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A mia madre,
al suo sostegno nel tempo, e al suo esempio.



God thinks geometrically.
Plato, 428 BC – 348 BC



Foreword

We live in exciting times for Computer Vision. The progress in the 3D recon-
struction research has been rapid and hectic, fueled by the recent breakthroughs
in keypoint matching, the advances in computational power of desktop and mobile
devices, the advent of digital photography and the subsequent availability of large
dataset of public images, the interest of industry and general public.

Just five years ago Structure and Motion research was mainly using controlled
dataset recovered in carefully managed, closed lab environments. Today, the goal
of finally bridging the gap between physical reality and the digital world seems
within reach given the magnitude, breadth and scope of current reconstruction
pipelines.

We document here our contributions to the current state of the art: this thesis
is divided in two parts exploring related, orthogonal goals.

Part 1 will discuss how to solve the Structure and Motion problem in a truly
scalable and robust manner. We will describe our main result, a novel hyerarchical
framework for 3D reconstruction, and propose a new self-calibration approach
capable of dealing with crowd-sourced datasets.

Part 2 will deal in how to properly convey, visualize the obtained 3D recon-
structions from the previous part. This will touch stereo matching, to densify the
obtained point clouds, model fitting, to achieve a more abstract, semantic un-
derstanding of the scene, and different visualization modalities tailored to urban
environments.
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1

Introduction

Three dimensional reconstruction is the process of recovering the properties of the
environment and optionally of the sensing instrument from a series of measures.

This generic definition is wide enough to accomodate very diverse methodolo-
gies, such as time-of-flight laser scanning, photometric stereo or satellite triangu-
lation.

The “Structure and Motion” field of research is concerned with the recovery of
the three dimensional geometry of the scene (the structure) when observed through
a moving camera (the motion). Sensor data is either a video or an unstructured
set of pictures; additional informations, such as the calibration parameters, can be
used if available.

This thesis will describe our contributions to the problem of uncalibrated Struc-
ture and Motion from pictures which, in layman terms, is the problem of recovering
a three dimensional model of a scene given a set of images. The sought result is
generally a 3D point cloud consisting of the interest points which were identified
and tracked in the scene and a set of camera matrices, identifying position and
direction of each picture with respect to an arbitrary reference frame.

We will approach the problem from a holistic point of view: we will propose
improvements to the tecnique itself but will also describe means to produce ef-
ficient and compelling rendering of the obtained models. These two arguments
correspond to the two main parts into which this thesis is divided.

The first part, covering our contribution to the Structure and Motion prob-
lem, will describe our main breakthrough, a hierarchical Structure and Motion
pipeline. Current state of the art follows typically a sequential pattern, incremen-
tally growing a seed reconstruction adding one or several views at a time. We
instead propose to describe the entire reconstruction process as a binary tree, con-
structed by agglomerative clustering over the set of views. Each leaf correspond
to a single image, while internal nodes represent partial reconstructions obtained
merging the left and right sub-nodes. Reconstruction proceed from bottom to top,
starting from several seed couple and eventually reaching the root node, corre-
sponding to the final, complete result. We will demonstrate that this paradigm
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has several advantages over the sequential one, both in terms of computational
performance (which improves by one order of magnitude on average) and overall
error containement. Such a system provides true scalability, since it is inherently
parallelizable.

We will also describe our approach to self-calibration, which is the process of
automatic estimation from images of the internal parameters of the cameras that
captured them. Current Structure and Motion research has partly sidestepped the
issue using ancillary data such as EXIF tags embedded in recent image formats.
Their presence or consistency however is not guaranteed, and poses a problem
especially when the number of images is not big enough to provide sufficient in-
formation to jumpstart the reconstruction process. Our proposal is a novel self-
calibration algorithm comparable to the current state of the art, at a fraction of
the complexity. Its robustness will be tested against the same datasets used for
Structure and Motion tasks; we will therefore demonstrate the first uncalibrated
Structure and Motion pipeline capable of using crowd-sourced picture datasets.

The second part of this thesis will be spent describing how to use the recovered
data. This will touch both rendering algorithm, in order to provide visualization
closer to the captured environment, and model fitting and selection, which was
introduced to achieve a more compact and semantically meaningful representation
of the scene. We will explore tecniques for the automatic extraction of dominant
planes and quadrics, and we will use them to cluster reconstructed points into the
original surfaces of the scene, described either as a triangulated mesh or a textured
surface plus displacement.



Part I

Structure and Motion
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Hierarchical Structure-and-Motion

In this chapter, we will describe our approach to 3D reconstruction describing the
three major revisions that our Structure and Motion pipeline has undergone. Our
final result will be a reconstruction pipeline departing from the sequential paradigm
prevalent in current literature and embracing instead a hierarchical approach. Our
method has several advantages, like a provably lower computational complexity
which is necessary to achieve true scalability and better error containement leading
to more stability and less drift.

2.1 Introduction

In recent years there has been a surge of interest in automatic architectural/urban
modeling from images.

Literature covers several approaches for solving this problem. These can be
categorized in two main branches: A first one is composed of methods specifi-
cally tailored for urban environments and engineered to run in real-time [19, 76].
These systems usually rely on a host of additional information, such as GPS/INS
navigation systems and camera calibration.

The second category – where our contributions are situated – comprises Struc-
ture and Motion (SaM) pipelines that process images in batch and handle the
reconstruction process making no assumptions on the imaged scene and on the
acquisition rig [8, 49,51,90,100].

The main challenges to be solved are computational efficiency (in order to be
able to deal with more and more images) and generality.

As for the first issue, several different solutions has been explored: the most
successful have been those aimed at reducing the impact of the bundle adjustment
phase, which – with feature extraction – dominates the computational complexity.

A class of solutions that have been proposed are the so-called partitioning
methods [32]. They reduce the reconstruction problem into smaller and better
conditioned subproblems which can be effectively optimized. Two main strategies
can be distinguished.

The first one is to tackle directly the bundle adjustment algorithm, exploiting
its properties and regularities. The idea is to split the optimization problem into
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smaller, more tractable components. The subproblems can be selected analytically
as in [91], where spectral partitioning has been applied to SaM, or they can emerge
from the underlying 3D structure of the problem, as described in [69]. The compu-
tational gain of such methods is obtained by limiting the combinatorial explosion
of the algorithm complexity as the number of images and feature points increases.

The second strategy is to select a subset of the input images and feature points
that subsumes the entire solution. Hierarchical sub-sampling was pioneered by [32],
using a balanced tree of trifocal tensors over a video sequence. The approach was
subsequently refined by [70], adding heuristics for redundant frames suppression
and tensor triplet selection. In [87] the sequence is divided into segments, which are
resolved locally. They are subsequently merged hierarchically, eventually using a
representative subset of the segment frames. A similar approach is followed in [35],
focusing on obtaining a well behaved segment subdivision and on the robustness of
the following merging step. The advantage of these methods over their sequential
counterparts lays in the fact that they improve error distribution on the entire
dataset and bridge over degenerate configurations. Anyhow, they work for video
sequences, so they cannot be applied to unordered, sparse images.

A recent work [89] that works with sparse dataset describes a way to select
a subset of images whose reconstruction provably approximates the one obtained
using the entire set. This considerably lowers the computational requirements by
controllably removing redundancy from the dataset. Even in this case, however,
the images selected are processed incrementally. Moreover, this method does not
avoid computing the epipolar geometry between all pairs of images.

There is actually a third solution covered in literature, orthogonal to the afore-
mentioned approaches. In [1], the computational complexity of the reconstruction
is tackled by throwing additional computational power to the problem. Within
such framework, the former algorithmical challenges are substituted by load bal-
ancing and subdivision of reconstruction tasks. Such direction of research strongly
suggest that the current monolithical pipelines should be modified to accommodate
ways to parallelize and optimally split the workflow of reconstruction tasks.

The generality issue refers to the assumption that are made on the input im-
ages, or, equivalently on the amount of ancillary information that is required in
addition to pixels values. Existing pipelines either assumes known internal pa-
rameters [8, 49], or constant internal parameters [51, 100], or relies on EXIF data
plus external informations (camera CCD dimensions) [90]. To the best of our
knowledge, despite autocalibration with varying parameters have been introduced
several years ago [75], no working SaM pipeline have been demonstrated yet with
varying parameters and no ancillary information.

We propose a new hierarchical and parallelizable scheme for SaM. The im-
ages are organized into a hierarchical cluster tree, as in Figure 2.1, and the re-
construction proceeds hierarchically along this tree from the leaves to the root.
Partial reconstructions correspond to internal nodes, whereas images are stored
in the leaves. This scheme provably cuts the computational complexity by one
order of magnitude (provided that the dendrogram is well balanced), and it is
less sensible to typical problems of sequential approaches, namely sensitivity to
initialization [93] and drift [19]. It is also scalable and efficient, since it partitions
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the problem into smaller instances and combines them hierarchically, making it
inherently parallelizable.

Fig. 2.1. An example of dendrogram for a 12-views set.

This approach has some analogy with [80], where a spanning tree is built to
establish in which order the images must be processed. After that, however, the
images are processed in a standard incremental way.

In the rest of this chapter, we will first describe the first, sequential incarna-
tion of our reconstruction pipeline and will subsequently derive its hierarchical
evolution. As a final step, we will introduce a clustering strategy derived from the
simple linkage that makes the dendrogram more balanced, thereby reducing the
actual complexity of the method and endow the SaM pipeline with the capability
of dealing with uncalibrated images with varying internal parameters and no an-
cillary information (the actual, complete self-calibration algorithm will be detailed
in the chapter 3).

2.2 Sequential Structure and Motion

The initial incarnation of our reconstruction pipeline can be considered nowadays
a standard Structure and Motion methodology. We will describe it in detail be-
cause its design and components have influenced the subsequent evolution of our
approach. Its obsessions for consistency and its radically conservative approach to
3D reconstruction were the solid base over which we built the following hyerarchi-
cal pipeline.

In this first algorithm we process a collection of uncalibrated images and out-
put camera parameters, pose estimates and a sparse 3D points cloud of the scene.
We do not use external calibration parameters nor EXIF tags embedded into pic-
tures but instead assume the images to have been captured with constant intrinsic
parameters. This requirement will be eliminated in the next sections and chapter.

The sequential pipeline follows an incremental greedy approach, similar to [90]
and [74]. The most efforts have been made in the direction of a robust and auto-
matic approach, avoiding unnecessary parameters tuning and user intervention. A
sample output is shown in Fig. 2.2.
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Fig. 2.2. Reconstruction of the ”Pozzoveggiani” dataset.

Since the hierarchical pipeline description will be self-consistent, the remainder
of this section can be skipped if familiar with standard, sequential Structure and
Motion pipelines.

2.2.1 Multimatching

Initially, keypoints are extracted and matched over different images. This is ac-
complished using SIFT [58] for detection and description of local point features.
Matching follows a nearest neighbor approach [58], with rejection of those key-
points for which the ratio of the nearest neighbor distance to the second nearest
neighbor distance is greater than 2.0.

Homographies and fundamental matrices between pairs of images are then
computed using RANSAC [31]. At this point we have a set of matches that are
considered inliers for a certain model. However, in order to increase the robustness
of the method further, we apply an outlier rejection rule, called X84 [40]. Let ei
be the residuals, a robust noise scale estimator is the Median Absolute Deviation
(MAD):

σ∗ = 1.4826 medi |ei −medj ej |. (2.1)

The robustified inliers [109] are those points such that ei < 3.5σ∗. The model
parameters are eventually re-estimated via least-squares minimization of the (first-
order approximation of) geometric error [42].

