
   
	
  

UNIVERSITA’	
  DEGLI	
  STUDI	
  DI	
  VERONA	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DEPARTMENT	
  OF	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Pathology	
  and	
  Diagnostic	
  –	
  Division	
  of	
  General	
  Pathology	
  
	
  

GRADUATE	
  SCHOOL	
  OF	
  
	
  

Traslational	
  Biomedical	
  Sciences	
  
	
  

DOCTORAL	
  PROGRAM	
  IN	
  
	
  

Molecular	
  and	
  Cellular	
  Biology	
  and	
  Pathology	
  
	
  

WITH	
  THE	
  FINANCIAL	
  CONTRIBUTION	
  OF	
  
	
  

National	
  Multiple	
  Sclerosis	
  Society	
  
European	
  Research	
  Council	
  

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cycle	
  /	
  year	
  	
  XXVI	
  /(2011)	
  

	
  
	
  	
  

TITLE	
  OF	
  THE	
  DOCTORAL	
  THESIS	
  
	
  

TIM-­1	
  is	
  a	
  physiological	
  P-­selectin	
  ligand	
  

that	
  mediates	
  T-­cell	
  trafficking	
  during	
  

inflammation	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  S.S.D.	
  MED/04	
  	
  	
  	
  

	
  	
  
	
  
	
  
	
  
Coordinator:	
  	
   Prof.	
  Marco	
  A.	
  Cassatella	
  
	
  
	
   	
  

	
  
Tutor:	
  	
   	
   Prof.ssa	
  Gabriela	
  Constantin	
  	
  
	
  
	
   	
   	
  
	
  
	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Doctoral	
  Student:	
  	
  Dott.	
  Tiziano	
  Donnarumma	
  	
  

	
  

	
  

	
  



	
   2	
  

	
   	
   	
   	
   	
    
 

                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   3	
  

Abstract 
 
 

 Leucocyte trafficking is an important mechanism of immune surveillance 

that enables immune cells to migrate to and from peripheral tissues, providing 

primary and secondary immune responses as requested. The interaction between 

leukocytes and the inflamed endothelium are mediated by selectins, integrins, and 

immunoglobulin (Ig) gene super family proteins. Moreover, other important 

glycoproteins involved in this process are the mucins, which serve as glycoprotein 

ligands for selectins. Selectins play a central role in leukocyte trafficking by 

mediating the first phases of tethering and rolling on vascular surfaces. Tims proteins 

are a class of mucin able to bind a diverse set of ligands. The structure of Tim 

proteins, in particular the one of Tim-1 is similar to those of the mucin mucosal 

addressin cell adhesion molecule (MadCAM)-1, a classical adhesion receptor 

involved in leukocyte trafficking in the immune system able to bind both selectins and 

integrins. The mucin domain of Tims protein exhibit several sites of O- and N- 

glycosilation similar to those observed on P-selectin glycoprotein ligand (PSGL)-1; 

the most charachterized ligand of selectins. Moreover, it has been shown that the IgV 

domain of Tim-1, exhibits characteristics of the C-type lectins, as its non-species-

specific binding to carbohydrate moieties of several cell types is calcium sensitive and 

is reduced in cells with defective O- and N-linked carbohydrate synthesis. All these 

structural observations led us to investigate a potential role for Tim-1 in leukocyte 

trafficking in inflamed tissues as highly glycosilated molecules like C-type lectins, 

mucins, integrins and Ig-superfamily members are involved in this process.  For this 

reasons we initially tested the ability of Tim-1 to bind selectin, that are known to 

interact with highly glycosilated mucin like Tim-1. 

Here we report that T cell immunoglobulin and mucin domain 1 (TIM-1) is a 

novel P-selectin ligand. We first reported the ability of both human and murine Tim-1 

to bind P-selectin in vitro and under shear stress conditions in a cell free system. We 

then demonstrated the importance of TIM-1 in mediating tethering and rolling of Th1 

and Th17 cells on P-selectin in underflow rolling assays. Cells lacking the mucin 

domain of Tim-1 displayed a strong reduced ability to interact with P-selectin 

underflow in vitro. To evaluate the importance of Tim-1 –P-selectin binding in vivo 

we performed intravital microscopy in thrombin-activated mesenteric venules 
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displaying that Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced 

rolling ability in vivo in a P-selectin dependent model of inlammation. Uniquely, the 

TIM-1 IgV domain was also required for P-selectin binding. To evaluate a potential 

physiologic role for Tim-1/P-selectin interaction in mediating leukocyte trafficking in 

vivo during inflammatory responses, we demonstrated that inhibition of TIM-1 

reduced T cell recruitment in a contact hypersensivity model (CHS) of inlammation. 

We then demonstrated the importance of Tim-1 in mediating T cell recruitment in the 

inflamed brain microcirculation adopting intravital microscopy in brain pial venules. 

Also in this model we have shown that the lacking of Tim-1 mucin domain resulted in 

a strong reduced ability of Th1 and Th17 cells to interact with the inflamed 

endothelium. Finally as brain pial venules are a key entry point for T cells in the early 

phases of development of EAE (experimental autoimmune encephalomyelitis) we 

checked the involvement of Tim-1 in this model. We discovered that lack of Tim-1 

mucin domain resulted in a less severe development of the pathology correlating with 

a lower T cell accumulation in the CNS. 

Collectively our data demonstrate that TIM-1 is a major P-selectin ligand with a 

specialized role in T cell trafficking during inflammatory responses and the induction 

of autoimmune disease. 
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1.1 Leukocytes trafficking 
 

Leucocyte trafficking is an essential meccanism of immune surveillance. The 

ability of immune cells to migrate to and from peripheral tissues enables them to 

patrol the entire body, providing primary and secondary immune responses as needed 

(Notrangelo and Badolato; J Leukoc Biol 2008). At the site of inflammation, 

infection, vascular injury, local pro-inflammatory or pathogen-derived stimuli render 

the luminal vascular endothelial surface attractive for leukocytes (Langer et al, J Cell 

Mol Med. 2009; Rossi et al., J Leukoc Biol 2011), which extravasate from blood to 

the site of inflammation. In this process, substitution of interchangeable receptor–

ligand pairs at each step provide a combinatorial mechanism for generating specificity 

and diversity in leukocyte–endothelial cell recognition and hence recruitment (Ley et 

al., Nat Rev Immunol 2007). Molecular specificity in the targeting of leukocytes at 

sites of inflammation is mediated by selectins, integrins, and immunoglobulin (Ig) 

gene super family proteins (Butcher, Cell 1991; Springer, Cell 1994). Moreover, other 

important glycoproteins are the mucins, which serve as glycoprotein ligands for the 

selectins (Ley and Kansas, Nat Rev Immunol 2004). The importance of leukocyte 

recruitment in the regulation of the immune system is exemplified by the leukocyte 

adhesion deficiency (LAD) diseases, in which multiple genetic defects in molecular 

mechanisms controlling the function of leukocyte adhesion molecules lead to 

impairment of the immune reaction (Etzioni et al., Curr Opin Immunol 2009). 

Based on in vitro and in vivo observations, leukocyte recruitment and 

homing may be described as sequential multi-step processes. (Ley et al., Nat Rev 

Immunol 2007). The “classical” four steps of leukocyte migration through the 

endothelium are: 1) capture (or tethering) and rolling, which are mediated by 

interactions between selectins-mucins and integrins-members of the Ig-superfamily; 

2) activation, which is characterized by chemoattractant-induced G protein–dependent 

intracellular signaling, leading to integrin activation; 3) arrest, which is mediated by 

integrins and their endothelial counter-ligands belonging to the Ig-superfamily; 4) 

diapedesis/transmigration. Many progress has been made in the last years and 

additional steps have been defined: slow rolling, adhesion strengthening and 

spreading, intravascular crawling, and transcellular, along with paracellular, 

transmigration (Ley et al., Nat Rev Immunol 2007)(Fig 1). 
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The first phases of capture and rolling consists of the initial transient 

adhesion contacts of flowing leukocytes with the vascular endothelium, with an 

already adhered leukocyte or with leukocyte fragment or platelet. Selectins and their 

counter-ligands from the mucin family are the main adhesion molecules involved in 

this process during migration into lymphoid or non-lymphoid organs under 

physiological and pathological conditions. Leukocytes are initially captured from the 

blood stream by tethering via constitutively expressed leukocyte selectin (L-selectin; 

CD62L), which recognize glycoprotein ligands, like the peripheral node addressins 

(PNAd) or the mucin MAdCAM-1, constitutively expressed by lymphoid organs high 

endothelial venules (HEVs) or up-regulated on cytokine-activated vascular 

endothelium, mainly during chronic inflammation (Ley and Kansas, Nat Rev Immunol 

2004; Rivera-Neves et al., J Immunol 2005). However, tethering process during 

inflammatory responses is mainly mediated by platelet/endothelial selectin (P-

selectin; CD62P) and endothelial selectin (E-selectin; CD62E), which are expressed 

by activated vascular endothelium, through the interaction with the homodimeric 

sialomucin P-selectin glycoprotein ligand-1 (PSGL-1) expressed on granulocytes, 

monocytes, and appropriately activated T cells (Carlow et al., Immunol Rev 2009; 

Yang et al., J Exp Med 1999; Xia et al., J Clin Invest 2002). After capture from the 

blood stream, leukocytes started to roll on the vascular bed. During the rolling step, 

selectin-ligand bonds are formed at the leading edge of the rolling cell and broken at 

the trailing edge, as these interactions have high mechanical strength, allowing initial 

tethering to the vessel wall, and have fast on and off rates, permitting rolling in 

response to hydrodynamic drag (Alon et al., Nature 1995). P-Selectin is the 

predominant leukocyte rolling receptor on acutely inflamed endothelial cells in vivo, 

and in resting conditions is stored in vascular endothelial cells Weibel-Palade bodies 

and in α-granules of platelets. Upon thrombogenic and inflammatory challenges, it is 

rapidly expressed, by exocytosis, on the cell surfaces of activated platelets and 

stimulated endothelial cells (Sperandio and Ley, Mod Asp Immunobiol 2005). 

Leukocyte rolling is also supported by E-selectin, which, except for skin 

microvessels, is not constitutively expressed on resting vascular endothelium. 

Expression has to be stimulated with TNF-α, lipopolysaccharide (LPS), interleukin-1, 

or other pro-inflammatory mediators involving transcriptional mechanisms 

(Bevilacqua et al., Science 1989). P-selectin is thought to be responsible for slow 

rolling interactions and possibly co-operates with the chemokine receptors in 
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mediating the transition from slow rolling to firm leukocyte arrest (Kunkel and Ley, 

Circ Res 1996; Jung and Ley, J Immunol 1999; Smith et al., J Exp Med 2004). 

In vivo studies using mice deficient in PSGL-1 have shown that this mucin is 

the predominant, if not the only, P-selectin ligand during inflammation (Yang et al. J 

Exp Med 1999; Xia et al., J Clin Invest 2002). PSGL-1 also binds E-selectin, but slow 

rolling on E-selectin seems to be mediated by different ligands (Xia et al., J Clin 

Invest 2002). Other E-selectin ligands with a role in mediating rolling in vivo in 

inflammatory conditions are CD44 (Katayama et al., J Exp Med 2005), CD43 

(Matsumoto et al., J Immunol 2007) and E-selectin ligand-1 (Levinovitz et al., J Cell 

Biol 1993). 

In addition to selectin-mediated rolling, integrin-mediated rolling may take 

place during leukocyte-endothelium interactions. Integrins are heterodimeric 

transmembrane glycoproteins ubiquitous expressed, consisting of two covalently 

bound subunits called α (120-170 kDa) and β subunits (90-100 kDa). 8β subunits and 

18α subunits are known; which are differently combined to generate heterodimers 

characterized by a cell-specific distribution and distinct ligand specificity (Constantin 

and Laudanna, in Leukocyte Trafficking A. E. Hamann, ed). Among integrin proteins, 

the integrin very late antigen (VLA)-4 (a4b1 integrin; CD49d/CD29) can mediate 

rolling on vascular cell adhesion molecule (VCAM)-1 (CD106), a cell adhesion 

molecule belonging to the Ig superfamily expressed on endothelial cells and 

implicated in leukocytes rolling and firm arrest in inflamed vessels. Moreover, 

integrin lymphocyte function-associated antigen (LFA)-1 (aLb2 integrin; 

CD11a/CD18) can mediate rolling on its vascular ligand intercellular adhesion 

molecule (ICAM)-1 (CD54). This rolling interaction seems to be important to induce 

slow rolling and leukocyte arrest (Rossi et al., J Leukoc Biol 2011; Ley et al., Nat Rev 

Immunol 2007). 

Rolling along the endothelium is thought to allow sufficient time for eliciting 

the activation and the clustering of leukocyte integrins, which then bind to their 

counter receptors belonging to the Ig-superfamily, resulting in a shear-resistant firm 

adhesion (Ley et al., Nat Rev Immunol 2007). Integrin activation on rolling leukocytes 

is triggered by the interactions between chemo-attractive proteins, such as 

chemokines and lipid chemoattractants, exposed on the surface of activated 

endothelium, and their receptors expressed by leukocytes (Alon and Ley, Curr Opin 

Immunol 2008; Ley et al., Nat Rev Immunol 2007; Laudanna, Nat Immunol 2005). 
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Chemokines, the most important chemoattractants exposed by inflamed endothelium, 

binds with high affinity to specific G-protein-coupled receptors (GPCRs) expressed 

by rolling leukocytes, and induce the so-called “inside-out” signaling, a complex 

signaling pathway leading to integrin activation on the surface of rolling leukocytes 

that induce increase of both integrins affinity and valency for their endothelial ligands 

(Alon and Shulman, Exp Cell Res 2011). This process is crucial for adhesion, 

stabilization and cell motility on the vascular bed. The most prominent member of the 

b2 integrin family is LFA-1, which participates in rolling interactions but 

predominantly mediates the firm adhesion/arrest of leukocytes in the blood vessels of 

lymphoid organs or at sites of inflammation, by binding the Ig-superfamily ligands 

ICAM-1 and ICAM-2 (CD102), expressed by the vascular endothelium (Luster et al., 

Nat Immunol 2005). Another important member of the b2 integrin family is the 

macrophage-1 antigen (Mac-1; aMb2 integrin; CD11b/CD18), which mediates 

interactions with vascular ICAM-1 (Luster et al., Nat Immunol 2005). Interestingly, 

LFA-1 and Mac-1 have recently been shown to be activated by intracellular signaling 

generated when PSGL-1 is cross-linked by P-selectin during leukocyte rolling, 

suggesting that the PSGL-1 signaling pathway is a key regulator of integrin-mediated 

firm adhesion in the control of leukocyte recruitment (Wang et al., Nat Immunol 

2007). The most important b1 integrin expressed on leukocytes is VLA-4, which 

binds to VCAM-1 expressed on endothelial cells and is implicated in the control of 

leukocyte rolling and firm arrest in inflamed vessels (Rossi et al., J Leukoc Biol 

2011). Finally, the integrin a4b7 and its vascular ligand MAdCAM-1 play a specific 

role in lymphocyte homing by acting as a brake during naïve lymphocyte interactions 

in the HEVs (high endothelial venules) of Peyer’s patches (Springer, Cell 1994). 

Once firmly adhered, leukocytes can transmigrate through the endothelium 

in the inflamed tissue; this process is in part mediated by the same integrins involved 

in the adhesion cascade, with the help of such chemo-attractive signal from the tissue. 

Vascular endothelium forms a nonthrombotic, nonadhesive barrier between the blood 

and tissue that is impermeable to macromolecules. Inflamed endothelial beds undergo 

diverse and heterogenous changes in permeability to blood constituents and 

adhesiveness to leukocytes and platelets (Vestweber, Curr Opin Cell Biol 2002). Two 

routes of leukocyte diapedesis have been noted so far both in vivo and in vitro: a 

paracellular route that dominates most extravasation processes, and a transcellular 

route reported in vivo for neutrophils and subsets of activated effector T cells (Ley et 
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al., Nat Rev Immunol 2007). Both routes demonstrate a proactive function for both 

apical and junctional endothelial ICAM-1 and VCAM-1, whose expression is 

differentially increased at specific sites of inflammation (Luster et al., Nat Immunol 

2005). 

