the relatively small number of cases 

among CARDIA blacks likely makes these NRI estimates more susceptible to imprecision. 

 

Compared to demographic and clinical prediction models without genotype information, the 

addition of the 62-SNP GRSt resulted in relatively small risk reclassification in most of the 

subgroups examined.  Prediction models use risk factors to assign each individual a probability 

of having the event of interest: here, incident T2D.  The continuous NRI measures one model’s 

ability to improve upon the risk classification predicted by another model.  Compared to non-

genetic models, the addition of a 62-SNP GRSt generally achieved NRI indices of 0.1 to 0.3, 

indicative of weak reclassification improvement.  The exception was among FOS participants 

younger than 50 years old at baseline, among whom the 62-SNP GRSt achieved moderate 

reclassification improvement (NRI 0.376 compared to the clinical model).  Reclassification was 

much weaker among older FOS participants.  This observation suggests that, when added to 

routine clinical risk factors, genotype information may have greater predictive utility among 

younger age groups, in whom risk factors such as obesity and impaired fasting glucose might not 

yet be fully manifest, compared to among older adults.  However, we did not observe that the 

addition of a GRSt to prediction models among even younger adults in CARDIA resulted in 

similar reclassification improvement.  Because T2D-associated loci included in the GRSt were 

discovered in cohorts of largely middle-aged and older adults, they may exert their greatest effect 

on T2D risk in those decades of life.  These loci may only improve T2D prediction among 
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younger adults when the prediction time horizon is extended beyond the 25 years of follow-up 

available in the CARDIA Study.   

 

Our second hypothesis was that separate β-cell and insulin resistance polygenic scores 

independently predict incident T2D.  The earliest discoveries among common T2D-associated 

genetic variants pointed towards genes involved in β-cell function.  With the DIAGRAMv3 

publication and examination in MAGIC of more refined phenotypes among individuals without 

diabetes, there are now about ten loci possibly implicated in insulin action as well(18).  We also 

hypothesized that GRSβ might have a stronger effect in leaner individuals than in obese 

individuals.  In 2010, the DIAGRAM investigators reported that 23 of 30 T2D-loci investigated 

showed greater effect sizes among individuals with BMI≤30 kg/m
2 

compared to those with 

BMI>30 kg/m
2
, although this difference was statistically significant only for TCF7L2 and 

BCL11A(34).  BMI-stratified GWAS analyses by Perry replicated different sets of previously 

identified T2D associations among the lean to the obese and identified a novel association with 

T2D at LAMA1 only among lean individuals.  A polygenic score of 36 known T2D loci had a 

stronger association with T2D among the lean compared to the obese(35).  On the other hand, 

genetic variants associated with fasting insulin were more easily detected in MAGIC data when 

BMI was included in the models, and the effect sizes were generally larger in individuals with 

higher BMI(28).  Given this heterogeneous genetic architecture of T2D and related traits, we 

examined whether the association between T2D risk and GRSβ and GRSIR might differ by 

obesity status.  Among whites in FOS and CARDIA, GRSβ and GRSIR were associated with 

incident T2D.  Neither score met statistical significance among CARDIA blacks, but the 

between-race differences were not statistically significant.  In contrast to the cross-sectional 
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analyses by Perry that examined subgroups with BMI < 25 kg/m
2
 and BMI ≥ 30 kg/m

2
, we found 

no evidence that GRSt has a different effect size on incident T2D among individuals with BMI < 

30 kg/m
2
 compared to those with BMI ≥ 30 kg/m

2
.  This difference may be due to the lower 

power from the smaller sample sizes of our analyses, the larger number of loci used in our GRSt, 

or our use of prospective data instead of the case-control design used by Perry. 

 

The third aim of our analyses was to examine whether polygenic prediction of T2D differs 

between individuals of self-reported white and black race.  The DIAGRAMv3 meta-analysis 

consisted predominantly of populations of European ancestry(12).  Genome-wide analyses in 

African populations have been limited by smaller sample sizes(25; 36).  First efforts have 

replicated the association between TCF7L2 and T2D in populations of African ancestry(36) but 

have otherwise been largely unrevealing as to the genetic architecture in this group.  

