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Abstract 
 

 
HIV-1 Negative factor (Nef) is a protein essential for the 
metabolism of the virus. 
Here we investigate the interactions of NEF with one of its 
targets on infected human cells, the human thioesterase 8 
(hTE8) enzyme.  
Homology modeling, virtual protein-protein docking and 
Molecular Dynamics Simulation experiments are carried out 
on the structural models of the enzyme and the complex 
respectively, with the aim of characterizing the putative 
interaction region. 
A plausible, albeit approximate, binding region is identified. 
The latter help interpret existing site directed mutagenesis 
data. Our  calculations suggest also that the system large-
scale dynamics change upon complex formation. 
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Part A - Background and Theoretical 
Methods 

 
1.0 HIV 
 
1.1 HIV disease 
 
Human immunodeficiency virus (HIV) is a lentivirus (a 
member of the retrovirus family) that causes acquired 
immunodeficiency syndrome (AIDS), a condition in humans 
in which the immune system begins to fail, leading to 
lifethreatening opportunistic infections. Infection with HIV 
occurs by the transfer of blood. HIV is present as both free 
virus particles and virus within infected immune cells. The 
four major routes of transmission are unsafe sex, 
contaminated needles, breast milk, and transmission from an 
infected mother to her baby at birth. Screening of blood 
products for HIV has largely eliminated transmission through 
blood transfusions or infected blood products in the developed 
world. 

 
 
Figure 1. Scanning electron micrograph of HIV-1 budding from 
cultured lymphocyte. (http://en.wikipedia.org/wiki/File:HIV-budding-
Color.jpg) 
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1.2 Negative Factor 
 
The Negative Factor (Nef) protein from Human 
Immunodeficieny Virus type 1(HIV-1) is a 27-kDa-
myristoylated protein required to produce a high viral load of 
the virus. In infected cells, this protein has been found to bind 
to a variety of proteins, including the src-family tyrosine 
kinases[1-2], the serin/threonine kinase]3-5], CD4[6,7], and 
thioesterase 8 (hTE8)[8]. Structural information of complexes 
between Nef and its identified cellular partners is currently of 
great interest to clarify Nef function in HIV-1 pathogenesis. 
So far, only the structure of the complex between Nef core 
domain and kinase SH3 domain has been solved using x-ray 
crystallography[9]. 
Although HIV-1 Nef was originally named "negative factor," 
it has been shown to have a positive role in viral replication 
and pathogenesis. Nef is a viral protein that interacts with host 
cell signal transduction proteins to provide for long term 
survival of infected T cells and for destruction of non-infected 
T cells (by inducing apoptosis). Nef also advances the 
endocyotsis and degradation of cell surface proteins, including 
CD4 and MHC proteins (CD4 is an integral membrane protein 
that functions in T-cell activation, and is the receptor for the 
HIV virus). 
This action impairs cytoxic T cell function, thereby helping 
the virus to evade the host immune response. The 
multifunctional protein helps the virus maintain high viral 
loads and overcome host immune defenses, contributing to the 
progression of AIDS. Nef may be a valuable target for 
pharmaceutical intervention in AIDS progression. 
Recently, point directed mutagenesis experiments were 
carried out on NEF with the aim of identifying the surface of 
interaction between the latter an one of its targets in human 
cells: the Acyl Thioesterase II. In the study, five residues that 
play a crucial role for the binding to hTE8 [10-12] were 
found, i.e. Asp108, Leu112, Phe121, Pro122 and Asp123. 
 
1.3 Acyl Thioesterase  
 
Acyl-CoA thioesterases are a group of enzymes that catalyse 
the hydrolysis of acyl-CoAs to the free fatty acid and 
coenzyme A (CoASH). They consequently have the potential 
to regulate intracellular levels of acyl-CoAs, free fatty acids 
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and CoASH. They may also be involved in the metabolic 
regulation of peroxisome proliferation. Thioesters play a 
central role in cells as they participate in metabolism, 
membrane synthesis, signal transduction, and gene regulation. 
Thioesterases catalyse the hydrolysis of thioesters to the thiol 
and carboxylic acid components. Many thioesterases have a 
hot dog fold, including YciA from Escherichia coli and its 
close sequence homologue HI0827 from Haemophilus 
influenzae(HiYciA). The E. coli thioesterase 8 reveals a new 
tertiary fold: a 'double hot dog'. It has an internal repeat with a 
basic unit that is structurally similar to the recently described 
beta-hydroxydecanoyl thiol ester dehydrase. The latter was 
shown to interact with the HIV-NEF protein in infected human 
cells [8]. Here we investigate the interactions of NEF with one 
of its targets on infected human cells, the human thioesterase 8 
(hTE8) enzyme. Homology modeling, virtual protein-protein 
docking and Molecular Dynamics Simulation experiments are 
carried out on the structural models of the enzyme and the 
complex respectively, with the aim of characterizing the 
putative interaction region. 
 
 

 

 

 
 
 
Figure 2. Crystal structures from the a) Acyl-Coa thioesterase (PDB 
code 1C8U) and b) Nef (PDB code 2NEF) 
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2.0   Comparative Modeling 
 
2.1 The  Levinthal  paradox 
 
One possible route to annotate a genome is to try and assign a 
structure to the protein products of the genes. In principle one 
could follow two routes: a physico-chemical approach 
whereby one tries to calculate the protein structure, or a 
heuristic approach where rules relating sequence to structure 
are derived from the analysis of known protein structures that 
have been experimentally determined. 
The first route is clearly much more intellectually appealing. 
After all, given a protein sequence we know exactly its 
chemical composition, if we do not consider post-translational 
modifications, and all we need to know are the forces acting 
on each of the atoms so that we can compute their optimal 
relative position.  
In order to follow this route we need to make sure that the 
functional protein structure is the conformation corresponding 
to the free energy minimum and, if this is the case, that we are 
able to calculate the energy of all possible protein 
conformation accurately enough to distinguish between the 
correct structure and all the others.  
If one takes a folded protein, i.e. a protein in its functional 
conformation, places it in chemical conditions where all the 
forces are weakened and therefore where the protein unfolds, 
it is sufficient to remove the chemical agents used for 
denaturing the protein to recover the folded functional protein. 
This is the result of a very elegant experiment performed by 
Christian Anfinsen in 1973 [26]. The obvious interpretation of 
the experiment is that a protein sequence contains all the 
information needed to achieve its functional structure (the 
experiment is carried out in a test tube where there is nothing 
else but the protein) and that the functional or native structure 
is the one corresponding to the free energy minimum among 
those that the protein can explore (no matter how many times 
you repeat the experiment you always end up with the same 
final structure). Therefore we can assume that the native 
protein structure is the one corresponding to the free energy 
minimum (the limits of validity of this assumption are 
discussed later in this chapter). 
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All we need to do is to compute the energy of all possible 
conformations of a protein and select the one with minimum 
free energy. However there are at least two hurdles in  this 
strategy, the first is that proteins are only marginally stable, 
i.e. the energy needed to unfold them is of the order of a few 
Kcal/mol and is brought about by a very large number of 
weak interactions, and therefore we would need to compute 
the energy of each interaction very accurately to distinguish 
between the native protein structure and all the others. The 
second is that the number of possible conformations of 
proteins is simply enormous. There are many interesting 
attempt to try and simulate the folding of a protein in a 
computer using various tricks, approximations and strategies, 
as it will be discussed later in this chapter, but in practice we 
do not have at the moment any method that can fold any 
protein only on the basis of the physico-chemical properties of 
its sequence and we have to recur to heuristic methods by 
exploiting the fact that we have access to several solved 
instances of our problem: all proteins of known sequence 
whose structure has been solved experimentally. 
The enormous number of conformations available to a protein 
not only makes the task of computing them impossible, but 
implies that the protein itself cannot be randomly searching its 
conformational space.  
The case against proteins searching conformational space for 
the global minimum of free energy was argued by Cyrus 
Levinthal in 1968[38]. The Levinthal paradox, as it is 
commonly known, can be demonstrated fairly easily. If we 
consider a protein chain of N residues, we can estimate the 
size of its conformational space as roughly 10N states. This 
assumes that the main chain conformation of a protein may be 
adequately represented by a suitable choice from just 10 
different local conformations per residue. More technically, 
the assumption is that there are just 10 different common 
combinations of phi, psi and omega torsion angles for each 
residue type. This of course neglects the additional 
conformational space provided by the side chain torsion 
angles, but is a reasonable rough estimate, albeit an 
underestimate. The so-called paradox comes from estimating 
the time required for a protein chain to search its 
conformational space for the global energy minimum. Let’s 
think about a typical protein chain of length 100 residues and 
let’s assume that the atoms can move very fast - the speed of 
light even. Even at these physically impossible atom 
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velocities, it would take the chain around 1082 seconds to 
search the entire conformational space, which compares rather 
unfavourably to the estimated age of the Universe (1017 
seconds). Clearly proteins do not fold by searching their entire 
conformational space. 
 

