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Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy



ad Alice e alla sua gioia di vivere,
ad Anita e ai suoi sorrisi





Acknowledgments

First of all, I want to thank my advisor Roberto Giacobazzi, the open minded
professor who supported my will of get ahead with my project in my own way and
who trusted me also when results were far to come. I thank also Carlo Laudanna
for having given me the opportunity of exploring the fantastic world of compu-
tational biology, bioinformatics and network science. I’m also grateful to him for
our interesting debates about biology, science and life. I’m thankful to Vincenzo
Manca and Giuditta Franco for the interest they showed in my research project.
Thanks to Michele Petterlini for his precious collaboration and to all the people I
met during this research experience, they always left something to me, among all
Fausto, Samir, Alessio, Isabella and Mila.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Part I: Topological analysis of biological networks . . . . . . . . . . . . . . . 2

1.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Part II: Dynamic analysis of metabolic pathways . . . . . . . . . . . . . . . . 4

1.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Biological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Part I Topological analysis of biological networks

3 Centralities definition and description . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Centralities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Degree (deg(k)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Diameter (∆G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Average Distance (AvDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Eccentricity (Cecc(v)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.5 Closeness (Cclo(v)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.6 Radiality (Crad(v)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.7 Centroid value (Ccen(v)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.8 Stress (Cstr(v)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.9 S.-P. Betweenness (Cspb(v)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Normalization and relative centralities . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 CentiScaPe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Algorithm and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Using CentiScaPe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



Contents 1

4.3.1 CentiScaPe Results Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Graphic output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 A real world example: Centralities in the human
kino-phosphatome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Centralities analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Phosphoproteomic analysis of chemoattractant stimulated human

PMNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Human primary polymorphonuclear cells isolation . . . . . . . . . 40
5.2.2 Human primary polymorphonuclear cell stimulation . . . . . . . 41
5.2.3 Evaluation of protein phosphorylation . . . . . . . . . . . . . . . . . . . . 41

5.3 Combining topological analysis and experimental data . . . . . . . . . . . 41
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Network centralities interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1 Interference notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Betweenness interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Interference centralities definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 A real word example: interference in the human kino-phosphatome 54
6.5 Further consideration for network centralities interference . . . . . . . . . 56
6.6 Nodes centrality robustness, dependence and competition value . . . 57
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Part II Dynamic analysis of biological pathways

7 Abstract Interpretation for dynamic simulation of pathways . . . 65
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.1 Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.1.2 Abstract interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Modeling pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.1 Pathway definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.2 The pathway simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2.3 Semantics for pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2.4 Abstract semantics for pathways . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Abstract interpretation based analysis of pathways . . . . . . . . . . . . . . 73
7.4 A real world example: the mitotic oscillator . . . . . . . . . . . . . . . . . . . . . 73
7.5 Abstract interference for biological pathways . . . . . . . . . . . . . . . . . . . . 79

7.5.1 Abstract interference and mitotic oscillator . . . . . . . . . . . . . . . 81
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85





1

Introduction

Characterizing, describing, and extracting information from a network is by now
one of the main goals of science, since the study of network currently draws the
attention of several fields of research, as biology, economics, social science, com-
puter science and so on. The main goal is to analyze networks in order to extract
their emergent properties [10] and to understand functionality of such complex
systems. This thesis concerns the analysis of biological networks and the two main
approaches are treated: the first based on the study of their topological struc-
ture, the second based on the dynamic properties of the system described by the
networks. Since “always structure affects function” [57], the topological approach
wants to understand networks functionality through the analysis of their struc-
ture. For instance, the topological structure of the road network affects critical
traffic jam areas, the topology of social networks affects the spread of informa-
tion and disease and the topology of the power grid affects the robustness and
stability of power transmission. The approach to networks dynamic, explores the
variation of the network in time as for instance the reactants concentration in
a metabolic pathway, a network describing the set of chemical reactions occur-
ring within a cell. In this case the simulation of a metabolic pathway [29], [30]
characterizes completely the behavior of each element of the pathway. But, since
structure and dynamic are strictly related, some times the two approaches cannot
be considered separately. This is the case of network motifs [45], [55], particular
subnetworks which occur significantly more often in biological networks than in
random networks and whose topological characteristics have been shown to sub-
tend to particular functions. For instance a feedback loop motifs implies a possible
oscillation behavior of the system.

