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In the present paper we exploit the theory of ambit processes to develop amodel which is able to effectively forecast prices of forward
contracts written on the Italian energy market. Both short-term andmedium-term scenarios are considered and proper calibration
procedures as well as related numerical results are provided showing a high grade of accuracy in the obtained approximations when
compared with empirical time series of interest.

1. Introduction

In recent years the economy of energy markets has been
interested by deep transformations due to political as well as
technological changes all over the world. Such innovations
have been often characterized by procedures of liberalisation
which have often led to the creation of completely new
markets as in the case of, for example, the Nordic Nord Pool
market, the German EEX market, the Italian GME, and so
forth, most of which are animated by a plethora of different
financial products such as spot or forward/futures contracts,
European options, and exotic options.

Although energy markets seem similar to classical finan-
cial ones, there are many differences between them.The elec-
tricity spot cannot be stored directly, or, at least, only a small
quantity can be kept using reservoirs for hydrogenerated
power or exploiting large and expensive batteries.This makes
the supply of power very inelastic as it is influenced by sea-
sonal, weekly, and intradaily pattern, resulting in a very
illiquid framework.

Latter characteristics give rise to incompleteness of the
energy markets; hence classical mathematical approaches,
such as those which are based on the Brownian setting, for
example, the Black and Scholes model (see [1]) are not satis-
factory; see, for example, [2, 3] and references therein.

To overcome (at least some of) such drawbacks, the
theory of ambit processes has been proposed by Barndorff-
Nielsen and Schmiegel; see [4], where the authors studied
some type of turbulence’s problemswhichwas later applied to
analyse energy markets and then improved to take into
account related financial products; see, for example, [5–7]. Let
us underline the fact that ambit processes provide a flexible
class of random field models where we can easily incorporate
leptokurtic behaviors in returns, stochastic volatility, seasonal
pattern, and the observed Samuelson effect; see, for example,
[8] and references therein, for a treatment of such an
economical effect.

Ambit processes (see Section 2 and references therein for
details) are characterized by a Lévy basis and a deterministic
function, integrated on an interval called ambit set. They
allow specifying directly the model based on a probabilistic
understanding of the phenomena; moreover they are well
defined under weak integrability conditions. We would also
like to underline the fact that the theory of stochastic differen-
tial equations driven by Lévy processes has been widely used
in finance providing an effective set of techniques used to
model a huge quantity of different financial scenarios; see, for
example, [9–12] and references therein.

In this work we briefly present the theory of ambit
processes emphasizing how they can be applied to the study of
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energy markets’ forward prices. In Section 2 we show the
concepts of ambit process and Lévy basis, focusing our
attention on those results which will be relevant tomodel, see
Section 3, the forward price problem; see also, for example,
[13–15] for related financial setting; then, in Section 4, we
concretely apply the proposed approach to forecast the price
of a particular forward contract written within the Italian
energy market; calibration of relevant parameters as well as
short-term and medium-term analysis is also provided.

2. Ambit Processes

This section is intended to be an introduction to stochastic
ambit processes; for a deeper treatment of the subject we refer
to [5–7] and references therein.

A rigorous treatment of ambit fields and ambit processes
is based on the definition of Lévy basis. A homogeneous Lévy
basis is a special class of independently scattered random
measures (ISRM); see, for example, [16]. We denote by
(Ω,F, 𝑃) a general probability space; let 𝑆 ∈ B(R𝑘) be a
subset of the class of Borel sets ofR𝑘, 𝑘 ∈ N+, and let us denote
byB𝑏(𝑆) the class of bounded Borel subsets of 𝑆. The follow-
ing definitions will be used later on; for more details we refer
to [17].

Definition 1. A family {Λ(𝐴) : 𝐴 ∈ B𝑏(𝑆)} of random vectors
inR𝑑 is calledR𝑑-valued Lévy basis on 𝑆 if the following three
properties are satisfied.

(1) The law of Λ(𝐴) is infinitely divisible for all 𝐴 ∈

B𝑏(𝑆).
(2) If 𝐴1, . . . , 𝐴𝑛 are disjoint subsets in B𝑏(𝑆), then

Λ(𝐴1), . . . , Λ(𝐴𝑛) are independent.
(3) If 𝐴1, 𝐴2, . . . are disjoint subsets in B𝑏(𝑆) with

⋃
∞

𝑖=1
𝐴 𝑖 ∈ B𝑏(𝑆), then

Λ( lim
𝑛→∞

𝑛

⋃
𝑖=1

𝐴 𝑖) =

∞

∑
𝑖=1

Λ (𝐴 𝑖) , a.s., (1)

with respect to ISRM.

