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Abstract 
Notch signaling pathway activation is known to contribute to the pathogenesis of a 

spectrum of human malignancies, including T cell leukemia. However, recent studies have 

implicated the Notch pathway as a tumor suppressor in myeloproliferative neoplasms and 

several solid tumors. However, its role in human Acute Myelogenous Leukemia (AML) 

remains unclear. 

In the present study, we investigated the role of Notch pathway in the development, 

progression and relapse of human AML. The expression of Notch receptors (Notch1, 

Notch2, Notch3 and Notch4) and their ligands (DLL1, DLL3, DLL4, Jagged1 and Jagged2) 

have been analyzed in human AML cell lines HL-60, THP1, U937, K562 and primary AML 

samples by flow cytometry, western immunoblotting and RT-PCR approaches. In addition, 

the phenotype of Notch receptors has been evaluated in the same cell populations 

cocultured both with human MSCs from healthy donors (hBM-MSCs) and from AML 

patients (hBM-AML-MSCs). Furthermore, we analyzed AML cell survival and proliferation 

upon treatment with Notch inhibitor GSI-XII and chemotherapeutic drugs. We observed 

that human AML samples expressed Notch receptors and ligands at activated levels and 

also downstream Notch targets, suggesting that Notch pathway is functional at basal 

levels in human AML. In addition, MSCs protect AML cells from apoptosis even in the 

presence of chemotherapeutic drugs. This study shows new possible interactions between 

the bone marrow stromal microenvironment and leukemia cells.  
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Introduction 
 

1.1 Notch signaling pathway 

Notch is a highly conserved cell signaling pathway present in most multicellular organisms. 

Mammals possess four different Notch receptors, referred to as Notch1, Notch2, Notch3, 

and Notch4 (Fig. 1.1) (Niessen et al. 2011). The Notch pathway mediates juxtacrine 

cellular signaling wherein both the signal sending and receiving cells are affected through 

ligand-receptor crosstalk by which cell fate decisions in neuronal, cardiac, immune, and 

endocrine development are regulated. The Notch receptor is a single-pass transmembrane 

receptor protein. It is a hetero-oligomer composed of a large extracellular portion, which 

associates in a calcium-dependent, non-covalent interaction with a smaller piece of the 

Notch protein composed of a short extracellular region and a single transmembrane-pass; 

this extracellular portion in its entirety is called "Notch Extracellular Domain" (NECD). 

Besides, Notch is constituted from a small transmembrane (TM), and intracellular (NICD) 

domains. In mammalian signal-sending cells, members of the Delta-like protein (DLL1, 

DLL3, and DLL4) and the Jagged (Jagged1, Jagged2) families serve as ligands for Notch 

signaling receptors. Upon ligand binding (Fig.1.2), the NECD is cleaved away from the 

TM-NICD domain by TACE (TNF-α ADAM metalloprotease converting enzyme). The 

NECD remains bound to the ligand and this complex undergoes endocytosis/recycling 

within the signal-sending cell in a manner dependent on ubiquitination by Mib. In the 

signal-receiving cell, γ-secretase releases the NICD from the TM (S3 cleavage), which 

allows for nuclear translocation where it associates with the CSL (CBF1/Su (H)/Lag-1) 

transcription factor complex, resulting in subsequent activation of the canonical Notch 

target genes: Myc, p21, and the HES-family members (Hori et al. 2013). 
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In the hematopoietic system, Notch is essential for the emergence of definitive 

hematopoietic stem cells during fetal life (Bigas et al. 2008) and indispensable for the 

commitment of progenitors to the T cell lineage (Benveniste et al. 2014). Moreover, Notch1 

appears to be the central oncogenic trigger in T cell acute lymphoblastic leukemia (T-ALL) 

in both humans and mice (Weng et al. 2004). Indeed, Notch1 is commonly mutated, 

leading to constitutive activation of the Notch pathway in the majority of T-ALL patients 

(Malyukova et al. 2007; Maser et al. 2007). In contrast to the T cell lineage where the role 

of Notch signaling is well defined, there is conflicting information on the role of Notch 

signaling in the function of adult stem cells and multipotential progenitors and in the 

myeloerythroid compartment (Maillard et al. 2008; Delaney et al. 2010; Dahlberg et al. 

2011). Initial in vitro studies suggested that Notch signaling accelerates myeloid 

differentiation (Tan-Pertel et al. 2000; Schroeder et al. 2003). However, subsequent 

studies contested this conclusion. Most notably, it was shown that Notch can suppress 

myelopoiesis in vitro (de Pooter et al. 2006) and Mercher et al. (2008) reported that Notch 

signaling can induce megakaryocyte differentiation. Laurence Bugeon et al. (2011) studies 

showed that inhibition of Notch signaling in vivo leads to the reduction of myelo-monocyte 

development. Hence, defects in Notch signaling affect definitive hematopoiesis, altering 

myelopoiesis from the early stages of development. Lobry et al. (2013) have recently 

shown that Notch signaling can function as an antagonist of the granulocyte/monocyte 

progenitor (GMP) cell fate and that loss of Notch signaling biases commitment toward 

GMP differentiation, eventually resulting in chronic myelomonocytic leukemia (CMML) 

(Klinakis et al. 2011), a myelodysplastic/myeloproliferative disease. They observed 

inactivating mutations in the Notch pathway in a fraction of CMML patients, suggesting that 

this pathway is targeted by genetic alterations. These data are consistent with subsequent 

reports of inactivating Notch pathway mutations in head and neck cancer (Agrawal et al., 

2011; Stransky et al., 2011). However, there are still few studies that support the theory 
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that Notch may function as a tumor suppressor. Some in vitro studies based on the 

myeloid cell line 32D have shown contradictory effects of Notch1 activation on myeloid 

differentiation (Milner et al. 1996; Schroeder et al. 2000), but the study of Kawamata et al. 

(2002) are the first to show that Notch1 activation alters the ability of progenitors to mature 

along the myeloid lineage in vivo. Notch1 receptor is a known modulator of lineage-specific 

events in hematopoiesis (Stier et al. 2002). In particular, in haematopoiesis, Notch1 acts 

defining the increase of lymphoid precursor cells, while it determines a decrease of 

myeloid linage development (Fig1.3). 

 

1.2 Acute Myeloid Leukemia (AML) 

AML is a clonal myeloproliferative disease characterized by an uncontrolled proliferation 

and differentiation block of myeloid committed blood cells in the bone marrow (BM). Acute 

myeloid leukemia is a relatively rare cancer. There are approximately 3.7 cases per 

100,000 people; 70% of new cases are over 60 years old and the mortality rate depends 

on the age of patients (Deschle et al. 2006).  

The male: female ratio for AML is 1:1. Outcomes for AML patients remain poor; despite the 

use of cytotoxic chemotherapy and stem cell transplantation, most patients die of relapsed, 

refractory disease (Fröhling et al., 2005). The French-American-British (FAB) classification 

divides AML into eight subtypes, from M0 to M7, on the basis of blast cell morphology and 

maturation degree (Bennet et al. 1976, Table 1.1). However, WHO classification takes into 

consideration other biological features of AML cells: in fact, cytogenetic and molecular 

studies have shown that AML is a heterogeneous disease with a variety of cytogenetic and 

molecular alterations that have biological and clinical relevance (Dash and Gilliland, 2001; 

Armstrong et al. 2003; Döhner et al. 2010). Among them, chromosomal abnormalities 
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leading to the generation of leukemogenic fusion oncoproteins, including mixed lineage 

leukemia (MLL) gene fusions that are associated with adverse outcome. In addition, 

somatic mutations in tumor suppressors have been shown to contribute to 

leukemogenesis and AML risk classification (Bacher et al. 2010). However, molecular 

mechanisms linking these mutations to transformation are incompletely understood, and 

the role of the most recently identified genes, including TET2, ASXL1, and IDH1/2 in AML 

pathogenesis has not been fully clarified (Figueroa et al. 2010). Recently, a clear role for 

nucleophosmin NPM1 has been shown in the pathogenesis, clinical evolution and 

prognosis of the AML cases with apparently normal karyotype (Falini B et al.).  

