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Abstract

HIV-1 Negative factor (Nef) is a protein essential the
metabolism of the virus.

Here we investigate the interactions of NEF witle @f its
targets on infected human cells, the human thiogste 8
(hTE8) enzyme.

Homology modeling, virtual protein-protein dockingnd
Molecular Dynamics Simulation experiments are @rout
on the structural models of the enzyme and the mp
respectively, with the aim of characterizing thetgpwe
interaction region.

A plausible, albeit approximate, binding regionidkentified.
The latter help interpret existing site directed tagenesis
data. Our calculations suggest also that the systarge-
scale dynamics change upon complex formation.



Part A - Background and Theoretical
Methods

1.0 HIV

1.1 HIV disease

Human immunodeficiency virus (HIV) is a lentiviru@
member of the retrovirus family) that causes aaglir
immunodeficiency syndrome (AIDS), a condition innmns
in which the immune system begins to fail, leaditay
lifethreatening opportunistic infections. Infectiomth HIV
occurs by the transfer of blood. HIV is presentbath free
virus particles and virus within infected immundiseThe
four major routes of transmission are unsafe sex,
contaminated needles, breast milk, and transmidsam an
infected mother to her baby at birth. Screeningbtafod
products for HIV has largely eliminated transmisstbrough
blood transfusions or infected blood products mdleveloped
world.

Figure 1. Scanning electron micrograph of HIV-1 budding from
cultured lymphocyte. (http://en.wikipedia.org/wikié:HIV-budding-
Color.jpg)



1.2 Negative Factor

The Negative Factor (Nef) protein from Human
Immunodeficieny Virus type 1(HIV-1) is a 27-kDa-
myristoylated protein required to produce a higlaMioad of
the virus. In infected cells, this protein has b&mmd to bind
to a variety of proteins, including the src-famityrosine
kinases[1-2], the serin/threonine kinase]3-5], G)4], and
thioesterase 8 (hTES8)[8]. Structural informationcomplexes
between Nef and its identified cellular partnersusrently of
great interest to clarify Nef function in HIV-1 paigenesis.
So far, only the structure of the complex betweest dbre
domain and kinase SH3 domain has been solved usiay
crystallography[9].

Although HIV-1 Nef was originally named "negativactor,"

it has been shown to have a positive role in wieglication
and pathogenesis. Nef is a viral protein that ader with host
cell signal transduction proteins to provide fondoterm
survival of infected T cells and for destructionnoin-infected
T cells (by inducing apoptosis). Nef also advantles
endocyotsis and degradation of cell surface prstencluding
CD4 and MHC proteins (CD4 is an integral membrartgm
that functions in T-cell activation, and is the eptor for the
HIV virus).

This action impairs cytoxic T cell function, theyehelping
the virus to evade the host immune response. The
multifunctional protein helps the virus maintainglhi viral
loads and overcome host immune defenses, contriptdithe
progression of AIDS. Nef may be a valuable target f
pharmaceutical intervention in AIDS progression.

Recently, point directed mutagenesis experimentse we
carried out on NEF with the aim of identifying therface of
interaction between the latter an one of its targethuman
cells: the Acyl Thioesterase Il. In the study, fresidues that
play a crucial role for the binding to hTE8 [10-1@fre
found, i.e. Asp108, Leull?2, Phel21, Prol22 and 23p1

1.3 Acyl Thioesterase

Acyl-CoA thioesterases are a group of enzymes dhtlyse

the hydrolysis of acyl-CoAs to the free fatty acahd

coenzyme A (CoASH). They consequently have thenpiaie

to regulate intracellular levels of acyl-CoAs, frizdty acids
5



and CoASH. They may also be involved in the metabol
regulation of peroxisome proliferation. Thioestgrly a
central role in cells as they participate in metisbo
membrane synthesis, signal transduction, and geneation.
Thioesterases catalyse the hydrolysis of thioestetke thiol
and carboxylic acid components. Many thioesterdsese a
hot dog fold, including YciA from Escherichia calind its
close sequence homologue HI0827 from Haemophilus
influenzae(HiYciA). The E. coli thioesterase 8 ralgea new
tertiary fold: a 'double hot dog'. It has an intrrepeat with a
basic unit that is structurally similar to the rettg described
beta-hydroxydecanoyl thiol ester dehydrase. Theerlawvas
shown to interact with the HIV-NEF protein in infed human
cells [8]. Here we investigate the interactions of NEF witle on
of its targets on infected human cells, the hurharesterase 8
(hTE8) enzyme. Homology modeling, virtual protenogein
docking and Molecular Dynamics Simulation experitsesre
carried out on the structural models of the enzynd the

complex respectively, with the aim of charactegzithe
putative interaction region.

Figure 2. Crystal structures from the a) Acyl-Coa thioesterdBDB
code 1C8U) and b) Nef (PDB code 2NEF)



2.0 Comparative Modeling
2.1 The Levinthal paradox

One possible route to annotate a genome is tonthyaasign a
structure to the protein products of the genegrimciple one
could follow two routes: a physico-chemical apptoac
whereby one tries to calculate the protein strggtor a
heuristic approach where rules relating sequencgrtmture
are derived from the analysis of known proteindtrces that
have been experimentally determined.

The first route is clearly much more intellectuadlgpealing.
After all, given a protein sequence we know exacty/
chemical composition, if we do not consider poatisiational
modifications, and all we need to know are the deracting
on each of the atoms so that we can compute tipdimal
relative position.

In order to follow this route we need to make stirat the
functional protein structure is the conformatiomresponding
to the free energy minimum and, if this is the céisat we are
able to calculate the energy of all possible pmotei
conformation accurately enough to distinguish betwé¢he
correct structure and all the others.

If one takes a folded protein, i.e. a protein & fiinctional
conformation, places it in chemical conditions véhetl the
forces are weakened and therefore where the protdoids,
it is sufficient to remove the chemical agents uded
denaturing the protein to recover the folded fuorai protein.
This is the result of a very elegant experimentgrered by
Christian Anfinsen in 1973 [26]. The obvious intetation of
the experiment is that a protein sequence contaihshe
information needed to achieve its functional stiuet(the
experiment is carried out in a test tube whereetiemnothing
else but the protein) and that the functional diveastructure
iIs the one corresponding to the free energy mininammong
those that the protein can explore (no matter h@myntimes
you repeat the experiment you always end up wighsidime
final structure). Therefore we can assume that rihgve
protein structure is the one corresponding to tke £nergy
minimum (the limits of validity of this assumptioare
discussed later in this chapter).



All we need to do is to compute the energy of alsspble
conformations of a protein and select the one withimum
free energy. However there are at least two hurtlieghis
strategy, the first is that proteins are only maadly stable,
I.e. the energy needed to unfold them is of theeioad a few
Kcal/mol and is brought about by a very large numbk
weak interactions, and therefore we would needotopute
the energy of each interaction very accurately isbirdyuish
between the native protein structure and all theerst The
second is that the number of possible conformatiofs
proteins is simply enormous. There are many integs
attempt to try and simulate the folding of a protén a
computer using various tricks, approximations aindtegies,
as it will be discussed later in this chapter, inupractice we
do not have at the moment any method that can dol
protein only on the basis of the physico-chemicapprties of
its sequence and we have to recur to heuristic odstiby
exploiting the fact that we have access to seveohled
instances of our problem: all proteins of known usatge
whose structure has been solved experimentally.
The enormous number of conformations available pootein
not only makes the task of computing them impossibut
implies that the protein itself cannot be randos@grching its
conformational space.
The case against proteins searching conformatspete for
the global minimum of free energy was argued byuSyr
Levinthal in 1968[38]. The Levinthal paradox, as i
commonly known, can be demonstrated fairly easflywe
consider a protein chain of N residues, we cammasé the
size of its conformational space as roughly 10NestaThis
assumes that the main chain conformation of a protay be
adequately represented by a suitable choice frosh 10
different local conformations per residue. Morehtacally,
the assumption is that there are just 10 diffemnmon
combinations of phi, psi and omega torsion angtesebch
residue type. This of course neglects the additiona
conformational space provided by the side chairsidar
angles, but is a reasonable rough estimate, albgit
underestimate. The so-called paradox comes frormashg
the time required for a protein chain to search its
conformational space for the global energy minimuet's
think about a typical protein chain of length 1@8idues and
let's assume that the atoms can move very fast spieed of
light even. Even at these physically impossible mato
8



velocities, it would take the chain around®18econds to
search the entire conformational space, which coespather
unfavourably to the estimated age of the Univers@’(
seconds). Clearly proteins do not fold by searchivegy entire
conformational space.

2.2 Compar ative (homology) modeling

At some stage of the evolution of a species, somiduals
might diverge sufficiently to give raise to a diéat species,
I.e. become unable to interbreed in the wild praaydertile
offspring with the other members of the originatsmgcies.
Proteins have limited stability brought about byaltitude of
rather weak interactions among their atoms. Thggests that
the delicate balance between destabilizing andiligiag
forces might be easily destroyed by a mutation #mel
mutated protein might not be able to fold. Howe\darring
evolution, function has to be preserved, therefallethe
proteins that we observe can only contain non Oéziag
mutations with respect to their immediate ancesemuence.
Can a small change destabilize the original prostincture
and stabilize a completely different one, presay\stability,
function, folding ability, etc.? This is rather ikdly, and
indeed never observed. It follows that evolutiolyarelated
proteins, that is proteins derived by a common stoceria the
accumulation of small changes, cannot but have laimi
structure, where mutations have been accommodatgd o
causing small local rearrangements. If the numbehanges,
that is the evolutionary distance, is high theseallo
rearrangements can cumulatively affect the pros#iacture
and produce relevant distortions, but the geneddli@cture,
that is the fold, of the protein has to be consgn@n the
other hand, if two proteins have evolved from a cwn
ancestor it is likely that a sufficient proportiaof their
sequences has remained unchanged so that an emahyti
relationship can be deduced by their comparativayars.
Therefore if we can infer that two proteins are b@ogous,
that is evolutionary related, the structure of oae be used as
a first approximation of the structure of the othEnis forms
the basis of the technique known as comparativenorology
modeling[45].



How well is a protein structure preserved duringletion?
Chothia and Lesk [29] analyzed 32 pairs of homolsgo
proteins of known structure and asked the quesifonow
much the core of the structures diverged as a ifumaf the
sequence identity (a rough measure of the evolation
distance). There are several definitions of the adra protein
structure. In their work, Chothia and Lesk useda#most
tautological definition of core as the part of tpeotein
structures that is more conserved between the two
homologous proteins under study. Regardless theifgpe
definition, we can intuitively understand what tbere of a
protein is: the part of the structure that is netigheral to the
folded nucleus of the protein, i.e. the proteinhatit external
“decorations” such as loops and small domains trat
usually not very well conserved in evolution. Inetkame
paper, Chothia and Lesk also analyzed the extewhich the
core is conserved as a function of sequence igerfieir
conclusion, supported by many subsequent analisit)at
there is a clear relationship between the divergewicthe
structures of homologous proteins and that it caexpressed
as a function of their sequence identity.