Definition 2. An ambit process is defined as a solution, 𝑌𝑡(𝑥),
of the following stochastic equation called ambit field:

𝑌𝑡 (𝑥) = 𝜇 + ∫
𝐴
𝑡
(𝑥)

𝑔 (𝜉, 𝑠; 𝑥, 𝑡) 𝜎𝑠 (𝜉) 𝐿 (𝑑𝜉, 𝑑𝑠)

+ ∫
𝐷
𝑡
(𝑥)

𝑞 (𝜉, 𝑠; 𝑥, 𝑡) 𝑎𝑠 (𝜉) 𝑑𝜉𝑑𝑠,

(2)

where 𝐴 𝑡(𝑥), 𝐷𝑡(𝑥) are ambit sets; 𝑔 and 𝑞 are deterministic
functions of space and time; 𝜎 is a stochastic and positive
random field, often referred to as volatility; and 𝐿 is a Lévy
basis.

In order to define the proper filtration to work with, let 𝐿
be a Lévy basis on 𝑆×[0, 𝑇] ∈ B(R𝑘+1), for some 𝑘 ∈ N+ and a
given finite time horizon𝑇 ∈ R+; then for any𝐴 ∈ B𝑏(𝑆) and

𝑡 ∈ [0, 𝑇], we define (see [5]) the following measure-valued
processes: 𝐿 𝑡(𝐴) := 𝐿(𝐴, 𝑡) = 𝐿(𝐴 × (0, 𝑡]), which can be
used as integrator (see [18]) under the square-integrability
assumption. Exploiting the latter definition we can define the
filtration {F𝑡}𝑡∈[0,𝑇], as follows:

F𝑡 = ∩
+∞

𝑛=1
F
0

𝑡+1/𝑛
,

with F
0

𝑡
= 𝜎 {𝐿 𝑠 (𝐴) : 𝐴 ∈ B𝑏 (𝑆) , 0 < 𝑠 ≤ 𝑡} ∨ N,

(3)

whereN denotes the P-null sets inF; see Section 3.3 of [5].
In many applications we are interested in, it is useful

to consider ambit processes that are stationary in time and
nonanticipative. The ambit set 𝐴 𝑡(𝑥) is homogeneous and
nonanticipative if it is taken of the form 𝐴 𝑡(𝑥) = 𝐴 + (𝑥, 𝑡),
where 𝐴 only involves negative time coordinates. If 𝑔, 𝜎, 𝑞,
and 𝑎 are sufficiently smooth to allow for the existence of the
integrals in (2), then they can be defined in the sense of ISRM;
see, for example, [19], for a detailed treatment of Lévy integra-
tion.

2.1. Modelling Forward Price Using Ambit Processes. Due to
their structure, ambit fields can be used to capture many
of the peculiarities characterizing modern energy markets,
for example, their strong seasonal patterns, very pronounced
volatility clusters, high spikes/jumps, the so-called Samuelson
effect, and so forth. We recall that the Samuelson effect
describes the fact that the volatilities of the forward price are
generally smaller than the ones of the underlying spot price;
moreover such volatilities quickly converge to the volatility of
the spot itself, when time to maturity tends to zero.

The forward price case requires the introduction of a
component which could be able to reflect the fact that the
forward price depends also on the time to maturity. Such a
component is modelled as an ambit field, with both temporal
and spatial component, of the following form:

𝑓𝑡 (𝑥) = ∫
𝐴
𝑡
(𝑥)

𝑘 (𝜉, 𝑡 − 𝑠; 𝑥) 𝜎𝑠 (𝜉) 𝐿 (𝑑𝜉, 𝑑𝑠) , (4)

where 𝑡 ≥ 0 denotes the current time, 𝑇 > 0 denotes the mat-
urity time, and 𝑥 = 𝑇 − 𝑡 indicates the corresponding time
to maturity. Note that in (4), 𝜎𝑠(𝜉) > 0 is a stochastic field on
R+× R, which is stationary in the time domain and such that
it expresses the volatility on the forward market as a whole.