Examinations of the association between individual European-derived loci and T2D among 

African populations have inconsistently replicated only a small fraction of these(37; 38), but 

polygenic scores consisting of these same European-derived loci are nonetheless associated with 

T2D among African-Americans(8; 9; 38).  The biracial composition of the CARDIA Study 

allowed us to compare the association of the 62-SNP GRSt with T2D between the two 

subgroups.  The GRSt was significantly associated with incident T2D among both blacks and 

whites in the demographic and clinical models, and the effect sizes of the GRSt, GRSβ, and 

GRSIR did not differ between the two racial groups.  We observed this consistency of effect 

despite the higher BMI among CARDIA blacks compared to whites (17.3% vs. 6.6% with 

baseline obesity) and their higher cumulative incidence of T2D (14.4% vs. 5.9%).  Most 

individual European-derived SNPs are only proxies for the true causal variants driving the 
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associations between given loci and T2D, and differences in linkage disequilibrium between 

ancestral groups likely magnify this imprecision when examining the relationship between these 

SNPs and T2D in populations in which they were not originally discovered.  While this 

imprecision may explain why individual European-derived SNPs may not replicate in 

populations of African ancestry, it remains unclear why a composite polygenic score consisting 

of these imprecise markers would significantly predict T2D in these same populations.  It is 

likely that the same loci, if not the specific SNPs themselves, are implicated in T2D across 

ancestral groups(39), and our unweighted GRSt in CARDIA blacks essentially represents a count 

of these loci.  

 

Some key lines of inquiry may overcome the limitations of the present analyses and move the 

field of polygenic risk prediction forward.  Polygenic scores such as ours are simple weighted 

counts of T2D risk alleles across the genome.  Such scores significantly predict incident T2D in 

a number of studies(40).  However, other methods of combining genetic risk markers, which do 

not assume the independence of loci or the additivity of their effects, may improve the 

performance of prediction models(41; 42).  Improved polygenic models may also need to 

account for epistatic genetic effects and the interactions between loci and environmental factors 

such as diet and physical activity, although some analyses have suggested that the incremental 

predictive value of such models may be limited(43).  Our examination of the differential effects 

of β-cell and insulin resistance polygenic scores on T2D risk is a first attempt to account for 

potential differences at a physiologic level, but more complex molecular pathways may need to 

be considered.  The use of sequencing to identify the causal variants at each T2D-associated 

locus, for which most of the SNPs included in our GRS are imperfect proxies, should also further 
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improve the predictive ability of polygenic models(33).  In the meantime, except perhaps in 

younger subgroups, polygenic prediction of T2D using most of the common genetic variation 

expected to be found in the GWAS era has modest clinical value. 
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  Locus Chromosome SNP Risk allele Other allele 

U
se

d
 i

n
 1

7
-S

N
P

 G
R

S
 

*TCF7L2 10 rs7903146 C T 

*CDKN2A/B 9 rs10811661 T C 

*CDKAL1 6 rs7756992 G A 

*THADA 2 rs10203174 C T 

*IGF2BP2 3 rs4402960 T G 

*SLC30A8 8 rs3802177 G A 

**PPARG 3 rs1801282 C G 

JAZF1 7 rs849135 G A 

*HHEX/IDE 10 rs1111875 C T 

ADAMTS9 3 rs6795735 C T 

*CDC123/CAMK1D 10 rs11257655 T C 

*KCNJ11 11 rs5215 C T 

NOTCH2 1 rs10923931 T G 

BCL11A 2 rs243088 T A 

TSPAN8/LGR5 12 rs7955901 C T 

U
se

d
 i

n
 3

8
/4

0
-S

N
P

 G
R

S
 

**FTO 16 rs9936385 C T 

*ADCY5 3 rs11717195 T C 

**HMGA2 12 rs2261181 T C 

**IRS1 2 rs2943640 C A 

*MTNR1B 11 rs10830963 G C 

WFS1 4 rs4458523 G T 

*ARAP1 (CENTD2) 11 rs1552224 A C 

*DGKB 7 rs17168486 T C 

*GCK 7 rs10278336 A G 

*KCNQ1 11 rs163184 G T 

ZBED3 5 rs6878122 G A 

**GCKR 2 rs780094 C T 

TLE4 9 rs17791513 A G 

*PROX1 1 rs2075423 G T 

HNF1A (TCF1) 12 rs12427353 G C 

PRC1 15 rs12899811 G A 

TP53INP1 8 rs7845219 T C 

DUSP8 11 rs2334499 T C 

RBMS1 2 rs7569522 A G 

ZFAND6 15 rs11634397 G A 

**KLF14 7 rs13233731 G A 

U
se

d
 i

n
 6

2
-S

N
P

 G
R

S
 

CILP2 19 rs10401969 C T 

**ANKRD55 5 rs459193 G A 

BCAR1 16 rs7202877 T G 

KLHDC5 12 rs10842994 C T 

**GRB14 2 rs13389219 C T 

*UBE2E2 3 rs1496653 A G 

**MC4R 18 rs12970134 A G 

ANK1 8 rs516946 C T 

HMG20A 15 rs7177055 A G 

*MAEA 4 rs6819243 T C 

GCC1 7 rs17867832 T G 

TLE1 9 rs2796441 G A 

ZMIZ1 10 rs12571751 A G 

GLIS3* 9 rs10758593 A G 

HNF4A 20 rs4812829 A G 

SPRY2 13 rs1359790 G A 
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**PEPD 19 rs8182584 T G 

