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Chapter 1
Introduction

Magnetic resonance imaging (MRI) is increasingly being used in medical set-
tings because of its ability to produce, non-invasively, high quality images of the
inside of the human body. Since its introduction in early 70’s, more and more
complex acquisition techniques have been proposed, raising MRI to be exploited
in a wide spectrum of applications. Innovative MRI modalities, such as diffu-
sion and functional imaging, require complex analysis techniques and advanced
algorithms in order to extract useful information from the acquired data.

The aim of the present work has been to develop and optimize state-of-the-
art techniques to be applied in the analysis of MRI data both in experimental
and clinical settings. During my doctoral program I have been actively involved
in several research projects, each time facing many different issues. In this dis-
sertation, however, I will report the results obtained in three most appealing
projects I partecipated to. These projects were devoted (i) to the implemen-
tation of an innovative experimental protocol for functional MRI in laboratory
animals, (ii) to the development of new methods for the analysis of Dynamic
Contrast Enhanced MRI data in experimental tumour models and (iii) to the
analysis of diffusion MRI data in stroke patients. Particular emphasis will be
given to the technical aspects regarding the algorithms and processing methods
used in the analysis of data.

1.1 Outline of the thesis

Apart from a brief introduction on magnetic resonance imaging principles, the
dissertation is organised in three parts, each one of them covering a separate
topic dealt with during my doctoral studies. Each chapter is self-contained, in
that it gives an introduction about the issue faced in the study, describes the
methods and the techniques employed, and concludes with a discussion about
the results obtained.

Chapter 3 illustrates the methodology proposed by our group for an inno-
vative method of fMRI (Activation-Induced Manganese Enhanced MRI, AIM-
MRI) in rats. The method is based on in-vivo, absolute quantification of Mn
concentration in different brain regions performed by fast T1 mapping and coreg-
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Introduction

istration to a rat brain atlas. This strategy allows to quantify the accumulation
of Mn in different regions of the rat brain, which is strictly related to the ac-
tivation status of each area. This mechanism is similar to what happens in
classical functional MRI studies but, in addition, it might be used for functional
experiments performed in awake animals.

In chapter 4 we cover the topic of tissues classification from MRI images in
some experimental tumour models and present some advanced image-processing
techniques we introduced for the analysis of Dynamic Contrast-Enhanced MRI
(DCEMRI) data. In particular, we proposed to estimate a set of characteristic
features from DCEMRI time profiles which well describe their shape, and then
to extract peculiar behaviours which discriminate each tissue inside the tumour
by combining cluster analysis and machine learning techniques. We have tested
several approaches, each time comparing them with the state-of-the-art tech-
niques of analysis for this kind of data. Finally, the proposed approach has
been validated in a real case application in order to assess the efficacy of an
anti-cancer therapy.

Chapter 5 addresses the study on post-stroke plasticity carried out in collab-
oration with the Signal Processing Laboratory of the Swiss Federal Institute of
Technology in Lausanne (EPFL). Brain structural connectivity was monitored
with Diffusion Spectrum Imaging (DSI), i.e. a high angular resolution diffusion
MRI technique, during the functional recovery from the stroke, at hyperacute,
acute and chronic stages after the lesion onset. The reproducibility of extracted
fibre tracts has been extensively studied on healthy subjects, and the parameter
set of fiber-tracking algorithm giving the best results was then used in patient
analysis. The extracted fibre bundles between each pair of cortical regions were
characterized by means of several connectivity measures.

2



Chapter 2
Magnetic Resonance Imaging

The aim of this chapter is to provide the reader with an overview on the basic
principles behind image formation inMagnetic Resonance Imaging (MRI). First,
we will briefly describe the underlying physics of Nuclear Magnetic Resonance
(NMR) up to the image formation process. Then, we will discuss the principle of
molecular self-diffusion and how it is related to the neuronal architecture of the
brain. Diffusion can be measured by an adapted MRI experiment and we will
show the connection between the physical principles of diffusion and imaging.
We will then present different models of diffusion, in particular the Diffusion
Tensor (DTI) and the Diffusion Spectrum (DSI) imaging.

2.1 NMR physical principles

Nuclei are composed of positively charged protons and uncharged neutrons held
together by nuclear forces. Both protons and neutrons have approximately the
same mass, which is about 1840 times as large as the mass of an electron, which
is negatively charged. Protons, neutrons and electrons possess also an angu-
lar momentum known as spin, which is a fundamental property of nature like
electrical charge or mass. Spin comes in multiples of ±1

2 . Individual unpaired
electrons, protons, and neutrons each possesses a spin of 1

2 . Two or more parti-
cles with spins having opposite signs can cancel out each other, such as helium
nucleus. This means that only atoms with a net spin can be NMR-active. Any-
way, almost every element in the periodic table has an isotope with a non zero
nuclear spin. Table 2.1 reports the most-used nuclei exploited in NMR experi-
ments.

Nuclei γ (MHz/T ) % in human body
1H 42.58 0.63
31P 17.25 0.0024
13C 10.71 0.094

23Na 11.27 0.00041

Table 2.1: Most-used nuclei in NMR/MRI experiments.
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Magnetic Resonance Imaging

2.1.1 Spin physics

In the presence of an external magnetic field B0, each spin behaves like a
small magnetic bar. It aligns almost parallel to the direction of the field (i.e.
the same way a compass aligns to the magnetic field of the earth). Because
of quantum mechanics laws, the behaviour is a bit different from a compass
needle. The spin does not align perfectly to the field B0: due to the torque
it experiences from the external magnetic field, it will precess around the field
axis, as shown in figure 2.1. The frequency of this precession motion, also
known as the Larmor frequency ω0, is given by:

ω0 = γB0 (2.1)

where γ is the gyromagnetic ratio specific for each kind of nucleus. Table 2.1
reports γ values for the most-used nuclei.

In an external magnetic field the number of possible values for the angular
momentum is 2I + 1, where I is the spin quantum number. The most typical
nucleus used in NMR experiments is the hydrogen nucleus, which has I = 1

2 .
This means 1H can have two possible orientations, parallel and anti-parallel to
B0 (i.e. spin-up and spin-down respectively). These two states possess slightly
different energy levels. Populations of the two levels are dependent on both the
external magnetic field and temperature. At 37 ◦C and 1.5 T field strength, the
ratio between the two energy levels is 1.000004, so slightly more protons are in
the spin-up state. The average of the magnetisation of each proton will give a
net magnetisation aligned exactly along the B0 field.

field axis, as shown in figure 1. The frequency of precession (known as the Larmor frequency)

can be derived from both classical and quantum mechanics. The Larmor frequency is given

in equation 1, where ω is the Larmor frequency, γ is the gyromagnetic ratio and B0 is the

amplitude of the Magnetic field (for derivation see appendix).

Figure 1: The proton aligns parallel or anti-parallel and precess in an magnetic field. Image retrieved
from http://www.easymeasure.co.uk/ [7]

ω = 2πν = γ · B0 (1)

In an external magnetic field the numbers of possible values for the angular momentum are

2I +1. The 1H have a spin quantum number, I = 1
2 . That means it can have two orientations

(energy levels) in the field, spin up or spin down (i.e. parallel and anti-parallel to B0). These

two energy levels have slightly different energies. Population of the two levels is dependent

on both magnetic field and temperature. At 37 ◦C and 1.5 T there is a ratio of 1.000004, so

slightly more protons with spin up. The average of all proton magnetization will give a net

magnetization aligned exactly along the B0 field.

It’s possible to induce transitions between the energy levels. This can be achieved by

an additional oscillating magnetic field, B1 perpendicular to the static field, generated by a

radiofrequency (RF) pulse. The frequency of the RF pulse must match the energy difference

between the two states of the proton. The relation between energy and frequency, de Broglies

equation is given in equation 2.

∆ε = ! · ω (2)

Where ∆ε is the energy difference, ! is Planck’s constant divided by 2π and ω is the

associated frequency. [4, 5, 6]

5

Figure 2.1: Each proton aligns parallel, spin + 1
2 , or anti-parallel, spin − 1

2 , and pre-
cesses in the external magnetic field B0. (image from http://www.easymeasure.co.uk)

Since the signal of one spin is impossible to measure, spins are generally
considered as an ensemble, or spin-packet, and are described in terms of pre-
cession around a spin magnetisation vector M. A spin-packet is a group
of spins experiencing the same magnetic field strength. When no external field
is applied, 1H spins are randomly distributed between the spin-up (+1

2) and
spin-down (−1

2) positions, and thus the net spin of the ensemble equals zero. In
the presence of an external magnetic field B0, the spin magnetisation vector M
will align itself with the field and the spins start precessing around B0.
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Magnetic Resonance Imaging

When considering a spin system it is handy to define a laboratory frame in
which M appears to be stationary and aligned with B0. Adopting the con-
ventional NMR coordinate system, the external magnetic field B0 and the net
magnetisation vector M are both along the z -axis at equilibrium, and the plane
orthogonal to the z -axis is the transverse xy-plane.

2.1.2 Measuring the signal

In order to obtain a measurable signal from an NMR experiment the system
must absorb energy that can later be emitted and measured. To achieve this,
it is possible to induce transitions between the two energy levels, i.e. spin-up
and spin-down states, exciting the system with an additional time-varying
rotating magnetic fieldB1, generated by a radio-frequency (RF) pulse, acting
perpendicular to B0 and oscillating at the Larmor frequency ω0.

The RF-pulse tilts M away from the z -axis and M starts precessing about
the rotating B1 field. The tip-angle α between M and the z -axis depends on
the duration τ of the RF-pulse and is given by:

α = γB1τ (2.2)

The cases α = 90◦ and α = 180◦ are the most commonly used in NMR ex-
periments. A 90◦ pulse tilts the magnetisation vector M onto the transverse
xy-plane, whilst the 180◦ pulse inverts M along the longitudinal z -axis.

2.2 Measuring the net magnetization

The net magnetization is flipped perpendicular to B0 field, this makes it possible to measure

the magnetization. Applying an RF pulse will make the magnetic moment of the protons to

change state, due to the higher number of spin-up protons more of them will change state and

the net magnetization will decrease. With the right strength and duration of the RF pulse the

net magnetization will be zero in the longitude view, this is called a 90◦ pulse. Fortunately

protons get into phase with each other during the RF pulse, otherwise the net magnetization

would be zero in the transverse plane too. So the RF pulse makes the net magnetization to

flip down from the z-axis and make the protons precess in phase.

Magnetization in the transverse plane will generate a current in the receiver coil (according

to Faradays law). Over time the signal decays while the net magnetization return to its

equilibrium state, as shown in figure 2. The induced signal is called the free induction decay

(FID). [4, 5, 6]

Figure 2: The transverse magnetization induces a current in the receiver coil and the signal is collected.
And overtime the signal decays. Image retrieved from http://www.easymeasure.co.uk/ [7]

2.3 Relaxation

There are two mechanisms that make the net magnetization return to its equilibrium value,

spin-lattice relaxation, spin-spin relaxation.

The return of magnetization in longitude direction (for example after a 90◦ pulse) is called

spin-lattice-, longitudinal- or T1 relaxation. Spin-lattice relaxation is loss of energy from the

spinning nuclei to the surroundings (lattice). This relaxation is characterized by the time

constant, T1. T1 is defined as the time between a complete 90◦ pulse and the relaxation back

to 63 % (1-1/e) of its original value. This means that protons with different surroundings will

relax with different T1 times and give a contrast between different compositions. T1 has a

great dependency of the magnetic field strength. [4, 5, 6]

The return of the transverse magnetization is called spin-spin-, transverse- or T2 relaxation.

The name spin-spin comes from the exchange of energy between the nucleuses. Spin-spin

relaxation is loss of phase coherence, this is due to inhomogeneities of the magnetic field.

6

Figure 2.2: Signal measurement. The transverse magnetisation induces a current in
the receiver coil and the signal is collected. The signal decays over time for relaxation
processes. (image from http://www.easymeasure.co.uk)

When an RF pulse α is applied to tilt the magnetisation M away from its
equilibrium state, M can be split into its components: M⊥ and Mz. Once the
RF pulse is removed, M falls back to its initial position aligned with B0, i.e.
Mz = M and M⊥ = 0. This process is called relaxation and is discussed in
section 2.1.3. During this relaxation process the energy that has been added
to the system by the RF pulse is emitted back and can thus be detected. In
fact, according to Faradays’s law, the transverse magnetisation M⊥ generates
a current in a receiver coil onto the xy-plane. The induced signal is called
the free induction decay (FID). Over time the signal decays while the net
magnetisation returns to its equilibrium state, as shown in figure 2.2.

5



Magnetic Resonance Imaging

2.1.3 T1 and T2 relaxation

There are two mechanisms that make the net magnetisation return to its equi-
librium value, the spin-lattice (or T1) and the spin-spin (or T2) relaxation. The
difference in the physical properties of different tissue types is reflected in the
relaxation times. Relaxation is the mechanism that generates the contrast be-
tween different tissue in MRI. Figure 2.3 shows some example images.

A B

Figure 2.3: Images with different contrast. The same slice has been acquired both
with T1-weighted (a) and T2-weighted (b) contrast.

The spin-lattice relaxation process involves the exchange of energy be-
tween the spin-system and the surroundings. At equilibrium, the net magnetisa-
tion vector lies along the direction of the applied magnetic field B0 and is called
the equilibrium magnetisation M0. In this configuration, the z -component of
magnetisation Mz equals M0. There is no transverse (M⊥) magnetisation here.
The equation governing this behaviour as a function of the time t after its dis-
placement is:

Mz = M0(1− e−t/T1) (2.3)
The time constant which describes how Mz returns to its equilibrium value is
called the spin-lattice relaxation time, or T1. T1 is the time to reduce the dif-
ference between the longitudinal magnetisation (Mz) and its equilibrium value
(M0) by a factor of e.

The spin-spin relaxation is the process where neighbouring spins come to
thermal equilibrium with themselves. In addition to the precession around field
B0, the net magnetisation starts to dephase because each of the spin-packets
making it up is experiencing a slightly different magnetic field and rotates at
its own Larmor frequency. The longer the elapsed time, the greater the phase
difference. The equation governing this behaviour as a function of the time t
after its displacement is:

M⊥ = M⊥0e
−t/T2 (2.4)

The time constant which describes the return to equilibrium of the transverse
magnetisation, M⊥, is called the spin-spin relaxation time, or T2. T2 is the time
to reduce the transverse magnetisation by a factor of e.

6
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Actually, the decay of transverse magnetisation M⊥ is more complicated. In
fact two distinct factors contribute to the dephasing of the magnetisation:

• molecular interactions (pure T2 molecular effect);

• variations in B0 (inhomogeneous T2 effect, or T∼2 ).

The combination of these two factors is what actually results in the decay of the
transverse magnetisation. The combined time constant is called T ∗2 . The rela-
tionship between the T2 from molecular processes and that from inhomogeneities
in the magnetic field is as follows:

1

T ?
2

=
1

T2
+

1

T∼2
. (2.5)

2.2 Image formation and k-space

As previously mentioned, the Larmor frequency is dependent on the external
field. In order to produce small variations inB0 field, gradient coils are employed
in MRI scanners. By using such polarizing gradient fields, i.e. Gx, Gy

and Gz, varying linearly along a particular axis (x, y and z respectively) but
constant in time, the Larmor frequency of each spin-packet changes depending
on its position. These variations are used to locate where the emitted signal
from each spin-packet originates. Figure 2.4 illustrate this process.

Frequency

S
ig
n
a
l

G
x
gradient active

S
ig
n
a
l

Frequency

No gradients

A B

Figure 2.4: Spatial encoding. If no gradient is applied (a), all the spin-packets (red
dots) are experiencing the same magnetic field B0, so there is only one peak in the
NMR spectrum. If a linear gradient Gx is applied along the x -axis (b), spin-packets at
different x locations are experiencing different magnetic field strength, i.e. B0 + xGx,
thus in the NMR spectrum there will be two separate peaks. The amplitude of the
signals is proportional to the number of spins in a plane perpendicular to the gradient.
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Due to this effect, a slice selection can be made by letting B1 oscillate
with different frequencies dependent on the choice of the slice to excite. This
is achieved by applying a linear magnetic field gradient during the period of
application of the RF pulse B1. A 90◦ RF pulse contains a band of frequencies.
When it is applied in conjunction with a magnetic field gradient, it will rotate
only those spins located in the selected frequency band, because only the spins
excited with the proper Larmor frequency will be affected by the RF pulse. In
fact, when the slice selection gradient Gz is turned on, the effective magnetic
field experienced at the position z is:

Beff = B0 + zGz (2.6)

and thus the resonance frequency of the spins is dependent on their position
along the z -axis, and equals to:

ωeff = γ(B0 + zGz) (2.7)

Once all spins inside a slice have been selected, the problem of spatially locate
them in the transverse xy-plane is still open. Generally, a phase-encoding
gradient Gy is first applied perpendicular to the slice gradient for a fixed
amount of time τ , which introduces a phase-shift in the FID signal dependent
on the position along the y-axis. The phase-shift is due to the difference in
frequency that varies with position, and is given by:

ϕ(y) = γ(yGy)τ (2.8)

where τ is the time over which Gy is applied. During the time Gy is on, spins
located in regions where the Gy strength is high will precess faster than in
regions of lower Gy. Thus, when the field gradient is turned off, the frequencies
will return to their initial values, but the phase-shifts accumulated in the time
τ between nuclei at different positions on the y-axis persist.

The final gradient to be exploited in order to retrieve the spatial location of
the spins is the frequency-encoding gradientGx, (also called read gradient).
This gradient is applied perpendicular to both slice and phase gradients, to form
a three dimensional coordinate system, and is turned on while the signal is being
sampled. This way, the frequencies of the spins will change again, depending on
their position along the x -axis. Once again, the position of the spin is encoded
by letting the resonance frequency of each spin to be proportional to its position
along the x -axis:

Beff = B0 + xGx (2.9)

Figure 2.5 shows a diagram summarizing the main steps involved in the acqui-
sition of an MRI image.

The resulting signal after successively applying Gz, Gy and Gx corresponds
to the Fourier-transform of the transverse magnetization M⊥. This reconstruc-
tion method is the so called Fourier Transform imaging.
In order to make the Fourier relation between the signal and the magnetization
more obvious, a reciprocal spatial frequency space, known as k-space, is intro-
duced. The measured signal for a set of gradients, Gz, Gy and Gx, produces a

8
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RF

Gz

Gy

Gx

Signal

Figure 2.5: Diagram of a typical imaging sequence for sampling k-space. The
gradient Gz is responsible for the slice selection, while Gx and Gy are responsible for
frequency and phase encoding, respectively.

single line in the k-space. Applying repeatedly these gradients in different com-
binations leads to different samplings of the k-space. Once the k-space has been
sampled, the MR image is obtained by applying the inverse Fourier transform.

2.3 Diffusion MRI

Water diffusion in living tissues is highly affected by its cellular organisation.
In the brain, experimental evidence suggests that the tissue component mainly
responsible for the anisotropy1 of molecular diffusion observed in white matter
is not myelin, as one might expect, but rather the cell membrane [1]. The degree
of myelination of the individual axons and the density of cellular packing seem
merely to modulate anisotropy. Furthermore, axonal transport, microtubules,
and neurofilaments appear to play only a minor role in anisotropy measured
with MR imaging (see figure 2.6).

Myelin

Cell membrane

Neurofi laments

A B

C

Figure 2.6: In a glass of water, the diffusion random motion of water molecules is
unrestricted (a). Axonal cell membrane (b) is the main component restricting water
diffusion. Thus, even though inside axones (c) the diffusion remains a random process,
the main diffusion direction is along the axis of the axon.

1Having properties that differ according to the direction of measurement
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Imaging the diffusion process in-vivo gives therefore an insight of the micro-
structure of the tissue. Anisotropic diffusion in white matter can be used
for mapping neuronal connectivity, and structures invisible with other imaging
modalities can be localised due to the information contained in the diffusion.
Diffusion imaging is therefore a valuable tool to improve our current knowledge
of the brain.

2.3.1 What is diffusion?

Diffusion is a mass transport process arising in nature, which results in molecular
or particle mixing without requiring bulk motion. Let’s imagine to introduce a
drop of ink into a glass of water. Initially, the ink appears to remain concentrated
at the initial point, but over time it spreads radially, in a spherically symmetric
profile. This mixing process takes place without stirring or other bulk motion.
The physical law that explains this phenomenon is called Fick’s first law:

J = −D · ∇C (2.10)

where J is the net particle flux, ∇C is the gradient in particles concentration,
and the constant of proportionality, D, is called the diffusion coefficient. The
diffusion coefficient D is an intrinsic property of the medium, and its value is
determined by the size of the diffusing molecules and the temperature and micro
structural features of the environment in which they lie. The diffusion coefficient
for water at 37◦C is approximately D = 3 · 10−3 mm2/s. Thus, if we observe
water molecules for, say, 30 ms, they will have displaced, on average, 25 µm in
all directions

By the way, a surprising feature of diffusion is that it occurs even in ther-
modynamic equilibrium, for example in a glass of water kept at a constant
temperature and pressure. This appears to be in contrast with the classic way
to describe the diffusion process, as expressed above in the Fick’s law. This
random-motion phenomenon was observed for the first time by Robert Brown
in 1828; he reported that particles moved randomly without any apparent cause.
He stated this by simply observing random movements of pollen grains with his
microscope. However, he was unaware of the existence of atoms.

One century later, Albert Einstein used a probabilistic framework to describe
the motion of an ensemble of particles undergoing diffusion, which led to a co-
herent description of diffusion, reconciling the Fickian and Brownian pictures.
He introduced the probability density function for this purpose (see figure 2.7),
which quantifies the fraction of particles that will traverse a certain distance,
r, within a particular time-frame, t, or equivalently, the likelihood that a single
given particle will undergo that displacement. Provided that the number of par-
ticles is sufficiently large and they are free to diffuse, Einstein was able to derive
an explicit relationship between the mean-squared displacement of the ensem-
ble, characterising its Brownian motion, and the classical diffusion coefficient D,
appearing in Fick’s law, given by the so called Einstein’s equation:

〈r2〉 = 6Dt (2.11)

where 〈r2〉 is the mean-squared displacement during the observation time t.

10
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Figure 2.7: 3D diffusion probability density function within a voxel: containing wa-
ter or randomly oriented structures that intersect (left) or containing two populations
of fibres intersecting at 90◦ angle (right). Probability ranges from low to high.

2.3.2 Diffusion Weighted Imaging

Diffusion Weighted Imaging, or DWI, is the simplest form of diffusion imaging.
Despite its simplicity, diffusion-weighted imaging is routinely used in investiga-
tions of stroke. Indeed, in acute stroke, the local cell swelling produces increased
restriction of water mobility and hence a bright imaging appearance due to high
signal intensity in the area of the lesion. Furthermore, a diffusion-weighted
image is one of the components needed to reconstruct the complete probability
density function with more complex diffusion MRI techniques, as we will see
later in the chapter.

RF

Gz

Gy

Gx

Signal

Gdiff

δ

90° 180°

δ

∆

Figure 2.8: Standard diffusion weighted imaging sequence. Two diffusion gradients
pulses (Gdiff ) are added to the classical Spin-Echo sequence (90◦ − 180◦) to introduce
a phase shift proportional to molecular displacement along the gradient direction.

As shown in figure 2.8, diffusion-weighted sequences are made sensitive to
diffusion by the insertion of two additional magnetic field gradient pulses, or
diffusion gradients, besides the standard Gx, Gy and Gz used for spatial
encoding. The first of the two gradient pulses in this sequence introduces a
phase-shift that is dependent on the strength of the gradient at the position of
the spin at t = 0. Before the application of the second gradient pulse, which
induces another phase-shift dependent on the spin position at t = ∆, a 180◦ RF
pulse is applied to reverse the phase-shift induced by the first gradient pulse.
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As long as spins remain stationary, i.e. remain at the same location along
the gradient axis between the two pulses, the net phase accumulation will be
constant irrespective of their position and therefore they will return to their
initial state. However, spins that have moved will be subjected to a different
field strength during the second pulse and therefore will not return to their
initial state but will experience a nonzero phase-shift. If all spins underwent
the same net displacement, they would all undergo the same phase change, such
that, although the phase had changed, the signal would remain coherent and
there would be no concomitant drop in signal amplitude. Under the diffusion
process, however, we get a distribution of displacements and thus a distribution
of phases. This phase dispersion leads to a loss of coherence and therefore a
reduction in signal amplitude. The wider the spread of displacements, the
greater the loss of signal.

The b-value

In diffusion imaging, b-value is often used for describing the diffusion sequence
that has been used for the image acquisition. b-value, or simply b, is a quantity
which quantifies the degree of diffusion that have been applied in the sequence.
For the specific sequence shown in figure 2.8, b equals to:

b = γ2 · |Gdiff |2 · δ2 ·
(

∆− δ

3

)
(2.12)

where |Gdiff | is the amplitude of the magnetic field gradient pulses Gdiff , and
δ and ∆ are their duration and temporal separation, respectively.