According to Definitions 1 and 2 and (2) a specific model
can be built specifying the sets 𝐴 𝑡(𝑥), the damping function
𝑘, and the stochastic volatility field 𝜎𝑠(𝜉). In each case the
choice will be based onmarket intuition and consideration of
mathematical tractability; for example, in (4), it is convenient
to assume that 𝜎 is independent of 𝐿. Moreover in order to
ensure that 𝑓𝑡(𝑥) is stationary in time 𝑡, the ambit sets are
taken to be of the form 𝐴 𝑡(𝑥) = 𝐴0(𝑥) + (0, 𝑡).

Let us describe a possible model for electricity forward
price exploiting equation (4). In what follows we will denote
by 𝑃
∗ a risk neutral probability measure, which is not

assumed to be uniquely determined. We shall work directly
under the 𝑃∗ measure in order to ignore any drift terms,
hence working with the zero-mean specification of the ambit
field.
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In formula (4) the forward price is characterized by:

(i) a square integrable Lévy basis 𝐿with mean equal to 0;
(ii) a stochastic volatility field 𝜎 assumed to be adapted

to the filtration {F𝑡}𝑡∈[0,𝑇] previously defined and
independent of the Lévy basis 𝐿; in order to ensure
stationarity in time, we assume that 𝜎𝑠(𝜉) is stationary
in 𝑠;

(iii) a nonnegative kernel function 𝑘 such that it satisfies
𝑘(𝜉, 𝑢, 𝑥) = 0 for 𝑢 < 0;

(iv) a convolution 𝑘 ∗ 𝜎 that is integrable with respect to
𝐿;

(v) a chosen ambit set𝐴 𝑡(𝑥) of the type𝐴 𝑡(𝑥) = 𝐴0(𝑥) +

(0, 𝑡).

It turns out that, to construct the model, we have to spec-
ify the kernel function 𝑘, the stochastic volatility 𝜎𝑠(𝜉), and
𝐿. For a detailed analysis of the stochastic volatility part we
refer to [7], while, in the next subsections, we will take into
account the specification of both a particular Lévy basis and
a specific kernel function.

2.1.1. Specification of the Lévy Basis. Our model is based on
a Lévy basis which is square integrable and has zero-mean;
hence we can choose any infinitely divisible distribution
satisfying these two assumptions. A very natural choice is rep-
resented by theGaussian Lévy basis which results in a smooth
random field; alternatively, we can choose a normal inverse
Gaussian (NIG) Lévy basis or a tempered stable Lévy basis;
see, for example, [5].

Let us recall that if the zero-mean assumption is relaxed,
then we can use a gamma or inverse Gaussian Lévy basis, so
that the positivity of forward price is guaranteed.

2.1.2. Specification of theKernel Function. Thekernel function
𝑘 plays a key role in our model; indeed it

(1) completely determines the tempospatial autocorrela-
tion structure of a zero-mean ambit field,

(2) characterises the Samuelson effect,
(3) determines whether the forward price is amartingale.

Recall that 𝑘 is a function of the variables 𝜉, 𝑡−𝑠, 𝑥, where 𝑡−𝑠

is the temporal component, while 𝜉, 𝑥 are the spatial ones.
A rather natural approach to specify a kernel function is

to assume a factorisation property. We will present two dif-
ferent types, which are important in different contexts. In the
first example the kernel is subdivided into a spatial and a tem-
poral component. The kernel factorises as follows:

𝑘 (𝜉, 𝑡 − 𝑠, 𝑥) = 𝜙 (𝜉, 𝑥) 𝜓 (𝑡 − 𝑠) , (5)

for suitable functions 𝜓 and 𝜙 representing the temporal and
the spatial component respectively. For the temporal kernel
part, we can choose an exponential function, a choicewhich is
motivated by an Ornstein-Uhlenbeck process approach; oth-
erwise a more generally option is given exploiting a contin-
uous-time autoregressive moving average (CARMA) process.

For the spatial component, which determines the correlation
between various forward contracts, we can choose a function
similar to the one adopted for the temporal component.