Current treatments for AML patients include dose-intensive chemotherapy and allogeneic 

hematopoietic stem cell transplantation, which are associated with significant and age-

related toxicity, including Graft Versus Host Disease (GvHD), and high relapse rates 

(Rowe JM et al, 2010). 

 

1.3 Human bone marrow mesenchymal stromal cells 

Mesenchymal stromal cells (MSCs) were isolated for the first time in the '70s by 

Friedenstein and coll. from the bone marrow, accounting for approximately 0.01% of all 

nucleated cells (Friedenstein et al. 1974). MSCs are stromal progenitors growing in culture 

as adherent cells with fibroblastoid morphology (Haniffa et al. 2009) and endowed with 

multi-lineage differentiation potential towards mesodermal cell lineages and extensive 

immune-modulatory properties. MSCs are the precursors of the bone marrow stroma that 

constitutes the normal hematopoietic stem cell niche (Quante et al. 2011), thus supporting 

hematopoietic stem cell homing, quiescence, self-renewal and differentiation into mature 

blood cells through cell-cell contact and secretion of growth factors (Jones et al. 2008; Kolf 
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2007; da Silva et al. 2008). Three main criteria have been identified by the International 

Society of Cellular Therapy (ISCT) to define MSCs: (i) Adhesion to plastic, (ii) expression 

of specific immunophenotypic marker combinations (CD73, CD90 and CD105), and lack of 

expression of hematopoietic markers (CD14, CD34 and CD45) and class-II major 

histocompatibility complex (MHC) molecules; (iii) capability of differentiating into 

mesodermal lineages (adipocytes, osteoblasts and chondrocytes) (Fig.1.4). Although the 

bone marrow is the main source of MSCs, they can also be extracted from adipose tissue 

(Kuhbier et al. 2010), umbilical cord blood, placenta, and many other tissues. Under 

artificial in vitro conditions MSCs may differentiate into cell types of tissues of different 

embryonic origin, such as nervous and hepatic tissue, but the spontaneous differentiation 

is still dabated (Devine et al. 2003; Vallabhaneni et al. 2010).  

Growth and differentiation of hematopoietic cells require direct contact with stromal cells 

deriving from MSC-precursors (Konopleva et al. 2002). The importance of the stromal 

microenvironment in the maintenance and differentiation of normal hematopoietic 

progenitors has been emphasized in long-term bone marrow cultures. However, the 

molecular mechanisms of the interaction between stromal and hematopoietic cells are not 

well defined. Stromal cells produce a variety of growth factors, but direct cell-to-cell contact 

is needed for cell growth and differentiation (Konopleva et al. 2002).  

As leukemic cells originate from the hematopoietic normal counterparts and also reside 

within the bone marrow microenvironment, it is likely that stromal cells influence the 

proliferation and apoptosis of leukemic cells. This interaction plays a crucial role in the 

pathogenesis of AML by promoting tumor cell growth and survival as well as drug 

resistance, which is the major challenge in the treatment of AML. For instance, the 

interaction between VLA-4 (α4β1 integrin) on leukemic blasts and fibronectin on stromal 

cells activates phosphatidylinositol 3-kinase (PI3K)/Akt/Bcl-2 signaling, an important 
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determinant of AML chemosensitivity and the level of minimal residual disease of AML 

patients (Becker et al. 2009). Thus, activation of the signaling cascades downstream of 

integrin engagement may play a critical role in the well-documented chemoresistance of 

bone marrow AML cells. However, the role of stromal cells is not yet entirely clear, 

although some data suggest that they may be responsible for the high frequency of 

relapse of the disease (Mayani H, 1996). 

In this work we assessed whether the interaction between stromal cells derived from bone 

marrow MSCs and AML cells promotes leukemic cell survival and resistance to 

chemotherapy through the expression of the Notch system.  
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Materials and Methods 
 

2.1 Samples and Patients 

Cell lines  

The following human AML cell lines were employed: HL-60 (acute promyelocytic leukemia 

cell line), THP1 (acute monocytic leukemia cell line), U937 (myeloid histiocytic sarcoma 

line) and K562 (myeloid blast crisis of chronic myeloid leukemia, CML). All the cell lines 

were purchased from the American Type Culture Collection (table 2.1). 

Positive controls for gene and protein expression of Notch receptors and ligands are 

shown in Table 2.2. 

AML samples 

Bone marrow samples (fresh aspirates or cryopreserved cells, n=10) were obtained, after 

informed consent, from AML patients with high blast counts at diagnosis, admitted to to the 

Hematology Sections of Verona and Treviso. Bone marrow cells were further fractioned by 

Ficoll-Paque (Miltenyi Biotec) and analyzed by flow cytometry analysis to confirm the 

diagnosis (evaluation of CD11b, CD13, CD14, CD16, CD33, CD34, CD38, CD45, CD64 

expression).  

Human BM-MSC isolation and characterization 

Human MSCs were obtained from bone marrow aspirates of healthy donors (hBM-MSCs, 

n=8) and AML patients (hBM-AML-MSCs, n=5) after informed consent. Whole 

unprocessed BM cells were plated in tissue cultures flask (BD Biosciences) at 10x104 

cells/cm2 using α-MEM (Sigma-Aldrich) supplemented 10% fetal bovine serum (FBS), 1% 
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L-Glutamine solution 200mM, and 1% Penicillin-Streptomycin and incubated at 37°C and 

5% CO2 atmosphere. After 72h of colture, non-adherent cells were removed by washing 

with sterile 1X PBS. When reaching 70-80% of confluence, adherent cells were washed 

with sterile 1X PBS, trypsinized (0.05% trypsin at 37°C for 5 minutes, Sigma), harvested 

and expanded in large flasks at a lower density (100 cells/cm2). MSC identity was 

confirmed by immunophenotyping at the end of third cell passage, according to the 

expression of CD73, CD90 and CD105. In addition, the lack of haematopoietic and 

endothelial markers (CD31, CD34, and CD45) was assessed. Further characterization of 

MSCs was carried out by using monoclonal antibodies (mAbs) specified for HLA-class I 

and II. All antibodies were purchased from Pharmigen/Becton Dickinson and Immunostep 

(Fig 2.1). 

2.2 Cell cultures and co-cultures 

Cells were counted in Neubauer chamber using Acridine Orange/Ethidium Bromide (Acr / 

EtBr) solution at 1:10 ratio. AML cells from patients were used immediately for flow 

cytometry analysis and/or co-cultures. AML cell lines and MSCs were expanded for about 

24 and 72 hours, respectively. Human BM-MSCs were cultured at 4000 cells/cm2 

concentration in culture flasks (Becton Dickinson, Milano, Italy) with α-MEM (Sigma-

Aldrich) supplemented with 10% FBS, 1% L-Glutamine solution 200 mM, and 1% 

Penicillin-Streptomycin. AML cell line cultures were performed by seeding 10 X 106 cells in 

T75 Cell Culture Flasks with RPMI 1640 supplemented with 10% FBS, 1% L-glutamine, 

and 1% penicillin-streptomycine. Both cell types were incubated at 37°C and 5% CO2 

atmosphere. Co-culture experiments were performed on a confluent monolayer of MSCs 

with RPMI (Sigma Aldrich) supplemented with 10% FBS, 1% L-Glutamine solution 200 

mM, and 1% Penicillin-Streptomycin, in 24-well plates for 24, 48 and 72 hours. 
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Co-culture in presence of drugs 

Gamma-Secretase Inhibitor XII (GSI-XII, Notch inhibitor) and some drugs normally used 

for AML treatment, i.e. Etoposide, Cytarabine (Ara-C) and Idarubicine chloridrate, were 

added in co-colture experiments at 1µM, 5µM, 10µM or 20 µM final concentrations for 72 

hours. To determine EC50 dose, we performed the colorimetric MTT metabolic activity 

assay. AML cells collected during log growth were seeded in 96 wells plates (104 cells per 

wells) at 24, 48, and 72 hours, with or without different drugs. Cell viability was then 

assessed by adding 10 µL of methyl thiazolyl tetrazolium (MTT, Sigma-Aldrich) into each 

well and keeping in incubator for 3 hours. Metabolically active, viable cells converted MTT 

into a colored formazan, which was solubilized with a volume of acidic isopropanol equal 

to the volume of cell suspension. Optical density of formazan reflected cell viability. The 

product was then measured at 570nm in a spectrophotometric microplate reader 

(PerkinElmer VICTORX4). The viability was expressed as the percentage of optical 

density of treated cells compared to optical density of untreated cells. The MTT method 

was done in triplicate (Fig 2.2) 