Once migrated in the tissue, chemokine gradients guide activated leukocytes 

to the site of injury/infection, with migrating cells passing through the tissue 

extracellular matrix (ECM) (Luster et al., Nat Immunol 2005). During the 

transmigration through the endothelium, ligation of PECAM1 (platelet endothelial 

adhesion molecule 1) on leukocytes can lead to activation of members of the β1, β2 

and β3-integrin families (Ley et al., Nat Rev Immunol 2007), which are the main 

receptors for extracellular matrix proteins such as laminin and fibronectin. Further, 

cell-surface-expressed leukocyte proteases facilitate leukocyte chemotaxis, by 

exposing binding sites within matrixprotein constituents or generating chemotactic 

fragments by selective cleavage of basement-membrane constituents (Ley et al., Nat 

Rev Immunol 2007).  
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Figure 1 

 

 
 
 
Fig.1 The leukocyte adhesion cascade. The original steps are shown in bold: rolling, 

which is mediated by selectins; activation, which is mediated by chemokine and 

arrest, which is mediated by integrins. Progress has been made in defining additional 

steps: capture (or tethering), slow rolling, adhesion strengthening and spreading, 

intravascular crawling, and paracellular and transcellular transmigration. Key 

molecules involved in each step are indicated in boxes. ESAM, endothelial cell-

selective adhesion molecule; ICAM1, intercellular adhesion molecule 1; JAM, 

junctional adhesion molecule; LFA1, lymphocyte function-associated antigen 1 (also 

known as αLβ2-integrin); MAC1, macrophage antigen 1; MADCAM1, mucosal 

vascular addressin cell-adhesion molecule 1; PSGL1, P-selectin glycoprotein ligand 

1; PECAM1, platelet/endothelial-cell adhesion molecule 1; PI3K, phosphoinositide 3-

kinase; VCAM1, vascular cell-adhesion molecule 1; VLA4, very late antigen 4 (also 

known as α4β1-integrin).(Picture adapted from Ley et al, Nature Rev Immunol, 2007) 
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1.2 Selectin-dependent leukocyte trafficking into inflamed 

tissues: evidences and experimental models. 
 

 

Selectins are a family of three transmembrane glycoproteins (P-, E- and L-selectin) 

expressed by bone marrow-derived cells and endothelial cells. Selectin structure is 

characterized by an amino-terminal domain related to those of Ca2+-dependent (C-

type) lectins, followed by an epidermal growth factors-like domain, a variable number 

of short consensus repeats similar to those found in complement-regulatory proteins, a 

transmembrane spanning segment and a short cytoplasmatic segment (Crockett-

Torabi, J  Leuk Bio 1998)(Fig 2). L-selectin (CD62L), is constitutively expressed by 

most leukocytes, E-selectin (CD62E), which is upregulated on endothelial cells 

following cytokine stimulation, and P-selectin (CD62P), which is stored in 

endothelial Weibel-Palade bodies and platelet α-granules and is rapidly expressed by 

activated endothelium and platelets and by platelet-derived microparticles (Ley, & 

Kansas, Nat Rev Immuno 2004) (McEver, & Zhu, Annu Rev Cell Dev Biol 2010). The 

main physiological function of all selectins is to mediate leukocyte adhesion under 

flow, but both selectins and their ligands also have signaling functions (Ley, Trends 

Mol Med 2003). Selectins mediate cell-cell adhesion through the carbohydrate 

recognition domain (CRD) present on lectin-like portion, which mediates cell-cell 

contact through a Ca2+-dependent interaction with cell-surface carbohydrates. This 

motif binds carbohydrates such as sialic acid, fucose, galactose, mannose and an 

anionic sulfate or phosphate ester moiety (Crockett-Torabi, J Leuk Bio 1998). Like 

other mammalian lectins, the selectins bind selectively, but with low affinity, to 

particular oligosaccharides. All selectins bind to the tetrasaccharide sialyl Lewis X 

(sLex; NeuAc2,3Gal1,4[Fuc1,3]GlcNAc) and its isomer sialyl Lewis A (sLea; 

NeuAc2,3Gal1,3 [Fuc1,4]GlcNAc) (McEver, Curr Opin Immunol 1994). These 

epitopes are normally not present on leukocyte surface, and all the selectin ligands 

expressed by leukocytes require post-transcriptional modifications in order to bind the 

selectin CRD. Several glycosyltransferases such as a1,3-fucosyltransferases,a2,3-

sialyltransferases,core-2-acetylglucosaminlytransferases, b1,4-galactosyltransferases, 

and polypeptide N-acetylgalactosaminyltransferases have been implicated in the 

generation of functional selectin ligands that mediate leukocyte rolling via binding to 
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selectins (Sperandio et al., Immunol Rev 2009). 

Studies using selectin deficient mice or selectin blocking antibodies unveiled 

the crucial role for selectins in leukocyte trafficking during inflammation (Hartwell 

and Wagner, Thromb Haemost 1999; Barthel et al., Expert Opin Ther Targets 2007). 

The importance of selectins and selectin ligands in mediating leukocytes recruitment 

in inflamed tissues has been demonstrated in several experimental models of 

inflammatory pathologies (Ley, Trends Mol Med 2003; Rossi and Constantin, 

Inflamm Allergy Drug Targets 2008). It was initially observed that mice genetically 

lacking endothelial selectins displayed a dramatic reduction in leukocyte trafficking in 

the inflamed tissues (Hartwell and Wagner, Thromb Haemost 1999) and are more 

susceptible to systemic infections (Munoz et al., J Clin Invest 1997). Mice with 

targeted deletions in E-selectin, P-selectin, or both selectin genes showed significant 

reductions in AHR (airway hyperresponsiveness), peri-bronchial inflammation, and 

eosinophil accumulation in a cockroach allergen-induced AHR (Lukacs et al., J 

Immunol 2002). Moreover, in an OVA (ovalbumin)-induced acute lung injury model, 

mice deficient in all the 3 selectins acute fail to develop an asthma phenotype, due, at 

least in part, to failure of inflammatory cells migration in the lung (Banerjee E. R, The 

Journal of inflammation, 2011). In ischemia-reperfusion injury (IRI) models, P- and 

E-selectin blocking with blocking antibodies ameliorated the clinical injury by 

reducing leukocyte infiltration into the ischemic tissues, such as kidney (Singbartl and 

Ley, Crit Care Med 2000; Singbartl et l., FASEB J  2000) and heart (Lefer et al., Am J 

Physiol 1996). Several reports have shown that E- and P-selectin are important for T 

cell recruitment to the inflamed lung (Ainslie et al., Thorax 2002; Wolber et al., J 

Immunol 1998; Curtis et al., J Immunol 2002), and L-selectin-deficient mice showed a 

drastic increased survival in a lipopolysaccharide (LPS)-induced toxic shock model 

(Tedder et al., J Exp Med 1995), in accordance with data indicating a role for L-

selectin in mediating leukocyte recruitment in the site of chronic inflammation (Ley 

and Kansas, Nat Rev Immunol 2004). In proteoglycan-induced arthritis models, L-

selectin expression in the cells of the innate immune system (granulocytes) seems to 

be important for their efficient influx into the joints (Sarraj B et al, The Journal of 

Immunology, 2006), and P-selectin appears to be a key adhesion receptor mediating 

leukocyte recruitment into atherosclerotic arterial lesions (Dong et al., Circulation 

2000; Manka et al., Circulation 2001).  Interestingly, in a murine model of epilepsy, 

the lacking expression or functionality of the most important ligand for P- and E-
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selectin which is PSGL-1 led to a drastic seizures reduction by limiting leukocyte 

recruitment in the brain (Fabene et al., Nat Med 2008). PSGL-1, has a crucial role in 

leukocyte recruitment into the target organ in experimental models of autoimmune 

diseases such as rheumatoid arthritis, multiple sclerosis, Crohn’s disease, type I 

diabetes, psoriasis, hepatitis, lupus and experimental autoimmune encephalomyelitis 

(Luster et al., Nat Immunol 2005), but the beneficial role of anti-selectin therapy to 

block chronic inflammation in autoimmune diseases is not clear (Rossi and 

Constantin, Inflamm Allergy Drug Targets 2008).  

 Even if the majority of research on selectin ligands has focused until now on 

myeloid cells still PSGL-1-independent rolling on P-selectin has been observed for T 

lymphocytes; suggesting that the repertoire of physiological ligands that interact with 

endothelial selectins is still uncompletely understood (Ley, & Kansas, Nat. Rev. 

Immunol. 2004). 
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Figure 2 
 

 
 

 

Fig. 2 Selectin mediated leukocyte recruitment A) Structural diagrams representing 

P-, E- and L-selectin. The selectins are rigid, asymmetric molecules that share 

structural similarities including the presence of the C-type lectin domain, followed by 

an epidermal-growth-factor-like (EGF) motif, a variable series of short consensus 

repeats (nine, six and two for P-, E- and L-selectins, respectively), a transmembrane 

domain (TM) and a cytoplasmic tail (cyto). (B) Selectin-mediated leukocyte 

recruitment. PSGL-1 on free-flowing leukocytes tethers to E- and/or P-selectin on 

activated endothelial cells, allowing leukocytes to roll to sites of infection or 

inflammation. E-Selectin might also bind to an as-yet-unidentified leukocyte 

glycosphingolipid. PSGL-1 on adherent leukocytes participates in secondary tethering 

by interacting with L-selectin on free-flowing leukocytes. (Picture adapted from 

Hanley et al., Journal of cell Science, 2004) 
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1.3 The Tim gene family  
 

 

The T-cell Immunoglobulin and mucin domain containing (TIM) gene 

family encodes for a recently discovered family of glycoproteins involved in a variety 

of immune processes and in several pathologies, like atopic and autoimmune diseases, 

both in human and mice (Rodriguez-Manzanet et al., Immunol Rev 2009). The TIM 

family was firstly cloned from the Tarp (T-cell and airway phenotype regulator) locus 

on mouse chromosome 11B1.1 as a novel allergy and asthma susceptibility gene 

(McIntire et al., Nat Immunol 2001). In mice, four proteins (Tim-1 to 4) from the Tim 

family have been experimentally studied, while other four Tims (Tim-5 to -8) putative 

genes have been found in the same chromosomal region. In humans, three members 

of the TIM family are conserved (TIM-1, TIM-3 and TIM-4), and are locate in a 

chromosomal region (chromosome 5q33.2) repeatedly linked with asthma, allergy and 

autoimmunity (McIntire et al., Springer Semin Immunopathol 2004). Expression, 

function, and structural studies confirm that mouse Tim-1, Tim-3, and Tim-4 are the 

orthologues of human TIM-1, TIM-3, and TIM-4, respectively. 

The Tim proteins are type I cell-surface glycoproteins with an 

immunoglobulin V (IgV)-like N-terminal Cys-rich region, followed by a mucin-like 

domain at the extra-cellular portion, a single trans-membrane region, and a 

cytoplasmic tail with tyrosine phosphorylation motifs involved in trans-membrane 

signalling, apart from TIM-4 (Meyers et al., Trends Mol Med 2005). The mucin 

domain is rich in threonine, serine, and proline, with a predicted extended 

conformation and a heavily O-glycosylated pattern. However, the length of the mucin 

domain is variable between members, with the number of the predicted O-linked 

glycosylation sites ranging from 60 in mouse Tim-1 to 3 in mouse Tim-3. (Fig. 2A) 

The TIM gene family was initially associated with T-cell functions, but in 

the last years other cell types have been described to express this class of molecules. 

There is a clear distinction in the expression and functions among the TIM proteins, 

and differences in their ability to control T cell responses in the immune system. In 

mice, Tim-4 is the only protein of the Tim family not expressed by T cells subsets; it 

is expressed by professional antigen presenting cells (APCs), like macrophages and 

dendritic cells (DCs); it has bimodal effects on T-cell functions, inhibiting naïve T 
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cells activation and promoting the survival and the proliferation of already activated T 

cells (Meyers et al., Nat Immunol 2005; Rodriguez-Manzanet et al., J Immunol 2008; 

Mizui et al., Int Immunol 2008). The receptor for Tim-4 on naïve T cells is still 

unknown, while on activated T cells Tim-4 binds to Tim-1 to mediate co-stimulatory 

signals (Meyers et al., Nat Immunol 2005). Also Tim-2 has peculiar characteristics, 

among the Tim family, as it is not conserved in humans. It is up-regulated by 

activated T cells, but its expression is exclusively maintained by Th2 cells 

(Chakravarti et al., J Exp Med 2005); moreover, it is also expressed by B cells (Chen 

et al., J Exp Med 2005). Tim-2 binds to the class IV semaphorin Sema 4A expressed 

by activated APCs, and acts as a feedback loop to down-regulate established and 

ongoing Th2 responses (Kumanogoh et al., Nature 2002; Chakravarti et al., J Exp 

Med 2005; Rennert et al., J Immunol 2006). 

The other main Tim proteins, Tim-1 and Tim-3, are the most studied, due to 

their broad impact on immune functions. Tim-3 was initially identified as a Th1-

specific molecule, not expressed on Th2 cells (Monney et al., Nature 2002); however, 

this molecule is broadly expressed by other cells types, like human natural killer cells, 

monocytes and dendritic cells and mouse macrophages and DCs (Rodriguez-

Manzanet et al., Immunol Rev 2009). Initially, Tim-3 was found to negatively regulate 

T-cell responses by inducing deletion of Th1 cells and by inducing tolerance (Sabatos 

et al., Nat Immunol 2003; Sanchez-Fueyo et al., Nat Immunol 2003). However, 

emerging data suggest that Tim-3 have opposite roles in innate and adaptive 

immunity. During the initiation of an immune response, Tim-3 is expressed by DCs, 

and promotes inflammation by synergizing with Toll-like receptors signals and 

leading to the production of pro-inflammatory cytokines by DCs (Anderson et el., 

Science 2007). Once an effector Th1 cells response is generated, Tim-3 expressed by 

terminally differentiated Th1 cells binds to galectin-9 expressed by several cell types 

(naïve T cells, APCs, CD4+CD25+ regulatory T cells) and inhibits the Th1-cell 

response by triggering cell death (Zhu et al., Nat Immunol 2005). 

In contrast to Tim-3 functions, which are mainly associated with Th1 

responses, several data indicate an important role for Tim-1 in regulating Th1, Th17, 

Th2 and regulatory T cells (Tregs)- mediated responses in vivo. In humans, TIM-1 

was initially identified as the hepatitis A virus cellular receptor 1 (HAVCR-1); 

(Kaplan et al., EMBO J 1996) and as the kidney injury molecule 1 (KIM-1), a renal 

epithelial cells protein up-regulated and shedded following kidney injury (Ichimura et 
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al., J Biol Chem 1998). More recently, in mouse, Tim-1 expression was observed on 

activated T cells; in particular, after polarization, its expression remains high on Th2 

cells, while Th1 and Th17 cells express little Tim-1 (Umetsu et al., Nat Immunol 

2005; Meyers et al., Nat Immunol 2005; Nakae et al., J Leukoc Biol 2007). Tim-4 is 

the main ligand for Tim-1, which also binds itself (dimerization), Tim-3, leukocyte 

mono-immunoglobulin (Ig)-like receptor 5 (LMIR5)/CD300b, oxidized low-density 

lipoprotein, and immunoglobulin α heavy chain (Rennert, Immunol Lett 2011). It has 

been demonstrated by using an agonist antibody that Tim-1 cross-linking provided a 

strong co-stimulatory signal for T-cell activation, increasing naïve T-cell proliferation 

and Th2 cells proliferation and activation, both in vitro and in vivo during antigen 

challenge (Umetsu et al., Nat Immunol 2005). Notably, a role for Tim-1 has been 

found also in regulating pro-inflammatory responses by Th1 and Th17 cells; 

administration of a Tim-1 agonist during the development of experimental 

autoimmune encephalomyelitis (EAE), a mouse model of central nervous system 

(CNS) inflammation, enhanced pathogenic Th1 and Th17 responses and increased the 

severity of the disease (Xiao et al., J Exp Med 2007), suggesting that also the low 

levels of Tim-1 expression observed on Th1 and Th17 cells might be important for 

their functions. 