2.2 Comparative (homology) modeling 
 

At some stage of the evolution of a species, some individuals 
might diverge sufficiently to give raise to a different species, 
i.e. become unable to interbreed in the wild producing fertile 
offspring with the other members of the originating species.  
Proteins have limited stability brought about by a multitude of 
rather weak interactions among their atoms. This suggests that 
the delicate balance between destabilizing and stabilizing 
forces might be easily destroyed by a mutation and the 
mutated protein might not be able to fold. However, during 
evolution, function has to be preserved, therefore all the 
proteins that we observe can only contain non destabilizing 
mutations with respect to their immediate ancestor sequence. 
Can a small change destabilize the original protein structure 
and stabilize a completely different one, preserving stability, 
function, folding ability, etc.? This is rather unlikely, and 
indeed never observed. It follows that evolutionarily related 
proteins, that is proteins derived by a common ancestor via the 
accumulation of small changes, cannot but have similar 
structure, where mutations have been accommodated only 
causing small local rearrangements. If the number of changes, 
that is the evolutionary distance, is high these local 
rearrangements can cumulatively affect the protein structure 
and produce relevant distortions, but the general architecture, 
that is the fold, of the protein has to be conserved. On the 
other hand, if two proteins have evolved from a common 
ancestor it is likely that a sufficient proportion of their 
sequences has remained unchanged so that an evolutionary 
relationship can be deduced by their comparative analysis. 
Therefore if we can infer that two proteins are homologous, 
that is evolutionary related, the structure of one can be used as 
a first approximation of the structure of the other. This forms 
the basis of the technique known as comparative or homology 
modeling[45]. 



 

 10 

How well is a protein structure preserved during evolution? 
Chothia and Lesk [29] analyzed 32 pairs of homologous 
proteins of known  structure and asked the question of how 
much the core of the structures diverged as a function of the 
sequence identity (a rough measure of the evolutionary 
distance). There are several definitions of the core of a protein 
structure. In their work, Chothia and Lesk used an almost 
tautological definition of core as the part of the protein 
structures that is more conserved between the two 
homologous proteins under study. Regardless the specific 
definition, we can intuitively understand what the core of a 
protein is: the part of the structure that is not peripheral to the 
folded nucleus of the protein, i.e. the protein without external 
“decorations” such as loops and small domains that are 
usually not very well conserved in evolution. In the same 
paper, Chothia and Lesk also analyzed the extent to which the 
core is conserved as a function of sequence identity. Their 
conclusion, supported by many subsequent analysis, is that 
there is a clear relationship between the divergence of the 
structures of homologous proteins and that it can be expressed 
as a function of their sequence identity. 

2.3 Evolutionary history of the protein 
 

The first step of a comparative modeling experiment is the 
detection of proteins evolutionarily related to it whose 
structure is known (templates). The next question we need to 
ask ourselves is: which amino acid of the target protein 
corresponds to which amino acid of the templates? In other 
words we need a sequence alignment between the target 
sequence and the sequence of the template protein. This is, 
without doubts, the most crucial aspect of a modeling 
procedure and one of the most difficult ones. There are several 
methods for aligning protein sequences, but here is the catch. 
All these methods try to reconstruct the evolutionary history 
of the protein. In other words, they tell us which amino acids 
are likely to be derived from the same amino acid of the 
ancestral protein that gave origin to the present sequences. 
However, this is not necessarily the alignment we need for 
homology modeling. Let us try and explain this with an 
example. Suppose that there is an insertion  of one amino acid 
in a given position in our target sequence with respect to its 
template. Not only the inserted amino acid of the target does 



 

 11 

not have any equivalent amino acid  in the template, but also 
the amino acids surrounding it are likely to have changed their 
position relative to the rest of the structure in order to 
accommodate the insertion and using their evolutionary 
counterparts as structural templates for their position is 
incorrect. 

2.4 Best protein to be used as template 

 

If more than one protein of known structure evolutionarily 
related to the target is available we have several possible 
choices. We can: 
•  use the one evolutionarily closer to the target, i.e. the one 
with the highest sequence similarity,  
•  “average” the coordinates of the templates and build a 
“theoretical template”,  
• take the structure of different regions from the different 
proteins selecting the regions where the local similarity is 
higher,  
• build a model on the basis of each of the available 
templates and select the best one according to some criteria,  
• derive constraints from the templates and subsequently 
build a structure that satisfies as many of them as possible.  
Essentially, all these strategies are used in practice by 
different tools available to users[37] [42]. It is difficult to say 
which is the best in general, although it is becoming clearer 
that using multiple templates has to be preferred and probably 
the constraint based strategy is more effective in many cases.  

 

2.5 Machine learning methods and template selection 

Secondary structure and presence of disulfide bonds are 
among the features that can be successfully predicted. 
Generally speaking, prediction  tools rely on the fact that, 
even if the overall structure is determined by the whole 
sequence, specific structure features can be strongly 
influenced by local features of the sequence. For example, 
alpha-helices and beta-sheets have different amino acid 
composition, and the same is true for the neighboring residues 
of disulfide-bonded and free cysteines. If we are able to 
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understand these differences, we can use them to evaluate the 
probability for a residue to be in a secondary structure or for a 
cysteine to be disulfide bonded. 
 The basic idea is to analyze the set of proteins known at 
atomic resolution and adopt methods suited to extract 
correlations between structural features and local sequence 
features. Simplest methods are based on classical statistics and 
evaluate, for example, the propensity of alanine residues to be 
in a alpha-helical structure simply by computing the ratio 
between the alanine composition of alpha-helices and  the 
overall alanine composition in proteins. Statistical methods 
can take into consideration more elaborate sequence features, 
but they often fail in extracting useful correlations when the 
complexity of the problem increases. For that reason, more  
versatile and flexible methods have been designed and 
implemented on the basis of the so called “machine-learning” 
theory. Among them, Neural Networks, Support Vector 
Machines and Hidden Markov Models are the most widely 
adopted. With different strategies, they are able to extract 
information from a set of known examples in an automatic 
way, on the basis of a rigorous mathematical framework. 
Owing to their architectures, they are able to deduce more 
complex rules of association between input (sequence) and 
output (structural feature) than classical statistic methods do. 
These rules are encoded in a set of numerical parameters 
whose values are fixed during the training phase and then 
used for predicting new sequences.  
Versatility of machine learning methods allows different input 
encodings, more  informative than the sole sequence, to be 
considered. In particular a general improvement of the 
performance can be obtained using sequence profiles upon 
multiple sequence alignments. In practice, given a sequence, 
similar sequences are searched in the data base and then 
aligned so as to obtain a representation of a whole family 
instead of a simple sequence. This representation highlights, 
for example, the conserved and mutated residues and this 
supplements the predictor input with evolutionary 
information. 
The classical application of predictive methods to protein 
structure is the  determination of secondary structure starting 
from sequence. Best methods for this task are based on Neural 
Network and Support Vector Machines and take as input the 
sequence profile of a 15/25-residue long window, centered 
around the residue to be predicted. When validated on 
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proteins with known structure not used during the training 
phase,  these methods predict the correct secondary structure 
for about 78% of residues[35] [46]. Better results can be 
obtained implementing a consensus of different methods[30] 
[46]. 
Another important structural feature that can be predicted is 
the presence of disulfide bonds, that is the bond between the 
sulfur atoms of two cysteine side chains. This is the only 
covalent bond that non adjacent residue can form in the native 
state and a correct prediction of the topology of disulfide 
connection  strongly constrains the prediction of the overall 
structure. This task can be easily split into two steps. First of 
all, since only about 1/3 of cysteine residues are involved in 
disulfide bonding, it is necessary to discriminate them. Then 
the topology of the connections can be predicted. Concerning 
the first step, very efficient methods have been implemented 
that are able to predict the correct bonding state for 88% of 
cysteine residues and to give an overall correct prediction for 
84% of proteins[40]. They are currently based on systems that 
integrate a Neural Network and a Hidden Markov Model. The 
former analyzes the composition of the profile in windows 
centered around each cysteine residue while the latter 
correlates the outputs that the neural networks computes for 
all the cysteine residue in the sequence[39]. 
The prediction of the topology of the disulfide bridges, i.e. of 
which cysteine pairs with which, is more difficult due to the 
combinatorial number of possible connection patterns for a 
given number of bonded cysteine residues. Important 
achievements have been reached, although a reliable 
prediction of the disulfide connectivity pattern can be 
performed only when two or three  disulfide bonds are present 
in the protein[31]. 
In conclusion, the prediction of structural features starting 
from the sequence is not able to completely reconstruct the 
protein conformation. Nevertheless these procedures can 
greatly help this task since the predict constraints limit the 
number of possible conformations. Moreover the output of 
this tool can supply information useful in the implementation 
of fold recognition methods. 
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2.6 Side chain modeling 

For insertion and deletions, methods are usually based on 
either an energy driven search for the possible conformations 
of the region of interest or on a database search of regions of 
protein of known structure that can provide a local template 
[27] [28] [32][34][43] [44]. The latter are usually selected on 
the basis of either a good fit of the regions flanking the region 
between target and local template, or on local sequence 
similarity.  Side chain modeling often takes advantage of the 
preference of side chains for specific conformations, as 
deduced by the analysis of known protein structures. These 
preferences, tabulated in so called rotamer libraries[28] [33] 
[34] [36], are usually used as a starting point for subsequent 
refinement of the overall structure.  
Once we have built our initial model, we need to “refine” it. 
What this simply means is that we now need to model the 
effect of the specific sequence changes that have occurred in 
our protein with respect to its template.  