The best-fit model (homography or fundamental matrix) is selected according
to the Geometric Robust Information Criterion (GRIC) [96]:
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GRIC =
∑

ρ(e2i ) + nd log(r) + k log(rn) (2.2)

ρ(e) = min

(
e2

σ2
, 2(r − d)

)
(2.3)

where σ is the standard deviation of the measurement error, k is number of param-
eters of the model, d is dimension of the fitted manifold, and r is the dimension of
the measurements. In our case, k = 7, d = 3, r = 4 for fundamental matrices and
k = 8, d = 2, r = 4 for homographies. The model with the lower GRIC is the more
likely.

The final matches are the inliers from the best-fit model. If the number of sur-
viving matches between two images is less than a threshold (25 in our experiments)
then they are discarded, and the corresponding homography or fundamental ma-
trix as well.

After that, keypoints matching in multiple images (at least three) are connected
into tracks, rejecting as inconsistent those tracks in which more than one keypoint
converges [90].

2.2.2 Autocalibration

The intrinsic parameters K of the camera are constant but unknown. A globally
convergent autocalibration algorithm [33], based on Kruppa equations and the
Huang-Faugeras constraint, is employed to recover them automatically from the
set of fundamental matrices calculated during the matching phase. In short, the
algorithm uses Interval Analysis to minimize the following cost function:

χ(K) =
∑
i,j

wij
2 tr(EijEij

T)2− tr2(EijEij
T)

tr2(EijEij
T)

(2.4)

where Fij is the fundamental matrix between views i and j, and Eij = KTFijK.

2.2.3 Initialization

Once the intrinsic parameters are known, the position of each view as well as
the 3D location of the tracks is recovered using an incremental approach that
entails to start from a seed reconstruction, made up of two calibrated views and
the relative 3D points in a Euclidean frame. The extrinsic parameters of two given
views is obtained by factorizing the essential matrix, as in [43]. Then 3D points are
reconstructed by intersection (via the midpoint algorithm [3]) and pruned using
X84 on the reprojection error. Bundle adjustment (BA) [57] is run eventually to
improve the reconstruction.

The choice of the two views for initialization turns out to be critical [93]. It
should be a compromise between distance of the views and the number of key-
points in common. We require that the matching points must be well spread in
the two images, and that the fundamental matrix must explain the data far bet-
ter than other models (namely, homography), according to the GRIC, as in [74].
This should ensure that the baseline between the two images is large, and that
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the fundamental matrix correctly captures the structure of the scene, so that tri-
angulation is well-conditioned and the estimation of the starting 3D structure is
reliable. The heuristic adopted in practice is then:

Si,j =
CHi

Ai
+
CHj

Aj
+

gric(Fi,j)

gric(Hi,j)
, (2.5)

where CHi (CHj) is the area of the convex hull of the keypoint in image Ii (Ij), Ai

(Aj) is the total area of image Ii (Ij) and gric(Fi,j), gric(Hi,j) are the GRIC scores
obtained by the fundamental matrix and the homography matrix respectively. The
two views with highest Si,j and with at least 100 matches in common are chosen.

This heuristic will be the base for the following hierarchical evolution of the
pipeline, since it will used to guide a agglomerative clustering algorithm on the set
of pictures.

Structure and motion pipeline

1. Multimatching:
a) Extract keypoints in each image;
b) Match keypoints between each pair of images;
c) Find the best-fit model using RANSAC and GRIC;
d) Reject outliers using X84 rule on distance to the best-fit model;
e) Link keypoints into tracks.

2. Autocalibration, using the fundamental matrices;
3. Initialization:

a) Select two views according to (2.5);
b) Compute their extrinsic parameters via factorization of essential matrix.

4. Incremental Step Loop:
a) Compute 3D points with intersection and run X84 on the reprojection

error;
b) Add new 3D points to the reconstruction;
c) Run BA on the current reconstruction;
d) Select the next view;
e) Initialise camera pose with RANSAC and linear exterior orientation;
f) Add the camera to the reconstruction;
g) Run BA on the current reconstruction;
h) Select new tracks;

2.2.4 Incremental Step Loop

After initialization, a new view at a time is added until there are no remaining
views. The next view to be considered is the one that contains the largest number
of tracks whose 3D position has already been estimated. This gives the maximum
number of 3D-2D correspondences, that are exploited to solve an exterior orienta-
tion problem via a linear algorithm [30]. The algorithm is used inside a RANSAC
iteration, in order to cope with outliers. The extrinsic parameters are then refined
with BA.
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Afterwards, the 3D structure is updated by adding new tracks, if possible.
Candidates are those tracks that have been seen in at least one of the cameras in
the current reconstruction. 3D points are reconstructed by intersection (midpoint
algorithm), and successively pruned using X84 on the reprojection error. As a fur-
ther caution, 3D points for which the intersection is ill-conditioned are discarded,
using a threshold on the condition number of the linear system.

Finally, we run BA again, including the new 3D points. If BA, at any stage,
does not converge, then the view is rejected.

2.3 Hierarchical Structure and Motion

We will proceed describing a first hierarchical adaption, which we will then finally
further optimize to obtain better average complexity and to support our novel
self-calibration approach described in chapter 3.

The images are organized into a tree with agglomerative clustering, using a
measure of overlap as the distance. The reconstruction then follows this tree from
the leaves to the root. As a result, the problems is broken into smaller instances,
which are then separately solved and combined. Compared to the standard se-
quential approach, this framework has a lower computational complexity, is in-
dependent from the initial pair of views, and copes better with drift problems,
typical of sequential schemes. The global complexity is trimmed further by lim-
iting the number of views employed per node, with the introduction of a local
bundle adjustment strategy.

The initial part of the pipeline, regarding keypoint and view matching, while
substantially similar to the corresponding parts of the sequential approach de-
scribed in the previous section, have been updated when developing this new in-
carnation of the Structure and Motion pipeline. They will be described in their
entirety to make this section self-consistent.

2.3.1 Keypoint Matching

In this section we describe the stage of our SaM pipeline that is devoted to the
automatic extraction and matching of keypoints among all the n available images.
Its output is to be fed into the geometric stage, that will perform the actual
structure and motion recovery.

Although the building blocks of this stage are fairly standard techniques,
we carefully assembled a procedure that is fully automatic, robust (matches are
pruned to discard as much outliers as possible) and computationally efficient.

First of all, the objective is to identify in a computationally efficient way images
that potentially share a good number of keypoints, instead of trying to match
keypoints between every image pair (they areO(n2)). We follow the approach of [7].
SIFT [58] keypoints are extracted in all n images. In this culling phase we consider
only a constant number of descriptors in each image (we used 300, where a typical
image contains thousands of SIFT keypoints). Then, each keypoint description is
matched to its ` nearest neighbors in feature space (we use ` = 6). This can be
done in O(n log n) time by using a k-d tree to find approximate nearest neighbors
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(we used the ANN library [65]). A 2D histogram is then built that registers in each
bin the number of matches between the corresponding views. Every image will be
matched only to the m images that have the greatest number of keypoints matches
with it (we use m = 8). Hence, the number of images to match is O(n), being m
constant. For example, on the Pozzoveggiani dataset composed by 54 images, the
matching time is reduced from 13:40 hrs to 50 min. A further reduction in the
computing time could be achieved by leveraging the processing power of modern
GPUs.

Matching follows a nearest neighbor approach [58], with rejection of those key-
points for which the ratio of the nearest neighbor distance to the second nearest
neighbor distance is greater than a threshold (set to 1.5 in our experiments).

Homographies and fundamental matrices between pairs of matching images are
then computed using MSAC [97]. Let ei be the residuals after MSAC, following
[109], the final set of inliers are those points such that

|ei −medj ej | < 3.5σ∗, (2.6)

where σ∗ is a robust estimator of the scale of the noise:

σ∗ = 1.4826 medi |ei −medj ej |. (2.7)

This outlier rejection rule is called X84 in [40].
The model parameters are eventually re-estimated on this set of inliers via

least-squares minimization of the (first-order approximation of the) geometric error
[13,59].

The more likely model (homography or fundamental matrix) is selected ac-
cording to the Geometric Robust Information Criterion (GRIC) [96].

GRIC =
∑

ρ(e2i ) + nd log(r) + k log(rn) (2.8)

ρ(e) = min
(
e/σ2, 2(r − d)

)
where σ is the standard deviation of the measurement error, k is number of

parameters of the model, d is dimension of the fitted manifold, and r is the di-
mension of the measurements. In our case, k = 7, d = 3, r = 4 for fundamental
matrices and k = 8, d = 2, r = 4 for homographies. The model with the lower
GRIC is the more likely.

Finally, if the number of remaining matches between two images is less than a
threshold (computed basing on a statistical test as in [7]) then they are discarded.

After that, keypoints matching in multiple images are connected into tracks,
rejecting as inconsistent those tracks in which more than one keypoint converges
[90] and those shorter than three frames.

2.3.2 Views Clustering

The second stage of our pipeline consists in organizing the available views into a
hierarchical cluster structure that will guide the reconstruction process.
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Algorithms for image views clustering have been proposed in literature in the
context reconstruction [80], panoramas [7], image mining [78] and scene summa-
rization [88]. The distance being used and the clustering algorithm are application-
specific.

We deploy an image affinity measure that befits the structure-and-motion re-
construction task. It is computed by taking into account the number of common
keypoints and how well they are spread over the images.In formulae, let Si and Sj

be the set of matching keypoints in image Ii and Ij respectively:

ai,j =
1

2

|Si ∩ Sj |
|Si ∪ Sj |

+
1

2

CH(Si) + CH(Sj)

Ai +Aj
(2.9)

where CH(·) is the area of the convex hull of a set of points and Ai (Aj) is the
total area of image Ii (Ij). The first term is an affinity index between sets, also
known as Jaccard index. The distance is (1− ai,j), as ai,j ranges in [0, 1].

Views are grouped together by agglomerative clustering, which produces a
hierarchical, binary cluster tree, called dendrogram. The general agglomerative
clustering algorithm proceeds in a bottom-up manner: starting from all singletons,
each sweep of the algorithm merges the two clusters with the smallest distance.
The way the distance between clusters is computed produces different flavors of the
algorithm, namely the simple linkage, complete linkage and average linkage [23].
We selected the simple linkage rule: the distance between two clusters is determined
by the distance of the two closest objects (nearest neighbors) in the different
clusters.

Simple linkage clustering is appropriate to our case because: i) the clustering
problem per se is fairly simple, ii) nearest neighbors information is readily available
with ANN and iii) it produces “elongated” or “stringy” clusters which fits very
well with the typical spatial arrangement of images sweeping a certain area or a
building.

As will be clarified in the next section, the clusters composed by two views are
the ones from which the reconstruction is started. These two views must satisfy
two conflicting requirements: have both a large number of keypoints in common
and a baseline sufficiently large so as to allow a well-conditioned reconstruction.
The first requirement is automatically verified as these clusters are composed by
the closest views according to the affinity defined in (2.9). The second requisite is
tantamount to say that the fundamental matrix must explain the data far better
than other models (namely, the homography), and this can be implemented by
considering the GRIC, as in [77].

We therefore modify the linkage strategy so that two views i and view j are
allowed to merge in a cluster only if:

gric(Fi,j) < α gric(Hi,j) with α ≥ 1, (2.10)

where gric(Fi,j) and gric(Hi,j) are the GRIC scores obtained by the fundamental
matrix and the homography matrix respectively (we used α = 1.2). If the test fail,
consider the second closest elements and repeat.
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2.3.3 Hierarchical Reconstruction

The dendrogram produced by the clustering stage imposes a hierarchical organi-
zation of the views that will be followed by our SaM pipeline. At every node in the
dendrogram an action must be taken, that augment the reconstruction (cameras
+ 3D points). There operations are possible: When a cluster is created a two-views
reconstruction must be performed. When a view is added to a cluster a resection-
intersection step must be taken (as in the standard sequential pipeline). When two
clusters are joined together an absolute orientation problem must be solved. Each
of these steps is detailed in the following.