Recently, a new function for Tim proteins has been described. It has been 

shown that Tim-1, -3, and -4 are receptors for phosphatidylserine (PtdSer) on both 

human and mouse cells (Freeman et al., Immunol Rev 2010). PtdSer are normally 

localized to the inner leaflet of the plasma membrane, but it is re-distributed or 

exposed on the outer membrane during apoptosis, cell injury, cell activation and 

malignant transformation (Balasubramanian et al., Annu Rev Physiol 2003); PtdSer 

recognition provides a key signal to phagocytes that trigger engulfment of the 

apoptotic cells (Schlegel et al., Cell Death Diff 2001). In Tim-4-deficient mice, 

peritoneal macrophages and B-1 cells do not efficiently engulf and clear apoptotic 

bodies in vivo, leading to dysregulated lymphocyte activation and signs of systemic 

autoimmunity such as hyperactive T and B cells, elevated levels of serum Ig and 

development of antibodies to double-stranded DNA (Rodriguez-Manzanet et al., 

PNAS 2010). Anti-Tim-3 in vivo administration induced blocking of phagocytic 

activity by CD8+ DCs, again leading to disregulated lymphocyte activation and signs 

of systemic autoimmunity (Nakayama et al., Blood 2009). Finally, Tim-1 expressed 

on proximal tubular epithelial cells after renal injury coordinates engulfment of 
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apoptotic cells within the tubular lumen, and this function seems central in the 

recovery of renal function after acute kidney injury (Ichimura et al., J Clin Invest 

2008). All these data suggest a physiological role for Tim proteins in regulating 

apoptotic bodies’ clearance by several populations of professional phagocytes. 

Another putative important role for Tim proteins-PtdSer binding is 

represented by exosome uptake. Exosomes are a particular type of nanovesicles 

secreted by a wide range of mammalian cells that expose PtdSer at their outer leaflet 

and contain various cellular proteins. There is growing evidence that exosomes 

participate in cell communications and immune responses, and exosomes also appear 

to play an important role in tumor growth and host-tumor relationships (Thery et al., 

Nat Rev Immunol 2009). It has been shown that Tim-1- or Tim-4-induced expression 

increase exosomes binding via PtdSer in transfected cells, and exosomes stimulated 

the interaction between Tim-1 and Tim-4 (Miyanishi et al., Nature 2007), indicating 

that Tim proteins may represent a new class of exosomes receptors and may be 

involved in intercellular signalling in which exosomes are involved. 

Collectively, all these data clearly demonstrate a crucial role for the Tim 

proteins in regulating immune processes. 
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Figure 3 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Schematic representation of TIM protein structures. (A) The TIM proteins 

are type I cell-surface glycoproteins with an IgV-like N-terminal Cys-rich region, a 

mucin-like domain, a single trans-membrane region, and a cytoplasmic tail with 

tyrosine phosphorylation motifs, except in Tim-4, involved in trans-membrane 

signalling. The mucin domain is rich in threonine-, serine-, and proline, with a 

predicted extended conformation and a heavily O-glycosylated pattern. (Picture 

adapted from Freeman J et al, Immunological reviews, 2010]) (B) Comparison 

between Tim-1 and MadCAM-1 structure. Note the similarities between the two 

molecules, both containing an highly glycosylated mucin domain followed by 1 (Tim-

1) or 2 (MadCAM-1) Ig variable-like domains 
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1.3.1 Tim-1 in inflammatory and autoimmune pathologies 

 
Among Tim proteins, Tim-1 and Tim-3 are the most studied members, for 

their involvement in a variety of immune processes associated with the development 

of immune-mediated pathologies. In particular, all the observations obtained from in 

vitro and in vivo studies in mouse models suggest an involvement of Tim-1 also in 

human pathologies associated with T cell responses. 

 

 

 

1.3.2 Tim-1 expression and functions in immune cells 
 

As mentioned above, Tim-1 is expressed by activated T cells and, after 

polarization, its expression remains high on Th2 cells, while Th1 and Th17 cells 

express little or no Tim-1 (Rodriguez-Manzanet, Immunol Rev 2009). Cross-linking 

of Tim-1 on CD4+ T cells with an agonistic monoclonal antibody (mAb; 3B3 clone) 

provided a potent costimulatory signal for T-cell activation that increased naïve T-cell 

proliferation and interleukin (IL)-4 production by differentiated Th2 cells. Moreover, 

in vivo administration of 3B3 mAb along with antigen also greatly increased antigen-

specific T-cell proliferation and production of IL-4 and interferon (IFN)-γ and 

blocked the development of respiratory tolerance (Umetsu et al., Nat Immunol 2005), 

consistent with the idea that Tim-1 costimulation activates T cells. A recent study 

showed that in vivo Tim-1 costimulation by 3B3 prevents allogenic transplant 

tolerance by reducing forkhead box p3 (Foxp3) expression and thereby preventing 

regulatory T cell (Treg) development. Furthermore, in vitro, 3B3 signalling “de-

programmed” Foxp3-expressing Tregs into IL-17-producing pro-inflammatory cells 

(Degauque et al., J Clin Invest 2008), suggesting that Tim-1 costimulation may 

prevent tolerance induction both by enhancing T helper cell development and 

hindering Treg cell development. TIM-1 has been shown to co-localize on human T-

cells surface with CD3, and to be recruited to the T-cell receptor (TCR)-signaling 

complex (Binné et al., J Immunol 2007); moreover, a recent work demonstrated that 

Tim-1 cross-linking is able to generate a costimulatory signal also in naïve T cell, 
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independently from the TCR (Mariat et al., J Immunol 2009). Over-expression of 

Tim-1 leads to NFAT/AP-1 transcriptional activation, dependent on tyrosine Y276 in 

the cytoplasmic tail, with increased IL-4 production (de Souza et al., PNAS 2005). In 

addition, agonistic anti-Tim-1 antibodies led to phosphorylation of Zap-70 and IL-2-

inducible T cell kinase (ITK), and recruitment of an ITK and phosphoinositide 3-

kinase (PI3K) complex to the TCR signaling complex (Binnè et al., J Immunol 2007; 

de Souza et al., J Immunol 2008). The p85 subunit of PI3K is recruited directly to 

tyrosine 276 in Tim-1 after lymphocyte-specific protein tyrosine kinase (Lck)-

dependent phosphorylation of the cytoplasmic tail (de Souza et al., J Immunol, 2008). 

Finally, Tim-1 promotes T-cell viability through activation of PI3K/AKT pathway 

and induction of the anti-apoptotic gene bcl-2 (Rodriguez-Manzanet et al., J Immunol 

2008). These recent results started to unravel the complex signalling pathway 

downstream of Tim-1 engagement, which seems to be clearly correlated with T cell 

activation. 

An important role for Tim-1 also in other cell subsets of the immune system 

is now emerging. Tim-1 is expressed by myeloid-derived DCs and Tim-1-mediated 

signalling induce DCs activation and pro-inflammatory responses in vivo (Xiao et al., 

Eur J Immunol 2011). Also murine mast cells constitutively express Tim-1, and Tim-

1 cross-linking with recombinant Tim-4 induce cytokine production by mast cells 

(Nakae et al., Blood 2007). Mast cells have been shown to contribute to the 

development of autoimmune and allergic diseases. (Galli et al., Nat Immunol 2005), 

and Tim-1 expression on these cells could influence these pathologies. Furthermore, 

invariant natural killer T (iNKT) cells constitutively express Tim-1, (Kim et al., J 

Immunol 2010; Lee et al., J Immunol 2010), and Tim-1 recognition of PtdSer induced 

iNKT cell activation, proliferation, and cytokine production. Induction of apoptosis in 

airway epithelial cells activated pulmonary NKT cells and resulted in airway hyper-

reactivity (Lee et al., J Immunol 2010), a classical feature of asthma, in an NKT cell-

dependent and Tim-1–dependent fashion, suggesting that Tim-1 may act as a pattern 

recognition receptor on NKT cells and may regulate asthma-associated pathologies 

independently from T cells. Finally, consistent Tim-1 expression has been found on B 

lymphocytes; naïve B cells express basal low Tim-1 levels, that strongly increase after 

B-cell receptor (BCR) stimulation (Wong et al., Immunology 2010; Barlow et al., Clin 

Exp Allergy 2011; Ma et al., Biochem Biophys Res Commun 2011). Tim-1 is induced 

on B cells in a PI3K and nuclear factor-kB (NF-kB) dependent manner, and in vivo is 



	
  

	
   25	
  

predominantly expressed on germinal centre B cells (Wong et al., Immunology 2010). 

The precise role of Tim-1 on B cells is still elusive. Tim-1 expression on B cells has 

been correlated with regulation of antibody production (Ma et al., Biochem Biophys 

Res Commun 2011), but no defects have been found in B cells responses in Tim-1 

deficient mice (Wong et al., Immunology 2010). (Ding et al., J Clin Invest 2011) 

shows that Tim-1 is preferentially expressed by IL-10/IL-4-producing regulatory B 

cells (Bregs), which promote Th2 responses and can directly transfer allograft 

tolerance, that are also known to promote tolerance in a number of autoimmune 

models such as EAE, inflammatory bowel disease, collagen-induced arthritis, allergic 

airway disease, and diabetes mellitus (Ding et al., J Clin Invest 2011). 

Overall, the broad and complex pattern of Tim-1 expression in the immune 

system and its immuno-modulatory properties strongly suggest a central role for this 

receptor in the regulation of immune responses. 

 

 

1.3.3 Tim-1 in experimental models of inflammatory and 

autoimmune diseases 

 
            The importance of Tim-1 in the induction and development of several 

pathologies have been extensively studied, mainly by using different anti-Tim-1 

mAbs. Initially, the agonist high-affinity Tim-1 activating 3B3 antibody and the 

antagonist low-affinity Tim-1 blocking RMT1-10 antibody have been described 

(Umetsu et al., Nat Immunol 2005; Xiao et al., J Exp Med 2007). While both 

antibodies bind to the Tim-1 IgV domain and induce CD3 capping, mAb 3B3 has a 

greater affinity and induce cytoskeletal reorganization (Xiao et al., J Exp Med 2007). 

They were initially tested in an EAE (experimental autoimmune encephalomyelitis) 

model, an autoimmune inflammatory pathology of the CNS, widely accepted as the 

mouse model of human Multiple Sclerosis. Administration of the high-affinity 3B3 

mAb during the induction of autoimmunity enhanced pathogenic Th1 and Th17 

responses and increased the severity of EAE, whereas the low-affinity RMT1-10 mAb 

increased Th2 responses and inhibited the development of EAE (Xiao et al., J Exp 

Med 2007). In accordance, in transplant model studies, in vivo administration of 

agonist 3B3 mAb overcame the protective effects of anti-CD154 mAb and resulted in 
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allograft rejection, by reducing Foxp3 expression and inhibiting Treg cell 

development, while enhancing development of Th1 and Th17 pathogenic responses 

(Degauque et al., J Clin Invest 2008). On the contrary, it has been shown that 

treatment with blocking RMT1-10 mAb inhibited rejection of fully MHC-mismatched 

mouse cardiac allografts. Prolongation of graft survival was associated with inhibition 

of alloreactive Th1 responses, enhancement of Th2-type responses, and preservation 

of Tregs (Ueno et al., J Clin Invest 2008). Moreover, administration of RMT1-10 

specifically inhibited IL-17-producing CD8+ T cells that mediated resistance to 

tolerance induction (Yuan et al., PNAS 2009). To note, as previously mentioned, 

TIM-1 expression on Bregs could play a role in the allograft tolerance induced by 

RMT1-10 treatment (Ding et al., J Clin Invest 2011). In a mouse model of liver 

ischemia-reperfusion injury (IRI), preventive treatment with RMT1-10 antibody 

ameliorated the hepatocellular damage and improved liver function, with reduced 

local neutrophil, T lymphocytes and macrophages infiltration, reduced pro-

inflammatory cytokines and chemokines production in the liver and reduced liver cell 

apoptosis (Uchida et al., Hepathology 2009). Similar results were obtained in a model 

of renal IRI (Rong et al., J Am Soc Nephrol 2011). In a mouse model of allergic 

asthma, preventive treatment with anti-Tim-1 antibody (clone 222414) before 

ovalbumin (OVA) challenge reduced lung inflammation, with lower inflammatory 

cells infiltrates, reduced mucus deposition and lower Th2-associated cytokines 

production by OVA-specific T cells (Encinas et al., J Allergy Clin Immunol 2006). 

Surprisingly, in Tim-1 deficient mice the airway hyperactivity (AHR) reaction was 

normally induced, although Tim1-deficient mice did show a small but significant 

decrease in cell infiltration (Barlow et al., Clin Exp Allergy 2011), raising some 

controversies about Tim-1 role in the development of allergic asthma. However, in a 

humanized mouse model of experimental asthma, therapeutic treatment with a newly 

generated anti-human Tim-1 antibody ameliorated inflammation and airway 

hyperresponsiveness, mainly by suppression of Th2 cell proliferation and cytokine 

production (Sonar et al., J Clin Invest 2010), again supporting a role for Tim-1 in the 

generation of AHR pathology. 
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1.3.4 Tim-1 in human pathologies 
 

The role of Tim-1 is now clearly emerging also in the development of human 

diseases. TIM-1 gene (HAVCR1) is the most polymorphic gene in both mice and 

human TIMs gene family, with single nucleotide polymorphisms as well as 

insertion/deletion variants primarily in the mucin domain in both humans and mice 

(Nakajima et al., Gene Immunol 2005). Tim-1 was initially described as the cellular 

receptor for HAV (Kaplan et al., EMBO J 1996; Feigelstock et al., J Virol 1998), and 

polymorphic forms of TIM-1 have been associated with protection against atopy, 

especially in individuals who had prior infections with HAV (McIntire et al., Nature 

2003), suggesting an important interaction between genotype (TIM-1 polymorphism) 

and environment (HAV infection) in regulating the development of the atopic 

phenotype (Freeman et al., Immunol Rev 2010). Recently, a specific polymorphism in 

TIM-1 gene has been associated with severe HAV infections (Kim et al., J Clin Invest 

2011), directly correlating disease clinical course with TIM-1 sequence. An increase 

in TIM-1 mRNA level has been observed in patients with Systemic Lupus 

Erythematosus, associated with increase production of IL-10 (Wang et al., Scand J 

Immunol 2007). In multiple sclerosis (MS), both TIM-1 and TIM-3 have been 

associated with T cells functions: T cell clones isolated from the cerebrospinal fluid 

(CSF) of MS patients express lower TIM-3 and secrete higher IFN-γ when compared 

to T cells clones from healthy donors (Koguchi et al., J Exp Med 2006); Tim-1 

expression is increased in the CSF mononuclear cells of MS patients in remission, 

suggesting a possible involvement of Tim-1 in this phase of the disease (Khademi et 

al., J Immunol 2004). Furthermore, polymorphisms in HAVCR1 gene (exon 4 

encoding for the mucin domain) have been associated with susceptibility to 

rheumatoid arthritis (Chae et al., Immunogenetics 2005; Chae et al., Biochem Biophys 

Res Commun 2004), and C-reactive protein or rheumatoid factor levels in patients 

with rheumatoid arthritis are associated with polymorphisms in the promoter region of 

TIM-1. (Chae et al., Immunogenetics 2005). Finally, very recently, Tim-1 was shown 

to function as cellular receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus 

(Kondratowicz et al., PNAS 2011). All these data suggest a complex pattern of in vivo 

regulation of T-cell associated functions by Tim-1 and indicate its potential 

involvement in the development of several inflammatory and autoimmune diseases. 
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1.4 Experimental hypothesis: a role for Tim-1 in T cell 

trafficking 

 

In our project, we investigated a possible role for Tim-1 in mediating 

leukocyte trafficking during inflammatory responses. For their complex structure, 

Tim proteins are able to bind a diverse set of ligands, belonging to different gene 

families (Rodriguez-Manzanet et al., Immunol Rev 2009). As previously mentioned 

the structure of Tim proteins, in particular the ones of Tim-1 and Tim-4, are similar to 

those of the mucin mucosal addressin cell adhesion molecule (MadCAM)-1, a 

classical adhesion receptor involved in leukocyte trafficking in the immune system 

(Ley et al., Nat Rev Immunol 2007, Fig. 2B). Notably MadCAM-1 is able to bind both 

selectins and integrins (Berg et al., Nature 1993)(Berlin et al., Cell 1993). Moreover, 

it has been shown that the IgV domain of Tim-1, Tim-3 and Tim-4 exhibits 

characteristics of the C-type lectins, as its non-species-specific binding to 

carbohydrate moieties of several cell types is calcium sensitive and is reduced in cells 

with defective O- and N-linked carbohydrate synthesis (Wilker et al., Int Immunol 

2007). All these structural observations led us to investigate a potential role for Tim-1 

in leukocyte trafficking in inflamed tissues, as we and other have previously 

demonstrated that molecules like C-type lectins, mucins, integrins and Ig-superfamily 

members are involved in this process (Piccio et al., J Immunol., 2002; Battistini et al., 

Blood 2003; Ley et al., Nat Rev Immunol 2007; Fabene et al., Nat Med 2008; Rossi et 

al., J Leuk Biol 2011). 