An alternative factorisation of the kernel function is given
by

𝑘 (𝜉, 𝑡 − 𝑠, 𝑥) = Φ (𝜉)Ψ (𝑡 − 𝑠, 𝑥) . (6)

Despite the fact that a factorisation does not look very natural,
it is still very useful to formulatemartingale conditions for the
forward price since it naturally includes cases when 𝑡 does not
play an explicit role in the sense thatΨ(𝑡−𝑠, 𝑥) = Ψ̃(𝑡−𝑠+𝑥) =

Ψ̃(𝑇 − 𝑠) for a suitable function Ψ̃.
We would like to underline the fact that the ambit pro-

cesses characteristics are also very useful to study the depen-
dence structure between various forward contracts. In partic-
ular, the autocorrelation structure is determined by three fac-
tors: the intersection of the corresponding ambit sets, the ker-
nel function, and the autocorrelation structure of the stochas-
tic volatility field. Thanks to the flexibility of ambit field
we can construct different type of autocorrelation. Moreover
it is possible tomodel different types of commodities forward
or futures contracts, such as electricity and natural gas fut-
ures, simultaneously; see [5].

3. The Model

In this section we exploit the theory described in the pre-
vious section to propose a model, inspired by the analysis
developed in [5], to simulate the forward price. Asmentioned
before the specifications of parameters for an applied ambit
processes based model will be essentially done by interplay
between mathematics aspects, numerical tractability, and
empirical evidence. We start considering the following
stochastic equation for the forward price process 𝑓 = 𝑓𝑡:

𝑓𝑡 (𝑥) = ∫
𝑥
2

𝑥
1

𝜙 (𝜉, 𝑥) 𝜓 (𝑡, 𝑇) 𝐿 (𝑑𝜉, 𝑑𝑥) , (7)

where the kernel function is factorised following the one pro-
posed in formula (5), the integration interval depends on how
long the contract is traded in the market, and 𝑇 > 0 is the
maturity time.

In the model proposed with (7) the stochastic volatility
is not used. The price of forward contracts that were studied
shows a very regular trend; the introduction of stochastic
volatility increases the complexity of the model but it is not
required by empirical evidences. For this reason we have
followed what is suggested in [5] and we have not introduced
it.

In order to choose the right kernel function for the model
in (7) we first consider the time to maturity component. As a
general fact, forward contracts tend to depreciate getting
close to maturity time, but the behavior of prices may be very
different. In particular forward contracts are characterized by
patterns that cannot be reduced to a generic convex-concave
description. In our analysis, we have chosen a linear fall in
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price to mediate different behaviors. So, for time to maturity
part of the kernel we have

𝜓 (𝑡, 𝑇) = 𝑓0 − 𝐶
𝑡

𝑇
, (8)

where 𝑓0 is the price of forward at time 0 and 𝐶 ∈ R is a
constant computed as the average fall in price atmaturity time
of a forward and, in our example, we calculated the mean
value over contracts of last year; see Section 4.

We would like to underline the fact that estimates
obtained using (8) are in general more accurate than those
computed by a negative exponential approach to deprecia-
tion. The latter fact is particularly evident for contracts that
present a sort of concave trend; see Table 6.

Nowwe focus on the other component of kernel function.
Since electricity’s price is strongly affected by seasonality, then
also the forward price depends on the particular period of the
year we want to consider. The latter fact guides us to choose
the component 𝜙 in order to take into account the seasonal
influences that affect energy markets:

𝜙 (𝜉, 𝑥) = −
sin (𝑥1 (𝜉))

𝐾
+

(𝐾 + sin (𝑥))

𝐾
. (9)

Let us note that in (9) there are two important parameters:
𝑥1, which depends on the space component 𝜉 through proper
calibration procedure as pointed out in Section 4.1, and 𝐾.
The latter constant is very interesting because it depends
only on the length of the forecast. In particular short-term
forecasts are less influenced by seasonality than medium or
long time previsions. It follows that the parameter𝐾 plays the
role of a trigger that can be used to increase or to reduce the
relevance of such an effect, hence taking value according to
our particular forecast interests. We also note that the defini-
tions of the functions 𝜙 and 𝜓 ensure that the forward price
is a local martingale under P∗; see [5, Section 6.1].

Concerning the task of choosing the most suitable Lévy
basis, we note that forward price shows a certain continuity in
the trend; hence we decided to use a continuous one. Due to
its small daily variability we choose a distribution with small
variance. In order to use the right distribution, we note that
forward prices show a small variability; hence there are no fat
tail phenomena to be taken into account, at least at such a
time scale, we need a symmetric distribution in order to
better fit related time series and we suppose that the (daily)
small variations in the forward price component depend on a
certain number of hidden variables whose global effect can be
efficiently summarized by a central limit theorem approach.
Therefore we set

𝐿 ∼ 𝑁 (𝜇, Σ) , (10)

where

𝜇 = [
1

1
] Σ = [

𝜎𝑥𝑑𝑥 0

0 𝜎𝑡𝑑𝑡
] , (11)

where 𝜎𝑥 and 𝜎𝑡 are constants which measure the variability
on time and on time to maturity.