Two-views reconstruction.

We assume that at least the cameras from which the two-views reconstruction
is performed are calibrated. This can be obtained by off-line calibration or by
autocalibration [33].

The extrinsic parameters of two given views are obtained by factorizing the
essential matrix, as in [43]. Then 3D points are reconstructed by intersection (or
triangulation) and pruned using X84 on the reprojection error. Bundle adjustment
is run eventually to improve the reconstruction.

One-view addition.

The reconstructed 3D points that are visible in the view to be added provides a
set of 3D-2D correspondences, that are exploited to solve an exterior orientation
problem via a linear algorithm [30], or resection with DLT [42] in case that the
view is not calibrated. MSAC is used in order to cope with outliers.

The 3D structure is then updated with tracks that are visible in the last view.
Three-dimensional points are obtained by intersection, and successively pruned by
carrying out X84 on the reprojection error. As a further caution, 3D points for
which the intersection is ill-conditioned are discarded, using a threshold on the
condition number of the linear system (104, in our experiments). Finally, bundle
adjustment is run on the current reconstruction.

Clusters merging.

The two reconstructions that are to be merged live in two different reference sys-
tems, therefore one has to be registered onto the other with a similarity transfor-
mation (or collineation, in case that at least one reconstruction is not calibrated).
They have, by construction, some 3D points in common, that are used to solve an
absolute orientation problem with MSAC. Once the cameras are registered, the
common 3D points are re-computed by intersection, with the same cautions as
before, namely X84 on the reprojection error and test of the conditioning number.
Intersection is also performed on any track that becomes visible after the merging.
The new reconstruction is finally refined with bundle adjustment.

At the end, the number of reconstructed points in the final reconstruction is
increases by triangulating the the tracks of length two, with outlier rejection (X84)
based on the reprojection error.
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2.3.4 Complexity analysis

The hierarchical approach that have been outlined above allows to decrease the
computational complexity with respect to the sequential SaM pipeline. Indeed, if
the number of views is n and every view adds a constant number of points ` to the
reconstruction, the computational complexity1 in time of sequential SaM is O(n5),
whereas the complexity of our hierarchical SaM (in the best case) is O(n4).

The cost of bundle adjustment with m points and n views is O(mn(m+ 2n)2)
[87], hence it is O(n4) if m = `n.

In the sequential SaM, adding view i requires a constant number of bundle
adjustments (typically one or two) with i views, hence the complexity is

n∑
i=1

O(i4) = O(n5). (2.11)

In the case of the hierarchical approach, consider a node of the dendrogram where
two clusters are merged into a cluster of size n. The cost T (n) of adjusting that
cluster is given by O(n4) plus the cost of doing the same onto the left and right
subtrees. In the hypothesis that the dendrogram is well balanced, i.e., the two clus-
ters have the same size, this cost is given by 2T (n/2). Hence the asymptotic time
complexity T in the best case is given by the solution of the following recurrence:

T (n) = 2T (n/2) +O(n4) (2.12)

that is T (n) = O(n4) by the third branch of the Master’s theorem [16].
The worst case is when a single cluster is grown by adding one view at a

time. In this case, which corresponds to the sequential case, the dendrogram is
extremely unbalanced and the complexity drops to O(n5). On the average we found
empirically that dendrograms are fairly balanced, so we claim that in practice the
best-case complexity is attained.

2.3.5 Local bundle adjustment

In the pursue of a further complexity reduction, we adopted a strategy that consist
in selecting a constant number k of views from each cluster C to be used in the
bundle adjustment in place of the whole cluster. These active views, however, are
not fixed once for all, but they are defined opportunistically with reference to
the object that is is being added, either a single view or another cluster C ′. This
strategy is an instance of local bundle adjustment [66,107], which is often used for
video sequences, where the active views are the most recent ones.

Let us concentrate on the cluster merging step, as the one view addition is a
special case of the latter. Consider the set of point that belongs to both clusters
C and C ′: we first single out the views in C and C ′ where these points are visible.
Among these views, we select the k closest pairs, according to the distance matrix
already computed in Sec. 2.3.2, to be the active views.

1 We are considering here only the cost of bundle adjustment, which clearly dominates
the other operations.
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C

C'

active views 

anchor views

Fig. 2.3. Local bundle adjustment. The active views are the k closest pairs between
the two clusters with 3D points in common. They will be moved by bundle adjustment.
The anchor views are the k closest views to the active ones inside each cluster. They
contribute to the reprojection error, but are not affected by bundle adjustment.

The bundle adjustment involves the active views and the points that are re-
constructable from them as variables, plus some other anchor views that are only
used to compute the reprojection error. The anchor views are the k closest views to
the active ones inside each cluster; they are not moved by bundle adjustment but
contributes to anchor the 3D points involved to the remaining structure, acting as
a damper that gives more rigidity to the piece of structure which is being bundle
adjusted. Fig.2.3 illustrates this idea.

The points involved in BA are the ones that are reconstructable from P(C)∪A,
let us call them P . Let P ′ be the same set after BA. In order to approximately
propagate the trasformation undergone by P , we compute the least squares affinity
that bring P onto P ′ and apply it to the remaining points. The remaining views of
C (and possibly C ′) are adjusted by resection with minimization of the reprojection
error.

At the end, a bundle adjustment with all the views and all the points can be
customarily run to obtain the optimal solution. If this is not feasible because of
the dimension of the dataset, this strategy is able to produce a sub-optimal result
anyway.

2.3.6 Complexity analysis

Every bundle adjustment but the last is now run on a constant number of views,
hence its cost is O(1). The number of bundle adjustments is O(n), therefore the
total cost is dominated by the final bundle adjustment, which is O(n4). Although
the asymptotic complexity is the same as before, the local bundle adjustment
clearly reduces the total number of operations.

The same complexity O(n4) is achieved by the sequential approach coupled
with the local bundle adjustment. However, the hierarchical approach is easily
parallelizable, and it is more robust and effective, as the experiments in the next
section will show.
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2.3.7 Evaluation of the hyerarchial framework

Fig. 2.4. Two perspective views of the reconstruction of “Piazza Erbe” (Verona, Italy).

Fig. 2.5. Two perspective views of the reconstruction of “Piazza Bra” with the Arena
(Verona, Italy).

We tested our algorithm (henceforth called samantha) on several datasets
of pictures taken by the authors with a consumer camera with known internal
parameters. Figure 2.4 and 2.5 illustrates the reconstruction from the “Piazza
Erbe” and “Piazza Bra” datasets, respectively.

We compared our results with those produced by bundler [10], a sequential
SaM pipeline implemented in C++ and still considered part of the state of the
art. Inside our pipeline we used the C++ implementation of bundle adjustment
(BA) described in [57]. Only time spent doing BA is reported, in order to factor
out the differences due to our software being partially written in Matlab and to
be consistent with our complexity analysis. Moreover, bundler is extremely slow
in the matching phase, as it matches every view to every other. All experiments
were run on the same hardware (Intel Core2 Duo E4600@2.4Ghz, 2Gb ram).

Table 2.1 reports the result of the comparison. The results show that saman-
tha takes significantly less time than bundler, without any major differences in
terms of number of reconstructed views and points.
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bundler samantha

Dataset # images # views # points time BA #views #points time BA speedup

Dante 39 39 18360 7:50 m 39 10500 3:13 m 2.4

Tribuna 47 35 7722 22:58 m 39 10427 2:55 m 7.8

Pozzoveggiani 52 50 22133 21:33 m 48 11094 4:24 m 4.8

Madonna 73 73 25390 37:16 m 69 15518 10:04 m 3.7

Piazza Erbe 259 228 67436 5:18 h 198 39961 1:05 h 4.9

Piazza Bra 380 273 38145 11:36 h 322 104047 3:22 h 3.4

Table 2.1. Comparison between samantha and bundler. Each row lists, for the two
approaches: name of the dataset; number of images; number of reconstructed views;
number of reconstructed points; BA running time. The last column reports the speedup
achieved by our algorithm.

As an example, Figure 2.6 and 2.7 show the top views of the final structure
obtained with the two methods in the “Piazza Erbe” and “Piazza Bra” datasets,
respectively, aligned and superimposed to an aerial image.

Fig. 2.6. Top views aligned with an aerial image of “Piazza Erbe” (from Google Earth),
reconstructed with samantha (left) and with bundler (right).

As a sequential algorithm, bundler is very sensitive to initialization. Indeed,
for some datasets it was necessary to carefully select the initial pair in order to
make it produce a meaningful solution. In the case of “Piazza Bra”, a total of
four initial pairs were tried: the one chosen by default and three others selected
with the same criterion employed by our clustering. In all cases, the result is only
a partial reconstruction (witnessed by the small number of points reconstructed),
with evident misalignments (Fig. 2.7). A similar result occurs for the “Tribuna”
dataset.

In Table 2.2 we analyze the tradeoff between the number of active views, the
computing time and the quality of the reconstruction for the local BA strategy.
As expected, the computing time gracefully decreases as the number of active
views diminishes, without any appreciable loss in terms of reconstructed points
and views. Small variations in the number of points and views are expected and
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Fig. 2.7. Top views aligned with an aerial image of “Piazza Bra” (from Google Earth),
reconstructed with samantha (left) and with bundler (right).

normal even among identical runs of the algorithm, because of non-deterministic
steps. Accordingly, the average alignment error with respect to the baseline case
(all active views) increases.

Eventually, when using very few active views, samantha could fail to merge
clusters. Before that happens we noticed an increase in the BA running time due
to the larger number of iterations needed by the bundle adjustment to converge in
less than ideal settings. This prompt us to suggest using sufficiently large (20+)
number of active views to ensure fast and reliable computing.

# active time BA speedup # points # views error

all 1:05 h 1 39961 192 0 m

35 26:16 m 2.33 40641 196 0.45 m

25 24:53 m 2.63 40373 196 0.48 m

15 22:25 m 2.94 40669 198 0.75 m

Table 2.2. Reconstruction results vs number of active views for “Piazza Erbe” dataset.
Each row lists: the number of active views; the BA running time; the speedup achieved;
the number of reconstructed points; the number of reconstructed views; the average
alignment error wrt to the baseline (all active). The metric scale have been obtained
from Google Earth.

For a qualitative comparison, in Figure 2.8 we registered two top views of the
final structure obtained with and without local BA (we used 15 active views).

2.4 Dendrogram balancing and self-calibration

In this section we describe our latest revision of out reconstruction pipeline. As
demonstrated in precedence, the hierarchical framework can provide a provable
computational gain, provided that the resulting tree is well-balanced.

The worst case complexity, corresponding to a sequence of single view addi-
tions, is no better than the standard sequential approach. It is therefore crucial
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Fig. 2.8. Comparison between the result obtained by samantha with (in red) and
without (in black) local BA.

to ensure a good balance during the clustering phase. Our solution is to employ a
novel clustering procedure, which instead of following a completely greedy strategy
promotes the creation of better balanced dendrograms.

In this section we will also integrate in our approach a variant of the self-
calibration algorithm which is the topic of the next chapter. To our knowledge, our
solution was the first published capable of dealing with variable internal parameters
without using ancillary information, such as EXIF tags embedded in some image
formats.