It is worth noting that, although the real separation between the two pulses
is ∆, the effective diffusion time is t = (∆−δ/3), where δ/3 is a correction due to
the diffusion which occurs while the gradient pulse is applied. Diffusion motions
occurring during the gradient pulse are difficult to quantify, so the smaller the
pulses are, the more precise the information about diffusion will be. Even if
very short pulse gradients are practically unfeasible, we will try to make them
as small as possible, δ � ∆, to be able to consider the displacements during the
gradient pulse negligibly small.

Estimation of the diffusion coefficient

So far, we have made the assumption that the molecules are free to move.
However, if the diffusing water molecules encounter any hindrances along their
random walk, such as cell membranes and macromolecules, the mean squared
displacement per unit time will be lower than when observed in free water. If we
apply Einstein’s equation to compute the diffusion coefficient, it will appear that
the diffusion coefficient D is lower than expected. Thus, the physical diffusion
coefficient D is replaced by the Apparent Diffusion Coefficient, ADC, which could
be estimated from the equation:

Ib = I0 · exp
(
− b · ADC

)
(2.13)

where Ib is the diffusion-weighted image acquired with a specific b value and I0

is a reference image without diffusion weighting.
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The problem of diffusion-weighted imaging is that the interpretation of the
resulting images is not intuitive. In fact, the ADC is strictly dependent on
the direction of diffusion encoding, as shown in figure 2.9. To overcome this
limitation, one can perform three orthogonal measurements and average the
result to obtain a better approximation of the diffusion coefficient.

A B C

Figure 2.9: DWI images obtained, for the same slice, with diffusion gradients
oriented in the Inferior-Superior (A), i.e. through the plane, Left-Right (B) and
Anterior-Posterior (C) direction, respectively. (image from http://www.med.lu.se)

2.3.3 Diffusion Tensor Imaging

For the measurement of the coefficient of diffusion, we have assumed that dif-
fusion follows a free-diffusion physical model and is described by an isotropic
Gaussian distribution. This model often is too simplistic, especially if we are
interested in the orientation of axonal bundles in which diffusion is expected to
be anisotropic. Isotropic diffusion has a constant diffusion coefficient, ADC, but
when the diffusion varies with directions it is anisotropic and must be modelled
with a tensor, D.
The diffusion tensor imaging (DTI) formalism was introduced by Basser in 1994
[2, 3]. This approach was the first one to provide a unified description of the
diffusion from a series of diffusion weighted images. Basser proposed to fit a sec-
ond order tensor to the diffusion data in every voxel to characterise the shape
of the underlying diffusion process, as in figure 2.10.

arrangement. The movement of water molecules
during diffusion-driven random displacement is
impeded by compartmental boundaries and other
molecular obstacles in such a way that the actual
diffusion distance is reduced, compared with that
expected in unrestricted diffusion. A defining
characteristic of neuronal tissue is its fibrillar
structure. Neuronal tissue consists of tightly
packed and coherently aligned axons that are sur-
rounded by glial cells and that often are organized
in bundles. As a result, the micrometric move-
ments of water molecules are hindered to a
greater extent in a direction perpendicular to the
axonal orientation than parallel to it (Fig 3b).
Consequently, molecular displacement parallel to
the fiber typically is greater than that perpendicu-
lar to it. When diffusive properties change with
the direction of diffusion, the prevailing condition
is anisotropy, and the associated displacement
distribution is no longer isotropic and Gaussian,
like that in unrestricted diffusion, but cigar
shaped. Of course, the distribution may be even
more complicated if the underlying tissue con-
tains fibers with various orientations (Fig 3c) (3).

Experimental evidence suggests that the tissue
component predominantly responsible for the
anisotropy of molecular diffusion observed in
white matter is not myelin, as one might expect,
but rather the cell membrane (4) (Fig 4). The
degree of myelination of the individual axons and
the density of cellular packing seem merely to
modulate anisotropy. Furthermore, axonal trans-
port, microtubules, and neurofilaments appear to
play only a minor role in anisotropy measured at
MR imaging (4).

Diffusion Represented
by a Six-dimensional Image

The image data acquired with computed tomog-
raphy (CT) or MR imaging are usually 3D data.
Every position in 3D space is associated with a
gray level that encodes the linear attenuation co-
efficient at CT or the relative signal intensity at
MR imaging. In mathematical terms, the 3D im-
age is a function of the position variable p (a 3D
vector) and is designated as ƒ(p). Furthermore,
the brain is a highly compartmentalized and het-
erogeneous medium, with a different cytoarchi-
tecture in different locations. Accordingly, if the
local displacement distribution were measured in
various brain locations (voxels), there would be as
many different 3D displacement distributions as
there are voxels. To describe diffusion properly in
such a medium, every voxel position p must be
assigned a diffusion probability density function
(equivalent to the displacement distribution).
Since the visual representation of a diffusion
probability density function is a 3D image, the
natural result of the combination of the two vari-
ables p and r is a six-dimensional (6D) image.
The 6D image fully characterizes diffusion in a
heterogeneous medium, as it depicts the propor-
tion of molecules ƒ(p,r) in voxel position p that
have been displaced a distance r (Fig 5). In other
words, instead of each individual position being
assigned a single gray level as in CT or standard
MR imaging, each position p is associated with
a new 3D image on which molecular displace-
ment is encoded. The resultant 6D image rep-
resents the function of three position variables

Figure 5. Left part of diagram shows that standard imaging methods provide one value
(gray level) for every 3D position p. That value or gray level may code for the linear x-ray
attenuation coefficient at CT or for the relative signal intensity at MR imaging. Right part of
diagram shows that in diffusion imaging every 3D position p (voxel) is associated not with a
gray level but with a 3D image that encodes the molecular displacement distribution in that
voxel. The value measured at the coordinates p,r—ƒ(p,r)—indicates the proportion of mol-
ecules in the voxel that have moved the given distance r.
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Figure 2.10: In diffusion tensor imaging every 3D position is associated with a 3D
image that encodes the molecular displacement distribution in that voxel.
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This diffusion tensor, D, is a 3×3 symmetric, semi-positive definite matrix
that characterises displacements in three dimensions:

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (2.14)

The diagonal elements of this matrix correspond to diffusivities along three
orthogonal axes, while the off-diagonal elements correspond to the correlation
between displacements along those orthogonal axes. The diffusion tensorD fully
characterises the variation of the diffusion dependent on direction. In fact,D can
be viewed as the three-dimensional covariance matrix of displacements in a
given time. It is important to realise that, for example, Dxy is not the apparent
diffusion coefficient measured with a diffusion-encoding gradient applied along
the xy-axis; instead, Dxy correlates displacements along the x and y-axes.

DTI model is based on the hypothesis that the diffusion is unrestricted and
can therefore be modelled by a Gaussian distribution. For purposes of this
introduction, then, let us assume that diffusion remains Gaussian but may be
anisotropic. In other words, diffusion may be cigar or disc shaped but also may
be spherical, as in isotropic diffusion.

The diffusion ellipsoid

By diagonalising the diffusion tensor D, we obtain its eigenvalues (λ1, λ2, λ3

where λ1 ≥ λ2 ≥ λ3) and the corresponding eigenvectors (e1, e2, e3). Since
the tensor is symmetric and semi-positive definite, the eigenvalues are always
non-negative even though noise can destroy its semi-positivity. The largest
eigenvalue and its corresponding eigenvector describe the quantity and direction
of the principal diffusion, respectively.

λ
1
·e

1

λ
2
·e

2 λ
3
·e

3

A B

Figure 2.11: Diffusion tensor visualisation. In (a) the tensor is represented as
an ellipsoid whose shape is controlled by its eigenvectors/eigenvalues. In (b) a color-
coded map is used: RGB colors are used to represent Inferior-Superior, Anterior-
Posterior and Left-Right components of the main diffusion direction, respectively.
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The diffusion tensor is normally visualised as an ellipsoid, as in figure
2.11 a, with the principal axes along the eigenvectors of the tensor D, i.e.
e1, e2 and e3, and with the length of these axes proportional to the correspond-
ing eigenvalues, i.e. λ1, λ2 and λ3. An anisotropic tensor has a distinct cigar
shaped look whereas an isotropic tensor approaches the shape of the sphere.

Another practical way of visualising diffusion tensors fields is the so called
color-coded map. For each voxel, the principal diffusion direction, i.e. the
one corresponding to the greatest eigenvalue of the tensor D, is decomposed into
its 3 orthogonal components. Then each component is assigned to a separate
channel of an RGB image and the intensity is determined by the fractional
anisotropy (introduced later in this chapter). In figure 2.11 b, for example,
the red channel represents Inferior-Superior direction (I-S), while green and
blue channels represent Anterior-Posterior (A-P) and Left-Right axes (L-R),
respectively. With this convention, for instance, violet pixels can be seen as
water molecules which moves in a L-R/I-S direction.

Estimation of the diffusion tensor

Anisotropic Gaussian distributions have 6 degrees of freedom (rotation and
scale) and thus there are only six unknown elements to determine. These are
estimated from a series of diffusion-weighted images acquired with gradients
applied in non-collinear and non-coplanar directions [2, 3]. According to linear
algebra, in order to find n unknown variables, at least n simultaneous equations
should be solved. The same applies when estimating the diffusion tensor from
MR data. Hence, at least 6 diffusion-weighted images must be acquired with
gradients applied in non-collinear and non-coplanar directions, together with an
additional reference non-diffusion-weighted image.

A key component in the estimation of the tensor is the calculation of the
relationship between the signal attenuation and the elements of the diffusion
tensor for a given gradient amplitude, duration, and separation. As the tensor
is a 3×3 matrix, this coupling also takes the form of a 3×3 matrix. In analogy to
the scalar b-value used when estimating the scalar ADC coefficient, this matrix
is called the b-matrix, B. For details on derivation of this b-matrix, please
refer to [4]. Equation 2.13 can thus be rewritten for anisotropic media as:

IB = I0 · exp

([
−bxx ·Dxx −byy ·Dyy −bzz ·Dzz

−2bxy ·Dxy −2bxz ·Dxz −2byz ·Dyz

])
(2.15)

where bxx, . . . , bzz and Dxx, . . . , Dzz are the components of the b-matrix B and
the tensor D, respectively.

The simplest estimation approach is by means of linear algebra. If S =
[s1, s2, . . . , sN ] is a vector of the log-transformed signal intensities, B is a (N×6)
matrix containing the unique elements of the b-matrix for each measurement,

B =

b
1
xx b1xy b1xz b1yy b1yz b1zz
...

...
...

...
...

...
bNxx bNxy bNxz bNyy bNyz bNzz
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and D is a vector containing the elements of the diffusion tensor,

D =
[
Dxx Dxy Dxz Dyy Dyz Dzz

]T
then we can summarise the relationship between the observed signals S and the
diffusion tensor D as:

S = BD

Therefore, we can estimate D by simply taking the inverse of B:

D = B−1S (2.16)

Of course, this approach is fine if we have exactly six measurements such that
the matrix B is square. It is usual, however, to acquire more than the bare
minimum number of measurements in order to improve SNR of the data. In
this case, since the matrix B is no longer square, the tensor is computed by
calculating the pseudo-inverse of B:

D = (BTB)−1BTS (2.17)

Scalars derived from the diffusion tensor

The most clinically useful measure obtained from DTI is currently the trace of
the diffusion tensor. The trace is the sum of the three diagonal elements of the
diffusion tensor, i.e. tr(D) = Dxx +Dyy +Dzz, which can be shown to be equal
to the sum of its three eigenvalues (i.e. λ1 +λ2 +λ3). A very important quantity
related to the trace is the mean diffusivity, which is given by:

MD =
trace(D)

3
=
Dxx +Dyy +Dzz

3
(2.18)

MD can be thought of as the orientationally averaged mean diffusivity, and is
high-valued in areas of strong diffusion, such as the ventricles in figure 2.12 a.

A B

Figure 2.12: DTI scalar maps. Mean diffusivity (a) and fractional anisotropy (b)
are the two most important scalars extracted from diffusion tensors.

Another important measure which is possible to obtain from DTI data is the
fractional anisotropy, FA. The relationship between the eigenvalues of the
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tensor reflects the directional characteristics of diffusion. To describe the shape
of diffusion with a scalar value, FA is the most commonly used anisotropy index
in the literature, and is calculated as follow:

FA =

√
3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

λ2
1 + λ2

2 + λ2
3

(2.19)

where λ = (λ1 + λ2 + λ3)/3 ≡ MD is the mean of the three eigenvalues.
FA is properly normalised so that it ranges from 0 (when diffusion is isotropic,
e.g. inside the ventricles) to 1 (when diffusion is constrained along one axis only,
e.g. in white matter). Figure 2.12 b shows an example of FA map.

2.3.4 High Angular Resolution Diffusion Imaging

The DTI model performs well in regions where there is only one fibre population
(i.e. fibres are aligned along a single axis), where it gives a good depiction of
the fibre orientation. However, it fails in regions with several fibre populations
aligned along intersecting axes, because it cannot be used to map several diffu-
sion maxima at the same time. In such areas, imaging techniques that provide
higher angular resolution are needed.

The q-space

According to basic MR imaging principles seen in section 2.2, the signal mea-
sured with conventional MR imaging is phase and frequency encoded. It is the
result of the application of gradients in different directions and with different
intensities. The values of the measured signal are organised in a coordinate
system known as k-space. To transform the acquired rawdata from k-space into
a position-encoded visual image, the Fourier transform is applied.

The process in diffusion MRI is analogous. Let us first define a new 3D space,
called q-space [5], the coordinates of which are defined by a vector q. With a
single diffusion sequence application one diffusion-weighted image is acquired,
which depicts the diffusion-weighted signal intensity in a specific position q
of the q-space, i.e. a specific gradient strength and direction, for every brain
position, as shown in figure 2.13.very short diffusion time interval, there is a similar

amount of diffusion in every direction. When the
interval is longer, diffusion perpendicular to the
direction of the axon stops when the molecules
reach the axon wall, while diffusion along the long
axis of the axon continues. Thus, a longer interval
increases the distinction between the signals in
different directions; however, it also leads to a
lower signal-to-noise ratio.

To describe the parameters applied in sam-
pling q-space, the term “b value” is often used.
The b value is proportional to the product of the
diffusion time interval and the square of the
strength of the diffusion gradient. All diffusion
images should be compared with a reference im-
age that is not diffusion weighted (a standard
SE image)—in other words, one for which the
strength of the diffusion gradient is zero (q ! 0
and b ! 0).

Diffusion Spectrum Imaging
Diffusion spectrum imaging may be described as
the reference standard of diffusion imaging be-
cause it is the practical implementation of the
principles derived earlier and is the diffusion im-
aging technique that has a sound basis in physical
theory (12). Suitable for in vivo application, it
provides a sufficiently dense q-space signal
sample from which to derive a displacement dis-
tribution with the use of the Fourier transform.
The technique was first described by Wedeen et
al (13).

If established practice is followed, 515 diffu-
sion-weighted images are acquired successively,
each corresponding to a different q vector, that
are placed on a cubic lattice within a sphere with
a radius of five lattice units. The lattice units cor-
respond to different b (or q) values, from b ! 0
(which corresponds to the centerpoint of the
sphere) to, typically, b ! 12,000 sec/mm2 (which
is a very high b value). The Fourier transform is
computed over the q-space data. If the imaging
matrix size is 128 " 128 " 30, the same number
of Fourier transform operations will be necessary
as the diffusion probability density function is
computed for every brain location.

Traditionally, 515 images were considered
necessary to obtain data of good quality, although
the acquisition of that number of images is very
time consuming. With improvements in MR im-
aging hardware and techniques in recent years,
and in view of additional very recent experience,
fewer sampling points seem to be necessary; the
probability density function can be reconstructed
with approximately 257 or even 129 images by
sampling only one hemisphere in q-space. Of

course, the signal-to-noise ratio and angular reso-
lution may change accordingly. The time for im-
aging of both brain hemispheres thus can be re-
duced from approximately 45–60 minutes to as
little as 10–20 minutes, an acquisition time that
makes the technique feasible in a clinical setting
(14).

With the application of the Fourier transform
over q-space in every brain position, a 6D image
of both position and displacement is obtained.
Diffusion at each position is described by the dis-
placement distribution or the probability density
function, which provides a detailed description of
diffusion and excellent resolution of the highly
complex fiber organization, including fiber cross-
ings. Since diffusion spectrum imaging is mostly
used for fiber tractography, in which only direc-
tional information is needed, the probability den-
sity function is normally reduced to an orientation
distribution function by summing the probabili-
ties of diffusion in each direction (Fig 7).

From the Simplest to the
Most Sophisticated Technique

Diffusion-weighted MR Imaging
Diffusion-weighted MR imaging is the simplest
form of diffusion imaging. A diffusion-weighted
image is one of the components needed to recon-
struct the complete probability density function
as in diffusion spectrum imaging. A diffusion-
weighted image is the unprocessed result of the
application of a single pulsed gradient SE se-
quence in one gradient direction, and it corre-
sponds to one point in q-space. Even though such
an image is rather simple, it does contain some
information about diffusion. In Figure 13, the left
splenium of the corpus callosum appears bright,
whereas the right splenium appears dark. In re-
gions such as the right splenium, where the main
diffusion direction is aligned with the applied dif-

Figure 13. Diffusion-weighted image (right) from
signal sampling at a single point in 3D q-space (left).
Brain areas where diffusion is intense in the direction of
the applied gradient ( q! ) appear darker because of a
decrease in the measured signal that results from
dephasing.

S214 October 2006 RG f Volume 26 ● Special Issue

R
a

d
io

G
ra

p
h

ic
s

Figure 2.13: q-space. One diffusion-weighted image (right) is the result of sam-
pling the signal at a single point q in the q-space (left).

17



Magnetic Resonance Imaging

Repeated applications of the sequence with gradients that vary in strength and
in direction (i.e. with variations of q) allow data sampling throughout q-space.
Like data from conventional MR imaging, in which a Fourier transform is applied
to the data in k-space, the q-space data are subjected to a Fourier transform
in every brain position. The result is a displacement distribution in each brain
position, as seen in figure 2.10.

Bearing this in mind, it is possible to review the DTI method with the
help of the q-space formalism. In fact, acquiring a DTI dataset means that at
least six points in q-space with q 6= 0 and one point with q = 0 have to be
sampled, as illustrated in figure 2.14. In general, constant size q vectors with
b of approximately 1000 s/mm2 are used, whose directions are arranged equally
spaced in a sphere.

Figure 2.14: Diffusion tensor imaging. In q-space formalism, DTI samples q-
space in at least six different directions, i.e. six different q vectors, with an additional
reference image without diffusion-weighting, i.e. q = 0. The direction but not the
strength (i.e. constant b) of the diffusion gradient is changed for each sampling.

Diffusion Spectrum Imaging

Diffusion spectrum imaging, or DSI, was first introduced by Wedeen in 2000 [6].
DSI attempts to measure directly the probability density function of displace-
ment of water molecules, introduced in section 2.3.1, making no assumptions
about its shape or tissue micro-structure. This is quite remarkable: in fact,
DTI makes a strong Gaussian assumption about the underlying diffusion pro-
cess, which prevents fibre-crossing to be properly identified by the method.

Figure 2.15 compares the angular resolution of both DTI and DSI in a region
of crossing-fibres. In the pons (yellow box), the middle cerebellar peduncle
crosses the corticospinal tract. In the centrum semiovale (red box), the corti-
cospinal tract crosses the corpus callosum and the arcuate fasciculus. The figure
clearly depicts that DTI is not able of resolving crossing fibres, whereas DSI is.
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DSI

DTI DSI

DTI

Figure 2.15: DTI vs DSI comparison in regions that contain fibre crossings. The
pons (yellow box) and the centrum semiovale (red box) are highlighted.

According to [5], if a particle is moving due to diffusion process from position
x1 to position x2 in the time-frame ∆ between the applications of two gradient
pulses Gdiff , the signal attenuation A(q) is then given by:

A(q) =
S(q)

S(0)
=

∫
ρ(x1)

∫
P (x1, x2,∆)e−iq(x2−x1)dx1dx2 (2.20)

where q = |γδGdiff | describes the applied diffusion gradient.
The function ρ(x1) gives the spin density at the time of application of the

first pulse, and quantifies the likelihood of finding a spin at location x1.
The function P (x1, x2,∆) is called diffusion propagator and denotes the like-
lihood that a particle initially located at position x1 will have ended up at x2

after a time ∆.
Unfortunately, both of the previous functions are unlikely to be obtained in

practice. By the way, in most applications, this function can be taken to be a
constant throughout the water-filled region, where the value of the constant is
determined by setting

∫
ρ(x1) = 1. Moreover, by introducing a net displacement

variable x = x2 − x1, it is possible to rewrite the equation 2.20 as follows:

A(q) =

∫
P (x,∆)e−iqxdx (2.21)

where P (x,∆) is the ensemble average propagator given by

P (x,∆) =

∫
ρ(x1)P (x1, x1 + x,∆)dx1 (2.22)

This procedure was initially proposed by Stejskal [7] and makes it possible to
estimate the average propagator from signal attenuation data by inverting the
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Fourier transform in equation 2.21. Hence, if the average propagator is recon-
structed at each voxel of the image, spatially localised displacement maps can
be obtained as in figure 2.10.

The average propagator provides a detailed description of the diffusion and
manages to resolve highly complex organisation of fibres. For simplicity, P (x,∆)
is normally reduced to an orientation density function, ODF, through a
radial projection of P (x,∆) according to:

ODF (r̂) =
1

Z

∫ ∞
0

P (εr̂,∆)dε (2.23)

where r̂ is a unit vector and Z is a normalisation constant. DSI usually computes
ODF (r̂) for each of a finite set of directions r̂ by taking steps along the line in
direction r̂, interpolating the discrete propagator P (x,∆) to estimate its value
at each step, and summing the values over all steps.

Figure 2.16: Diffusion spectrum imaging. Each image shows the diffusion-weighted
image acquired at the corresponding point in q-space. Every sampling point in q-space
corresponds to a specific direction and strength of the diffusion gradient, i.e. q vector.
In established practice, up to 5 shells at different b values are sampled.

If established practice is followed, 515 diffusion-weighted images are acquired
successively, each corresponding to a different q vector, that are placed on a
cubic lattice within a sphere with a radius of up to five lattice units. The lattice
units correspond to different b values, ranging from b = 0 (which corresponds
to the centre point of the sphere) to, typically, b = 8000 s/mm2 (which is a very
high b value). So far, 515 images have been considered necessary to obtain data
of good quality, although the acquisition of that number of images is very time
consuming. Improvements in MR imaging hardware and techniques in recent
years, especially multi-channels coils, have allowed to reduce the acquisition time
for a whole brain acquisition from the standard 45-60 minutes to approximately
10-20 minutes, making DSI feasible in clinical settings.
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Q-ball Imaging

With the purpose of reducing the acquisition time, methods for approximating
the ODF have appeared in the last decade. Keeping only directional information
means that a lot of unnecessary information is acquired during the measure-
ments. The aim of this section is to provide the reader with some details of one
of these approximating method. Q-ball imaging, or QBI, was first introduced
by Tuch in 2004 [8]. QBI is a way of approximate the ODF avoiding to measure
unnecessary information by sampling the diffusion signal directly on the sphere,
as in figure 2.17 a.

A B

Figure 2.17: Q-ball imaging. (a) Points on only one shell with a constant b value
are acquired in q-space. At least 60 images are necessary to reconstruct an orientation
distribution function that is realistic. (b) The FRT assigns a value to a given point on
the sphere (pointed by the green arrows), where the point can be seen as a pole and
the value assigned to it is the integral over the corresponding equator (red disk).

Acquisition requirements are therefore more manageable than DSI, although
the approximation of the ODF introduces some blurring, which may reduce an-
gular resolution and precision of peak directions. In the absence of noise, the
approximation of the ODF becomes more accurate as the fixed b value of the
measurements increases. However, in practice, noise becomes more significant
as b increases and a good balance needs to be found (see [9, 10] for details).

The approximation of the ODF made in QBI comes from a mathematical
trasformation called Funk-Radon transform, or simply FRT. The FRT is a
transformation of spherical functions that maps one function of the sphere to
another, and can be seen as a generalisation of the Radon transform2 to the
sphere. Let’s see how FRT works with an example. Suppose we want to know
the diffusion intensity (i.e. the value of the ODF) in a direction that corresponds
to the North Pole (green arrows in figure 2.17 b) and that the MR signal has
been sampled over the whole sphere. If we add together the values of the signal

2The Radon transform is the basis of tomographic reconstructions used to recover images
from CT scans.
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intensity measured along the equator (red disk), the sum will be proportional to
the diffusion intensity at the North Pole. ODF can be estimated by repeating
this process for each point of the surface and redefining the equator accordingly.