This thesis concern both static and dynamic analysis of biological network,
but most of the results can be applied to other kind of networks. It is divided into
two parts, the first regarding the topological analysis of networks and the second
facing some problem of dynamic simulations of metabolic pathways.
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1.1 Part I: Topological analysis of biological networks

The topological analysis of networks, concerns the study and characterization of
networks structure. Remarkable results have been reached in this field, and even
if far from being complete, several key notions have been introduced, not only for
biological networks. These unifying principles underly the topology of networks
belonging to different fields of science. Fundamental are the notions of scale-free
network [8], [37], cluster [46], network motifs [45], [55], small-world property [62],
[61], [60] and centralities. Particularly, centralities have been initially applied to
the field of social science [25] and then to biological networks [63]. Usually, works
regarding biological networks rightly consider global properties of the network and
when centralities are used, they are often considered from a global point of view, as
for example analyzing degree or centralities distribution [37], [60], [63], [64], [38].
A node-oriented approach have been used analyzing attack tolerance of network,
where consequences of central nodes deletion are studied [2], [22]. But also in this
case the analysis have been concentrate on global properties of the network and not
on the relevance of the single nodes in the network. Similarly, available software
for network analysis is usually oriented to global analysis and characterization of
the whole networks. To identify relevant nodes of a biological network, protocols
of analysis integrating centralities analysis and lab experimental data are needed
and the same for software allowing this kind of analysis. Cytoscape is an excellent
visualization and analysis tool with the analysis features greatly enhanced by plug-
ins. Plug-in such as NetworkAnalyzer [6] computes some node centralities but does
not allow direct integration with experimental data. Applications such as VisANT
[35], and Centibin [39] calculate centralities, although they either calculate fewer
centralities or are not suitable to integration with experimental data. Starting from
these general considerations, the first part of this thesis concern the application
of network centralities analysis to protein interaction networks from a perspective
oriented to identify relevant nodes in such networks. Necessary steps to do this are
illustrated in the next section.

1.1.1 Contributions

The aim of the first part of this thesis is to face the centralities analysis of a
protein interaction network from a node oriented point of view. We want to identify
nodes that are relevant for the networks for both centralities analysis and lab
experiments. To do this, the following steps have been done:

• Some centralities that we consider biologically significant have been detected.
A biological meaning of these centralities have been hypothesized.

• A protocol of analysis for a protein network based on integration of centralities
analysis and data from lab experiments (activation level) have been designed.

• A software (CentiScaPe) for computing centralities and integrating topolog-
ical analysis results with lab experimental data set have been designed and
implemented.

• A human kino-phosphatome network have been extract from a global human
protein interactome data-set, including 11120 nodes and 84776 unique undi-
rected interactions obtained from public data-bases.
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• The software have been applied to this human kino-phosphatome network and
activation level of each protein (in threonine and thyrosine) have been related
to centrality values.

• Proteins important from both topological analysis and activation level have
been easily identified: the attention of successive experiments and analysis
should be focused on these proteins.

A further step have been introduced in this thesis. Once we have identified rele-
vant proteins in a network, we are interested in identifying non-obvious relations
between these and other proteins in the network. In any network structure, the
role of a node depends, not only on the features of the node itself, but also on the
topological structure of the network and on the other nodes features. So even if
centralities are node properties, they depend also on other nodes. We know that
in a protein network nodes can be added or deleted because of different reasons as
for example gene duplication (adding) or gene deletion or drug usage (deleting).
If we delete a relevant node in the network, the effects of the deletion have impact
not only on the single node and its neighbors, but also on other parts of the net-
work. For instance, if you are close friend of an important politician of your town,
you have a central role in the social network of the town, and consequently your
friends have a central role. But if this politician looses his central role, or if he is
completely excluded from the political life of the town, for instance because they
put him in prison (this correspond to a deletion on the social network), also you
loose your central role in the network and the same for those people related to
you. The idea is that the impact of an adding or deletion of a node can be mea-
sured through the variation of centrality values of the other nodes in the network.
Such notion introduced in the thesis have been called “network centralities inter-
ference”. It allows to identify those nodes that are more sensitive to deletion or
adding of a particular node in the network. Interference have been applied to the
human kino-phosphatome network with some interesting results: for example two
different relevant proteins (Mapk1 and Prkca) have been shown to “interfere” with
different nodes in the network. It means that if we remove Mapk1 from the net-
work, nodes affected from this deletion are not the same nodes affected from Prkca
deletion. Besides, Mapk1 and Prkca have been shown to “interfere” each other i.e.
if one of them is deleted the other increases its central role in the network. In this
sense they are “competitors” in the network. Complementary to this notion, we
introduce the notion of “node centrality robustness”. This notion measures how
much the central role of a node in the network is due to the presence of another
node. Focusing the attention to a node, we remove another node from the network
and we measures variations of centrality values of the node of interest. We repeat
the process but removing another node, an so on for all the nodes in the network.
If the node of interest is “robust”, the variation is low for all the nodes removed,
and central role of the node does not depend on other nodes of the network.