2.3 Evolutionary history of the protein

The first step of a comparative modeling experimenthe
detection of proteins evolutionarily related to whose
structure is known (templates). The next questienneed to
ask ourselves is: which amino acid of the targeitgmn
corresponds to which amino acid of the templates®@ther
words we need a sequence alignment between thet targ
sequence and the sequence of the template prdteis.is,
without doubts, the most crucial aspect of a modeli
procedure and one of the most difficult ones. Tlaeesseveral
methods for aligning protein sequences, but hetkeasatch.
All these methods try to reconstruct the evolutignaistory
of the protein. In other words, they tell us wheamino acids
are likely to be derived from the same amino adidhe
ancestral protein that gave origin to the presegfusnces.
However, this is not necessarily the alignment wedfor
homology modeling. Let us try and explain this wiin
example. Suppose that there is an insertion ofaomao acid
in a given position in our target sequence witlpees to its
template. Not only the inserted amino acid of tgeét does

10



not have any equivalent amino acid in the templad also
the amino acids surrounding it are likely to hakarged their
position relative to the rest of the structure irder to
accommodate the insertion and using their evolatipn
counterparts as structural templates for their tjosiis
incorrect.

2.4 Best protein to be used astemplate

If more than one protein of known structure evaoérily
related to the target is available we have sevposisible
choices. We can:

» use the one evolutionarily closer to the target, the one
with the highest sequence similarity,

» ‘“average” the coordinates of the templates anddbai
“theoretical template”,

» take the structure of different regions from th&edent
proteins selecting the regions where the local lanty is
higher,

* build a model on the basis of each of the available
templates and select the best one according to soteda,

» derive constraints from the templates and subseiyuen
build a structure that satisfies as many of thempassible.
Essentially, all these strategies are used in igeacby
different tools available to users[37] [42]. Itd#ficult to say
which is the best in general, although it is becwmntlearer
that using multiple templates has to be preferreti@mobably
the constraint based strategy is more effectiveany cases.

2.5 Machine lear ning methods and template selection

Secondary structure and presence of disulfide boaes
among the features that can be successfully pestict
Generally speaking, prediction tools rely on tlaetfthat,
even if the overall structure is determined by thkole
sequence, specific structure features can be g$yrong
influenced by local features of the sequence. Fample,
alpha-helices and beta-sheets have different anaioiol
composition, and the same is true for the neiginigaresidues
of disulfide-bonded and free cysteines. If we abteao

11



understand these differences, we can use thematoage the
probability for a residue to be in a secondarycditme or for a
cysteine to be disulfide bonded.
The basic idea is to analyze the set of proteimswk at
atomic resolution and adopt methods suited to eixtra
correlations between structural features and |leegjuence
features. Simplest methods are based on classitsties and
evaluate, for example, the propensity of alanirsgdiees to be
in a alpha-helical structure simply by computing ttatio
between the alanine composition of alpha-heliced atme
overall alanine composition in proteins. Statidtiogethods
can take into consideration more elaborate sequieateres,
but they often fail in extracting useful correlasowhen the
complexity of the problem increases. For that reasonore
versatile and flexible methods have been designed a
implemented on the basis of the so called “macleagiing”
theory. Among them, Neural Networks, Support Vector
Machines and Hidden Markov Models are the most lyide
adopted. With different strategies, they are ableextract
information from a set of known examples in an eatc
way, on the basis of a rigorous mathematical fraomkw
Owing to their architectures, they are able to dedmore
complex rules of association between input (seqeieaad
output (structural feature) than classical statistethods do.
These rules are encoded in a set of numerical pess
whose values are fixed during the training phase then
used for predicting new sequences.
Versatility of machine learning methods allows eliéint input
encodings, more informative than the sole sequetocée
considered. In particular a general improvement tlodé
performance can be obtained using sequence prafpes
multiple sequence alignments. In practice, givesequence,
similar sequences are searched in the data basehand
aligned so as to obtain a representation of a whenialy
instead of a simple sequence. This representatgnlidhts,
for example, the conserved and mutated residuestlaad
supplements the predictor input with evolutionary
information.
The classical application of predictive methods ptotein
structure is the determination of secondary stinecstarting
from sequence. Best methods for this task are basé&teural
Network and Support Vector Machines and take aatitipe
sequence profile of a 15/25-residue long windowjteed
around the residue to be predicted. When validatad
12



proteins with known structure not used during trentng
phase, these methods predict the correct secostlaigture
for about 78% of residues[35] [46]. Better resutan be
obtained implementing a consensus of different pus[80]
[46].

Another important structural feature that can bedmted is
the presence of disulfide bonds, that is the bogtevéen the
sulfur atoms of two cysteine side chains. Thishe bnly
covalent bond that non adjacent residue can forthamative
state and a correct prediction of the topology wuldide
connection strongly constrains the prediction e bverall
structure. This task can be easily split into tweps. First of
all, since only about 1/3 of cysteine residuesiavelved in
disulfide bonding, it is necessary to discrimindtem. Then
the topology of the connections can be predicteshc€rning
the first step, very efficient methods have beeplé@mented
that are able to predict the correct bonding staite88% of
cysteine residues and to give an overall correediption for
84% of proteins[40]. They are currently based msteays that
integrate a Neural Network and a Hidden Markov Motdike
former analyzes the composition of the profile imaows
centered around each cysteine residue while theerlat
correlates the outputs that the neural networkspcoes for
all the cysteine residue in the sequence[39].

The prediction of the topology of the disulfidedges, i.e. of
which cysteine pairs with which, is more difficaue to the
combinatorial number of possible connection patidior a
given number of bonded cysteine residues. Important
achievements have been reached, although a reliable
prediction of the disulfide connectivity pattern ncebe
performed only when two or three disulfide bonos @resent
in the protein[31].

In conclusion, the prediction of structural featurgtarting
from the sequence is not able to completely recocisthe
protein conformation. Nevertheless these procedwas
greatly help this task since the predict constsalimit the
number of possible conformations. Moreover the ouipf
this tool can supply information useful in the implentation
of fold recognition methods.

13



2.6 Side chain modeling

For insertion and deletions, methods are usuallyedaon
either an energy driven search for the possibldocorations
of the region of interest or on a database sedrcbgions of
protein of known structure that can provide a |laeshplate
[27] [28] [32][34][43] [44]. The latter are usualbelected on
the basis of either a good fit of the regions flagkthe region
between target and local template, or on local secg
similarity. Side chain modeling often takes adeget of the
preference of side chains for specific conformatjors
deduced by the analysis of known protein structufégse
preferences, tabulated in so called rotamer libsf2i8] [33]
[34] [36], are usually used as a starting pointgobsequent
refinement of the overall structure.

Once we have built our initial model, we need tefitre” it.
What this simply means is that we now need to maokiel
effect of the specific sequence changes that hawvereed in
our protein with respect to its template.

2.7 The CASP (Critical Assessment of Methods for Protein
Structure Prediction)

Every two years crystallographers and NMR spectioists

who are about to solve a protein structure arecasikanake

the sequence of the protein available together avitbntative
date for the release of the final coordinates[4Adictors

produce and deposit models for these proteins &efioe

structures are made available and, finally, a pahaksessors
compares the models with the structures as sodhegsare

available and tries to evaluate the quality ofrtimdels and to
draw some conclusions about the state of the arthef
different methods. The results are discussed meating

where assessors and predictors convene and théusions

are made available to the whole scientific comnmuwia the

World Wide Web and the publication of a specialiessf the

journal Proteins: Structure, Function, and Genetithe

collected data, amounting to tens of thousands adeis for

hundreds of targets is an invaluable resourcedsessing the
guality of protein models.

14



Although embarrassing, we have to admit that, 3o ria
available method, is able to consistently produmee dorrect
structure for regions where insertions and delsti@are
located or to improve the initial model and makébetter”,
l.e. closer to the real structure, while the accuraf side
chain modeling methods seems to be only limitedthoy
quality of the prediction of the rest of the struet
Notwithstanding the limitations of comparative minag, this
method remains the method of choice whenever pesib
at least two reasons. First of all, the relativaaldqy of a
comparative model depends on the evolutionary nmlsta
between two proteins. In fact, both the probabiitynferring
the correct alignment between two proteins andsthectural
divergence between their structures are correlaiéu their
evolutionary distance which can be estimated aripridis
implies both that it is possible to estimate thpested quality
of a comparative model and its possible range pfiegtion
beforehand and hence decide whether it is reaseniabl
embark in the task and also, perhaps most impdytathiat
one can attach an approximate reliability to ariythe
conclusions derived from the analysis of the moddie
second, equally important aspect, is that the mistlogy will
be especially effective in modeling regions of atein that
are more conserved during evolution. This impliést t
functionally important regions will be more corrgct
modelled than other, often of lower interest, regio

15



3.0 Molecular Dynamics

3.1 Molecular Dynamics (M D) simulations

Molecular Dynamics (MD) simulation is a techniquaihded
upon the basic principles of classical mechanias pinovide a
dynamical picture of the individual particles oéthystem at a
microscopic level. Using this technique successive
configuration of the molecular system (in the phsgace of
coordinates and momenta) is generated by integratin
Newton’s law of motion.

The result is a trajectory, which contains the oscopic time
evolution of the system in the phase space. From th
trajectory generated, one can compute the dynamical
properties such as absorption spectra, rate cdastamd
transport properties. Further, on combining MD with
statistical mechanics as a mean of sampling, onecmpute
equilibrium properties such as

average thermodynamics quantities, structure, arek f
energies along the reaction path seen as a unialh dssible
states of the system. For instance, the statiseagkemble
average of an observalecan be obtained as:

t=1 (3.1)

The assumption made here is called the ergodic thgpis
(details in 3.3), i.e given an infinite amounttiohe, ensemble
average of observablg, is equivalent to its time average. The
main aspect in atomistic MD simulations are:

* An algorithm that samples the phase space

» The choice of the interaction potentialy)/(between the
atoms of the system.

Several simulations approaches were developeckifat
decades that differs in the method to sample tlasgbpace.
The most fundamental form used to describe equafion
motion is the Lagrangian form:

(3.2)

16



L(q.,4)

is Lagrangian defined as the difference betweerkitinetic
and potential energies L=K-V, where qj are geneedi
coordinates and q j are the associated time deseval he
momentum conjugate to coordinate gj is given as:
ol
Pi ==
RCT (3.3)
On substitution with the usual definition of kireeind
potential terms with cartesian coordinategquation (3.2)
becomes:
aVir)

ori (3.4)

F; = m;f; with F; = —

where V(), the potential, is a function of the atoms posi$
and Fi represents the total force on atom i. Is éguation
one assumes that the nuclear motion of constifaticles
obeys the laws of classical mechanics. This isxaelkent
approximation if the distance in the energeticngtational,
rotational and vibrational) levels of the involveegrees of
freedom is << kT, where k is the Boltzmann conséartt T
the temperature. In the Hamiltonian form the ecqumatf
motion for the cartesian coordinates is given by:

8 . avir]

and i =
M P ar;

=

(3.5)

3.1.1 Integration of Newton equations of Motion

Under the influence of a potential, the motionsatdms are
strongly coupled to each other giving rise to maogy
problems that cannot be solved analytically. Thaesfin MD
calculation an iterative numerical procedure is l@ygd to
obtain an approximate solution for the equationshofion.
The two important properties of the equations ofiomoto be
noted are:

» They must be time reversibe (t = -t).
» Conservation of total Energy (Hamiltonian) of gystem.