2.7 The CASP (Critical Assessment of Methods for Protein 
Structure Prediction) 

Every two years crystallographers and NMR spectroscopists 
who are about to solve a protein structure are asked to make 
the sequence of the protein available together with a tentative 
date for the release of the final coordinates[41]. Predictors 
produce and deposit models for these proteins before the 
structures are made available and, finally, a panel of assessors 
compares the models with the structures as soon as they are 
available and tries to evaluate the quality of the models and to 
draw some conclusions about the state of the art of the 
different methods.  The results are discussed in a meeting 
where assessors and predictors convene and the conclusions 
are made available to the whole scientific community via the 
World Wide Web and the publication of a special issue of the 
journal Proteins: Structure, Function, and Genetics. The 
collected data, amounting to tens of thousands of models for 
hundreds of targets is an invaluable resource for assessing the 
quality of protein models.  
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Although embarrassing, we have to admit that, so far, no 
available method, is able to consistently produce the correct 
structure for regions where insertions and deletions are 
located or to improve the initial model and make it “better”, 
i.e. closer to the real structure, while the accuracy of side 
chain modeling methods seems to be only limited by the 
quality of the prediction of the rest of the structure. 
Notwithstanding the limitations of comparative modeling, this 
method remains the method of choice whenever possible for 
at least two reasons. First of all, the relative quality of a 
comparative model depends on the evolutionary distance 
between two proteins. In fact, both the probability of inferring 
the correct alignment between two proteins and the structural 
divergence between their structures are correlated with their 
evolutionary distance which can be estimated a priori. This 
implies both that it is possible to estimate the expected quality 
of a comparative model and its possible range of application 
beforehand and hence decide whether it is reasonable to 
embark in the task and also, perhaps most importantly, that 
one can attach an approximate  reliability to any of the 
conclusions derived from the analysis of the model. The 
second, equally important aspect, is that the methodology will 
be especially effective in modeling regions of a protein that 
are more conserved during evolution. This implies that 
functionally important regions will be more correctly 
modelled than other, often of lower interest, regions. 
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3.0 Molecular Dynamics 
 
3.1 Molecular Dynamics (MD) simulations  
 
Molecular Dynamics (MD) simulation is a technique founded 
upon the basic principles of classical mechanics that provide a 
dynamical picture of the individual particles of the system at a 
microscopic level. Using this technique successive 
configuration of the molecular system (in the phase space of 
coordinates and momenta) is generated by integrating 
Newton’s law of motion. 
The result is a trajectory, which contains the microscopic time 
evolution of the system in the phase space. From the 
trajectory generated, one can compute the dynamical 
properties such as absorption spectra, rate constants and 
transport properties. Further, on combining MD with 
statistical mechanics as a mean of sampling, one can compute 
equilibrium properties such as 
average thermodynamics quantities, structure, and free 
energies along the reaction path seen as a union of all possible 
states of the system. For instance, the statistical ensemble 
average of an observable A can be obtained as: 

                                                        (3.1) 

The assumption made here is called the ergodic hypothesis 
(details in  3.3), i.e given an infinite amount of time, ensemble 
average of observable A, is equivalent to its time average. The 
main aspect in atomistic MD simulations are: 
•  An algorithm that samples the phase space 
•  The choice of the interaction potential, V(r), between the 
atoms of the system. 
Several simulations approaches were developed in the last 
decades that differs in the method to sample the phase space. 
The most fundamental form used to describe equation of 
motion is the Lagrangian form: 
 

                                                     (3.2) 

where 
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is Lagrangian defined as the difference between the kinetic 
and potential energies L=K-V, where qj are generalized 
coordinates and q˙ j are the associated time derivative. The 
momentum conjugate to coordinate qj is given as: 

                                                                     (3.3) 

On substitution with the usual definition of kinetic and 
potential terms with cartesian coordinates ri, equation (3.2) 
becomes: 

                                          (3.4) 

where V(r), the potential, is a function of the atoms positions 
and Fi represents the total force on atom i. In this equation 
one assumes that the nuclear motion of constituent particles 
obeys the laws of classical mechanics. This is an excellent 
approximation if the distance in the energetic (translational, 
rotational and vibrational) levels of the involved degrees of 
freedom is << kT, where k is the Boltzmann constant and T 
the temperature. In the Hamiltonian form the equation of 
motion for the cartesian coordinates is given by: 

                                 (3.5) 

                                                      

3.1.1 Integration of Newton equations of Motion 
 
Under the influence of a potential, the motions of atoms are 
strongly coupled to each other giving rise to many-body 
problems that cannot be solved analytically. Therefore, in MD 
calculation an iterative numerical procedure is employed to 
obtain an approximate solution for the equations of motion. 
The two important properties of the equations of motion to be 
noted are: 

• They must be time reversibe (t = -t). 
• Conservation of total Energy (Hamiltonian) of the system. 
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For the first point, as the Newton equations are time reversible 
also the algorithm used is supposed to satisfy the same time 
reversal symmetry. The algorithms that are not time reversible 
do not normally preserve the phase space volume, i.e. they do 
not satisfy the Liouville theorem. For the second point, 
conservation of Hamiltonian is equivalent to conservation of 
total energy of the system and provides an important link 
between MD and statistical mechanics. The energy 
conservation condition H(p,r) = E, defines a hypersurface in 
the phase space called the constant energy, imposing a 
restriction on system to remain on this surface. A good way to 
check the accuracy of the algorithm is to follow the temporal 
evolution of an observable A that should be conserved (e.g. 
the total energy). In general a good algorithm must be such 
that: 
 

         (3.6) 

there is no drift in the total energy. 
The MD integration of the Newton’s equation which have a 
continuous form, are based on assumption that position, 
velocities and other dynamical properties can be discretized 
using the 
 aylor series expansion: 

 (3.7) 

(3.8) 

The choice of the integration method depends on the degree of 
accuracy of problem at hand. One of the most useful form 
used is the velocity verlet algorithm, a variant of verlet 
algorithm. The advantage is using velocity verlet method is 
that positions, velocities and acceleration are well 
synchronized that allow to calculate the kinetic energy 
contribution to the total energy at same time, from which 
potential energy is determined. 
The equations are: 
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       (3.9) 

    (3.10) 

where ai,ri,vi are respectively the acceleration on the atom i, 
the atom position and the atom velocity. The algorithm has an 
accuracy of O(∆t3) for the variables and it is reversible in 
time. 
Together with conservation of energy and time-reversibility 
another important feature of an integrating algorithm is to 
permit long time steps ∆t. It is expected that the numerical 
Newtonian trajectory will diverge from the “true” Newtonian 
trajectory. However, it is important that the integrating 
algorithm maintains a well defined energy tolerance ∆E 
throughout the simulation time. 
The error (∆E) is known to decrease on decreasing the time 
step ∆t. The aim here is to find a balance between using the 
largest possible time step and maintaining an acceptable ∆E 
all along the simulation. A large time step would lead to faster 
exploration, but energy would fluctuate widely with the 
possibility of the simulation being catastrophically unstable, 
on other hand too short time step would lead to computation 
being needlessly slow. The choice of an integration step is 
determined by the nature of forces acting on the system. The 
golden rule is to choose time step (∆t ~ 10-15 s) such that the 
fastest motion of the system can be integrated accurately. This 
requirement is a severe restriction, particularly as high 
frequency motions are relatively of less interest and have 
minimal effect on the overall behavior of the system. One 
suggested approach is to freeze out such vibrations by 
constraining the appropriate bonds to their equilibrium values. 
Details of this approach is discussed in subsection 3.1.4, or to 
use multiple time step approach which is discussed in 
subsection 3.1.2. 
 
3.1.2 Multiple Time Step Integrator 
 
One of the approaches to accelerate the integration of 
equations of motion, is to use “multi-time” step algorithm 
such as reverse reference system propagation algorithm (r-
RESPA)[51]. In the algorithm (r-RESPA), the molecular 
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system is classified into number of groups according to how 
rapidly the forces varies over time. The starting point is the 
Liouville  operator formulation, which can cast the equations 
for the Hamiltonian system (see equation 3.5) in a general 
form: 
 

                                                                          (3.11) 
 
where x is the phase vector and iL is the Liouville operator. 
Consider a molecular system containing N atoms (or 3N 
degrees of freedom) with x = {ri, pi} representing a point in 
the phase space. The Liouville operator in cartesian 
coordinates is defined as: 

                     (3.12) 
 
On subsituting equation 3.5 into equation 3.12, we get: 
 

                      (3.13) 
where Fi is the force on ith degree of freedom, and {...,...} is 
the 
poisson bracket. The classical time propagator U(t) is unitary 
and defined as eiLT , and the evolution of system Eq. 3.11 is 
expressed as: 

                                                               (3.14) 
The action of operator U(t) on x(0) cannot be determined 
analytically, however the operator can be decomposed using 
Trotter theorem, such that the action of U(t) on x(0)for each 
part can be evaluated analytically. Applying the Trotter 
theorem we get: 

     (3.15) 
 
where ∆t=t/P. For finite P, the numerical iteration procedure 
is accurate to the second order in the time step at long times. 
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From equation  3.15, for the three exponential terms, we 
define 
the discrete time propagator (U1,U2) as: 

       (3.16) 
 
Since the three exponential terms in G _t are separately 
unitary, G (∆t) is also unitary i.e G-1(t) = G(-t). Lets us now 
consider the propagator generated by subdivison as: 

                                                    (3.17) 
 
The operator U1(∆t/2 ) becomes a translation operator on the 
positions: ri→ri + ∆t(pi / mi), and operator U2(∆t) becomes a 
translational operator of momenta: pi→pi + (∆t / 2), Fi(r). On 
combining these two facts to action of operators in equation 
3.16 on complete set of positions and momenta, yields the 
approximate evolution: 

                      (3.18) 
 
which is the famous velocity verlet [49] integrator derived 
using the operator formulation. The power of the operator 
based approach is its symplectic property which ensures no 
drift in the total energy, resistance to increase in time steps 
and allowsgenerating stable long trajectories. 
r-RESPA algorithms have been successfully employed to 
incorporate motions on more than two time scales. Let us 
consider a system with three characteristics time scales, a 
reference force Fi

ref , and two corrections Fi
del and Fi

Del, such 
that Fi= Fi

ref+ Fi
del +Fi

Del.  We define their Liouville operators 
as iLref, iL(del) and iL(Del) and the corresponding timescales δt, 
∆t and respectively. The three time step propogator can 
then be written as: 
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         (3.19) 
 
Thus, the correction due to slowest time scale is applied every 
m·n timesteps, and the intermediate time scale correction is 
applied every n steps. Such numerical procedure lead to 
considerable saving in the CPU time to perform a MD 
simulation. 
 