2.3.5 Fibre tractography

Although a detailed discussion of fibre tractography is beyond the scope of this
chapter, a brief explanation is necessary because tractography will be extensively
used later in chapter 5.

Brain fibre tractography is a rendering method for improving the com-
prehension and thus the analysis of data from diffusion imaging of the brain.
As shown in figure 2.18, it produces trajectories capturing coherent orientations
of maximal diffusion that are likely to represent real axonal trajectories.

3. Tractography

Figure 3.1: Illustration of the FACT algorithm propagation technique on DTI. Every time
the fiber enters a new voxel, the orientation is updated to match the local orientation.

to produce probabilistic maps of connectivity, that can be used to create trajectories in
the brain white matter. Finally, the third characteristic of a tractography algorithm is the
method of selection of the fiber tracts. Several possibilities have been investigated: selec-
tion of the desired fibers by capturing fibers starting from, arriving to or simply running
through a particular region of interest (ROI), selection of fibers linking two or multiple
ROIs, or selection of fibers by other criterions such as the probability of connection, or
other scalar value computed along the tract.

The aim of this chapter is to provide the reader with an overview of the existing trac-
tography approaches. We try to focus on the basic principles behind the line propagation
techniques and energy minimization techniques, rather than collecting an exhaustive list
of all the existing tractography algorithms. Next, we discuss the main advantages and
shortcomings of the presented approaches, and we analyze the possibilities and the limi-
tations of tractography.

3.2 Line propagation techniques

Deterministic algorithms

Let us start by considering a DTI data set, that we reduce into a simple vector field by
capturing in each voxel the main orientation of diffusion. This vector field is assumed
to represent the orientation of dominant axonal tracts. A simple way to build three-
dimensional trajectories in this vector field consists in choosing a seed point, and let a
fiber expand along the local orientation of the vector field. As soon as the fiber enters a
new voxel, the orientation is updated to match the local orientation, as depicted in Figure
3.1. This linear propagation approach, called FACT (Fiber Assignment by Continuous
Tracking), is considered as the first published tractography technique [150]. It has been
successfully used to reconstruct brain axonal projections in the rat [231], and despite its
relative simplicity is still widely used by the scientific community. Others have proposed
to propagate the lines using a small step size, the orientation at each step being computed
by interpolation of the vector field, or more rigorously by interpolation of the diffusion
tensors themselves [15, 50]. These methods have proved to generate smoother tracts,
especially for highly-curved tracts with respect to the size of the imaging voxels.

Depending on the type of study, several initialization strategies can be investigated.
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Figure 2.18: Diffusion fibre tractography. The simplest method exploits diffusion
information inside each voxel to propagate trajectories from voxel to voxel capturing
coherent orientations of maximal diffusion. (image from [11])

However, it’s worthy to keep in mind that there are several orders of magnitude
between the resolution of the MR acquisitions and the diameter of the axons.
Therefore, tractography is only able to map large axonal bundles, and a single
fibre produced by any algorithm has to be thought of as representative of a huge
coherent set of real anatomical trajectories.

Lots of tractography algorithms have been proposed in the last decade,
demonstrating the challenge issued by this topic and the great interest it has
raised in the scientific community. A tractography algorithm is essentially
defined by two main characteristics:

• the type of data it works on (e.g. DTI, DSI, QBI . . . )

• the technique used to generate the trajectories (e.g. line-propagation or
energy-minimization techniques)

They differ a lot in results accuracy, as well as in time required to generate
the fibres. Generally, high complexity techniques are very accurate, at the price
of requiring up to several days to produce a whole-brain tractography. For in-
stance, Gibbs tracking algorithm [12] consists in a one-month process, which is
by far too long to be considered for clinical applications, whilst a whole-brain
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tractography can be achieved in a couple of minutes with the simpler FACT
algorithm. FACT (Fiber Assignment by Continuous Tracking) is the first deter-
ministic line-propagation algorithm introduced by Mori in 1999 [13, 14]. Despite
the fact that deterministic line-propagation algorithms have been proved to suf-
fer from many limitations, they are still largely used by the scientific community.
Several studies have shown that despite these limitations, the FACT algorithm
and the related line-propagation techniques allow to accurately reconstruct the
major fibre bundles in the brain [15, 16]. In figure 2.19 an example of FACT-
based tractography performed on DSI data of an healthy subject is shown.

Figure 2.19: Diffusion fibre tractography. Representative fibre bundles recon-
structed from DSI data of an healthy brain.

Diffusion MRI is able to give effective information about the micro archi-
tecture of white matter fibre bundles in the brain but, however, it suffers from
many limitations which may dramatically affect the results of tractography.
Except systematic biases arising normally in MRI, e.g. aliasing and partial vol-
ume effects, noise plays an important role in diffusion fibre tractography. In
fact, it may lead to deviations of the principal diffusion direction from the real
one of the underlying fibre tract. Furthermore, the limited spatial and angu-
lar resolution may lead to detection of imprecise principal directions or even
produce unwanted local maxima directions of diffusion (e.g. by smoothing two
separate diffusion peaks into one). Perhaps themost important limitation of
tractography is that it is not fully validated. Attempts to clinically validate this
technique have been made in the past [17]. Most of these efforts are based on
comparisons of tractography results with known neuroanatomy atlases. Thus,
diffusion tractography has to be used with caution.
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Chapter 3
T1 mapping and MEMRI

Manganese-enhanced MRI (MEMRI) is a relatively new method for investiga-
tion of neuronal pathways, enhancement of brain neuroarchitecture and func-
tional MRI (fMRI) in laboratory animals [18, 19]. On the basis of Mn ions’
capacity to enter excitable cells via voltage-gated calcium channels, MRI pro-
tocols have been devised that enable accumulation of Mn in active areas of the
brain; this application has been termed activation-induced MEMRI (AIM-MRI)
[18]. Accumulation of Mn in specific brain areas can easily be monitored by MRI
thanks to its effect on longitudinal relaxation time. Compared to standard Blood
Oxygenation Level Dependent (BOLD) fMRI techniques, AIM-MRI has several
advantages:

1. higher sensitivity and signal-to-noise ratio, which allows fMRI at high
spatial resolution and/or with mild sensory stimulation [19];

2. unlike BOLD, AIM-MRI depends not on blood hemodynamics but directly
on neuronal activity;

3. Mn accumulation is visible in standard T1-weighted images that are supe-
rior in terms of anatomical detail to T ∗2 -weighted images used in BOLD
acquisitions.

AIM-MRI experiments encompass three steps:

1. a certain amount of Mn ions needs to be delivered to the brain parenchyma;

2. the stimulus has to be applied;

3. differential accumulation of Mn in activated brain regions needs to be
detected by T1-weighted MRI.

The first step has been performed using different modalities: intravenous (i.v.)
injection (with or without artificial opening of the Blood-Brain Barrier, BBB),
intracerebral, intraperitoneal (i.p.), or subcutaneous injection. Most of the AIM-
MRI experiments reported in the literature have been performed after i.v. infu-
sion of MnCl2 and artificial opening of the BBB [19, 20]. However, some recent
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works have reported functional experiments performed after i.v. administration
without BBB opening, or i.p. administration [21, 22]. Kuo et al. [21] reported
detection of hypothalamic neuronal activity in-vivo after i.v. administration
of MnCl2 without compromise of the BBB. Yu et al. [22] demonstrated that
AIM-MRI can detect sound-evoked activity in awake mice behaving normally
after i.p. administration of MnCl2. I.p. infusion appears particularly interesting
because it can be used to study functional response in awake animals, if MRI is
performed after the presumed activity has occurred and is preceded by an i.p.
injection of Mn [23].

Differential accumulation of Mn in activated and silent brain areas is gener-
ally assessed using standard T1-weighted images and quantified by the enhance-
ment of the signal intensity (SI), which is calculated with reference to the SI
before Mn administration or to the SI of brain regions that are known to be
unaffected by the specific stimulus. However, SI enhancement can be unreliable
when animals are removed from and reinserted into the magnet, as protocols on
awake animals require, or when nonactivated areas are not known a priori. Ab-
solute determination of Mn concentration in specific brain areas appears to be
a good alternative. Mn concentration can be absolutely quantified by measur-
ing the tissue longitudinal relaxation time through the well-known correlation
between the enhancement in the relaxation rate, ∆R1 and Mn concentration, c:

∆R1 = r1 · c (3.1)

r1 being the longitudinal relaxation of Mn in the brain.
In this study we implemented an MRI protocol based on fast T1 mapping

and coregistration to a rat brain atlas, which made possible absolute quan-
tification of Mn concentration in different brain regions. The aim of the study
was to implement an MRI protocol based on quantitative Mn determination, to
be used in AIM-MRI experiments.

3.1 Imaging sequence for fast T1 measurement

Most T1 quantification techniques are based on measuring the longitudinal mag-
netization at different time intervals TI after an inversion or saturation pulse[24].
Conventionally, one dataset with a given TI is acquired after each inversion pulse
and the experiment is repeated after a sufficient long recovery period (>5T1)
with different TIs (single-point method). This acquisition scheme is highly sen-
sitive and accurate, but it is also very time consuming, so it appears to be
unfeasible in most pratical settings.

FLASH (Fast Low Angle SHot) is an fast MRI gradient-echo sequence for
rapid acquisitions introduced by [25]. The technique is as simple as revolution-
ary in shortening MRI measuring times and its introduction allowed a drastic
shortening of the measuring times without a substantial loss in image quality.
Prepending an inversion pulse to a FLASH MRI sequence, it can be used as a
fast and efficient way to measure T1 values within reasonable time. As shown in
figure 3.1, the magnitude of the longitudinal magnetization is acquired continu-
ously during its recovery using a FLASH acquisition scheme, with low excitation
flip angles α generally ranging from 5◦ to 10◦.
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Figure 3.1: Acquisition scheme used in a IR-FLASH experiment. After an initial
inversion pulse, a set of images are continuously acquired during the recovery of the
longitudinal magnetization (red line).

Despite its great speed-up improvement, FLASH MRI suffers from two in-
trinsic drawbacks:

• the influence of the excitation pulses on the recovery of longitudinal mag-
netization even for small flip angles;

• a trade-off between desired image resolution and sampling-rate during the
recovery of the magnetization.

These two problems and the corresponding solutions, are discussed in the fol-
lowing two sections.

3.1.1 Effective longitudinal relaxation time T ?
1

The problem of the influence of the small excitation pulses on the recovery of lon-
gitudinal magnetization during relaxation studies is well-know in the literature[26].
Briefly, since data is acquired continuosly and each low-angle pulse α is applyed
in the steady-state, i.e. without waiting the full recovery of the signal, each
pulse α alters the magnetization, ending with a measured effective T ?

1 value
which is shorter than the actual T1.

Several approaches have been proposed in order to deal with this problem.
Inversion recovery prepared TrueFISP[27], for example, is a fully-balanced ver-
sion of the FLASH sequence which provide the possibility to measure T1 and
T2 at the same time without the flip-angle influence problem. Moreover, thanks
to its fully-balanced peculiarity, TrueFISP allows to exploit higher flip angles
(optimal α is between 60◦ and 70◦) and thus allowing to acquire images with
higher SNR than IR-FLASH. Nevertheless, TrueFISP is very sensitive to field
inhomogeneities and requires an accurate shimming of the magnetic field in the
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angles !. This effect is reduced for STF if TR ! T
1

and

T
2

" T
1
. It is, however, important to analyze the evolution

of echo amplitudes of FLASH and TrueFISP during recov-

ery of longitudinal magnetization, which, in general, can

not be compared to the steady-state condition described

above. A numerical simulation of RF-spoiled FLASH and

TrueFISP amplitudes after inversion are shown in Fig. 2

for different T
1
. Echo amplitudes during their approach to

the steady state are significantly below the ideal recovery

curve (dotted and dashed line) for FLASH even for flip

angles of 5°. The recovery signal during a 50° TrueFISP

FIG. 1. Completely balanced TrueFISP sequence. The signed gra-
dient areas of slice-select GS, phase-encoding GP, and read-gra-
dient GR are zero within one TR. Due to the complete refocusing of
transverse magnetization, the longitudinal magnetization oscillates
between #!/2 around the z-axis.

FIG. 2. Numerical simulation of the recovery of longitudinal magne-
tization during a FLASH sequence (5° and 20°), a TrueFISP se-
quence (50°), and free recovery (dotted and dashed line). Calcula-
tions are based on the Bloch equations with TR $ 3 msec, T1 $ 200
and 700 msec, and T2 $ T1.

FIG. 3. Recovery of longitudinal magnetization as measured by
TrueFISP and FLASH for different flip angles. The squares indicate
the reference amplitudes measured separately for different TIs. TR
for FLASH and TrueFISP was 3 msec. TrueFISP recovery ampli-
tudes are close to the reference curve for 10° and 50° flip angles.
FLASH amplitudes show an increased saturation effect, with in-
creasing flip angle and strong fluctuations for the first 100 echoes.

FIG. 4. Calculated T1 values for different Gd-doped water phan-
toms from 50° TrueFISP and 5° and 20° FLASH vs. reference T1

values (single-point method). FLASH-based T1 values show an un-
derestimation of T1 as compared to TrueFISP.

Inversion Recovery TrueFISP 721

Figure 3.2: Recovery of longitudinal magnetization as measured by TrueFISP and
FLASH for different flip angles. The squares indicate the reference amplitudes mea-
sured separately for different TIs. (image from [27])

region of interest. The MRI scanner in our laboratory had some problems with
the shimming procedure at the time of the experiments. Thus, we could not
use the TrueFISP sequence in our studies, so we decided to use IR-FLASH for
T1 measurements. However, this sequence was not implemented in the software
bundle of our scanner, so we had to code it from scratch.

In order to calculate the true T1 values from the measured effective T ?
1 , we

exploit corrections suggested in [26]. Briefly, parametric T1 maps were calcu-
lated pixel-by-pixel by least-squares fitting with an in-house developed software
written in MATLAB (MathWorks, MA, USA). After a denoising step, in each
pixel the theoretical expression of the SI:

SI(t) = A−B · e−t/T ∗
1 (3.2)

was fitted to the experimental data. The true T1 value was then calculated from
the effective T ?

1 by

T1 = T ∗1 ·
(
B

A
− 1

)
(3.3)

Pixels in which T1 values were longer than 3000 ms or shorter than 100 ms were
excluded from the analysis.
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3.1.2 Segmented acquisition scheme

The acquisition scheme of the FLASH sequence introduces a trade-off between
spatial and temporal resolution for the acquired images. Since several images are
acquired continuously during the evolution of the magnetization, as the image
resolution increase, the allowed number of images inevitably decrease, since the
time required to acquire each image becomes higher. For this reason, we modi-
fied the sequence in order to acquire the data in an interleaved fashion as shown
in figure 3.3. An experiment is composed of several inversion-recovery cycles.
During each cycle, after the inversion of the magnetization as usual, only a small
portion of each image is acquired. At the end of the process, complete images
are obtained by properly concatenating these portions acquired separately. This
way, it is possible to split the acquisition in order to have the desired spatial and
temporal resolutions. Of course, playing with the segmentation parameters, it
is possible to have any combination between a normal IR-FLASH acquisition
(i.e. one complete image during the recovery) and the TOMROP sequence[28]
(i.e. only one line at each inversion).

Figure 3.3: Segmented acquisition scheme. During the recovery following the first
inversion (left) only the lines 1, . . . , k of each image are acquired. During the next
inversion (right), the second part of each image is acquired, lines k + 1, . . . , 2k, and
so on upon completion of all parts of the images.

Let’s see this process with an example. Suppose we want to acquire high
resolution T1 maps (128× 128) of one sample whose estimated T1 is about 1300
ms. This means we have to take samples of a T1 recovery evolution that lasts
around 5 · T1 = 6500 ms. Since 128 lines have to be acquired for each image
during this time, and pratical TR values are on the order of 10 ms, it turns out
that only

(5 · 1300 ms)/(128 ∗ 10 ms) ' 5.08 = 5

images can be acquired before complete recovery of the magnetisation.
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On the contrary, if for example we split the acquisition in 8 segments (i.e.
128/8 = 16 lines of each image acquired during every evolution), it turns out
that we can acquire up to

(5 · 1300 ms)/(16 ∗ 10 ms) ' 40.6 = 40

images during the same time interval, which is obviously more accurate to char-
acterize the T1 exponential recovery.

3.1.3 Calibration

The segmented IR-FLASH T1 mapping sequence has been calibrated by corre-
lating T1 values obtained by imaging with values obtained by a standard spec-
troscopic inversion recovery sequence. Agarose gels (2%) containing different
amounts of MnCl2 (0.015, 0.03, 0.06, 0.125, 0.25, 0.5, and 1 mM) were pre-
pared. T1 values determined by imaging, T IM

1 , were linearly correlated with
those obtained by spectroscopy, TSP

1 :

T IM
1 = 0.9775 · TSP

1 + 0.0358

and the correlation amounted to R2 = 0.997.
For spectroscopic T1 measurements, single gel phantoms were inserted into

a 3.5 cm inner diameter (i.d.) birdcage coil; an inversion recovery sequence
with two squared pulses (42 and 84 µs) was used; the inversion times ranged
between 1/100 and five times the expected T1 value. After the spectroscopic
measurement, all the phantoms were inserted into a 7.2 cm i.d. birdcage coil
for T1 mapping using the IR-FLASH sequence. Images were acquired with the
same parameters used in in-vivo experiments.

3.2 Coregistration to a rat brain atlas

Coregistration of T1 maps to the Paxinos and Watson brain atlas [29] was per-
formed as described by Schwarz et al. [30], with some modifications.

Briefly, acquired images were exported in the NIFTI-1 file-format, i.e. a
standard file format expressly created for neuroimaging analysis, which makes
it possible to specify in the file header the orientation of images in the reference
frame of the scanner gradients. For each animal, T2-weighted RARE images were
used for coregistration to the T2-weighted template of the rat brain developed
by [30]. For the alignment procedure, we used FSL FLIRT software [31] and
a rigid 9 degrees of freedom transformation. The normalized correlation was
adopted as the cost function. The transformation matrix determined for the
T2-weighted scan was used to reorient all the other acquisitions of the same
subject, exploiting the information about the orientation previously stored in
the NIFTI-1 header.

The T2-weighted template provided by Schwartz et al., built up by averaging
97 animals with age/sex matching, has already been coregistered to the Paxi-
nos and Watson brain atlas. As a conseguence, after the coregistration of our
scans to this template, we could extract ROIs by querying structures from this
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A B

Figure 3.4: (a) Anatomical dataset of one representative animal co-registered to the
Paxinos Brain Atlas (only left hemisphere is shown), and (b) the same transformation
is used to align also the T1 map to the atlas.

anatomical brain atlas (figure 3.4). Brain structures of interest were extracted
from the atlas and superimposed over the T1 maps of each subject. Average
T1 values in these regions, as well as in the whole brain, were calculated. Sta-
tistically significant differences were assessed by two-way analysis of variance
(ANOVA) test for repeated measurements.

3.3 Materials and methods

Manganese solutions were prepared by dissolving 5.34 g of MnCl2 (tetra hydrate;
Sigma-Aldrich, Italy) in 100 ml of bicine buffer (Sigma-Aldrich) to obtain a final
Mn concentration of 270 mM. These Mn solutions were administered i.p. to
animals at a dose of 0.2 mmol/kg body weight. Twenty-eight male Sprague-
Dawley rats (215± 23 g; Harlan, Italy) were used, subdivided into two groups:

• the first group of animals (n = 8) received three Mn injections at a dose
of 0.2 mmol/kg over a period of 7 days (day 1, day 4, and day 7) and
images were acquired on day 8;

• the second group of animals (n = 10) received two Mn injections at
a dose of 0.2 mmol/kg over a 24h period (day 1 and day 2) and images
were acquired on day 3. Eight animals were used for the measurement of
in-vivo relaxivity.

Two additional animals were used for determination of the frequency dependence
of relaxation rate enhancement. All procedures were carried out following italian
regulations governing animal welfare and protection.

MRI experiments were carried out using a Biospec System (Bruker, Ger-
many) equipped with a 4.7 T, 33 cm bore horizontal magnet (Oxford, Ltd., UK ),
a 20 G/cm gradient insert. A 72 mm birdcage volume coil and a quadrature rat
brain shaped coil were used for transmission and signal detection, respectively.
After induction of anesthesia in a preanesthesia box with a mixture of air and
O2 containing 5% of isoflurane (Abbott spa, Italy), rats were placed supine into
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the magnet and maintained with a mixture of air and oxygen containing 2% to
2.5% of isoflurane.

T1-weighted 3D gradient-recalled echo (GRE) images were acquired to lo-
calize the olfactory bulb/anterior cortex endpoint, which was later used as a
reference to set transversal acquisitions. Transversal multislice fast spin-echo
T2-weighted images (RARE, Rapid Acquisition with Relaxation Enhancement,
TEeff = 70 ms) were acquired and used to coregister images to the rat brain
atlas (see section 3.2).

Ex-vivo measurements of T1 in the brain were performed at 37◦C by using a
Spinmaster (Stelar, Pavia, Italy) and an Apollo Spectrometer (Tecmag, Hous-
ton, TX, USA). The longitudinal spin-lattice relaxation time T1 was measured
through a standard saturation recovery sequence [24].

3.4 Mn relaxivity in-vitro and in-vivo

The in-vitro relaxivity of Mn in agarose gel was obtained by least-squares
linear fitting of the relaxation rate values of the gels as a function of Mn con-
centration. The relaxivity of Mn, as measured by imaging, amounted to

rIM1 = 3.74± 0.60 mM−1s−1,

which was not different from the value obtained using spectroscopy

rSP1 = 3.54± 0.59 mM−1s−1.

In-vivo relaxivity was measured using N = 8 animals. T1 maps of the
whole brain were acquired before and 24h after injection of 0.4 mmol/kg (N = 2),
0.3 mmol/kg (N = 2), or 0.2 mmol/kg (N = 4) of MnCl2. The T1 value was aver-
aged over the whole brain. After the last acquisition the animals were sacrificed,
the brains were removed, and Mn content was measured using Atomic Absorp-
tion Spectroscopy. The frequency dependence of the relaxation rate enhance-
ment was measured on two additional animals: the first received 0.2 mmol/kg
of Mn 24h prior to sacrifice and the other received the same amount of vehicle.
T1 measurement was performed on excised brains in the frequency range be-
tween 1 and 55 MHz. The average brain T1 relaxation times of animals before
and 24h after receiving MnCl2, as well as the total Mn content, were determined.

Results are shown in figure 3.5 a, where Mn content is expressed in mM
concentration, taking 1.041 mg/ml to be the average density of brain tissue [32].
Mn relaxivity in the brain amounted to

r1 = 5.15 ± 0.78 mM−1s−1,

which was higher than in gels, rIM1 and rSP1 , possibly due to binding with
proteins or other cellular components, but was substantially lower than data
reported in the literature [19, 33]. The low value of relaxivity observed in the
present study is attributable to the high frequency (200 MHz), since relaxivity
data reported in the literature are generally acquired at 20 MHz [19, 33].
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Figure 3.5 b reports the frequency dependence of the relaxation rate en-
hancement in the rat brain 24h after administration of Mn (0.2 mmol/kg), mea-
sured ex-vivo in the range 1 to 55 MHz; the value at 200 MHz was obtained
in-vivo by imaging. A clear peak is observed at about 10 MHz and then the
relaxation rate enhancement rapidly decreases: at 200 MHz, the relaxation rate
is about 10 times lower than its maximum value.

images were used for coregistration to the T2-weighted
template of the rat brain developed (7). For the alignment
procedure, we used FSL FLIRT (10) software and a rigid 9
degrees of freedom (DOF) affine transformation. The nor-
malized correlation was adopted as the cost function. The
transformation matrix determined for the T2-weighted
scan was used to reorient all other acquisitions of the same
subject. The T2 template provided by Schwartz et al. (7) is
coregistered to the Paxinos and Watson brain atlas (9) and
consequently, after coregistration of scans to the template,
we could extract regions of interest by querying structures
from this brain atlas. Brain structures of interest were
extracted from the atlas and superimposed over the T1

maps of each subject. Average T1 value in these regions, as
well as in the whole brain, were calculated. Statistically
significant differences were assessed by two-way analysis
of variance (ANOVA) test for repeated measurements.