However Tim-1 does not present in the IgV domain the typical RGD peptide 

motif, which is found on many integrin ligands and also on Tim-4 (Kuchroo et al., 

Nat Rev Immunol 2003). For this reason, we focused our attention on the possible 

binding between Tim-1 and selectins, possibly via the Tim-1 highly glycosylated 

mucin domain trying to elucidate the involvement of Tim-1 in mediating selectin 

dependent leukocyte trafficking during inflammatory responses. 
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2.1 Microtiter plate binding assay  
 

The assay was performed as previously described (Deban et al.,Nat Immunol, 2010). 

Briefly, microtiter plates (NUNC) were coated with 5 µg/ml of murine or human P-

selectin Fc chimera, E-selectin Fc chimera, L-selectin Fc chimera, ICAM-1 Fc 

chimera (negative control) (R&D Systems) or TIM-4 (positive control; Creative 

Biomart). We added 5 µg/ml of mouse TIM-1 Fc-chimera (Sizing et al., J Immunol 

2007) or human TIM-1 Fc-chimera (Sino Biological Inc.) to each well for 1 h at 

25°C. In some experiment, 10 mM EDTA was added to chelate divalent cations. In 

some experiments, murine TIM-1 proteins were treated overnight at 37°C with a1-

(3,4) fucosyltransferase (Sigma-Aldrich), tyrosin-sulfatase (Sigma Aldrich), O-

sialoglycoprotein endopeptidase (OSGE; Cedarlane), neuraminidase or PNGase F 

(New England Biolabs) following manufacturer’s instructions. The corresponding 

control protein was incubated overnight at 37°C with the same buffer used to 

reconstitute the glycosidase. In separate experiments, selectin-TIM-1 binding was 

analyzed by using entire or truncated TIM-1 Fc-chimeras produced in 293T cells as 

previously described (Santiago et al., Immunity 2007) 

 

2.2 Mice 
 

Selpg-/- mice and C57BL/6J black mice were used as WT age-matched controls. Tim- 

1Δmucin	
  mice were a kind gift from Prof. Vijay K. Kuchroo (Center for Neurologic 

Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 

USA) and were obtained replacing the exon 3 of Tim-1 gene with a neo cassette. 

(described in supplementary). All mice were housed and used in according to the 

current European Community rules. 
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2.3 Mice genotyping and DNA extraction 
 

The tip of mouse tail was digested in Tail Lysis Buffer (NaCl 50 mM, Tris pH 7.5 50 

mM, EDTA 30 mM and SDS 1%), supplemented with proteinase K (0.5 mg/ml) for 

3-4 hours at 55°C. 500 μl of phenol:chloroform:isoamyl alcohol 25:25:1 was added to 

the sample to separate DNA for proteins. Next, we added in the sample 25 μl of NaCl 

5M and 500 μl of isopropanol to precipitate DNA. DNA pellet was then washed with 

500 μl of EtOH 70%, re-pelleted and dryed at room temperature. Finally, DNA pellet 

was re-suspend in 40 μl of TE buffer pH 7.5 (10 mM tris pH 7.5; 1 mM EDTA pH 

8.0) and quantified with Nanodrop 2000C (Thermo Scientific). 

 

2.4 PCR amplification 
 

The DNA was amplified by polymerase chain reaction (PCR). The reaction mix 

contained: buffer Taq 5 X dNTPs 10 mM MgCl2 25 mM Taq 5 U/ml primer forward 

(0.2 µM) primer reverse (0.2 µM) H2O. The reaction mix was heated at 94°C for 3 

minutes, followed by 35 cycles at 94°C for 30 seconds, 62°C for 30 seconds and 72°C 

for 30 seconds, followed by a final extension of 1 minutes at 72° C. The following 

primers were used: 

TIM1-Forward:        AACTGGGTGAAGTCAGTCACCACT 

TIM1-Reverse:         TGTAGCTGTGGGCCTTGTAGTTGT  

TIM1-Neo Reverse:  AAGGAACAAAGCTGCTATTGGCCG 

The forward-reverse primers couple amplified the WT C57Bl/6J mice Tim-1 allele 

(amplicon length: 385 bp), while the forward-neo reverse amplified the Tim-1Δmucin 
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allele generated by exon 3 deletion (amplicon length: 581 bp)(described in 

supplementary). The PCR products were loaded onto agarose gel 1.0% in TAE buffer 

(Sigma-Aldrich), run by gel electrophoresis and analyzed in an UV lightbox (LAS 

4000; GE Healthcare). 

 

2.5 Mouse primary cells culture and CD4+ T cells isolation 
 

Peripheral lymph nodes were harvested from 8- to 10-weeks-old C57Bl/6J WT or 

Tim-1Δmucin mice, mechanically dissociated and washed twice after treatment with 

antibiotic solution. CD4+ cells were separated by negative selection with magnetic cell 

sorting, according to manufacturers instructions (all reagents from Miltenyi Biotec). 

Briefly, CD4+ cells were enriched by depletion of non-CD4+ T cells by labeling with 

biotin-antibody cocktail, followed by incubation with anti-biotin MicroBeads. The 

cell suspension was then loaded onto a column placed in a magnetic field, and the 

magnetically labeled non-CD4+ cells were retained in the column, whereas the 

unlabeled CD4+ cells that run through were collected. The purity of the obtained cell 

population (usually >95%) was determined by flow cytometry analysis with a rat anti- 

mouse CD4 antibody (Miltenyi Biotec), using the MACSQuant flow cytometer 

(Miltenyi Biotec).  
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2.6 CD4+ T cells stimulation and Th1, Th17 cells polarization 
 

2.5x 106
 CD4+ T cells were stimulated for 2 days at 37°C in a 48 well plate in TK1 

medium (RPMI, 10% Fetal Bovine Serum [FBS], ultraglutamine 4 mM, Na pyruvate 

1:100, penicillin/streptomycin 100U/ml; all reagents from Lonza) containing 

concanavalin A (ConA; Sigma-Aldrich) 5µg/ml.  

For Th1 polarization, CD4+ T cells were cultured with irradiated splenocytes, ConA 5 

µg/ml, anti-IL-4 antibody (clone 11B11; 10 µg/ml) and IL-12 (0,1 ng/ml, R&D 

Systems). After 3 days, IL-2 (Miltenyi Biotec; 10 U/ml) was added to the culture for 2 

days. For Th17 polarization, cells were cultured with irradiated splenocytes, ConA 5 

µg/ml, anti-IL-4 antibody (20 µg/ml), IL-6 (R&D Systems; 30 ng/ml), transforming 

growth factor β (TGF-β, R&D Systems; 3 ng/ml), and anti-IFN-γ antibody (clone 

HB170; 20 µg/ml). After 3 days, IL-7 (R&D Systems; 10 ng/ml) was added for 2 

days. 

 

2.7 Generation of MOG35-55-specific Th1 cells 
  

MOG35-55-specific Th1 cells were generated from wild-type or TIM-1Δmucin mice 

immunized with 100 µg MOG35-55 peptide (GenScript Corporation) in complete 

Freund adjuvant (CFA; Difco Laboratories). After 14 days, spleens were collected 

and CD4+ T cells isolated using magnetic beads. Then, 1 x 106 CD4+ T cells were re-

stimulated with 10 µg /ml MOG35-55 peptide, 10 U/ml IL-2, 10 µg/ml anti-IL-4 

antibody and 10 U/ml IL-12, in the presence of APCs (irradiated splenocytes). After 

two weeks, cells were re-stimulated for 4 days before transfer in mice. 
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2.8 PMN isolation from mouse bone marrow 
 

Immature neutrophil were isolated from the bone marrow of the femurs and tibias of 

C57BL/6J WT or Tim-1 mutant mice. The femur and the tibia from both hind legs 

were removed and the tip of each extremity was cut. Bone marrow was flushed out 

form the bone with a 25G needle-syringe containing Hanks’ balanced saline solution 

(HBSS; GIBCO) + 0.1 % Bovine serum albumin (BSA; Sigma-Aldrich). Cell 

suspension was disaggregated with an 18G needle-syringe and filtered through a 70 

mm cell strainer. Cell suspension was centrifuged and erythrocytes cells were lysed 

with a hypotonic NaCl 0.2% solution. Cells were then suspended into 45% Percoll 

(Amersham Pharmacia Biotech, Uppsala, Sweden) in HBSS/BSA, loaded on the top 

of a Percoll discontinuous density gradient with 81%, 62 %, 50% and 55 % Percoll in 

HBSS/BSA phases and centrifuged at 2700 rpm for 30 min without brake. 

Neutrophils were collected from the 81%/62% interface, washed twice in HBSS + 

0.1% BSA and resuspended in the appropriate buffer. Cell purity (usually >90%) was 

assessed by flow cytometry analysis with a PE-conjugated rat anti-mouse Gr-1 

antibody (Miltenyi Biotech). 

 

2.9 Under flow assays in capillary tube 
 

Microcap glass capillary tubes (100 µl; Sigma-Aldrich) were coated with different 

concentrations of mouse P-selectin or E-selectin Fc-chimeras. For the experiments 

with TIM-1 covered microspheres, 9.7 µm protein A-covered non-deformable 

polystyrene microspheres (Bangs Laboratories) were washed and incubated for 45 

min at room temperature with 10 µg/ml human PSGL-1 Fc chimera (AbD Serotec) or 
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10 µg/ml murine TIM-1 Fc-chimera (Sizing et al., Journal of Immunol 2007), 

following the manufacturer’s instructions. Beads covered with mouse IgG Fc- 

chimera (R&D Systems) were used as a negative control. In separate experiments, T-

cell populations were fluxed into the tubes at a density of 106
 cells/ml. T cells or 

beads were fluxed at a shear stress of 2 dyne/cm2 in a buffer containing 1 mM 

Ca2+/Mg2+, 10% vol/vol FBS in PBS. Adhesion interactions were recorded and 

analyzed frame by frame by computer-assisted digital analysis as described (Deban et 

al., Nat Immunol 2010). 

 

2.10 Intravital microscopy in mesenteric vessels 
 

Intravital microscopy experiments were performed as described (Deban et al., Nat 

Immunol 2010). Briefly, 6- to 8-week-old C57Bl/6J mice were anesthetized by 

intraperitoneal injection of PBS containing ketamine (5 mg/ml) and xylazine (1 

mg/ml). A polyethylene catheter was inserted in the lateral tail vein. A segment of the 

terminal ileum with its accompanying mesentery was exteriorized and bathed with 

PBS containing bovine thrombin (0.5 U/ml; Sigma). The recipient was maintained at 

37°C and placed on a BX50WI microscope (Olympus). After 30 min of stimulation 

with thrombin, Th1, Th17 cells or PMNs from wild- type or TIM-1 mutant mice were 

slowly injected through the catheter. Cells were previously labeled with 5- 

chloromethylfluoresceindiacetate (CMFDA) (Invitrogen). Images were visualized 

with a silicon- intensified target video camera (VE-1000 SIT; Dage-MTI) and a Sony 

SSM-125CE monitor. Digitalized video images were analyzed frame by frame using 

ImageJ software. Interacting cell fractions were defined as the percentage of cells that 

interacted within a given venule among the total number of cells that entered that 
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venule during the same period. 

 

2.11 Cutaneous hypersensitivity (CHS) 
 

Mice were sensitized by applying to the shaved abdomen 30 µl of acetone/olive oil 

(4:1; Sigma-Aldrich) plus 0.5% (v/v) 1-fluoro-2,4-dinitrobenzene (DNFB; Sigma-

Aldrich). Five days later, sensitized mice were challenged with 7 µl of acetone/olive 

oil (4:1) plus 0.3% DNFB on each side of the right ear pinnae. For the control 

condition the left ear was painted with an identical amount of vehicle. The ear 

thickness was measured at times 0 and 24 and 48 h after challenge with a dial 

thickness gauge (Swiss Precision Instruments). In Th1 transfer experiments, 10 x 106
 

Th1 cells labeled with green carboxyfluorescein succinimidyl ester (CFSE; 

Invitrogen) were injected intravenously 24 h after ear pinnae painting, and 24 h later, 

ears were processed as previously described to isolate migrated leukocytes (DeKrey et 

al., J Immunol Methods 1999). 

 

2.12 Intravital microscopy in brain vessels 
 

Intravital microscopy experiments were performed in inflamed brain microcirculation 

in an experimental model mimicking early inflammation during EAE as previously 

described (Piccio et al., J Immunol 2002). To induce the expression of adhesion 

molecules on CNS vessels mimicking early EAE vascular inflammation, wild-type 

C57Bl/6 mice were injected intraperitoneally with 12 mg lipopolysaccharide (LPS) 5-

6 h before starting the experiment. Animals were anesthetized and a heparinized PE-

10 catheter was inserted into the right common carotid artery toward the brain. Blood 
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vessels were visualized through the bone using fluorescent dextran as described 

(Piccio et al., J Immunol 2002). We labeled 2-3 x 106
 wild-type or TIM-1Δmucin Th1 or 

Th17 cells with (5-(and-6)-(((4-chloromethyl)benzoyl)amino) tetramethylrhodamine 

(CMTMR) and injected them into the carotid artery by a digital pump. Hemodynamic 

parameters were determined as described (Piccio et al., J Immunol 2002). 

Lymphocytes that remained stationary on the venular wall for at least 30s were 

considered adherent. At least 150 consecutive cells per venule were examined. 

Rolling and firm arrest fractions were determined as the percentage of cells that rolled 

or firmly arrested within a given venule on the total number of cells entering the 

venule. 

 

2.13 Active and transfer EAE induction 
 

For active EAE induction, 6–8-week-old C57Bl/6J wild-type and TIM-1Δmucin	
  mice 

were immunized subcutaneously in the flanks and at tail base with 150 mg of MOG35-

55 peptide in 200 ml emulsion consisting of equal volumes of PBS and CFA 

supplemented with 0.8 mg/mouse Mycobacterium Tuberculosis (strain H37Ra; 

Becton-Dickinson). Mice received 20 ng of pertussis toxin (PTX; List Biological 

Laboratories) intravenously at the time of immunization and 48 h later. For passive 

transfer EAE induction, C57Bl/6J wild-type mice were injected with 20 ng PTX 4 

days and 1 day before cell transfer. The day after the second PTX injection, 5 x 106
 

wild-type or TIM-1Δmucin MOG35-55-specific Th1 cells were injected intravenously. 