3.1.3 The interaction potential 
 
The potential function V(r) from which the forces used in MD 
are derived depends on the atomic coordinates ri. 
V(r) used in this thesis has the following expression: 

 

                                             (3.20) 
 
The first two terms (two and three body interactions 
respectively) represent the bonds and angles potentials, that 
are approximated by harmonic functions. The third and fourth 
term describe four body interactions. Improper dihedral terms 
are typically described by an harmonic function. Instead 
proper dihedrals are described by periodic functions (i.e. 
cosine functions) of a given periodicity n. The last two terms 
are a Lennard-Jones (LJ) potential and a coulomb potential 
between pair (ij) of atoms. 
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The LJ terms reproduce the Van der Walls interactions, while 
the coulomb potential terms reproduce the electrostatic 
properties of a protein. These interaction are modelled using 
the two-body approximation which doesnot explicitly account 
for the polarization effects, but on a average. The parameters 
used in this kind of potentials are typically obtained from 
quantum chemical calculations and experimental data (e.g. 
crystallographic data, spectroscopic data, etc). Among the 
popular sets of parameters (force fields) for MD simulations 
of proteins we can cite for example AMBER, GROMOS, 
CHARMM and OPLS. They all use the potential function 
expression given above for all the atoms of the simulated 
system except for the GROMOS(and CHARMM19 force 
field) force field in which a united atom description is used 
for non-polar hydrogens. 
In MD simulations the description of the solvent (water for 
most of the biologically interesting systems) can be explicit or 
implicit. In the first case solvent molecules with a full 
atomistic force field description are added in the simulation 
box at the experimental density. In the implicit solvent 
description the solvent is treated as a dielectric medium in 
which the system is embedded. This is clearly a more 
approximated description but it is also computationally much 
more efficient since in many practical cases the solvent 
constitutes the majority of the atoms.  
 
3.1.4 Constraints for Hydrogen 
 
Constraints are used in MD to fix bonds to their equilibrium 
value. This allows increasing the simulation time step _t. 
Constraining the bond lenght does not alter significantly the 
statistics as these are quantum degrees of freedom being 
mostly in their ground state at the normal simulation 
temperature. Using the bonds constraints it is possible to use 
∆t ~ 2fs  (2-4 times larger than the one that can be used 
without constraints). A common method to introduce 
constraints is the algorithm SHAKE , in which after each time 
step the atoms positions iteratively are modified in order to 
satisfy the constraint. 
SHAKE may have convergence problems when applied to 
large planar groups and its implementation could hinder the 
efficiency of computing. To improve these aspects the LINCS 
algorithm was recently introduced. For water molecules it is 
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also possible to use an analytic solution of SHAKE called 
SETTLE. 
 
3.1.5 Boundary conditions 
 
To simulate a finite size system, boundary conditions are 
needed to avoid artifacts near the border of the simulation 
box. Typically periodic boundary conditions (PBC) are used. 
In this scheme short range non bonded interactions are 
calculated using the minimal image convention (only the 
nearest replica is considered). 
Typically a cut-off radius (Rc) is used for LJ interactions of 
the order of 10 Å. To avoid interactions between a particle 
and its periodic image each box side must be larger than 2Rc. 
The coulomb energy is instead treated considering the full 
periodicity of the system. For a periodic lattice made by N 
particles it is given by: 

                                   (3.21) 
 
where  n  indicates the periodic images, i,j  the particles and 
the 
symbol * indicates that the summation does not contain the 
term with i = j  if n = 0. 
The periodicity of the system speeds up the evaluation of the 
coulombic term. Although convenient, effective, and simple 
to apply, certain subtle problems arise for long range forces 
(electrostatics), whose spatial range may extend beyond the 
boundaries of the container into surrounding images, present a 
challenge. 
Long range forces can only be correctly calculated by 
summing over all the periodic replicas of the original system. 
However, the associated computational effort is considerable. 
Fortunately, methods have been developed to treat this 
problem. Specifically, the Ewald summation technique, 
developed originally to treat Coulomb interactions and later 
extended to treat general interactions of the form 1/rn 

for n≤3 has proved enormously successful. 
The basic idea behind the technique is to divide the relevant 
part of the potential into a short range and a long range 
contribution. 
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For the Coulomb potential, 1/r, for example, this can be 
achieved via the identity 

                                                   (3.22) 
 
where erf(x) and erfc(x) are the error function and 
complementary error function, respectively (erf(x) + erfc(x)= 
1). The variable, R, is a convergence parameter, which can be 
optimized for each system studied. The short range term, 
erfc(αr)/r, is treated as an ordinary short range interaction, i.e., 
using a spherical cutoff to truncate the interaction at large 
spatial distances where the potential is small. The long range 
term, erf(αr)/r, is Fourier transformed into reciprocal space, 
where it takes the short-ranged form, exp(-g2/4α2), and can be 
evaluated accurately by summing over only a small number of 
reciprocal space vectors of  the simulation cell. Such 
reciprocal space sums can be evaluated with high a degree of 
efficiency (N log N) using particle-mesh methods(PME)[54]. 
An extension of PME is the smooth PME. With respect to 
PME, this method uses a fixed cuttoff in the direct sum and 
uses the B-spline interpolation of the reciprocal space 
structures onto a rectangular grid, permitting the use of fast 
Fourier transforms to efficiently calculate the reciprocal sum. 
In this thesis we use SPME method to evaluate the 
electrostatic energies. 
 
3.1.6 Statistical Ensembles 
 
Molecular dynamics can be performed in different statistical 
ensembles. The traditionally used ensemble to perform MD is 
the micro-canonical ensemble (NVE), where the number of 
particles (N), the volume (V), and the total-energy (E) of the 
system are fixed to a constant value. 
The simple extension of NVE ensemble is the canonical one 
(NVT), where the number of particles, the volume and the 
temperature are fixed to a constant value. The temperature T, 
in contrast to the number of particles N and volume V, is an 
intensive parameter. The temperature T is related to the time 
average of the kinetic energy given as: 

                                         (3.23) 
 



 

 26 

 
 
where, Ekin is the kinetic energy, kB is the Boltzmann constant. 
The simplest way to control the temperature, is to rescale the 
velocities at each step by the factor  

 
where Tcurr is the current temperature calculated from the 
kinetic energy and Treq is the desired temperature (for instance 
300 K). However, an alternative way to maintain is to couple 
the system to an external heat bath that is fixed at the desired 
temperature. The bath acts as a source of thermal energy, 
supplying or removing heat from the system as appropriate. 
This thermostat is named as the “Berendsen” thermostat. It is 
extremely efficient for relaxing a system to the target 
temperature, but once the system has reached equilibrium, it 
might be more important to probe a correct canonical 
ensemble. 
Extended system methods, was originally introduced for 
performing constant MD simulation by Nosè in 1984, and 
subsequently developed by Hoover in 1985. The idea of the 
method was to reduce the effect of an external system, acting 
as a heat reservoir, to an additional degree of freedom s. This 
reservoir has a potential energy (f+1)kBTln s, where f is the 
number of degrees of freedom in the physical system and T is 
the desired temperature. 
The kinetic energy of the reservoir is given as (Q/T)(ds/dt) 2, 
where Q is considered as the fictitious mass of the extra 
degree of freedom. The magnitude of Q determines the 
coupling between the reservoir and the real system and so 
influences the temperature fluctuation. If Q is large then the 
energy flow is slow; in the limit of infinite Q, conventional 
molecular dynamics is regained. 
However, if  Q is small then the energy oscillates, resulting in 
equilibrium problems. It has been suggested that Q should be 
proportional to fkBT. 
Another ensemble we discuss here it the NPT ensemble, an 
extension of  NVT ensemble, where together with temperature 
the pressure of the system is maintained to a constant value. 
As most experimental measurements are usually made under 
conditions, which include a fixed pressure P, temperature T, 
and number of atoms N (constant-NPT ensemble), and so 
simulations in the isothermal-isobaric ensemble are the most 
directly relevant to experimental data. A simulation in NPT 
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ensemble maintains the constant pressure by changing the 
volume of the simulation cell. 
The amount of volume fluctuation is related to the isothermal 
compressibility, κ 

                                                             (3.24) 
 
An alternative to maintain constant pressure is to couple the 
system to a “pressure“ bath, analogous to the temperature 
bath. 
The rate of change of pressure is given by: 

                                               (3.25) 
 
where τp is the coupling constant, Pbath is the pressure of the 
’bath’, and P(t) is the actual pressure at time t. The volume of 
the simulation box is scaled by a factor λ, which is equivalent 
to scaling the atomic coordinates by a factor λ

1/3. Thus: 

                                                 (3.26) 
and the new position are given by: 

                                                                (3.27) 
 
In the extended pressure-coupling systems, an extra degree 
of freedom, corresponding to the volume of the box, is added 
to the system. The kinetic energy associated with this degree 
of freedom (which can be considered to be equivalent to 
piston 
acting on the system), is (1/2Q)(dV/dt)2, where Q is the 
’mass’ of the piston. The piston also has a potential energy 
PV, where P is the desired pressure and V is the volume of the 
system. The volume varies in the simulation with the average 
volume being determined by the balance between the internal 
pressure of the system and the desired external pressure. In 
this thesis, we have performed MD simulation in both NVT 
and NPT ensembles. 
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3.2 Long Time Scale Simulations 
 