*C2CD4A 15 rs4502156 T C 

*VPS26A 10 rs12242953 G A 

KCNK16 6 rs3734621 C A 

PTPRD 9 rs16927668 T C 

SRR 17 rs2447090 A G 

AP3S2 15 rs2007084 G A 

PSMD6 3 rs12497268 G C 

ST64GAL1 3 rs17301514 A G 

ZFAND3 6 rs4299828 A G 

 

 

Table 1: Type 2 diabetes-associated loci and corresponding single-nucleotide polymorphisms (SNP) used 

to calculate genotype risk scores (GRS) in the Framingham Offspring and CARDIA studies, ordered by 

effect size in DIAGRAMv3 within each of the three waves of discovery (see Figure 1).  *Locus also used in 

a β-cell genotype score (GRSβ).  **Locus also used in an insulin resistance genotype score (GRSIR). 
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Table 2: Baseline characteristics of participants in the Framingham Offspring (FOS) and 

CARDIA Studies 

  FOS   

n=3471 

CARDIA whites 

n=1650 

CARDIA blacks 

n=820 

Age (years) 35.9 (9.7) 25.5 (3.3) 24.3 (3.8) 

Men 1617 (46.6) 767 (46.5) 318 (38.8) 

Parental history of diabetes 383 (11.0) 159 (9.6) 146 (17.8) 

BMI (kg/m
2
) 25.0 (4.1) 23.7 (4.0) 25.6 (5.7) 

Obese 390 (11.2) 109 (6.6) 142 (17.3) 

Systolic blood pressure (mmHg) 120.6 (15.7) 109.1 (10.8) 111.4 (10.7) 

Fasting plasma glucose (mg/dL) 91.1 (8.1) 82.4 (8.0) 80.9 (8.5) 

HDL cholesterol (mg/dL) 51.2 (14.6) 52.1 (12.9) 54.4 (13.0) 

Fasting triglycerides (mg/dL) 89.3 (68.6) 78.4 (56.9) 64.9 (32.5) 

Data are means (SD) or counts (percentages), as appropriate.  BMI: body-mass index; HDL: 

high-density lipoprotein.  Obesity is defined as BMI≥30 kg/m
2
.   
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Table 3: Mean genotype risk scores in FOS and CARDIA 

 17-SNP GRSt 38/40-SNP GRSt 62-SNP GRSt 

FOS 17.2 (2.8) 39.6 (4.0) 66.8 (5.3) 

T2D 17.9 (2.7) 40.7 (4.0) 68.7 (5.2) 

No T2D 17.1 (2.8) 39.5 (4.0) 66.7 (5.2) 

    

CARDIA whites --- 40.8 (3.7) 66.4 (5.2) 

T2D --- 42.3 (4.2) 68.4 (4.9) 

No T2D --- 40.7 (3.7) 66.3 (5.1) 

    

CARDIA blacks --- 44.0 (3.4) 69.2 (4.5) 

T2D --- 44.6 (3.1) 70.1 (4.1) 

No T2D --- 43.9 (3.5) 69.0 (4.6) 

Data are mean (SD) genotype risk scores (GRSt) consisting of increasing numbers of single-

nucleotide polymorphisms (SNP) in the overall FOS and CARDIA cohorts and in participants 

with and without type 2 diabetes (T2D).  A 17-SNP GRSt was published only in FOS(4).  38 

SNPs were used in CARDIA(9) and 40 SNPs in FOS(16).  Among FOS and CARDIA whites, 

GRSt are weighted by the effects sizes from the DIAGRAMv3 meta-analysis(12).  GRSt are 

unweighted among CARDIA blacks.
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Table 4: Prediction models for incident type 2 diabetes without a GRSt and with a 17-, 40-, and 62-SNP GRSt in the 