The EAE clinical course was recorded daily as previously described (Piccio et al., J 

Immunol 2002). 
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2.14 Proliferation assays from EAE mice 
 

 CD4+ T cells were isolated from wild-type and TIM-1Δmucin  EAE mice 7 days post-

immunization with MOG35-55 peptide. Cells were re-stimulated in vitro in the presence 

of antigen and pulsed for 18 h with 1 µCi/well of [3H]-thymidine. Cells were then 

collected and radioactivity was detected using a b-counter (Perkin-Elmer). 

 

2.15 Neuropathology  
 

Mice were sacrificed at the disease peak, the spinal cords were collected and frozen, 

and 10-mm sections were analyzed using hematoxylin and eosin staining for the 

detection of inflammatory infiltrates and Spielmeyer coloration for myelin. 

 

 

2.16 Migration of Th1 cells in the brain  
 

C57Bl/6J wild-type mice were treated intravenously with 30 ng PTX as previously 

described (Kerfoot et al., J Immunol 2004). After 5 h, 5 x 106 wild-type or TIM-

1Δmucin	
  MOG 35-55-specific CFSE-labeled Th1 cells were transferred into mice. 

CFSE+ cells were detected after 60 h from brain homogenates by FACS analysis. 

 

2.17 Migration of MOG35-55-specific Th1 cells 
 

 C57Bl/6J wild-type mice were treated intravenously with 30 ng PTX as previously 

described (Kerfoot et al., J Immunol 2004). After 5 h, 5 x 106 wild-type or TIM-

1Δmucin	
   MOG35-55- specific TH1 cells labeled with green carboxyfluorescein 
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succinimidyl ester (CFSE; Invitrogen) were transferred into mice. After 60 h, mice 

were sacrificed and brains and spinal cords were collected and treated as previously 

described to isolate CNS leukocytes (Korn et al., Nat Med 2007). CFSE+ cells were 

detected by FACS analysis. 

 

2.18 Immunofluorescence staining for confocal microscopy 
 

 For surface staining, wild-type or TIM-1Δmucin TH1 cells were incubated with 

Alexafluor488-conjugated hamster anti-mouse CD3e (Biolegend) and 5F12 anti-TIM-

1 (Xiao et al., PNAS 2012) antibody, followed by 7.5 µg/ml rabbit anti-rat 

biotinylated secondary antibody (VectorLab) and 25 µg/ml Texas Red-conjugated 

avidin (VectorLab). For intracellular staining, cells were incubated with 

Alexafluor488-anti-CD3e and permeabilized. Cells were then incubated with 5F12 

anti-TIM-1 antibody, followed by biotinylated secondary antibody and Texas Red-

avidin. Cells were visualized using a Tandem Confocal Scanning SP5 microscope 

(Leica, Germany). Collected images were processed and elaborated with Imaris 

software (Bitplane).  

 

2.19 Antibodies and fluorescence-activated cell sorting (FACS) 

analysis 
 

The following rat-anti mouse monoclonal antibodies were used: anti-PSGL-1 (clone 

4RA10; BD Bioscience), PE- conjugated anti-CD25 (eBioscience), purified anti-α4 

integrin (clone PS-2), anti-LFA-1 (clone TIB- 213), anti-L-selectin (clone Mel-14) 

and anti-CD44 (clone MJ64). Rat-anti mouse TIM-1 RMT1- 10, 4A2.2 and 5F12 
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clones (Xiao et al., J Exp Med 2007; Sizing et al., Journal of Immunol 2007; Xiao et 

al., PNAS 2012). Samples were collected with the MACSQuant Analyzer (Miltenyi 

Biotec) and analyzed with the FlowJo software (Tree Star Inc.).  

 

2.20 Real time PCR for TIM-1 expression 
 

Total RNA was extracted from T cells using the RNAeasymini kit (Qiagen, Crawley, 

UK) and used as a template for the retro-transcription reaction and random hexamers 

and SuperScript II RT (Invitrogen, Carlsbad, CA, USA). Triplicate RT-PCR reactions 

for each sample were performed in 20 µl containing 5 ng cDNA, Fast SYBR Green 

Master Mix (Invitrogen), and primers (200 nM). The PCR reactions were performed 

in 96-well plates using the DNA Engine Opticon 2 system (MJ Research, Waltham, 

MA, USA). Amplification plots were analyzed using Opticon Monitor Software, 

Version 2.02 (MJ Research). Data were calculated with Q-Gene software 

(www.BioTechniques.com) and expressed as MNE units after b-actin normalization 

(Muller et al., 2002). Oligonucleotide primers (Invitrogen) for TIM-1 and for b-actin 

(housekeeping gene) were the following:  

TIM-1 fwd:     5’- GCGCTGTGGATTCTTATGTG -3’; 

TIM-1 rev:      5’-CTCAACAGAGTTCTCTATCG-3’.  

b-actin fwd:    5’-TCTTTGCAGCTCCTTCGTTG-3’;  

b-actin rev:     5’- CAGGATACCTCTCTTGCTCTG-3’. 
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2.21 Statistics   
 

Quantitative data are shown as mean values ± SD or SEM. A two-tailed Student's t 

test was used for the statistical comparison of two samples. Multiple comparisons 

were performed by one-way ANOVA followed by Dunnett’s test for multiple 

comparisons. A P-value <0.05 was considered statistically significant. 
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                                                    3. Results 
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3.1 Human and murine TIM-1 bind selectins in vitro in a cell-

free system  
 

 

We hypothesized that TIM-1 may present carbohydrate moieties to selectins 

as highly glycosylated molecules are the classical ligand for selectins and other 

trafficking receptors (Sperandio et al., Immunol Rev 2009). We therefore carried out 

microtiter plate binding assays to check for direct binding between both human and 

murine TIM-1 and the three known selectins.  We used TIM-4 as a positive control 

for TIM-1 ligand binding (Meyers JH et al., Nat Immunol 2005) and ICAM-1, a 

molecule that display no binding with mucins, as negative control (Santiago et al., 

Immunity 2007).   We found that both mouse and human TIM-1 were able to bind all 

three selectins in cell-free assays, with P-selectin showing a higher binding capacity 

than E-selectin or L-selectin (Fig. 4a, b). ). As selectin binding to their ligands is 

absolutely dependent on the presence of divalent cations (Crockett-Torabi, J Leukoc 

Biol 1998), we tested the ability of TIM-1 to bind selectins in the presence of EDTA, 

which is known to chelate divalent cations. Interestingly, the presence of EDTA in the 

assay completely blocked the binding of Tim-1 to all the selectin, and, as previously 

shown, also to Tim-4 (Wilker et al., Int Immunol 2007) (Fig. 4 B), suggesting an 

involvement of the carbohydrates in Tim-1 mucin domain in the binding. 

Collectively, these results indicate that Tim-1 is able to bind all the selectins, with 

higher affinity to P-selectin, and considering the Ca2+-dependency revealed by EDTA 

treatment, the binding is probably mediated by the highly glycosylated mucin domain 

in the Tim-1 structure. 

We tested other members of the TIM family and found that murine TIM-2 and TIM-3 

were unable to bind selectins, suggesting that TIM-1 may be the sole candidate 

selectin receptor (Supplementary Fig. 1). 
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Figure 4  
 

 
 

 

Figure 4: TIM-1 interacts with selectins in vitro in a cell-free system. Microtiter 

plates were coated with 5 µg/ml murine or human P-selectin, E-selectin or L-selectin, 

TIM-4 (positive control) or ICAM-1 (negative control), and tested for their ability to 

bind recombinant mouse or human TIM-1 respectively. In some, experiments, 10 mM 

EDTA was added to chelate divalent cations. Both murine (a) and human (b) TIM-1 

bound to all three selectins, and binding was dependent on the presence of divalent 

cations (*P < 0.0001 compared to ICAM-1 binding). Data represent means ± standard 

error of the mean (SEM) of at least three independent experiments performed in 

triplicate for each condition. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1



	
  

	
   45	
  

3.2 TIM-1 requires a1-(3,4)-fucosylation and tyrosine sulfation 

for efficient binding to P- and E- selectin 

 
 

The Ca2+-dependency revealed by EDTA treatment suggested us the possible 

involvement of the carbohydrates in Tim-1 mucin domain in mediating the binding to 

selectins. Then we next sought to identify the carbohydrate moieties required for 

high-affinity binding between TIM-1 and endothelial selectins.  

By treating recombinant mouse TIM-1 proteins derived from Chinese 

hamster ovary (CHO) or human embryonic kidney (HEK) 293T cells with different 

glycosidases, we found that a1-(3,4)-fucosylation and tyrosine sulfation were the 

post-translational modifications necessary for binding between TIM-1 and selectins 

(Figure 5 a, b). Treatment with Peptide: N-glycosidase F (PNGaseF) did not inhibit 

TIM-1 binding, suggesting that N-linked glycans have no role in the interaction with 

selectins (Figure 5 a,b). Surprisingly, treating TIM-1 with neuraminidase or O-

sialoglyco-endopeptidase did not inhibit TIM-1 binding either (Figure 5 a,b), 

suggesting that sialic acid moieties are dispensable for the interaction with selectins. 

These data suggest that TIM-1 presents a specific glycosylation profile necessary for 

selectin binding, but that the profile differs from that of PSGL-1, particularly in the 

requirement for sialylated carbohydrates (Zarbock et al., Blood 2011). 
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Figure 5 
 

 
 

Figure 5: TIM-1 requires a1-(3,4)-fucosylation and tyrosine sulfation for efficient 

binding to P- and E- selectin  Microtiter plate assays showing the binding of 

recombinant mouse TIM-1 protein from CHO (shown in a) and 293T cells (shown in 

b) to P- and E-selectin after overnight treatment with a1,(3,4)-fucosidase, tyrosine 

sulfatase, PNGase, OSGE and neuraminidase treatment (*P<0.001). Fucosylation and 

tyrosine sulfation are the post-translational modifications necessary for binding 

between TIM-1 and selectins. 
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3.3 TIM-1 mediates capture and rolling on P-selectin and E-

selectin under physiological flow conditions in vitro  
 

The capture and rolling of leukocytes on vascular endothelium mediated by L-selectin 

and P-selectin requires shear stress conditions (Zarbock et al., Blood 2011). Therefore 

we carried out additional TIM-1-selectin binding assays under physiological flow 

conditions in glass capillary tubes using 10-µm protein A polystyrene microspheres 

covered with a murine TIM-1 Fc-chimera (Sizing et al., J Immunol 2007). The TIM-

1-covered beads were infused into capillary tubes pre-coated with each of the three 

murine selectins under physiological shear stress conditions, i.e. 2 dyne/cm2 (Deban 

et al., Nat Immunol 2010). The TIM-1-covered microspheres were efficiently captured 

by P-selectin and E-selectin (Fig. 6a) under these conditions. Notably, TIM-1-

mediated tethering and rolling was more efficient on P-selectin compared to E-

selectin, suggesting that TIM-1 may preferentially bind P-selectin under physiological 

flow conditions. TIM-1 also mediated the transition from capture to rolling 

interactions, and the rolling velocity was dependent on the quantity of each selectin 

used to coat the capillary tubes (Fig. 6b). The rolling of beads on E-selectin was slow 

(Ley et al., Nat Rev Immunol 2007), and slowed further as the quantity of E-selectin 

in the coating increased (Fig. 6b). In contrast, TIM-1 did not bind L-selectin under 

these flow conditions, suggesting that it may interact preferentially with selectins 

expressed on endothelial cells. These results demonstrated that TIM-1 can mediate 

capture and rolling on P-selectin and E-selectin under physiological flow conditions 

and may represent a novel adhesion mechanism that facilitates efficient lymphocyte-

endothelium interactions in vivo. 
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Figure 6 
 

 
 

 

 

Figure 6: TIM-1 mediates tethering and rolling on endothelial selectins under 

physiological flow conditions. Protein A-covered microspheres were coated with a 

murine TIM-1 Fc-chimera or a control mouse IgG Fc-chimera (control beads) and 

were infused into glass capillary tubes pre- coated with P-selectin, E-selectin or L-

selectin, under physiological shear stress conditions (2 dyne/cm2). (a) TIM-1 mediates 

capture and rolling on P-selectin and E-selectin, but not L-selectin, with a higher 

number of interacting beads detected in P-selectin-coated tubes (*P < 0.002, **P < 

0.0001). (b) The rolling velocity of TIM-1-covered beads declines as the 

concentration of P-selectin and E-selectin increases under physiological flow 

conditions. Data represent the means ± SEM of three independent experiments. 
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3.4 The TIM-1 mucin domain is required for T-cell rolling on P-

selectin in vitro 
  

 

The complete inhibition of TIM-1-selectin binding by the chelation of divalent cations 

(Figure 4 b) suggested that the TIM-1 mucin domain may be responsible for primary 

adhesion. We therefore tested the behavior of T cells derived from TIM-1Δmucin	
  mice, 

which selectively lack the O-glycosylated TIM-1 mucin domain (Xiao et al., PNAS 

2012). We used activated T cells, which express TIM-1 on the cell surface  (Meyers et 

al., Trends in Mol Med 2005) and just beneath the plasma membrane, compared to 

naive T cells, in which TIM-1 is exclusively intracellular (Supplementary Fig. 2). As 

previously described (Xiao et al., PNAS 2012), we found no differences in the 

expression of TIM-1 between wild-type and TIM-1Δmucin T-cells (data not shown). 

Furthermore, activated T helper cells from wild-type and TIM-1Δmucin mice expressed 

comparable levels of several adhesion molecules and activation markers 

(Supplementary Fig. 4), suggesting that there were no potential adhesion defects 

associated with the TIM-1Δmucin
 mutation. We carried out further in vitro assays with 

capillary tubes pre-coated with recombinant P-selectin or E-selectin and found that 

TIM-1Δmucin
 T-cells activated with concanavalin A (ConA blasts) were consistently 

deficient (45% reduction) in their ability to tether and roll on P-selectin under 

physiological flow conditions (Fig. 7a), providing more evidence that the TIM-1 

mucin domain is necessary for interactions with P-selectin. Furthermore, Th1 and 

Th17 cells lacking the mucin domain also showed a significant reduction in P-

selectin-mediated tethering and rolling (Fig. 7 a,b). Th1 cells showed a 45% reduction 

and Th17 cells showed a 50% reduction, suggesting that despite the presence of 

PSGL-1 on these cells, TIM-1 is nevertheless required for effective P-selectin-

dependent tethering and rolling. In contrast, TIM-1Δmucin bone marrow-derived 

polymorphonuclear neutrophils (PMNs), which do not express TIM-1, displayed 

normal rolling activity (Fig. 7a), suggesting that the adhesion defect in TIM- 1Δmucin  

mice is specific to T cells. No differences in rolling velocity were observed between 

wild- type and TIM-1Δmucin T cells (Fig. 7c), suggesting that TIM-1 does not influence 

the quality of rolling interactions in the presence of high levels of functional PSGL-1. 