2.4.1 Balanced view clustering

The view clustering procedure proposed in the previous section allows us to orga-
nize the available views into a hierarchical cluster structure (a tree) that will guide
the reconstruction process. This approach decreases the computational complexity
with respect to sequential SaM pipelines, from O(n5) to O(n4) in the best case, i.e.
when the tree is well balanced (n is the number of views). If the tree is unbalanced
this computational gains vanishes. It is therefore crucial to enforce the balancing
of the tree.

We use the same view affinity heuristic that was employed in the previous
section, but modify the linking strategy. The preceding solution, which used the
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simple rule, specified that the distance between two clusters is to be determined by
the distance of the two closest objects (nearest neighbors) in the different clusters.

In order to produce better balanced trees, we modified the agglomerative clus-
tering strategy as follows: starting from all singletons, each sweep of the algorithm
merges the pair with the smallest cardinality among the ` closest pair of clusters.
The distance is computed according to the simple linkage rule. The cardinality of
a pair is the sum of the cardinality of the two clusters.

In this way we are softening the “closest first” agglomerative criterion by intro-
ducing a competing “smallest first” principle that tends to produce better balanced
dendrograms. The amount of balancing is regulated by the parameter `: when ` = 1
this is the standard agglomerative clustering with no balancing; when ` ≥ n/2 (n
is the number of views) a perfect balanced tree is obtained, but the clustering
is poor, since distance is largely disregarded. We found in our experiments (see
Sec. 2.4.4) that a good compromise is ` = 5.

Figure 2.9 shows an example of balancing achieved by our technique. The
height of the tree is reduced from 14 to 9 and more initial pairs are present in the
dendrogram on the right.

2.4.2 Uncalibrated Hierarchical Reconstruction

The main difference from the previous hierarchical approach is that now leaf nodes
do not have proper calibration right from the start of the reconstruction process.

The reconstruction starts uncalibrated, and as soon as an uncalibrated cluster
reaches a given dimension m, the Euclidean upgrade procedure is triggered (in
principle autocalibration with known skew and aspect ratio requires a minimum
of m = 4 views to work; for good measure we used m = 12). Autocalibration
is triggered only for nodes (clusters) of cardinality ≥ m with both children of
cardinality < m, otherwise, if the cardinality of one child was ≥ m it would have
been already upgraded to Euclidean.

Each step of hierarchical reconstruction must therefore be modified to accomo-
date for clusters not yet in a euclidean reference frame.

Two-views reconstruction.

The reconstruction from two views is always projective in this pipeline (autocal-
ibration is triggered for clusters larger than m). However, we strive to mantain
even for clusters smaller than m a quasi-euclidean reference frame, for numerical
stability and to better condition the following autocalibration step.

We propose to compute the best plane at infinity compatible with rough focal
estimates obtained from the magnitude of the image diagonal. Even when the true
focal lengths are far from the estimates, this procedure will provide a useful, well
conditioned starting point for the subsequent reconstruction steps.

PE

1 = [K1 | 0] ' P1H (2.13)

PE

2 = K2 [R2|t2] ' P2H =
[
Q2K1 + q2v

>|λq2

]
(2.14)
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Fig. 2.9. An example of the dendrogram produced by simple linkage (left) and the
balanced rule on a 52-views set.

R2 ' K−1

2

(
Q2K1 + q2v

>) = K−1

2 Q2K1 + t2v
> (2.15)

The procedure will be described in detail and further refined in 3.2.1. It consists
however in identifying the best v that will render the right hand side of equation
2.15 equal up to a scale to a rotation. Please note however that the self calibra-
tion algorithm proposed there is novel; the autocalibration procedure used in this
chapter is instead based on equations derived from the dual image of the absolute
quadric.

This initialization can then be further refined enforcing cheirality and any other
constraints on the internal parameters by non-linear minimization. Given approx-
imate PE

1 and PE
2 , the position in space of the points is then obtained by triangu-

lation (or intersection). Outliers are pruned by analyzing the reprojection error.
Projective bundle adjustment is run eventually to improve the reconstruction.



2.4 Dendrogram balancing and self-calibration 23

One-view addition.

The reconstructed 3D points that are visible in the view to be added provides a
set of 3D-2D correspondences, that are exploited to glue the view to the cluster.
This can be done by linear exterior orientation [30] or by resection with DLT
[42], depending on whether the cluster corresponds to a Euclidean or projective
reconstruction (a single view is always uncalibrated). MSAC [97] is used in both
cases in order to cope with outliers. The view that has been glued might have
brought in some new tracks, that are triangulated using the iterated linear LS
method [44], and pruned by analyzing the reprojection error. Bundle adjustment
is run on the current reconstruction (either Euclidean or projective).

Clusters merging.

When two cluster merges the respective reconstructions live in two different ref-
erence systems, that are related by a similarity – if both are Euclidean – or by
a projectivity of the space – if one is uncalibrated. The points that they have in
common are the tie points that serve to the purpose of computing the unknown
transformation, using MSAC to discard wrong matches. When merging a Euclidean
cluster and a projective one, an homography of the projective space is sought that
brings the second onto the first, thereby obtaining the correct Euclidean basis for
the second.

Once the cameras are registered, the common 3D points are re-computed by
intersection, with the same cautions as before, namely analysis of the reprojection
error and test on the conditioning number. Tracks obtained after the merging are
also triangulated. The new reconstruction is refined with bundle adjustment (either
Euclidean or projective) and upgraded to a Euclidean frame when the conditions
stated beforehand are met.

2.4.3 Autocalibration

As we saw previously, the reconstruction starts uncalibrated and the Euclidean
upgrade procedure is triggered as soon as a cluster reaches a given dimension
m. Hence we assume that a projective reconstruction is available, and we want
to upgrade it to the Euclidean level, using the constraints coming from the dual
absolute quadric (DIAC).

The autocalibration method we use here comes from the merge of [84] and [77].
Our implementation of the iterative dual linear self-calibration algorithm is

based on the method described in [85], modified to use the weights of [77] and
to enforce at every iteration the positive (negative) semi-definitess of the dual
absolute quadric.

The closest semi-definite approximation of a matrix in Frobenius norm can
be obtained, assuming a single offending value, zeroing the eigenvalue with sign
different from the others. This can be easily done during the rank 3 approximation
step of the original algorithm.

Formal tests, not reported here, demostrated this algorithm to have better
convergence properties of both its parents [77, 85]. This is not sufficient for the
method to consistently converge to a reasonable solution.
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The quasi-euclidean upgrade step summarily described in subsection 2.4.2 is
crucial to this effect, providing a good enough approximation of the plane at
infinity which usually guarantees the convegence of methods based on DIAQ con-
straints.

Up in the tree, after autocalibration, an estimate of the internal parameters
of each camera is available. They will be refined further with bundle adjustment
as the reconstruction proceeds. In order to not to hamper the computation too
much, the internal parameters of a camera becomes fixed as soon as they have
been bundle-adjusted together with at least k cameras (we used k = 25).

2.4.4 Experiments

We tested our pipeline (henceforth called samantha) on several datasets of pic-
tures. Here we report the largest that have been used, namely “Piazza Bra” (from
http://profs.sci.univr.it/∼fusiello/demo/samantha/) and “Duomo” (courtesy of
Visual Computing Lab (ISTI-CNR), Pisa). Figure 2.10 and 2.11 illustrate the
reconstruction from these datasets.

Our pipeline works with uncalibrated images with varying internal parameters.
The “Duomo” dataset contains pictures taken with three different camera settings,
whereas “Piazza Bra” was originally taken with constant parameters. We therefore
added 31 images taken from Flickr to the dataset, and discarded the information of
which images are from the original dataset. In such a way, the internal parameters
of each camera are treated independently of the others.

Fig. 2.10. A top view and two perspective views of the reconstruction of “Piazza Bra”
(Verona, Italy).

Fig. 2.11. A top view and two perspective views of the reconstruction of “Duomo” (Pisa,
Italy).
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Time efficiency

We compared our results again with those produced by bundler [10] (an imple-
mentation of a state-of-the-art sequential SaM pipeline in C++). Our previous
pipeline, described in section 1.3, could not be used because unable to process
datasets with different camera intrinsics.

Table 2.3 reports the result of the comparison with bundler. Only time
spent doing BA (C++ implementation of [57]) is reported, because BA domi-
nates the computational complexity after matching, and bundler is extremely
slow in the matching phase, as it matches every view to every other. Moreover
our pipeline is partially written in Matlab, so the total execution time would have
been meaningless. All experiments were run on the same hardware (Intel Core2
Duo E4600@2.4Ghz, 2Gb ram).

The figures show that samantha takes significantly less time than bundler,
without any major differences in terms of number of reconstructed views and
points. The total speed up achieved with respect to bundler is 14 and 4.8 for
“Piazza Bra” and “Duomo” respectively, which compares favorably with the speed-
up reported in [89] (on different dataset, though).

bundler samantha

Dataset # img # views # points time #views #points time

Piazza Bra 411 292 41703 12:16 h 335 55598 52 min

Pisa 309 309 105401 13:43 h 309 121047 2:57 h

Table 2.3. Comparison between bundler and samantha. Each row lists, for the two
approaches: name of the dataset; number of images; number of reconstructed views;
number of reconstructed points; running time (only BA).

The improvement in the computing time is achieved thanks to the balancing
strategy in the construction of the dendrogram. The effect of this strategy can be
appraised in Fig. 2.12, where the number of reconstructed points/views and the
computing time are plotted as the number of closest pairs ` is increased. After
` = 5 the computing time stabilizes at around 30% of the baseline case, without
any significant differences in terms of number of reconstructed views and points.

As theory prescribes, the computing time is directly linked to the height of the
tree.

Metric accuracy

Thanks to the availability of ground truth for both datasets obtained from laser
scanning, we were able to assess the accuracy of our results. We subsampled the
cloud of points generated from laser scanners in such a way that they have roughly
double the number of points of our reconstruction, then we run Iterative Closet
Point (ICP) in order to find the best similarity that brings our data onto the model.
The residual distances between closest pairs are measured and their average – the
reconstruction accuracy – is about 35cm for “Piazza Bra” and 15cm for “Duomo”.
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Fig. 2.12. This plot shows the number of reconstructed points, views, height of the tree
and computing time as a function of the parameter ` in the balancing heuristics. The
values on the ordinate are in percentage with respect to the baseline case ` = 1 which
correspond to the original simple-linkage clustering of section 1.3.

Fig. 2.13. A view of “Duomo” reconstruction (blue) superimposed to the ground truth
(red).

The final error of bundler on the same datasets is 17cm for “Duomo”, whereas
for “Piazza Bra” bundler failed to produce a meaningful result.
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Practical Self-calibration

As it has been noted several times in literature, the difficult part of autocalibration
efforts resides in the structural non-linearity of the search for the plane at infinity.

In this chapter we show how to easily compute it from a estimate of the intrinsic
parameters of at least two uncalibrated cameras. The procedure is leveraged to
build an autocalibration algorithm which is both robust and versatile.

The method works by enumerating through the inherently bounded space of
internal camera parameters in order to find the best rectifying homography.

We compare our approach with several other algorithms on both synthetic and
concrete cases, obtaining favourable results.

3.1 Introduction

Autocalibration (a.k.a. self-calibration) has generated a lot of theoretical interest
since its introduction in the seminal paper by Maybank and Faugeras [62]. The
attention spawned by the problem however is inherently practical, since it elim-
inates the need for off-line calibration and enables the use of content acquired
in an uncontrolled environment. Modern computer vision has partly sidestepped
the issue using ancillary information, such as EXIF tags embedded in some image
formats. Such data unfortunately is not always guaranteed to be present or consis-
tent with its medium, and does not extinguish the need for reliable autocalibration
procedures.