2.3 Flow Cytometry analysis 

AML cells were identified as CD45+, CD34+, CD38- cells by flow cytometry (FACSCanto 

II, Becton Dickinson, Rutherford, NJ, USA) using the BD DIVA software. Cells were initially 

selected using a morphological gate based on forward scatter (FSC measured cellular 

size) and side scatter (SSC, measured cellular granularity) parameters. The subsequent 

evaluation was performed on CD45+ versus SSC and then CD34+ versus CD38- to 

identify myeloid blasts. A threshold was fixed on FSC to exclude cellular debris. The 

analysis of CD34 and CD38 expression was performed both in AML cell lines and in 

purified AML cells from patients, with acquisition of 30,000 morphologically gated events 
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per tube. The percentage of CD45+, CD34+, CD38- was used to evaluate the expression 

of Notch receptors and ligands compared to isotype-specific antibodies (Fig. 2.3). 

Notch receptor immunophenotype 

Immunophenotypic analysis was performed on fresh bone marrow aspirates or frozen 

mononuclear cells (MNCs) from AML patients as well as on AML cell lines. Expression of 

Notch receptors and ligands was analyzed by flow cytometry using Phycoerythrin (PE) 

conjugated antibodies against Notch receptors and ligands, as shown in Table 2.3. At least 

3x105 cells were incubated with the specific antibody or appropriate isotype control for 15 

minutes in the dark at room temperature. Unbound antibodies were removed by washing 

the cells with 1X PBS. Cells were resuspended in 200-300uL of 1X PBS. Phenotype was 

assessed by FACS Canto II and data were analyzed by FlowJo software. 

Immunophenotyping was carried out on AML cell lines (5 times) and on 10 AML samples. 

Statistical analysis was performed with GraphPad Prism 6 software. 

Apoptosis quantification 

AML cells were seeded alone or in co-culture with MSCs at 10:1 ratio for 72h and then 

collected and washed twice with 1X PBS to remove FBS. After resuspension in 1X Binding 

Buffer, cells were stained with CD45 (Becton Dickinson, Milano, Italy) and Annexin V 

(Miltenyi Biotec), and incubated in the dark at room temperature. After 15 minutes of 

incubation and washing with 1 ml of 1X Binding Buffer, cells were resuspended in 200µL of 

1X Binding Buffer with 10ul of Propidium Iodide and analyzed by flow cytometry. Cell 

viability was assessed in the selected CD45+ population using FLowJo software. The non-

apoptotic cells percentage at the end of the experiment was calculated using a live cell 

population at time 0 as control (analyzed at the beginning of the experiment with fresh 

cells) (Fig 2.4). 



Proliferation assay 

Thawed AML cells were resuspended in appropriate culture medium, counted and 

washed. Cell pellets were resuspended at 1x106 cells/mL concentration in 1X PBS with 

0.1%BSA (Bovine Serum Albumin, Sigma Aldrich, Italy). Carbossifluorescein-di-acetate- 

succimidyl-ester (CFSE solution Gibco, Life Technologies, Milano, Italy) was added to cell 

suspension at 2µL/ 106cell concentration and incubated for 10 minutes at 37°C in the dark. 

Cells were washed 3 times with cold complete medium. Then, CFSE-labelling was 

confirmed by flow cytometry. After 24h, 48h, 72 hours of culture in complete medium cells 

were collected and stained with CD45PerCP and TO-PRO 3 (Invitrogen-Life Technologies) 

and acquired by flow cytometer. Proliferation was assessed in CD45+/TO-PRO 3- cells 

using FLowJo software, and the GeoMean of cycling cells was calculated with the 

following formula:  

 

Cell Cycle assay 

At 72 hours of culture and coculture, cells were collected and washed in 1X PBS. Cells 

were then resuspended in 1X PBS for 5 minutes, washed, resuspended in 70% ethanol in 

PBS, and incubated either 1 hour at -20°C or overnight at 4°C. Cells were then washed 

once and resuspended in 1X PBS. Ribonuclease A (Sigma Aldrich; Milan Italy) was added 

to 100 µg/mL final concentration and the samples were incubated at 37 °C for 1 hour in the 

dark. Propidium iodide (Sigma Aldrich; Milan Italy) was added to final concentrations of 40 

µg/mL right before the acquisition on the flow cytometer. The percentage of mitotic cells 

was calculated by subtracting G0 and apoptotic cells (Cells with <2N DNA content) from 

total cells. Cell cycle assays were performed in triplicate. 

13 
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2.5 RNA isolation and RT-PCR 

Cell pellets were obtained by centrifugation at 30 minutes, 2h, 6h, 24h, 48h and 72h of 

culture with and without MSCs. TRIzol ® Reagent (Invitrogen™ - Life Technologies) was 

added in a ratio of 1mL per 5x106 cells. 

Phase separation 

For each sample, 0.2 ml of chloroform per ml of TRIzol ® Reagent (Invitrogen™ - Life 

Technologies) was added. After incubation for 2-3 minutes, at room temperature, samples 

were centrifuged. The upper aqueous phase was removed and stored in a new tube. 

Then, 0.5 ml of 100% isopropanol were added to the aqueous phase per each mL of 

TRIzol used for homogenization. Samples were then incubated at room temperature for 10 

minutes and centrifuged at 12,000 x g for 10 minutes at 4°C.  

RNA wash and resuspension 

After removing the supernatant from the tube, the RNA pellet was washed with 1 ml of 

75% ethanol, air dried, resuspended in RNase-free H2O and incubated in a water bath at 

55°C for 10 minutes, then stored at -80°C until further use. 

cDNA synthesis and qualitative PCR 

For gene expression analysis, cDNAs were reverse-transcribed from total RNA (2ug) using 

SuperScript II Reverse Transciptase (Invitrogen™ - Life Technologies) according to 

manufacturer’s instructions. The PCR reactions were performed with REDTaq ReadyMix 

PCR reaction mix with MgCl2 (Sigma Aldrich) on a thermal cycler Verity (Applied 

Biosystem) with an initial denaturation at 95°C for 2 min, followed by 40 cycles of 15 sec at 

95°C and 1 min at 60°C. The primers used, are listed in Table 2.4. 
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Electrophoresis Agarose gel 

The PCR amplified products were observed by means of electrophoresis gel; 10 μL of 

PCR product was loaded onto a 2% agarose gel in TBE containing 1 μg/ml ethidium 

bromide. The Quickload 100 base pairs DNA ladder (New England Biolabs) was run on 

each gel at 110 V (7.3V/cm) for 45 minutes and visualized under UV light. 

Gene expression by qPCR 

RT-qPCR was performed to evaluate the quantitative expression of the HES1 gene in AML 

cell lines. Complementary DNA was synthesized from 2 µg of RNA in a volume of 25 μL 

using High Capacity cDNA Reverse Transcription kit (Applied Biosystems). cDNA was 

analyzed for the expression of target genes (HES-1 and GAPDH) by the SYBR Green 

double-stranded DNA binding dye assay, using a Platinum® Quantitative PCR SuperMix-

UDG kit (Invitrogen™) and tested in a DNA Engine Opticon 2 Continuous Fluorescence 

Detector (MJ Research). UDG and dUTP in the SuperMix prevent the reamplification of 

carryover PCR products between reactions. dUTP ensures that any amplified DNA 

contains uracil, while UDG removes uracil residues from single- or double-stranded DNA, 

preventing dU-containing DNA from serving as template in future PCRs. A UDG incubation 

step before PCR cycling for 2 minutes at 50°C destroys any contaminating dU-containing 

product from previous reactions. UDG is then inactivated by the high temperatures during 

normal PCR cycling, thereby allowing the amplification of genuine target sequences. 