Chapter 2 contains some basic notions of network science used in the rest of
the thesis. Chapter 3 consists in a review of some centralities considered impor-
tant from a biological point of view in a protein network. For each centrality a
possible biological meaning have been treated and some examples illustrate the
significance of each centrality. Chapter 4 introduce the CentiScaPe software, the
Cytoscape plug-in we implemented for computing network centralities. Main fea-
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ture of the software is the possibility of integrating experimental data-set with the
topological analysis. In CentiScaPe, computed centralities can be easily correlated
between each other or with biological parameters derived from the experiments
in order to identify the most significant nodes according to both topological and
biological properties. In chapter 5 the protocol of analysis is introduced through an
example of analysis of a human kino-phosphatome network. Most relevant kinases
and phosphatases according to their centralities values have been extracted from
the network and their phosphorylation level in threonine and tyrosine have been
obtained through a lab experiment. Centrality values and activation (phosphoryla-
tion) levels have been integrated using CentiScaPe and most relevant kinases and
phosphatases according to both centrality values and activation levels have been
easily identified. In chapter 6 the notion of node centrality interference and node
centrality robustness are introduced. They are discussed through some examples
and interference is applied to the real example of the human kino-phosphatome
network (section 6.4).

1.2 Part II: Dynamic analysis of metabolic pathways

Metabolic pathways are series of chemical reactions occurring within a cell. These
reactions depend on some parameters such as concentration of reactants, func-
tions and other parameters regulating the speed of reaction, and are organized in
complex networks. Usually pathways are modeled by differential equations, that
represents the changes in the concentration of the molecules of the pathway. This
approach is useful and well-studied [56], [59], [30] and is essentially based on stan-
dard numerical techniques for solving differential equations, as for example the
Eulero’s method and similar. But also many different other models using a variety
of computational formalisms and logics originally intended for modeling and anal-
ysis of computer systems have been used to model and analyze them. Much of the
effort has been devoted to developing techniques to represent relevant biological
concepts and to simulate their behavior. Model checking have been applied to pro-
gram simulating pathway [14]. With this approach we can infer if from a starting
state of the system it is possible to reach another state satisfying a particular prop-
erty. Pathway logic [24], [58] have been similarly used to analyze pathways with
standard temporal logic questions. Pathway logic approach is based on the rewrit-
ing system language MAUDE [15] and have been successfully used for modeling a
pathway including more than 650 proteins and 500 rules then analyzed with the
MAUDE model checker. Hybrid systems [4], [3] have been used to model those
biological systems passing from discrete to continuous behavior. Petri nets [31],
pi-calculus model [49] and its stochastic version [48], [43] have also been used. The
P-systems [47] approach have also been applied successfully to several pathways.
What is unifying all these approaches is that formal methods used to analyze soft-
ware are applied to the analysis of biological systems. A pathway with thousands
of reactions can be viewed as a computer program with thousands of instruc-
tions, so the design of formal tools for modeling biomolecular processes and for
reasoning about their dynamics seems to be a mandatory research path to which
the field of formal verification in computer science may contribute a lot. In this
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thesis we propose to go beyond simulation and to focus on how abstract interpre-
tation [18], [19], [20] can be used to analyze a dynamic simulation of a biological
pathway. Abstract interpretation is a framework for software analysis independent
from the model, and it is useful to extract numerical properties of program vari-
ables. We show that it can be used to extract properties of pathways simulations
and can contibute to the solution of the problem of parameters estimation.