Molecular Dynamics (MD) simulations allow investigating 
processes occurring on timescales of ~100ns. However, most 
interesting and relevant biological process happen on time 
scales that are orders of magnitude larger, and are therefore 
termed as rare events. For example, protein folding (µs-few 
seconds), protein protein interactions, transport of molecules 
across membrane channels (order ~ µs) and many others. 
Over the years, we have observed an astounding increase in 
computer power (Blue gene, DESRES), which promise to 
increase utility of MD simulations to investigate more and 
more complex systems on µs timescale 
However, these supercomputing machines are not available to 
all the research groups. Therefore another approach to 
overcome the timescale problem is to renounce the all atom 
approach and to use coarse grained models. This would retain 
the essential characteristics, however you require a detailed 
knowledge of system, that is often not available. 
For systems, where its important to maintain the atomistic 
description, one can exploit methodology aimed at 
accelerating rare events to timescales reachable in MD 
simulations. Notable success has been achieved is using the 
accelerating methodology in diverse fields of interest. From 
their scope and range of applicability, they are classified in 
four categories : 
 
1. Methods aimed at improving sampling, in a subspace of 
few predefined collective variables (CVs), that allow 
reconstructing the probability distributions as a function of 
chosen CVs. Examples of these methods include 
thermodynamic integration , free energy perturbation, 
umbrella sampling , conformational flooding, weighted 
histogram, steered MD, Jarzynski’s identity based methods  
and adaptive force bias. The power of these methods in highly 
dependent on judicious choice of CVs, and computational 
performance degrades as a function of the number of 
variables. 
 
2. Methods aimed at exploring the transition mechanism. 
Examples in these catogeries are transition path sampling, 
finite temperature string method, transition interface sampling  
and forward flux methods. These 
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methods do not require in most cases, an explicit definition of 
a reaction co-ordinate, but require a priori knowledge of initial 
and final states of process under investigation. 
 
3. Methods for exploring the potential energy surfaces and 
localizing the saddle points that corresponds to a transition 
state. Examples in these catogeries are dimer method, 
hyperdynamics , multiple time scale accelerated MD and 
event based relaxation . The power of these methods is limited 
to low dimensionality, and reliability degrades with the 
complexity of system. 
 
4. Methods in which the phase space is explored 
simultaneously at different values of temperatures, are parallel 
tempering and replica exchange, or as a function of the 
potential energy, such as multicanonical MD and Wang-
Landau. 
 
3.3 Statistical Bases  

Molecular dynamics simulations generate information at the 
microscopic level, including atomic positions and velocities. 
The conversion of this microscopic information to 
macroscopic observables such as pressure, energy, heat 
capacities, etc., requires statistical mechanics. Statistical 
mechanics is fundamental to the study of biological systems 
by molecular dynamics simulation 

In a molecular dynamics simulation, one often wishes to 
explore the macroscopic properties of a system through 
microscopic simulations, for example, to calculate changes in 
the binding free energy of a particular drug candidate, or to 
examine the energetics and mechanisms of conformational 
change. The connection between microscopic simulations and 
macroscopic properties is made via statistical mechanics 
which provides the rigorous mathematical expressions that 
relate macroscopic properties to the distribution and motion of 
the atoms and molecules of the N-body system; molecular 
dynamics simulations provide the means to solve the equation 
of motion of the particles and evaluate these mathematical 
formulas. With molecular dynamics simulations, one can 
study both thermodynamic properties and/or time dependent 
(kinetic) phenomenon. 
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Statistical mechanics is the branch of physical sciences that 
studies macroscopic systems from a molecular point of view. 
The goal is to understand and to predict macroscopic 
phenomena from the properties of individual molecules 
making up the system. The system could range from a 
collection of solvent molecules to a solvated protein-DNA 
complex. In order to connect the macroscopic system to the 
microscopic system, time independent statistical averages are 
often introduced. 

The thermodynamic state of a system is usually defined by a 
small set of parameters, for example, the temperature, T, the 
pressure, P, and the number of particles, N. Other 
thermodynamic properties may be derived from the equations 
of state and other fundamental thermodynamic equations. 

The mechanical or microscopic state of a system is defined by 
the atomic positions, q, and momenta, p; these can also be 
considered as coordinates in a multidimensional space called 
phase space. For a system of N particles, this space has 6N 
dimensions. A single point in phase space describes the state 
of the system. An ensemble is a collection of points in phase 
space satisfying the conditions of a particular thermodynamic 
state. A molecular dynamics simulations generates a sequence 
of points in phase space as a function of time; these points 
belong to the same ensemble, and they correspond to the 
different conformations of the system and their respective 
momenta.  

An experiment is usually made on a macroscopic sample that 
contains an extremely large number of atoms or molecules 
sampling an enormous number of conformations. In statistical 
mechanics, averages corresponding to experimental 
observables are defined in terms of ensemble averages; one 
justification for this is that there has been good agreement 
with experiment. An ensemble average is average taken over a 
large number of replicas of the system considered 
simultaneously. 

The dilemma appears to be that one can calculate time 
averages by molecular dynamics simulation, but the 
experimental observables are assumed to be ensemble 
averages. Resolving this leads us to one of the most 
fundamental axioms of statistical mechanics, the ergodic 
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hypothesis, which states that the time average equals the 
ensemble average. 

 

The Ergodic hypothesis states 

 

Ensemble average = Time average 

 

The basic idea is that if one allows the system to evolve in 
time indefinitely, that system will eventually pass through all 
possible states. One goal, therefore, of a molecular dynamics 
simulation is to generate enough representative conformations 
such that this equality is satisfied. If this is the case, 
experimentally relevant information concerning structural, 
dynamic and thermodynamic properties may then be 
calculated using a feasible amount of computer resources. 
Because the simulations are of fixed duration, one must be 
certain to sample a sufficient amount of phase space. 
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4.0 Software 
 
4.1 HHpred 
 
HHpred [13] is a tool for structural modeling of amino acids 
chains, with the help of profiles generated using the Hidden 
Markov Models methodology and starting from a FASTA 
sequence from a multiple sequence alignment. 
Once the profile is generated, the program use an alignment 
algorithm profile versus profile, to proceed in searching of 
structural templates in an internal database that contains 
Markov profiles for every PDB entry. 
Search options include local or global alignment and scoring 
secondary structure similarity. HHpred can produce pairwise 
query-template sequence alignments, merged query-template 
multiple alignments (e.g. for transitive searches), as well as 
3D structural models calculated by the MODELLER software 
from HHpred alignments. 
HHpred gives very good and reliable results. To testify this 
merits, you can find in the official site 
(http://toolkit.tuebingen.mpg.de/hhpred) the CASP9 results 
The most successful techniques for protein structure 
prediction rely on identifying homologous sequences with 
known structure to be used as template. This works so well 
because structures diverge much more slowly than sequences 
and homologous proteins may have very similar structures 
even when their sequences have diverged beyond recognitio. 
If the relationship is so remote that no common function can 
be assumed, one can generally still derive hypotheses about 
possible mechanisms, active site positions and residues, or the 
class of substrate bound. When a homologous protein with 
known structure can be identified, its structure can be used as 
a template to model the 3D structure for the protein of 
interest, since even remotely homologous proteins generally 
have quite similar 3D structure. The 3D model may then help 
to generate hypotheses to guide experiments. When searching 
for remote homologous, it is wise to make use of as much 
information about the query and database proteins as possible 
in order to better distinguish true from false positives and to 
produce optimal alignments. This is the reason why sequence-
sequence comparison is inferior to profile-sequence 
comparison. Sequence profiles contain for each column of a 
multiple alignment the frequencies of the 20 amino acids. 
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They therefore contain detailed information about the 
conservation of each residue position, i.e. how important each 
position is for defining other members of the protein family, 
and about the preferred amino acids. Profile Hidden Markov 
Models (HMMs) are similar to simple sequence profiles, but 
in addition to the amino acid frequencies in the columns of a 
multiple sequence alignment they contain information about 
the frequency of inserts and deletions at each column. Using 
profile HMMs in place of simple sequence profiles should 
therefore further improve sensitivity. HHpred is the first 
server to employ HMM-HMM comparison, based on a novel 
statistical method that we have developed recently. Using 
HMMs both on the query and the database side greatly 
enhances the sensitivity and selectivity over sequence-profile 
based methods such as PSI-BLAST. 
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4.2 MODELLER 
 