Reactions were denatured for 2 minutes at 95°C and then subjected to 50 two-step 

amplification cycles with denaturation at 95°Cfor 15 seconds followed by 

annealing/extension at 60°C for 1 minute. Primers used were: 

FH3_GAPDH: 5’-CTC TGA TTT GGT CGT ATT GG-3’ 
RH3_GAPDH: 5’-GTA AAC CAT GTA GTT GAG GTC-3’ 

FH1_HES1: 5’-GCC TAT TAT GGA GAA AAG ACG-3’ 
RH1_HES1: 5’-CTA TCT TTC TTC AGA GCA TCC-3’ 



16 
 

All primers were purchased from Sigma. Data were obtained with Optical monitor version 

2.02.24 (MJ Research) software and were analyzed with GraphPad Prism (version 5). 

 

2.6 Cells lysis and Western immunoblotting 

For immunoblotting analysis, 1.8 x 106 cells were used. At >80% confluence cells were 

collected and lysed with an appropriate amount of ripa lysis buffer (25 nM Tris pH 7.6, 

150mM NaCl, 1% NP40, 1% Na-deoxycholate, 0.1% SDS) supplemented by complete 

Protease Inhibitor (Sigma Aldrich) and 1 mM Na3SO4. Then cell lysates were 

centrifugated at 15.000 rpm at 4°C for 10 min. Supernatants were collected and tested 

with bicinchoninic acid (BCA) protein assay kits (Thermo Scientific). The BCA protein 

assay is a colorimetric, fast and sensitive microplate test, in which different sample 

concentrations can be compared with increasing amounts of Bovin Serum Albumin (BSA) 

in a standard curve. Deoxycholic acid is a strong detergent, capable of destroing all 

membranes.  

Electrophoresis and western blotting (WB) 

To assess protein expression and modulation, SDS polyacrylamide gel electrophoresis 

(PAGE) was performed. With this technique it is possible to identify proteins by sample 

size. Cells lysates were supplemented by 1x Laemmli Buffer solution (5x solution: 0.3M 

TRIS pH 6.8, 25% β-mercaptoethanol v/v by Sigma Aldrich; Milan Italy, 11.5% SDS w/v by 

Biochemical, 50% glycerol w/v 0.02% blue bromophenol to active denaturation and S-s 

reduction), then loaded into gel for electrophoresis. Gels were prepared as follows: 0.5mL 

of 40% solution of acrylamide: bisacrylamide 29:1(BDH), 1.25mL of solution M (0.5mL 

TRIS pH6.8 0.4% SDS w/v), 0.92 mL of 50% glycerol w/v, 2.35mL of ddH2O, 33.5µL of 

10% APS w/v, 8.5 µL of TEMED (Jannsen). Of each sample, 20µg of total lysate was 
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loaded in the wells and gels were run in a running buffer consisting of 25mM TRIS, 192mM 

glycine for electrophoresis 0.1% SDS w/v. A pre-stained protein marker (Protein 

Sharpmass V prestained 11-250 kDa. Euroclone) was loaded to monitor the migration 

process and allow, by comparison, an approximate molecular weight estimation of the 

separated proteins. Electrophoresis was carried out at a constant voltage of 60V during 

the focusing phase, then the voltage was doubled during the running phase. After the run, 

samples were blotted on a 0.45µm nitrocellulose filter to perform further analysis. To this 

purpose, gel was unassembled and soaked for a couple of minutes in cold Transfer Buffer 

(25mM TRIS, 192mM glycine, 10% methanol v/v purchased from Sigma-Aldrich). In the 

meantime, the transfer “sandwich” was prepared by assembling the transfer cassette, a 

3mm Whatman paper wetted with transfer buffer, the nitrocellulose, the gel and again the 

wetted paper. The transfer was achieved inserting the transfer cassette with the 

membrane oriented to the positive pole in the Transfer cell (Euroclone) in transfer Buffer 

and applying 500mA constant current for 2h at 4°C. After transfer, the nitrocellulose filter 

was stained with Ponceau Red solution (0.2% Ponceau S w/v 3% TCA w/v). Nitrocellulose 

membrane was saturated for 1h at room temperature (RT) in TBST (20mM TRIS, 150mM 

NaCl, pH8) supplemented with 0.1% Tween 20 v/v and 2% or 5% BSA (Sigma Aldrich). 

The incubation with primary antibody was always done at 4°C, under gentle shaking. The 

primary antibodies used to reveal specific proteins are reported in Table 2.5. After the 

incubation with the primary antibody, the blot was washed 5 times at RT for 5 minutes with 

TBST and then with the secondary antibody (anti-mouse, anti-rabbit both Sigma Aldrich) 

and anti-rabbit (GE Healthcare) labeled with Horse Radish Peroxidase (HRP) all used at 

working dilution of 1:10,000 in TBST 2% BSA and incubated at RT for 1h. At the end of the 

incubation time, the membrane was washed 5 times with TBST and then analyzed by 

incubation in chemiluminescent substrate. The labeled blots were then exposed to x-ray 
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film to visualize antibody binding. To ensure equal loading of protein samples, the blots 

were stripped of their primary antibody and re-probed for GAPDH. 

 

2.8 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software (GraphPad software 

Inc. U.S.A.). Data were expressed as mean +/- standard error means (SEM). Statistical 

comparison among groups were performed by either ANOVA one-way test, when only one 

independent variable was considered, or Wilcoxon matched pairs test, when values in 

each row presented paired observation, or Mann-Whitney test, when data did not have 

Gaussian distributions. P value<0.05 was considered statistically significant. 
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Results 
 

The expression of the Notch signaling molecules was assessed in human AML cell lines 

and MSCs. Specific antibodies against Notch receptors (Notch1, Notch2, Notch3, Notch4) 

and ligands (DLL1, DLL3, DLL4, Jagged1, Jagged2) were first used in HL-60, THP1, U937 

and K562 (human AML cell lines). To validate flow cytometric data, parallel studies on the 

same cells were performed with Western blot and RT-PCR. Then, the expression of Notch 

receptors by bone marrow mononuclear cells (BM-MNCs) and MSCs cell populations from 

AML patients were analyzed. Finally, the expression of Notch receptors and ligands was 

analyzed in AML cell lines and AML primary cells cocultured with human MSCs from either 

healthy donors (hBM-MSCs) or AML patients (hBM-AML-MSCs). Furthermore, AML cell 

survival and proliferation was analyzed upon treatment with Notch inhibitor GSI-XII and 

chemotherapeutic drugs, in presence of absence of MSCs. 

 

3.1 Notch molecule expression by AML and MSCs at resting 

conditions 

Expression of Notch receptors and ligands 

 

Using validated cDNA, we compared the mRNA expression of NOTCH genes 1–4 and 

their ligands (DLL1-4 and JAGGED 1 and 2) in AML cell lines, primary AML cells from 

patients, hBM-MSCs and hBM-AML-MSCs. To compare the data, we normalized the 

levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA. Overall, NOTCH1, 
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NOTCH2 and NOTCH3 were analyzed. Concerning MSCs we found expression of 

NOTCH2 and NOTCH3, but no evidence of NOTCH1 expression. NOTCH1 was detected 

at low levels in AML samples and NOTCH2 was not expressed by K562 (Table 3.1 A). 

Expression levels of Notch ligand mRNA were similar in all the cell populations analyzed. 

JAGGED1 and JAGGED2 mRNA were expressed in all cell samples, while DLL3 was 

expressed in hBM-AML-MSCs, we did not find DLL1 and DLL4 mRNAs in any cell types 

analysed. Flow cytometry confirmed the data obtained at RNA level (Table 3.1 B), as 

Notch1, Notch2 and Notch3 molecules were expressed in all AML samples, with the 

highest expression of Notch1 in HL60 and U937 (median rMFI of 3.7 and 2.9 respectively) 

and Notch3 in THP1 cell line (median rMFI = 2.1). Interestingly, in primary AML blast cells 

(CD34+/CD38-) Notch receptor expression appeared slightly different from that observed 

in AML cell lines. Notch2 and Notch3 were more expressed (median rMFI 1.7 and 2.1 

respectively), while Notch1 were expressed at different intensity according to the FAB 

subtypes: M1, M3, M4 and M5 cells expressed higher levels of Notch1 (from 1.5 to 2 folds) 

than M0 and M2 (Fig 3.1A). 