Because TIM-1 also mediated rolling on E-selectin in vitro, we investigated whether 
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the TIM-1 mucin domain is also required for E-selectin-dependent rolling. In contrast 

to the P-selectin experiments, we found that TIM-1Δmucin
 ConA blasts, Th1 and Th17 

cells showed no defects in their interactions with E-selectin in vitro under 

physiological flow conditions when compared to wild- type cells (Fig. 7d). There was 

also no change in rolling velocity when TIM-1Δmucin
 cells were tested on E-selectin 

(Fig. 7e), suggesting that the TIM-1 mucin domain plays a specific role in P-selectin- 

dependent rolling. 
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Figure 7 
 

 
 

 

Figure 7: The TIM-1 mucin domain is required for the capture and rolling of 

activated T cells on P-selectin under physiological flow conditions in vitro. CD4+ 

T cells were stimulated with concanavalin A (ConA) or polarized toward Th1 or Th17 

phenotypes, and then infused into capillary tubes pre-coated with 5 µg/ml P-selectin 

or E-selectin. Bone marrow-derived PMNs, which do not express TIM-1, were used 

as negative controls. (a) TIM-1Δmucin ConA blasts, Th1 and Th17 cells display a 

significantly reduced capture and rolling ability on P-selectin under physiological 

shear stress conditions (2 dyne/cm2), whereas PMNs from TIM-1Δmucin mice are 

unaffected (*P < 0.002; **P < 0.0003; ***P < 0.0001;). (b) Representative images of 

wild-type and TIM-1Δmucin Th1 cells rolling on P-selectin, showing a consistently 

lower number of rolling TIM-1Δmucin Th1 cells. (c) Rolling velocities of wild-type and 

TIM-1Δmucin ConA blasts, Th1 and Th17 cells on P-selectin. No significant differences 

were found between wild-type and TIM-1Δmucin T cells. (d) TIM-1Δmucin activated T 

cells show no tethering and rolling defects on E-selectin under physiological flow 

Figure 3



	
  

	
   52	
  

conditions. (e) Rolling velocities of wild-type and TIM-1Δmucin ConA blasts, Th1 and 

Th17 on E-selectin under physiological flow conditions. No significant differences 

were found between wild-type and TIM-1Δmucin T cells. Data represent means ± SEM 

of four independent experiments. For rolling velocities, data represent means ± SEM 

of at least 100 cells per condition. 
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3.5 TIM-1 mediates T-cell capture on P-selectin in vivo  
 

To establish the physiological relevance of TIM-1 in leukocyte adhesion interactions, 

considering the importance of the TIM-1 mucin domain for P-selectin binding in vitro 

and the higher rolling capacity on P-selectin shown above, we next focused on the 

interactions between TIM-1 and P-selectin. We carried out intravital microscopy 

experiments in exposed mesenteric venules pre-treated with thrombin, which rapidly 

induces the expression of endothelial P-selectin (Deban et al., Nat Immunol 2010). 

Th1 and Th17 cells from TIM-1Δmucin mice showed a significant reduction in the 

ability to roll on P-selectin compared to wild-type cells (Fig. 8a, b). Th1 showed a 

52% reduction and Th17 cells showed a 48% reduction, suggesting that TIM-1 

mediates primary adhesion in vivo. Importantly, the number of total tethers was 

reduced by 42% for Th1 cells and 50% for Th17 cells (Fig. 8c), suggesting that TIM-

1 can also mediate T-cell tethering in vivo. As expected, TIM-1Δmucin PMNs displayed 

no defects in their ability to interact with P-selectin in vivo (Fig. 8a, c), indicating that 

the defect in rolling is lymphocyte-specific. As shown in vitro, we found no 

differences in rolling velocities or the distribution of rolling velocities between wild-

type and TIM-1Δmucin cells in mesenteric venules, suggesting that, in the presence of 

functional PSGL-1, TIM-1 does not influence the quality of activated T-cell rolling on 

P-selectin in vivo (Fig. 8d, e). 
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Figure 8 
 

 
 

Figure 8: TIM-1 mediates T-cell capture on P-selectin in vivo Th1 and Th17 cells 

were generated from murine wild-type and TIM-1 Δmucin CD4+ cells. Bone marrow-

derived PMNs were used as negative controls. Cells were injected intravenously into 

the exposed mesenteric vessels of mice pre-treated with bovine thrombin to 

upregulate P-selectin on the vascular endothelium. (a) The analysis of interactions 

between cells and the vessel wall showed that activated TIM-1Δmucin T cells have a 

significantly reduced ability to roll on P-selectin in vivo (*P < 0.002 compared to 

wild-type cells). Bone marrow-derived PMNs from TIM-1Δmucin mice showed no 

defects in rolling interactions with mesenteric venules. (b) The number of tethers 

(each new interaction with the vessel wall) showed that TIM-1Δmucin activated T cells 

Figure 4
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have fewer total interactions with the venules, whereas the capture of PMNs was not 

affected by the mutation (*P < 0.03 and **P < 0.004 compared to the corresponding 

wild-type cells). Data in (a) and (b) represent means ± SEM of 13-15 independent 

experiments for a total of 15-20 total venules/condition. (c) Representative images of 

Th1 cells rolling in mesenteric vessels. Cells are the white spots inside the venules 

(arrow tips). Note the reduced number of TIM-1Δmucin cells interacting with the vessel 

endothelium, compared to wild-type cells. (d-e) TIM-1Δmucin Th1 (d) and Th17 (e) 

cells display no defects in their rolling velocity in mesenteric venules, compared to 

wild- type cells. Rolling velocities represent the mean ± SEM of at least 100 cells per 

condition (left panel). The distribution of leukocyte rolling velocities is also shown 

(right panel). 
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3.6 The TIM-1 IgV domain is also required for T-cell rolling on 

P-selectin 
 

We next investigated the potential role of the TIM-1 IgV domain in P-selectin binding 

by testing cells in the presence of two antibodies that specifically block this domain: 

RMT1-10 and 4A2.2 (Xiao et al., J Exp med 2007)(Sizing et al., J Immnunol 2007). 

We carried out intravital microscopy experiments in exposed mesenteric venules pre-

treated with thrombin. Surprisingly, we found that inhibiting the IgV domain with 

antibody RMT1-10 in Th1 cells led to a 54% reduction in the ability of the cells to 

roll on P-selectin in vivo, compared to cells treated with a control IgG antibody (Fig. 

9a). This suggested that the TIM-1 IgV domain is required for interactions with P-

selectin. In addition, the total number of tethers was reduced to 60% when the IgV 

domain was blocked with antibody RMT1-10, suggesting that the TIM-1 IgV domain 

is required for tether formation under physiological flow conditions (Fig. 9b). As 

shown for the mucin domain, there was no difference in rolling velocity between cells 

treated with antibody RMT1-10 and the control antibody (Fig. 9c), providing further 

evidence that TIM-1 does not affect the quality of rolling interactions in the presence 

of functional PSGL-1. The other blocking antibody (4A2.2) had a similar effect on 

tethering and rolling interactions, reinforcing the physiological relevance of TIM-1 

IgV domain in vivo (Fig. 9a, b, d). The IgV domain has not previously been shown to 

play a role in tethering or rolling of other selectin ligands and our results suggest that 

TIM-1 therefore uses a regulatory mechanism that is unique within the family of 

selectin receptors. 
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Figure 9 
 

 
 

Figure 9: The TIM-1 IgV domain is required for P-selectin-dependent rolling in 

vivo. Wild- type Th1 cells were treated with control rat IgG or the blocking anti-TIM-

1 antibodies RMT1-10 or 4A2.2, which recognize epitopes in the TIM-1 IgV domain 

(Xiao et al., J Exp Med 2007)(Sizing et al., J Immunol 2007). Immediately after 

antibody treatment, cells were tested for P-selectin-dependent rolling in thrombin-

treated mesenteric venules. (a) Cells treated with RMT1-10 and 4A2.2 showed a 

strongly reduced ability to roll on P-selectin in vivo (*P < 0.005 and **P < 0.04 

compared to cells treated with rat IgG). (b) RMT1-10 and 4A2.2 treatments also 

reduced the number of total tethers (*P < 0.008 and **P < 0.03 compared to control 

cells). Data in (a) and (b) represent means ± SEM of 3-4 independent experiments for 

a total of 6-8 total venules per condition. (c-d) Cells treated with both RMT1-10 (c) 

and 4A2.2 (d) showed no defects in their rolling velocity, compared to cells treated 

with rat IgG. Rolling velocities represent the mean ± SEM of at least 50 cells per 

condition.  Distribution of rolling velocities is also shown (right panels). 

Figure 5
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3.7 TIM-1 cooperates with PSGL-1 to mediate tethering and 

rolling in vitro and in vivo 
 

PSGL-1 is currently regarded as the sole physiological P-selectin ligand expressed on 

activated T cells (Ley and Kansas, Nat Rev Immunol 2004)(Zarbock et al., Blood  

2011)(Borges et al., J Exp Med 1997). PSGL-1-deficient leukocytes showed a 

reduced ability to interact with P-selectin under physiological flow conditions, but 

residual interactions with P-selectin still occur in PSGL-1- deficient T cells in vitro 

and in vivo (Supplementary Fig. 5)(Borges et al., J Exp Med 1997). We therefore 

investigated whether the residual rolling observed in Selplg-/- Th1 cells is mediated by 

TIM-1-dependent interactions. We crossed the two mutant lines to generate Selplg-/-

/TIM-1Δmucin
 mice and analyzed the interaction between Th1 cells from these mice 

with P-selectin and E-selectin under physiological flow conditions in coated capillary 

tubes. We found that the absence of the TIM-1 mucin domain in Selplg-/-/TIM-1 Th1 

cells inhibited PSGL-1-independent residual rolling in capillary tubes coated with P-

selectin by 42%, whereas rolling on E-selectin was not affected (Fig. 10a). 

We next investigated the importance of TIM-1 in PSGL-1-independent rolling in vivo, 

in thrombin-treated mesenteric venules. In agreement with previous reports, we found 

that Selplg-/- Th1 cells show a substantial reduction of rolling interactions in vitro 

compared to wild-type cells (Supplementary Fig. 5). In addition, Selplg-/- Th1 cells 

showed a reduction of rolling interactions and total tethers and an increase in rolling 

velocity in vivo (Supplementary Fig. 5). However, in agreement with our in vitro data, 

we found that Selplg-/-/TIM-1Δmucin Th1 cells showed a 43% reduction in their ability 

to roll on P-selectin compared to Selplg-/- cells (Fig. 10b), suggesting that TIM-1 

mediates a significant proportion of the residual rolling interactions observed in 

Selplg-/- cells. Notably, the number of total tethers was reduced by 40% in the TIM-

1Δmucin cells (Fig. 10b), confirming that the reduction in T-cell capturing is associated 

with a functional defect in the TIM-1 molecule. Furthermore, the IgV domain-

blocking antibody RMT1-10 inhibited both residual tethering and rolling interactions 

by 44% in Selplg-/- cells (Fig. 10c). Taken together, our data clearly indicate that TIM-

1 mediates tethering and rolling in the absence of PSGL-1 and cooperates with PSGL-

1 in supporting activated T-cell rolling on P-selectin in vivo. 
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Figure 10 

 

 
Figure 10: The mutation or functional blocking of TIM-1 inhibits residual 

PSGL-1- independent rolling on P-selectin. (a) Selplg-/- and Selplg-/-/TIM-1Δmucin  

Th1 cells were infused into capillary tubes pre-coated with P-selectin or E-selectin, 

under physiological shear stress conditions (2 dyne/cm2). Selplg-/- cells showed a 

significant residual ability to interact with P-selectin under physiological flow 

conditions, whereas the Selplg-/-/TIM-1Δmucin
 double mutant Th1 cells showed a 

strongly reduced ability to interact with P-selectin (but not E-selectin) compared to 

Selplg-/- cells, suggesting that PSGL-1 and TIM-1 co-operate to support Th1 cell 

binding to P-selectin under physiological flow conditions (*P < 0.0001; reduction = 

42%). Data represent the mean ± SEM of four independent experiments. (b) Selplg-/- 

Figure 6
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and Selplg-/-/TIM-1Δmucin
   Th1 cells were tested for in vivo P-selectin-dependent 

rolling in the mesenteric venules of thrombin-treated mice. As  for the in vitro results, 

the Selplg-/-/TIM-1Δmucin double mutant Th1 cells (left panel) showed a reduced ability 

to roll on mesenteric venules expressing P-selectin, compared to Selplg-/- cells (**P < 

0.004; reduction = 43%). The absence of the TIM-1 mucin domain also reduced the 

number of total tethers formed in mesenteric venules compared to Selplg-/- cells 

expressing functional TIM-1 (*P < 0.02; reduction = 42%). Data represent the mean ± 

SEM of 10 independent experiments for a total of 16-17 total venules per condition. 

(c) Selplg-/- Th1 cells were treated with antibody RMT1- 10 or a control rat IgG and 

were tested for P-selectin-dependent rolling in thrombin-treated mesenteric venules. 

Selplg-/- cells treated with RMT1-10 showed a reduced ability to roll on P-selectin in 

vivo, compared to cells treated with the control rat IgG (left panel; *P < 0.05). Fewer 

tethers were also formed compared to control cells following treatment with RMT1-

10 (right panel; *P<0.002). Data represent the mean ± SEM of three independent 

experiments for a total of seven venules per condition. 
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3.8 TIM-1 mediates T-cell recruitment in inflamed skin 
 

We next evaluated the potential pathophysiological role of the interaction between 

TIM-1 and P-selectin in leukocyte trafficking in vivo during inflammation, using a 

contact hypersensitivity model (CHS) in which P-selectin on the skin endothelium is 

necessary for activated T-cell recruitment (Austrup et al., Nature 1997)(Catalina et 

al., Blood 1999). To evaluate the ability of wild-type and TIM-1Δmucin Th1 cells to 

migrate in the inflamed ear pinnae, wild-type mice were sensitized with DNFB (1-

fluoro-2,4-dinitrobenzene ) and challenged 5 days later on the right ear. After 24 h, 

Th1  cells were labeled with CFSE and injected into the CHS mice. We found that the 

TIM-1Δmucin Th1 cells showed a 48% reduction in their ability to migrate in the 

inflamed skin compared to wild-type cells (Fig. 11a), suggesting that TIM-1 plays a 

role in activated T-cell migration in the inflamed skin. In addition, the TIM-1Δmucin
 

Th1 cells failed to amplify the inflammatory response in the challenged ear by 

increasing ear thickness compared to wild-type Th1 cells (Fig. 11b), clearly 

supporting a pathological role for TIM-1-dependent T-cell trafficking. 
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Figure 11 
 

 
 

Figure 11: TIM-1 mediates T-cell recruitment in the inflamed skin. Mice were 

sensitized with 1-fluoro-2,4-dinitrobenzene (DNFB) to induce cutaneous 

hypersensitivity (CHS) and were challenged again 5 days later on each side of the 

right ear pinnae with DNFB. The ear thickness was measured 0, 24, 48 and 72 h after 

challenge with a dial thickness gauge. (a) 10 x 10 6 CFSE-labeled Th1 cells from wild-

type and TIM-1Δmucin mice were transferred to CHS mice 24 h after the ear pinnae 

were painted, and Th1 accumulation was evaluated 24 h later by FACS. Th1 cells 

from the TIM-1Δmucin
 mice showed a reduced ability to migrate in the inflamed skin 

compared to wild-type cells (*P < 0.02). (b) The injection of wild-type but not TIM-

1Δmucin
  Th1 cells increased the inflammation response in the challenged ear 

(*P<0.01). In both a and b, results represent the mean ± SEM of 9-11 mice per 

condition.	
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3.9 TIM-1 controls activated T-cell interactions with inflamed 

pial vessels 
 

 

We investigated the impact of interactions between TIM-1 and P-selectin during 

inflammatory responses in more detail by studying the role of TIM-1 in T-cell 

adhesion within the inflamed venules of the central nervous system (CNS). We 

carried out intravital microscopy experiments in the inflamed brain pial vessels, a key 

point for T-cell entry into the CNS during experimental autoimmune 

encephalomyelitis (EAE). We therefore used an experimental model mimicking early 

CNS vascular inflammation during EAE, in which we and others have previously 

shown that the inhibition of P-selectin almost completely abolishes T-cell tethering 

and rolling (Piccio et al., J Immunol 2002; Kerfoot and Kubes, J Immunol 2002). Our 

results showed that the TIM-1Δmucin mutation caused a significant reduction in the 

ability of Th1 and Th17 cells to roll (50% reduction for Th1 cells and 40% for Th17 

cells), and their capacity to maintain firm adhesion (43% reduction for Th1 cells and 

62% for Th17 cells) in the inflamed brain pial venules, compared to wild-type cells 

(Fig. 12a,b). These results showed that TIM-1 is required on T cells for efficient 

adhesion to the inflamed CNS endothelium in addition to the previously described 

requirement for PSGL-1, VLA-4 and LFA-1 (Piccio et al., J Immunol 2002). Thus, as 

shown in mesenteric venules, the TIM-1 mucin domain is also necessary for the 

ability of TIM-1 to control adhesion interactions in the inflamed brain 

microcirculation.  
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Figure 12 

 
 

 

Figure 12: TIM-1 controls T-cell trafficking in the inflamed CNS and the 

induction of EAE. For a and b, wild-type and TIM-1Δmucin Th1 and Th17 cells were 

injected into the right carotid artery of LPS-treated mice, and the adhesive interactions 

between T-cells and inflamed vascular endothelium of brain pial vessels were 

investigated in intravital microscopy experiments. (a) TIM-1Δmucin  Th1 and Th17 cells 

showed a reduced ability to roll (and thus adhere firmly) in the inflamed CNS vessels, 

compared to wild-type cells (**P < 0.008; *P < 0.01; ***P < 0.007). For both the 

Th1 and Th17 cells, data represent the mean ± SEM of three independent experiments 

for a total of 8-9 venules per condition. (b) Representative images of brain pial 

venules showing adhered Th1 cells (wild-type and TIM-1Δmucin) as white spots inside 

the vessels (arrow tips). There are fewer TIM-1Δmucin   Th1 cells than wild-type cells 

adhering to the brain pial vessels. Scale bar = 100 µm.  