17



For the first point, as the Newton equations anetreversible
also the algorithm used is supposed to satisfysdme time
reversal symmetry. The algorithms that are not tiewersible
do not normally preserve the phase space volumethiey do
not satisfy the Liouville theorem. For the seconadinp
conservation of Hamiltonian is equivalent to comagon of
total energy of the system and provides an imporliak
between MD and statistical mechanics. The energy
conservation condition H(p,r) = E, defines a hypdee in
the phase space called the constant energy, ingposin
restriction on system to remain on this surfacgodd way to
check the accuracy of the algorithm is to followe temporal
evolution of an observable A that should be coregrie.g.
the total energy). In general a good algorithm nhestsuch
that:

Altn ) — Alto) L .
LA ” O o) | < 1, for(ty, —tp) = At

(3.6)

there is no drift in the total energy.

The MD integration of the Newton’s equation whicavh a
continuous form, are based on assumption that iposit
velocities and other dynamical properties can lserdtized
using the

aylor series expansion:

-l ] ] 3
rit+ot) =r(t) +Atv(t) + ;ﬂ.’r"ﬂ[ﬂ + L—,ﬂut"b[f] 1
(3.7)

1 T L
vit+ &t =vit) + Atalt) + ;ﬂ.t‘b (t) + 7$t3c‘.|,’r_l + ...
= b
(3.8)

The choice of the integration method depends oni¢geee of
accuracy of problem at hand. One of the most udefuh
used is the velocity verlet algorithm, a variant \ofrlet
algorithm. The advantage is using velocity verledtmod is
that positions, velocities and acceleration are | wel
synchronized that allow to calculate the Kkineticergy
contribution to the total energy at same time, framich
potential energy is determined.

The equations are:

18



1,2 _ .
rilt+ At = ri(t) +vi(At)At +a; AL + O(At?)
- (3.9)

1 3
vilt +At) = vilt) + [ailt) + ai(t + At)]5AL + O(AL7)
< (3.10)

wherea; r;,v; are respectively the acceleration on the atom
the atom position and the atom velocity. The athanihas an
accuracy of QAt3) for the variables and it is reversible in
time.

Together with conservation of energy and time-renodity
another important feature of an integrating al¢onitis to
permit long time stepdt. It is expected that the numerical
Newtonian trajectory will diverge from the “true”etonian
trajectory. However, it is important that the imagng
algorithm maintains a well defined energy tolerantié
throughout the simulation time.

The error AE) is known to decrease on decreasing the time
stepAt. The aim here is to find a balance between utheg
largest possible time step and maintaining an dabépAE
all along the simulation. A large time step wouwddd to faster
exploration, but energy would fluctuate widely withe
possibility of the simulation being catastrophigalinstable,
on other hand too short time step would lead topdation
being needlessly slow. The choice of an integrastap is
determined by the nature of forces acting on tistesy. The
golden rule is to choose time steft € 10™ s) such that the
fastest motion of the system can be integratedratay. This
requirement is a severe restriction, particularly laigh
frequency motions are relatively of less interest dave
minimal effect on the overall behavior of the systeOne
suggested approach is to freeze out such vibrations
constraining the appropriate bonds to their equilib values.
Details of this approach is discussed in subse&ibr, or to
use multiple time step approach which is discussed
subsection 3.1.2.

3.1.2 Multiple Time Step I ntegrator

One of the approaches to accelerate the integrabin
equations of motion, is to use “multi-time” stea@ithm
such as reverse reference system propagation thigo(r-
RESPA)[51]. In the algorithm (r-RESPA), the moleuoul
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system is classified into number of groups accgrdo how
rapidly the forces varies over time. The startiminpis the
Liouville operator formulation, which can cast thguations
for the Hamiltonian system (see equation 3.5) igeaeral
form:

x =iLx (3.11)

where x is the phase vector and iL is the Liouvdlerator.
Consider a molecular system containing N atoms 3r
degrees of freedom) with x =;{mp} representing a point in
the phase space. The Liouville operator in camesia
coordinates is defined as:

AN
oH @ oH o
L={. Hl = E . — .

: b dpi Ory 0Ty @pi]

= (3.12)
On subsituting equation 3.5 into equation 3.12gee
AM
: pi O d
L={.H=) |— — _]
—lmi 9n opi (3.13)

where Fis the force on"l degree of freedom, and {...,...} is
the

poisson bracket. The classical time propagator i9(tnitary
and defined as'® , and the evolution of system Eq. 3.11 is
expressed as:

x(t) ={‘1L[x[{‘.l] (3.14)
The action of operator U(t) on x(0) cannot be daieed
analytically, however the operator can be deconghasing
Trotter theorem, such that the action of U(t) o@)édr each
part can be evaluated analytically. Applying theotlar
theorem we get:

rj

'FJ
ei|_L1+L2|1 — [Ei|_L1+L2]1__.-’Pl =lﬁi[L1+L2|.r:-.1]

'FJ
— [f‘lL.l I'%l]ﬁiL‘“llEiL“:éle] +"-:|'|1.'3P2|
(3.15)

whereAt=t/P. For finite P, the numerical iteration proassl
Is accurate to the second order in the time stémgttimes.
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From equation 3.15 for the three exponential terms, we
define
the discrete time propagator(U,) as:

At At :
G(At) = Wi(=)+Uz(At)+ Ui (=) + Ot /P?)

.

Pl Aty QL At il (4t A2y
gt T et 2 et T - O HALS)
(3.16)

Since the three exponential terms in G _t are sépsr
unitary, G t) is also unitary i.e &t) = G(-t). Lets us now
consider the propagator generated by subdivison as:

i, = ¥ 2. =

. 0
IL;_- = .ZFi-aI.'-'i

= (3.17)

The operator YAt/2 ) becomes a translation operator on the
positions: f—r; + At(p;/ m), and operator JAt) becomes a
translational operator of momenta—p; + (At/ 2), K(r). On
combining these two facts to action of operatorgdguation
3.16 on complete set of positions and momentagdyi¢he
approximate evolution:

At

2mi

rilAt) = r(0)+Atv(0) + Fi (0]

ﬂt_ [Fi(0) + Fi(At]]
1

vilAt) = vi(0)+

(3.18)

which is the famous velocity verlet [49] integratderived
using the operator formulation. The power of thesrafor
based approach is its symplectic property whichuesssno
drift in the total energy, resistance to increasdime steps
and allowsgenerating stable long trajectories.

r-RESPA algorithms have been successfully emploted
incorporate motions on more than two time scales. us
consider a system with three characteristics ticales, a
reference force ¥ , and two corrections, ¥ and F®, such
that F= £+ % +F". We define their Liouville operators
as iL"™ iL" and iL®® and the corresponding timescads
At and A'Trespectively. The three time step propogator can
then be written as:
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% exp(iI_D“j—"

1

2 ) (3.19)

Thus, the correction due to slowest time scalpmied every
m-n timesteps, and the intermediate time scale doorets
applied every n steps. Such numerical procedurd lea
considerable saving in the CPU time to perform a MD
simulation.

3.1.3 Theinteraction potential

The potential function \f() from which the forces used in MD
are derived depends on the atomic coordinates ri.
V(r) used in this thesis has the following expression:

. . 1., 3
Viry,ra, ..., T = Z ?Kdl_d—dg_l‘
bonds ©

o a_ a2
+ 2 5Ke(@—80)?

an g'l].-;."s

+ D

improper dihedrals

+ Z Kg [1+ cos(nd — 8]

dihedrals

ol

qi9;
+ E -
ijcoulomb ATEETj
coulomb (3.20)

¥ .-'
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i | =

The first two terms (two and three body interacdion
respectively) represent the bonds and angles palenthat
are approximated by harmonic functions. The third #ourth
term describe four body interactions. Improper draéterms
are typically described by an harmonic functionstéad
proper dihedrals are described by periodic funstigne.
cosine functions) of a given periodicity n. Thetlago terms
are a Lennard-Jones (LJ) potential and a coulonmbngal
between pair (ij) of atoms.
22



The LJ terms reproduce the Van der Walls interastiovhile
the coulomb potential terms reproduce the -eleatast
properties of a protein. These interaction are rhedaising
the two-body approximation which doesnot explicalycount
for the polarization effects, but on a average. pammeters
used in this kind of potentials are typically obtd from
guantum chemical calculations and experimental datg.
crystallographic data, spectroscopic data, etc).odgnthe
popular sets of parameters (force fields) for MBudations

of proteins we can cite for example AMBER, GROMOS,
CHARMM and OPLS. They all use the potential functio
expression given above for all the atoms of theukbed
system except for the GROMOS(and CHARMM19 force
field) force field in which a united atom descrgtiis used
for non-polar hydrogens.

In MD simulations the description of the solvenafer for

most of the biologically interesting systems) carelzplicit or
implicit. In the first case solvent molecules with full
atomistic force field description are added in #mmulation
box at the experimental density. In the implicitivent
description the solvent is treated as a dielectredium in
which the system is embedded. This is clearly aemor
approximated description but it is also computatignmuch
more efficient since in many practical cases thévesd
constitutes the majority of the atoms.

3.1.4 Constraints for Hydrogen

Constraints are used in MD to fix bonds to theiuildorium
value. This allows increasing the simulation tinteps t.
Constraining the bond lenght does not alter sigaifily the
statistics as these are quantum degrees of fredokiny
mostly in their ground state at the normal simolati
temperature. Using the bonds constraints it isiplesso use
At ~ 2fs (2-4 times larger than the one that canubed
without constraints). A common method to introduce
constraints is the algorithm SHAKE , in which aféaxch time
step the atoms positions iteratively are modifiedorder to
satisfy the constraint.

SHAKE may have convergence problems when applied to
large planar groups and its implementation coutiiéi the
efficiency of computing. To improve these aspeleslLINCS
algorithm was recently introduced. For water molesut is
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also possible to use an analytic solution of SHA&ded
SETTLE.

3.1.5 Boundary conditions

To simulate a finite size system, boundary cond#iare
needed to avoid artifacts near the border of theulsition
box. Typically periodic boundary conditions (PBC§ aised.
In this scheme short range non bonded interactiars
calculated using the minimal image convention (otthe
nearest replica is considered).

Typically a cut-off radius (Rc) is used for LJ irdetions of
the order of 10 A. To avoid interactions betweepasticle
and its periodic image each box side must be lalgar 2Rc.