Framingham Offspring Study 

 Without GRSt With 17-SNP GRSt With 40-SNP GRSt With 62-SNP GRSt 

Demographic model      

OR (per GRSt allele) --- 1.11 (1.07,1.15) 1.08 (1.06, 1.11) 1.08 (1.06, 1.10) 

C statistic 0.698 (0.68,0.72) 0.713 (0.692, 0.734) 0.718 (0.697, 0.740) 0.726 (0.705, 0.747) 

Continuous NRI --- 0.238 (0.144, 0.332) 0.321 (0.227, 0.414) 0.286 (0.192, 0.380) 

     

Clinical model     

OR (per GRSt allele) --- 1.10 (1.06, 1.15) 1.07 (1.04, 1.10) 1.06 (1.04, 1.08) 

C statistic 0.903 (0.89,0.92) 0.905 (0.891, 0.919) 0.906 (0.892, 0.920) 0.906 (0.892, 0.920) 

Continuous NRI --- 0.223 (0.129, 0.312) 0.274 (0.180, 0.368) 0.256 (0.162, 0.351) 

    

Clinical model: age-stratified    

Continuous NRI (<50 

years) 
--- 0.471 (0.310, 0.632) 0.423 (0.261, 0.585) 0.376 (0.213, 0.538) 

Continuous NRI (≥50 

years) 
--- 0.091 (-0.026, 0.207) 0.171 (0.055, 0.288) 0.156 (0.039, 0.272) 

Data are odds ratios (OR) for type 2 diabetes (T2D) per weighted allele increase in GRSt, C statistics, and continuous net 

reclassification improvement (NRI) indices comparing each GRSt model to the corresponding model without GRSt.  Demographic 

model is adjusted for age and sex.  Clinical models are adjusted for sex, parental T2D (yes. vs. no), body-mass index, systolic blood 

pressure, fasting glucose, HDL cholesterol, triglyceride levels, and (except for the age-stratified models) age. 
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Table 5: Prediction models for incident type 2 diabetes without a GRSt and with a 38- and 62-SNP GRSt among whites and 

blacks in the CARDIA Study 

 Without GRSt With 38-SNP GRSt With 62-SNP GRSt 

Whites    

    

Demographic model     

HR (per GRSt allele) --- 1.12 (1.06, 1.18) 1.08 (1.04, 1.12) 

C statistic 0.613 (0.548, 0.678) 0.663 (0.604, 0.722) 0.661 (0.604, 0.717) 

Continuous NRI --- 0.344 (0.129, 0.556) 0.311 (0.088, 0.525) 

    

Clinical model    

HR (per GRSt allele) --- 1.10 (1.04, 1.16) 1.06 (1.02, 1.10) 

C statistic 0.846 (0.803, 0.889) 0.853 (0.810, 0.896) 0.853 (0.810, 0.896) 

Continuous NRI --- 0.219 (-0.011, 0.434) 0.306 (0.073, 0.517) 

    

Blacks    

    

Demographic model    

HR (per GRSt allele) --- 1.05 (1.00, 1.11) 1.05 (1.01, 1.09) 

C statistic 0.571 (0.515, 0.628) 0.597 (0.546, 0.649) 0.595 (0.544, 0.647) 

Continuous NRI --- 0.083 (-0.137, 0.3105) 0.243 (0.031, 0.455) 

    

Clinical model     

HR (per GRSt allele) --- 1.06 (1.01, 1.12) 1.05 (1.00, 1.09) 

C statistic 0.762 (0.717, 0.807) 0.768 (0.724, 0.813) 0.771 (0.727, 0.814) 

Continuous NRI --- 0.164 (-0.051, 0.394) 0.296 (0.098, 0.513) 

Data are hazard ratios (HR) for type 2 diabetes (T2D), C statistics, and continuous net reclassification improvement (NRI) indices 

comparing each GRSt model to the corresponding model without GRSt.  HR are per weighted GRSt allele in whites and per 

unweighted allele in blacks.  Demographic models are adjusted for age and sex.  Clinical models are adjusted for age, sex, parental 

T2D (yes. vs. no), body-mass index, systolic blood pressure, fasting glucose, log-transformed HDL cholesterol, and log-transformed 

triglyceride levels. 
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Figure 1: Type 2 diabetes (T2D)-associated genetic loci.  Loci on x-axis are ordered by 

inclusion in published 17-, 40- and 62-SNP genotype risk scores.  Black bars (left y-axis) 

indicate published DIAGRAMv3 odds ratio (OR) for T2D per risk allele at each locus.  