Figure 8
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3.10 TIM-1 controls T-cell accumulation in the inflamed CNS 

and the induction of autoimmune disease  

 
The pathological role of TIM-1 in T-cell trafficking was investigated by studying the 

ability of TIM-1 to control T-cell recruitment in the CNS during EAE. We therefore 

generated in vitro MOG35-55-specific Th1 cells from wild-type and TIM-1Δmucin mice 

(Lees et al., J Immunol  2008) and evaluated their migration in the CNS using a model 

of EAE (Kerfoot et al., J Immunol 2004). We first determined the phenotype of wild-

type and TIM-1 Δmucin MOG35-55-specific Th1 cells and found no differences in IFNγ 

production and adhesion molecule expression among the two cell populations 

(Supplementary Fig. 6). However, when we investigated the recruitment of myelin-

specific T cells in the CNS, we found that TIM-1Δmucin
 Th1 cells showed a 

significantly reduction in the ability to migrate compared to wild-type cells (Fig. 13 

a), suggesting that TIM-1 plays a role in activated T-cell migration in the inflamed 

CNS. Notably, we also found that MOG35-55-specific Th1 cells obtained from TIM-

1Δmucin
 mice induced a significantly less severe form of EAE compared to wild-type 

cells (Fig. 13 b), with reduced demyelination and inflammatory cell infiltration in the 

CNS parenchyma (Fig. 13c). This clearly demonstrates that TIM-1 expression plays a 

pivotal role in the trafficking of T cells into the CNS and consequently in the 

induction of EAE. 

We also investigated the induction of EAE in C57Bl/6J wild-type and TIM-1Δmucin 

mice by immunization with the MOG35-55 peptide. The disease was significantly less 

severe in the TIM-1Δmucin mice (Supplementary Fig. 6a), indicating a key role for 

TIM-1 in EAE pathogenesis. Notably, CD4+ T-cells isolated from draining lymph 

nodes of the wild-type and TIM-1Δmucin EAE mice 7 days post-immunization had a 

similar capacity to proliferate (Supplementary Fig. 6b), suggesting that the inhibition 

of EAE in TIM-1Δmucin  mice reflects a defect in T-cell trafficking, rather than antigen-

dependent T-cell activation. 
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Figure 13 
 

 
 

 
Figure 13: TIM-1 controls T-cell trafficking in the inflamed CNS and the 

induction of EAE.  (a) 5 x 106 wild-type or TIM-1Δmucin Th1 cells were labeled with 

green CFSE and injected into C57BL/6J wild-type recipient mice treated 5h 

previously with 20 ng pertussis toxin (PTX). The brains and spinal cords were 

removed 60 h after cell transfer. The accumulation of CSFE+ cells in the CNS was 

evaluated by FACS. TIM-1Δmucin Th1 cells showed a reduced ability to migrate in the 

CNS of PTX-treated mice, compared to wild-type cells (*P < 0.006). Data represent 

means ± SEM of 12 mice per condition from two independent experiments involving 

six mice per condition. (b) Recipient C57BL/6J wild-type mice were injected with 20 

ng PTX 4 days and 1 day before the transfer of 5 x 106 MOG 35-55-specific wild-type 

or TIM-1Δmucin Th1 cells. The mice receiving TIM- 1Δmucin Th1 cells developed 

significantly less-severe EAE symptoms compared to mice receiving wild-type Th1 

Figure 8

!" #"

$"



	
  

	
   67	
  

cells. Data represent the mean ± SEM of 10 mice per condition from two independent 

experiments with five mice per condition (*P < 0.05). (c) Neuropathological analysis 

of lumbar spinal cord tissues from mice receiving wild-type or TIM-1Δmucin Th1 cells 

and then killed at the disease peak. Hematoxylin/eosin and Spielmeyer staining 

revealed a significant reduction of inflammatory cell infiltrates and demyelination in 

TIM-1Δmucin compared to wild-type mice. 
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Recruitment of blood flowing neutrophils, monocytes and activated 

lymphocytes to the site of acute or chronic inflammation is a crucial process during 

the development of an immune response. Genetic abnormalities leading to defects in 

leukocyte trafficking have been correlated in humans with the development of the 

leukocyte adhesion deficiency (LAD) syndromes, in which most of the patients die 

early in life due to severe impairment in host defense mechanisms (Etzioni, Current 

Opinion Immunol 2009). Leukocyte recruitment to the inflamed tissue and homing to 

secondary lymphoid organs is a multi-step highly regulated process in which several 

protein families of cellular and vascular adhesion molecules are involved 

(Kondratowicz et al., PNAS 2011). The purpose of this project was to investigate a 

role for the mucin Tim-1 as a novel adhesion molecule controlling the recruitment of 

activated T lymphocytes in inflamed tissues.  Tim-1 is a transmembrane glycoprotein 

belonging to the TIM gene family and expressed by CD4+ T cells upon activation 

(Rennert, Immunol Lett 2011). It is a costimulatory molecule that induces activation 

of naïve T cells and sustains activated T cells functions (Rodriguez-Manzanet et al., 

Immunol Rev 2009). The Tim proteins present, in the external region, an IgV-like 

domain, followed by a highly glycosylated mucin domain, with a predicted extended 

conformation and a heavily O-glycosylated pattern (Kuchroo et al., Nat Rev Immunol 

2003). This peculiar structure is similar to those of the mucin MadCAM-1, a 

trafficking receptor able to bind selectins, which is a classical family of adhesion 

molecules that control leukocyte trafficking in the secondary lymphoid organs and 

chronically inflamed tissues (Ley and Kansas, Nat Rev Immunol 2004; Ley et al., Nat 

Rev Immunol 2007). 

Moreover, it has been recently shown that that the IgV domain of human 

TIM-1 exhibits characteristics of the C-type lectins such as for instance calcium-

dependent interactions (Wilker et al., Int Immunol 2007). The interaction of C-type 

lectins with carbohydrate ligands is mediated by a conserved carbohydrate 

recognition domain (CRD). The TIM family Ig domains appear unrelated to the CRD 

of C-type lectins based on amino acid sequence comparisons, but are related to type-I 

lectins, called siglecs, each containing an extracellular Ig domain (Crocker; Curr 

Opin. Struct Biol 2002 ). Each siglec family member contains a V-set Ig domain that 

binds specific types of sialic acid attached to the terminal sugars of oligosaccharide 

chains by specific glycosidic linkages. Thus, siglec family Ig domains provide a clear 

precedent for carbohydrate recognition by TIM family Ig domains. In support of our 
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hypothesis of a role of Tim-1 in leukocyte adhesion processes, the O-glycosylation 

profile predicted for Tim-1 is comparable to the one found on the mucin PSGL-1 

(Ley, Trends Mol Med 2003), another well characterized mucin adhesion molecule 

expresses by leukocytes able to bind all known three selectins. Taken together, all 

these structural informations prompted us to investigate a possible role for Tim-1 in 

mediating activated T cells trafficking in the inflamed tissues. In particular, due to the 

presence of a highly glycosylated mucin domain in the Tim-1 structure, we focus our 

attention in the present study on the interactions between mucin Tim-1 and selectins. 

We have provided direct evidence that TIM-1 is a novel ligand for endothelial 

selectins and that it controls the tethering and rolling of activated T cells in the 

inflamed microcirculation and the accumulation of T cells at inflammation sites. More 

specifically we have demonstrated that TIM-1 is a major P-selectin ligand; our results 

fulfill all criteria for the definitive assignment of TIM-1 as a selectin ligand. In facts 

we have shown that: (i) Tim-1 is able to bind selectins in a cell free system in a 

divalent cation dependent manner; (ii) microspheres covered with TIM-1 can support 

T-cell rolling on selectins under physiological flow conditions; (iii) monoclonal 

antibodies against TIM-1 block selectin- dependent T-cell rolling in vitro and in vivo; 

and (iiii) the mutation of the TIM-1 gene impairs selectin-mediated T-cell functions 

on intact cells in vitro and in experimental models in vivo (Zarbock et al., Blood 

2011). 

As previously shown for PSGL-1, our data demonstrate that TIM-1 binds all three 

selectins in vitro, but under physiological shear stress conditions TIM-1-covered 

microspheres tether and roll only on P-selectin and E-selectin, suggesting that 

interactions between TIM-1 and L-selectin are less relevant in vivo. Furthermore 

inhibiting the mucin domain of TIM-1 in activated T cells causes rolling defects on P-

selectin but not E-selectin, suggesting that the interaction between TIM-1 and P-

selectin has a more significant role in T-cell trafficking and/or that the interaction 

between TIM-1 and E-selectin is mediated by other TIM-1 domains. Is well known 

that activated T cells express high levels of E-selectin ligands such as PSGL-1, CD44 

and CD43, thus any E-selectin-dependent rolling mediated by TIM-1 could be 

masked by the functional redundancy of other selectin ligands. Indeed, the functional 

redundancy of E-selectin ligands in mice has required the simultaneous deletion of 

more than one ligand to decipher their individual functions and further studies are 

needed to clarify the role of TIM-1/E-selectin interactions in vivo (Zarbock et 
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al.,Blood  2011). 

The existence of P-selectin ligands other than PSGL-1 (and their ability to mediate 

rolling interactions) has been predicted, but the identity and precise role of these 

ligands in leukocyte trafficking has been unclear (Ley and Kansas, Nat Rev Immunol 

2004). Although PSGL-1 has been shown to mediate the rolling of neutrophils, 

monocytes and T cells, our data show that TIM-1 plays a more specialized role in the 

trafficking of activated T cells. Furthermore, whereas PSGL-1 is involved in naïve T 

cell homing to lymphoid organs as well as leukocyte trafficking during inflammation, 

TIM-1 has a more specialized role in activated T cell recruitment to the sites of 

inflammation suggesting a new level of diversity between PSGL-1 and TIM-1. 

The significant reduction in the ability of TIM-1Δmucin Th1 and Th17 cells to roll on P- 

selectin is surprising, because these cells have high levels of functional PSGL-1 on 

their surface. Indeed, our studies showed that the inhibition of TIM-1 in Th1 and 

Th17 cells strongly reduced rolling on P-selectin in vitro and in vivo, and PSGL-1-

independent residual rolling was inhibited by TIM-1 inactivation, clearly indicating 

that TIM-1 is a major P-selectin ligand on T cells. Our data show that both TIM-1-P-

selectin and PSGL-P-selectin pro-adhesive mechanisms are both necessary to achieve 

“fully efficient” recruitment and reveal that the novel TIM-1-P-selectin molecular 

pathway is concurrently involved in T cell trafficking at the regulatory level of cell 

tethering and rolling (D’Ambrosio et al., Life Sci 2004). 

The PSGL-1 mucin domain requires dense O-glycosylation in order to bind selectins 

(Carolw et al., Immunol Rev 2009).  Similarly, the TIM-1 mucin domain is rich in 

threonine, serine and proline residues, and is predicted to undergo substantial O-

glycosylation although the glycans have not been analyzed in detail (Kuchroo et al., 

Nat Rev Immunol 2003). The expression of selectin ligands is inducible in T cells and 

several glycosyltransferases facilitate the biosynthesis of selectin ligands including 

α1,3-fucosyltransferases, core 2 β1,6- glucosaminyltransferase-I (C2GlcNacT-I), 

β1,4-galactosyltransferase-I, sialyltransferases and tyrosine sulfotransferases. The 

TCR-dependent stimulation of T cells induces the expression of enzymes that are 

fundamental to P-selectin binding, which may facilitate the correct glycosylation of 

both PSGL-1 and TIM-1. However, the recombinant murine TIM-1 used in our 

experiments was produced in Chinese hamster ovary (CHO) cells lacking the 

enzymes α1-3-fucosyltransferase (Li et al., J Biol Chem1996) and C2GlcNacT-I, 
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which is considered the limiting enzyme for P-selectin ligand formation in T cells 

(Ley and Kansas, Nat Rev Immunol 2004). Other carbohydrates in the TIM-1 mucin 

domain may control the interaction, e.g. there are two and three predicted sites for N-

glycosylation in the murine and human TIM-1 proteins, respectively (Kuchroo et al., 

Nat Rev Immunol 2003). Indeed, our results show that TIM-1 requires post-

translational fucosylation and tyrosine sulfation for efficient binding to endothelial 

selectins, but does not require sialylated glycans, which are instead critical for the 

binding of other receptors such as PSGL-1 and CD44 suggesting that TIM-1 presents 

a specific glycosylation profile necessary for selectin binding, with clear differences 

to PSGL-1 and other ligands, particularly in the requirement of sialylated 

carbohydrates (Zarbock et al., Blood 2011) 

Our intravital microscopy studies showed that the inhibition of TIM-1 in cells 

expressing high levels of PSGL-1 strongly reduces rolling on P-selectin in vitro and in 

vivo, clearly indicating that TIM-1 is a major P-selectin ligand on T cells. PSGL-1 

and TIM-1 cooperate to control activated T-cell rolling on P-selectin, as suggested by 

the inhibition of PSGL-1-independent residual rolling when TIM-1 is inactivated or 

blocked. However, residual rolling on cells lacking PSGL-1 and functional TIM-1 

was not completely abolished, suggesting that T cells may have an additional P-

selectin receptor that mediates rolling. TIM-1Δmucin cells show normal rolling 

velocities on P-selectin, confirming that TIM-1 does not influence the quality of 

rolling interactions in the presence of functional PSGL-1. During the course of T-cell 

activation, T cells express P-selectin ligands earlier than E-selectin ligands, 

suggesting that P-selectin has a more important role in early inflammation (Ley and 

Kansas, Nat Rev Immunol 2004). Furthermore, TIM-1 is upregulated immediately 

after TCR activation or generic stimulation with ConA, suggesting that it may 

mediate the trafficking of less-polarized T cells during early inflammatory responses. 

Our results show that TIM-1 also controls the rolling adhesion of Th1 and Th17 cells, 

suggesting a pivotal role for TIM-1 in the trafficking of polarized T-cell populations 

to inflammation sites. Th2 cells express high levels of TIM-1 and this may be relevant 

in the control of Th2 cell rolling on P-selectin and trafficking during allergic 

inflammatory reactions (Bonder et al., 2008). TIM-1 is also expressed on activated B 

cells (Rennert, Immunol Lett 2011), which have a low capacity to roll on endothelial 

selectins (data not shown), suggesting a selective role for TIM-1 in T-cell trafficking. 