MODELLER is a computer program that models three 
dimensional structures of proteins and their assemblies by 
satisfaction of spatial restraints[14]. 
MODELLER is most frequently used for homology or 
comparative protein structure modeling: the user provides an 
alignment of a sequence to be modeled with known related 
structures and MODELLER will automatically calculate a 
model with all non-hydrogen atoms. 
The inputs of MODELLER are:  
a) the sequence alignment between the target (the protein to 
be modeled) and the template (homologous protein with 
known structure;  
b) the crystal structure of the template. 
MODELLER extracts the spatial restraints from the template 
to the target producing a 3D structure that satisfies these 
restraints as well as possible. Restraints can be derived from a 
number of different sources. These include related protein 
structures (comparative modeling),  NMR experiments (NMR 
refinement), rules of secondary structure packing 
(combinatorial modeling), cross-linking experiments, 
fluorescence spectroscopy, image reconstruction in electron 
microscopy, site directed mutagenesis, intuition, residue-
residue and atom-atom potentials of mean force, etc. The 
restraints can operate on distances, angles, dihedral angles, 
pairs of dihedral angles and some other spatial features 
defined by atoms or pseudoatoms. The final 3D model is then 
obtained by optimization of a molecular probability density 
function (pdf). The molecular pdf  for comparative modeling 
is optimized with the variable target function procedure in 
Cartesian space that employs methods of conjugate gradients 
and molecular dynamics with simulated annealing. 
MODELLER can also perform multiple comparison of 
protein sequences and/or structures, clustering of proteins, and 
searching of sequence databases. The program is used with a 
scripting language and does not include any graphics. The 
method and its applications to biological problems are 
described in detail in references listed in Section 1.2. Briefly, 
the core modeling procedure begins with an alignment of the 
sequence to be modeled (hTE8) with related known 3D 
structures (1C8U). This alignment is usually the input to the 
program (Figure 3). The output is a 3D model for the target 
sequence containing all main-chain and side-chain non-
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hydrogen atoms. Given an alignment, the model is obtained 
without any user intervention. First, many distance and 
dihedral angle restraints on the target sequence are calculated 
from its alignment with template 3D structures (Figure 3). 
This analysis relied on a database of 105 family alignments 
that included 416 proteins with known 3D structure. The form 
of these restraints 
was obtained from a statistical analysis of the relationships 
between many pairs of homologous structures. By scanning 
the database, tables quantifying various correlations were 
obtained, such as the correlations between two equivalent 
Cα−Cα distances, or between equivalent main-chain dihedral 
angles from two related proteins. These relationships were 
expressed as conditional probability density functions (pdf) 
and can be used directly as spatial restraints. For example, 
probabilities for different values of the main-chain dihedral 
angles are calculated from the type of a residue considered, 
from main-chain conformation of an equivalent residue, and 
from sequence similarity between the two proteins. 
Another example is the pdf for a certain Cα−Cα distance 
given equivalent distances in two related protein structures 
(Figure 4). An important feature of the method is that the 
spatial restraints are obtained empirically, from a database of 
protein structure alignments. Next, the spatial restraints and 
CHARMM energy terms enforcing proper stereochemistry are 
combined into an objective function. 
Finally, the model is obtained by optimizing the objective 
function in Cartesian space. The optimization is carried out by 
the use of the variable target function method employing 
methods of conjugate gradients and molecular dynamics with 
simulated annealing (Figure 5). Several slightly different 
models can be calculated by varying the initial structure. The 
variability among these models can be used to estimate the 
errors in the corresponding regions of the fold. 
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Figure 3. First, the known, template 3D structures are aligned with the 
target sequence to be modeled. Second, spatial features, such as Cα−Cα 
distances, hydrogen bonds, and main-chain and side-chain dihedral 
angles, are transferred from the templates to the target. Thus, a number 
of spatial restraints on its structure are obtained. Third, the 3D model is 
obtained by satisfying all the restraints as well as possible. 
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Figure 4. The restraint (continuous line) is obtained by least-squares 
fitting a sum of two Gaussian functions to the histogram, which in turn is 
derived from the database of alignments of protein structures. In 
practice, more complicated restraints are used that depend on 
additional information, such as similarity between the proteins, solvent 
accessibility, and distance from a gap in the alignment [42]. 
 
 
 

 
 
Figure 5. Optimization of the objective function (curve) starts with a 
distorted average of template structures. In this run, the first 2000 
iterations correspond to the variable target function method relying on 
the conjugate gradients technique. This approach first satisfies 
sequentially local restraints and slowly introduces longer range 
restraints until the complete objective function is optimized. 
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4.3 Rosetta docking 
 
The Rosetta software[15] focuses on the prediction and design 
of protein structures, protein folding mechanisms, and 
protein-protein interactions. Rosetta has been consistently 
successful in CASP and CAPRI competitions. Rosetta also 
addresses aspects of protein design, docking and structure. 
RosettaDock predicts the structure of a protein-protein 
complex from the individual structures of the monomer 
components.  
In the standard protein-protein docking protocol, it starts with 
two protein structures in space, firstly carry out a very fast but 
crude search to find a rough shape fit between these two 
proteins. During the first stage, the proteins are represented by 
only backbones (which defines the shape) and one pseudo 
atom for side-chains. Afterwards, side-chain atoms are added 
back and the docking protocol enters the full-atom refinement 
stage in which the relative orientation between the two 
proteins and the detailed side-chain interactions across the 
interface are optimized simultaneously. Each trajectory will 
end up with a model with certain docking orientation and also 
an energy function to rank them. Standard settings were used 
in the process. 
 

 
Figure 6. Representative models of the most populated cluster as 
obtained from RosettaDock 
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 RosettaDock Protocol: 
a) Nef position randomized 
b) distance constraints between Nef residues: D108, F121, 
P122 and D123 and the hTE8 surface 
c) 3000 decoys produced and hierarchically clustered with a  
cut-off RMSD value of 2.5 Å 
 
4.4 LovoAlign 
 
LovoAlign is a new protein structural alignment package. The 
methods used for structural alignment are based on Low 
Order Value Optimization (LOVO) theory. 
The use of LOVO theory led to the development of fast 
convergent algorithms that provide very robust optimization 
of scoring functions[16]. The structural alignment is highly 
customizable and the package can be used for general 
structural alignments or particular chains of each protein may 
be selected. 
The goal of the algorithm is to maximize a scoring function 
with a solid convergence properties. This is useful for the 
refinement of protein folding maps, and for the development 
of new scores designed to be correlated with functional 
similarity. 
The maximization of scoring functions in protein alignment is 
interpreted as a Low Order Value Optimization (LOVO) 
problem. The resulting algorithms are convergent and increase 
the scoring functions at every iteration. The solutions obtained 
are critical points of the scoring functions. Two algorithms are 
introduced: One is based on the maximization of the scoring 
function with Dynamic Programming followed by the 
continuous maximization of the same score, with respect to 
the protein position, using a smooth Newtonian method. The 
second algorithm replaces the Dynamic Programming step by 
a fast procedure for computing the correspondence between 
Cα atoms. The algorithms are shown to be very effective for 
the maximization of the STRUCTAL score. 
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4.5 Clustering 
 
The last step was to execute a home-made script written in 
Python, a high –level programming language[17] whose 
design philosophy emphasizes code readability. 
This script, called Clustering.py, takes as input the list of all 
pdb's to clusterize and an align.log file taken from the 
previous step, using LovoAlign. The script builds as many 
clusters as the user wants and sort them ascending, and 
calculates the centroid of every cluster and all the models that 
are contained within. The utility of this step is to highlight the 
representative models (the one that contains more cluster for 
example) to make the research easier and give more 
sensibility to the problem. 
Finally, all the visual analysis and the figures were produced 
with the program VMD (Visual Molecular Dynamics) [18]. 
 
4.6 VMD: Visual Molecular Dynamics 
 
VMD is a molecular graphics program designed for modeling, 
visualization, and analysis of biological systems such as 
proteins, nucleic acids, lipid bi- layer assemblies, etc. It may 
be used to view more general molecules, as VMD can read 
standard Protein Data Bank (PDB)files and display the 
contained structure. VMD provides a wide variety of methods 
for rendering and coloring a molecule. VMD can be used to 
animate and analyze the trajectory of a molecular dynamics 
(MD) simulation. In particular, VMD can act as a graphical 
front end for an external MD program by displaying and 
animating a molecule undergoing simulation on a remote 
computer. All protein figures in this document were created 
using this computer program . 

 
 
4.7 NAMD: Scalable Molecular Dynamics 
 
NAMD[18] is a parallel molecular dynamics code designed 
for high-performance simulation of large biomolecular 
systems. Simulation of large molecules, however, require 
enormous computing power. One way to achieve such 
simulations is to utilize parallel computers. Distributed 
memory parallel computers have been offering cost-effective 
computational power. NAMD was designed to run efficiently 
on such parallel machines for simulating large molecules. 
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NAMD uses program VMD for simulation setup and 
trajectory analysis. NAMD has several important features 
which were used during the simulation: 
• Force Field Compatibility: The force field used by NAMD 
includes local interaction terms consisting of bonded 
interactions between 2, 3, and 4 atoms and pairwise 
interactions including electrostatic and Van Der Waals forces. 
• Efficient Full Electrostatics Algorithms: NAMD 
incorporates the Particle Mesh Ewald (PME) algorithm, which 
takes the full electrostatic interactions into account. This 
algorithm reduces the computational complexity of 
electrostatic force evaluation. 
• Multiple Time Stepping: The velocity Verlet integration 
method is used to advance the positions and velocities of the 
atoms in time. To further reduce the cost of the evaluation of 
long-range electrostatic forces, a multiple time step scheme is 
employed. The local interactions (bonded, Van Der Waals and 
electrostatic interactions within a specified distance) are 
calculated at each time step. The longer range interactions 
(electrostatic interactions beyond the specified distance) are 
only computed less often. This amortizes the cost of 
computing the electrostatic forces over several time steps. 
• Input and Output Compatibility: The input and output file 
formats include coordinate files in PDB format and structure 
files in PSF format. Output formats include PDB coordinate 
files and binary DCD trajectory files. 
•  Dynamics Simulation Options: MD simulations was 
carried out using several options, including 
- Constant energy dynamics, 
- Constant temperature dynamics via, 

+ Velocity rescaling, 
+ Velocity reassignment, 
+ Langevin dynamics, 

- Periodic boundary conditions, 
- Constant pressure dynamics via, 

+ Pressure coupling, 
+ Langevin piston, 

- Energy minimization, 
- Fixed atoms, 
- Rigid waters, 
- Rigid bonds to hydrogen, 
- Harmonic restraints, 
- Spherical or cylindrical boundary restraints. 
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      NAMD (CHARMM22 and  TIP3P force fields) Protocol: 
a) 9200 water molecules for solvatation  and PBC 
b) Time step : 2 fs 
c) PME for electrostatic interactions 
d) Constant temperature (300K) and pressure (1 atm) 
e) 2000 steps of system minimization: using conjugate gradients 
f) 30 ns in molecular dynamics simulation 
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Part B - Results 