Black line plots the T2D OR in the Framingham Offspring Study (FOS) per allele increase 

in a genotype risk score (GRS) containing the loci up to that point on the x-axis.  Points 

with error bars plot the C statistics (95% confidence intervals) from pooled logistic 

regression models for T2D in FHS including 17-, 40-, and 62-SNP GRS in demographic 

(triangles) and clinical (squares) models.  Loci used in separate β-cell and insulin resistance 

(IR) GRS in the present analyses are also indicated. 

 

Figure 2: Receiver operating characteristic (ROC) curves for models predicting incident 

type 2 diabetes with and without a 62-locus genetic risk score (GRS) among the 

Framingham Offspring (a) and white (b) and black (c) young adults in the CARDIA Study. 

Graphs plot the sensitivity vs. (1 − specificity) for diabetes at each possible model cutpoint.  

The area under a ROC curve corresponds to the C statistic of that model.  Full clinical 

model is adjusted for age, sex, parental diabetes (yes. vs. no), body-mass index, systolic 

blood pressure, fasting glucose, HDL cholesterol, and triglyceride levels. 
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Supplementary Table 1: Rationale for categorizing 30 T2D-associated single-nucleotide polymorphisms (SNP) as affecting β-cell function or insulin resistance, based on known 

gene function or specific metabolic phenotypes in the Meta-Analysis of Glucose and Insulin-related traits Consortium (MAGIC).  

      Physiology based on MAGIC analyses 

 

SNP Locus Chr 

Risk 

allele 

T2D 

effect  

HOMA-β 

effect p 

HOMA-β 

effect  

<-0.008  

IGI 

p<0.05 

AIR 

p<0.05 

Proinsulin 

p<0.05 

Physiology 

clustering  

β
-c

el
l 

fu
n

ct
io

n
 

rs10830963 MTNR1B 11 G 0.0414 -0.0394 8.6E-23 xx xx    

rs10203174 THADA 2 C 0.0569 -0.0262 9.8E-06 x    x 

rs6819243 MAEA 4 T 0.0294 -0.0249 9.5E-03 x     

rs7903146 TCF7L2 10 T 0.1399 -0.0200 1.4E-07 x x  x x 

rs11717195 ADCY5 3 T 0.0492 -0.0181 2.7E-05 x   x x 

rs1552224 ARAP1  11 A 0.0374 -0.0166 9.4E-05 x x  xx  

rs3802177 SLC30A8 8 G 0.0531 -0.0160 2.0E-05 x x x x x 

rs10758593 GLIS3 9 A 0.0253 -0.0145 1.3E-05 x     

rs10278336 GCK  7 A 0.0374 -0.0128 2.1E-04 x x    

rs17168486 DGKB 7 T 0.0374 -0.0126 3.0E-03 x x   x 

rs2075423 PROX1 1 G 0.0294 -0.0125 3.9E-04 x x   x 

rs4402960 IGF2BP2 3 T 0.0531 -0.0115 1.2E-03 x x x   

rs4502156 VPS13C 15 T 0.0212 -0.0099 3.6E-03 x     

rs7756992 CDKAL1 6 G 0.0607 -0.0095 7.5E-03 x xx x  x 

rs11257655 CDC123 10 T 0.0334 -0.0091 2.5E-02 x x    

rs1496653 UBE2E2 3 A 0.0374 -0.0088 1.9E-02 x     

rs163184 KCNQ1 11 G 0.0374 -0.0086 1.6E-02 x  x   

rs10811661 CDKN2A/B 9 T 0.0755 -0.0085 5.1E-02 x x x  x 

rs1111875 HHEX/IDE 10 C 0.0374 -0.0042 2.0E-01  xx x  x 

rs5215 KCNJ11 11 C 0.0294 0.0009 7.8E-01   x   

 

    

HOMA-IR 

effect p 

HOMA-IR 

p<0.05 

FI  

p<10
-8

 

Obesity 

p<10
-8

 

IR lipid 

profile 

Physiology 

clustering 

In
su

li
n

 r
es

is
ta

n
ce

 

rs12970134 MC4R 18 A 0.0334 0.0084 7.6E-02   x  x 

rs13233731 KLF14 7 G 0.0043 0.0077 5.1E-02 x   x  

rs13389219 GRB14 2 C 0.0374 0.0124 2.2E-03 x x    

rs1801282 PPARG 3 C 0.0453 0.0161 5.6E-03 x x  x  

rs2261181 HMGA2 12 T 0.0414 0.0135 4.9E-02 x     

rs2943640 IRS1 2 C 0.0414 0.0086 3.6E-02 x x  x  

rs459193 ANKRD55 5 G 0.0414 0.0115 1.1E-02 x     

rs780094 GCKR 2 C 0.0334 0.0201 7.6E-07 x x  x  

rs8182584 PEPD 19 T 0.0212 0.0122 3.9E-03 x x    

rs9936385 FTO 16 C 0.0531 0.0148 3.3E-04 x  x  x 

Physiology clustering as β-cell function or insulin resistance based on MAGIC analyses(1). Fasting insulin (FI) p-values based on body-mass index*gene analyses in (2). Obesity 