We also sought to determine the role of individual TIM-1 domains in selectin binding. 
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We showed that the mucin domain is not required for T-cell activation and 

proliferation in the presence of an antigen (supplementary result 6,7), but it is 

selectively involved in the interaction with P-selectin in vitro and in vivo, helping to 

control T-cell trafficking to inflammation sites. TIM-1Δmucin
 Th1 and Th17 cells 

display a significant reduction in their ability to roll in the inflamed microcirculation, 

suggesting that functional inhibition of the mucin domain has anti-inflammatory 

effects. Unexpectedly, our results revealed that IgV domain-blocking antibodies also 

inhibit rolling on P-selectin in vivo. The IgV domain has never previously been shown 

to be required for selectin binding. The structure of TIM-1 is similar to the mucosal 

addressin cell adhesion molecule 1 (MAdCAM-1), a homing receptor containing two 

extracellular IgV domains that bind integrin α4β7, and one mucin domain that 

mediates rolling on L-selectin (Ley et al., Nat Rev Immunol 2007). However, the 

MAdCAM-1 IgV domains are not involved in rolling, suggesting that the interaction 

between the TIM-1 IgV domain and P-selectin is a unique feature of TIM-1. Notably, 

the IgV domain of TIM proteins was shown to share functional characteristics with 

Ca2+- dependent (C-type) lectins and SIGLEC sialic acid-binding proteins, which also 

play a role in leukocyte trafficking (Ledbetter et al., PNAS 1987), further supporting a 

role for the TIM-1 IgV domain in T-cell adhesion. 

TIM-1 takes part in diverse homotypic and heterotypic interactions, with ligands such 

as CD300b, HAV, filoviruses, phophatidylserine on apoptotic cells and the 

intracellular nuclear receptor NUR77. In addition to its presence on the cell surface, 

TIM-1 was previously found in large intracellular pools in early endosomes, the Golgi 

apparatus and lysosomal compartments (Santiago et al., Immunity 2007). Cell-surface 

TIM-1 undergoes continuous retrograde trafficking via constitutive clathrin-

dependent endocytosis (Balasubramanian et al., Ann Rev of Physiol 2012). In naïve T 

cells, we found substantial intracellular pools of endogenous TIM-1 but none on the 

surface. In contrast, TIM-1 expression was upregulated on the surface of in vitro 

activated T cells, but was found predominantly just beneath the plasma membrane 

(supplementary results figure 2). These results suggest that TIM-1 is poised to be 

exposed on the cell surface after activation under specific conditions and that TIM-1 

functions in lymphocyte extravasation as an activation-dependent primary adhesion 

molecule. Indeed, recent data suggest that cells transfected with TIM-1 expose the 

mucin domain on the cell surface following intracellular calcium release (Santiago et 

al., Immunity 2007). A flip-flop model was proposed in which the TIM-1 extracellular 
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domain resides on the cytosolic side of the membrane, with the metal ion-dependent 

site (MILIBS) of the IgV domain interacting with phosphatidylserine (Santiago et al., 

Immunity 2007). An increase in the concentration of intracellular calcium could 

therefore enhance the exposure of TIM-1 to the outer leaflet of the membrane, with 

subsequent release of the IgV domain and presentation of the whole molecule. This 

model, together with our data, suggest that activating stimuli including TCR 

engagement (Ledbetter, PNAS 1987) induce TIM-1 presentation on the cell surface 

and thus enhance T-cell rolling capacity and trafficking to inflammation sites. 

Physiological selectin ligands such as PSGL-1, CD44 and ESL-1 mediate not only 

leukocyte rolling but also partial and transient integrin activation in rolling cells, a 

process that promotes their subsequent stable arrest on the endothelium (Zarbock et 

al., Blood 2011). Signaling through PSGL-1 depends on a constitutive association 

between the PSGL-1 cytoplasmic tail and Nef-associated factor 1 (Naf1). The binding 

of P-selectin to PSGL-1 leads to the phosphorylation of Naf1 by Src kinases, and 

subsequent recruitment of the phosphoinositide-3-OH kinase (PI(3)K) p85-p110δ 

heterodimer, which triggers β2 leukocyte integrins to adopt an intermediate affinity 

state mediating slow rolling (Wang et al., Nat Immunol 2007). TIM-1 is a co-

stimulatory molecule with at least one tyrosine phosphorylation site in its cytoplasmic 

tail (Kuchroo et al., Nat Rev Immunol 2003). TIM-1 crosslinking induces the 

phosphorylation of its cytoplasmic tail as well as phosphorylation of Zap-70 and IL-2-

inducible T-cell kinase (ITK). Interestingly, the p85 subunit of PI3K is recruited 

directly to the tyrosine-276 residue of TIM-1 after lymphocyte-specific protein 

tyrosine kinase (Lck)-dependent phosphorylation of the TIM-1 cytoplasmic tail  (De 

Souza et al., J of Immunol 2008). We have previously shown that PI3K plays a key 

role in integrin-mediated adhesion by specifically controlling integrin valency 

(Constantin et al., Immunity 2000) we speculate that the interaction between TIM-1 

and selectins may transactivate integrins contributing to T-cell arrest. The high 

concentrations P-selectin in the blood during autoimmune and inflammatory diseases 

suggest that P-selectin may crosslink lymphocyte TIM-1, favoring the ingress of 

activated T-cells at inflammation sites (Wang et al., Nat Immunol 2007). 

Finally our findings show that TIM-1 mediates T-cell trafficking in three models of 

inflammatory conditions: thrombin-activated mesenteric vessels, the inflamed brain 

endothelium during EAE, and CHS in the skin. These results provide compelling 
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evidence that TIM-1 plays a major role in T-cell trafficking as a rolling receptor for P-

selectin as P-selectin play a pivotal role in the development of these inflammatory 

models. 

Moreover we showed that Tim-1 plays a prevalent role in Th1 cell accumulation in 

CNS when compared to inflamed skin, suggesting that Tim-1 is important to achieve 

tissue specificity in leukocyte trafficking. We also show that TIM-1 is required for the 

recruitment of Th1 and Th17 cells, which are potent inducers of inflammation and 

autoimmunity, suggesting that interference with TIM-1 activity may provide a novel 

therapeutic approach in T-cell-mediated diseases. Considering that Th1 and Th17 

cells facilitate pathogen clearance and promote anti-tumor immunity, we hypothesize 

that the TIM-1-P-selectin interaction may also play a role during infection and cancer 

(Ruffell et al., Cytokine Growth Factor Rev 2010; Zhu et al., 2010). As well as 

interacting with P-selectin on endothelial cells, TIM-1 on the surface of T cells may 

also interact with P-selectin presented by adhered platelets or their microparticle 

fragments, further contributing to the efficacy of T-cell trafficking. 

In conclusion, our findings collectively indicate that TIM-1 is a major P-selectin 

ligand and a pivotal trafficking mechanism for T cells during inflammation. Our 

results refine the paradigm of the leukocyte adhesion cascade and show that the 

primary adhesion of T cells to P-selectin in vivo is no longer exclusively dependent on 

PSGL-1, but also requires TIM-1, thereby providing a physiological role for the 

interaction between these two critical components of the immune system. 
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Supplementary figure 1	
  
 

 
 

Supplementary figure 1: Binding of P-selectin, E-selectin and L-selectin to TIM 

proteins in vitro Microtiter plates were coated with murine P-selectin, E-selectin or 

L-selectin, TIM-4 (positive control) or ICAM-1 (negative control) and tested for the 

ability to bind recombinant murine TIM-1, TIM-2 and TIM-3. Although TIM-1 was 

able to bind all three selectins, TIM-2 and TIM-3 did not. Data represent the mean ± 

SEM of two independent experiments performed in triplicate for each condition. 

Supplementary Fig. 1
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Supplementary figure 2 

 

 
 

Supplementary figure 2: The cellular localization of TIM-1 in naïve and 

activated T cells. Naïve T cells (a) and Th1 cells (b) were labeled with FITC-

conjugated anti-CD3 and the anti-TIM-1 antibody 5F12 as described in the methods 

section. Labeled cells were spotted onto a glass slide, and images were acquired by 

confocal microscopy. The figure shows 3-4 superimposed central stacks of the 3D 

image. Both naïve and activated T cells expressed TIM-1, which is predominantly 

localized in the cytosol. However, whereas the TIM-1 in naïve T cells (a) is 

exclusively located immediately beneath the cell surface, a significant amount of the 

TIM-1 in Th1 cells (b) is also found on the cell surface, suggesting activation-

dependent trafficking of TIM-1 on the surface of T cells. (c) TIM-1 mRNA levels in 

naïve, Th1 and Th17 cells evaluated by Real Time PCR. All T cell populations have 

very low levels of TIM-1 transcript, compared to β–actin housekeeping gene, with 

mRNA levels almost undetectable in terminally polarized Th1 and Th17 cells. This 

suggests that TIM-1 protein may be principally synthesized during T cell 

development, and stored in intracellular compartment of fully differentiated CD4+ 

naïve T cells. 

Supplementary Fig. 2
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Mouse generation and genotyping 

	
  
The Tim-1 mutant mice we used in this project were generated in the 

laboratory of Prof. Vijay K. Kuchroo (Center for Neurologic Diseases, Brigham and 

Women's Hospital, Harvard Medical School, Boston, MA, USA) by introducing a 

NEO-cassette in the third exon of the Tim-1 gene sequence. This insertion leads to the 

complete deletion of the exon 3 from the gene sequence, and caused the ablation of 

the extracellular mucin domain from the protein structure (Suppl. Fig. 3a). These 

mutant mice were particularly useful for our purpose to investigate a role for Tim-1 in 

leukocyte trafficking, as highly glycosylated mucin domain are tipical moieties 

involved in this process (Sperandio et al., Immunol Rev 2009). We initially 

backcrossed WT/Tim-1Δmucin heterozygous to obtain Tim-1Δmucin/Tim-1Δmucin 

homozygous animals. The presence of WT or Tim-1Δmucin alleles on newborn mice 

was checked by PCR genotyping, using specific primers for both alleles. Examples of 

PCR results from mouse genotyping were reported in supplementary Fig. 3b. 

The Tim-1Δmucin mice completely lack the Tim-1 highly glycosylated mucin 

domain, while the rest of the protein is still expressed on the cell surface. To confirm 

Tim-1 expression on mutant cells, we evaluated Tim-1 expression on concanavalin A-

activated T cells (ConA blasts) and anti-IgM-activated B cells, which express 

consistent Tim-1 levels on their surface (Meyer JH et al., Nat Immunol 2005; Ma et 

al., Biochem Biophys Res Commun 2011). By flow cytometry analysis, we detected 

Tim-1 expression on both WT and Tim-1Δmucin ConA blasts and activated B cells; 

moreover, Tim-1 expression levels were comparable between WT and Tim-1 mutant 

cells (Fig. 3C), confirming that cells from Tim-1 mutant mice still express Tim-1 at 

normal levels. 
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Supplementary figure 3 
 

 

 

Supplementary figure 3: Mouse generation and genotyping: (a) Tim-1 mutant 

mice were generated by inserting a neo-cassette in the exon 3 of Tim-1 gene. The 

neo-cassette is indicated in red in the gene sequence. This insertion caused the 

ablation of the extracellular mucin domain from the protein structure. (b) We 

backcrossed WT/Tim-1Δmucin heterozygous to obtain Tim-1Δmucin/Tim-1Δmucin 

homozygous animals. Animals were checked by PCR using one forward primer and 

two different reverse primers. The forward-reverse primers couple amplified the WT 

C57Bl/6J mice Tim-1 gene (amplicon length: 385, b right image), while the forward-

neo-reverse couple amplified the Tim-1Δmucin gene generated by exon 3 deletion 

(amplicon length: 581 bp,b  left image). In all the images M indicates marker (C) The 

expression of Tim-1 was evaluated by flow cytometry on concanavalin A-activated T 

cells (ConA blasts) and anti-IgM-activated B cells.  The expression of Tim-1 was 

comparable between WT and Tim-1 mutant cells, confirming that Tim-1Δmucin  cells 

express Tim-1 at normal levels. 
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Supplementary figure 4 
 

 
 
 
Supplementary figure 4: Phenotypes of wild-type and TIM-1Δmucin activated T 

cells. Th1 and Th17 cells were generated in vitro from wild-type and TIM-1Δmucin 

CD4+ T cells. The expression of several adhesion molecules and activation markers 

was analyzed by FACS. No differences in the expression of L-selectin, integrins αLβ2 

(LFA-1) and α4, PSGL-1, CD44 and CD25 were found between the wild-type and 

TIM-1Δmucin Th1 cells (a) and Th17 cells (b). Colors: red line = isotype control; blue 

line = wild-type cells; green line = TIM-1Δmucin cells. Data reflect one representative 

experiment among of four carried out in total. 

 

Supplementary Fig. 3
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Supplementary figure 5 

 

 
 
 
 
Supplementary figure 5: Comparison of wild-type and Selplg-/- Th1 cell 

interactions with endothelial selectins. (a) Wild-type and Selplg-/- Th1 cells were 

infused into capillary tubes pre- coated with P-selectin or E-selectin, under 

physiological shear stress conditions (2 dyne/cm2). The Selplg-/- Th1 cells showed 

strongly-reduced interactions with both selectins under physiological flow conditions 

compared to wild-type cells (*P < 0.0001). Data represent the mean ± SEM of four 

independent experiments. (b) The rolling velocities of Th1 cells in capillary tubes. 

Selplg-/- Th1 cells showed a significantly higher rolling velocity on both selectins 

compared to wild-type cells (*P < 0.0001). Data represent the mean ± SEM of at least 

100 cells per condition. (c) Evaluation of interactions between wild-type or Selplg-/- 

Th1 cells and thrombin-treated mesenteric venules. As shown in vitro, Selplg-/- Th1 

Supplementary Fig. 4
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cells showed a strongly reduced ability to interact with P-selectin- expressing 

mesenteric venules, compared to wild-type cells, in terms of rolling and the total 

number of tethers (*P < 0.0001). Data represent the mean ± SEM of 10 independent 

experiments for a total of 14–15 total venules per condition. (d) The rolling velocities 

of Th1 cells in thrombin-treated mesenteric venules. Selplg-/- Th1 cells showed a 

significantly higher rolling velocity in mesenteric venules, compared to wild-type 

cells (*P < 0.04). Data represent the mean ± SEM of at least 100 cells per condition 

(left panel). The distribution of leukocyte rolling velocities is also shown (right 

panel). 
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Supplementary figure 6 
 
 

 
 
 
Supplementary figure 6: The phenotype of wild-type and TIM-1Δmucin MOG35-55 

specific Th1 cells. MOG 35-55-specific Th1 cells were generated from wild-type and 

TIM-1Δmucin CD4+ T cells isolated from MOG35-55 immunized mice. (a) The 

expression of several adhesion molecules was analyzed by FACS. No differences in 

the expression of L-selectin, integrins LFA-1 and α4, PSGL-1 or CD44 were found 

between wild-type and TIM-1Δmucin cells. Colors: red line = isotype control; blue line 

= wild-type cells; green line = TIM-1Δmucin cells. (b) Wild-type and TIM-1Δmucin cells 

produce comparable amounts of IFN-γ after in vitro re-stimulation for intracellular 

staining. Both populations produce negligible amounts of IL-17 and IL-4 (data not 

shown).  

 

Supplementary Fig.5
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Supplemenrtary figure 7 
 

 

 
 

 

Supplementary Figure 7: Absence of the TIM-1 mucin domain influences the 

development of active EAE. (a) EAE was actively induced in wild-type and TIM-

1Δmucin mice by immunization with the MOG35-55 peptide. TIM-1Δmucin   mice 

developed a less-severe EAE compared to wild-type mice. Data represent the mean ± 

SEM of 10 mice per condition from a representative experiment from a series of two 

independent experiments with similar results (*P < 0.05). (b) CD4+ T cells were 

isolated from the draining lymph nodes of wild-type and TIM-1Δmucin   mice 7 days 

post- immunization with the MOG35-55 peptide. The proliferative response to 

increasing concentrations of MOG35-55 peptide was determined, and no differences 

were found in the antigen-specific proliferation of wild-type and TIM-1Δmucin cells, 

suggesting that the TIM-1 mutation does not affect T-cell priming following 

immunization. Data are shown as counts per minute (CPM) of [3H]- thymidine 

radioactivity, and represent the mean ± SEM of four mice per condition. 
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