1.2.1 Contributions

In chapter 7 the abstract interpretation framework is applied to simulation of bi-
ological pathways. We suppose to have a program simulating a pathway, and we
apply abstract interpretation techniques to this program, focusing the attention
to the proteins concentration. Notably, abstract interpretation can be applied to
any program and consequently to any model of simulation. In our examples we
use differential equations and the Eulero’s method. Particularly we use the ab-
stract interpretation analysis based on constants and intervals domain [18], and
congruence domain [32]. Constant domain is used to analyze reactants concen-
tration in order to identify those reactants having concentration constant after
a certain time. Interval domains are similarly used to identify the concentration
range of the reactants. So analyzing the simulation we know if the concentration
of a particular element remains in a certain interval of values for all the computa-
tion time. Congruence domain is shown to be useful for automatic identification of
regular oscillations in a pathway simulation. Analyzing a simulation, we focus the
attention on the time when the concentration of a reactant stop growing and start
decreasing and we keep this time value in a variable. If the oscillation is regular,
the variable assume regular values (for instance 3, 7, 11...) and its analysis on the
congruence domain results in a congruence class (3 mod 4 in the example). All
these properties can be easily inferred observing the graphic of the simulation, but
what makes abstract interpretation so strong is that it is completely automated. So
we can launch thousands of simulations with different parameters and the analysis
will results in a completely characterization of those starting values resulting in a
particular behavior (oscillation, constant concentration, concentration belonging
to some range of values). Obviously is not possible to observe thousands of graph-
ics to infer the same properties. In such a way we can easily answer to question
as “Which are the starting values resulting in a simulation where the protein X
has concentration value in the range [3 , 5]?”. Or “Which are the starting values
resulting in a simulation where the protein X has oscillating concentration val-
ues?. Or again “Which are the starting values resulting in a simulation where the
protein X has concentration value that is constant after 10 seconds?”. Besides,
abstract interpretation is completely independent from the model used and can be
applied to many different simulation methods. The method can also be applied to
the problem of parameters estimation. For many pathways we don’t know some
parameters of the functions regulating the pathway reactions. But if we know the
behavior of the pathway we can infer the parameters inducing that behavior. For
instance, suppose that a parameter of a function regulating a pathway is missing,
but suppose we know that the concentration of the reactant X is always in the
range of [3 ,7], and the concentration of the reactant Y is in the range [2 ,8]. Using
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abstract interpretation techniques, we start thousands of simulations for thousands
different values of the missing parameter and we analyze the concentration value
of X and Y. At the end we check which starting values lead to the proper ranges
of concentration. This or these are the right values for the missing parameter. In
section 7.2 the abstract interpretation method have been successfully applied to
the Goldbeter [29], [30] mitotic oscillator pathway.

A further step have been done in abstract interpretation analysis of biologi-
cal pathways focusing on an “interference” point of view. Similarly to the static
approach of chapter 6, a notion of interference have been applied to pathways
simulation. If we change the starting concentration value of a reactant, also the
concentration variables of other reactants can be modified during the simulation.
This is a problem of variable interference as introduced in [28], i.e. changing the
value of a variable results in changing the value of another variable in another pro-
gram point. So if we change a starting parameters of a pathways, this “interferes”
with the concentration values of others reactants. We introduce such a notion of
“interference for biological pathway” and we apply it to our simulations. Besides,
also abstract interference have been recently introduced [26] in order to character-
ize interference not between program variables but between properties of program
variables. We apply abstract interference to pathways simulation in order to find
relations between properties of reactants. For example: “If the starting concentra-
tion value of the reactant X is in the interval [2.4 , 7] then the concentration value
of reactant Y after 3 seconds is constant to the value 3.5“. In section 7.5 abstract
interference for biological pathway is introduced and discussed.

1.3 Publications

CentiScaPe software, implemented in collaboration with Michele Petterlini, have
been released as a Cytoscape plug-in. Contents of chapter 3 have been released as
a “centralities tutorial” with the plug-in. At present version 1.1 of CentiScaPe is
available and it is downloaded with a rate of about 140 downloads for month from
the Cytoscape website (see Cytoscape website for download statistics). First results
using CentisCaPe have been presented at 48th ASCB annual meeting [11]. Con-
tents of chapter 5 have been developed in collaboration with Carlo Laudanna and
together with contents of chapters 4 they are part of a publication on Bioinformat-
ics [52]. A preliminary work about abstract interpretation for dynamic simulation
of pathways (chapter 7) was presented at PLID 2005 [50] and then presented at
EAAI [51] and published on conference proceedings. The node centrality inter-
ference and robustness is unpublished. It is still a work in progress and will be
submitted when completed with a proper software and integrated with data from
lab experiments.