Table 1: Integration intervals.

Month 𝑥
1

January 11/8𝜋
February 7/4𝜋
March 1/8𝜋
April 0
May 3/8𝜋
June 3/4𝜋
July 9/8𝜋
August 3/2𝜋
September 15/8𝜋
October 1/4𝜋
November 5/8𝜋
December 𝜋

4. Empirical Study

In this part we report the concrete implementation of our
model which will be tested on the behaviour of a particular
type of forward traded in Italian over-the-counter (OTC)
market, namely, a monthly peak forward contract which
assures the supply of electricity at a fixed price for a month
from 9 a.m. to 8 p.m. and only during working days. We
analyse 12 forwards, one for each month of the year, starting
from the first for April 2012 until March 2013. In what follows
wedescribe howwehave calibrated themodel, andwepresent
the results obtained for a short- and a medium-term forecast
of the trend of these contingent claims.

4.1. Calibration. In this section we show how the parame-
ters characterizing (7) have been computed, with particular
emphasis on how to estimate the length of the integration.

Let us underline the fact that, with respect to (9), we have
used a periodic function to simulate seasonality; namely, we
have decided to use the following values for 𝑥1 = 𝑥1(𝜉)

depending on the component 𝜉 which spans the different
months of the year.

Let us note that values in Table 1 has to be considered tak-
ing into account that the starting point 0 is in April instead of
January because each contract begins to be traded 3 months
before its maturity time; therefore forward for April 2012 is
traded from January 1, 2012, to March 31, 2012.

Parameter 𝐾, in formula (9), has been theoretically
discussed before; see Section 2.1.2; here we suggest only the
values we chose in our approximation. For a 5-day prediction
(short-termprediction)we put𝐾 = 200; to predict the behav-
ior of forward during the period when it is traded (3 months)
we set𝐾 = 30. As we have already underlined, the parameter
𝐾 is used to model seasonality. The importance of season-
ality increases enlarging the estimated period; hence for
short-term analysis we set a bigger value of 𝐾 in order to
reduce the effect of seasonality on the simulated price. The
latter means that, from a concrete point of view, the chosen
values for𝐾 have to be tailored on the specific market; hence
there is not a theoretical approach able tomodel𝐾 for general
frameworks.
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Table 2: Short-term results.

Month 1 2 3 4 5
April 2012 0,47% 0,58% 0,51% 0,52% 0,54%
May 2012 0,52% 0,66% 0,75% 0,79% 0,73%
June 2012 0,67% 0,75% 0,77% 1,01% 1,15%
July 2012 0,51% 0,61% 0,80% 0,92% 1,19%
August 2012 0,63% 0,85% 0,98% 1,10% 1,17%
September 2012 0,52% 0,50% 0,46% 0,51% 0,45%
October 2012 0,28% 0,38% 0,55% 0,75% 0,85%
November 2012 0,64% 0,67% 0,75% 0,86% 0,96%
December 2012 0,51% 0,69% 0,71% 0,78% 0,90%
January 2013 0,41% 0,45% 0,55% 0,59% 0,58%
February 2013 0,70% 0,84% 1,04% 1,23% 1,41%
March 2013 0,61% 0,91% 1,21% 1,39% 1,74%

Table 3: Short-term results with 𝐶 = 3.

Month 1 2 3 4 5
April 2012 0,49% 0,56% 0,54% 0,58% 0,63%
May 2012 0,5% 0,66% 0,76% 0,74% 0,65%
June 2012 0,66% 0,8% 0,86% 0,91% 1,09%
July 2012 0,45% 0,6% 0,76% 1,06% 1,21%
August 2012 0,69% 0,91% 1,01% 1,08% 1,18%
September 2012 0,44% 0,53% 0,49% 0,48% 0,49%
October 2012 0,36% 0,45% 0,61% 0,73% 0,83%
November 2012 0,63% 0,69% 0,75% 0,88% 0,92%
December 2012 0,52% 0,67% 0,82% 0,83% 0,86%
January 2013 0,44% 0,51% 0,55% 0,61% 0,7%
February 2013 0,65% 0,8% 1,08% 1,22% 1,42%
March 2013 0,65% 0,87% 1,26% 1,48% 1,8%