RESULTS
Mn Relaxivity In Vitro and In Vivo

The segmented IR-FLASH sequence was preliminarily
tested by comparing the T1 values obtained by imaging to
those obtained by classical spectroscopic IR sequence in
2% agarose gels containing different amounts of MnCl2. T1

values determined by imaging were linearly correlated
with those obtained by spectroscopy: T1IM !
0.9775*T1SP " 0.0358, R2 ! 0.997. The relaxivity of Mn2"

in gel amounted to r1 ! 3.74 # 0.60 mM–1s–1 as measured
by imaging, which was not different from the value ob-
tained using spectroscopy, 3.54 # 0.59 mM–1s–1. For in
vivo relaxivity, the average brain T1 relaxation times of
animals before and 24 h after receiving MnCl2, as well as

the total Mn content, were determined. Results are shown
in Fig. 1a, where Mn content is expressed in mM concen-
tration, taking 1.041 mg/ml to be the average density of
brain tissue (11). Mn relaxivity in the brain amounted to
5.15 # 0.78 mM–1s–1, which was higher than in gels, pos-
sibly due to binding with proteins or other cellular com-
ponents, but was substantially lower than data reported in
the literature (2,12). The low value of relaxivity observed
in the present study is attributable to the high frequency
(200 MHz), since relaxivity data reported in the literature
are generally acquired at 20 MHz (2,12). Figure 1b reports
the frequency dependence of the relaxation rate enhance-
ment in the rat brain 24 h after administration of Mn
(0.2 mmol/kg), measured ex vivo in the range 1 to 55 MHz;
the value at 200 MHz was obtained in vivo by imaging. A
clear peak is observed at about 10 MHz and then the
relaxation rate enhancement rapidly decreases: at
200 MHz, the relaxation rate is about 10 times lower than
its maximum value.

Quantification of Mn in Different Brain Areas After
Repeated Injections

Figure 2 shows representative 3D acquisitions of rat brain
before and at different time points after i.p. administration
of 0.2 mmol/kg MnCl2. The animal was removed and re-
inserted into the magnet twice (for the 12-h and 24-h
acquisitions) but coregistration of images allowed perfect
spatial reproducibility of the slices. Figure 2 shows that
within the first hour after administration, MnCl2 enhanced
brain regions without BBB, such as the choroid plexus and
pituitary gland, in line with previously reported findings
(13). At later time points, MnCl2 started to diffuse into
brain parenchyma and 24 h after administration, enhance-
ment of the choroid plexus had almost disappeared, indi-
cating diffusion from the ventricular space into brain tis-
sue. Figure 3a reports T1 values measured in different
brain regions using two administration protocols; data are
reported as mean # SD over the experimental group. It is
clearly apparent that interanimal variability of postcon-
trast T1 values is very low (the SD in all the brain regions
considered was between 3% and 8% of the T1 value, i.e., of
the order of experimental error in T1 determinations). I.p.

Figure 1. a: Average longitudinal relaxation rate of brain tissue as a
function of Mn concentration; the slope of the best fitting line
represents in vivo relaxivity of Mn ion (b) frequency dependence of
the enhancement of brain relaxation rate, 24 h after administration
of 0.2 mmol/kg of MnCl2. Data in the range 1 to 55 MHz were
measured ex vivo, while the value at 200 MHz was measured in vivo
by imaging.

Figure 2. Transversal, coronal, and sagittal slices from 3D images
acquired before and at different time points after administration of
0.2 mmol/kg of MnCl2. The animal was removed and reinserted into
the magnet for the 12 h and 24 h acquisition. Images were coreg-
istered as described in the text.
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Figure 3.5: (a): Average longitudinal relaxation rate of brain tissue as a function
of Mn concentration; the slope of the best fitting line represents in-vivo relaxivity of
Mn ion (b) frequency dependence of the enhancement of brain relaxation rate, 24h
after administration of 0.2 mmol/kg of MnCl2. Data in the range 1 to 55 MHz were
measured ex-vivo, while the value at 200 MHz was measured in-vivo by imaging.

3.5 Mn quantification in the brain

For T1 measurements of the brain, the segmented IR-FLASH sequence de-
scribed before was used, with the following parameters: TR/TE = 10/3.6 ms,
matrix size = 128 × 128, FOV = 3.5 × 3.5 cm2, slice thickness = 1 mm,
α = 5◦, inversion pulse = 5 ms sech. The acquisition was divided into eight
segments in the k-space in order to acquire at least three images before nulling
of the signal (acquisition time = 160 ms per frame). Starting from the olfactory
bulb/anterior cortex endpoint, 25 transversal slices were acquired.

Figure 3.6 shows representative 3D acquisitions of rat brain before and at
different time points after i.p. administration of 0.2 mmol/kg of MnCl2. The
animal was removed and reinserted into the magnet twice (for the 12h and 24h
acquisitions) but coregistration of images allowed perfect spatial reproducibility
of the slices. It is worth noting that within the first hour after administration,
MnCl2 enhanced brain regions without BBB, such as the choroid plexus and
pituitary gland, in line with previously reported findings [34]. At later time
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points, MnCl2 started to diffuse into brain parenchyma and 24h after adminis-
tration, enhancement of the choroid plexus had almost disappeared, indicating
diffusion from the ventricular space into brain tissue.

images were used for coregistration to the T2-weighted
template of the rat brain developed (7). For the alignment
procedure, we used FSL FLIRT (10) software and a rigid 9
degrees of freedom (DOF) affine transformation. The nor-
malized correlation was adopted as the cost function. The
transformation matrix determined for the T2-weighted
scan was used to reorient all other acquisitions of the same
subject. The T2 template provided by Schwartz et al. (7) is
coregistered to the Paxinos and Watson brain atlas (9) and
consequently, after coregistration of scans to the template,
we could extract regions of interest by querying structures
from this brain atlas. Brain structures of interest were
extracted from the atlas and superimposed over the T1

maps of each subject. Average T1 value in these regions, as
well as in the whole brain, were calculated. Statistically
significant differences were assessed by two-way analysis
of variance (ANOVA) test for repeated measurements.

RESULTS
Mn Relaxivity In Vitro and In Vivo

The segmented IR-FLASH sequence was preliminarily
tested by comparing the T1 values obtained by imaging to
those obtained by classical spectroscopic IR sequence in
2% agarose gels containing different amounts of MnCl2. T1

values determined by imaging were linearly correlated
with those obtained by spectroscopy: T1IM !
0.9775*T1SP " 0.0358, R2 ! 0.997. The relaxivity of Mn2"

in gel amounted to r1 ! 3.74 # 0.60 mM–1s–1 as measured
by imaging, which was not different from the value ob-
tained using spectroscopy, 3.54 # 0.59 mM–1s–1. For in
vivo relaxivity, the average brain T1 relaxation times of
animals before and 24 h after receiving MnCl2, as well as

the total Mn content, were determined. Results are shown
in Fig. 1a, where Mn content is expressed in mM concen-
tration, taking 1.041 mg/ml to be the average density of
brain tissue (11). Mn relaxivity in the brain amounted to
5.15 # 0.78 mM–1s–1, which was higher than in gels, pos-
sibly due to binding with proteins or other cellular com-
ponents, but was substantially lower than data reported in
the literature (2,12). The low value of relaxivity observed
in the present study is attributable to the high frequency
(200 MHz), since relaxivity data reported in the literature
are generally acquired at 20 MHz (2,12). Figure 1b reports
the frequency dependence of the relaxation rate enhance-
ment in the rat brain 24 h after administration of Mn
(0.2 mmol/kg), measured ex vivo in the range 1 to 55 MHz;
the value at 200 MHz was obtained in vivo by imaging. A
clear peak is observed at about 10 MHz and then the
relaxation rate enhancement rapidly decreases: at
200 MHz, the relaxation rate is about 10 times lower than
its maximum value.

Quantification of Mn in Different Brain Areas After
Repeated Injections

Figure 2 shows representative 3D acquisitions of rat brain
before and at different time points after i.p. administration
of 0.2 mmol/kg MnCl2. The animal was removed and re-
inserted into the magnet twice (for the 12-h and 24-h
acquisitions) but coregistration of images allowed perfect
spatial reproducibility of the slices. Figure 2 shows that
within the first hour after administration, MnCl2 enhanced
brain regions without BBB, such as the choroid plexus and
pituitary gland, in line with previously reported findings
(13). At later time points, MnCl2 started to diffuse into
brain parenchyma and 24 h after administration, enhance-
ment of the choroid plexus had almost disappeared, indi-
cating diffusion from the ventricular space into brain tis-
sue. Figure 3a reports T1 values measured in different
brain regions using two administration protocols; data are
reported as mean # SD over the experimental group. It is
clearly apparent that interanimal variability of postcon-
trast T1 values is very low (the SD in all the brain regions
considered was between 3% and 8% of the T1 value, i.e., of
the order of experimental error in T1 determinations). I.p.

Figure 1. a: Average longitudinal relaxation rate of brain tissue as a
function of Mn concentration; the slope of the best fitting line
represents in vivo relaxivity of Mn ion (b) frequency dependence of
the enhancement of brain relaxation rate, 24 h after administration
of 0.2 mmol/kg of MnCl2. Data in the range 1 to 55 MHz were
measured ex vivo, while the value at 200 MHz was measured in vivo
by imaging.

Figure 2. Transversal, coronal, and sagittal slices from 3D images
acquired before and at different time points after administration of
0.2 mmol/kg of MnCl2. The animal was removed and reinserted into
the magnet for the 12 h and 24 h acquisition. Images were coreg-
istered as described in the text.
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Figure 3.6: Transversal, coronal, and sagittal slices from 3D images acquired before
and at different time points after administration of 0.2 mmol/kg of MnCl2. The animal
was removed and reinserted into the magnet for the 12h and 24h acquisition. Images
were coregistered as described in the text.

Figure 3.7 a reports T1 values measured in different brain regions using two
administration protocols; data are reported as mean ± SD over the experimental
group. It is clearly apparent that interanimal variability of postcontrast T1

values is very low (the SD in all the brain regions considered was between 3% and
8% of the T1 value, i.e. of the order of experimental error in T1 determinations).

I.p. administration of a certain dosage of Mn delivers reproducible amounts
of Mn to the brain. This finding is important for potential applications of
this protocol in fMRI: interanimal reproducibility of Mn uptake should make it
possible to detect differential regional uptake of Mn in stimulated and unstimu-
lated animals. Postcontrast T1 value averaged over the whole brain amounted to
968 ± 36 ms in the group receiving two Mn injections, which was not different
from the average value in the group receiving three injections, 966 ± 43 ms.
Figure 3.7 b shows the anatomical regions used for quantitative evaluations.
The two administration protocols delivered similar amounts of Mn to different
brain regions; postcontrast T1 values were not statistically different (except in
the hippocampus). Figure 3.7 b reports quantitative concentration data ob-
tained from measured T1 brain values and Mn relaxivity. Mn concentration in
the brain areas considered ranged between 0.04 and 0.06 mM.

3.6 Discussion

There is rapidly increasing interest in MEMRI as a technique for functional and
morphological imaging [35, 36]. With this work we have proposed an experi-
mental algorithm based on fast T1 mapping and coregistration of brain images
to a rat brain atlas that allows absolute quantification of Mn concentration in
selected brain areas, which in principle would allow experimental protocols in
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administration of a certain dosage of Mn delivers repro-
ducible amounts of Mn to the brain. This finding is impor-
tant for potential applications of this protocol in fMRI:
interanimal reproducibility of Mn uptake should make it
possible to detect differential regional uptake of Mn in
stimulated and unstimulated animals. Postcontrast T1

value averaged over the whole brain amounted to 968 !
36 ms in the group receiving two Mn injections, which was
not different from the average value in the group receiving
three injections (966 ! 43 ms). Figure 3b shows the ana-
tomical regions used for quantitative evaluations. The two
administration protocols delivered similar amounts of Mn
to different brain regions; postcontrast T1 values were not
statistically different (except in the hippocampus). Figure
3b reports quantitative concentration data obtained from
measured T1 brain values and Mn relaxivity. Mn concen-
tration in the brain areas considered ranged between 0.04
and 0.06 mM.

DISCUSSION

There is rapidly increasing interest in MEMRI as a tech-
nique for functional and morphological imaging (14,15). In
this work we propose an experimental algorithm based on
fast T1 mapping and coregistration of brain images to a rat
brain atlas that allows absolute quantification of Mn con-
centration in selected brain areas, which in principle
would allow experimental protocols in which a stimulus
is applied to awake animals behaving normally. Compared
to standard BOLD fMRI, MEMRI has several advantages.
The most important are that it does not measure signals of
vascular origin, but events directly related to cellular de-
polarization, and that thanks to its high in vivo longitudi-
nal relaxivity, it allows detection of activation with high
sensitivity. Relevant toxic effects have been reported for
cumulative Mn dosages comparable to those used in the
present investigation, although such effects were de-
creased by administration of fractionated dosages (16). Mn
toxicity is indeed a big disadvantage of MEMRI techniques

that is likely to limit their transferability to human studies.
Development of Mn-based contrast agents, with slow re-
lease of Mn2", as well as of acquisition techniques sensi-
tive to very small changes in water T1 represent possible
ways to develop MEMRI protocols suitable for human
studies (17).

Here we measured in vivo Mn relaxivity in rat brain,
obtaining a value substantially lower than those reported
in the literature (2,12). The frequency dependence of brain
relaxation rate enhancement induced by the presence of
Mn clarifies the origin of this low value: relaxation rate
enhancement shows a maximum at low fields, around
10 MHz, and then a typical decreasing trend, as observed
when Mn ions are bound to proteins (18,19) or other cel-
lular components. The above- mentioned value for in vivo
relaxivity was used to estimate Mn concentration in dif-
ferent brain areas. With our experimental protocol, typical
values for Mn concentrations were in the range 0.04 to
0.06 mM. It is worthwhile to mention that the above con-
centration values were calculated by using the mean re-
laxivity of Mn in brain, while the true Mn relaxivity could
be dependent on its location and binding status. This
approach may result with a not easily quantifiable degree
of inaccuracy in calculated concentration values.

In this study we used a fast T1 mapping technique to
quantitatively determine the content of Mn in different
brain areas using two administration protocols: three in-
jections over a 7-day period and two injections over a 24-h
period. In our experimental conditions we injected cumu-
lative dosages of 0.6 and 0.4 mmol/kg of Mn, correspond-
ing to about 120 and 80 mg/kg of MnCl2-4H2O. Surpris-
ingly, our results show that the amount of Mn delivered to
the whole brain or to different brain regions (except the
hippocampus) did not change significantly with the two
administration regimens.

Bock et al. (16) reported saturation in SI enhancement
starting from a cumulative dose of 180 mg/kg, adminis-
tered in six injections of 30 mg/kg each (separated by 48 h).
Apparently, we observed saturation in T1 values at lower

Figure 3. a: Postcontrast T1 val-
ues measured in different brain
regions after two (white bars) or
three (black bars) injections of
MnCl2. b: Anatomical regions
used for quantitative evaluations
of relaxation times: the cortex in
green, thalamus in red, hypothal-
amus in yellow, striatum in blue,
hippocampus in pink. d: Concen-
tration of Mn in different brain
areas.
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Figure 3.7: (a) Postcontrast T1 values measured in different brain regions after two
(white bars) or three (black bars) injections of MnCl2. (b) Anatomical regions used
for quantitative evaluations of relaxation times: the cortex in green, thalamus in red,
hypothalamus in yellow, striatum in blue, hippocampus in pink. (c) Concentration of
Mn in different brain areas.

which a stimulus is applied to awake animals behaving normally. Compared to
standard BOLD fMRI, MEMRI has several advantages. The most important
are that it does not measure signals of vascular origin, but events directly re-
lated to cellular depolarization, and that thanks to its high in-vivo longitudinal
relaxivity, it allows detection of activation with high sensitivity. Relevant toxic
effects have been reported for cumulative Mn dosages comparable to those used
in the present investigation, although such effects were decreased by adminis-
tration of fractionated dosages [37]. Mn toxicity is indeed a big disadvantage of
MEMRI techniques that is likely to limit their transferability to human studies.
Development of Mn-based contrast agents, with slow release of Mn, as well as
of acquisition techniques sensitive to very small changes in water T1 represent
possible ways to develop MEMRI protocols suitable for human studies [38].

Here we measured in-vivo Mn relaxivity in rat brain, obtaining a value sub-
stantially lower than those reported in the literature [19, 33]. The frequency
dependence of brain relaxation rate enhancement induced by the presence of
Mn clarifies the origin of this low value: relaxation rate enhancement shows a
maximum at low fields, around 10 MHz, and then a typical decreasing trend,
as observed when Mn ions are bound to proteins [39, 40] or other cellular com-
ponents. The abovementioned value for in-vivo relaxivity was used to estimate
Mn concentration in different brain areas. With our experimental protocol,
typical values for Mn concentrations were in the range 0.04 to 0.06 mM. It is
worthwhile to mention that the above concentration values were calculated by
using the mean relaxivity of Mn in brain, while the true Mn relaxivity could be
dependent on its location and binding status. This approach may result with a
not easily quantifiable degree of inaccuracy in calculated concentration values.

In this study we used a fast T1 mapping technique to quantitatively de-
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termine the content of Mn in different brain areas using two administration
protocols: three injections over a 7-day period and two injections over a 24h pe-
riod. In our experimental conditions we injected cumulative dosages of 0.6 and
0.4 mmol/kg of Mn, corresponding to about 120 and 80 mg/kg of MnCl2-4H2O.
Surprisingly, our results show that the amount of Mn delivered to the whole
brain or to different brain regions (except the hippocampus) did not change
significantly with the two administration regimens.

Bock et al. [37] reported saturation in SI enhancement starting from a
cumulative dose of 180 mg/kg, administered in six injections of 30 mg/kg each
(separated by 48 hours). Apparently, we observed saturation in T1 values at
lower cumulative dosages. However, clearance of Mn from the brain during the
7-day time interval may have played a role. Two animals belonging to the three-
injection group were repeatedly imaged from day 8 to day 30. The halftime of
Mn concentration was about 8 days, indicating that a substantial fraction of the
Mn injected on day 1 would have cleared by the imaging time (day 8).

In conclusion, we have established a protocol based on fast T1 mapping and
coregistration of images to a rat brain atlas that allows absolute quantification
of Mn concentration in brain regions. This protocol in principle could be used
in functional experiments performed in awake animals.
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Chapter 4
DCE-MRI and tumour
characterization

In order to grow in size, tumours require adequate oxygen and nutrient delivery,
as well as removal of waste products. Angiogenesis, the process by which tu-
mours create a circulatory blood supply, results in the development of abnormal
vascular networks. Compounds that fight back tumour growth, either by block-
ing new vessel formation or destroying existing ones, offer potential targets for
novel anticancer therapy. Since angiogenesis inhibitors reduce tumour growth or
prevent metastases through primarily cytostatic modes of action, conventional
end points based on reduction in tumour size may be inadequate for evaluat-
ing clinical response. Thus, alternative imaging biomarkers of angiogenesis are
being sought, which could serve as early indicators of drug activity in clinical
trials and may facilitate early pharmacodynamic assessments.

4.1 What is DCE-MRI?

DCE-MRI (Dynamic contrast-enhanced magnetic resonance imaging) is a non-
invasive quantitative method of investigating microvascular structure and func-
tion by tracking the pharmacokinetics of injected contrast agents as they pass
through the tumour vasculature (figure 4.2). The technique is sensitive to al-
terations in blood flow, vascular permeability (PS), extracellular extravascu-
lar (ve) and vascular (vp) volumes. Nowadays, DCE-MRI measurements have
been incorporated as biomarkers of drug efficacy of angiogenesis inhibitors in
clinical trials. The technique is promising, but its practical application is far
from straightforward. The various analysis methods employed have considerable
influence on the interpretation of derived parameters as potential biomarkers
and/or surrogate end points.

In T1-weighted DCE-MRI, an bolus of gadolinium contrast agent is injected
i.v., enters tumour arterioles, passes through capillary beds and then drains
via tumour veins. Gadolinium ions are paramagnetic and interact with nearby
hydrogen nuclei to shorten T1 relaxation times in local tissue water, thus causing
increase in signal intensity within each corresponding voxel. The degree of signal
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enhancement is dependent on physiological and physical factors. T1-weighted
DCE-MRI analysis generates parameters that represent one of, or combinations
of these processes, and can be used to measure abnormalities in tumour vessel
flow, blood volume, permeability etc. A comprehensive discussion about the
technical aspects of DCE-MRI image acquisition and analysis is beyond the
scope of this thesis. By the way, we want to give a brief description of the two
main data analysis methods that can be applied to DCE-MRI data and
which will be used in the rest of this chapter.

4.1.1 Signal intensity vs time curve

Features of the signal intensity vs time curve (i.e. overall shape, peak, time
to peak, area under the curve) represent simple descriptions of contrast agent
distribution (figure 4.1). However, these measures show considerable variation
between acquisition method and individual examinations, making direct com-
parison between patients and trials difficult. Conversion of signal intensity into
contrast agent concentration data allows more robust analysis of contrast agent
kinetics. However the relationship between signal intensity and contrast agent
concentration is not linear, making conversion of the signal intensity data far
from straightforward [41].

P
E
A
K

TTP

WASH-OUT

AUC

Figure 4.1: Representative features that could be extracted from signal intensity
vs time curve: PEAK, TTP (Time To Peak), AUC (Area Under the Curve), WASH-OUT.

4.1.2 Pharmacokinetic models

Pharmacokinetic models can be applied to contrast agent concentration data to
enable estimates of physiological properties such as flow and capillary endothe-
lial permeability. Figure 4.2 shows a schematic compartmental modelling of the
tumour micro-vasculature. Blood flows through the tumour enabling contrast
media molecules (black dots in figure) to distribute in two compartments: the
blood plasma volume vp and the volume of the extravascular extracellular space
ve. Contrast agent leakage is governed by the concentration difference between

38



DCE-MRI and tumour characterization

plasma and extracellular extravascular space, and by the permeability and sur-
face area of the capillary endothelia PS. Clinically available MRI contrast agents
do not leak into the intracellular space vi.

capillary surface area, capillary permeability and the volume of
the extracellular extravascular leakage space (EES). T1-weighted
DCE-MRI analysis generates parameters that represent one of, or
combinations of these processes, and can be used to measure
abnormalities in tumour vessel flow, blood volume, permeability,
tortuosity and interstitial pressure (Figure 1). However signal
enhancement will also be affected by contrast agent dose, the
native T1-relaxation time of each tissue and choice of imaging
sequences.
Dynamic contrast-enhanced magnetic resonance imaging

strategies vary, but, in general, three types of imaging data are
acquired. Initial images localise the tumour and provide anatomi-
cal information. Next, sequences that allow calculation of baseline
tissue T1-values before contrast agent administration are acquired
to enable subsequent analysis. Finally, dynamic data are acquired
every few seconds in T1-weighted images over a period of around
5–10min. Dynamic sequences are subject to innate trade-offs
between spatial resolution, temporal resolution (how quickly each
image is acquired) and anatomical coverage. Fast T1-weighted
spoiled gradient echo sequences are generally used as they allow
good contrast medium sensitivity, high signal-to-noise ratio,
adequate anatomical coverage and rapid data acquisition (Parker
and Buckley, 2005).

IMPORTANT CONSIDERATIONS FOR IMAGE
ACQUISTION AND ANALYSIS

Comprehensive discussion of the technical aspects of DCE-MRI
image acquisition and analysis is beyond the scope of this paper.
However, some factors are briefly considered as selection of MRI
sequences and data analysis methods determine not only the range
of parameters available, but also their precise meaning.

Analysis: descriptive or physiological?

Several analysis methods can be applied to DCE-MRI data.
Features of the signal intensity–time curve (e.g. gradient,
overall shape, time to 90% maximum enhancement) represent

simple descriptions of contrast agent distribution. However, these
measures show considerable variation between acquisition method
and individual examinations, making direct comparison between
patients and trials difficult. Conversion of signal intensity into
contrast agent concentration data allows more robust analysis of
contrast agent kinetics. However, unlike dynamic CT or PET, the
relationship between signal intensity and contrast agent concen-
tration is not linear, making conversion of the signal intensity data
far from straightforward (Tofts et al, 1999; Parker and Buckley,
2005).
Parameters that describe the shape of the contrast agent

concentration–time curve represent a combination of flow, blood
volume, vessel permeability and EES volume. One such quantity,
the initial area under the contrast agent concentration–time curve
(IAUC) is easy to calculate (model-free), reasonably reproducible
and is routinely used as a biomarker in drugs trials. However,
IAUC has a complicated and incompletely defined relationship
with underlying tumour physiology and represents a composite of
physiological processes (Tofts et al, 1999).

Which model should be used?