defined as association with risk of increased body-mass index in Genetic Investigation of ANthropometric Traits (GIANT) data(3). Insulin resistance (IR) lipid profile defined as 

high triglyceride and low HDL levels as reported in (2). AIR—acute insulin response; Chr—chromosome; FI: fasting insulin; HOMA—homeostasis model of assessment; IGI—

insulinogenic index; MAGIC—Meta-Analysis of Glucose and Insulin-related traits Consortium; SNP—single-nucleotide polymorphism; T2D—type 2 diabetes. 
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Supplementary Table 2: Mean β-cell (GRSβ) and insulin resistance (GRSIR) genotype risk scores in the Framingham Offspring 

and CARDIA Studies 

 Total BMI<30 kg/m
2
 BMI≥30 kg/m

2
 

GRSβ    

FOS 21.6 (3.0) 21.6 (3.0) 21.6 (2.9) 

T2D 22.6 (3.0) 23.2 (3.1) 22.4 (2.6) 

No T2D 21.6 (3.0) 21.6 (3.0) 21.6 (2.9) 

    

CARDIA Whites 21.2 (3.1) 21.2 (3.1) 21.0 (3.2) 

T2D 22.1 (3.3) 22.3 (3.4) 21.6 (2.9) 

No T2D 21.2 (3.1) 21.2 (3.1) 20.7 (3.3) 

    

CARDIA Blacks 21.3 (2.4) 21.4 (2.4) 21.1 (2.4) 

T2D 21.6 (2.5) 21.6 (2.5) 21.7 (2.5) 

No T2D 21.3 (2.4) 21.3 (2.4) 20.8 (2.3) 

    

GRSIR    

FOS 10.4 (2.0) 10.4 (2.0) 10.5 (2.0) 

T2D 10.3 (2.4) 10.3 (2.3) 10.3 (2.7) 

No T2D 10.4 (2.0) 10.4 (2.0) 10.5 (2.0) 

    

CARDIA Whites 10.4 (2.0) 10.4 (2.0) 10.3 (2.1) 

T2D 10.6 (1.9) 10.5 (1.9) 10.8 (2.0) 

No T2D 10.4 (2.0) 10.4 (2.0) 10.1 (2.1) 

    

CARDIA Blacks 11.1 (1.9) 11.1 (1.9) 11.0 (1.8) 

T2D 11.4 (1.8) 11.5 (1.8) 11.3 (1.7) 

No T2D 11.0 (1.9) 11.0 (1.9) 10.9 (1.9) 

Data are mean (SD) weighted genotype risk scores (GRS) consisting of 20 single-nucleotide polymorphisms (SNP) associated with β-

cell dysfunction (GRSβ) and 10 SNP associated with insulin resistance (GRSIR) in the overall FOS and CARDIA cohorts and in 

participants with and without type 2 diabetes (T2D).  Among FOS and CARDIA whites, GRS are weighted by the effects sizes from 

the DIAGRAM v3 meta-analysis(4).  GRS are unweighted among CARDIA blacks. 
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Supplementary Table 3:  Odds ratios for GRSβ and GRSIR in prediction models for incident type 2 diabetes in the 

Framingham Offspring Study 

 GRSβ model GRSIR model GRSβ + GRSIR model 

Demographic model    

GRSβ 1.11 (1.08, 1.15)* --- 1.11 (1.08, 1.15)* 

GRSIR --- 1.04 (1.00, 1.10)  1.05 (1.00, 1.10) 

    

Clinical model    

GRSβ  1.10 (1.06, 1.14)* --- 1.10 (1.06, 1.14)* 

GRSIR  --- 0.98 (0.93, 1.04) 0.99 (0.93, 1.04) 

    

Data are odds ratios from pooled logistic regression models for incident type 2 diabetes and correspond to a 1-allele increase in the 

GRS.  Demographic models are adjusted for age and sex.  Clinical models are adjusted for age, sex, parental history of diabetes (yes 

vs. no), body-mass index, systolic blood pressure, fasting plasma glucose, high-density lipoprotein (HDL), and fasting triglycerides.  