Lots of published methods rely on equations involving the dual image of the
absolute quadric, introduced by Triggs in [98]. Earliest approaches for variable
focal lenghts were based on linear, weighted systems [75, 77], solved directly or
iteratively [85]. Their reliability were improved by more recent algorithms, such
as [11], solving super-linear systems while forcing directly the positive definiteness
of the DIAQ. Such enhancements were necessary because of the structural non-
linearity of the task: for this reason the problem has also been approached using
branch and bound schemes, based either on the Kruppa equations [33], dual linear
autocalibration [5] or the modulus constraint [12].

The algorithm described in [41] shares with the branch and bound approaches
the guarantee of convergence; the non-linear part, corresponding to the localization
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of the plane at infinity Π∞, is solved exaustively after having used the cheiral
inequalities to compute explicit bounds on Π∞.

The technique we are about to describe is closely related to the latter: first, we
derive the location of the plane at infinity given two perspective projection matrices
and a guess on their intrinsic parameters, and subsequently use this procedure
to iterate through the space of camera intrinsic parameters looking for the best
rectifying collineation. The search space is inherently bounded by the finiteness
of the acquisition devices; each sample and the corresponding plane at infinity
defines a collineation of space whose likelyhood can be computed evaluating skew,
aspect ratio, principal point and related constraints for each transformed camera.
The best solution is eventually refined via non-linear least squares.

Such approach has several advantages: it’s fast, easy to implement and reliable,
since a reasonable solution can always be found in non-degenerate configurations,
even in extreme cases such as when upgrading just two cameras.

3.2 Method

As customary, we assume being given a projective reconstruction {Pi;Xj} i =
i . . . n; j = 1 . . .m. The purpose of autocalibration is therefore to find the
collineation of space H such as

{
PiH;H−1Xj

}
is a Euclidean reconstruction, i.e.,

it differs from the true one by a similarity.
The set of camera matrices can always be transformed to the following canon-

ical form by post-multiplying each Pi by the matrix [P1; 0 0 0 1]
−1

.

P1 = [I | 0] Pi = [Qi | qi] (3.1)

In this situation, the rectifying homography H performing the euclidean upgrade
has the following structure:

H =

[
K1 0
v> λ

]
(3.2)

where K1 is the calibration matrix of the first camera, v a vector which determines
the location of the plane at infinity and λ a scalar fixating the overall scale of the
reconstruction.

The technique we are about to describe is based on two stages:

1. Given a guess on the internal parameters of two cameras compute a consistent
rectifying homography. This yields an estimate of all but the first camera.

2. Score the internal parameters of these n− 1 cameras based on the likelyhood
of skew, aspect ratio and principal point.

The space of the intrinsic parameters of the two cameras is enumerated and the
best solution is eventually refined via non-linear least squares.

3.2.1 Estimation of the plane at infinity

In this section we will show how to compute the plane at infinity given two per-
spective projection matrices and their intrinsic parameters. This procedure is, in



3.2 Method 29

a sense, the dual of the second step of the stratified autocalibration [29] in which
the internal parameters are recovered given the plane at infinity. This problem has
been dealt with for the first time in [6] where it has been turned into a linear least
squares system. We shall derive here a closed form solution.

Given two projective cameras

P1 = [I | 0] P2 = [Q2 | q2] (3.3)

and their intrinsic parameters matrices K1 and K2 respectively, the upgraded,
Euclidean versions of the perspective projection matrices are equal to:

PE

1 = [K1 | 0] ' P1H (3.4)

PE

2 = K2 [R2|t2] ' P2H =
[
Q2K1 + q2v

>|λq2

]
(3.5)

with the symbol ' meaning “equality up to a scale”. The rotation R2 can therefore
be equated to the following:

R2 ' K−1

2

(
Q2K1 + q2v

>) = K−1

2 Q2K1 + t2v
> (3.6)

in which it is expressed as the sum of a 3 by 3 matrix and a rank 1 term.
Using the constraints on orthogonality between rows or columns of a rotation

matrix, one can solve for v finding the value that makes the right hand side
of Eq. 3.6 equal up to a scale to a rotation. The solution can be obtained in
closed form by noting that there always exists a rotation matrix R∗ such as:
R∗t2 = [‖t2‖ 0 0]

>
. Left multiplying it to Eq. 3.6 yields:

R∗R2 '
W︷ ︸︸ ︷

R∗ K−1

2 Q2K1 + [‖t2‖ 0 0]
>

v> (3.7)

Calling the first term W and its rows w>i , we arrive at the following:

R∗ R2 =

w1
> + ‖t2‖v>

w2
>

w3
>

 /‖w3‖ (3.8)

in which the last two rows of the right hand side are independent from the value
of v and the correct scale has been recovered normalizing to unit norm each side
of the equation.

Since the rows of the right hand side form a orthonormal basis, we can recover
the first one taking the cross product of the other two. Vector v is therefore equal
to:

v = (w2 ×w3/‖w3‖ −w1) /‖ti‖ (3.9)

The upgrading homography can be computed using Eq. 3.2; the term λ can be
arbitrarily chosen, as it will just influence the overall scale of the reconstruction.
Its sign however will affect the cheirality of the reconstruction, so it must be chosen
positive if cheirality was previously adjusted.
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3.2.2 Estimation of the interal parameters

In the preceding section we showed how to compute the location of the plane at
infinity given the calibration parameters of two of the cameras of the projective
reconstruction to upgrade.

The autocalibration algorithm we propose consists in enumerating through all
possible matrices of intrinsics of two cameras checking whether the entire resulting
reconstruction has the desired properties.

The process is well-defined, since the search space is naturally bounded by
the finiteness of the acquisition devices; in practice, we use the same realistic
expectations that were used in [77] to compute the linear system weights.

To score each sampled point, we test the aspect ratio, skew and principal
point location of the resulting transformed projection matrices and aggregate their
respective value into a single cost function. The actual form of the cost function
that can be used depends from the number of cameras since the counting argument
[60] still applies. In general, we found a simple absolute summation of the chosen
properties weighed as in [77] to give good results.

{K1,K2} = arg min
K1,K2

n∑
`=2

f(K`) (3.10)

f(K) = wsk|k1,2|+ war|k1,1 − k2,2|+ wuo
|k1,3|+ wvo |k2,3| (3.11)

where ki,j denotes the entry (i, j) of K and w are suitable weights.
The last open problem is how to properly sample the space of calibration

parameters. We can safely assume, as usual, null skew and unit aspect ratio: this
leaves the focal length and the principal point location as free parameters. However,
as expected, the value of the plane at infinity is in general far more sensitive to
errors in the estimation of focal lenght values rather than the image center. Thus,
we can iterate just over focal lenghts assuming the principal point to be centered
on the image; the error introduced with this approximation is normally well-within
the radius of convergence of the subsequent non-linear optimization.

Figure 3.1 shows various cost profiles for each of the term of Eq. 3.11, obtained
with the aforementioned method. As it can be seen, the cost profiles have very
clear valleys and globally concur to identify the correct solution, displayed in the
graphs as an asterisk.

What happens when the trial estimates of K1 and K2 are not correct? In that
case, we are not guaranteed anymore that the right hand side of Eq. 3.8 will be a
rotation matrix. w2 and w3 will not be mutually orthogonal, nor have equal, unit
norm. Such errors will be transferred to the internal parameters of all cameras but
the first after upgrade with the resulting homography. Equation 3.9 will still yield
the value of v that makes the right hand side of Eq. 3.8 closest to a rotation in
Frobenius norm.

As each row of Fig. 3.1 shows, the cost profiles from just a single camera can
still identify a unambigous minima. This situation is equivalent to the task of
identifying the focal lengths of two cameras from their fundamental matrix. This
problem, studied extensively in [68, 92], was demonstrated to be essentially ill-
conditioned. Our approach is stabler since it structurally requires the solution to
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Fig. 3.1. Cost functions. The two rows refer to cost functions relative to different
cameras of a same dataset. From left to right, are shown the profiles of aspect ratio, skew
and principal point x and y coordinates as function of the focal lengths of the reference
cameras. Cooler colors correspond to lower, better values of the objective function. A
asterisk marks the correct solution.

Fig. 3.2. A ten camera synthetic reconstruction and the resulting aggregated cost func-
tion. An asterisk marks the correct solution.

be in a valid region of the parameter space. The solution clearly improves as more
and more cameras are added. Figure 3.2 shows the aggregated cost for the ten
camera synthetic dataset.

Finally, the solution selected is refined by non-linear minimization; since it is
usually very close to a minima, just a few iterations of a Levemberg-Marquardt
[56] solver are necessary for convergence. The employed cost function is the same
reported in Eq. 3.10.

The entire procedure is presented as pseudo-code in algorithm 1. With the
perspective projection matrices the code presented takes as input also the viewport
matrices of the cameras, defined as per Eq. 3.12 where w and h are respectively
the width and height of each image. While this proposed normalization is not
mandatory, we recommend it to improve the numerical properties of the algorithm.
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Algorithm 1: Autocalibration pseudo-code

input : a set of PPMs P and their viewports V
output: their upgraded, euclidean counterparts

1 foreach P do P ← V −1P/‖P3,1:3‖ /* normalization */

2 foreach K1,K2 do /* iterate over focal pairs */

3 compute Π∞
4 build H from eq. 3.2
5 foreach P do /* compute cost profiles */

6 PE ← PH
7 K ← intrinsics of PE

8 compute f(K) from eq. 3.11

9 end

10 end

11 aggregate cost and select minimum
12 refine non-linearly

13 foreach P do P ← V PH /* de-normalization, upgrade */

Vw,h =

√w2 + h2 0 w

0
√
w2 + h2 h

0 0 2

 /2 (3.12)

The proposed algorithm shows remarkable convergence properties; we observed
it fail only when the sampling of the focal space was not sufficiently dense, and
therefore a value for the plane at infinity close to the correct one was not generated.
Such problems are easy to detect, since they usually bring the final, refined solution
outside the legal parameter space.

3.3 Experimental evaluation

We report here several tests on synthetic and concrete datasets. For the experi-
ments, unless otherwise specified, we sampled the focal space using 20 logarithmi-
cally spaced divisions in the range [0.3 . . . 3].

3.3.1 Synthetic tests

For this series of tests, we generated several synthetic reconstructions constructed
with ten or more camera looking at the unit sphere. Each camera was chosen
having different parameters except for skew, which was set equal to zero for all
perspective projection matrices. The other characteristics were selected by a ran-
dom process inside the valid parameter space. The virtual viewport size for each
camera was [1024, 768] units, leading to focal lengths and principal points coordi-
nates of comparable magnitude. We built projectively equivalent reconstructions
multiplying the euclidian frame for a random homography.
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Fig. 3.3. Synthetic tests. Top: the residual from the ground truth as a function of the
sampling divisions. Bottom left: stability as the number of cameras varies. Bottom right:
resiliance to noise.

Sampling rate.

The top graph of figure 3.3 shows the relationship between the sampling rate used
in the focal search phase, running along the x axis, and the accuracy of the resulting
self-calibration, expressed as the sum of the Frobenius norms of the differences
between the estimated and correct calibration parameters. For too low rates of
sampling, corresponding to the left side of the diagram, the chance of picking a
solution close to the correct one is very low. Most of the time the subsequent LM
minimization outputs parameters outside the valid range, generally converging
towards the trivial null focal solution. As soon as the focal lengths are sampled
with a sufficient degree of accuracy, the residual of the recovered solution becomes
and stay low. When this happens, the proposed solution is usually very near to the
correct one, and the following non-linear minimization has no problem to converge
to the correct, best calibration parameters.