Jagged-1 and Jagged2 and DLL3 resulted expressed at different levels both with RT-PCR 

and flow-cytometry: Jagged2 were expressed by all primary AML samples and cell lines, 

while Jagged1 was expressed by U937, MSCs both from healthy donors and AML 

samples and primary AML cells, particularly of M0 subtype, although not statistically 

significant (Fig 3.1 B). Notch1 and Notch2 expression was quite variable, but also Notch3 

resulted more expressed in THP1 and primary AML samples. Notch1 was highly 

expressed in AML samples (rMFI=3.6), but also in some AML cell lines (HL60 and U937 

with median rMFI= 2.7 and 3 respectively); Notch2 was particularly represented in AML 

samples (rMFI= 3) and HL60 (rMFI=5) and relatively expressed in other samples at 

different levels (Fig. 3.2 A). While Jagged 2 was expressed by all the samples analyzed, 

AML primary samples showed a high expression of Jagged1, which was not observed in 
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AML cell lines (Fig. 3.2 B). Some difference were observed also between hBM-MSCs and 

hBM-AML-MSCs. Notch1 receptor had a slightly higher expression in hBM-AML-MSCs 

than hBM-MSCs, while Notch2 and Notch3 were poorly expressed in AML-MSCs (Fig.3.3 

A) and, similarly, Jagged1 and Jagged2 in hBM-AML-MSCs as compared to hBM-MSCs; 

DLL3 was expressed significantly only in the hBM-AML-MSCs (Fig 3.3 B). 

Notch signaling is activated at basal level 

To evaluate if Notch expression in AML is correlated with activation of Notch signalling, we 

analyzed the Notch intracellular domain NICD, the expression of Notch target gene HES1 

and some genes involved in Notch signaling pathway, such as ADAM17, ADAMDEC1, 

BCL2 and NRARPn were analysed, by using validated cDNA obtained from the same cell 

cultures used for previous studies. In AML cell lines, immunoblotting analysis showed the 

presence of NICD1 protein, consistent with Notch activation state, but HES1 was 

expressed at low levels, thus suggesting that Notch activation was present only at basal 

levels (Fig.3.4A). Hence, we characterized the genes involved in Notch signaling pathway 

by RT- PCR. Similarly to protein data, we observed the expression of HES1, ADAMDEC1 

and BCL-2, and high levels of ADAM17. A very similar pattern of expression was found in 

AML samples. In addition, we did not observe the presence of NRARP RNA in all samples 

analyzed (Fig. 3.4 B). Human BM-MSCs from healthy donors and hBM-AML-MSCs 

showed lower expression of the genes involved in Notch activation, such as ADAM17 and 

ADAM DEC1 (Fig. 3.4C and D). The expression of BCL-2 depends on cellular 

differentiation and can be either pro- or anti-apoptotic (Oliver et al. 2011). 
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3.2 Expression of Notch receptors and ligands by AML and 

MSCs in co-culture conditions 

 

We investigate the expression of Notch pathway by MSCs in co-cultures with AML cells. 

Slight differences were evident in co-culture with the different AML cell lines. However, in 

co-cultures with HL60, K562, and U937, Notch3 was expressed significantly (from rMFI 

value of 1.6 of control to 2.6, 2.7 and 1.7 respectively) (Fig 3.5A) by MSCs. Among Notch 

ligands, only Jagged2 expression resulted significant increased in K562 (Fig 3.5 B). 

Among cell lines, the coculture determined a significant up-regulation of Notch1 and 

Notch2 only in HL60 (rMFI value of 6.37 vs 1.18). (Fig. 3.6 A), while Notch3 and Notch4 

and Notch ligand expression did not change (Fig 3.6 B). 

Interestingly, some differences were observed also in primary AML cells co-cultured with 

MSCs. Notch1 was expressed in all primary AML samples, with median rMFI values of 

1.57 vs 0.99 (P< 0.005), while Notch2 and Notch3 ranged from 1.7 to 1.2 and from 1.9 to 

1.4 median rMFI, respectively, even though the difference did not reach a statistical 

significance; Notch4 and all ligands remained unchanged (Fig. 3.7). 

Co-culture activates Notch signaling in AML cell lines 

To assess whether the co-culture-dependent increased expression of Notch 1 and 2 was 

directly proportional to the activation of Notch signaling, the quantitative expression of 

HES1 mRNA was evaluated in AML cell lines at narrow intervals, both in coculture and 

culture alone condition. After 30 minutes, both HL60 and THP1 in coculture conditions 

showed a significant increase of levels of HES1 mRNA, this increase was more evident in 

U937 both in coculture and culture alone conditions. Interestingly, K562 showed a 

significant decrease of HES1mRNA levels after co-culture with hBM-MSCs (Fig 3.8). 
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3.3 Effects of hBM-MSCs on AML cells viability and 

proliferation 

Growth and differentiation in vivo of most types of hematopoietic cells require direct 

contact with stromal cells. The importance of the hematopoietic microenvironment in the 

maintenance and differentiation of normal hematopoietic progenitors has been 

emphasized in long-term bone marrow cultures.  

Impact of hBM-MSCs on survival of AML cells 

Our observations show that co-culture significantly promotes AML cell survival. Indeed, 

AnxV/PI assays in AML cell lines cocultured for 72h with MSCs in starvation condition 

demonstrated that the presence of the hBM-MSCs promoted the survival up to 40% in 

HL60, 20% in THP1 and 30% in U937, while K562 survival was not affected (Fig 3.9 A). 

The co-cultures performed with primary AML cells showed that the survival of leukemic 

cells was closely related to the presence of the MSC layer (Fig. 3.9 B). In particular, after 

72 hours of co-culture with hBM-MSCs leukemic cell survival raised up to 20%. 

Impact of hBM-MSCs on AML cell proliferation 

AML cell lines showed a slight reduction in proliferation in presence of MSCs (Fig. 3.10), 

with lower percentage of cells in S and G2/M phases and higher percentage in G0/G1 

phases in 3 out of 4 cell lines, although this effect was not statistically significant only in 

THP1 cell line (Fig. 3.11).  
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3.4 Effects of Notch pathway inhibition on AML cells and hBM-

MSC functions 

To assess the role of Notch signaling in AML cell proliferation and survival, increasing 

doses of γ-secretase inhibitor (GSI) XII were used on cells cultured alone or with hBM-

MSCs (Fig 3.12).  

 

Notch signalling is involved in human MSC-mediated promotion of 

chemo-resistance of AML cells  

The effect of chemotherapeutic agents on AML survival was assessed by treating AML cell 

lines with increasing doses of Cytarabine, Etoposide, and Idarubicine chloridrate. As 

expected, the treatment resulted in a dose-dependent decrease of AML cells viability when 

cultured alone, but a consistent increase in the overall number of live cells when co-

cultured with MSCs. We then assessed whether the blockade of Notch signaling could 

affect the apoptosis and proliferation of AML cell lines in culture alone or co-culture 

conditions in presence of drugs for 48 hours. To this aim, the EC50 dose of the drugs was 

added with increasing doses of GSI-XII. We noticed that except for THP1 cell lines, 

increasing concentrations of GSI-XII abrogated AML cell line chemoresistance induced by 

MSCs (Figures 3.13). 
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Discussion 
 

The interactions between bone marrow stromal cells and myeloid hematopoietic 

precursors are essential for the regulation of survival, proliferation and differentiation of 

normal hematopoietic precursors and neoplastic cells (Konopleva M. et al. 2003; Fortney 