Pharmacokinetic models can be applied to contrast agent
concentration data to enable estimates of physiological character-
istics such as flow and capillary endothelial permeability. Modelled
parameters are in theory more ‘physiologically meaningful’ than
simple descriptors, such as IAUC, and are independent of
acquisition protocol and solely reflect tissue characteristics. Thus,
they are suitable measurements for multicentre studies with
variation in image acquisition protocols and equipments (Leach
et al, 2005).
Consensus opinion recommends that simple models describing

the volume transfer coefficient of contrast between the blood
plasma and the EES (Ktrans) and the size of the EES (ve) should be
used along with IAUC in assessing antiangiogenic and vascular
disrupting agents in clinical trials (Leach et al, 2005). Other related
measures such as the rate constant (kep), which describes the ratio
of Ktrans/ve have also been used. Several models have been applied
to clinical trial data to enable calculation of Ktrans and ve, many of
which are equivalent (Larsson et al, 1990; Tofts and Kermode,
1991).
Changes in F, endothelial permeability and endothelial surface

area produce changes in measurements of Ktrans (or an equivalent
parameter, such as Ki) in these models, and the specific
contribution of the individual components cannot be identified.
Importantly, the interpretation of Ktrans varies depending on the
relationship between F and capillary permeability–surface area
product (PS). When tissue contrast delivery is ample (FbPS) Ktrans

represents the PS per unit volume of tissue, for trans-endothelial
transport between plasma and EES (KtransBPS). In limited
perfusion (PSbF) Ktrans represents the F per unit volume of tissue
(KtransBF) (Tofts et al, 1999). In these simple models, both Ktrans

and ve calculation are relatively stable but lack physiological
specificity.
Extensions of this model (Tofts 1997) are more complex, but

enable calculation of blood plasma volume (vp) and provide more
accurate estimations of Ktrans and ve. More comprehensive models
allow direct quantification of flow (F), extraction fraction (E), ve
and mean capillary transit time (t) (St Lawrence and Lee, 1998).
Here, rather than defining the composite parameter Ktrans, it is
possible to separate F and PS. However successful application of
this model requires a temporal resolution in the order of 1 s to
measure t accurately, which limits its application in clinical trials
(Jayson et al, 2005; Parker and Buckley, 2005).
Ktrans does not purely measure capillary permeability in any of

these models (although it is often assumed to do so). Instead, its
exact meaning depends on the kinetic model used for analysis.
Changes in Ktrans may also represent different physiological

ve

vi

PS

Blood fow

vp

Figure 1 Compartmental modelling of the tumour microvasculature:
blood flows through the tumour enabling contrast media molecules
(represented as black dots) to distribute in two potential compartments –
the blood plasma volume vp and the volume of the extravascular
extracellular space ve. Clinically available MRI contrast agents do not leak
into the intracellular space vi. Contrast agent leakage is governed by the
concentration difference between the plasma and the extracellular
extravascular space and by the permeability and surface area of the
capillary endothelia, expressed as PS.

DCE-MRI evaluation of angiogenesis inhibitors
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Figure 4.2: Compartmental modelling of tumour vasculature. (image from [42])

Modelled parameters are more physiologically meaningful than simple de-
scriptors and are independent of acquisition protocol. Several models have been
applied to clinical trial data to enable calculation of such parameters, and many
of them are equivalent ([43, 44]). These models, however, require direct mea-
surement of an AIF (Arterial Input Function) along with the tumour contrast
agent concentration - time course curve. AIF is the concentration-time course
of contrast agent in the artery supplying the vascular bed. These two functions
are then used to quantify the passage of contrast agent through the tumour.
Ideally, the AIF should be measured for each examination as it varies from sub-
ject to subject and between different measurements, reflecting injection timing,
variation in cardiac output, vascular tone and other physiological factors.
Unfortunately, AIF measurement is technically demanding and, at best, pro-
duces an indirect measurement from a nearby large artery that may differ from
the actual vessel supplying the tumour. For this reason, many groups use an
idealized mathematical function instead, which makes no attempt to reflect the
true blood supply to the tumour at each examination ([41]). Whichever tech-
nique is used, AIF measurement has a major impact on data analysis and clinical
results - inaccuracy in the form or scale of the AIF affects the magnitude of all
of the modelled parameters and their reproducibility.

It turns out, therefore, that the choice of the analysis technique for DCE-
MRI data is not straightforward and reflects a compromise between parameters
that are either relatively simple but poorly specific or physiologically congruent
but less stable. In the remainder of this chapter we will show how we have used
both approaches, pharmacokinetic models and signal intensity vs time curve, for
tumoural tissues characterization in small animals cancer models.
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4.2 Model based approach

Tumours possess an extraordinary plasticity that enables them to adapt to dras-
tic microenvironmental changes; this leads to the undesirable development of
therapy resistance, recurrence and metastatic process. In recent years, epithe-
lial - stromal interaction in carcinomas is emerging as a crucial factor, which
could be involved in their adaptive plasticity [45, 46]. The development of resis-
tance to anti-angiogenic therapies is a clinically important paradigm of tumour
plasticity. Clinical studies over the past two decades have demonstrated that
treatment with tyrosine kinase pathway inhibitors results in a fleeting period of
clinical benefit, after which the disease restart to progress. Four distinct adap-
tive mechanisms are currently thought to be at the basis of the transitory effects
of anti-angiogenic drug [47, 48]:

1. activation of alternative pro-angiogenic signaling pathways,

2. recruitment of bone-marrow-derived endothelial and blood precursors,

3. increased perycite coverage of the tumour vasculature and

4. invasion and metastasis of surrounding or distant tissues.

In the present study we provided evidence of an additional mechanism, that
is the development of an aberrant vascular supporting stroma at tumour pe-
riphery, following a prolonged anti-angiogenic treatment. For this purpose, we
performed a time evolution study in an experimental colon carcinoma model by
DCE-MRI to assess tumour vascular responses during 2 weeks of treatment with
SU6668, a small molecule inhibitor of the angiogenic receptor tyrosine kinases,
VEGFR-2 (Flk-1/KDR), PDGFR-β and FGFR1.

4.2.1 Experimental setup

HT-29 human colon carcinoma fragments were implanted s.c. in the flanks of
12 athymic nu/nu mice. Treated animals (n = 7) underwent daily administra-
tion of SU6668 (200 mg/kg per day, p.o.) for 14 days; control animals (n = 5)
received Cremophor-based vehicle. SU6668 is a small molecule multi-tyrosine
kinase inhibitor, developed in Sugen (La Jolla, USA) and then clinically discon-
tinued because of a better response of an analogue molecule, sunitinib.

DCE-MRI was performed at days 0, 7 and 14 on both treated and un-
treated animals. Gd-DTPA-albumin was used as contrast agent according to
the protocol described in [49]. Three-dimensional transversal spoiled-gradient
echo images were acquired with the following parameters: TR/TE = 50/3.5 ms,
flip angle = 90◦, matrix size = 128× 64× 32, FOV = 5× 2.5× 3 cm3. The
acquisition time for a single scan was 104s. A dynamic scan of 24 images was
acquired with 30s time intervals between each image, for a total acquisition
time of 53 minutes. The 30s time interval allowed to avoid overheating of the
gradient insert. Pre-contrast T1 values were measured using an inversion recov-
ery FLASH sequence, as shown in section 3.1. The contrast agent was injected
in bolus during the time between the first and the second scan. The plasma
kinetics of contrast medium was determined ex vivo.
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4.2.2 Kps and fPV maps

From DCE-MRI data, transendothelial permeability (Kps) and fractional plasma
volume (fPV) were calculated on a pixel-by-pixel basis as in [50]. To obtain
mixed fPV/Kps images in red-green-blue format as in [51], fPV values were
assigned to red intensities, and Kps values to green intensities, as in figure 4.3.

Dynamic contrast-enhanced magnetic resonance imaging
was performed at days 0, 7 and 14 on both treated and untreated
animals. Gd-DTPA-albumin was used as contrast agent according
to the protocol described in Marzola et al (2004). Three-dimen-
sional transversal spoiled-gradient echo images were acquired with
the following parameters: TR/TE¼ 50/3.5ms, flip angle¼ 901,
matrix size 128" 64" 32, field of view 5" 2.5" 3 cm3. The
acquisition time for a single scan was 104 s; a dynamic scan of
24 images was acquired with 30-s time intervals between each
image (total acquisition time 53min). The 30-s time interval
allowed to avoid overheating of the gradient insert. Pre-contrast T1

values were measured using an inversion recovery snapshot Flash
technique. The contrast agent was injected in bolus during the time
between the first and the second scan. The plasma kinetics of
contrast medium was determined ex vivo. From DCE-MRI data,
transendothelial permeability (Kps) and fractional plasma volume
(fPV) were calculated on a pixel-by-pixel basis as in Demsar et al
(1997). To obtain mixed fPV/Kps images in red-green-blue format
as in Bhujwalla et al (2001), fPV values were assigned to red
intensities, and Kps values to green intensities.
To provide quantitative analysis taking into account of tumour

heterogeneity, an automated operator-independent method, based
on cluster analysis, was developed to identify sub-regions inside
the tumour. A volume of interest (VOI) was manually drawn to
cover the whole tumour. Each VOI was then segmented into three
different compartments by applying a k-means cluster algorithm
(implemented in Matlab; MathWorks, Natick, MA, USA) to the
enhancement curves, Enh(t), defined by:

EnhðtÞ ¼ ðSIðtÞ % SIð0ÞÞ=SIð0Þ

where SI(t) and SI(0) are the signal intensity values at time t and 0
respectively. The L1 metric (defined as L1(x, y)¼Si |xi%yi| for
vectors x and y) was selected as the ‘distance’ function for
all partitioning steps of the clustering algorithm. Although both
from MRI and from histological examination two main tumour
compartments were identified (an avascular core and a well-
vascularised periphery), a third cluster was considered in the
k-means clusterisation algorithm, to take into account pixels having
intermediate vascularisation and/or possible partial volume effects.
For each of the three identified subunits mean Kps, fPV and

volume were calculated; for the whole VOI mean and Kps and fPV
were calculated. Non-parametric test (Wilcoxon) was then applied
on the obtained values to statistically compare treated and
untreated tumours.
At day 14 mice were killed and their tumours were excised for

histological examination. Two animals belonging to the treated
group were killed at day 7. After fixation in zinc fixative for 6 h,
tumours were cut in half on a plane corresponding to that used for
the MR images. After embedding in paraffin, 5 mm thick slices were
cut and stained with H&E.
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Figure 2 Mixed images: drug effect vs controls. Representative mixed images of untreated tumour growth at day 0 (A), day 7 (B) and day 14 (C) and of
treatment progression at day 0 (D), day 7 (E) and day 14 (F).
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Figure 1 MRI mixed images. An fPV map in red (A) and Kps map in
green (B) were mixed to produce the image (C) by the corresponding
colour scale (D). Yellow pixels in the mixed images indicate high fPV and
high Kps. In (A) white dotted lines represent a manually drawn region
encompassing the whole tumour. The central section of the tumour is
shown, and the heart is visible left of the tumour (*).
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Figure 4.3: Mixed images. Representative fPV (a) and Kps (b) maps were mixed
to produce the image (c) by the corresponding color scale (d). Yellow pixels in the
mixed images indicate high fPV and high Kps. White dotted lines represent a manually
drawn region encompassing the whole tumour. The central section of the tumour is
shown, and the heart is visible left of the tumour (white ∗ in a).

The combined fPV/Kps maps clearly showed the architecture of tumour vas-
culature (figure 4.3 and 4.4). Tumour periphery was characterized by high fPV
(red), whereas tumour core had low fPV but detectable Kps (green). The differ-
ent pattern between the periphery and the core was observed in all untreated
tumours and was preserved during their growth. During SU6668 treatment,
marked changes in vasculature were clearly identifiable at the tumour periph-
ery, with the appearance of a yellow layer (high fPV and Kps). These unexpected
peripheral findings were observed in about 70% of the treated tumours.

Dynamic contrast-enhanced magnetic resonance imaging
was performed at days 0, 7 and 14 on both treated and untreated
animals. Gd-DTPA-albumin was used as contrast agent according
to the protocol described in Marzola et al (2004). Three-dimen-
sional transversal spoiled-gradient echo images were acquired with
the following parameters: TR/TE¼ 50/3.5ms, flip angle¼ 901,
matrix size 128" 64" 32, field of view 5" 2.5" 3 cm3. The
acquisition time for a single scan was 104 s; a dynamic scan of
24 images was acquired with 30-s time intervals between each
image (total acquisition time 53min). The 30-s time interval
allowed to avoid overheating of the gradient insert. Pre-contrast T1

values were measured using an inversion recovery snapshot Flash
technique. The contrast agent was injected in bolus during the time
between the first and the second scan. The plasma kinetics of
contrast medium was determined ex vivo. From DCE-MRI data,
transendothelial permeability (Kps) and fractional plasma volume
(fPV) were calculated on a pixel-by-pixel basis as in Demsar et al
(1997). To obtain mixed fPV/Kps images in red-green-blue format
as in Bhujwalla et al (2001), fPV values were assigned to red
intensities, and Kps values to green intensities.
To provide quantitative analysis taking into account of tumour

heterogeneity, an automated operator-independent method, based
on cluster analysis, was developed to identify sub-regions inside
the tumour. A volume of interest (VOI) was manually drawn to
cover the whole tumour. Each VOI was then segmented into three
different compartments by applying a k-means cluster algorithm
(implemented in Matlab; MathWorks, Natick, MA, USA) to the
enhancement curves, Enh(t), defined by:

EnhðtÞ ¼ ðSIðtÞ % SIð0ÞÞ=SIð0Þ

where SI(t) and SI(0) are the signal intensity values at time t and 0
respectively. The L1 metric (defined as L1(x, y)¼Si |xi%yi| for
vectors x and y) was selected as the ‘distance’ function for
all partitioning steps of the clustering algorithm. Although both
from MRI and from histological examination two main tumour
compartments were identified (an avascular core and a well-
vascularised periphery), a third cluster was considered in the
k-means clusterisation algorithm, to take into account pixels having
intermediate vascularisation and/or possible partial volume effects.
For each of the three identified subunits mean Kps, fPV and

volume were calculated; for the whole VOI mean and Kps and fPV
were calculated. Non-parametric test (Wilcoxon) was then applied
on the obtained values to statistically compare treated and
untreated tumours.
At day 14 mice were killed and their tumours were excised for

histological examination. Two animals belonging to the treated
group were killed at day 7. After fixation in zinc fixative for 6 h,
tumours were cut in half on a plane corresponding to that used for
the MR images. After embedding in paraffin, 5 mm thick slices were
cut and stained with H&E.
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Figure 2 Mixed images: drug effect vs controls. Representative mixed images of untreated tumour growth at day 0 (A), day 7 (B) and day 14 (C) and of
treatment progression at day 0 (D), day 7 (E) and day 14 (F).
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Figure 1 MRI mixed images. An fPV map in red (A) and Kps map in
green (B) were mixed to produce the image (C) by the corresponding
colour scale (D). Yellow pixels in the mixed images indicate high fPV and
high Kps. In (A) white dotted lines represent a manually drawn region
encompassing the whole tumour. The central section of the tumour is
shown, and the heart is visible left of the tumour (*).

SU6668 promotes abnormal stromal development
P Farace et al

1576

British Journal of Cancer (2009) 100(10), 1575 – 1580 & 2009 Cancer Research UK

T
ra
n
sla

tio
n
a
l
T
h
e
ra
p
e
u
tics

Figure 4.4: Mixed images: drug effect vs controls. Representative mixed images
of untreated tumour growth at day 0 (a), day 7 (b) and day 14 (c) and of treatment
progression at day 0 (d), day 7 (e) and day 14 (f).
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4.2.3 Cluster analysis

To provide quantitative analysis taking into account of tumour heterogeneity,
an automated operator-independent method, based on cluster analysis, was de-
veloped to identify sub-regions inside the tumour.
A volume of interest (VOI) was manually drawn to cover the whole tumour.
Each VOI was then segmented into three different compartments by applying a
k -means cluster algorithm (implemented in MATLAB, MathWorks, MA, USA)
to the enhancement curves, Enh(t), defined by:

Enh(t) =
SI(t)− SI(0)

SI(0)
(4.1)

where SI(t) and SI(0) are the signal intensity values at time t and 0 respectively.
The L1 metric (defined as L1 =

∑
i |xi−yi| for vectors x and y) was selected

as the ’distance’ function for all partitioning steps of the clustering algorithm.
Although both from MRI and from histological examination two main tumour
compartments were identified (an avascular core and a well-vascularized periph-
ery), a third cluster was considered in the k -means clustering algorithm, to take
into account pixels having intermediate vascularization and/or possible partial
volume effects.

For each of the three identified clusters, average Kps, fPV and volume were
calculated; for the whole VOI, then, mean and Kps and fPV were calculated.
Non-parametric test (Wilcoxon) was then applied on the obtained values to
statistically compare treated and untreated tumours.

Figure 4.5: Cluster analysis automatically identifies sub-regions inside the tumour.
Representative results obtained at 7 and 14 days in a control (a) and in a treated
case (b) are shown. An avascular region, an intermediate and a well-vascularized area
are identifiable. The time-course of the normalized signal enhancement for each re-
gion is shown with the same color below each picture. Number of scans is reported in
abscissa. During untreated tumour growth, the identified sub-regions did not substan-
tially change their enhancement pattern, whereas the most marked difference between
untreated and treated tumours was observed in the peripheral sub-region.

Cluster analysis allowed identification of sub-regions inside the tumour (fig-
ure 4.5), with a peripheral well-enhanced sub-region clearly identified. Full data
on all three identified subunits are reported in figure 4.6. The balance between
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angiogenesis inhibitors and other cancer treatments (Leach et al,
2005; O’Connor et al, 2007). The potential of DCE-MRI to evaluate
intra-tumoural heterogeneity and investigate its relationship with
response to therapy was recently emphasised (Jackson et al, 2007).
One approach to investigate heterogeneity is based on histogram
analysis of the distribution of pharmacokinetic parameters inside
the tumour, which allows to demonstrate a rim–core difference in
drug effect (Checkley et al, 2003). To overcome the limitation of
the analysis of distribution based on a single or a small number of
summary parameters, statistical techniques like principal compo-
nent analysis (PCA) have been proposed (O’Connor et al, 2005).
Alternatively, clusterisation algorithms like k-means, closely
related to PCA (Ding and He, 2004), can be used to obtain

unsupervised and automatic VOI segmentation to account for
tumour heterogeneity.
To develop an approach independent from any pharmaco-

kinetics model, we have directly analysed the enhancement curves
instead of using calculated Kps/fPV values. However, as the
scanner gain could change between examinations, the signal
intensity values were normalised to pre-contrast values. The
successive evaluation of pharmacokinetic parameters on the
obtained clusters, and in particular on the peripheral sub-region,
proved to be more sensitive to the alteration induced by anti-
angiogenic therapy than the analysis performed on the whole
tumour VOI. Our results raise the hypothesis that cancer-
associated stroma is involved in the ability of carcinomas to adapt

2

4

6

8

10

12

14

16

0 7 14

2

4

6

8

10

12

14

16

0 7 14

2

4

6

8

10

12

0 7 14 0 7 14

2

4

6

8

10

12

Volume
(voxels)

Kps
(mL min–1 cm–3)

fPV
(mL cm–3)

x10–5

x10–3

DaysDays

DaysDays

DaysDays

DaysDays

x10–3

x10–5

1
2
3
4
5
6
7
8
9

0 7 14 0 7 14

1
2
3
4
5
6
7
8
9x103 x103

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0 7 14 0 7 14

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

Mean
Enh.
(a.u.)

A B

C D

E F

G H

Free growth Treatment

Figure 4 Summary of volumes and vascular parameters in the whole experiment. Volume (A and B), mean enhancement (C and D), Kps (E and F) and
fPV (G and H) data on the three subunits identified by clustering algorithm, obtained by averaging data from different mice (controls, on the left; treated, on
the right) at days 0, 7 and 14. Mean enhancement was taken as the mean value on the normalised enhancement curve. Error bars represent standard
deviations across the group of tumours. The three identified sub-regions correspond to avascular (green), intermediate (red) and vascularised (cyan) areas.
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Figure 4.6: Summary of volumes and vascular parameters in the whole experiment.
Volume (a and b), mean enhancement (c and d), Kps (e and f) and fPV (g and h)
data on the three subunits identified by clustering algorithm, obtained by averaging
data from different mice (controls, on the left; treated, on the right) at days 0, 7 and
14. Mean enhancement was taken as the mean value on the normalized enhancement
curve. Error bars represent standard deviations across the group of tumours. The three
identified sub-regions correspond to avascular, intermediate and well-vascularized areas.
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the volumes of the three subunits resulted relatively stable during both un-
treated tumour growth (when there was an increase in total tumour volume)
and anti-angiogenic administration (when there was a limited increase in total
tumour volume).

Themost evident changes induced by SU6668 occurred in the peripheral
sub-region characterized by higher vascular parameters with respect to the semi-
necrotic and avascular zones. In this rim area, the progression in untreated
tumour revealed a reduction in Kps; on the contrary in the treated tumours
an increase was observed comparing day 7 with the pre-treatment point. In
particular, Kps and fPV values were significantly higher (P ≤ 0.05) after 7 days
of therapy than the values obtained in the corresponding control tumours (table
4.1). The same table shows that mean values for the whole tumour VOI were not
significantly different. At day 14 the higher Kps and fPV values in the treated
tumours with respect to controls were not significant at a 0.05 level, because
the MRI examination was performed only on three of the five mice that showed
hyper-enhancement at day 7.

Day 0 Day 7 Day 14
Whole tumour

Kps (10−5)
Controls 5.3± 1.2 4.1± 1.6 4.4± 0.6
Treated 4.7± 1.1 5.9± 1.4 3.7± 0.3

fPV (10−3)
Controls 1.9± 0.7 1.9± 1.1 1.2± 0.3
Treated 3.1± 1.2 2.7± 0.7 2.7± 1.4

Peripheral sub-region
Kps (10−5)
Controls 11.3± 3.5 6.5± 2.8∗ 6.2± 1.1
Treated 10.4± 4.0 15.8± 6.5∗ 9.9± 4.7

fPV (10−3)
Controls 6.7± 0.8 6.9± 2.6∗ 8.2± 2.4
Treated 8.7± 2.6 10.9± 1.8∗ 9.9± 5.7

% of Volume
Controls 13.4± 3.2 15.6± 5.2 12.4± 1.5
Treated 16.2± 2.1 14.1± 2.6 15.0± 3.7

Table 4.1: Mean Kps (ml min−1cm−3) and fPV (ml cm−3) values obtained both on
the whole tumour and the peripheral sub-region segmented by cluster analysis. Both
values were calculated averaging on the whole tumour groups. The mean percentage
volumes of the peripheral sub-region are also reported. The asterisk (*) indicates a
significant difference (at a 0.05 level) in the comparison between treated and controls.

4.2.4 Histological examination

At day 14 mice were sacrificed and their tumours were excised for H&E histo-
logical examination. Two animals belonging to the treated group were killed
at day 7. After fixation in zinc fixative for 6 hours, tumours were cut in half
on a plane corresponding to that used for the MR images. After embedding in
paraffin, 5 mm thick slices were cut and stained with H&E. Figure 4.7 shows
the the comparison between control and treated tumours.
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to anti-angiogenic therapy. Prolonged SU6668 administration
promoted abnormal development of the stromal compartment at
the periphery of the treated tumours: this rim appeared
significantly more perfused with respect to control tumours,
consistently with the well-recognised role of stroma in tumour
vasculature organisation. Our findings may suggest a different and
more comprehensive mechanism of resistance to anti-angiogenic
therapies, which encompasses those already described by Bergers
and Hanahan (2008). In fact, an aberrant development of tumour
stromal cells, including perycites, is often associated with
increased release of pro-angiogenic factors, increased recruitment
of bone-marrow-derived endothelial and blood precursors, and
invasion and metastasis to surrounding tissues.
The observations at days 7 and 14 complement previous

findings (Marzola et al, 2004), where the ‘standard’ effect of
anti-angiogenic drugs, namely a decrease in peripheral Kps and
fPV, was observed in treated tumours at early time points (24 h to
3 days of treatment). Because anti-angiogenics cannot be expected
to function as effective tumour therapy on their own, regimens
combining them with chemo-irradiation are essential for local
tumour treatment (Timke et al, 2008). Anti-angiogenics induce
pathophysiologic changes that can have a positive influence on

tumour response to more conventional therapies (Horsman and
Siemann, 2006). The appearance of an efficient vasculature and the
decrease in tumour cell density, observed at the tumour periphery
after prolonged SU6668 administration, could increase the
sensitivity of this part of the tumour to a subsequent chemo-
irradiation. On the other hand, this unexpected stromal reaction
might potentially lead to an overall increase in tumour aggres-
siveness. Because of the termination of clinical development of
SU6668 (Xiong et al, 2004), few data are available to verify the
development of an abnormal cancer-associated stroma in human
studies. However, this could be investigated with other anti-
angiogenic compounds. If the described effect is confirmed in
clinical research, its influence on chemo-irradiation will need to be
elucidated, and should be taken into account for optimal
scheduling of the combination regimen.
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Figure 5 H&E histology at day 14. Histological sections from a control (A–C) and a treated (D–F) tumour. In the control case, the whole section
revealed the presence of a peripheral zone with viable tumour cells showing nested intrusion into the contiguous semi-necrotic areas (A). Inside this matrix
of viable cells, some vessels were detectable, which were particularly enlarged at the interface with tumour capsule, in a zone immediately contiguous (but
external) to viable tumour tissue (B). At high magnification (C), the tumour cells appeared mixed with loose connective tissue. After 7–14 days of
treatment, a marked decrease in the thickness of viable peripheral layer was clearly detectable all around the external tumour border (D). In the peripheral
layer, the viable tumour cells appeared almost completely replaced by an increased amount of loose connective tissue (E), characterised by numerous
vessels (F). Scale bar, 1.5mm (A and B), 125 mm (C), 60mm (D), 10mm (E and F).