GRSβ and GRSIR models include only the GRSβ and GRSIR, respectively.  The GRSβ + GRSIR model contains both terms.  *p<0.001 
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Supplementary Table 4: Hazard ratios for GRSβ and GRSIR in prediction models for incident type 2 diabetes among whites in 

the CARDIA Study 

 GRSβ model GRSIR model GRSβ + GRSIR 

model 

Demographic model    

GRSβ 1.09 (1.02, 1.16)* --- 1.09 (1.02, 1.16)** 

GRSIR --- 1.06 (0.96, 1.17) 1.06 (0.96, 1.17) 

    

Clinical model    

GRSβ  1.09 (1.02, 1.17)** --- 1.09 (1.02, 1.17)** 

GRSIR  --- 1.01 (0.91, 1.12) 1.01 (0.91, 1.11) 

    

Data are hazard ratios from Cox regression models for incident type 2 diabetes and correspond to a 1-allele increase in the GRS.  

Demographic models are adjusted for age and sex.  Clinical models are adjusted for age, sex, parental history of diabetes (yes vs. no), 

body-mass index, systolic blood pressure, fasting plasma glucose, log-transformed high-density lipoprotein (HDL), and log-

transformed fasting triglycerides.  GRSβ and GRSIR models include only the GRSβ and GRSIR, respectively.  The GRSβ + GRSIR 

model contains both terms.  *p<0.05, **p<0.01 
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Supplementary Table 5: Hazard ratios for GRSβ and GRSIR in prediction models for incident type 2 diabetes among blacks in 

the CARDIA Study 

 GRSβ model GRSIR model GRSβ + GRSIR model 

Demographic model    

GRSβ 1.06 (0.98, 1.14) --- 1.06 (0.98, 1.14) 

GRSIR --- 1.09 (1.00, 1.20) 1.10 (1.00, 1.20) 

    

Clinical model    

GRSβ  1.06 (0.99, 1.15) --- 1.07 (0.99, 1.15) 

GRSIR  --- 1.05 (0.96, 1.15) 1.05 (0.96, 1.16) 

    

Data are hazard ratios from Cox regression models for incident type 2 diabetes and correspond to a 1-allele increase in the GRS.  

Demographic models are adjusted for age and sex.  Clinical models are adjusted for age, sex, parental history of diabetes (yes vs. no), 

body-mass index, systolic blood pressure, fasting plasma glucose, log-transformed high-density lipoprotein (HDL), and log-

transformed fasting triglycerides.  GRSβ and GRSIR models include only the GRSβ and GRSIR, respectively.  The GRSβ + GRSIR 

model contains both terms.
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Supplementary Table 6: Racial differences in the associations between GRS and incident type 2 diabetes 

 GRSt GRSβ GRSIR 

Demographic model    

Whites 1.077 (1.059, 1.095) 1.109 (1.079, 1.139) 1.047 (1.003, 1.093) 

Blacks 1.046 (1.005, 1.088) 1.058 (0.982, 1.140) 1.095 (0.997, 1.202) 

p 0.19 0.25 0.39 

    

Clinical model    

Whites 1.060 (1.040, 1.080) 1.098 (1.063, 1.133) 0.990 (0.945, 1.038) 

Blacks 1.046 (1.003, 1.090) 1.063 (0.986, 1.147) 1.049 (0.957, 1.151) 

p 0.57 0.45 0.28 

    

Data are effect sizes of the association between each GRS and incident T2D among FOS and CARDIA whites (meta-analyzed) and 

CARDIA blacks.  Demographic models are adjusted for age and sex.  Clinical models are adjusted for age, sex, parental history of 

diabetes (yes vs. no), body-mass index, systolic blood pressure, fasting plasma glucose, log-transformed high-density lipoprotein 

(HDL), and log-transformed fasting triglycerides.  P values correspond to t-tests comparing the effect sizes between whites and 

blacks. 
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Supplementary Table 7: P-values for GRSβ and GRSIR regression terms in prediction models for incident type 2 diabetes in 

the Framingham Offspring Study, stratified by body-mass index (BMI) 

 GRSβ model GRSIR model GRSβ + GRSIR model 

BMI≥30 kg/m
2
    

GRSβ <0.001 --- <0.001 

GRSIR --- 0.427 0.426 

    