JE. et al. 2001). From a general point of view, the identification of signaling pathways 

involved in the stromal cell-dependent protection of neoplastic cells from apoptosis is 

crucial for the development of novel therapeutic targets. Many different signaling 

molecules are involved in the reciprocal interactions between bone marrow stroma and 

neoplastic cells. Among them, stromal Notch pathway activation represents a pivotal 

pathogenetic mechanism in T-cell acute lymphoblastic leukemia development 

(Chiaramonte R.et al. 2005; Kamdje N. et al. 2010) and may induce cell cycle arrest in a 

variety of neoplastic cells (Houde C. et al. 2004), including hematologic malignancies. For 

instance, culture of MSCs from multiple myeloma patients and normal donors may create 

a very efficient niche that supports the survival and proliferation of the myeloma cells 

(Corre J. et al.2007). Myeloma cells overexpress Jagged2 when in direct contact with 

stromal cells, and escape from apoptosis; Jagged-2 triggering induces the secretion of 

interleukin-6 (IL-6), VEGF, and insulin like growth factor-1 (IGF-1) in stromal cells (Houde 

C. et al. 2004).  

Recently, our group showed that the treatment with combinations of anti-Notch molecules 

neutralizing antibodies resulted in the decrease in B-acute lymphoblatic leukemia (B-ALL) 

cell survival, either cultured alone or co-cultured in presence of stromal cells from normal 

donors and B-ALL patients. Our data suggested that the stromal cell-dependent anti-

apoptotic effect on B-lineage ALL cells is mediated by Notch-3 and -4 or Jagged-1/-2 and 
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DLL-1 in a synergistic manner (Nwabo Kamdje et al. 2011). In addition, our group 

investigated the role of Notch signaling in the promotion of survival and chemoresistance 

of human chronic lymphocytic leukemia (CLL) cells in coculture with human BM-MSCs of 

both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from 

apoptosis both spontaneously and following induction with various drugs, including 

Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The 

treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or GSI-XII 

reverted this protective effect by day 3, even in presence of the above mentioned drugs, 

thus suggesting that Notch blocking could be an additional tool to overcome drug 

resistance and improve the therapeutic strategies for CLL (Nwabo Kamdje et al. 2012). 

We focused our research on the role of Notch pathway in the development, progression 

and relapse of human AML, because its role has not been elucidated so far. A recent 

paper showed that human AML samples express Notch receptors; however, Notch 

receptor activation and expression of downstream Notch targets are remarkably low, 

suggesting that Notch is present but not constitutively activated in human AML (Kannan et 

al. 2013). Induced activation through any of the Notch receptors (Notch1–4), or through 

the Notch target HES1, consistently leads to AML growth arrest and caspase-dependent 

apoptosis, which are associated with BCL2 loss and enhanced p53/p21 expression. 

Activated Notch1, Notch2, and HES1 all led to inhibited AML growth in vivo, and Notch 

inhibition via dnMAML enhanced proliferation in vivo, thus revealing the physiological 

inhibition of AML growth in vivo in response to Notch signaling (Kannan et al. 2013). 

Another recent paper showed that Notch signaling is silenced in human AML samples, as 

well as in AML-initiating cells in an animal model of the disease (Lobry et al 2013). In vivo 

activation of Notch signaling using genetic Notch gain of function models or in vitro using 

synthetic Notch ligand induced rapid cell cycle arrest, differentiation, and apoptosis of 
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AML-initiating cells; moreover, Notch inactivation cooperated in vivo with loss of the 

myeloid tumor suppressor Tet2 to induce AML-like disease (Lobry et al 2013).  

In our work, the expression of Notch receptors and ligands were analyzed both in human 

AML cell lines (HL-60, THP1, U937, K562) and primary AML samples from patients, by 

applying different methodological approaches, i.e. flow cytometry, western immunoblotting 

and RT-PCR, and coculturing neoplastic cells with human MSCs from both healthy donors 

and AML patients. Finally, we assessed whether Notch signalling could affect the stroma-

mediated support and chemoprotection towards AML cells.  

We confirmed that AML cells express Notch receptors and ligands, representing as such 

an autocrine/paracrine system in AML. Accordingly, we found the presence of the active 

form of Notch1 (NICD1) as well as Hes1 in AML cell lines. These observations mean that 

the Notch pathway is activated in AML cells. Moreover, cell death occurring in GSI-XII -

treated AML cells shows that Notch activation is necessary for AML survival.  

The effect of GSI-XII implies a potent pro-survival role of Notch in AML. Consequently, as 

MSCs express Notch receptors and ligands, we hypothesized that stromal 

microenvironment can activate Notch signalling in AML cell lines and thus promote 

leukemic cell survival. We found that MSCs induced increasing expression of Notch1 and 

Notch2 in AML cell lines and this effect was correlated with a dramatic increase of Hes1 

mRNA after 30 minutes. Previous studies showed that AML primary cells and cell lines are 

characterized by low activation of Notch (Kannan et al., 2013; Lobry et al.,2013). By 

contrast, according with our co-culture data, this phenomenon could not occur in the 

stromal microenvironment, as AML cells seem to be characterized by high levels of Notch 

receptors, associated with an important activation of this pathway, when in contact with 

stromal cells. Moreover, while Kannan et al. and Lobry et al. demonstrated that high levels 

of Hes1 were directly associated with AML cell death, in our study we did not observe cell 

death associated to the important level of Hes1 occurring in co-culture model. As GSI-XII 
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induced cell death in AML cultured alone, we inhibited Notch activation with GSI-XII in the 

co-culture model and then analyzed AML cell proliferation and survival. Our data show that 

GSI-XII was capable of abrogating AML chemoresistance induced by MSCs in a dose-

dependent manner. This observation could indicate that stromal microenvironment 

activates Notch signalling in AML cells and this activation could be critical for the response 

to chemotherapy. With the aim to validate this new role of Notch in AML physiopathology, 

our group is currently implementing genetic inhibition of Notch by using dnMAML to 

confirm the results obtained with pharmacological inhibition. In addition, as we found that 

coculture induced Notch1 and Notch2 expression increase in AML cells, these two 

receptors could be responsible of the Notch pathway activation. Consequently, as we did 

previously in lymphoid malignancies (Nwabo et al., 2011 and 2012), we are currently 

analyzing the effects of specific anti-Notch blocking antibodies on the  survival of AML 

cells in contact with MSCs in presence of chemotherapeutic agents. The validation of this 

hypothesis could pave the way for the development of therapeutic blocking antibodies 

targeting Notch signalling and possibly capable of interfering with stroma-induced AML 

chemoresistance. 
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Tables  

 

Table 1.1 The morphologic subtypes of AML also include rare types not included in the FAB system, such 
as acute basophilic leukemia, which was proposed as a ninth subtype, M8, in 1999 (Duchayne et al. 1999) 

Type Name 

Cytogenetic 
aberrations 
described in 

literature 

Percentage of 
adult AML 
patients 

M0 
acute myeloblastic leukemia, minimally 
differentiated 

 5% 

M1 
acute myeloblastic leukemia, without 
maturation 

 15% 

M2 
acute myeloblastic leukemia, with 
granulocytic maturation 

t(8;21)(q22;q22), 
t(6;9) 

25% 

M3 
promyelocytic, or acute promyelocytic 
leukemia (APL) 

t(15;17) 10% 

M4 acute myelomonocytic leukemia 
inv(16)(p13q22), 
del(16q) 

20% 

M4eo 
myelomonocytic together with bone 
marrow eosinophilia 

inv(16), t(16;16) 5% 

M5 
acute monoblastic leukemia (M5a) 
or acute monocytic leukemia (M5b) 

del (11q), t(9;11), 
t(11;19) 

10% 

M6 
acute erythroid leukemias, including 
erythroleukemia (M6a) and very rare pure 
erythroid leukemia (M6b) 

 5% 

M7 acute megakaryoblastic leukemia t(1;22) 5% 

http://en.wikipedia.org/wiki/Acute_basophilic_leukemia
http://en.wikipedia.org/w/index.php?title=Acute_myeloblastic_leukemia,_minimally_differentiated&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Acute_myeloblastic_leukemia,_minimally_differentiated&action=edit&redlink=1
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_without_maturation
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_without_maturation
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_with_granulocytic_maturation
http://en.wikipedia.org/wiki/Acute_myeloblastic_leukemia,_with_granulocytic_maturation
http://en.wikipedia.org/wiki/Acute_promyelocytic_leukemia
http://en.wikipedia.org/wiki/Acute_promyelocytic_leukemia
http://en.wikipedia.org/wiki/Acute_myelomonocytic_leukemia
http://en.wikipedia.org/wiki/Eosinophil
http://en.wikipedia.org/wiki/Acute_monoblastic_leukemia
http://en.wikipedia.org/wiki/Acute_monocytic_leukemia
http://en.wikipedia.org/wiki/Acute_erythroid_leukemia
http://en.wikipedia.org/wiki/Acute_megakaryoblastic_leukemia
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Table 2.1 Genetic profile of human AML cell lines 