The coulomb energy is instead treated considereg full

periodicity of the system. For a periodic latticada by N
particles it is given by:

S o qid]
1
Sy

i=0j=0 (3.21)

=

E= ST-'TE“.;‘\ Z

[ =0

where n indicates the periodic imageg, the particles and
the

symbol * indicates that the summation does not aanthe
term withi = if n=0.

The periodicity of the system speeds up the evaluaif the
coulombic term. Although convenient, effective, asithple
to apply, certain subtle problems arise for longgeaforces
(electrostatics), whose spatial range may extenarizk the
boundaries of the container into surrounding imapgessent a
challenge.

Long range forces can only be correctly calculatad
summing over all the periodic replicas of the aradisystem.
However, the associated computational effort issmerable.
Fortunately, methods have been developed to treist t
problem. Specifically, the Ewald summation techeiqu
developed originally to treat Coulomb interacticarsd later
extended to treat general interactions of the fbim

for n<3 has proved enormously successful.

The basic idea behind the technique is to dividerdievant
part of the potential into a short range and a loagge
contribution.
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For the Coulomb potential, 1/r, for example, thancbe
achieved via the identity

1 erflaer] erfelor)
+

‘ ' ' (3.22)

where erf(x) and erfc(x) are the error function and
complementary error function, respectively (erféxgrfc(x)=

1). The variable, R, is a convergence parametechatan be
optimized for each system studied. The short ratsym,
erfc(ar)/r, is treated as an ordinary short range intevaci.e.,
using a spherical cutoff to truncate the interactai large
spatial distances where the potential is small. [bhg range
term, erf@r)/r, is Fourier transformed into reciprocal space,
where it takes the short-ranged form, exfiéef), and can be
evaluated accurately by summing over only a smattlver of
reciprocal space vectors of the simulation celucts
reciprocal space sums can be evaluated with hidggeee of
efficiency (N log N) using particle-mesh methods@J54].

An extension of PME is the smooth PME. With respect
PME, this method uses a fixed cuttoff in the dirggin and
uses the B-spline interpolation of the reciprocplace
structures onto a rectangular grid, permitting tise of fast
Fourier transforms to efficiently calculate theipeacal sum.

In this thesis we use SPME method to evaluate the
electrostatic energies.

3.1.6 Statistical Ensembles

Molecular dynamics can be performed in differefttistical
ensembles. The traditionally used ensemble to parfdD is
the micro-canonical ensemble (NVE), where the nundje
particles (N), the volume (V), and the total-ene(gy of the
system are fixed to a constant value.

The simple extension of NVE ensemble is the carmbine
(NVT), where the number of particles, the volumel dhe
temperature are fixed to a constant value. The ¢eatpre T,
in contrast to the number of particles N and voliwhes an
intensive parameter. The temperature T is reladetthe time

average of the kinetic energy given as:
™ 3
2 Ekin ] Pi”
T = — =
3Nkg 3Nkg Z m
i=1 (3.23)
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where, ki, is the kinetic energy,gkis the Boltzmann constant.
The simplest way to control the temperature, iettale the
velocities at each step by the factor

I-'I T1'|:-.|

A= \"II Teurr

where T, IS the current temperature calculated from the
kinetic energy and {; is the desired temperature (for instance
300 K). However, an alternative way to maintainoscouple
the system to an external heat bath that is fitddeadesired
temperature. The bath acts as a source of thernalg
supplying or removing heat from the system as gppate.
This thermostat is named as the “Berendsen” theahds is
extremely efficient for relaxing a system to therg&
temperature, but once the system has reached rqunti, it
might be more important to probe a correct candnica
ensemble.
Extended system methods, was originally introduded
performing constant MD simulation by Nosé in 1984#d
subsequently developed by Hoover in 1985. The aiethe
method was to reduce the effect of an externakgsysacting
as a heat reservoir, to an additional degree efiven s. This
reservoir has a potential ener@fy1)kgTIn s, where f is the
number of degrees of freedom in the physical systethT is
the desired temperature.
The kinetic energy of the reservoir is given asT)@s/dt)?
where Q is considered as the fictitious mass of d¢kia
degree of freedom. The magnitude of Q determines th
coupling between the reservoir and the real sysiech so
influences the temperature fluctuation. If Q igg&arthen the
energy flow is slow; in the limit of infinite Q, owentional
molecular dynamics is regained.
However, if Q is small then the energy oscillatesulting in
equilibrium problems. It has been suggested thshh@ld be
proportional takgT.
Another ensemble we discuss here it the NPT enssrabl
extension of NVT ensemble, where together withperature
the pressure of the system is maintained to a aphsalue.
As most experimental measurements are usually maader
conditions, which include a fixed pressure P, terappge T,
and number of atoms N (constant-NPT ensemble), sand
simulations in the isothermal-isobaric ensembletheemost
directly relevant to experimental data. A simulatimo NPT
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ensemble maintains the constant pressure by clarigm
volume of the simulation cell.

The amount of volume fluctuation is related to #whermal
compressibility x

1 (axf)
ACE-

An alternative to maintain constant pressure sotaple the
system to a “pressure” bath, analogous to the teatyoe
bath.

The rate of change of pressure is given by:

dPit) 1

= —(Pp —Pit]]
d'l' TP. bath Ly

|

(3.24)

(3.25)

wherer, is the coupling constant, &, is the pressure of the
‘bath’, and P(t) is the actual pressure at tinehe volume of
the simulation box is scaled by a faciomwhich is equivalent
to scaling the atomic coordinates by a faéf6t Thus:

h:]-maﬂP—th”
T'I_'l
(3.26)
and the new position are given by:
Lmew 3173
" =AT (3.27)

In the extended pressure-coupling systems, an d&tjeee

of freedom, corresponding to the volume of the h®®added
to the system. The kinetic energy associated \withdegree
of freedom (which can be considered to be equitaten
piston

acting on the system), is (1/2Q)(dV/itwhere Q is the
'mass’ of the piston. The piston also has a pcémnergy
PV, where P is the desired pressure and V is thenof the
system. The volume varies in the simulation with #verage
volume being determined by the balance betweeimntbenal
pressure of the system and the desired externabyme In
this thesis, we have performed MD simulation inhbbivVT
and NPT ensembles.
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3.2 Long Time Scale Simulations

Molecular Dynamics (MD) simulations allow investiopag
processes occurring on timescales of ~100ns. Haweweast
interesting and relevant biological process happentime
scales that are orders of magnitude larger, andharefore
termed as rare events. For example, protein foldisyfew
seconds), protein protein interactions, transpénnolecules
across membrane channels (order ~ ps) and manysothe
Over the years, we have observed an astoundingaserin
computer power (Blue gene, DESRES), which promase t
increase utility of MD simulations to investigateora and
more complex systems on s timescale

However, these supercomputing machines are noliaalaito

all the research groups. Therefore another apprdach
overcome the timescale problem is to renounce lihat@nm
approach and to use coarse grained models. Thiklwetain
the essential characteristics, however you reqaiketailed
knowledge of system, that is often not available.

For systems, where its important to maintain themadtic
description, one can exploit methodology aimed at
accelerating rare events to timescales reachablévViin
simulations. Notable success has been achieveding the
accelerating methodology in diverse fields of iagtr From
their scope and range of applicability, they ar@ssified in
four categories :

1. Methods aimed at improving sampling, in a subspaf
few predefined collective variables (CVs), that owll
reconstructing the probability distributions as uadtion of
chosen CVs. Examples of these methods include
thermodynamic integration , free energy perturlmgtio
umbrella sampling , conformational flooding, wegght
histogram, steered MD, Jarzynski’'s identity baseethmds
and adaptive force bias. The power of these metimolighly
dependent on judicious choice of CVs, and compnati
performance degrades as a function of the number of
variables.

2. Methods aimed at exploring the transition me@man
Examples in these catogeries are transition pathplksag,

finite temperature string method, transition inaed sampling
and forward flux methods. These

28



methods do not require in most cases, an exphkdiniion of
a reaction co-ordinate, but require a priori knalgle of initial
and final states of process under investigation.

3. Methods for exploring the potential energy scefaand
localizing the saddle points that correspondsttarasition

state. Examples in these catogeries are dimer mhetho
hyperdynamics , multiple time scale accelerated sl
event based relaxation . The power of these metisdasited

to low dimensionality, and reliability degrades hithe
complexity of system.

4. Methods in which the phase space is explored
simultaneously at different values of temperatuaes parallel
tempering and replica exchange, or as a functiornthef
potential energy, such as multicanonical MD and @Yan
Landau.

3.3 Statistical Bases

Molecular dynamics simulations generate informatatrthe
microscopic level, including atomic positions arelocities.
The conversion of this microscopic information to
macroscopic observables such as pressure, enegpt, h
capacities, etc., requires statistical mechanicttis8cal
mechanics is fundamental to the study of biologsyatems
by molecular dynamics simulation

In a molecular dynamics simulation, one often wsshe

explore the macroscopic properties of a systemutiro
microscopic simulations, for example, to calculetb@nges in
the binding free energy of a particular drug caathid or to
examine the energetics and mechanisms of confarnati
change. The connection between microscopic sinamatand
macroscopic properties is made via statistical raeds

which provides the rigorous mathematical expressitrat

relate macroscopic properties to the distributiod enotion of
the atoms and molecules of the N-body system; mtdec
dynamics simulations provide the means to solvesthwtion
of motion of the particles and evaluate these nma#ttieal

formulas. With molecular dynamics simulations, ooc&n

study both thermodynamic properties and/or timeeddpnt
(kinetic) phenomenon.

29



Statistical mechanics is the branch of physicatrsms that
studies macroscopic systems from a molecular dintew.

The goal is to understand and to predict macroscopi
phenomena from the properties of individual molesul
making up the system. The system could range from a
collection of solvent molecules to a solvated prefeNA
complex. In order to connect the macroscopic sydtertie
microscopic system, time independent statisticarayes are
often introduced.

The thermodynamic state of a system is usuallynedfiby a
small set of parameters, for example, the tempexaily the
pressure, P, and the number of particles, N. Other
thermodynamic properties may be derived from theaggns

of state and other fundamental thermodynamic eogjsti

The mechanical or microscopic state of a systeteimed by

the atomic positions, q, and momenta, p; theseatsm be

considered as coordinates in a multidimensionatesgalled

phase space. For a system of N particles, thisespas 6N

dimensions. A single point in phase space desctliestate
of the system. An ensemble is a collection of mintphase
space satisfying the conditions of a particularrtieeynamic

state. A molecular dynamics simulations generatsgaence
of points in phase space as a function of timesehgoints

belong to the same ensemble, and they corresportteto
different conformations of the system and theirpeesive

momenta.

An experiment is usually made on a macroscopic &athat
contains an extremely large number of atoms or ouids
sampling an enormous number of conformations. dtissical
mechanics, averages corresponding to experimental
observables are defined in terms of ensemble agsyrame
justification for this is that there has been gamfeement
with experiment. An ensemble average is averagantaker a
large number of replicas of the system considered
simultaneously.