Other results using CentisCaPe have been published by different authors in [44]
and [53]. CentiScaPe is also used at GlaxoSmithKline computational biology labs.
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Basic notions

Some fundamental notions are needed to deal with biological networks. Here we
briefly introduce some main concepts that are used in the rest of the thesis. An
excellent and complete review of results in network science, facing all the main
aspects of research can be found in [13].

2.1 Graphs

A network is mathematically represented by a graph G = (N,E) where N is the
set of nodes (or vertices) and E is the set of edges (or links), i.e a set of pair of
nodes. If the pair of nodes are ordered the graph is directed, undirected otherwise.
If a pair (n1, n2) ∈ E then n1 and n2 are neighbors. A graph G′ = (N ′, E′) is a
subgraph of the graph G if N ′ ⊆ N and E′ ⊆ E.
Note. Graphs are the mathematical representation, networks are the real systems.
Even if not properly correct in the rest of the thesis we refere to network or graph
indifferently, since we apply mathematical concept to real systems.

Degree

The degree of a node is the number of neighbors of a node. The average degree
of nodes for the whole network is used as an index to describe the “density” of
a network. In networks in which each link has a selected direction, incoming (k
in) and outgoing (k out) degrees need to be considered. The degree distribution
(p(k)) gives the probability that a selected node has exactly k links.

Cluster

A cluster [46] is a group of nodes highly connected between them. A cluster can
be identified by the clustering coefficient (C). It is a measure of the degree of
interconnectivity in the neighbourhood of a node.

Shortest path

Shortest path (SP). The path between two nodes in a network with a smaller
number of steps than the many alternative paths between the two nodes.
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Scale-free networks

Many networks are characterized by a power law-like degree distribution [37] [8].
In a scale-free network, the probability that a node has k links follows p(k) ∼ k−γ ,
where γ is the degree exponent. Such distributions are seen as a straight line on
a loglog plot. A relatively small number of highly connected nodes are known as
hubs, and the probability of those hubs is statistically more significant than in a
random network.

Small world property

The small world property is common to many real networks. It is the fact that most
pairs of vertices in the networks seem to be connected by a short path through
the network. A famous experiments carried out by Stanley Milgram in the 1960s,
in which letters passed from person to person were able to reach a designated
target individual in only a small number of steps, around six in the published
cases. This result is one of the first direct demonstrations of the small-world effect.
It have been recently mathematically studied and applied to different kinds of
networks [62], [61].

2.2 Biological networks

Different kinds of biological networks have been proposed, depending on the bi-
ological process studied. We can distinguish proteins interaction networks, gene
regulatory networks, and metabolic networks or pathways.

Proteins networks

Proteins networks are networks where the nodes are proteins and the edges are
interaction between proteins. A first map of the yeast proteins interaction network
have been introduced in [36]. A particular case of proteins interaction networks are
signal transduction networks. These are proteins networks regulating the transmis-
sion of information within a cell. The edges are directed and can have an inhibition
or activation role. Information about edges direction and role are not available in
some cases.

Gene regulatory networks

A gene regulatory network or genetic regulatory network is a network governing
gene expression. The nodes are genes, proteins, or mRNA. The edges represent
activation or inhibitions of reactions or protein or mRNA production.



2.2 Biological networks 9

Metabolic networks or pathways

Pathways are network describing the set of reactions regulating a biological process.
Even if they are usually represented in several ways, the following characteristics
are common to all the pathways. The nodes can be reactants (substrates), products
of the reactions enzymes, or reactant-enzyme complex. The edges reflect reactions
or regulation of reactions. They can be directed edges from reactants/enzymes to
complex or directed edge from complex to products/enzyme.