 
1.0 hTE8 model 

 
All members of the hTE8 family were retrieved from the 
Uniprot [19] database using the program ssearch[20]. They 
were aligned with PROMALS [21]. This multiple sequence 
alignment was then used for the definition of the Hidden 
Markov profile (HMM) of hTEII. The latter was then funneled 
through the Hhsearch [22] program to identify the most 
plausible homologous structural templates. Such procedure is 
currently one of the best ones as evaluated from CASP9 
experiment [23]. The multiple sequence alignment obtained in 
this way was used as the reference for the structural prediction 
of hTE by homology modeling (Figure 7). Homology models 
of the protein are here based on the crystal structure of the 
E.coli thioesterase (PDB code 1C8U). The sequence alignment 
between the target and the structural template was extracted 
from the multiple sequence alignment considering the entire 
family. We then constructed 50 different conformations of 
hTE (that were obtained with randomized initial structures and 
subsequent optimization by conjugate gradients and simulated 
annealing) based on each of the eight structural templates 
using Modeller9v3 [25]. All the three dimensional models of 
hTE obtained in this way do not deviate from currently 
available experimental geometries, that is, the secondary 
structures elements (12-stranded antiparallel β-sheets) and the 
typical tertiary fold (the double hot dog[13]) are also 
conserved in the model. 
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Figure 7. Hhpred alignment between the sequences of thioesterase  
from E.coli  and from H. sapiens.The secondary structure elements are 
detailed (E and H indicates β-strands and α-helices, respectively) 
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2.0 Nef/hTE Complex 
 
The complex between the the model and Nef was built by the 
use of the following protocol:  2500 hTE/NEF adduct 
structures were constructed using Rosetta-dock. A standard 
Lamarckian Genetic Algorithm, was used for conformational 
exploration with a rapid energy evaluation using grid-based 
molecular affinity potentials. The resulting structures were 
then clustered according to the three dimensional localization 
of Nef, regardless of the docking energies. Then LovoAlign 
program was used over all the models to obtain optimal 
structural superposition. 
At the end a clustering Python home-written script was used 
for selecting the best decoys. The script gives as output the 
decoys representing the most populated clusters. In detail, the 
clusters were formed for decoys not deviating from the other 
members for more than 4Å of Root Mean Square Deviation 
(RMSD).  

 
Figure 8.  Nef/hTE Complex 



 

 46 

 
 
The obtained representatives were selected among those that 
better satisfied the experimental restraints introduced in the 
docking procedure, that is, we have chosen the model that 
performs more contacts for the residues known to form part of 
the NEF interaction surface, i.e. Asp108, Asp123, Phe121 and 
Pro122 as in Figure 9 where the interacting details can be 
appreciated.  
 
 
 
 
 
 
 
 
 
 
 

           Figure 9. Mutagenesis data by Liu et al. The content of complexed 
protein relative to wild type (100%) is reported.  

 
In particular, several  partners were identified showing 
electrostatic complementarity between both interacting 
surfaces. Furthermore, several hydrophobic contacts are 
formed between aromatic and aliphatic residues of Nef 
(Phe121, Pro 122) as well as aromatic(pyrrolic) and 
aliphatic(4methylated base) (Pro320, Lys322) residues of hTE, 
allowing a further stabilization of the interaction. In Figures 
11, 12  the Nef/hTE electrostatic interactions can be visualized 
by a plot of the electrostatic potential calculated solving the 
Poison-Boltztmann equation. Figures 11, 12 shows that the 
contact surfaces of Nef and hTE subunit B are clearly 
complementary: while the surface of NEF is highly negative, 
the contact surface of the enzyme is highly positively charged. 
hTE's surface includes residues Lys361, Lys322, and no 
negatively charged residues. That of Nef is negative charged, 
containing residues Asp108, Asp123, and no positive residues. 
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Figure 10. Nef residues involved in the binding site 
 
 

 
      List of contacts       

  Nef hTE (Subunit A) Bond %TIME <5Å  DIST(Å) 
DEV.ST 

(Å) 
1 ARG105 ASP434(ASP143) (SALTBRIDGE) 97% 2,74 1,04 
2 ARG106 ASP434(ASP143) (SALTBRIDGE) 50% 5,49 1,71 
3 ASP108 LYS322(LYS31)  (SALTBRIDGE) 59% 4,56 1,33 
4 ASP111 LYS322(LYS31) (SALTBRIDGE) 74% 4,69 1,19 
5 PHE121 PRO320(PRO29) (AROMATIC+PYRROLIC) 43% 5,65 1,64 
6 PRO122 LYS322(LYS31)  (ALIPHATIC+BASE) 58% 5,18 1,64 
7 ASP123 LYS361(LYS70)  (SALTBRIDGE) 68% 3,89 1,33 
8 GLU151 LYS581(LYS90) (SALTBRIDGE) 79% 4,32 2,06 
9 GLU201 ARG356(ARG65) (SALTBRIDGE) 94% 3,02 1,50 

 
Table I - List of  contacts involved in the binding site. Each contact was 
selected starting from the information given by the Nef mutagenesis and 
selecting all hTE's residues at a 5 Å distance along the entire 30 ns MD 
simulation (for details see below) of the Nef/hTE8 complex. Selected 
distances and residence times of residues at the interface between the viral 
factor and the subunit A of the enzyme are reported 
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Figure 11. Electrostatic potential of the hTE8 in the initial 
conformation as obtained from the docking procedure. 

 

 
 

Figure 12. Electrostatic potential of the Nef in the initial 
conformation as obtained from the docking procedure. 
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3.0  MD simulation 
 
To test the stability of the docked complex and to gain insights 
into the dynamical properties of the hTE-Nef complex we have 
performed extensive molecular dynamics simulations of the 
solvated system. The latter simulations were carried out for 
30ns. In the following paragraphs we will analyse the results 
obtained for the protein and the complex. 

 
From the plot showing the evolution of the secondary structure 
elements along the entire MD simulation (Fig. 13) we can 
appreciate that the principal secondary structure elements are 
conserved through the entire simulation time (α-helix and β-
strands in pink and yellow bands, respectively, in Fig 13). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Timeline continuity of the protein 

secondary structure elements 
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The active site conformation is also rather preserved, the 
overall RMSD of residues Asp232, Ser234, Gln303 (the 
catalytic triad) between the initial and final minimized 
structures being as small as 0.4Å. 
The interface between the two subunits(A and B) is totally 
buried in the protein. It involves the central fragments of the 
six central β-sheets from the two monomers to form several 
stabilizing interactions. The contact surface is structurally 
similar to that of the E.Coli enzyme (1980 and 2142 Å2 per 
monomer for the enzyme from MD final structure and for that 
from E.Coli, respectively) 
Our calculations suggest that also long-range subunit/subunit 
electrostatic dipole/dipole interactions stabilize the dimer , in 
part counterbalancing the charge/charge repulsion.  
The largest scale motion of the protein in the multi ns 
timescale, here studied by diagonalization of the covariance 
matrix, involve essentially only the loop formed by residues 
163-194 in both subunits (unit A: residues 454 to 485) ('active 
site loop'). As expected from these data, the analysis of the 
RMSF (Fig.14) calculated on each residue show that residues 
that experience the largest deviations are the ones forming the 
'active site loop'. 

 

Figure 14. RMSF value per residue. Calculated for each atom 
backbone for hTE8 alone (black line), and for the Nef/hTE complex (red 
line 

 

 

The complex appears to be fairly equilibrated after ~15 ns, as 
shown by the plot of the RMSD deviation (Fig.15)  from the 
energy-minimized structure as a  function of time. 
As expected, besides being stabilized by long range 
electrostatics (the net charges of  Nef  and hTE8 are -4 and +6, 
respectively), the complex is stabilized by electrostatic and 
hydrophobic interactions between residues located at the 
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protein/protein interface, which were well-mantained  during 
the dynamics.  
 
 

 
 

Figure 15. Root Mean Square Deviation (RMSD) for the Nef-hTE8 
complex along the entire 30ns MD simulation 

 
 
The hydrophobic contacts (Fig. 23-24) are formed by pyrrolic 
residues of hTE8 (Pro320) and 4-methylated base (Lys322) 
with aromatic (Phe121) and aliphatic (Pro122) residues of Nef 
respectively, and are conserved during the entire simulation. 
 