The dilemma appears to be that one can calculate ti
averages by molecular dynamics simulation, but the
experimental observables are assumed to be ensemble
averages. Resolving this leads us to one of thet mos
fundamental axioms of statistical mechanics, thgodic
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hypothesis, which states that the time average Iedhe
ensemble average.

The Ergodic hypothesis states

<A>ememb£e = <A>r1’me

Ensemble average = Time average

The basic idea is that if one allows the systenewvolve in
time indefinitely, that system will eventually passough all
possible states. One goal, therefore, of a moleayaamics
simulation is to generate enough representativéocmations
such that this equality is satisfied. If this isetltase,
experimentally relevant information concerning ectuual,
dynamic and thermodynamic properties may then be
calculated using a feasible amount of computer uess.
Because the simulations are of fixed duration, onsst be
certain to sample a sufficient amount of phaseepac
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4.0 Software

4.1 HHpred

HHpred [13] is a tool for structural modeling of iaum acids
chains, with the help of profiles generated usimg Hidden
Markov Models methodology and starting from a FASTA
sequence from a multiple sequence alignment.

Once the profile is generated, the program uselignnaent
algorithm profile versus profile, to proceed in déng of
structural templates in an internal database tloaitains
Markov profiles for every PDB entry.

Search options include local or global alignmerd anoring
secondary structure similarity. HHpred can prodpagwise
guery-template sequence alignments, merged queylite
multiple alignments (e.g. for transitive searches),well as
3D structural models calculated by the MODELLERtwafe
from HHpred alignments.

HHpred gives very good and reliable results. Taiffeshis
merits, you can find in the official site
(http://toolkit.tuebingen.mpg.de/hhpred) the CASESults

The most successful techniques for protein strectur
prediction rely on identifying homologous sequene@th
known structure to be used as template. This wedksvell
because structures diverge much more slowly thquesees
and homologous proteins may have very similar sires
even when their sequences have diverged beyongmigico
If the relationship is so remote that no commoncfiom can
be assumed, one can generally still derive hypethebout
possible mechanisms, active site positions anduesi or the
class of substrate bound. When a homologous protéim
known structure can be identified, its structure ba used as
a template to model the 3D structure for the protef
interest, since even remotely homologous protesrsemlly
have quite similar 3D structure. The 3D model nfanthelp
to generate hypotheses to guide experiments. Wéeclsng
for remote homologous, it is wise to make use ofmagh
information about the query and database protesnsoasible
in order to better distinguish true from false p@ss and to
produce optimal alignments. This is the reason sdguence-
sequence comparison is inferior to profile-sequence
comparison. Sequence profiles contain for eachnoolof a
multiple alignment the frequencies of the 20 amamds.
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They therefore contain detailed information aboune t
conservation of each residue position, i.e. howortgnt each
position is for defining other members of the protamily,
and about the preferred amino acids. Profile Hidbamkov
Models (HMMs) are similar to simple sequence pesfilbut
in addition to the amino acid frequencies in thikigms of a
multiple sequence alignment they contain informatadout
the frequency of inserts and deletions at eachnuoluJsing
profile HMMs in place of simple sequence profildsogld
therefore further improve sensitivity. HHpred ise tHirst
server to employ HMM-HMM comparison, based on aetov
statistical method that we have developed recerdlsing
HMMs both on the query and the database side greatl
enhances the sensitivity and selectivity over secetrofile
based methods such as PSI-BLAST.
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42 MODELLER

MODELLER is a computer program that models three
dimensional structures of proteins and their assemlby
satisfaction of spatial restraints[14].
MODELLER is most frequently used for homology or
comparative protein structure modeling: the usewiges an
alignment of a sequence to be modeled with knovetee
structures and MODELLER will automatically calc@at
model with all non-hydrogen atoms.
The inputs of MODELLER are:
a) the sequence alignment between the target (thteip to
be modeled) and the template (homologous proteith wi
known structure,
b) the crystal structure of the template.
MODELLER extracts the spatial restraints from thenplate
to the target producing a 3D structure that sassfihese
restraints as well as possible. Restraints carebeead! from a
number of different sources. These include relgisatein
structures (comparative modeling), NMR experim¢hisIR
refinement), rules of secondary structure packing
(combinatorial  modeling), cross-linking  experiments
fluorescence spectroscopy, image reconstructioelectron
microscopy, site directed mutagenesis, intuitioasidue-
residue and atom-atom potentials of mean force, Ebe
restraints can operate on distances, angles, dhadgles,
pairs of dihedral angles and some other spatiatufes
defined by atoms or pseudoatoms. The final 3D mzdiien
obtained by optimization of a molecular probabildgnsity
function (pdf). The molecular pdf for comparativedeling
Is optimized with the variable target function pedare in
Cartesian space that employs methods of conjugatiemts
and molecular dynamics with simulated annealing.
MODELLER can also perform multiple comparison of
protein sequences and/or structures, clusterimpyatéins, and
searching of sequence databases. The programdswitea
scripting language and does not include any graphite
method and its applications to biological problerase
described in detail in references listed in Secfich Briefly,
the core modeling procedure begins with an aligriroénthe
sequence to be modeled (hTE8) with related known 3D
structures (1C8U). This alignment is usually thpuinto the
program (Figure 3). The output is a 3D model far thrget
sequence containing all main-chain and side-chamm- n
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hydrogen atoms. Given an alignment, the model tsinéd
without any user intervention. First, many distanaed
dihedral angle restraints on the target sequereealculated
from its alignment with template 3D structures (Fig 3).
This analysis relied on a database of 105 familgnatents
that included 416 proteins with known 3D structurke form
of these restraints

was obtained from a statistical analysis of thatm@hships
between many pairs of homologous structures. Byrsng
the database, tables quantifying various correlatiavere
obtained, such as the correlations between twovelpnt
Co—Ca distances, or between equivalent main-chain daledr
angles from two related proteins. These relatiqgpsiwere
expressed as conditional probability density fuoneti (pdf)
and can be used directly as spatial restraints. eixample,
probabilities for different values of the main-amailihedral
angles are calculated from the type of a residuesidered,
from main-chain conformation of an equivalent rasidand
from sequence similarity between the two proteins.
Another example is the pdf for a certain-Ca distance
given equivalent distances in two related protdnmucsures
(Figure 4). An important feature of the method hattthe
spatial restraints are obtained empirically, frorda@abase of
protein structure alignments. Next, the spatiatra@sts and
CHARMM energy terms enforcing proper stereochemiate
combined into an objective function.

Finally, the model is obtained by optimizing thejemlive
function in Cartesian space. The optimization isied out by
the use of the variable target function method emipb
methods of conjugate gradients and molecular dycemith
simulated annealing (Figure 5). Several slightlyfedent
models can be calculated by varying the initialcre. The
variability among these models can be used to agtirthe
errors in the corresponding regions of the fold.
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Figure 3. First, the known, template 3D structures are aligiméth the
target sequence to be modeled. Second, spatiairésatsuch as &-Ca
distances, hydrogen bonds, and main-chain and ciaén dihedral
angles, are transferred from the templates to #rgdt. Thus, a number
of spatial restraints on its structure are obtainddhird, the 3D model is
obtained by satisfying all the restraints as wallpssible
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Figure 4. The restraint (continuous line) is obtained by tesguares
fitting a sum of two Gaussian functions to thedgsam, which in turn is
derived from the database of alignments of protsiructures. In
practice, more complicated restraints are used tldgpend on
additional information, such as similarity betwet@ proteins, solvent
accessibility, and distance from a gap in the atigmt [42].

8000
6000 =
4000 -
2000 -

Objective function

0 ————y ey S .
0 1000 2000 3000 4000 5000 6000 7000
Iteration

Figure 5. Optimization of the objective function (curve) ssawith a
distorted average of template structures. In thim,rthe first 2000
iterations correspond to the variable target funatimethod relying on
the conjugate gradients technique. This approactst fisatisfies
sequentially local restraints and slowly introducésnger range
restraints until the complete objective functiommimized.
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4.3 Rosetta docking

The Rosetta software[15] focuses on the prediammhdesign
of protein structures, protein folding mechanisnand
protein-protein interactions. Rosetta has been istamly
successful in CASP and CAPRI competitions. Rosalta
addresses aspects of protein design, docking amnciiste.
RosettaDock predicts the structure of a proteirigino
complex from the individual structures of the momom
components.

In the standard protein-protein docking protocostarts with
two protein structures in space, firstly carry autery fast but
crude search to find a rough shape fit betweenethe®
proteins. During the first stage, the proteinsramesented by
only backbones (which defines the shape) and oeedos
atom for side-chains. Afterwards, side-chain at@amsadded
back and the docking protocol enters the full-atefimement
stage in which the relative orientation between th®
proteins and the detailed side-chain interactioci®ss the
interface are optimized simultaneously. Each ttajgcwill
end up with a model with certain docking orientatand also
an energy function to rank them. Standard settimg® used
in the process.

Figure 6. Representative models of the most populated cluster
obtained from RosettaDock
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RosettaDock Protocol:

a) Nef position randomized

b)distance constraints between Nef residues: D1021F1
P122 and D123 and the hTES8 surface

¢) 3000 decoys produced and hierarchically clustergd a
cut-off RMSD value of 2.5 A

4.4 L ovoAlign

LovoAlign is a new protein structural alignment kage. The
methods used for structural alignment are based.@n
Order Value Optimization (LOVO) theory.

The use of LOVO theory led to the development ddt fa
convergent algorithms that provide very robust rapation
of scoring functions[16]. The structural alignmesthighly
customizable and the package can be used for denera
structural alignments or particular chains of epadtein may
be selected.

The goal of the algorithm is to maximize a scorfagction
with a solid convergence properties. This is usédul the
refinement of protein folding maps, and for the elepment
of new scores designed to be correlated with foneti
similarity.

The maximization of scoring functions in proteimgament is
interpreted as a Low Order Value Optimization (LOVO
problem. The resulting algorithms are convergedtianrease
the scoring functions at every iteration. The ohg obtained
are critical points of the scoring functions. Twgaithms are
introduced: One is based on the maximization ofsit@ring
function with Dynamic Programming followed by the
continuous maximization of the same score, witlpees to
the protein position, using a smooth Newtonian methrhe
second algorithm replaces the Dynamic Programnii@g Isy

a fast procedure for computing the correspondemteden
Co atoms. The algorithms are shown to be very effedior
the maximization of the STRUCTAL score.
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4.5 Clustering

The last step was to execute a home-made scriptemrin
Python, a high —level programming language[17] vehos
design philosophy emphasizes code readability.

This script, called Clustering.py, takes as inf list of all
pdb's to clusterize and an align.log file takennfrdahe
previous step, using LovoAlign. The script builds many
clusters as the user wants and sort them ascendimd,
calculates the centroid of every cluster and alrtiodels that
are contained within. The utility of this step ashighlight the
representative models (the one that contains mosgec for
example) to make the research easier and give more
sensibility to the problem.