The sawtooth pattern that can be noted both at the start and end of the
sequence is a sampling artifact which depends on the distance between the current
estimate and the correct one. At the far right of the sequence, it roughly correlates
to odd and even divisions of the sampling space.

The total elapsed time, shown in green, follows a quadratic law, as expected.
At the far right of the diagram, corresponding to fifty divisions for each focal, the
total time spent (search plus refinement) is roughly 3 seconds, implemented as a
Matlab script.

Number of cameras.

In this section we verify the stability of the algorithm as the number of cameras
varies from two to twenty. For uniformity all reported results were obtained with
the full cost function described in equation 3.11, even for experiments which, hav-
ing a sufficient number of cameras, could use fewer constraints. Results reported in
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the bottom left graph of figure 3.3 are averaged over 50 runs of the algorithm. As
shown, the algorithm is able to converge to the correct calibration parameters for
all but the two cameras setup, in which it gets caught in a local minima still very
close to the ground truth. From three cameras onwards the method successfully
disambiguates the uncertainty.

Noise resiliance.

Our final synthetic test verifies the resiliance to noise; several reconstructions were
built from the ground truth perturbing the point projections with gaussian noise
and recovering each camera by DLT based resection. The last panel of figure 3.3
shows the dependency of the residual from the ground truth in relationship with
the standard deviation of the added noise for a ten camera dataset. Again, the
results were averaged over 50 runs of the algorithm. As it can be seen the method
is fairly stable, starting to fail for standard deviation higher than five unit with
respect to a 1024×768 picture frame. This is not surprising given the deterioration
that was observed under this conditions on the cameras returned by DLT resection,
with focal lengths differing more than two hundred unit from the ground truth.

3.3.2 Comparative tests

We compare our approach to a classical, linear tecnique based on the DIAQ con-
straints and a recent stratified method based on least squares minimization of the
modulus constraint embedded in a branch and bound framework.

The first algorithm is our implementation of the iterative dual linear self-
calibration algorithm described in [85], modified to use the weights of [77] and
to enforce at every iteration the positive (negative) semi-definitess of the dual ab-
solute quadric. The closest semi-definite approximation of a matrix in Frobenius
norm can be obtained, assuming a single offending value, zeroing the eigenvalue
with sign different from the others. This can be easily done during the rank 3
approximation step of the original algorithm. Formal tests, not reported here for
brevity, demostrated this algorithm to have better convergence properties of both
its parents [77,85]. We report also the results obtained by this method when cou-
pled with the preliminary quasi-affine upgrade step detailed in [45].

The second method we compare to is the algorithm described in [12], a stratified
self-calibration approach based on a branch and bound framework using convex
relaxations minimizations. We used the reference implementation from the authors
of the paper.

The synthetic test dataset, also coming from [12], is composed of twenty projec-
tive cameras and points, with known ground truth and gaussian noise of standard
deviation σ added to image coordinates. We report results obtained by our and
the aforementioned methods over a hundred trials in the case of σ = 0.1% using
the same metric defined in the original article.

∆f = | f1 + f2
f01 + f02

− 1| (3.13)
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Algorithm Cameras ∆f Success rate

5 5.4012e-2 57
Dual linear 10 2.6522e-3 84

20 1.5433e-3 90

5 2.7420e-2 63
DL + QA upgrade 10 1.8943e-3 83

20 1.1295e-3 92

5 9.9611e-3 100
Chandraker et al [12] 10 4.7925e-3 100

20 1.0461e-3 100

5 2.7546e-3 100
Our method 10 1.3005e-3 100

20 8.2266e-4 100

Table 3.1. Comparison of results obtained on the dataset from [11].

Results are reported in table 3.1. The linear algorithm, which we pick as base-
line case, achieves good results in terms of metric 3.13 but shows poor convergence
properties, especially for lower number of cameras. Similar numerical results are
unsurprisingly obtained coupling the method with the quasi-affine upgrade of [45],
with slightly higher percentuals of success. Both the algorithm described in [12]
and our method never failed on this dataset, with a slight numerical advantage of
our proposal.

3.3.3 Real world example

We finally test our algorithm on two concrete dataset, respectively the “Pozzoveg-
giani” and “Duomo” reconstruction produced by our hyerarchical pipeline. Each
set is composed respectively of 52 and 333 cameras.

The euclidean reconstructions, as refined through bundle adjustment, were used
as ground truth for the subsequent tests. Again, a total of a hundred trials were
conducted for each set, multiplying the projective reconstructions for a random
homography while discarding the ones with very low condition number. In our
method we also picked at random the reference views to be used for the estimation
of the plane at infinity.

Results are reported in table 3.2. With respect to the synthetic case, we can
note a substantial decrease of the success rate of both linear algorithms which was
instead expected to increase with the number of cameras. An informal audit of the
code showed the effect to be caused both by noise and by the larger number of iter-
ations required for convergence, which in turn increase the chance of encountering
a failure case.

Algorithm [12] is missing from table 3.2 because we were not able to obtain
acceptable solutions on our datasets; we tried, to no avail, varying the tolerance
ε and the maximal number of iterations for both the affine and metric upgrade
steps.

Our approach achieves on both datasets flawless success rate. Instances of each
upgraded reconstruction can be qualitatively evaluated in figure 3.4.
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Algorithm Pozzoveggiani (55 cameras) Duomo (333 cameras)
∆f Success rate ∆f Success rate

Dual linear 3.0815e-2 19 9.3255e-2 8

DL + QA upgrade 8.9261e-3 22 7.6403e-2 13

Our method 3.9733e-3 100 2.9293e-3 100

Table 3.2. Comparison of results obtained on concrete reconstructions.

Fig. 3.4. Concrete tests. Two instances of the results obtained on the “Pozzoveg-
giani” and “Duomo” datasets. As it can be seen, perpendicular features are correctly
reproduced. The skew of each camera in normalized coordinates is always less than 10−2.

3.4 Final remarks

We presented a practical self-calibration algorithm showing results at least com-
parable to the state of the art. Our approach is fast, easy to implement and can
successfully disambiguate fringe cases previously considered bad conditioned.

The significance of this method is twofold. The first important point is its
ability to work, as demonstrated in our last batch of experiments, with modern
Structure and Motion datasets, making it possible to analyze pictures without
requiring EXIF information to be always present. The second point is the possibility
of upgrading single couples of cameras. This result is what enables us to use it in
our hierarchical reconstruction framework, and to produce metric point clouds
from the very bottom of the reconstruction tree.

Future research will be aimed at developing sub-linear search strategies in the
space of calibration parameters, which is made possible by the structure of the
cost profiles.
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Confidence-based stereo matching

With this chapter, we start to tackle the problem of how to transform the point
cloud recovered in the preceding part of this thesis into something more than a
collection of points and cameras in space.

If the sought goal is to obtain a reconstruction more faithful to the original
scene, a straighforward solution is to employ a stereo matching algorithm to densify
the reconstructed point cloud and eventually to organize it into dense triangulated
surfaces.

The correspondances recovered during the Structure and Motion computation
however can be used to obtain reliable disparities for each reference couple used
for stereo matching; in this chapter we develop a way to incorporate such high
confidence information into any stereo algorithm.

We do this defining a novel operator to be applied at raw matching costs. It aims
at improving matching reliability by efficiently modulating pixel-wise pairing costs,
injecting a confidence backed bias before the aggregation step. It works analyzing a
noisy estimate of the correspondances in order to favor or prune potential matches.

We will test the operator by developing a local, realtime stereo matching al-
gorithm and showing that our solution can drastically clean the resulting depth
map while also reducing border bleeding. Its good performance is also evaluated
quantitavely by testing the algorithm against the popular Middlebury benchmark
where our local greedy implementation is able to obtain results comparable to
those of näive global approaches.

Finally, we will use it to obtain to cluster the points of a reconstruction of
the Valbonne church (made famous by the self-calibration literature) in order to
obtain rough, connected 3D model.

4.1 Introduction

In this chapther we describe a pixel-wise operator aimed at refining and improving
the reliability of a underlying matching cost in the context of low level vision. The
current trend for tasks like stereo matching and optical flow computation has
been an ever-increasing sofistication, exacerbated and fueled by the publication
of common dataset and benchmarks [2, 81]. The top performers in each category
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are often composed of several complex modules like plane fitting, edge-preserving
smoothing, image segmentation and many others.

It’s easy to see that any improvement in the earliest step of the matching com-
putation, namely in the calculation of the first matching cost, can have profound
and beneficial effects on the remainder of a algorithm pipeline.

We propose a simple and efficient operator capable of drastically pruning po-
tential correspondances for a pixel. It works analyzing (or in a sense, refining) a
noisy initial approximation of the depth or flow map, smoothly inhibiting matching
pairs without sufficient support in a local, unstructured neighbourhood.

To support our claim that incorporating such operator into existing algorithms
could provide additional reliability while allowing a simplification in the regular-
ization tecniques, we implement a local, greedy stereo matching implementation
whose results are comparable to näive global approaches at a fraction of the sofisti-
cation and time complexity.

At the end of this chapter, we will use the stereo results in order to obtain
the connectivity information in a point cloud coming from a Structure and Mo-
tion pipeline. To do this, we will also describe a simple heuristic for selecting the
reference views used for computing the disparity maps. The final result will be a
rough but properly connected model of the scene.

4.2 Related work

The interested reader can find further information on matching measures and
aggregation strategies in the following papers [47,101], which contain some recent
and fair comparaison.

Regarding the representation of confidence, literature reports several successfull
approaches in stereo matching research. Historically, autocorrelation and left-right
consistency constraint have been used to characterize the ambiguity of a pixel, but
several other metric exist like for example image entropy or curvature metric [25].

The notion of distinctiveness maps [61], recently reinterpreted by [103], or that
of stability [79] are also reconducible to confidence measure.

Confidence is usually employed to guide the matching process or the constraint
enforcement in a high confidence first fashion, or as a weighting function in depth
map fusion [36].

Our approach, instead of computing confidence as a by-product of the matching
process, extrapolate it a posteriori from a initial, given, possibly noisy disparity
estimate and use it to directly modulate the underlying matching costs.

4.3 Confidence-based cost modulation

In the past confidence measures have usually been calculated as a function of
the entire x, y, d space. We propose instead to infer a confidence measure from a
initial, possibly noisy estimate of the sought flow or disparity map and to use it
to modulate the underlying matching cost function, as follows:
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Fig. 4.1. Initial disparity estimation.

C ′x,d =

∑
y∈N e

− |dx−dy|
k

||N ||
· [Cx,d −P] + P

Cx,d and C ′x,d are respectively the old and new native matching costs for pixel
x at disparity d, N is the neighbourhood of x and dw represents the disparity value
of location w in the given initial estimate of the disparity map.

The value assumed by the first fraction is proportional to the ratio of pixels
with a similar disparity value found in the chosen neighbourhood (the notion of
“similarity” is controlled by the parameter k). This ratio is then used to modulate
a linear interpolation between the actual cost Cx,d and the penalization constant
P.

We purposely not inserted any locality principle or distance based penalty
because we wanted our operator to be able to non-uniformly incentivate similar
regions even if distant or unconnected. The global effect of the operator, when
properly configured, is to enable the self-organization of the support regions, fa-
voring compactness and inhibiting small or isolated areas. Thin structures, once
established, usually provide themselves enough support to thrive.

4.4 Stereo algorithm

In order to evaluate our confidence modulation we developed as a testbed a simple,
local stereo algorithm based on a greedy, fixed window correlation algorithm. Such
methods are simple to implement and well-understood, letting us concentrate on
assessing and factoring out the properties and the effects of our proposal.