Note that parameter 𝐶 in formula (8) is estimated as the
mean values of differences between the first and the last
quotation for all monthly forward in 2012, which leads to𝐶 =

4. Let us note that a least squares approach to the estimation
of 𝐶 has shown a mean equal to 3,97, with a standard
deviation of 3,12; nevertheless such values are not particularly
meaningful because of the smallness of data sample. The
latter fact has suggested to try for different values of 𝐶 in
a reasonable small neighbourhood of its estimated mean.
Following such an approach we compared results obtained
for different values of𝐶, without appreciating substantial dif-
ferences in short-term analysis (see Table 4 and (6)), but, see
Table 6, for medium-term analysis the best forecast results
have been produced taking 𝐶 = 4. The constants 𝜎𝑥 and 𝜎𝑡
measure the daily variability over time and over time tomatu-
rity. Forward contracts show very small daily variations and
empirically evidences suggest taking 𝜎𝑥 = 0.005 and 𝜎𝑡 =

0.000001.

4.2. Short-Term Analysis. As mentioned before, the short-
term forecasts are very little effected by seasonality; hence for
such type of analysis we have to decrease seasonal effect in
our model. Here we present results obtained for 1 to 5 days
ahead prediction. In particular Table 2 reports, as the mean

obtained over 5 tests, the average absolute percentage error
with respect to the number of days, from 1 to 5, for which the
different forecasts are computed.

Concerning latter analysis, it is interesting to note that
even if the error tends to grow in the number of days aswe can
expect, it remains small. The prevision on the 1st day ahead
is always less than 1% and forecasts on 5 days ahead only
once overtake 1,5%. Let us note that such stability is due not
only to the precision of the method we proposed, but also it
depends on the relative stationarity of forward contracts’
trend; nevertheless it is important to underline the fact that it
can be appreciated exploiting the small variance of the chosen
Lévy basis.

Coherently with the qualitative analysis for the parameter
𝐶 that we have given at the end of the previous section, we
report, see Tables 3 and 4, some computations concerning
different values of 𝐶.

Figures 1 and 2 show the month with the best predictions
(September) and the one with the worst ones (March). We
present also previsions for 1, 2, 3, and 4 days ahead for each
month.

Concerning the graphs in Figures 1 and 2, wewould like to
underline the fact that they are made with respect to different
scales on the price component; hence they may appear to be
in contrast with results obtained in Table 2, but this is not. Let
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Table 4: Short-term results with 𝐶 = 5.

Month 1 2 3 4 5
April 2012 0,47% 0,56% 0,52% 0,6% 0,56%
May 2012 0,55% 0,7% 0,78% 0,79% 0,83%
June 2012 0,66% 0,86% 0,86% 1,02% 1,08%
July 2012 0,44% 0,64% 0,73% 1,04% 1,24%
August 2012 0,71% 0,86% 0,95% 1,09% 1,27%
September 2012 0,47% 0,5% 0,43% 0,48% 0,47%
October 2012 0,35% 0,41% 0,58% 0,79% 0,89%
November 2012 0,64% 0,77% 0,73% 0,94% 0,97%
December 2012 0,61% 0,63% 0,76% 0,79% 0,89%
January 2013 0,44% 0,47% 0,53% 0,63% 0,6%
February 2013 0,75% 0,83% 0,99% 1,18% 1,28%
March 2013 0,64% 0,87% 1,15% 1,36% 1,59%
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Figure 1: Forward September.
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Figure 2: Forward March.

us also note that small oscillations of forward for September
give us better forecasts.Wewould like to stress that ourmodel
is able to follow rather closely the trend of real price in both
September and March forwards.

4.3. Medium-Term Analysis. In this part we present results
obtained with a medium-term analysis.

In short-term analysis we took the price today to forecast
the value of the contract some days ahead. In what follows we
use the first quotation of each forward to predict the whole
trend. In this case a very important role is played by season-
ality. In particular for a 3-month period we cannot ignore
seasonal effect, as we have done in our short-term analysis.
In Table 5 we present the average absolute percentage error
obtained for each contract.