Finally, all the visual analysis and the figuresrevproduced
with the program VMD (Visual Molecular Dynamics)gL

4.6 VMD: Visual Molecular Dynamics

VMD is a molecular graphics program designed fodetmg,
visualization, and analysis of biological systemshs as
proteins, nucleic acids, lipid bi- layer assemblietx. It may
be used to view more general molecules, as VMD read
standard Protein Data Bank (PDB)files and displag t
contained structure. VMD provides a wide varietyndthods
for rendering and coloring a molecule. VMD can sedito
animate and analyze the trajectory of a molecujarachics
(MD) simulation. In particular, VMD can act as aapghical
front end for an external MD program by displayiagd
animating a molecule undergoing simulation on a atem
computer. All protein figures in this document wereated
using this computer program .

4.7 NAMD: Scalable M olecular Dynamics

NAMDI18] is a parallel molecular dynamics code desd

for high-performance simulation of large biomolegul
systems. Simulation of large molecules, howevequire
enormous computing power. One way to achieve such
simulations is to utilize parallel computers. Disited
memory parallel computers have been offering ctistive
computational power. NAMD was designed to run ehdy

on such parallel machines for simulating large mules.
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NAMD uses program VMD for simulation setup and
trajectory analysis. NAMD has several importanttdeas
which were used during the simulation:
» Force Field Compatibility: The force field used KAMD
includes local interaction terms consisting of beohd
interactions between 2, 3, and 4 atoms and pairwise
interactions including electrostatic and Van Deralgdorces.
» Efficient Full Electrostatics Algorithms: NAMD
incorporates the Particle Mesh Ewald (PME) algonitivhich
takes the full electrostatic interactions into acuo This
algorithm reduces the computational complexity of
electrostatic force evaluation.
* Multiple Time Stepping: The velocity Verlet integjcn
method is used to advance the positions and visaiff the
atoms in time. To further reduce the cost of thalwation of
long-range electrostatic forces, a multiple timepstcheme is
employed. The local interactions (bonded, Van Daa&/ and
electrostatic interactions within a specified dst®) are
calculated at each time step. The longer rangeaictiens
(electrostatic interactions beyond the specifiestadice) are
only computed less often. This amortizes the cokt o
computing the electrostatic forces over severat tateps.
* Input and Output Compatibility: The input and ouitfile
formats include coordinate files in PDB format astdicture
files in PSF format. Output formats include PDB mhioate
files and binary DCD trajectory files.
 Dynamics Simulation Options: MD simulations was
carried out using several options, including
- Constant energy dynamics,
- Constant temperature dynamics via,

+ Velocity rescaling,

+ Velocity reassignment,

+ Langevin dynamics,
- Periodic boundary conditions,
- Constant pressure dynamics via,

+ Pressure coupling,

+ Langevin piston,
- Energy minimization,
- Fixed atoms,
- Rigid waters,
- Rigid bonds to hydrogen,
- Harmonic restraints,
- Spherical or cylindrical boundary restraints.
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NAMD (CHARMM?22 and TIP3P forcefields) Protocol:
9200 water molecules for solvatation and PBC
Time step : 2 fs
PME for electrostatic interactions
Constant temperature (300K) and pressure (1 atm)
2000 steps of system minimization: using conjugadelients
30 ns in molecular dynamics simulation
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Part B - Results

1.0 hTE8 model

All members of the hTE8 family were retrieved fraime
Uniprot [19] database using the prograsearci20]. They
were aligned with PROMALS [21]. This multiple segee
alignment was then used for the definition of tha&lden
Markov profile (HMM) of hTEIl. The latter was thdanneled
through the Hhsearch [22] program to identify thesin
plausible homologous structural templates. Suclcqmore is
currently one of the best ones as evaluated fronSRA
experiment [23]. The multiple sequence alignmernaioled in
this way was used as the reference for the stralgwediction
of hTE by homology modeling (Figure 7). Homology aets
of the protein are here based on the crystal strecdf the
E.coli thioesterase (PDB code 1C8U). The sequence alignmen
between the target and the structural template exémcted
from the multiple sequence alignment considering ¢hntire
family. We then constructed 50 different conforroa of
hTE (that were obtained with randomized initialistures and
subsequent optimization by conjugate gradientssamdlated
annealing) based on each of the eight structurabpletes
using Modeller9v3 [25]. All the three dimensionabdels of
hTE obtained in this way do not deviate from cutlgen
available experimental geometries, that is, theorseéary
structures elements (12-stranded antiparfiligheets) and the
typical tertiary fold (the double hot dog[13]) aralso
conserved in the model.
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2.0 Nef/hTE Complex

The complex between the the model and Nef was byithe
use of the following protocol: 2500 hTE/NEF adduct
structures were constructed using Rosetta-docktafdard
Lamarckian Genetic Algorithm, was used for confaiorel
exploration with a rapid energy evaluation usingldpased
molecular affinity potentials. The resulting stwes were
then clustered according to the three dimensiaradlization
of Nef, regardless of the docking energies. Therolddign
program was used over all the models to obtainnggti
structural superposition.

At the end a clustering Python home-written scwpais used
for selecting the best decoys. The script giveswput the
decoys representing the most populated clusterdetail, the
clusters were formed for decoys not deviating friv@ other
members for more than®of Root Mean Square Deviation
(RMSD).

Figure8. Nef/lhTE Complex
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The obtained representatives were selected ammsg tthat
better satisfied the experimental restraints inioedl in the
docking procedure, that is, we have chosen the mibde
performs more contacts for the residues known i fieart of
the NEF interaction surface, i.e. Asp108, Aspl128& 121 and
Prol22 as in Figure 9 where the interacting detedls be
appreciated.

Experimental

data
Percentage
R Nef Mutant of binding
AsplOS DIOEA 2.6%
Asplll DIlIG 3%
Aspl23 DI23G 2.1 %
Asnll6 Q1288 92 %

Figure 9. Mutagenesis data by Liu et al. The content of cexga
protein relative to wild type (100%) is reported.

In particular, several partners were identifiedovwgimg
electrostatic complementarity between both intemgct
surfaces. Furthermore, several hydrophobic contaots
formed between aromatic and aliphatic residues @f N
(Phel2l1, Pro 122) as well as aromatic(pyrrolic) and
aliphatic(4methylated base) (Pro320, Lys322) resscaf hTE,
allowing a further stabilization of the interactioim Figures
11, 12 the Nef/hTE electrostatic interactions lbarvisualized
by a plot of the electrostatic potential calculagsdving the
Poison-Boltztmann equation. Figures 11, 12 shoves the
contact surfaces of Nef and hTE subunit B are [lear
complementary: while the surface of NEF is highggative,
the contact surface of the enzyme is highly poslyicharged.
hTE's surface includes residues Lys361, Lys322, aand
negatively charged residues. That of Nef is negativarged,
containing residues Asp108, Aspl123, and no posiags&lues.
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Figure 10. Nef residues involved in the binding site

Phel21

List of contacts

DEV.ST
Nef hTE (Subunit A) Bond %TIME <5A |DIST(A)| (A)
1| ARG105 | ASP434(ASP143) (SALTBRIDGE) 97% 2,74 1,04
2 | ARG106 | ASP434(ASP143) (SALTBRIDGE) 50% 5,49 1,71
3| ASP108 |LYS322(LYS31) (SALTBRIDGE) 59% 4,56 1,33
4| ASP111 |LYS322(LYS31) (SALTBRIDGE) 74% 4,69 1,19
5|PHE121 | PRO320(PRO29) |(AROMATIC+PYRROLIC) 43% 5,65 1,64
6 | PRO122 | LYS322(LYS31) (ALIPHATIC+BASE) 58% 5,18 1,64
7| ASP123 | LYS361(LYS70) (SALTBRIDGE) 68% 3,89 1,33
8| GLU151 | LYS581(LYS90) (SALTBRIDGE) 79% 4,32 2,06
9| GLU201 | ARG356(ARG65) (SALTBRIDGE) 94% 3,02 1,50

Table | - List of contacts involved in the binding site. Eaontact was

selected starting from the information given by thef mutagenesis and
selecting all hTE's residues at a 5 A distance gltme entire 30 ns MD
simulation (for details see below) of the Nef/hT&@mplex. Selected
distances and residence times of residues at tieeféice between the viral
factor and the subunit A of the enzyme are reported
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Figure 11. Electrostatic potential of the hTES in the initial
conformation as obtained from the docking procedure

Phel21

Figure 12. Electrostatic potential of the Nef in the initial
conformation as obtained from the docking procedure
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3.0 MD simulation

To test the stability of the docked complex anddm insights
into the dynamical properties of the hTE-Nef comple have
performed extensive molecular dynamics simulatiohghe
solvated system. The latter simulations were caraat for
30ns. In the following paragraphs we will analybe tesults
obtained for the protein and the complex.

From the plot showing the evolution of the secopddructure
elements along the entire MD simulation (Fig. 13 wan
appreciate that the principal secondary structlements are
conserved through the entire simulation timeh€lix and -
strands in pink and yellow bands, respectivel\sig13).

Secondary Structure Conservation
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Figure 13. Timeline continuity of the protein
secondary structure elements
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The active site conformation is also rather presgrithe
overall RMSD of residues Asp232, Ser234, GIn303e (th
catalytic triad) between the initial and final nwnzed
structures being as small as 0.4A.

The interface between the two subunits(A and Bjotslly
buried in the protein. It involves the central imagnts of the
six centralp-sheets from the two monomers to form several
stabilizing interactions. The contact surface isuctrally
similar to that of theE.Coli enzyme (1980 and 2142°/ker
monomer for the enzyme from MD final structure &odthat
from E.Coli, respectively)

Our calculations suggest that also long-range st/lsubunit
electrostatic dipole/dipole interactions stabilibe dimer , in
part counterbalancing the charge/charge repulsion.

The largest scale motion of the protein in the muk
timescale, here studied by diagonalization of tbeadance
matrix, involve essentially only the loop formed kBsidues
163-194 in both subunits (unit A: residues 454 86)4('active
site loop'). As expected from these data, the amalgf the
RMSF (Fig.14) calculated on each residue show rigstiues
that experience the largest deviations are the foresng the
‘active site loop'.

Actrve sife I
010 | re site loop
Actrve sHe loop
=
008 :
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TR

N NN AN I R I

SehezitB

IRIN}

ol

0.02 I:)UU;"quvk LL »leﬁﬁl%i :A_fl J{s&_%, -r'.*mfr, v
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Besdue Fomber

Figure 14. RMSF value per residueCalculated for each atom
backbone for hTE8 alone (black line), and for thef/NTE complex (red
line

The complex appears to be fairly equilibrated aft€b ns, as
shown by the plot of the RMSD deviation (Fig.15)nm the
energy-minimized structure as a function of time.

As expected, besides being stabilized by long range
electrostatics (the net charges of Nef and hTieé84and +6,
respectively), the complex is stabilized by elestatic and
hydrophobic interactions between residues locatedtha
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protein/protein interface, which were well-mantainaluring
the dynamics.