Name FAB description Cytogenetic data 

HL60 M2 acute promyelocytic leukemia  der(5)t(15;17), but RARa 
rearrangement  

THP1 M5 acute monocytic leukemia cell line  T(9;11) MLL 

U937 M5 myeloid histiocytic sarcoma line  T(10;11), t(1;5) 

K562 CML 
Chronic Myeloid Leukemia (CML) 
myeloid blast crisis  

T(9;22) BCR-ABL1 
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Table 2.2 Positive controls used in PCR and WB for the different Notch primers and antibodies. Hek293, 
Embryonic Kidney was used to evaluate the expression of ADAM17, ADAMDEC, Notch receptors 1-4 genes, 
HES1, and Jagged1-2. SK-HEP1 was used for the Delta-like protein ligands and Jurkat to evaluate Hes1 and 
NICD protein in WB. 

PCR primer positive control WB positive control 

ADAM17 HEK293 Hes1 Jurkat, HEK 293 

ADAMDEC1 HEK293 Nicd Jurkat, HEK 293 

BCL-2 Jurkat Notch1 HEK293 

DLL1 SK-HEP-1  Notch2 HEK293 

DLL3 SK-HEP-1  Notch3 HEK293 

DLL4 SK-HEP-1  Notch4 HEK293 

HES1 HEK293   

JAGGED1 HEK293   

JAGGED2 HEK293, SK-HEP-1   

NOTCH1 HEK293   

NOTCH2 HEK293   

NOTCH3 HEK293   

NOTCH4 SKHEP1   

NRARP SKHEP1   

    

positive 

control 
Organism:   Tissue disease 

HEK293 

Homo sapiens, 

human  

 Embryonic 

Kidney    

Jurkat 

Homo sapiens, 

human  

 Peripheral 

Blood   Acute T Cell Leukemia  

SK-HEP-1 

 Homo sapiens, 

human  
 Liver/Ascites 

 Adenocarcinoma  
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Table 2.3: Immunophenotyping for Notch receptors and Ligands (extracellular domain) 

Antibody Conjugate Isotype Manufacter 

mouse anti-human 
Notch1 

PE Mouse IgG1k 
BioLegend San 
Diego, California - 
Biotechnology 

mouse anti-human 
Notch2 

PE Mouse IgG2a 
BioLegend - San 
Diego, California - 
Biotechnology 

mouse anti-human 
Notch3 

PE Mouse IgG1k 
BioLegend - San 
Diego, California - 
Biotechnology 

mouse anti-human 
Notch4 

PE Mouse IgG1k 
BioLegend - San 
Diego, California - 
Biotechnology 

anti-human/mouse/rat 
Jagged1 

FITC Mouse IgG2b R&D Systems 

mouse anti-human 
Jagged2 

PE Mouse IgG1k 
BioLegend - San 
Diego, California - 
Biotechnology 

mouse anti-human 
Delta-like protein 1 
(DLL1) 

PE Mouse IgG1k 
BioLegend - San 
Diego, California - 
Biotechnology 

polyclonal anti-human 
Delta-like protein 3 
(DLL3) 

PE Goat IgG1k R&D Systems 

mouse anti-human 
Delta-like protein 4 
(DLL4) 

PE Mouse IgG1k 
BioLegend - San 
Diego, California - 
Biotechnology 
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Table 2.4: Forward (FH) and reverse (RH) primers used in RT-PCR  

GENES PRIMER Sequence 

FH 5’-CAGATTCGCATTCTCAAGTC-3’ 
ADAM17 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
ADAMDEC1 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
BCL-2 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
DLL1 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
DLL3 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
DLL4 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
GAPDH 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
HES1 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
JAGGED1 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
JAGGED2 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
NOTCH1 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
NOTCH2 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
NOTCH3 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
NOTCH4 

RH 5’-CTAGCAACATCTTCACATCC-3’ 

FH 5’-CCGTCTTTACATCTAACCAG-3’ 
NRARP 

RH 5’-AAAAGGTAACGAACCTTCAC-3’ 
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Table 2.5 Antibodies used for Western blotting 

Protein Manufacter SPECIES Dilution MW 

Notch1 Abcam Mouse 1/1000 230-290 kDa 

Notch2 Santa Cruz Rabbit 1/1000 265 kDa 

Notch3 Abcam Rabbit 1/1000 244  kDa 
Notch4 Santa Cruz Goat 1/1000 177-218  kDa 

Hes1  Santa Cruz Rabbit 1/500 35 kDa 

Hes1  cell Signaling Rabbit 1/1000 30 kDa 

β-actina Sigma Mouse 1/1000 42 kDa 

cleaved Notch1  cell Signaling Rabbit 1/1000 110 kDa 

cleaved Notch2  Sigma Rabbit 1/500 100-130 kDa 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3.1 A) mRNA expression of Notch receptors and ligands. Presence (+) or absence (-) of PCR product 
in RT-PCR experiments. B) Protein expression of Notch receptors and ligands in AML cells and MSCs. 
Values above (+) or below (-) 1.5 rMFI. 
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Figures 
 

 

 

 

Fig, 1.1 Notch receptors and ligands. There are 4 Notch receptors (Notch1–Notch4) and 5 ligands 
[Jagged1/2, Delta-like (DLL)-1/3/4] in mammals. Notch receptors are expressed on the cell surface as 
heterodimers stabilized through calcium-dependent interactions. The extracellular domain contains 29–36 
epidermal growth factor (EGF)-like repeats (human Notch receptors), 3 Lin-12/Notch (LNR) repeats, and a 
heterodimerization domain. The intracellular domain contains an RBP-Jκ-associated molecule (RAM) 
domain, 7 ankyrin (ANK) repeats, 2 nuclear localization signals (NLS), a transactivation (TAD) domain, and a 
PEST domain. Notch ligands are also expressed on the cell surface. The extracellular domains contain a 
Delta/Serrate/Lag2 (DSL) domain unique to Notch ligands and also contain multiple EGF repeats. Jagged1/2 
also contains a cysteine-rich domain and a von Willebrand factor type C domain. The intracellular domains of 
Jagged1 and Dll1 have been shown to contain PDZ domains, which may interact with downstream signaling 
components to activate transcription. Kyle Niessen et al. Cell Physiology, Published 1 July 2007 Vol. 
293no. C1-C11DOI: 10.1152/ajpcell.00415.2006 
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Fig. 1.2 Notch signaling represents an evolutionarily highly conserved pathway in multicellular organisms 

that regulates cell‑fate decisions through juxtacrine signaling among adjacent cells during development, in 

stem cells and in cancer cells. In mammals, four different Notch receptors (Notch 1‑4), that are present in 

signal‑receiving cells and that activated by binding to corresponding ligands in signal‑sending cells, have 

been identified so far. They represent single‑pass trans‑membrane receptor proteins composed of functional 

extracellular (NECD), transmembrane (TM) and intracellular domains (NICD). In the signal‑receiving cell, 
endoplasmatic reticulum (ER) and Golgi processing of Notch receptors causes cleavage, thereby producing 

a glycosylated, Ca2+‑stabilized heterodimer composed of NECD no covalently attached to the TM‑NICD 
inserted in the membrane (S1 cleavage). This processed receptor protein then translocates to the plasma 

membrane for binding to a corresponding ligand. In mammals, members of the Delta‑like (DLL1, DLL3, 