Part I

Topological analysis of biological networks





3

Centralities definition and description

In this chapter, some of the classical network centralities have been introduced. For
each centrality, we present the mathematical definition, a brief description with
some examples, and a possible biological meaning in a protein network. As known
network centralities allow to categorize nodes for their relevance in the network
structure. Usually, works concerning biological networks rightly consider global
properties of the network and even if centralities are used, they are often consid-
ered from a global point of view, as for example analyzing degree or centralities
distribution [37], [60], [63], [64], [38]. An interesting algorithm for finding cluster
is also based on the betweenness centrality value [33] A node-oriented approach
have been used analyzing attack tolerance of network, where consequences of cen-
tral nodes deletion are studied [2], [22]. But also in this case the analysis have
been concentrate on global properties of the network and not on the relevance of
the single nodes in the network. The approach of this thesis consists in a further
step: centralities can be used to identify single proteins and, combined with bio-
logical parameters coming from lab experiments, allow us to characterize proteins
for their topological and biological relevance. This will become more significant
in chapter 5 where we introduce a protocol of analysis where centrality values of
proteins in a protein network are related to their activation level (phosphorylation
level). In this chapter a brief centralities review is presented and some functional
hypothesis of centralities role in a protein interaction network are introduced. A
good and complete description of network centralities can be found in [42], where
also some algorithms are presented. For many centralities indices it is required
that network is connected, i.e. each node is reachable from all the others. If not,
some centralities can results in infinity values or some other not properly correct
computation. Besides some centralities are not defined for directed graph (except
of trivial situation), so we will consider here and in the rest of the thesis only
connected undirected graph.

3.1 Preliminary definitions

Let G = (N,E) an undirected graph, with n = |N | vertexes. deg(v), indicate
the degree the vertex. dist(v, w) is the shortest path between v and w. σst is the
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number of shortest paths between s and t and σst(v) is the number of shortest
paths between s and t passing through the vertex v. Notably:

• Vertex = nodes; edges = arches;
• The distance between two nodes, dist(v, w) is the shortest path between the

two nodes;
• All calculated scores are computed giving to higher values a positive meaning,

where positive does refer to node proximity to other nodes. Thus, independently
on the calculated node centrality, higher scores indicate proximity and lower
scores indicate remoteness of a given node v from the other nodes in the graph.

3.2 Centralities

3.2.1 Degree (deg(k))

Is the simplest topological index, corresponding to the number of nodes adjacent
to a given node v, where adjacent means directly connected. The nodes directly
connected to a given node v are also called first neighbors of the given node.
Thus, the degree also corresponds to the number of adjacent incident edges. In
directed networks we distinguish in-degree, when the edges target the node v,
and out-degree, when the edges target the adjacent neighbors of v. Calculation
of the degree allows determining the degree distribution P (k), which gives the
probability that a selected node has exactly k links. P (k) is obtained counting the
number of nodes N(k) with k = 1, 2, 3 . . . links and dividing by the total number
of nodes N. Determining the degree distribution allows distinguishing different
kind of graphs. For instance, a graph with a peaked degree distribution (Gaussian
distribution) indicates that the system has a characteristic degree with no highly
connected nodes. This is typical of random, non-natural, networks. By contrast,
a power-law degree distribution indicates the presence of few nodes having a very
high degree. Nodes with high degree (highly connected) are called hubs and hold
together several nodes with lower degree. Networks displaying a degree distribution
approximating a power-law, P (k) ≈ k−γ , where γ is degree exponent, are called
scale-free networks [8]. Scale-free networks are mainly dominated by hubs and are
intrinsically robust to random attacks but vulnerable to selected alterations [2],
[36]. Scale-free networks are typically natural networks.

In biological terms

The degree allows an immediate evaluation of the regulatory relevance of the node.
For instance, in signaling networks, proteins with very high degree are interacting
with several other signaling proteins, thus suggesting a central regulatory role, that
is they are likely to be regulatory hubs. For instance, signaling proteins encoded
by oncogenes, such as HRAS, SRC or TP53, are hubs. Depending on the nature
of the protein, the degree could indicate a central role in amplification (kinases),
diversification and turnover (small GTPases), signaling module assembly (docking
proteins), gene expression (transcription factors), etc. Signaling networks have
typically a scale-free architecture.