Nef/hTE8 local electrostatic interactions can be  vividly 
visualized by plot of the electrostatic potential calculated 
solving the Poisson-Boltzman equation (Fig.11-12). 
The contact surface of the enzyme is highly positively charged 
This surface includes  4 positively charged  (Lys322, Lys361, 
Lys581, Arg356) and only 1(Asp434) negatively charged 
residue.  
That of Nef is negatively charged, containing five negative 
residues (Asp108, Asp123, Asp111,Glu151, Glu201)  and only 
two positive residues (Arg105, Arg106).  
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In particular, the three Asp and two Glu groups  on Nef  
surface provide a largely favorable contribution.  
Asp108 interacts with Lys322, Asp123 with Lys361; and 
Asp111 with Lys322 while Glu151  and Glu 201 interact  with 
Lys581 and Arg356 respectively. All the interactions are stable 
during the entire simulation as can be appreciated from Fig.18-
19-20-21-22 (five salt bridges). Besides there are other two 
salt bridges between two positive Nef residues (Arg105, 
Arg106) and one negative hTE residue (Asp434) (Fig. 16-17). 
We must point out that these values should be taken at a 
qualitative level as the model used contain implicit 
uncertainties due to the homology model structure. Here, we 
hypothesize that its binding to Nef modifies the dynamical 
properties of the enzyme. Although Nef does not bind to the 
active site, the ‘active site loop’ of subunit A (the one that 
binds to Nef) is much more rigid than that of subunits B, as 
evidently by an analysis of the  large-scale motion of the 
complex.  
These interactions, which are conserved during the entire 
simulation, might hinder the motion of subunit A. The RMSF 
fluctuations of the ’active site’ loop from subunit A are 
considerably reduced in presence of Nef whereas those of the 
rest of the protein are essentially unaffected by the presence of 
the viral protein. It is important to take into account the 
conformation of this particular loop, which was modeled with 
gap of six residues in its middle region. 
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b)  

Figure 16. Detail of the interaction between residues NEF-
Arg105 and hTE-Asp434.  a) distance along the MD 
simulation. b) molecular detail 
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Figure 17. Detail of the interaction between residues NEF- 
Arg106 and hTE-Asp434.  a) distance along the MD 
simulation. b) molecular detail 
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Figure 18. Detail of the interaction between residues NEF-Asp108 

and hTE-Lys322.  a) distance along the MD simulation. b) molecular 
detail 
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a)                                                                       
 
 

                                                                                      

 

                        

   

 
 
 
 
 
 
 
 

 

b)                                                                       
 

 
 

Figure 19. Detail of the interaction between residues 
NEF-Asp111 and hTE-Lys322.  a) distance along the MD 
simulation. b) molecular detail 
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Figure 20. Detail of the interaction between residues NEF-
Asp123 and hTE-Lys361.  a) distance along the MD 
simulation. b) molecular detail 
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a) 
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Figure 21. Detail of the interaction between residues NEF-
Glu151 and hTE-Lys581.  a) distance along the MD simulation. 
b) molecular detail 
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Figure 22. Detail of the interaction between residues NEF-
Glu201 and hTE-Arg356.  a) distance along the MD simulation. 
b) molecular detail 
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Figure 23. Detail of the interaction between residues NEF-

Phe121 and hTE-Pro320.  a) distance along the MD simulation. b) 
molecular detail 

  
 



 

 61 

 
 
 

              a) 

  
 

 
 

  
 

 

 

 

 

 

 

            b) 

 

 

 

 

 

 

 

 Figure 24. Detail of the interaction between residues NEF-
Pro122 and hTE-Lys322.  a) distance along the MD simulation. 
b) molecular detail 
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Discussion 
 
In this work, we have investigated the interactions between the 
HIV-1 Nef and its cellular partner hTE. We modeled the 
structure of Human thioesterase  based on the isoenzyme from 
E.coli, which share a 42,3% of sequence identity. Long-range 
dipole/dipole interactions appear to counterbalance, at least in 
part, the repulsion between the charged subunits. An 
approximate model of the Nef/hTE complex was built using 
RosettaDock and using information derived from mutagenesis 
experiments, using the fact that residues Asp108, Phe121, 
Pro122 and Asp123 in Nef are critical for binding to hTE. 
Several charged and polar groups of Nef provide a negatively 
charged regions for the binding, i.e. Asp108, Asp111 and 
Asp123. Those aminoacids, experimentally proven to be 
located in the binding surface, play an essential role in the 
interaction, should be taken at the qualitative level due to 
uncertainties of the docking model. On the other hand, the 
residues found for the human thioesterase, are complementary 
to the ones in NEF. As expected, hydrophobic interactions 
may also play a role for the adduct stabilization, as can be 
observed from the electrostatic potential (Figures 11, 12). 
Interestingly, in the uncomplexed hTE the two hydrophobic 
residues (Pro320 and Lys322) are in contact with the solvent. 
Instead, the three hydrophobic residues of Nef (Phe121, 
Pro122) are also important for the dimerization of the viral 
factor. In the case of uncomplexed Nef these residues form 
part of an open surface. 
Our findings may help explain the experimentally low affinity 
of the E. coli isoenzyme for the viral factor. Indeed, in the 
isoenzyme from E. coli two negatively charged residues (an 
Asp and a Glu residues) replace two aromatic residues 
fundamental for the binding to Nef (Pro320 and Lys322) of 
hTE. These residues are expected to have low affinity for the 
hydrophobic pocket of Nef (which is constituted by Phe121, 
and Pro122) and may produce unstabilization as they will 
interact with Nef's negatively charged residues (Asp108, 
Asp123, Asp111).  
Finally, our calculations suggest that the ‘active site loops’ 
(residues 454 to 485) of both subunit A and B are very mobile, 
as evident from an essential modes analysis on the multi ns 
timescale (Fig.15). Nef binding causes a significant change in 
the dynamics: in the complex, indeed, only ‘active site’ loop of 
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subunit B is mobile whereas that of subunit A is relatively 
rigid. The motion of this region of the protein may be 
mechanically hindered by the presence of hydrophobic 
interactions between three residues on the ‘active site’ loop 
and other three belonging to Nef. At the speculative level, we 
suggest that Nef  binding affect enzymatic activity, 
consistently with some experimental evidence. Also in this 
case, experimental data and activity calculations are needed to 
establish this proposal. 
More experimental data as well as calculations of affinity 
and/or binding free energy are required to firmly establish 
these issues. In particular, we will propose to our experimental 
collaborators the mutations listed in Fig.25. In which the 
physico-chemical properties of the aminoacids putatively 
present on the interaction surface are modified to inhibit the 
hTE-Nef interaction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
         Figure 25. Detail of the proposed Mutations 

 
 
 
 
 
 
 
 
 
 

               Theoretical  Data   

R (Sub.A) hTE Mutant (Sub.A)  

ASP434(ASP143) D434A(D143A) 

LYS322(LYS31) K322S(K31S) 

PRO320(PRO29) P320A(P29A) 

LYS361(LYS70) K361S(K70S) 

LYS581(LYS90) K581S(K90S) 

ARG356(ARG65) R356S(R65S) 
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Although the models generated in this thesis can be compared 
to low resolution crystal structures, the use of Homology 
modeling techniques and state-of-art bioinformatic 
tools makes  room to the possibility of  building and analysing 
thousands of complexes and models, thus allowing the 
identification, on the human thioesterase  8, of residues critical 
for the interaction with Nef. 
The combined computational/experimental approaches 
allowed us to design a few new experiments aimed at a clear 
characterization of the residues involved, not only in Nef 
binding, but also in the enzymatic mechanism. 
Further advancement in experimental structural biology , along 
with algorithms for free energy calculations, multiscale 
modeling, and protein-protein docking  make us confident that 
the challenge of characterizing how the virus interacts with the 
different human targets can be undertaken in short time and 
that these approaches may provide a great improvement to our 
understanding of cell and molecular biology events upon virus 
infection. 
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                            Appendix B 
 

Introduction to Biochemistry. In the following pages description of the 
aminoacids and their putative interactions are described 
(http://en.wikipedia.org/wiki/Amino_acid) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B1.The 21 amino acids found in eukaryotes, grouped 
according to their side-chains' pKas and charge at 
physiological pH 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure B2. Non-covalent bond                                 Figure B3. Covalent bond 
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Figure B4. Hydrophobic interactions: the tendency of hydrocarbons (or of 
lipophilic hydrocarbon-like groups in solutes) to form intermolecular 
aggregates in an aqueous medium, and analogous intramolecular 
interactions 

 

Hydrophobic effect  

The hydrophobic effect represents the tendency of water to 
exclude non-polar molecules. The effect originates from the 
disruption of highly dynamic hydrogen bonds between molecules 
of liquid water by the nonpolar solute. Polar chemical groups, 
such as OH group in methanol do not cause the hydrophobic 
effect. However, a pure hydrocarbon molecule, for example 
hexane, is incapable of forming hydrogen bonds with water. 
Introduction of hexane into water causes disruption of the 
hydrogen bonding network between water molecules. The 
hydrogen bonds are partially reconstructed by building a water 
"cage" around the hexane molecule, similar to that in clathrate 
hydrates formed at the lower temperatures. The water molecules 
that form the "cage" (or solvation shell) have substantially 
restricted mobilities. This leads to significant losses in 
translational and rotational entropy of water molecules and 
makes the process unfavorable in terms of free energy of the 
system.  
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The hydrophobic effect can be quantified by measuring the 
partition coefficients of non-polar molecules between water and 
non-polar solvents. The partition coefficients can be transformed 
to free energy of transfer which includes enthalpic and entropic 
components, ∆G = ∆H - T∆S. These components are 
experimentally determined by calorimetry. The hydrophobic 
effect was found to be entropy-driven at room temperature 
because of the reduced mobility of water molecules in solvation 
shell of the non-polar solute. However, the enthalpic component 
of transfer energy was found to be favorable, meaning 
strengthening of water-water hydrogen bonds in the solvation 
shell, apparently due to the reduced mobility of water molecules . 
At the higher temperature, when water molecules became more 
mobile, this energy gain decreases, but so does the entropic 
component. As a result of such entropy-enthalpy compensation, 
the hydrophobic effect (as measured by the free energy of 
transfer) is only weakly temperature-dependent and became 
smaller at the lower temperature, which leads to "cold 
denaturation" of proteins. 

 
 
 

 
 
 
 
 
 
 

 

Figure B5. π-π Interactions: this class of interaction involves direct 
attraction between arene rings. This was long considered to be a charge 
transfer phenomenon, but this was later disproved 
 

 

Figure B6. π-Cation Interactions: Survey of protein database shows that 
π-Cation stabilization is a major facet of protein structure and enzyme 
catalysis 

 