DLL4) and the Jagged (JAG1, JAG2) families, which are in general present in the signal‑sending cell, 

function as ligands that can activate corresponding Notch receptors. Following ligand binding, the NECD is 

cleaved (S2 cleavage) from the TM‑NICD domain by the ADAM metalloprotease TACE (TNF‑a converting 

enzyme). The NECD remains bound to the ligand. This protein complex is then processed by endocytosis 

and recycling/degradation within signal‑sending cells. In the signal‑receiving cell, a third cleavage event 

mediated by g‑secretase releases the NICD from the TM (S3 cleavage), which then translocates to the 
nucleus and associates with the CSL family transcription factor complex, thereby causing activation of 
individual Notch target genes, including Myc, p21 and HES family members. In most cases, increased 
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expression of ligands with subsequent Notch activation causes cellular differentiation (and cell growth 
arrest), thereby regulating the cluster size of cell populations. (Reichrath et al. 2012)



 
 

 

 

Fig.1.3 Notch1 signaling influence generation of both myeloid and lymphoid cells (adapted by Stradoni from 
Stier et al. 2002)
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Fig.1.4 Differentiation potential of mesenchymal stromal cells. MSCs can differentiate in a number of human 
tissues including osteogenic, chondrogenic, and adipogenic lineages. Recently, the presence of human 
MSC-like cells was shown in adult skeletal muscle (adapted by Stradoni from Mergalli et al. 2011) 
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Fig.2.1. MSCs characterization according to ISCT phenotype. Immunophenotype of hBM-MSC by flow 
cytometry. Isotype-matched mAb controls (grey) 
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Fig 2.2 Sensitivity of AML cell lines to drug treatment. 
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Fig. 2.3 Schematic representation of a flow cytometer. The cell suspension pass through a needle using a 
system of pressurization. A laser intercept cells individually. The modifications that occur in this light beam 
due to cell characteristics are detected and measured by sensors (detectors) disposed adequately. 
Dispersed light is collected by an optical system which allows to identify cells by their size and complexity 
(FSC and SSC detectors). Fluorescence emitted by fluorochromes are also collected. To select these 
luminous signals emitted by fluorochromes, optical filters are used to block certain incident light wavelengths 
and let only the desired one pass. Each fluorescence emission is identified by different detectors (FL1, FL2, 
FL3, FL4), which convert luminous signals in electrical pulses and amplify this signal. (Baptista et al. 2011 
adapted by Stradoni) 
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Fig 2.4 Analysis of apoptotic cells. CD45+ population was gated and analyzed to define four cell subsets: 
1) (AnxV low)+(PI low)=viable cells, 2) (AnxV high)+(PI low)=early apoptotic cells, 3) (AnxV high)+(PI 
mid)=late apoptotic cells, 4) (AnxV high)+(PI high)=non-viable cells, dead. 
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Fig. 3.1 Comparison of the expression of Notch receptors and ligands in different AML cell lines and 
primary AML cells. FACS analysis for expression of Notch receptors (A) and Ligands (B) in a set of 3 AML 
samples according to FAB classification. Each value represents the median rMFI of three independent 
experiments. 
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Fig. 3.2 Comparison of the expression of Notch receptors and ligands in AML cell lines and primary 
AML cells. FACS analysis expression Notch receptors (A) and Ligands (B) were performed in a set of 4 
AML cells lines and 10 primary AML samples. Each data represents the median rMFI of five independents 
experiments. 
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Fig. 3.3 Comparison of  the expression of Notch receptors and ligands in hBM-MSCs from healthy 
donors and hBM-AML-MSCs. FACS analysis for expression Notch receptors (A) and Ligands (B) were 
performed in a set of 8 hBM-MSC and 4 hBM-AMLMSC samples. Each data represents the median rMFI of 
five independents experiments. Statistical analysis was performed with Wilcoxon matched pairs test (** 
p<0.01). 
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Fig. 3.4 Expression of Notch receptors targets. (A) Immunoblot and mRNA expression by means of 
Qualitative PCR of Notch receptor target genes of AML cell lines probed for Notch receptor targets and B-
actin. Positive controls HEK-293 (line 5) and Jurkat (line 6). (B) mRNA expression of Notch receptor target 
genes by Qualitative PCR in AML cells from patients. (C) Immunoblot and mRNA expression in hBM-MSCs 
for Notch Target genes of Notch receptors and B-actin. The analyses reported here were carried out in 
triplicate and with independent experiments. (D) hBM-AML-MSCs mRNA expression of Notch receptors 
target genes by qualitative PCR. The analyses reported here were carried out in triplicate and with 
independent experiments. 
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Fig.3.5 Expression of Notch receptors and ligands in hBM-MSCs cultured alone or in co-culture with 
AML cell lines. Expression of Notch receptors and ligands in hBM-MSCs cultured alone or in co-culture with 
AML cell lines. Human mesenchymal cells cultured alone and cocultured with AML cell lines (1/10 ratio) were 
examined after 72h of culture by flow cytometry. Histograms reporting the median rMFI value of 5 
independent experiments. * p<0.05, Wilcoxon matched pairs test. Notch receptors were not significant 
upregulated in all AML cell lines; but in co-cultures of hBM-MSCs with HL60 and K562 cell lines showed a 
slight increase in Notch3 expression. Five Notch ligands, Jagged1/2 and Dll1, 3 and 4, were examined. 
These ligands not showed increased except Jagged2 in co-cultures with k562.  
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Fig.3.6 Co-cultures between AML cell lines and hBM-MSCs showed increased expression of Notch 
receptors and ligands. AML cell lines cultured alone and cocultured with hBM-MSCs (10/1 ratio) were 
analysed by flow cytometry for Notch receptors (A) and ligands (B) after 72h of culture. Histograms reporting 
the median rMFI value of 5 independent experiments. **p<0.01, were considered statistically significant 
(ANOVA test). 
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Fig. 3.7 Co-cultures between primary AML cells and hBM-MSCs showed increased expression of 
Notch receptors and ligands. Primary AML cells cultured alone and co-cultured with hBM-MSCs (10/1 
ratio) were analysed by flow cytometry for Notch receptors (A) and ligands (B) after 72h of culture. 
Histograms reporting the median rMFI value of 5 independent experiments. *p<0.01, were considered 
statistically significant (ANOVA test). 
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Fig. 3.8 Quantitative real-time PCR. Total mRNA extracted from AML cell lines was amplified with HES1 
primers by sybr green relative quantification assay.  
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Fig. 3.9 hBM-MSCs affect AML cells viability when co-cultured in starvation condition. Flow cytometric 
examination of cell viability with Annexin V/PI assay. Diagrams show viability of (A) AML cell lines after 72 h 
of co-culture and (B) AML patient samples at different time points of co-culture. Histograms show median of 
living cells percentage from 5 independent experiments. ANOVA test was used to compare the different 
groups; *p<0.05, **p<0.01 were considered statistically significant.  

 

 
53 

 



 

 

 

Fig. 3.10 Proliferation is inhibited under conditions of co-culture with HBM-MSCs. AML cells were 
labeled with Carboxyfluorescein Succinimidyl Ester (CFSE) and cultured for 72h. Quantitation of AML cells 
proliferative capacity was performed by flow cytometry with added CD45 and TO-PRO-3 Iodide to 
discriminate dead cells. The data collected were normalized to isotype controls in each cell line (relative 
proliferation mean). Data were obtained from 5 independent experiments. ANOVA test was used to compare 
the different groups; *p<0.05 was considered statistically significant.  
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Fig. 3.11 The co-culture with stromal cells was corresponded with decrease of cellular division. AML 
cells were stained with propidium iodide and subjected to cell cycle analysis by flow cytometry. Data were 
obtained from 5 independent experiments. ANOVA test was used to compare the different groups; *p<0.05 
was considered statistically significant. 
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Fig. 3.12: Contribution of Notch to MSC-mediated proliferation of AML cell lines. AnxV/PI (A) and 
CFSE (B) assays were performed by flow cytometry. Statistical analysis was carried out by using one-way 
ANOVA, Holm-Sidak test (*p<0.05). 
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Fig. 3.13: Combined use of chemotherapeutic drugs and Notch inhibitor on AML cell lines. Statistical 
analysis of AnxV/PI assay was carried out by using one-way ANOVA, Holm-Sidak test (**p<0.01). 
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