As we can easily guess, errors increase enlarging the
period to forecast but our numerical results show that these
errors can be controlled resulting in discrepancies which, in
some cases, remain near the ones obtained in the short-term
analysis. Note that, contracts with bigger error are often the
same of those in Table 2, with the only exception for July 2012,

Table 5: Medium-term results.

Month AAE%
April 2012 0,90%
May 2012 4,80%
June 2012 3,33%
July 2012 1,11%
August 2012 3,31%
September 2012 1,37%
October 2012 5,29%
November 2012 2,37%
December 2012 2,83%
January 2013 1,17%
February 2013 2,27%
March 2013 6,65%

where we have a smaller error than in the previous example.
In Table 6, we compare the results obtained varying the
parameter 𝐶 and we also show (see the specification of the
model at the beginning of Section 3) the estimates that we
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Figure 3: Different simulated forward.

Table 6: Medium-term analysis with different methods.

Method 𝐶 = 3 𝐶 = 4 Neg. Exp.
April 2012 0,83% 1,32% 0,91%
May 2012 4,23% 5,34% 4,85%
June 2012 2,77% 3,92% 3,72%
July 2012 1,27% 1,04% 1,38%
August 2012 3,99% 2,74% 3,36%
September 2012 1,25% 1,48% 1,47%
October 2012 4,7% 5,96% 5,42%
November 2012 2,03% 2,98% 2,76%
December 2012 3,35% 2,32% 2,71%
January 2013 1,58% 0,96% 1,30%
February 2013 2,9% 1,78% 2,72%
March 2013 7,28% 5,95% 6,47%

can obtain substituting the function 𝜓, defined in (9), with
a negative exponential function.

In Figure 3 we compare the behavior of real price and the
simulated one for every forward contract in order to point out

the accuracy of our model which is able to closely follow the
real trend for each month of the year.

In particular, in Figure 3, we can note that forwards with
a bigger error are the ones which are more complicated to
forecast; moreover we note that the worst previsions are not
necessary at the end of the period, as we may expect.

Table 7 presents the error divided into 3 periods.
We can note that, generally speaking, better previsions

are the ones made for the first period; then they tend to get
worse, but this does not always happen. In particular, see,
for example, what happened in July 2012; our model is able
to behave correctly, namely, obtaining opposite results, and
this is due to the fact that the proposed procedure is good for
approximating seasonality effects.

5. Conclusions

In this work we have presented a model based on ambit
processes to forecast forward prices both in short- and in
medium-term scenarios.

In the short-term framework we have calibrated the
model reducing the effect of seasonality. Errors associated
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Table 7: Medium-term analysis.

Month 1st month 2nd month 3rd month
April 2012 1,05% 0,49% 1,36%
May 2012 1,34% 4,76% 8,50%
June 2012 2,75% 5,15% 2,16%
July 2012 1,51% 0,88% 0,69%
August 2012 4,90% 3,22% 1,83%
September 2012 0,63% 1,38% 1,91%
October 2012 2,40% 6,42% 7,07%
November 2012 2,71% 3,52% 1,15%
December 2012 1,43% 2,40% 4,51%
January 2013 0,83% 1,01% 1,66%
February 2013 0,86% 0,66% 5,01%
March 2013 1,46% 7,48% 10,71%

with our estimates are very small; moreover we are able to
control their growth when the number of days ahead
increases. Our analysis shows that, comparing discrepancies
with empirical data and with the related errors for the spot
price, provided forecasts for forward prices are closer to
reality than the ones obtained in the spot case.The latter fact is
mainly due to the greater stability of the behavior of prices in
the forward case compared to the spot setting, a characteristic
that is particularly pointed out exploiting ambit processes.

In medium-term analysis we have tried to forecast the
whole trend of a forward contract using only its first value. As
we expect, errors increase if comparedwith the ones obtained
in the short-term analysis, but some analogies have to be
underlined; for example, contracts with bigger error in
medium-term analysis are the same as in the short-term case.
In particular our approach is able to handle abrupt changes
in the real trend of electricity price with good control on
estimating errors. In the medium-term study we have also
included the seasonality effect, obtaining estimates that fol-
low the pattern of forward price during all the analysed peri-
ods. Sometimes it also happens that predicted values in last
part of the interval are better than initial ones, hence confirm-
ing, also exploiting related graphical analysis, that our model
can give a good approximation of the seasonal pattern of the
price.
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