— s el [

3=

Figure 15. Root Mean Square Deviation (RMSD) for the Nef-hTE8
complex along the entire 30ns MD simulation

The hydrophobic contacts (Fig. 23-24) are formegiayolic
residues of hTE8 (Pro320) and 4-methylated bass323)
with aromatic (Phel21) and aliphatic (Pro122) nesgdof Nef
respectively, and are conserved during the entmalation.

Nef/hTE8 local electrostatic interactions can beividly
visualized by plot of the electrostatic potentialctlated
solving the Poisson-Boltzman equation (Fig.11-12).

The contact surface of the enzyme is highly poslyicharged
This surface includes 4 positively charged (Ly&32ys361,
Lys581, Arg356) and only 1(Asp434) negatively clearg
residue.

That of Nef is negatively charged, containing fiwegative
residues (Aspl08, Aspl123, Aspl11,Glul51, Glu20id anly
two positive residues (Argl105, Argl106).
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In particular, the three Asp and two Glu groups Nef
surface provide a largely favorable contribution.

Aspl08 interacts with Lys322, Aspl23 with Lys36Xida
Asplll with Lys322 while Glul51 and Glu 201 inttravith
Lys581 and Arg356 respectively. All the interactare stable
during the entire simulation as can be apprecitted Fig.18-
19-20-21-22 (five salt bridges). Besides there atteer two
salt bridges between two positive Nef residues (Af
Argl106) and one negative hTE residue (Asp434) (Fégl7).
We must point out that these values should be taken
gualitative level as the model used contain implici
uncertainties due to the homology model structtiere, we
hypothesize that its binding to Nef modifies thenayical
properties of the enzyme. Although Nef does notlm the
active site, the ‘active site loop’ of subunit Aét one that
binds to Nef) is much more rigid than that of subB, as
evidently by an analysis of the large-scale motanthe
complex.

These interactions, which are conserved during éhre
simulation, might hinder the motion of subunit AAéTRMSF
fluctuations of the ’active site’ loop from subunikt are
considerably reduced in presence of Nef whereasetld the
rest of the protein are essentially unaffectednaygresence of
the viral protein. It is important to take into aoot the
conformation of this particular loop, which was retetl with
gap of six residues in its middle region.
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ARG105-ASP434(ASP143)
(SALTBRIDGE)

ARGL05-ASP434(ASP143)
(SALTBRIDGE)

b)

Figure 16. Detail of the interaction between residues NEF-
Argl05 and hTE-Asp434. a) distance along the MD
simulation. b) molecular detail
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a)

b)

= (SALTBRIDGE)

ARG106-ASP434(ASP143)

ARGL06-ASP434(ASP143)
(SALTBRIDGE)

Figure 17. Detail of the interaction between residues NEF-
Argl06 and hTE-Asp434. a) distance along the MD
simulation. b) molecular detail
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a)

b)

ASP108-LYS322(LYS31)
(SALTBRIDGE)

ASP108-LYS322(LYS31)
W (SALTBRIDGE)

Figure 18. Detail of the interaction between residues NEF-A&1
and hTE-Lys322. a) distance along the MD simuiatit) molecular
detail
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1 ASP111-LYS322(LYS31)
(SALTBRIDGE)
ke

b)

ASP111-LYS322(LYS31)
(SALTBRIDGE)

Figure 19. Detail of the interaction between residues
NEF-Asplll and hTE-Lys322. a) distance along tii2 M
simulation. b) molecular detail
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ASP123-LYS361(LYS70)
(SALTBRIDGE)

a)

ASP123-LYS361(LYS70)
(SALTBRIDGE)

b)

Figure 20. Detail of the interaction between residues NEF-
Aspl123 and hTE-Lys361. a) distance along the MD
simulation. b) molecular detail
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“ GLUL51-LYSSS1(LYS90)
(SALTBRIDGE)

a)

GLUL51-LYSS8L(LYS90)
(SALTBRIDGE)

b)

Figure 21. Detail of the interaction between residues NEF-
Glul51 and hTE-Lys581. a) distance along the MDugtion.
b) molecular detail
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b)

oo T GLU201-ARG3IS6(ARG6S)

i (SALTBRIDGE)

GLU201-ARG356(ARGG3)
(SALTBRIDGE)

Figure 22. Detail of the interaction between residues NEF-
Glu201 and hTE-Arg356. a) distance along the Mipuation.
b) molecular detail
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1 PHE121-PRO320(PRO29)
7 (AROMATIC+PYRROLIC)

Figure 23. Detail of the interaction between residues NEF-
Phel21 and hTE-Pro320. a) distance along the Miugation. b)
molecular detalil
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PROI2Z-LYS322(LYS3 1) ALIPHATIC+BASE)

b)

Figure 24. Detail of the interaction between residues NEF-
Prol22 and hTE-Lys322. a) distance along the MBDugation.
b) molecular detail
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Discussion

In this work, we have investigated the interactibasveen the
HIV-1 Nef and its cellular partner hTE. We modeldte
structure of Human thioesterase based on thezgosnfrom
E.coli, which share a 42,3% of sequence identity. Lomgea
dipole/dipole interactions appear to counterbalaatdeast in
part, the repulsion between the charged subunita. A
approximate model of the Nef/hTE complex was busding
RosettaDock and using information derived from rgateesis
experiments, using the fact that residues Aspl0&1P1,
Prol22 and Aspl23 in Nef are critical for bindirg HTE.
Several charged and polar groups of Nef providegatively
charged regions for the binding, i.e. Aspl08, AdpXhd
Aspl23. Those aminoacids, experimentally provenb®
located in the binding surface, play an essent#d in the
interaction, should be taken at the qualitativeelesiue to
uncertainties of the docking model. On the othemdhahe
residues found for the human thioesterase, are leongmtary
to the ones in NEF. As expected, hydrophobic icteyas
may also play a role for the adduct stabilizatias, can be
observed from the electrostatic potential (Figuresl?2).
Interestingly, in the uncomplexed hTE the two hydhabic
residues (Pro320 and Lys322) are in contact wighsthivent.
Instead, the three hydrophobic residues of Nef 1Phe
Prol22) are also important for the dimerizationtlod viral
factor. In the case of uncomplexed Nef these residorm
part of an open surface.

Our findings may help explain the experimentally laffinity
of the E. coli isoenzyme for the viral factor. Indeed, in the
isoenzyme from E. coli two negatively charged resgl (an
Asp and a Glu residues) replace two aromatic residu
fundamental for the binding to Nef (Pro320 and 13&3of
hTE. These residues are expected to have low @ffiar the
hydrophobic pocket of Nef (which is constituted Blgel21,
and Prol22) and may produce unstabilization as thidy
interact with Nef's negatively charged residues p(As,
Aspl23, Asplll).

Finally, our calculations suggest that the ‘actsiee loops’
(residues 454 to 485) of both subunit A and B & wnobile,
as evident from an essential modes analysis ommillé ns
timescale (Fig.15). Nef binding causes a significdrange in
the dynamics: in the complex, indeed, only ‘actite’ loop of
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subunit B is mobile whereas that of subunit A iktreely
rigid. The motion of this region of the protein mde
mechanically hindered by the presence of hydroghobi
interactions between three residues on the ‘additeg loop
and other three belonging to Nef. At the specutalevel, we
suggest that Nef binding affect enzymatic activity
consistently with some experimental evidence. Alsahis
case, experimental data and activity calculatioesn@eded to
establish this proposal.

More experimental data as well as calculations ffihity
and/or binding free energy are required to firmbtablish
these issues. In particular, we will propose to @yerimental
collaborators the mutations listed in Fig.25. Iniahkhthe
physico-chemical properties of the aminoacids prebt
present on the interaction surface are modifiethkabit the
hTE-Nef interaction.

Theoretical Data
R (Sub.A) hTE Mutant (Sub.A)

ASP434(ASP143) D434A(D143A)

LYS322(LYS31) K322S(K31S)

PRO320(PRO29) P320A(P29A)

LYS361(LYS70) K361S(K70S)

LYS581(LYS90) K581S(K90S)

ARG356(ARG65) R356S(R65S)

Figure 25. Detail of the proposed Mutations
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Although the models generated in this thesis caodoepared

to low resolution crystal structures, the use ofnigtogy
modeling techniques and state-of-art bioinformatic
tools makes room to the possibility of buildingdaanalysing
thousands of complexes and models, thus allowing th
identification, on the human thioesterase 8, sithges critical
for the interaction with Nef.
The combined computational/experimental approaches
allowed us to design a few new experiments aimedl eear
characterization of the residues involved, not omyNef
binding, but also in the enzymatic mechanism.
Further advancement in experimental structurabigil, along
with algorithms for free energy calculations, nadale
modeling, and protein-protein docking make us iclamnit that
the challenge of characterizing how the virus etés with the
different human targets can be undertaken in sog and
that these approaches may provide a great impravieimeur
understanding of cell and molecular biology evemsn virus
infection.
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ABSTRACT

HIV-1 Negative factor (Nef) is a protein essential for the metabolism of the virus.

Here we investigate the interactions of NEF with one of its targets on infected human
cells, the human thicesterase 8 (hTE8) enzyme.

Homology modelling, virtual protein-protein docking and Molecular Dynamics Simulation
experiments are carried out on the structural models of the enzyme and the complex
respectively, with the aim of characterizing the putative interaction region.

A plausible, albeit approximate, binding region is identified. The latter help intetrpret
existing site directed mutagenesis data. Our calculations suggest also that the system
large-scale dynamics change upon complex formation.

Introduction

Human Acyl Thioesterase 8 (hTE8). Thioesterases catalyse the
hydrolysis of thioesters to the thiol and carboxylic acid components.
Many thioesterases have a hot dog fold. The E. coli thioesterase
reveals a new tertiary fold: a 'double hot dog'. It has an internal repeat
with a basic unit that is structurally similar to the recently described
beta-hydroxydecanoyl thiol ester dehydrase. Human Thioesterase 8
was shown to interact with the HIV-Nef protein in infected human cells,
making it a potential drug design candidate.

Human immunodeficiency virus (HIV) is a lentivirus (a member of
the retro-virus family) that causes acquired immunodeficiency
syndrome (AIDS), a condition in humans in which the immune system
begins to fail, leading to lifethreatening opportunistic infections.
Infection with HIV occurs by the transfer of blood. HIV is present as
both free virus particles and virus within infected immune cells.
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Negative Factor (Nef)

The Negative Factor (Nef) protein from Human
Immunodeficieny Virus type 1 (HIV-1) is a 27-
kDa-myristoylated protein required to produce
a high viral load of the virus.

Nef also advances the endocyotsis and
degradation of cell surface proteins, including
CD4, hTE8 and MHC proteins (CD4 is an
integral membrane protein that functions in T-
cell activation, and is the receptor for the HIV
virus).