We stress that, even if the resulting algorithm is capable of realtime perfor-
mance and overall produces decent results it was never meant to be compared with
the current state of the art but just as a evaluation platform.

4.4.1 Initial disparity estimation

We start by calculating a initial approximate disparity needed for our confidence
operator. We choose as cost matching a truncated version of the popular Birchfield
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Fig. 4.2. Raw and aggregated output of the confidence estimator.

and Tomasi sampling insensitive measure [4]. To aggregate matching cost, we use
a 5x5 gaussian filter with σ=2. The resulting disparity map, shown in fig.4.1,
displays all the typical shortcomings of fixed-window correlation algorithms.

4.4.2 Aggregation with modulated costs

Subsequently, we compute a novel disparity map using the confidence values ex-
trapolated from the estimate built in the previous step. Our neighbourhood choice
is a uniform disk of radius 7.

The left side of figure 4.2 shows the map obtained when not using any form
of cost aggregation: each pixel then assumes the disparity value that minimizes
its cost. The picture presents some curious visual artifacts near discontinuities,
caused by the influence of pixels across the depth gap. On the right the same cost
volume is shown but aggregated with a small 3x3, σ=1 gaussian filter.

What both pictures have in common is a drastic decrease of the noise levels
with respect to the initial disparity estimation. Other effects include the reduction
of border bleeding and the minor entropy of untextured region which are not filled
with a wrong yet uniform disparity layer.

4.4.3 Disparity cleaning

In this step we apply some common and simple heuristics to remove small and
untextured regions. To remove this second category we compute an estimate of
the noise magnitude and variance and use them to threshold the sum of pixel-wise
matching costs (fig.4.3). The resulting regions are then assigned to the best overall
disparity for the entire group. Small holes caused by removing small regions are
filled with the minima between the neighbouring left and right disparity. On the
right of figure 4.3 is shown the resulting depth map.

4.4.4 Final regularization step

Since in the previous step we have obtained a new disparity estimate, we can now
use it again to produce a confidence modulated depth map. The resulting depth
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Fig. 4.3. Untextured regions and the cleaned depth map.

map is further checked for consistency using the unicity constraint. The final result
is shown in fig.4.4. It is surprisingly good if considering that it was produced from
a standard winner-take-all window correlation algorithm.

4.5 Experiments

In order to obtain quantitative results we have run the algorithm described in the
previous section on all the four couples in the Middlebury stereo benchmark with
and without the proposed confidence based cost modulation. The obtained results
are reported in table 4.1.

Our complete results on the Middlebury dataset are shown in figure 4.5: skip-
ping the analysis of the Tsukuba set that was already covered in section 4 we pro-
ceed to notice in the Venus couple some of the shortcomings of our näive approach:
most of the bad pixels (marked in black) come from disparity holes erroneously
filled across disparity boundaries and over untextured region.

The Teddy and Cones couples share the same problems, but moreover they
exhibit strong lateral interference. Regarding Teddy, the whole ground plane is
missing, due to its steep angle and fine texture and are completely incompatible
with fixed-window correlation algorithms.

Fig. 4.4. Final disparity map for the Tsukuba dataset.
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Fig. 4.5. Results on the Middlebury dataset: Tsukuba, Venus, Teddy and Cones.

Table 4.1. Comparison of stereo results.

Image pair with Cost modulation without

Tsukuba 1.7723 8.741

Venus 2.3332 22.141

Teddy 15.034 24.341

Cones 10.033 21.441

Overall 30.9 76.5

Overall, we can state that the obtained results are surprisingly good consider-
ing that they were computed with a local algorithm just by modulating its cost
function. The method, while stabilizing itself in the lower half of the Middlebury
table is at par with low-end global algorithm implementations.

4.6 Stereo for surface extraction

We finally apply the algorithm developed in the preceding part of this chapter
to enhance a point cloud obtained from a set of fifteen images of the church of
Valbonne, popularized from self-calibration literature.

We will use the obtained disparity maps to cluster the cloud points into groups
belonging to a single surface of the scene. Each recovered group will be triangulated
in order to obtain a three dimensional model.

Given our objective, is not necessary to compute and merge all possible dispar-
ity maps; it suffices to select the minimal number of couples necessary to cluster
the majority of points.

There are several possible criteria we could take into account: a ideal pair has
a sufficiently large baseline, lots of common tracks to jumpstart the stereo process
and a limited disparity range. This last requirement promotes couples containing
surfaces parallel to both image planes, a favourable configuration for most stereo
matching approaches.

Our selection heuristic uses a weighted combination of the number of common
tracks and the disparity range to select the current best couple, which is rectified
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Fig. 4.6. The first two couples automatically recovered by the proposed view selection
heuristic and the corresponding (left) disparity map.

before computing its disparity maps. Surfaces are identified in the depth maps,
grouping pixel with neighbouring disparity values. Visible points reprojecting into
the grouped areas are assigned to them and not considered in the following steps.
The process is repeated until the majority of points have been assigned to a surface.

Figure 4.6 shows the two couples selected in the Valbonne experiment which
was sufficient to cover the 96% of the point cloud. The missing point were either
not covered by any disparity value or placed in ambiguous locations, such as the
internal corners of the building.

The preference of the chosen selection heuristic for frontoparallel surfaces can
be used in the triangulation phase to connect the clustered points as they appear
when projected onto the images. Figure 4.7 shows the three clusters obtained on
the Valbonne dataset and the corresponding 3D model obtained discarting the
triangles spanning over regions not covered by the underlying surface.
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Fig. 4.7. The clustered point cloud and the corresponding triangulated model.
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Visualization of Urban and Architectural Models

State of the art three dimensional reconstruction pipelines can nowadays produce
models up to several million polygons without any human intervention from a set
of digital images or video. Such models are able to stretch the rendering capabilities
of current hardware.

The problems however is not exclusively technical, because of the magnitude
of the reconstructed data; a point cloud is not easily editable, and does not retain
any information about the grouping or connectivity of the original scene.

With this chapter we consider several options for the rendering of recovered
models alternative to densification and/or triangulation. Along the way, we will
explore automatical recovery of dominant surfaces, obtaining a more high level
model of the imaged environment.

5.1 Fitting of geometric primitives

Our first proposal is to augment a typical structure from motion pipeline with two
additional steps, automatic fitting of high-level solid primitives and relief maps
extraction, thus recovering both the overall structure of a building and its fine
geometry. The objective is to obtain a more tractable and semantic model of the
imaged scene, allowing for efficient and compelling rendering.

5.1.1 Introduction

The recent advances in Structure and Motion pipelines coupled with the avail-
ability of large repositories of digital photos and aerial images have enabled the
creation of some of the largest architectural models ever composed [37,63].

Even if the problems arising in the visualization of large, detailed urban envi-
ronments have been actively investigated, rendering such massive amounts of data
is still problematic. The major source of difficulty lies in the fact that there is
virtually no limit to the nature and quantity of the acquired details. State of the
art systems can already build scenes with features spanning more than three scales
of magnitude. On top of that, recovered meshes suffer from uneven sampling and
connectivity problems.
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Such magnitude and complexity is able to stretch the rendering capabilities
of current rendering platforms, even when taking into account their steady power
growth. To speed up the visualization process and to counter the exponential
increase in size of the recovered data we propose to augment the typical structure
from motion pipeline with two additional steps, high-level primitive fitting and
relief map extraction.

High-level primitives such as planes and generalized cones are ideal descriptors
for architectural buildings and in general human manufacts. Automatically fitting
such primitives to the outputs of a reconstruction pipeline enable the characteriza-
tion of structure and the extraction of high level properties (such as symmetry, or
function) and unseen geometry. Relief map extraction recovers the fine geometry
that is lost in the previous step, and stores it in a compact format directly usable
by graphic hardware.

The final output of such a system is a set of automatically recovered geometric
primitives, relief maps and textures that can be used to concisely describe and
to efficiently render the imaged scene. The process leverages the former dense
point cloud to a sensible, editable representation ready for manipulation in a CAD
software.

5.1.2 Previous art

One of the most scalable approach in Structure and Motion recovery for urban
environments was shown in [17], developed for compact visualization on consumer
navigation products. Road ground and building façades were forced to lie on tex-
tured, mutually-orthogonal, gravity-aligned, geo-located planes. The resulting sys-
tem is fast but heavily constrained, thus trading efficiency for expressive power.

More generic systems have been demonstrated for the reconstruction of the
semantic structure of urban elements. The two most similar articles to our proposal
are [21] and [82].

In [21] is described a system that specializes in creating a architectural models
from a limited number of images. Initially a coarse set of planes is extracted
by grouping point features; the models are subsequently refined by casting the
problem in a Bayesian framework where priors for architectural parts such as
doors and windows are incorporated or learnt.

A similar deterministic approach is developed in [82] where dominant planes
are recovered using a orthogonal linear regression scheme: façade features, which
are modeled as shaped protrusions or indentations, are then selected from a set of
predefined templates.

Both methods rely on a large amount of prior knowledge to operate, either
implicitly or explicitly, and make strict assumption on the imaged scene.

In our approach instead, the amount of injected prior knowledge is limited to
the non-critical type and number of primitives used: the recovery process rather
than being top-down is entirely data-driven, and structure emerges from the data
rather than being dictated by a set of potentially incorrect architectural priors.

Relief maps, not present in the two aforementioned methods, serve both to
preserve the information necessary for accurate rendering and to decouple the
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numerical errors inherently present in the stereo reconstruction process from the
recovery of structure.

While the problem of fitting quadric primitives has been extensively investi-
gated in literature (see [73] for a survey of the topic) most of published material
is designed to be applied to dense point clouds produced by laser scanners or to
already triangulated meshes. Common assumptions include uniform sampling and
negligible acquisition noise; such methods can’t therefore be used for processing 3D
clouds produced by Structure and Motion pipelines which don’t provide connectiv-
ity, are un-evenly sampled and corrupted by a comparatively large signal-to-noise
ratio.

5.1.3 High-level primitive fitting

Literature offers several algorithms for model estimation: we selected the approach
described in [105] because natively developed for multiple structures.

Given a distribution of points corrupted by outliers, the algorithm generates a
set of model hypotheses by repeteadly drawing at random the minimal required
number of samples for each desired structure, such as planes, cylinder or spheres.
The actual number of hypothesis that must be constructed can be calculated
knowing the number of points and estimating the percentage of outliers in the
dataset.

After hypotheses have been generated, their residual is calculated for each data
point. The number of models is estimated analyzing for each data point the peaks
in the histogram of the hypotheses residuals. This approach enables data self-
organization and requires fewer samples than solutions based on naive RANSAC
algorithms. The final number of models is calculated taking the median of all the
estimates: for each hypothesis the correct supporting cluster is then identified.

Figure 5.2 shows a model in which every point has been attributed to one of
the planes of which the scene is composed.

5.1.4 Image consistent triangulation

At this point we can proceed to relief map extraction with the models recovered
in the preceding step, or try to obtain from each of them a triangulated patch.

Estimating a sound triangulation on the output of a structure and motion
pipeline is inherently difficult because the recovered 3D information suffer from
uneven sampling and reconstruction errors. This inhibits the use of a large part of
algorithms for recovering meshes from unorganized point clouds like for example
[48]. Therefore, we turn our attention to image-consistent triangulation algorithms,
i.e., algorithms that uses information from the images to guide the triangulation
of 3D points.

Following [15] we first augment our point cloud by adding points along the
intersections between the recovered primitives, provided that these points projects
onto actual image edges. As a result the model’s boundaries are better preserved,
as seen in Fig. 5.3.