3.2 Centralities 15

3.2.2 Diameter (∆G)

∆G is the maximal distance (shortest path) amongst all the distances calculated
between each couple of vertexes in the graph G. The diameter indicates how much
distant are the two most distant nodes. It can be a first and simple general pa-
rameter of graph compactness, meaning with that the overall proximity between
nodes. A high graph diameter indicates that the two nodes determining that di-
ameter are very distant, implying little graph compactness. However, it is possible
that two nodes are very distant, thus giving a high graph diameter, but several
other nodes are not (see figure 3.1). Therefore, a graph could have high diam-
eter and still being rather compact or have very compact regions. Thus, a high
graph diameter can be misleading in term of evaluation of graph compactness. In
contrast a low graph diameter is much more informative and reliable. Indeed, a
low diameter surely indicates that all the nodes are in proximity and the graph is
compact. In quantitative terms, high and low are better defined when compared to

Fig. 3.1. A network where high diameter is due to a low number of nodes

the total number of nodes in the graph. Thus, a low diameter of a very big graph
(with hundreds of nodes) is much more meaningful in term of compactness than
a low diameter of a small graph (with few nodes). Notably, the diameter enables
to measure the development of a network in time.
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In biological terms

The diameter, and thus the compactness, of a biological network, for instance a
protein-signaling network, can be interpreted as the overall easiness of the proteins
to communicate and/or influence their reciprocal function. It could be also a sign
of functional convergence. Indeed, a big protein network with low diameter may
suggest that the proteins within the network had a functional co-evolution. The
diameter should be carefully weighted if the graph is not fully connected (that is,
there are isolated nodes).

3.2.3 Average Distance (AvDG)

AvDG =

∑
i,j∈N dist(i, j)
n(n− 1)

where n is the number of nodes in G. The average distance (shortest path) of a
graph G, corresponding to the sum of all shortest paths between vertex couples
divided for the total number of vertex couples. Often it is not an integer. As for
the diameter, it can be a simple and general parameter of graph “compactness”,
meaning with that the overall tendency of nodes to stay in proximity. Being an
average, it can be somehow more informative than the diameter and can be also
considered a general indicator of network “navigability”. A high average distance
indicates that the nodes are distant (disperse), implying little graph compactness.
In contrast a low average distance indicates that all the nodes are in proximity and
the graph is compact (figure 3.2). In quantitative terms, high and low are better
defined when compared to the total number of nodes in the graph. Thus, a low
average distance of a very big graph (with hundreds of nodes) is more meaningful
in term of compactness than a low average distance of a small graph (with few
nodes).

In biological terms

The average distance of a biological network, for instance a protein-signaling net-
work, can be interpreted as the overall easiness of the proteins to communicate
and/or influence their reciprocal function. It could be also a sign of functional
convergence. Indeed, a big protein network with low average distance may suggest
that the proteins within the network have the tendency to generate functional
complexes and/or modules (although centrality indexes should be also calculated
to support that indication).

3.2.4 Eccentricity (Cecc(v))

Cecc(v) :=
1

max{dist(v, w) : w ∈ N}
The eccentricity is a node centrality index. The eccentricity of a node v is cal-
culated by computing the shortest path between the node v and all other nodes
in the graph, then the longest shortest path is chosen (let (v,K) where K is the
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Fig. 3.2. A network with low diameter and average distance. The network is “compact”

most distant node from v). Once this path with length dist(v,K) is identified, its
reciprocal is calculated (1/dist(v,K)). By doing that, an eccentricity with higher
value assumes a positive meaning in term of node proximity. Indeed, if the ec-
centricity of the node v is high, this means that all other nodes are in proximity.
In contrast, if the eccentricity is low, this means that there is at least one node
(and all its neighbors) that is far form node v. Of course, this does not exclude
that several other nodes are much closer to node v. Thus, eccentricity is a more
meaningful parameter if is high. Notably, high and low values are more significant
when compared to the average eccentricity of the graph G calculated by averaging
the eccentricity values of all nodes in the graph.

In biological terms

The eccentricity of a node in a biological network, for instance a protein-signaling
network, can be interpreted as the easiness of a protein to be functionally reached
by all other proteins in the network. Thus, a protein with high eccentricity, com-
pared to the average eccentricity of the network, will be more easily influenced
by the activity of other proteins (the protein is subject to a more stringent or
complex regulation) or, conversely could easily influence several other proteins. In
contrast, a low eccentricity, compared to the average eccentricity of the network,
could indicate a marginal functional role (although this should be also evaluated
with other parameters and contextualized to the network annotations).