This action impairs cytoxic T cell function,
thereby helping the virus to evade the host
Immune responsea

Recently, point directed mutagenesis experiments were carried out on Nef
with the aim of identifying the surface of interaction between the latter an
one of its targets in human cells: the Acyl Thioesterase 8. In the study, five
residues that play a crucial role for the binding to hTE8 were found, i.e.
Asp108,Leui112, Phe121, Pro122 and Asp123.

hTES8: Cormparative Modeling

HHpred software was used for the template search
and alignment. Modeller9v4 was used for model
construction. 100 models of the functional dimer were
built and ranked using Modeller objective function and
stereochemical analysis

=1eBu_A Acyl-COA thioesterase II: internal repeats. hydrolase: HET: LDA: 1.90A {Escharichia ecoli} SCOP: d 38 1.3
d.28.1.3
Probab=100.00 E-value=0 Score=440.04 Aligned_cols=278 Identities=40% Similarity=0.703 Sum_probs=0.0

0 ss _pred I1Hh hh cC::EccCCc:EccCCCCCCC:::HI IHI HHHHHHHHHB he CCCCCo € CCCCCCCC CCc

Q sp|01l4734| ACOT T 3 DEDL FRGRHYWYPAKRLFGGOL VGOAL VAAAKSVSEDVHVHSL HCYFVRAGDPEKL PVLYQVERTRTGSS 106 (319)

0 Consensus 27 - 1 'L i Fog--- TGOy B 08T ARt ¥ hSLh--FlL--g~---pi-y~Ve-lrdGRs 106 (3139)
+1*—“—I II I\ I+I+I I-+*+‘+III*+*IH* e e B R N R B e R R R NES NN

T Conscnsus -1 - GG—-~-A-ol ~Am--tv -5 - -F------pl---\'clr-ﬁﬂs 85 (285)

T 1cBu_a 5 N ) N EXTEEG FRGOSED: (7 ROVEGGOVVGOA! YAAKET VPEER! VHSFHST RPGDSKKPTTYDVET! FDGNS 85 (285)

T ss_dssp HHHHHHSCEEEET TEEEECCCCSSCSBOC TSCTTC SCCETTSC

T =5 _pred

Q ss_prad

HHHHh € CeEEc c CCe EEc c CCCCCCCe ch HHHHHHHHHHHHHHR CCocc Clcocococe e COCCCCCEEEEEEEecClac

B CCC €ccceCOCCCChhheOChHHHHHRR. ECCEC"\I“thChP‘\h"\th‘\1CEECCE
AAL

Q sp|014734|ACOT 107 FSVRSYKAVO "KF‘ COASFODAQPSPHOHOFSHMPT VPPPEELLDO IDOYLRDPNLOKRYPLAL 186 (319)
0 Consensus 107 f-TR-~V~ 1‘ S~ P—p ~Pe-1 186 (319)
| + +

T Consensus 86 ——y O~ e - e —— 158 (285)

T leBu_A 86 FSARRUVAAIONGKPLFYMTASFOAPE, E‘—le Dsnp.\m_)u F'-SE\ QLAQSL AHL = 158 (285)

T =s_dssp TTEE CCCC- CCEECCCOCCCCST TCOCHHHHHHHHT CCSCHHHH- - - —'I'—I'SC...:CCSEE

T ss_prad Lo £CC- cccccccCCooCoccCoChHshhhhhccccchhhb-- - - - - hhhceccCece

Q ss_pred EEecCCccccccCCCCoe EEEEEECc COCCCCCHHHHHHHHHHHhhhhhhhhhheococ- cCCCCceEEEeEEEEEE:CC

O sp|014734| ACOT 187 TKPVNPSP SOl ORMEPKOMPWVRARGY T GEGDMKMHC CVAATTSDY AR GTAL | PHO- - WOHK VHFMYSE DHSMWEHAP 264 (319)

Q Consensus 187 -r-- e - e aSLDhe1-FH- 264 (319)
el T e

T Consensus 159 - e e -~~g1 ~—ti-th- 237 (285)

T 1c8Bu A 159 "lP I? N ‘\Ci -\EP I"J WL FLANCC PD D_ F' + Q #.Q‘P C G EPG QIATI D 1SMINF j.F' 227 (285)

T ss_dssp
T ss_pred

EEESSCCCTTTCECCC CCS- T T L GTCCTTSTT
ecccccCloccCCCCCceeeeaeeeccCOCCo - chl’vH)—‘HHHHH‘-!FFnhh?"hhhhhhccccccccCCC(EeuEhhhﬂeueccc

0 ss_pred CCCCoeEEEEEET Coc o CCo cEEEEEEEK CCCCEEEEEEc cEEEE=CC

O sp|0Dla7sa|acol 265 FRADHEWM YECESPAAGGSRG VHGR WRODGY! AVTCAQEGVIRVEP 312 (319)

Q Consensus 265 d-w-1 s—a-—-gR-l-—-g-i —-dG LVAs ;12 (319
e R R e R e e R A S NN R

T Consensus 238 wil Gr 2wd g-glvR 285 (285)

T lcBu_A 238 FNLNEW | YSVESTSASSARGFVRGEFY TODG! ASTWOEGVIMRMHM 285 (2851

T ==_ds=p
T =ss_pred

CCTTSCEEEEEEEEEEET TEEEEEEEEEET T CCEEEEEEEEEREEEECC
cccCcEEEEEEEFECCCCCEFEFEECeEFEEecC

69



hTE8-Nef docking

Software: RosettaDock

Protocol: a) Nef position randomized;
b) distance constraints between Nef
residues: D108, F121, P122 and D123
and the hTE8 surface; c¢) 3000 decoys
produced and hierarchically clustered
with a cut-off RMSD value of 2.5 A.

{." 4 Asplos

A oof Aspl2a

Ly=361 Hys316

MD simulation

Program: NAMD (CHARMM?22 and Secondary Structure Conservation
TIP3P force fields) e —— =

o
2ULITE ..
20 WL B

Protocol: a) 9200 water molecules for B
solvation and PBC; b) Time step: 2 fs; ¢) . — -
PME for electrostatic interactions: 15 mas TR e e —
d) Constant temperature (300K) and i) o ¢ G TR
pressure (1 atm);e) 2000 steps of system Mmoo

minimization: using conjugate gradients; ~ hTE8|=im: ==

3 BLY P =

EQ LE B! o7t = 13 her e

) 22.5 ns molecular dynamics simulation. %51 2

400 GLE e .

B gy

3=
i
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; S e m-::”ﬁ.”».!ﬂlm i — ASP123-LvS36L
‘ [ — ASP132-LY5167
a ASP138-ARG142
T = = I = N N T FEEE
i A A NN NNM MmN T TS ASP138-ARG143

70



Discussion

We have investigated the interactions between the HIV-1 Nef and its cellular partner
hTES8: we modeled the structure of Human thioesterase 8 based on the isoenzyme
from E.coli.

An approximate model of the Nef/hTEll complex was built using protein-protein
docking: the docking was guided by using information derived from mutagenesis
experiments.

The interacting surface is characterized by charge complementarity

The interactions are stable during the entire MD simulation: hydrophobic
interactions may also play a role for the adduct stabilization, as can be observed
from the electrostatic potential

Our findings can help explain the experimentally low affinity of the E. coli
isoenzyme for the viral factor. Indeed, in the isoenzyme from E. coli two negatively
charged residues replace two aromatic residues found in the binding region of
hTES.

More experimental data as well as calculations of affinity and/or binding free energy
are required to firmly establish these issues.
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Appendix B

Introduction to Biochemistry. In the following pageescription of the
aminoacids and their putative interactions are  dimd
(http://en.wikipedia.org/wiki/Amino_acid)

A Asiins Ackds with Elecricolly Chorges Side Chains

Arginine:

{EiT}
3 _umuwﬁm £ Specal Cmes
l:g-m- o Isvlamﬂul e Ghycine

u.o@ |m|°

o RRRE

o mm*wmm
Alanine ethinnine Pherylalanine
bty

Tryptnphan
“® "o “"o o e g Te W

- L -ﬂb"“ e il C pasiz
lh.,

T e

Figure B1.The 21 amino acids found in eukaryotes, grouped
according to their side-chains' pKas and charge at
physiological pH 7.

Figure B2. Non-covalent bond Figure B3. Covalent bond
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hyvdrophiic
T
regions .

low salt

Figure B4. Hydrophobic interactions: the tendency of hydrocard (or of
lipophilic hydrocarbon-like groups in solutes) tmrin intermolecular
aggregates in an aqueous medium, and analogousanmaiecular
interactions

under high sakt conditions there i
enforced bydrophobie mberactions. The
byvdrophobic regions have a bagher
tendency to aggregate

Hydrophobic effect

The hydrophobic effect represents the tendency afewto
exclude non-polar molecules. The effect originatesn the
disruption of highly dynamic hydrogen bonds betwe®necules
of liquid water by the nonpolar solute. Polar cheahigroups,
such as OH group in methanol do not cause the piodkmc
effect. However, a pure hydrocarbon molecule, faaneple
hexane, is incapable of forming hydrogen bonds witer.
Introduction of hexane into water causes disruptadn the
hydrogen bonding network between water moleculeke T
hydrogen bonds are partially reconstructed by mglda water
"cage" around the hexane molecule, similar to thatlathrate
hydrates formed at the lower temperatures. Therwatdecules
that form the "cage" (or solvation shell) have sabgally
restricted mobilities. This leads to significantsdes in
translational and rotational entropy of water males and
makes the process unfavorable in terms of freeggnef the
system.
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The hydrophobic effect can be quantified by measurihe
partition coefficients of non-polar molecules betwevater and
non-polar solvents. The partition coefficients tentransformed
to free energy of transfer which includes enthahmc entropic
components, AG = AH - TAS. These components are
experimentally determined by calorimetry. The hyhabic
effect was found to be entropy-driven at room terapee
because of the reduced mobility of water molecuiesolvation
shell of the non-polar solute. However, the enticatpmponent
of transfer energy was found to be favorable, nmegani
strengthening of water-water hydrogen bonds in gbkvation
shell, apparently due to the reduced mobility ofawanolecules .
At the higher temperature, when water moleculesimecmore
mobile, this energy gain decreases, but so doesefi®pic
component. As a result of such entropy-enthalpy p=armeation,
the hydrophobic effect (as measured by the freerggnef
transfer) is only weakly temperature-dependent &edame
smaller at the lower temperature, which leads twld'c
denaturation" of proteins.

C X o

N

Figure B5. 727 Interactions: this class of interaction involves direct
attraction between arene rings. This was long aderg@d to be a charge
transfer phenomenon, but this was later disproved

o T 0
HoN
9 o ? OH HzN
HoN OH
HoN HaN OH
° OH OH
HN
N @
HO H )\
HaN®™ “NHz %Ha

phenylalanine tyrosine tryptophan arginine lysine

Figure B6. 7/zCation Interactions:Survey of protein database shows that

7eCation stabilization is a major facet of proteitrigture and enzyme
catalysis
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