The initial triangulation is calculated by projecting the recovered 3D points
to their belonging surface and applying the 2D Delaunay triangulation algorithm.
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Fig. 5.1. Automatically recovered perimetral planes from the 3D point cloud.

This approximation contains spurious triangles that does not correspond to a
planar patch in 3D, either linking originally separated surfaces or spanning over
concavities of the point cloud projection (since a Delaunay triangulation is convex
by construction). They can be eliminated using a series of boundary-preserving
heuristics, based on photo-consistency. Sky patches, which being uniform usually
survive such checks, have to be dealt separately: they are trimmed from the result-
ing triangulation starting from the outer border, looking for a strong edge signaling
a foreground object. Results are shown in Fig. 5.4.

5.1.5 Relief map extraction

We can be build relief maps both on the original models fitted to the point cloud
data or on the triangulated mesh recovered in the preceding section.

In either case, for the recovery of relief maps we developed a simplified version of
a recent stereo algorithm based on gestalt principles [104]. Alternatively, the stereo
algorithm developed in chapter 4 could be used. While based on local methods,
it can achieve good performance by employing large disparity neighbourhoods.
The problem usually associated with large correlation windows are minimized by
weighting the stereo cost function with a measure of similarity and proximity
between candidate matches, thus mimicking the behaviour of stereo algorithms
based on explicit segmentation.
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Fig. 5.2. Planes recovered by model fitting. The colour of the point encodes the plane
it belongs to.

Candidate views for disparity estimation are selected by identifying those that
both contain a large set of visible points from the considered surface. The views are

Fig. 5.3. Detail of the triangulation before (left) and after (right) augmentation with
boundary points.
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Fig. 5.4. The final triangulated model for the ”Pozzoveggiani” example and its textured
version.

Fig. 5.5. Rectified images used for the recovery of the front façade.

first rectified, discarting during the process the couples with excessive distorsions.
Conflicts is depth arising from different couples are resolved taking the median of
the estimates.

Once disparity has been obtained recovering bump, normal and displacement
maps is straighforward; these data enables the simulation of fine geometry and the
use of modern rendering algorithm such as [53] and its more recent derivations.

Figure 5.5 shows two views after homographical rectification [34] and Fig. 5.6
the color and normal maps resulting from the relief map extraction. The extracted
map encodes both fine geometry and architectural features, modeling wall extru-
sions as well as windows and arches.

A detail of the façade is analyzed in Fig. 5.7 where we compare side by side
the dense regular mesh generated by the matching process with two renderings
composed of a single polygon. The effect of parallax mapping, enabled in the last
image, are particularly noticeable in correspondance of the door extrusion.

5.2 Texturing fitted surfaces

In this section we explore the possibility of texturing architectural models in a
completely automated way. In the preceding part, scene and texture boundaries
were defined by the recovered triangulation or by the valid regions of computed
disparity maps. We show here how to compute texture atlases and masks from the
results of a structure and motion pipeline.
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Fig. 5.6. Color and normal textures automatically generated for the front of the church.

Fig. 5.7. From left to right, the dense mesh generated from stereo matching, a single
quad textured without fine geometry and the same quad with parallax mapping.

The two main goals in this case are the scalability and fidelity of the obtained
rendering and its capability to easily support user navigation. The problem here
is to give each picture context, to guide the exploration. We have already shown
in the preceding parts how this is possible using triangulated models; we tried also
rendering the point cloud through point splatting, or using oriented disks as shown
in figure 5.8.

Of course using the scene geometry as a proxy for projecting the captured im-
agery isn’t the only solution capable of achieving the aforementioned goals. A dif-
ferent philosophy is employed in the Photosynth software (http://photosynth.net):
only a single picture is ever shown at full resolution from a vantage point; other
pictures that can be related to the reference one by a homography are used to
provide the context for the user to understand and navigate the collection. An
example of this approach produced within our system is shown in Fig 5.9.

Such a representation has a number of interesting properties: it supports spa-
tial navigation and provides excellent visual fidelity, since the reference picture is
always seen from the position from which it was shoot, and augmented with a
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Fig. 5.8. Rendering with oriented disks.

Fig. 5.9. A planar stitch of pictures in 3D.

relevant context. On the other hand however, it is structurally unable to capture
image relashionships that can’t be modeled with a collinearity.

These problems can be overcomed by using the high level models as a proxy
for the scene geometry, and rendering the photo collection against them. To be
scalable and effective however, this approach must be coupled with a way to select
from a arbitrary position in 3D the subset of the available views which maximizes
the visual fidelity while containing the computational workload. We will see how
in the following section.
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Fig. 5.10. Unmasked rendering on the recovered primitives.

5.2.1 View-model affinity

We first consider the problem of selecting, given a reference view, a number of
additional views that will provide the context for the reference one. This can be
done in several ways: one possible solution is to simply select the nearest neighbours
induced by a distance function on the camera parameters, like the following one:

d(Gref , G) = min(log(||G−1refG||), log(||GG−1ref ||))

where G are the extrinsic parameters of the considered camera. This metric usually
gives good result when the scale and the intrinsic parameters of the cameras are
roughly the same.

In the general case however, selecting views that contain a large number of
common 3D features has shown itself a much more stable heuristic, capable of
automatically coping with scale changes and camera tilt. Such characteristics are
important for selecting a range of images with sufficient variability. The same
criteria can be used also to evaluate the affinity between a collection of high level
primitives and a view.

When realizing that a arbitrary position and direction in space specified by a
virtual camera is akin to a regular view, it becomes possible to select both the
models and cameras that have affinity with a arbitrary point in space.

With these data, each selected view can then be rendered using projective tex-
ture mapping on the proxy geometry that the high level primitives constitute. If
needed, the fine details lost in the primitive extraction can be encoded in displace-
ment or relief maps, as suggested earlier.
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5.2.2 Mask creation

The process described in the previous section however is not sufficient to guarantee
an artifact-free rendering, as Fig. 5.10 clearly shows. These effect can be avoded
masking the projection over each recovered primitive.

Fig. 5.11. Points on two different planes and their recovered masks.

The problem can be solved creating the mask for each primitive back-projecting
its points onto the image plane, and extracting a 2D neighbourhood of the obtained
points. We found that just thresholding a low pass filtered binary image containing
the point projections gave reasonable results.

Figure 5.11 shows the masks obtained from two planar surfaces: as it can
be seen the recovered mask follow quite closely the underlying structure. This
approach works well when the three dimensional features are evenly distributed:
in that case, we obtain surfaces without connectivity problems.

The potential issues with color bleeding on the boundaries between primitives
could be further corrected by constraining mask borders to align with the mod-
els intersections. In our experience however, the perceived effect of bleeding was
unnoticeable.

5.2.3 Results on the Pozzoveggiani dataset

Fig. 5.12. One of the original photo and two novel virtual views of the Pozzoveggiani
model from our interactive visualizer.
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Fig. 5.13. Results for the Valbonne dataset.

The “Pozzoveggiani” dataset portraits a small church near Padua (IT) that had
been used before in [39] to test photogrammetric reconstruction. It has a simple
planimetry: the perimeter is composed of straight walls, with a bell tower and a
slanted roof covered with bent tiles. A cylindrical apse protrudes from the back;
several arches and slit windows open into the well-textured brick walls.

The picture set is composed of 54 images acquired from the ground plane
with a consumer camera at a resolution of 1024x768 pixels, at different times
and with automatic exposure. This is the dataset that was chosen to illustrate
the various step of the algorithm through this paper: as was shown, our pipeline
succeeds in recovering and modeling all the perimetral walls. The good properties
of the reconstruction can also be assessed by measuring the average angle between
orthogonal planes, which is 90.44 degrees.

Two frames from our interactive are shown in Fig. 5.12; as it can be seen, it
correctly models the two surfaces visible from the current view, while discarting
the background. The missing parts from the side textures are due to a uneven
distribution of the 3D features on the walls; when seen in movement, the model
faithfully captures the expected appearance of the scene, guiding the user in the
exploration.

5.2.4 Results on the Valbonne dataset

The church of Valbonne is another small church located in France, and exten-
sively used in the computer vision literature. Its stone walls are organized into two
dominant, orthogonal directions.

This experiment comprises fifteen photos: the dataset is recorded at a resolution
of 768x512 pixels, in varying condition of illumination and occlusion. Again – as
shown in Fig. 5.13 – our system successfully recovers all dominant planes and
cameras, with the front façade assimilating the contributes of the two protrusions
at its sides.
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Conclusions

In this thesis we have described several improvements to the current state of the
art in the context of uncalibrated Structure and Motion from images. Our first
result was a hierarchical framework for Structure and Motion, which was demon-
strated to best the sequential approach both in computational complexity and
with respect to the overall containement of error. Our proposal constitutes the
first truly scalable approach to the problem of reconstruction from images, show-
ing a sub-linear complexity in the number of points and cameras.

We then described a novel self-calibration approach, which coupled with our
hierarchical pipeline constitutes the first published example of uncalibrated Struc-
ture and Motion for generic datasets not using external, ancillary information. The
robustness of our approach has been demostrated on 3D reconstruction datasets;
it was also used for the upgrade of single pair of cameras with good results, a task
generally considered bad conditioned by the relevant literature.

In the second part of this thesis, we demonstrated various rendering modes for
point clouds, with the goal of obtaining a efficient and faithful representation of the
scene. By using plane and quadric fitting we obtained also compact, semantically
meaningful descriptions which can be interpreted as a crude reverse engineering
of the environment.

Future research will continue trying to further improve the computational com-
plexity of our Structure and Motion pipeline. A complete C++ port of the algo-
rithms is already underway; it will be coupled with structural improvements such
as the addition of novel cameras from existing ones using the already recovered
fundamental matrices and a novel summary procedure for points orthogonal to the
one described for views in chapter 2. We will also try to integrate in our pipeline
reflectance images coming from laser scans, to integrate existing photogrammetric
workflows with the Computer Vision approach. We are going to develop sub-linear
search strategies for the self-calibration part, which are enabled by the particular
structure of the cost functions we employed. Finally, most of the rendering algo-
rithm described here will be updated contextually with the aforementioned C++
port.
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5. Benôıt Bocquillon, Adrien Bartoli, Pierre Gurdjos, and Alain Crouzil. On con-
stant focal length self-calibration from multiple views. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2007.

6. S. Bougnoux. From projective to Euclidean space under any practical situation,
a criticism of self-calibration. In Proceedings of the International Conference on
Computer Vision, pages 790–796, Bombay, 1998.

7. M. Brown and D. Lowe. Recognising panoramas. In Proceedings of the 9th In-
ternational Conference on Computer Vision, volume 2, pages 1218–1225, October
2003.

8. Matthew Brown and David G. Lowe. Unsupervised 3D object recognition and
reconstruction in unordered datasets. In Proceedings of the International Conference
on 3D Digital Imaging and Modeling, June 2005.

9. Matthew Brown and David G. Lowe. Unsupervised 3D object recognition and
reconstruction in unordered datasets. In Int. Conf. 3DIM, June 2005.

10. http://phototour.cs.washington.edu/bundler/.
11. Manmohan Chandraker, Sameer Agarwal, Fredrik Kahl, David Nister, and David

Kriegman. Autocalibration via rank-constrained estimation of the absolute quadric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, volume 0, pages 1–8, 2007.

12. Manmohan Chandraker, Sameer Agarwal, David Kriegman, and Serge Belongie.
Globally optimal affine and metric upgrades in stratified autocalibration. In Pro-
ceedings of the International Conference on Computer Vision, pages 1–8, 2007.
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