SU6668 promotes abnormal stromal development
P Farace et al

1579

British Journal of Cancer (2009) 100(10), 1575 – 1580& 2009 Cancer Research UK

T
ra
n
sl
a
ti
o
n
a
l
T
h
e
ra
p
e
u
ti
cs

Figure 4.7: Histological sections from a control (a-c) and a treated (d-f) tumour
at day 14. Scale bar, 1.5 mm (a-b), 125 mm (c), 60 mm (d), 10 mm (e-f).

In the control case (Figure 4.7 a-c), the whole section revealed the presence
of a peripheral zone densely populated by viable neoplastic cells with nested in-
trusion into the contiguous semi-necrotic areas (a). Inside this matrix of viable
cells, some vessels were detectable, which were particularly enlarged at the in-
terface with tumour capsule, in a zone immediately contiguous (but external) to
viable tumour tissue (b). At high magnification (c), the tumour cells appeared
mixed with loose connective tissue.

After 7-14 days of treatment (Figure 4.7 d-f), a marked decrease in the
thickness of viable peripheral layer was clearly detectable all around the ex-
ternal tumour border (d). The viable neoplastic cells contained in this rim
appeared almost completely replaced by an increased amount of loose connec-
tive tissue (e), characterized by numerous small vessels (f), which presumably
were responsible for the peripheral hyper-enhancement observed by DCE-MRI.

4.2.5 Discussion

DCE-MRI is now being used as an in vivo biomarker to evaluate the efficacy of
angiogenesis inhibitors and other cancer treatments [52, 42]. The potential of
DCE-MRI to evaluate intra-tumoural heterogeneity and investigate its relation-
ship with response to therapy was recently emphasised [53]. One approach to
investigate heterogeneity is based on histogram analysis of the distribution of
pharmacokinetic parameters inside the tumour, which allows to demonstrate a
rim-core difference in drug effect [54]. To overcome the limitation of the analysis
of distribution based on a single or a small number of summary parameters, sta-
tistical techniques like principal component analysis (PCA) have been proposed
[55]. Alternatively, cluster-analysis algorithms like k -means, closely related to
PCA [56], can be used to obtain unsupervised and automatic VOI segmentation
to account for tumour heterogeneity.
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To develop an approach independent from any pharmacokinetics model,
we have directly analysed the enhancement curves instead of using calculated
Kps/fPV values. However, as the scanner gain could change between examina-
tions, the signal intensity values were normalised to pre-contrast values. The
successive evaluation of pharmacokinetic parameters on the obtained clusters,
and in particular on the peripheral sub-region, proved to be more sensitive to
the alteration induced by anti-angiogenic therapy than the analysis performed
on the whole tumour VOI.

Our results raise the hypothesis that cancer-associated stroma is involved in
the ability of carcinomas to adapt to anti-angiogenic therapy. Prolonged SU6668
administration promoted abnormal development of the stromal compartment
at the periphery of the treated tumours: this rim appeared significantly more
perfused with respect to control tumours, consistently with the well-recognised
role of stroma in tumour vasculature organisation. Our findings may suggest
a different and more comprehensive mechanism of resistance to anti-angiogenic
therapies, which encompasses those already described by [48].

The observations at days 7 and 14 complement previous findings [49], where
the standard effect of anti-angiogenic drugs, namely a decrease in peripheral Kps
and fPV, was observed in treated tumours at early time points (24 hours to 3
days of treatment). Because anti-angiogenics cannot be expected to function as
effective tumour therapy on their own, regimens combining them with chemo-
irradiation are essential for local tumour treatment [57]. Anti-angiogenics induce
pathophysiologic changes that can have a positive influence on tumour response
to more conventional therapies [58]. The appearance of an efficient vasculature
and the decrease in tumour cell density, observed at the tumour periphery after
prolonged SU6668 administration, could increase the sensitivity of this part of
the tumour to a subsequent chemo-irradiation. On the other hand, this unex-
pected stromal reaction might potentially lead to an overall increase in tumour
aggressiveness.

4.3 Machine learning approach

Machine learning techniques are becoming important to support medical re-
searchers in analyzing biomedical data. For instance, in the context of cancer
imaging, methods for the automatic isolation of areas characterized by different
tumoral tissues development are crucial for diagnosis and therapy assessment
[59]. In this study, morphological and functional parameters obtained with
DCE-MRI are analyzed by combining clustering1 and classification techniques
[60].

Our method extends a previous work from our group [61], and brings two
main advantages to the current state of the DCE-MRI analysis. First, it
allows a more stable and robust feature extraction step from DCE-MRI raw
data. In fact, as highlighted in [62, 63, 64] the standard quantification of DCE-
MRI data by means of pharmacokinetic models [65], suffers from large output

1We adopt the terms segmentation and clustering with the same meaning, i.e. a consistent
partition of data into classes with high inter-class variance and low intra-class variance [60].
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variability, which is a consequence of the large variety of models employed. Here,
we propose to work directly on the raw signals by extracting few and significative
features which robustly summarize the time-curve shape of each voxel. Second,
we focus on the automation of the whole data-analysis process by exploiting
the effectiveness of the machine learning techniques on the proposed applicative
scenario. A three-step procedure is introduced:

Signal Features Extraction: in the first step we extract a few standard curve
parameters [64, 66]. The aim is to define a compact representation of the
signals curve shape of each voxel, which effectively summarize the expected
behavior by medical researchers. Note that the same features are used for
all the subjects and for all the kinds of tumor.

Automatic Voxels Segmentation: in the second step we cluster subjects’
voxels, based on the features previously extracted, using the Mean Shift
clustering algorithm (MS) [67]. We have chosen the MS method since it
effectively performs a clustering of multi-dimensional data lying on regu-
lar grid (i.e. the image) by combining spatial and feature relations into
the same framework [67]. Although the MS clustering approach allows a
precise data segmentation, it requires a careful tuning of a free parameter,
namely the bandwidth. For this reason, we propose to estimate such pa-
rameter on a small subset of the subjects, being supported by the medical
researchers, that validate the segmentations.

Voxel Classification: in order to improve the automation of the proposed sys-
tem, tissue segmentation inside a tumour can be treated as a classification
problem on which a classifier is trained to distinguish among the regions
previously extracted by the MS clustering procedure. A Support Vector
Machine (SVM) is applied as classifier [68]. In particular, voxels of the
same cluster are fed with the same label into the classifier. This way, the
SVM becomes able to perform segmentations on new unseen subjects with
the same kind of tumor.

In a previous paper from our group [61], we proposed the introduction of
the MS clustering algorithm in order to analyze DCE-MRI data. In that case,
we focused on standard tumor microvessels parameters, such as transendothelial
permeability (Kps) and fractional plasma volume (fPV), obtained voxel-by-voxel
from intensity time curves. By the way, even if the use of Kps and fPV pa-
rameters is employed in many recent researches [69], such standard parameters,
based on the definition of a particular pharmacokinetic model, suffers from large
output instability [62, 63, 64].

In this study, we were inspired by recent works focused on the use of ma-
chine learning techniques for DCE-MRI tumor analysis [64, 66, 70, 71]. In
[64] the curve patterns of the DCE-MRI pixels are analyzed in the context of
musculoskeletal tissue classification. Several features are extracted to represent
the signals shape such as the maximum signal intensity, the largest positive sig-
nal difference between two consecutive scans, and so on. Then, the classification
is carried out by introducing a thresholding approach. In [66] the authors pro-
posed the use of the MS algorithm [67] for the clustering of breast DCE-MRI
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lesions. In particular, pixels are clustered according to the area under the curve
feature. Since the results are over-segmented, an iterative procedure is intro-
duced to automatically selecting the clusters which better represent the tumor.
In [70] a learning-by-example approach is introduced to detect suspicious lesions
in DCE-MRI data. The tumoral pixels are selected in a supervised fashion and
fed to a SVM which is trained to perform a binary classification between healthy
and malicious pixels. The raw n-dimensional signal is used as multidimensional
vector. In [71] a Neural Network was applied on dynamic contrast agent MRI
sequences as a nonlinear operator in order to enhance differences in the signal
courses of pixels of normal and injured tissues.

In this study we wanted to emphasize the use of machine learning tech-
niques as a mean to produce stable and meaningful segmentation results in an
automatic fashion. Furthermore, our approach should allow to speed up the
analysis of DCE-MRI data, ensuring a higher throughput, that turns out to be
useful in the case of massive analysis. For the purposes of the present work,
the experimental setup is not significantly different from the one described in
the previous section. In this case, human mammary and pancreatic carcinoma
fragments were subcutaneously injected in the right flank of 42 female rats at
the level of the median-lateral (see [69] for details).

4.3.1 Signal features extraction

From the raw DCE-MRI signal intensity vs time curves, few and stable fea-
tures has been extracted. Figure 4.1 shows a scheme of the visual meaning of
some representative features. For each voxel, the time-intensity curve has been
normalized as shown in equation 4.1. Furthermore, data was filtered with a
smoothing function in order to minimize errors due to outliers collected during
the feature extraction step. More in details, the extracted features are:

• TTP. Time To Peak is the time interval between contrast agent injection
and the time of maximum of signal intensity (SI).

• AUC. Area Under the Curve is the integral of the whole time-intensity
curve.

• AUCTTP. It is the integral of the time-intensity curve between contrast
injection and the time of the maximum of signal intensity.

• WR. Washout Rate is the mean approximate derivatives of the last part of
the time-intensity curve.

Note that proposed features depend only by the time-signal observed on a single
voxel being independent by the respective contextual neighborhood.

In order to give the same weight to all of these features during the clustering
procedure, a standardization procedure has been performed, i.e. the range of
each feature was normalized to the unit interval.
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4.3.2 Mean-shift clustering

The theoretical framework of MS arises from the Parzen Windows technique
[60], which, in particular hypotheses of regularity of the input space (such as
independency among dimensions, see [67]), estimates the density at point x as:

f̂h,k(x) =
ck,d
nhd

n∑
i=1

k

(∣∣∣∣∣∣∣∣x− xi

h

∣∣∣∣∣∣∣∣2
)

(4.2)

where d indicates the dimensionality of the data processed, n is the number
of points available, and k(·) is the kernel profile, that models how strongly
the points are taken into account for the estimation, in dependence with their
distance to x, influenced by the h term. Finally, ck,d is a normalizing constant,
depending on the dimensionality of the data and on the kernel profile.

MS extends this static expression differentiating equation 4.2 and obtaining
the gradient of the density, which is:
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where g(x) = −∂k(x)
∂x . In the above equation, the first term in square brackets

is proportional to the normalized density gradient, and the second term is the
so called Mean Shift vector Mv(x), which is guaranteed to point towards the
direction of maximum increase in the density (see [67] for details).

Therefore, the MS vector can define a path leading to a stationary point of
estimated density. The modes of the density are such stationary points. More
in details, starting from a point x in the feature space, the Mean Shift procedure
consists in calculating the Mean Shift vector at x, which will lead to location
y(1); this process is applied once again to y(1), producing location y(2) and so
on, until a convergence criterion is met, and a convergence location y is reached.
The Mean Shift procedure is guaranteed of being convergent [67].

In the MS-based clustering, or simply MS clustering, the first step is made
by applying the MS procedure to all the points {xi}, producing the convergency
points {yi}. A consistent number of close convergency locations, {yi}l, indicates
a mode µl. The clustering operation consists in marking the corresponding
points {xi}l that produces the set {yi}l with the label l. This happens for all
the convergency location l = 1, 2, . . . , L.

In this clustering framework, the only interventions required by the user
involve the choice of the kernel profile k(·) and the bandwidth value h. As
usual, the Epanechnikov kernel is adopted as kernel profile [67]. This way, the
meaning of the kernel bandwidth parameter is more intuitive. In fact, the kernel
bandwidth parameter controls the level of detail by which the data space is
analyzed; a large bandwidth means general analysis (few convergence locations),
while a small bandwidth leads to a finer analysis (many convergence locations).

As previously stated, we used the MS algorithm on the 4−dimensional space
defined by the signals features extraction step. Since the bandwidth selection
is crucial to find the correct segmentation (in the histological sense), we were
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supported by the medical doctors during this fine-tuning procedure. It is worth
noting that also subjects with the same tumor need different settings of the
bandwidth. Therefore, we have applied the MS clustering only on a subset of
subjects with the same kind of tumor. Once the medical doctors had validated
MS clustering results, we used a classifier to distinguish the different kind of
tumoral tissues, in order to be more suitable to generalize the results.

4.3.3 SVM classification

The involved classifier is the binary Support Vector Machine [68]. SVMs are
suitable for our purposes since from DCE-MRI data we extracts a n-dimensional
feature array for each voxel, as required by the SVM framework. Moreover,
SVMs have already shown their efficacy on several domains, by performing a
data-driven classification while being able to effectively generalize the results
[60]. A SVM constructs a maximal margin hyperplane in a high dimensional
feature space, by mapping the original features through a kernel function. We
tried several kernel functions, but the most effective turned out to be the Radial
Basis Function (RBF). Since the RBF kernel was used, two parameters C
and γ needed to be estimated. Furthermore, in order to extend the SVM to a
multi-class framework, the one-against-all approach is carried out [60].

Figure 4.8: Representative results of the combination of grid search with leave-one-
out cross-validation for the estimation of the two SVM parameters C and γ.

According to suggestions reported in [72], data has been properly normalized
and parameters were estimated by combining grid search with leave-one-out
cross-validation. Fugure 4.8 shows this procedure. First, the training set, i.e.
all the n-dimensional feature arrays extracted by the Mean Shift clustering step
and validated by medical doctors, is separated into several folds. Each fold is
sequentially considered as the validation set, i.e. the set of n-dimensional
feature arrays on which testing the accuracy of the current (C, γ), and the rest
are for training. The average of accuracy on predicting the validation sets is the
cross validation accuracy.

As mentioned above, in our framework, such learning-by-example approach
has been introduced in order to better generalize the results. In fact, SVMs
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are able to automatically detect the most discriminative characteristics of the
clusters detected by the previous MS segmentation step. Moreover, the training
procedure is intuitive and the testing (i.e. the classification) is faster than the
clustering itself.

4.3.4 Results and discussion

Signals features validation

As first experiment, we evaluated the effectiveness of the segmentation by com-
paring the clusters obtained from the signal features with those obtained from
the standard tumor microvessels parameters Kps and fPV. In both cases we have
carefully tuned the bandwidth, in order to find the best segmentation according
with histological principles supported by medical doctors. Figure 4.9 shows the
central slice of a tumour segmented with both the approaches. Mean of nor-
malized signals intensity curves (equation 4.1) belonging to the same cluster, as
well as the median and standard deviation, are plotted in the figure. Even if
the two approaches seem to give apparently similar segmentations, an accurate
inspection of statistical properties of these clusters reveals the better results
achieved with our approach.
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Figure 4.9: Segmentation comparison. The segmentation built on the Kps and
fPV maps (left) and our approach (right). We also reported the mean (solid line),
median (dot-solid line), and standard deviation (dashed-line) of the signal.

In fact, it is possible to see that:

1. in general, good Kps and fPV based segmentations tend to be characterized
by a large number of clusters. With a lower number of clusters, obtained
by increasing the bandwidth of the MS algorithm, the segmentation decays
in quality. We have shown the three most meaningful clusters, out of nine;

2. the intra-cluster variance is, in general, high;

3. the mean curves of the clusters do not appear so different among each
other as expected.
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It is worth noting that, with our clustering approach:

1. the clusters are less in number and meaningful;

2. the intra-class variance is lower;

3. the profile of the mean curves are coherent with the expected behavior of
the signals (in a histological sense).

More in details, in the necrotic poorly vascularized region (i.e. cluster #3) the
contrast agent concentration enhances linearly. On the contrary, the active area
(i.e. cluster #2) evidences a more rapid enhancement. The peak of the curve is
reached in the early side of the signal and then it decades slowly. Finally, DCE-
MRI signals of the area associated to cluster #1 show a rapid enhancement
with a slow decay, meaning that zones of tissue previously vascUlarized are
approaching a necrotic state.

Pipeline validation

Following the proposed pipeline, we completed the experiment by segmenting
an additional subject (beside the one used for signal feature validation) affected
with the same kind of tumor of the previous cases. As mentioned before, differ-
ent parameters have been used to estimate the best clustering results in both
subjects.

Therefore, the SVM is trained to recognize the three extracted classes. In-
deed, the tissue classification is performed to a third unseen subject with the
same tumor. Figure 4.10 shows four slices of both the segmentation obtained
from the training and the testing subjects respectively. Moreover, it is shown
also the respective statistics collected on each cluster provided by the classifier.
Note that the extracted regions and the respective statistics in both the cases
in Figure 4.10 a and Figure 4.10 b exhibit the same behavior.
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Figure 4.10: Experiment 1. Clustering results obtained with the Mean Shift algo-
rithm (a) and the SVM classifier (b) respectively. The curves of the mean-signals are
also visualized for all the clusters.

The classification has been validated in two ways. The first one is based on
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the comparison with the analysis made by medical doctors, which confirmed the
observations described above. As an additional validation, we have applied the
MS clustering algorithm also to the third subject, once again by carefully tun-
ing the parameters. By using the new obtained clustering results as the actual
ground-truth, the SVM-based voxel classification reached the 89% of accuracy.

The same proposed pipeline has been tested on three different subjects with
a new kind of tumor. Again, subjects #1 and #2 are used to train the SVM,
while the subject #3 represents the test. Figure 4.11 shows the clustering results
and the related statistics. Also in this case the behavior of the SVM classifier
is coherent with the clustering results and in accordance with the medical re-
searchers expectations.
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Figure 4.11: Experiment 2. Clustering results obtained with the Mean Shift algo-
rithm (a) and the SVM classifier (b) respectively. The curves of the mean-signals are
also visualized for all the clusters.

We have carried out further experiments on new subjects affected by different
kind of tumors by observing mainly the same behavior: stable clusters of mean-
ingful regions and well-defined behaviour, as expected by the medical doctors.

Discussion

With this work we introduced a new methodology aimed at improving the anal-
ysis and the characterization of tumour tissues. The multidimensional output
obtained by non invasive tissue analysis, namely, the DCE-MRI technique has
been considered. The signals from each voxel have been parameterized by few
and compact features which robustly summarize signal profiles, as expected by
the medical doctors. We have shown that the proposed signals features perform
better than standard tumor microvessels parameters in segmenting the data.
Moreover, we have shown the effectiveness of the proposed method based on
the combination of clustering and classification techniques. Our results
enlightened the evidence of a histologically meaningful partition of the tumour,
which individuates tissue areas differently involved with the development of the
tumor.
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The proposed method achieves two goals:

• it permits an analysis of the tissue more precise and

• faster than the manual analysis classically performed.

These results assess that the proposed machine learning approach well behaves
with medical segmentation and classification issues in the context of DCE-MRI
data analysis.

4.4 Application to the efficacy evaluation of an anti-
cancer therapy

In this study, tumour morphology and functional perfusion are obtained by
DCE-MRI techniques. We propose a learning-by-example approach to classify
tumoural regions characterized by heterogeneous vascular perfusion. Data are
analyzed with the aim of investigating the volume changes in the identified
regions for both untreated and treated tumours. As a result, a method for
in-vivo evaluation of treatment efficacy becomes available to assess anticancer
therapies.

The proposed analysis is based on three main phases: (i) features extraction
from raw time-intensity curves, (ii) representative tumour areas identification,
and (iii) overall voxel-by-voxel classification. In the first phase, few robust
features that compactly represent the response of the tissue to the DCE-MRI
analysis are computed. The second step provides a manual identification of
tumour samples that are representative of the typical tumour aspects. Such
samples are carefully and manually chosen by a medical researcher on a small
portion of input data by observing the different behavior of the time-intensity
signals within different kind of tumoural regions (i.e. necrotic or still alive
zones). Finally, in the third step, an SVM is trained to classify voxels according
to the regions (i.e. typologies of tumour tissue) defined by the previous phase.
In this way, the SVM is able to automatically detect the most discriminative
characteristics of the manually identified regions by extending such capability
to classify unseen subjects.

In the present work we extend the basic framework proposed in section 4.3,
to assess the treatment efficacy of anticancer therapies. The above described
analysis is applied on two groups of animals (treated and control) at two time
points (i.e. T0 and T1). At the end of the treatment period (time point T1)
the differences in tumour evolutions between the two groups were assessed by
measuring volumetric differences on the various detected regions.

4.4.1 Materials and methods

Experimental design

Tumours were induced by subcutaneous injection of human carcinoma cells in
nude mice (n = 11). Ten days after cells injection animals were randomly as-
signed to the treated (n = 6) and control group (n = 5). Animals belonging to
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the treated and control group received an experimental drug and vehicle, respec-
tively, for a period of 7 days. All animals were observed by MRI before (time
T0) and after the treatment (time T1). A further group of mice (n = 5) bear-
ing the same kind of tumour was used in the training step of the classification
procedure.

Data acquisition

Animals were examined using DCE-MRI with MS-325 (Vasovist R©, Schering
Germany) as contrast agent. Mice were anesthetized by inhalation of a mixture
of air and O2 containing 0.5 − 1% isofluorane, and placed in a prone position
inside a 3.5 cm i.d. transmitter-receiver birdcage coil. Images were acquired
using a Biospec tomograph (Bruker, Karlsruhe, Germany) equipped with a
4.7 T, 33 cm bore horizontal magnet (Oxford Ltd., Oxford, UK ).
DCE-MRI experiments were performed as previously described (see [49, 69,
73] for details). Briefly, after tumour localization, a dynamic series of three-
dimensional transversal spoiled-gradient echo images were acquired with the
following parameters: TR/TE = 50/3.5 ms, flip angle = 90◦, matrix size =
256 × 128 × 16, FOV = 6 × 3 × 2.4 cm3. The acquisition time for a single
3D image was 102s; dynamic scans of 25 images were acquired at 5s intervals
(total acquisition time approximately 45 minutes). The contrast agent was
injected in bolus during the time interval between the first and the second scan
at 100 µmol/kg dosage.

Proposed method

At each time point, signal intensity values have been normalized to the pre-
contrast value and filtered using a smoothing function to minimize fluctuations
due to movement artifacts or noise. To account for tumour heterogeneity, seven
classes have been fixed by combining a-priori knowledge of medical experts with
the observation of signal shape behaviors (see A-G in figure 4.12):

• Classes A and D, are characterized by contrast agent wash-out(i.e. clear
defined peak followed by a decrease). These regions correspond to highly
vascularized and viable tumor tissue. Regions A and D differ by the value
of maximum intensity.

• Classes B and E, reveal contrast agent accumulation (i.e. increasing
trend). Presumably, this areas correspond to viable tissue with reduced
vascularization, evidencing the transition of the tumor toward a necrotic
state. Again, regions B and E differs by the value of maximum intensity.

• Class C, contains voxels with negligible enhancement, typically due to
necrotic and not vascularized tissue.

• Classes F and G, have been introduced to account for intermediate pat-
terns (i.e. initial increasing trend followed by a plateau phase).

By following the proposed pipeline, few and stable signal features are iden-
tified to model the different DCE-MRI curve classes. In particular the following
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Figure 4.12: Sample regions used for SVM training. To account for tumour het-
erogeneity seven classes (A-G) were chosen by a-priori knowledge. Source data used to
select the sample regions (top), and the relative DCE-MRI curves of the whole training
set are reported (bottom).

curve characteristics are chosen: time-to-peak (TTP), peak value (PEAK), area
under the curve (AUC), initial area under the curve (AUCTTP), and wash-out rate
(WR) (see figure 4.1). Therefore, in order to apply a learning-by-example ap-
proach, several samples of each identified class need to be fed to the classifier.
As mentioned above, such phase is carried out manually by medical experts.
Figure 4.12 top shows some representative regions which are used to build the
training set. In figure 4.12 bottom the signals curve of the whole selected
samples are reported. Signals are colored according to their respective class by
evidencing the expected curve shape.