BMI<30 kg/m
2
    

GRSβ <0.001 --- <0.001 

GRSIR --- 0.223 0.199 

Data are p-values from pooled logistic regression models for incident type 2 diabetes, stratified by BMI category.  Models are adjusted 

for age and sex.  GRSβ and GRSIR models include only the GRSβ and GRSIR, respectively.  The GRSβ + GRSIR model contains both 

terms.  
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Supplementary Table 8: P-values for GRSβ and GRSIR regression terms in prediction models for incident type 2 diabetes in 

the overall CARDIA Study, stratified by body-mass index (BMI) 

 GRSβ model GRSIR model GRSβ + GRSIR model 

BMI≥30 kg/m
2
    

GRSβ 0.018 --- 0.021 

GRSIR --- 0.221 0.263 

    

BMI<30 kg/m
2
    

GRSβ 0.015 --- 0.013 

GRSIR --- 0.084 0.070 

Data are p-values from Cox regression models for incident type 2 diabetes, stratified by BMI category.  Models are adjusted for age, 

sex, and race.  GRSβ and GRSIR models include only the GRSβ and GRSIR, respectively.  The GRSβ + GRSIR model contains both 

terms.  
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Supplementary Table 9: Prediction models for incident type 2 diabetes in the Framingham Offspring Study, examining the 

interaction between genotype risk score and obesity 

 GRS model GRS + obesity model GRS*obesity interaction model 

GRSt model    

GRSt 1.08 (1.06, 1.10) 1.08 (1.06, 1.10) 1.09 (1.07, 1.12) 

Obesity --- 4.46 (3.66, 5.43) 22.39 (1.66, 301.34) 

GRSt*obesity interaction --- --- 0.98 (0.94, 1.01) 

    

GRSβ model    

GRSβ 1.11 (1.08,1.15) 1.13 (1.09, 1.16) 1.14 (1.09, 1.19) 

Obesity --- 4.46 (3.66, 5.43) 8.44 (1.97, 36.16) 

GRSβ*obesity interaction --- --- 0.97 (0.91, 1.04) 

    

GRSIR model    

GRSIR 1.04 (1.00, 1.10) 1.03 (0.98, 1.09) 1.04 (0.98, 1.11) 

Obesity --- 4.31 (3.54, 5.25) 5.11 (1.82, 14.36) 

GRSIR*obesity interaction --- --- 0.98 (0.89, 1.08) 

Data are odds ratios (OR) from pooled logistic regression models for type 2 diabetes per weighted allele increase in 62-SNP GRS 

(GRSt), β-cell GRS (GRSβ), and insulin resistance GRS (GRSIR), or for obesity (BMI≥30 kg/m
2
).  All models are adjusted for age and 

sex.  The GRS models include the corresponding GRS.  GRS + obesity models include both the corresponding GRS and a term for 

obesity.  GRS*obesity interaction models include the corresponding GRS, an obesity term, and an interaction term between GRS and 

obesity.   
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Supplementary Table 10: Prediction models for incident type 2 diabetes in the overall CARDIA Study, examining the 

interaction between genotype risk score and obesity 

 GRS model GRS + obesity model GRS*obesity interaction model 

GRSt model    

GRSt 1.06 (1.03, 1.09) 1.07 (1.04, 1.10) 1.07 (1.03, 1.10) 

Obesity --- 6.11 (4.52, 8.26) 9.99 (0.19, 517.69) 

GRSt*obesity interaction --- --- 0.99 (0.94, 1.05) 

    

GRSβ model    

GRSβ 1.09 (1.02, 1.16) 1.09 (1.04, 1.14) 1.07 (1.01, 1.14) 

Obesity --- 6.17 (4.56, 8.34) 2.60 (0.28, 23.81) 

GRSβ*obesity interaction --- --- 1.04 (0.94, 1.15) 

    

GRSIR model    

GRSIR 1.08 (1.01, 1.15) 1.08 (1.01, 1.15) 1.10 (1.01, 1.19) 

Obesity --- 5.94 (4.40, 8.02) 9.61 (2.01, 45.85) 

GRSIR*obesity interaction --- --- 0.96 (0.83, 1.10) 

Data are odds ratios (OR) from Cox regression models for type 2 diabetes per weighted allele increase in 62-SNP GRS (GRSt), β-cell 

GRS (GRSβ), and insulin resistance GRS (GRSIR), or for obesity (BMI≥30 kg/m
2
).  All models are adjusted for age, sex, and race.  

The GRS models include the corresponding GRS.  GRS + obesity models include both the corresponding GRS and a term for obesity.  

GRS*obesity interaction models include the corresponding GRS, an obesity term, and an interaction term between GRS and obesity.   
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