A binary SVM classifier is used to distinguish among the several tumoural
tissue classes. The effect of the previously selected features in the classification
has been assessed by comparing the results obtained using:

• only two (PEAK and TTP) features,

• all the five features (TTP, PEAK, AUC, AUCTTP, WR), and

• directly the raw n-dimensional time-series.

The accuracy of the training phase of the SVM has been 89.1%, 95.4% and 99.8%
using two features, five features and raw signals, respectively. This comparison
allows a better identification of the most discriminative features by possible
introducing a model selection phase.

Finally, in each tumour, the percentage volumes covered by each of the
seven classes have been calculated to evaluate the time-dependent changes in
control and treated tumours. The values obtained have been averaged over the
experimental groups and statistically compared by paired t-test.
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4.4.2 Results and discussion

The rate of tumour growth is strongly affected by the treatment; in fact average
tumour volumes, as determined by MRI, increased as follow:

T0 T1
controls: 575± 104 mm3 1821± 191 mm3

treated: 553± 187 mm3 788± 227 mm3

Table 4.2: Tumour growth course in control and treated groups.

Table 4.3 summarizes the results of quantitative analysis in the treated and
control groups. For each animal, the percentage volume attributed by the SVM
classifier to each of the seven classes of signal intensity is reported before treat-
ment (time point T0) and after treatment (time point T1).

A B C D E F G
T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1

ra
w
d
at
a C

on
tr
ol

0,1 0,3 37,0 32,2 0,3 13,5 0,1 2,1 0,7 32,6 60,7 13,8 1,0 5,5
1,7 1,4 12,4 22,5 4,6 5,7 2,6 2,5 8,2 9,2 68,3 56,2 2,3 2,5
6,0 11,4 12,8 20,4 0,1 8,7 1,6 2,3 1,2 18,4 74,2 32,8 4,1 6,0
4,3 7,1 4,9 16,0 0,6 4,6 1,7 2,7 3,8 23,7 83,6 38,3 1,2 7,6
5,1 7,3 18,4 12,1 0,5 13,6 0,8 4,4 2,1 15,1 69,5 41,4 3,6 5,9

T
re
at
ed

14,3 9,0 13,1 12,6 1,5 4,4 4,9 3,0 4,5 9,4 58,7 55,6 3,1 6,0
1,2 4,8 28,6 39,9 0,6 4,2 0,7 1,6 3,4 12,0 60,0 34,1 5,5 3,5
3,4 13,5 34,1 19,1 0,3 1,5 3,3 3,9 3,4 10,6 50,0 43,4 5,5 8,0
12,1 5,2 8,4 26,3 0,2 2,4 2,4 1,1 1,4 4,0 73,4 56,6 2,2 4,4
5,0 11,2 21,0 23,2 4,8 4,3 6,7 8,0 8,6 13,6 47,0 30,0 6,8 9,7
2,3 4,6 24,9 10,0 4,2 4,2 2,1 2,1 8,0 7,3 53,7 68,7 4,7 3,1

2
fe
at
u
re
s C
on

tr
ol

0,1 0,4 32,4 23,7 3,3 22,7 0,1 1,2 3,3 27,1 58,8 18,3 2,0 6,7
3,3 1,8 13,2 20,9 7,5 6,8 2,0 1,4 6,3 11,3 63,4 53,7 4,3 4,1
4,4 10,0 7,3 17,2 0,4 8,6 1,2 2,0 2,9 18,3 77,6 36,4 6,2 7,4
8,3 8,2 7,7 15,3 1,6 9,1 2,8 2,0 2,9 19,4 74,2 37,2 2,5 8,9
5,1 7,6 14,9 9,2 1,9 16,7 1,1 4,0 5,6 15,5 64,8 40,9 6,6 6,2

T
re
at
ed

18,0 12,0 10,9 11,3 2,1 4,9 4,0 2,9 4,2 11,1 53,9 50,5 6,9 7,3
1,3 4,5 19,5 29,8 2,7 5,5 0,5 1,0 10,0 11,7 58,0 40,9 8,1 6,6
2,9 16,8 24,2 20,7 0,7 3,7 3,2 3,9 4,1 12,5 56,8 31,3 8,2 11,1
15,7 4,3 11,7 16,7 0,3 8,6 2,9 1,0 2,1 9,0 63,6 55,0 3,6 5,4
5,2 13,3 16,4 20,0 5,1 7,8 5,6 9,2 7,4 16,3 49,7 19,5 10,5 13,9
2,5 7,1 21,1 10,4 4,4 8,8 1,6 2,7 8,2 9,8 56,3 56,4 5,9 4,8

Table 4.3: Percentage volume attributed by SVM classification algorithm to each
of the seven classes A-G in each subject at time T0 and at time T1. Results relative to
classification performed on rawdata and two features (TTP and PEAK) are shown.

Data reported in table 4.3, averaged over the different experimental groups,
are shown in figure 4.13 a (relative to the classification obtained by using
raw data). In the control group there is a significant (p < 0.05) increase of
the percentage volume covered by the classes C and E (i.e. the less enhanc-
ing portions of the tumours). Concomitantly, a significant (p < 0.01) decrease
of the class F is observed. An increase in the scarcely enhanced tissue (mainly
necrotic tissue) is typically observed during fast tumour growth. The increase of
this tissue is less pronounced in treated tumours as expected from their reduced
rate of growth. The percentage volume attributed to A and D classes (wash-out
regions that correspond to well vascularized tissue) is not significantly affected
by treatment (or normal tumour growth) in agreement with the fact that the
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biological target of the herein investigated therapeutic treatment is represented
by tumour cells and not by vasculature.
Figure 4.13 b shows percentage volumes of A-G classes, averaged over the whole
experimental group, relative to the classification obtained by using 2 fea-
tures. Qualitatively, the alterations in percentage volumes of the different
classes between time T0 and T1 are in agreement with those reported in fig-
ure 4.13 a, although there are some differences in their statistical significance.
In selected animals standard histological and CD31-immunohistochemical ex-
aminations have been performed post-mortem according to [49]. These exami-
nations qualitatively confirm the main findings of the present study.

the herein investigated therapeutic treatment is represented by tumour cells and
not by vasculature. Figure 3B shows percentage volumes of the different classes,
averaged over the whole experimental group, relative to the classification ob-
tained by using 2 features. Qualitatively, the alterations in percentage volumes of
the different classes between time T0 and T1 are in agreement with those reported
in Figure 3A, although there are some differences in their statistical significance.
In selected animals standard histological and CD31-immunohistochemical exam-
inations have been performed post-mortem according to [2]. These examinations
qualitatively confirm the main findings of the present study.

Fig. 3. Percentage volume (+ SD) attributed by the SVM to each of the seven classes
A-G averaged over the different experimental groups (control and treated). White bars
represent values at time T0, black bars at time T1. Data reported in (A) are relative to
the classification obtained by using rawdata; data reported in (B) are relative to the
classification obtained by using 2 features (PEAK and TTP ). Asterisks indicate t-test
significance at a 0.05 (*) and 0.01 (**) level comparing T0 vs T1.

The differences between percentage volumes of a given class obtained by using
raw data or two features (Table 1) are always less than 6% of the total volume.
Comparable results (data not shown) are observed by using all the five defined
features. These findings suggest that the identified features are able to summa-
rize correctly the discriminative characteristic of the original DCE-MRI signals

Figure 4.13: Percentage volume attributed by the SVM to each of the seven classes
A-G averaged over the different experimental groups (control and treated). White bars
represent values at time T0, black bars at time T1. Data reported in (a) are relative to
the classification obtained by using rawdata; data reported in (b) are relative to the
classification obtained by using 2 features (PEAK and TTP). Asterisks indicate t-test
significance at a 0.05 (*) and 0.01 (**) level comparing T0 vs T1.

The differences between percentage volumes of a given class obtained by using
directly the rawdata or two features (table 4.3) are always less than 6% of the
total volume. Comparable results (data not shown) are observed by using all
the five defined features. These findings suggest that the identified features
are able to summarize correctly the discriminative characteristic of the original
DCE-MRI signals with respect to the addressed classification problem. The
stability of the proposed method with respect to the number of classes has not
been tested at this stage.
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Figure 4.14 shows segmentation of tumour images obtained with SVM in two
representative animals (vehicle and drug treated) before and after the treatment.
The substantial increase in the necrotic portion of the control tumour, typical
of fast growing tumours, can be visually appreciated.

wrt the addressed classification problem. The stability of the method with regard
to the number of classes has not been tested at this stage.

Figure 4 shows segmentation of tumour images obtained with SVM in two
representative animals (vehicle and drug treated) before and after the treatment.
The substantial increase in the necrotic portion of the control tumour, typical
of fast growing tumours, can be visually appreciated.

Fig. 4. Segmentation of tumour images in representative control and treated tumours
at time T0 (LEFT) and at time T1 (RIGHT). The colorbar shows the colors used to
identify the segmented classes.

In order to evaluate the effectiveness of the proposed method, we compared
the regions obtained by SVM to those obtained by the standard k-means clus-
tering algorithm (here k = 7). Figure 5 shows representative results obtained
in two animals at time T1 when using both algorithms on raw time-series. Each
curve represents the time dependence of mean signal intensity over the extracted
clusters. Both algorithms detect the necrotic areas (scarcely enhanced tissue),
however whilst SVM is able to distinguish between wash-out and accumulation
regions, k-means depicts mainly regions with similar enhancement (see Figure 5
TOP). Moreover, also the meaning of the viable tumor areas is more clear when
regions are detected with SVM. In fact, by observing Figure 5 (BOTTOM) is
possible to infer the limited presence of highly vascular regions (i.e., classes A and
D) being the viable area mainly characterized by the intermediate class B. Such
considerations are not feasible from the k-means clustering. Nevertheless, with

Figure 4.14: Representative segmentations in control and treated tumours at time
T0 (left) and T1 (right). The colorbar depicts the colors used to identify A-G classes.

In order to evaluate the effectiveness of the proposed method, we compared
the regions obtained by SVM to those obtained by the standard k-means clus-
tering algorithm (here k = 7). Figure 4.15 shows representative results obtained
in two animals at time T1 when using both algorithms on raw time-series. Each
curve represents the time dependence of mean signal intensity over the extracted
clusters. Both algorithms detect the necrotic areas (scarcely enhanced tissue),
however whilst SVMs are able to distinguish between wash-out and accumu-
lation regions, k-means depicts mainly regions with similar enhancement, as
shown in figure 4.15 top. Moreover, even the meaning of the viable tumor
areas is more clear when regions are detected with SVM.
In fact, by looking at figure 4.15 bottom it is possible to infer the limited pres-
ence of highly vascular regions (i.e. classes A and D) being the viable area mainly
characterized by the intermediate class B. Such considerations are not feasible
from the k-means clustering. Nevertheless, with SVM-based segmentation the
identification of corresponding regions among different subjects is obtained by
construction, as opposed to k-means clustering for which such identification is
not trivial (and in general for standard unsupervised segmentation methods).
Therefore, the use of a data-driven algorithm appears unable to highlight re-
gions with stable aspects and medical meaning, which can be only detected by
a learning-by-example algorithm, such as SVM.
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SVM-based segmentation the identification of corresponding regions among dif-
ferent subjects is obtained by construction, as opposed to k-means clustering for
which such identification is not trivial (and in general for standard unsupervised
segmentation methods). Therefore, the use of a data-driven algorithm appears
unable to highlight regions with stable aspects and medical meaning, which can
be only detected by a learning-by-example algorithm, such as SVM.

Fig. 5. Clustering results obtained with k-means (TOP) and SVM (BOTTOM) in
two representative animals (time T1): one control (LEFT) and one treated (RIGHT).
The time-dependence of mean signal intensity for the extracted clusters is reported.
Tumoral regions detected with our approach satisfy better the expected properties and
the mean signal shapes are coherent with the taxonomy previously described.

5 Conclusions

In this paper we emphasize the use of a machine learning technique as a mean
to produce automatic and meaningful segmentation results in the quantitative
evaluation of DCE-MRI data. Specifically we have applied such technique in the
analysis of DCE-MRI data to assess the effect of treatment with an experimental
anticancer therapy. The SVM has been trained to detect biologically meaningful
tumour regions of contrast agent accumulation and wash-out, as well as regions
with negligible enhancement, attributable to necrotic tissue. The proposed ap-
proach permits the computation of percentage tumour volumes of above defined
regions and to follow their modifications during the treatment with an exper-
imental drug. The proposed comprensive experimental section have evidenced

Figure 4.15: Clustering results obtained with k-means (top) and SVM (bottom)
in two representative animals at time T1: one control (left) and one treated (right).
The time-dependence of mean signal intensity for the extracted clusters is reported.
Tumoral regions detected with our approach satisfy better the expected properties and
the mean signal shapes are coherent with the taxonomy previously described.

In this study we wanted to apply and test the effectiveness of the proposed
machine learning approach in a real case quantitative evaluation of DCE-MRI
cancer data. Summarizing, we have applied such technique in the analysis of
DCE-MRI data to assess the effect of treatment with an experimental anti-
cancer therapy. The SVM has been trained to detect biologically meaningful
tumour regions of contrast agent accumulation and wash-out, as well as regions
with negligible enhancement, attributable to necrotic tissue. The proposed ap-
proach enabled the computation of percentage tumour volumes of functional
and biologically well-defined regions and allowed to follow their modifications
during the treatment with an experimental drug. Our results have shown the
significative increase of necrotic volume on untreated subjects as confirmed by
histological validation, and suggest that this approach could be useful in the
analysis of heterogeneous tumour tissues and of their response to therapies.
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Chapter 5
Diffusion MRI and post-stroke
plasticity

Stroke is a major public health issue with high incidence, mortality and mor-
bidity. It represents the third cause of death in the over-65 years population
and the first cause of disability. Most patients with brain attack do not achieve
complete recovery and the significant disability among survivors has a great im-
pact on health care and society [74]. There is increasing evidence that function
recovery after cortical injury is largely attributable to adaptive plasticity in the
remaining cortical and sub-cortical apparatus [75]. The term brain plasticity
encompasses all possible mechanisms of neuronal reorganisation:

• recruitment of pathways that are functionally homologous to, but anatom-
ically distinct from, the damaged ones;

• synaptogenesis;

• dendritic arborisation;

• reinforcement of existing but functionally silent synaptic connections, es-
pecially at the periphery of the damaged core [76].

The overall goal of this study is to use diffusion MRI to obtain a reproducible
measure of hyperacute, acute and chronic motor network plasticity after stroke.

Figure 5.1: Patient affected by stroke. Hyperacute, acute and chronic white-matter
connections are shown, respectively. In this particular case, it is possible to see a
progressive loss of inter-hemispheric connectivity between precentral cortical regions.
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5.1 Background and motivations

Structural plasticity after stroke have been extensively studied in the experi-
mental research field. Animal studies suggest that intact cortical regions sur-
rounding an infarct may contribute to return of function. Improved long-term
synaptic potentiation in perilesional areas has been shown to occur a few weeks
after stroke [77, 78]. Relevant changes have been described in rats within peri-
infarct cortex including an increase in dendrites, synapses, and levels of proteins
related to axonal outgrowth [79, 80, 81].

Focal cortical lesions provoke distant dendritic remodelling [78] and induce
stem cells to differentiate into projection neurons that establish long-distance
cortical connections [82]. Carmichael et al. [83] showed that after cortical stroke
the peri-infarct cortex is structurally abnormal and develops new horizontal cor-
tical connections by axonal sprouting. Complex interactions such as diaschisis
(a change in functional output caused by a disturbance in an area of the brain
distant to, but anatomically connected with, the primary site of injury) lead to
loss of output from damaged brain areas to adjacent or distant brain areas. This
demonstrates the capacity of the adult brain to establish new neuronal circuits
in cortical injury models other than stroke. Pharmacological interventions that
amplify these cellular events, such as amphetamine [79], basic fibroblast growth
factor [80], or nerve growth factor [81], have been related to improved outcome.
In association with these cellular events, studies of animals recovered from a
cortical stroke show reorganisation of motor and sensory representational maps
along the infarct rim [84, 85].

5.1.1 Recent human studies

To date, human brain plasticity has been studied using many different tech-
niques including positron emission tomography (PET), electro-encephalography
(EEG), functional magnetic resonance imaging (fMRI), transcranial magnetic
stimulation (TMS) and magneto-encephalography (MEG).

Compared to EEG, the other techniques are more accurate tools to create
a spatial map of the cortex and to examine changes in structural organisation
of sensory and motor areas [86].

TMS and MEG allow the detection of sensorimotor areas reshaping, as a
result of either neuronal reorganisation or recovery of the previously damaged
neural network. But although both have a high temporal resolutions they also
have limitations: TMS provides only bi-dimensional scalp maps, whereas MEG,
even if giving three-dimensional mapping of generator sources, does so by means
of inverse procedures that rely on the choice of a mathematical model of the
head and the sources. In addition to it, these techniques do not test movement
execution and sensorimotor integration as used in everyday life [87].

PET and fMRI are both based on the phenomenon that an increase in
a brain region’s neuronal activity (induced by movement or task execution) is
accompanied by concomitant increase in local blood flow and blood oxygenation.
The need for radio-labeled ligands in PET makes it both expensive and limits the
number of times a given patient can be studied. The fMRI Blood Oxygen Level
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Dependent (BOLD) signal arises from an increase in the oxy/deoxy-hemoglobin
ratio in the draining veins of areas of increased neuronal activation. As a result,
fMRI is the imaging method of choice in most studies of stroke recovery [88].
Numerous functional imaging studies in patients recovering from hemiparetic
stroke have described different changes in cortical function both in the lesioned
and in the contralateral hemisphere [89, 90, 91, 92, 93]. However, traditional
fMRI studies inform essentially about reorganisation of cortical representational
maps and can locate only the cortical regions subserving particular cognitive
functions.

5.1.2 DSI as a tool for connectivity analysis

Better insights into stroke recovery might be facilitated by the development of
techniques that non-invasively measure brain-network changes after stroke. As
we have seen in section 2.3, diffusion MRI is a novel MRI technique which
measures the molecular diffusion of water along neural pathways. In particular,
its variant called Diffusion Spectrum Imaging (DSI) is able to resolve multiple
fibre directions within a single voxel and therefore detect intravoxel white matter
fibres crossing as well as white matter insertions into cortex.

The employment of this non-invasive imaging modality which is capable of
measuring neural connectivity in-vivo can provide invaluable information on how
human cerebral cortex communicates and integrates information across different
processing areas and, more important for this project, how these connections are
modifying during post stroke brain reorganisation.

Our hypothesis was that diffusion imaging could show motor network
changes over time that correlate with the degree of the recovery. Understanding
the modifications of connectivity between functional brain areas after stroke
could allow a precise reconstruction of cerebral plasticity mechanisms and tissue
architecture changes after a focal injury, opening new perspectives for future
virtual reality rehabilitation programs and robot-assisted movement therapy.

5.2 Materials and methods

5.2.1 Patients enrollment

Twelve patients (n = 12) have been carefully selected to participate in this
study at the Centre Hospitalier Universitaire Vaudois (CHUV) of Lausanne,
Switzerland, and twelve normal subjects (n = 12) have been enrolled as controls.
Control group (age: 57.5±15) has been age and sex matched with patient group
(age: 58.4± 17).

Inclusion criteria for patients was the diagnosis of stroke in the superficial
middle cerebral artery (MCA) territory and motor symptoms. The diagnosis of
MCA stroke was based on the contemporary presence of ischemic stroke lesion
in hyperacute MRI scan and motor deficit signs. To evaluate symptoms and
functional recovery throughout the rehabilitation, the NIHSS (National Institute
of Health Stroke Scale) and the FIM (Functional Independence Measure) scores
have been used.
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5.2.2 Experimental design

Stroke patients underwent MRI examination three times:

• time-point 1, at hyperacute stage (0− 72 hours after stroke onset);

• time-point 2, during rehabilitation (4± 1 weeks after stroke);

• time-point 3, at the end of rehabilitation (24± 2 weeks after stroke).

Concerning the control group, healthy subjects underwent MRI examination
only twice within a 1 month interval (± 1 week).

Figure 5.2: Workflow used for connectivity analysis.

The workflow for brain connectivity analysis is illustrated in figure 5.2
(see [94] for more details). The methodology consists of four main steps:

1. acquisition of diffusion MRI acquisition with DSI technique, as well as of
an additional structural T1 weighted image;

2. white matter fibre-tracking reconstruction;

3. white matter-grey matter interface partition into regions of interest;

4. analysis of the connections between each pair of extracted regions.

During each MRI session, one DSI dataset as well as T1 and T2 weighted images
have been acquired. From the anatomical T1 weighted images, a parcellation1

consisting of 33 cortical regions of interest (ROIs) were mapped from each hemi-
sphere using Freesurfer software [95]. DSI scan has been used to reconstruct the

1Here, we use the term parcellation as a synonym for segmentation of the surface between
white-matter (WM) and grey-matter (GM)
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main fibre bundles in the brain with a line-propagation tractography algorithm.
By combining the output of these two steps we were able to create the graph
of brain connectivity, i.e. for each pair of cortical ROIs we extracted all fibre
bundles which connect them. In particular, we were interested in charachteriz-
ing the motor connectivity plasticity after stroke. For this resons, we consider
intra and inter-hemispheric connections between the primary motor areas M1
and the secondary area SMA, from the parcellation obtained with Freesurfer.
Every cortical ROI, i.e. M1 or SMA, extracted by Freesurfer has been associ-
ated to a node in the graph. We denoted by ROI(v) the ROI that is associated
with the node v. Two nodes v1 and v2 are connected with an edge e = (v1, v2)
if there exists at least one fibre extracted with the tractography algorithm with
end-points in ROI(v1) and ROI(v2). Then, for each edge e it is possible to
define several weight functions, w1(e), w2(e), . . . , wn(e) which measure distinct
properties of the connectivity between the two ROIs v1 and v2, e.g. density of
connections, mean length, total number of fibres etc.

5.2.3 MRI protocol

All measurements were performed at 3 T (Trio a Tim System, Siemens, Erlan-
gen, Germany) using a 32 channel head coil. Diffusion spectrum imaging scans
were acquired with the following parameters: TR/TE = 6600/138 ms, FOV =
212×212 mm, 34 slices, voxel size = 2.2×2.2×3 mm, 258 diffusion directions,
b = 8000 s/mm2. Orientation distribution functions (ODFs) were reconstructed
using TrackVis software [96]. High-resolution T1 weighted MPRAGE images
were acquired with the following parameters: TR/TE = 2400/3 ms, FOV =
256 × 240 mm, 160 slices, voxel size = 1 × 1 × 1.2 mm. In order to improve
the accuracy of within time-point registrations (see next section), additional
high-resolution T2 weighted images were also acquired: TR/TE = 3000/84 ms,
FOV = 202× 230 mm, 48 slices, voxel size = 0.45× 0.45× 3 mm.

5.3 Image registration

Since acquisitions with distinct MRI techniques (e.g. T1, T2, DSI) produce
images which contain usually very different information about the underlying
tissue structure and/or function, proper integration of useful data obtained from
the separate images is often desired. The first step in this integration process is
to bring the different images involved into spatial alignment, a procedure referred
to as registration. For more details on medical image registration methods,
please refer to these comprehensive surveys [97, 98, 99].

Concerning the present study, registration techniques have been exploited
in two separate contexts:

• Within time-points. Since as we saw in section 5.2.2 the goal of the
proposed workflow is to extract fibres (coming from the DSI acquisition)
connecting each pair of cortical regions (coming from the T1 scan), the
two datasets must be spatially registered one another.
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• Between time-points. We have used Freesurfer to extract cortical par-
cellations from T1 scans, because of its ability to produce very accurate
results in healthy subjects. In case of stroke patients, however, the le-
sions may negatively affect the results of parcellation and the tweaking
of algorithm’s parameters is very tricky. In order to reduce biases caused
by lesions and to speed-up the parcellation process, we decided to apply
Freesurfer only at the chronic stage and to exploit registration algorithms
for applying the cortical segmentation to the other time-points.

5.3.1 Within time-points

At each stage of functional recovery from the stroke, i.e. the three time-points,
structural and diffusion scans have to be registered for every patient. Even
though T1 and DSI images come from the same subject, if only a linear registra-
tion approach were used, the results would not be much accurate. As shown in
figure 5.3 top, spatial distortions induced by the EPI2 acquisition scheme are
not taken into account with only linear transformations. This is particularly
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Figure 5.3: Linear vs non-linear registration comparison. T1 (greyscale) has been
overlaid onto DSI (gold image). Linear methods do not manage to correct the spatial
distortions induced by EPI (pointed by red arrows), whereas non-linear algorithms do.

evident in the frontal lobe, where DSI (gold image) appears to be shrunk in
the Anterior-Posterior direction in comparison to the T1 (greyscale image). It’s
worth highlighting that this contraction may deeply influence the results of the
present connectivity analysis, because even the corpus callosum appears to be
significantly affected by these distortions, and thus all the fiber bundles passing
through it could potentially be biased or even stopped. This kind of artifact
has been found in almost every subject.

2Echo planar imaging (EPI) is a very fast imaging sequence often employed to speed-up
diffusion acquisitions.

66



Diffusion MRI and post-stroke plasticity

Geometric EPI distortions are a well known problem in the MRI community,
and several approaches have been proposed for their correction. According to
[100], these correction methods can be divided into two groups: (i) field-map
based and (ii) image registration based. The most accurate is the field-map
based approach, but it relies on the acquisition of an additional image, the so
called field-map, which estimates the inhomogeneities of the magnetic field B0.
Thanks to these inhomogeneity maps, it is possible to estimate the degree of
distortion which was induced in EPI data, and therefore correct the images.
Unfortunately, such additional data was not available for the present study,
because these field-maps were not acquired at all. Thus, we had to correct EPI
distortions with an image-registration approach.

T1 T2 DSI

l inear nonlinear

Figure 5.4: Two-steps registration workflow. First, the T1 is linearly registered to
the T2, because even if they have different contrast there are no distortions among them.
Then, since T2 and DSI images have similar constrast, we use non-linear registration
techniques in order to correct spatial distortions introduced by EPI (top of DSI scan).

Figure 5.4 illustrates the two-steps worflow used for T1 → DSI non-linear
registration. First, the T1 image was linearly registered with the anatomically
undistorted T2 acquired separately. Since these two images have different con-
trast, but there are no distortions among them, a 6 degree-of-freedom linear
trasformation is enough. At this aim, we used FSL FLIRT software [31] with
mutual information metric. Then, the undistorted T2 scan was registered to
the first image with b = 0 in the DSI dataset using a deformable registration
algorithm, with sum of squared differences metric and cubic B-spline modeled
deformation field. The non-linear registration was carried out with FSL FNIRT
software [101]. Since FNIRT only incorporates the sum of squared differences
metric, it was not possible to directly register the T1 to the DSI, because they
have different contrast.

This issue was solved by using the additional T2 image as an intermediary
step. However, even if T2 and DSI images have similar constrast, they differ
in some anatomical details particularly important in the context of non-linear
registration. As clearly visible in figure 5.4, the skin outside the skull appears
hyper-intense in T2 images, whereas it is almost invisible in the DSI scan. Hence,
if we used the registration without any constraints, the algorithm would try to
align the surface of the brain in DSI scans with the skin visible in T2 images.
To solve this issue, we had to inform the algorithm about the brain boundaries
of each involved scan, i.e. T2 and DSI, by means of binary mask images. This
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allowed to preserve the global brain shape, but at the same time being able to
perform non-linear local deformations in order to account for EPI distortions.
Figure 5.3 bottom shows non-linear registration results for one representative
subject. Similar results were obtained for each time-point of all patients.

5.3.2 Between time-points

As seen before, the recovery from stroke has been monitored at three different
stages: hyperacute, acute and chronic. Therefore, for each time-point, a cortical
parcellation has to be provided. Freesurfer is a white-grey matter segmentation
tool which performs very well and produces accurate results. However, it is
very time consuming (up to 24-36 hours of computation per single parcellation)
and, in case of patients with brain lesions, fine tuning its parameters is a very
tricky operation. For these reasons, we decided to apply Freesurfer only at the
chronic stage and to exploit registration algorithms for applying the extracted
parcellation to the other time-points. At the chronic stage, in fact, most of
the tissues involved in the stroke appear more clearly in T1 images, and thus
it is easier to tweak the parameters and guide Freesurfer in producing a more
accurate parcellation of the remaining cortical surface not affected by the stroke.

A B

time-point 1 time-point 1

time-point 3time-point 3

Figure 5.5: Between time-points registration. Figure (a) shows the same slice of
a patient at hyperacute (top) and chronic (bottom) stages of the recovery after the
stroke. Tissues involved by the lesion look very different at various stages, causing the
registration among them to be particularly hard. To solve this, proper binary masks
covering the lesion at each time-point are needed, as shown in (b).

The registration between the three time-points have been carried out using
once again FSL FLIRT software, by using a 6 degree-of-freedom linear trasfor-
mation to match the T1 images coming from each time-point. Since in this case
the registration is applied on images with the same contrast, the correlation-
ratio metric has been used. This is true for every pixel except in the areas
involved by the stroke; in fact, tissues affected by stroke look very different at
various stages of the disease (see figure 5.5 a). Moreover, in some cases, the
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presence of edema may introduce some deformations in regions surrounding the
lesion. For these reasons, even if registration is performed within the same sub-
ject, very big differences actually exist between the images. To solve this and
to improve accuracy of registrations, proper binary masks covering the lesion at
each time-point are needed, as shown in figure 5.5 b. These binary masks were
manually drawn with the help of an expert neurologist.

5.4 Reproducibility of DSI tractography

Diffusion spectrum imaging is increasingly explored in clinical research. The
quantitative value of the DSI technique, however, has still to be established.
In this context, a better understanding of the reproducibility and the anatom-
ical correspondence of the DSI tractography results is thus required. Although
reproducibility has been studied comprehensively for diffusion tensor imaging
[102], only few studies have considered this topic for Q-ball imaging and DSI
analysis [103, 104]. Anatomical correspondence has been demonstrated in hu-
man DSI examinations for selected brain structures [16, 105]. For this reason,
prior to processing patients data in order to search for variations in some prop-
erties of fibre connections which correlate with stroke recovery, we decided to
investigate reproducibility and anatomical correspondence in serial DSI scans
by focusing on the choice of tractography reconstruction parameters. Evalua-
tions are based on connectivity measurements between cortical regions and on
comparison with a histological atlas [106].

To this aim, we exploited the data of the twelve subjects in the control group
to perform several tests with different combinations of tractography parameters,
by using an in-house modified version of a standard line-propagation algorithm
[107]. In particular, we were interested in the effects on the reproducibility and
anatomical corrispondence of extracted fibres which arise from the modification
of the following parameters:

• turn angle, i.e. the maximum allowed angle in the line-propagation
procedure when following a fibre from one voxel to another;

• ODF sharpening, i.e. the level of filtering applied to the DSI data in
order to make its diffusion maxima sharper.

The reproducibility was evaluated by means of the Coefficient of Variation (CV)
between the tractography results at the two time-points. CV is defined as:

CV =
σ

µ
(5.1)

where µ and σ are, respectively, the mean and the standard deviation of the
measures which has been used to study the connectivity at the two time-points.
Since ground-truth data of calculated fibre tractography is not available, we
assume that a reduced CV is a better result for serial scans. The correctness of
this notion is supported by visual comparison with a connectivity atlas.

It is worth noting that in healthy subjects of all ages we do not expect any
changes in connectivity or fibre properties during a 1-month period. Thus, CVs
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above zero are attributed to variations arising from the image acquisition, re-
construction and/or tracking procedures. Anatomical correspondence was eval-
uated by comparing the results with a histology based connectivity atlas [106].

5.4.1 Fibre-crossing in the corona radiata

Crossing-fibres regions are very challenging in diffusion MRI. Because of its high
angular resolution, DSI is a diffusion technique which is capable to resolve such
crossing fibres. However, as we saw in chapter 2, DSI reconstruction method
relies on Fourier transform and because of the low resolution of the 3D lattice
it uses, this procedure can introduce some blurring of the ODF, causing some
peaks to eventually become indistinguishable, as depicted in figure 5.6.

A B

Figure 5.6: Blurring effect in DSI reconstruction. A 45◦ crossing-fibres region has
been simulated. In (a) the reconstruction with the standard DSI method is shown.
(b) shows results from an alternative reconstruction method [108].

Since such alternative reconstruction methods [108, 109, 110] were relatively
new at the time of the present study, we decided to simply apply a sharpness
filter to the data. This way, we managed to recover smaller but very important
fibre bundles which otherwise would have been suppressed with the standard
reconstruction method. This was particularly important for elderly patients
in the corona radiata region, highlighted in figure 5.7 a, where the fibre bundles
coming out from the corpus callosum (CC) are covered by the bigger corti-
cospinal tract (CST) bundle. In figures 5.7 b-c it’s easy to note that horizontal
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Figure 5.7: (a) Fibre-crossing in the corona radiata. ODF maxima obtained with
standard DSI algorithm, with no sharpness filter, are shown for a young (b) and an
elderly subject (c). Colored sticks are used to represent the diffusion maxima in every
voxel and help to identify the local axonal orientation of underlying fibre populations.
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red sticks out from CC, which are crossing the vertical blue sticks of the CST,
are present in a young subject but not in an old one. However, both these tracts
are deeply involved in the motor system. Hence, their proper identification turns
out to be of particular importance for the purposes of the present study.

5.4.2 Effects of tractography parameters

When dealing with tractography algorithms, tweaking the parameters is a critic
factor. Notably, the turn angle (TA) and the ODF sharpening (SF) play an
important role as they act as a compromise between the loss of actual fibres and
the inclusion of aberrant ones in final reconstructions. In fact, increasing the
TA results in recovering more fibre bundles. Concerning the regions of interest
for the present study, it is possible to recover more connections leaving the CC
and pointing to the motor cortex. Moreover, if we increase the SF3 on the
data, the horizontal fibres which exit from the CC and pointing toward the lower
part of the motor cortex can be successfully recovered. However, increasing
both TA and SF results in recovering many more bundles, but the price to
pay is the inclusion of lots of aberrant fibres.

A B
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Figure 5.8: Tractography of the M1-M1 connections (yellow ROIs) in a healthy 64
years old subject. Reconstructions were performed with: (a) TA = 45◦ and SF = 0,
(b) TA = 45◦ and SF = −1.5, (c) TA = 60◦ and SF = 0, (d) TA = 60◦ and SF = −1.5.

Figure 5.8 demonstrates the anatomical correspondence of the M1-M1 con-
nections in a 64 year old healthy subject using four different parameter combi-
nations. Tractography results using parameter set 1 (TA = 45◦ and SF = 0)
showed only a few scattered fibres (subplot a). Parameter set 2 (TA = 45◦ and
SF = −1.5) resulted in consistently more fibres (subplot b), pointing toward
the lower part of the motor cortex (as indicated by the arrows in the subplot b).
Parameter set 3 (TA = 60◦ and SF = 0) provides similar results with further

3Lower values of SF correspond to higher sharpness filter of the data
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superior connections (blue bundles indicated by the arrow in subplot c) but less
horizontal connections which, instead, were properly recovered with higher SF.
The parameter combination 4 (TA = 60◦ and SF = −1.5) revealed more fibre
bundles, including the horizontal and vertical ones found in subplot b and c,
though also anatomically meaningless fibres appeared (subplot d).

Double ODF approach

To balance the effects of both turn angle and ODF sharpening, we introduced a
simple modification in the tracking algorithm, which managed to recover most
of the anatomically correct fibre bundles while reducing the inclusion of mean-
ingless fibres. The idea is to reconstruct two distinct ODFs maps from DSI:

• one using the normal ODF reconstruction method, i.e. SF=0, and

• an additional one with sharpness filter applied on it, i.e. SF<0.

It is important to keep in mind that sharpening the data allows to recover some
smaller bundles which have been blurred during the reconstruction process, but
it could also introduce some spurious small peaks due to noise. Thus, we can ex-
ploit the information about smaller diffusion peaks contained in sharpened ODF
by constraining the algorithm to use this information only in conjunction
with a restricted turn angle. If such information doesn’t allow the algorithm
to propagate the fibre through the voxel, causing a meaningless termination
of the tracking in white matter regions, then a compatible direction should be
sought for in the additional ODF, namely the one with no sharpness filter. This
ODF contains only the most probable diffusion directions, eventually blurred,
thus the algorithm can safely increase the turn angle. If the tracking procedure
manages to propagate the fibre thanks to this information, then the algorithm
will continue using the sharpened ODF until the next stop, and so on.

22 OODDFFss,, 4455°°//11..55,, 6600°°//00

Figure 5.9: Double ODF approach. Tractography of the M1-M1 connections in a
healthy 64 years old subject, performed using 2 ODFs/voxel

Figure 5.9 shows the results of tracking obtained using the double ODF
approach with the following parameter set: 2 ODFs/voxel, TA = 45◦/SF =
−1.5 and TA = 60◦/SF = 0 if the tracking stopped in a white matter region.
Comparing these results with figure 5.8, it easy to see that most meaningful
superior and horizontal fibres were successfully reconstructed, especially those
indicated by the arrows in subplots b and c. At the same time, meaningless
fibres were greatly reduced. Similar results were obtained in all subjects.
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5.4.3 Measures of connectivity

Another important issue that need to be answered in order to perform quanti-
tative analysis with DSI is how to measure connectivity. In literature, even if
some efforts have been made in order to identify a stable and accurate measure
of connectivity [111], most of the groups generally quantify the connectivity
between two regions simply counting the numbers of fibres, i.e. number of
fibres normalised by the total of extracted fibres in the brain, or trying to es-
timate the density of fibres, i.e. number of fibres normalised by the volume
of both regions [103, 112]. In the following, we will call them count and density,
respectively. They are defined as:

count(R1, R2) =
number of fibres between R1 and R2

total number of fibres in the brain
(5.2)

density(R1, R2) =
number of fibres between R1 and R2

volume(R1) + volume(R2)
(5.3)

where R1 and R2 are two cortical regions of the brain and volume(·) gives the
volume of the region. Anyway, during our experiments we found that both mea-
sures revealed to be quite unstable. In fact, even big bundles such as CST gave
high variability between the two time-points of the healthy subjects. This is
probably due because there are several orders of magnitude between the resolu-
tion of MR acquisitions and the diameter of the axons, and so the actual density
of fibres is a challenging concept to be characterised with MRI.

Figure 5.10: Coefficient of variation (CV) of connectivity measures. count, density
and percentage have been plotted. For each subject, CV has been calculated from the
two time-points for each pair of ROIs connections, and the median has been plotted.

At this aim, we have introduced a new connectivity measure, defined as:

percentage(R1, R2) =
number of connected voxels between R1 and R2

volume(R1) + volume(R2)
(5.4)

which tries to quantify how two cortical regions are interconnected by simply
counting the number of voxels which have at least one fibre connecting to the
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other region. In doing this, it doesn’t matter if a voxel v1 ∈ R1 has several
connections pointing to the region R2; the important information is that it is
connected to the other region. This way we are trying to avoid the estimation of
the density of that connection; instead, we are more interested in the percentage
of the region R1 which is involved in connections with the other region R2.

Figure 5.10 compares the accuracy of the aforementioned measures of con-
nectivity for a given tractography reconstruction. The graph reports, for each
subject, the average CV between the two time-points calculated over each pair
of cortical ROIs, by using the count, density and percentage measures of connec-
tivity, respectively. The percentage metric (yellow circles) clearly exhibits the
best performance, in that it gives lower CV values over all ages, thus being able
to characterise the connectivity by means of a more stable and reliable property.

5.4.4 Reproducibility results

To investigate reproducibility of DSI tractography, several tests have been per-
formed by varying the following parameters:

• 3 turn angles, i.e. TA = {30◦, 45◦, 60◦};

• 3 sharpness filters, i.e. SF = {0,−0.75,−1.5};

• 1 or 2 ODFs per voxel.

For each subject and for each combination of parameters, the average CV be-
tween the two time-points calculated over each pair of cortical regions (ROIs)
has been estimated. The connectivity between two ROIs was quantified using
the three measures just introduced, count, density and percentage, respectively.

ALL connections

Figure 5.11: Reproducibility of DSI tractography for all brain connections. The
average CV between the two time-points is plotted for each subject. The connectivity
between two ROIs was quantified using the percentage measure. Only a subset of all
tested combinations of parameters have been reported.
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Figure 5.11 reports the results for the reproducibility comparison for a subset
of all tested combinations of parameters, where the connectivity was estimated
by means of the percentage measure. Comparable results were found with the
combinations not included in the figure. The double-ODF approach (yel-
low line) clearly performs well, in that it gives CVs lower than most of the
other combinations of parameters. It’s worthy to note that also the tractogra-
phy performed with 1 ODF and TA = 60◦/SF = −1.5 parameters (lightblue
squares) appears to have similar reproducibility scores. However, it’s important
to remember that this parameter set introduces a lot of aberrant fibres (recall
figure 5.8 d). Therefore, it turns out that the double-ODF approach manages
to achieve a high reproducibility while reducing the number of anatomical non-
existent fibres. For completeness, figures 5.13 a-b report the results of the
reproducibility comparison by means of the two other measures of connectivity,
count and density, respectively.

M1M1 connections

Figure 5.12: Reproducibility of DSI tractography in the case of M1-M1 connections
only. The connectivity between two cortical areas was quantified using the percentage
measure. Similar results have been obtained with the other connectivity measures
(data not shown).

Finally, as reported in figure 5.12, the double-ODF approach was found to
be particularly advantageous in the M1-M1 analysis for elderly subjects (> 50
years). In fact, whereas most methods seem to get worse as the age increases, the
CVs in the case of the double-ODF approach appear to be quite stable compared
to the others. This could be due to the fact that widely used DSI reconstruction
parameters have been optimized in young healthy subjects [113]. Normal aging,
however, may lead to changes in MRI properties and contrast. Consequently,
these reconstruction parameters may appear suboptimal for older subjects. We
speculate that certain diseases may further influence the reconstruction results.
This issue appears to be very interesting and worthy to be fully explained, and
thus it will be part of some future projects.
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Summarising, DSI tractography results demonstrate to be very sensitive to
the choice of reconstruction parameters. In particular in serial scans and when
investigating inhomogeneous subject populations a careful adaptation of recon-
struction parameters may render the results more reproducible and accurate.
Concerning this, by simultaneously modulating the sharpness filter and lim-
iting the inclusion of anatomical non-existent fibre bundles by restricting the
turn angle, we managed to improve the standard line-propagation fibre-tracking
algorithm increasing its reproducibility for subjects of all ages while keeping
invariate the computional time.

A

B

ALL connections

ALL connections

Figure 5.13: For sake of completeness, the reproducibility of DSI tractography
has been compared also by measuring the connectivity between cortical regions with
count (a) and density (b) measures. Similar results were found with these two metrics;
however, as already seen in the chapter, percentage appeared to be more stable (lower
CVs values).
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5.5 Preliminary results

We so far analysed the data from 3 time-points of 8 patients following the steps
reported above. All the patients functionally recovered at six month after stroke,
as reported in table 5.1 by means of ranking, NIHSS and FIM scores:

Hyperacute Six months
Ranking 2.88± 0.99 1.38± 0.52

nihss 10.00± 5.48 2.63± 2.13
fim 94.25± 26.26 121.50± 7.52

Table 5.1: Functional recovery of the 8 patients so far analysed by means of ranking,
NIHSS and FIM scores. Mean ± standard deviation values are reported at hyperacute
(i.e. time point 1) and chronic (i.e. time point 3) stages.

In this group of patients with strokes affecting the motor cortex we could ob-
serve remodeling of the connectivity over six months after stroke both in the
hemisphere ipsilateral to the stroke and in the healthy hemisphere contralateral
to the lesion. In addition, we found interesting changes in the interhemispheric
connections between the primary motor areas M1 and the secondary motor areas
SMA (Supplementary Motor Area).

A B

Figure 5.14: Connectivity at the three time points of ipsilateral (a) and contralat-
eral (b) connections between M1 and SMA areas for the eight patients so far analysed.
The connectivity was measured by means of the percentage metric.

As expected, the connectivity between the M1 area and the SMA area ipsi-
lateral to the stroke region showed a substantial decrease over the six months
follow-up after the acute event, figure 5.14 a. The most dramatic reduction was
observed in the youngest patient, who was 25 years old at the time of the stroke
(cyan profile). This observation is in line with previous functional MRI (fMRI)
studies reporting ipsilesional dysfunction of the M1 to SMA coupling in patients
affected from sub-cortical stroke [114, 115]. In our case, this phenomenon could
of course also be due to the direct lesion effect in these areas provoked by the
stroke. In order to clarify this point, further assessment of stroke volume and
M1 involvement in the stroke area should be performed in future.
Interestingly, also the M1-SMA connections in the contralateral hemisphere
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underwent a structural remodeling: 6 out of 8 patients showed a progressive
decrease of the connectivity between the primary and the secondary motor area
considered, as shown in figure 5.14 b. Considering that SMA is known to inhibit
the M1 area [116], this could mean that the contralateral motor area structurally
remodel in order to disinhibit the unaffected M1 as a compensatory mechanism
during motor function recovery. However, this mechanism was not observed in
2 out of 8 patients (brown and yellow profiles).

A B

Figure 5.15: Connectivity at the three time points of interhemispheric connec-
tions between primary (a) and secondary (b) motor areas for the eight patients so far
analysed. The connectivity was measured by means of the percentage metric.

Concerning the interhemispheric connections, figure 5.15 a shows that
the connections between the ipsi and contralateral M1 areas slightly increased
in 4 out of 8 patients during the process of functional recovery. In other 2
patients these connections did not substantially change whereas in the last 2
patients they slightly decreased. In addition, all the patients showed a clear
relative increase of interhemispheric connections between the secondary motor
areas SMA, as clearly visible in figure 5.15 b.

The increase of interhemispheric connections between primary and secondary
motor areas could be part of a compensatory mechanism during functional re-
covery after stroke. It’s very well known that the M1-M1 and SMA-SMA in-
terhemispheric connections have reciprocal inhibitory influences [117, 118]. It
has also been reported that, in patients with chronic stroke and good functional
recovery, the degree of the inhibitory influences between M1-M1 and SMA-SMA
areas decreases [114, 115]. These findings seem also to clearly confirm the hy-
pothesis that there is reorganization within the SMA after stroke [119]. The
SMA has been shown to be plastic under different circumstances. For exam-
ple, SMA reorganization has been reported in healthy subjects trained with
increasing force [120] and in stroke patients asked to perform index-finger tap-
ping [90, 121]. Indeed, enhancement of SMA activity, (i.e. by high-frequency
transcranial magnetic or direct current stimulation) has been suggested as a
potential means for ameliorating M1 dysfunction after stroke [122, 123].

In summary, our preliminary results show potential structural mechanisms of
brain rewiring underlying the recovery of function after stroke. Future analysis
should confirm or confute these findings.
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Chapter 6
Conclusions

As already pointed out, this dissertation is based on three different projects,
each one covering a separate topic. For this reason, each previous chapter has
its own conclusions at the end of it. However, at this point it’s worthwhile to
summarise the main contributions of the present work.

Concerning the project on manganese-enhanced MRI technique illustrated
in chapter 3, we successfully established a methodology for the absolute quan-
tification of Mn concentration in the rat brain. This method is based on fast
T1 mapping and coregistration of images to an anatomical brain atlas. The
sequence for fast T1 mapping has been tested on ex-vivo data end calibrated
with spectroscopic measurements. Furthermore, the spatial coregistration to
the anatomical brain atlas allowed to identify the regions in which Mn accumu-
lates. This way, from the calculated Mn concentrations it is possible to infer the
location of regions activated during a specific task. This protocol, thus, may
allow to conduct functional MRI experiments in which a stimulus is applied to
awake animals behaving normally.

In the field of experimental tumour models characterisation, the classifica-
tion of the tissues affected by the tumour is crucial. Classical DCEMRI analysis
methods employ pharmacokinetic models which effectively describe the vascular
perfusion in the region of the tumour, but suffer from large output variability.
At this aim, we proposed to work directly on DCEMRI data with a model-free
approach, combining clustering and machine learning techinques in order to in-
fer the most discriminative properties of the data which allow to better classify
the involved tissues. We have shown that this analysis method performs better
than standard model based approaches in producing histologically meaningful
partitions of the tumour. Moreover, we successfully validated it in a real case
application for the evaluation of the efficacy of an anti-cancer therapy, thus
demonstrating the effectiveness of our proposed approach.

Finally, in the stroke project, brain connectivity has been monitored with
Diffusion Spectrum Imaging in order to study the plasticity of the human brain
from a structural point-of-view during its functional recovery after the stroke.
To obtain the necessary sensitivity to structural modifications, a careful survey
on fibre tracts reproducibility, reconstructed by an in-house developed fibre-
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tracking procedure, has been conducted on healthy subjects. By using the
parameter set giving the best reproducibility, connections between primary and
secondary motor areas have been carefully extracted. Our preliminary results
have given evidences of potential structural mechanisms of brain rewiring un-
derlying the recovery of function after stroke. These findings are in line with
well-known results obtained by functional MRI and pave the way for getting
more insights about brain plasticity mechanisms.
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