3.2.5 Closeness (Cclo(v))
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Cclo(v) :=
1∑

w∈N dist(v, w)

The closeness is a node centrality index. The closeness of a node v is calculated
by computing the shortest path between the node v and all other nodes in the
graph, and then calculating the sum. Once this value is obtained, its reciprocal is
calculated, so higher values assume a positive meaning in term of node proximity.
Also here, high and low values are more meaningful when compared to the average
closeness of the graph G calculated by averaging the closeness values of all nodes

Fig. 3.3. The network shows the difference between eccentricity and closeness. The
values of eccentricity are node0=0.14, node8=0.2, node15=0.2. The closeness values are
node0=0.021, node8=0.017, node15=0.014. In this case node0 is closer than node8 and
node15 to the most of nodes in the graph. Eccentricity value of node0 is smaller than
value of node8 and node15, but this is due only to few nodes. If they are proteins this
probably mean that node0 is fundamental for the most of reaction in the network, and
that node8 and node15 are important only in reactions between few proteins.

in the graph. Notably, high values of closeness should indicate that all other nodes
are in proximity to node v. In contrast, low values of closeness should indicate
that all other nodes are distant from node v. However, a high closeness value
can be determined by the presence of few nodes very close to node v, with other
much more distant, or by the fact that all nodes are generally very close to v.
Likewise, a low closeness value can be determined by the presence of few nodes
very distant from node v, with other much closer, or by the fact that all nodes
are generally distant from v. Thus, the closeness value should be considered as
an average tendency to node proximity or isolation, not really informative on the
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specific nature of the individual node couples. The closeness should be always
compared to the eccentricity: a node with high eccentricity + high closeness is
very likely to be central in the graph. Figure 3.3 shows an example of difference
between closeness and eccentricity.

In biological terms

The closeness of a node in a biological network, for instance a protein-signaling
network, can be interpreted as a measure of the possibility of a protein to be
functionally relevant for several other proteins, but with the possibility to be ir-
relevant for few other proteins. Thus, a protein with high closeness, compared to
the average closeness of the network, will be easily central to the regulation of
other proteins but with some proteins not influenced by its activity. Notably, in
biological networks could be also of interest to analyze proteins with low closeness,
compared to the average closeness of the network, as these proteins, although less
relevant for that specific network, are possibly behaving as intersecting boundaries
with other networks. Accordingly, a signaling network with a very high average
closeness is more likely organizing functional units or modules, whereas a signaling
network with very low average closeness will behave more likely as an open cluster
of proteins connecting different regulatory modules.

3.2.6 Radiality (Crad(v))

Crad(v) :=
∑
w∈N (∆G + 1− dist(v, w))

n− 1
The radiality is a node centrality index. The radiality of a node v is calculated by
computing the shortest path between the node v and all other nodes in the graph.
The value of each path is then subtracted by the value of the diameter +1 (∆G+1)
and the resulting values are summated. Finally, the obtained value is divided for
the number of nodes −1 (n−1). Basically, as the diameter is the maximal possible
distance between nodes, subtracting systematically from the diameter the shortest
paths between the node v and its neighbors will give high values if the paths are
short and low values if the paths are long. Overall, if the radiality is high this
means that, with respect to the diameter, the node is generally closer to the other
nodes, whereas, if the radiality is low, this means that the node is peripheral. Also
here, high and low values are more meaningful when compared to the average
radiality of the graph G calculated by averaging the radiality values of all nodes
in the graph. As for the closeness, the radiality value should be considered as an
average tendency to node proximity or isolation, not definitively informative on the
centrality of the individual node. The radiality should be always compared to the
closeness and to the eccentricity: a node with high eccentricity + high closeness+
high radiality is a consistent indication of a high central position in the graph.

In biological terms

The radiality of a node in a biological network, for instance a protein-signaling
network, can be interpreted as the measure of the possibility of a protein to be
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functionally relevant for several other proteins, but with the possibility to be ir-
relevant for few other proteins. Thus, a protein with high radiality, compared to
the average radiality of the network, will be easily central to the regulation of
other proteins but with some proteins not influenced by its activity. Notably, in
biological networks could be also of interest to analyze proteins with low radiality,
compared to the average radiality of the network, as these proteins, although less
relevant for that specific network, are possibly behaving as intersecting boundaries
with other networks. Accordingly, a signaling network with a very high average
radiality is more likely organizing functional units or modules, whereas a signal-
ing network with very low average radiality will behave more likely as an open
cluster of proteins connecting different regulatory modules. All these interpreta-
tions should be accompanied to the contemporary evaluation of eccentricity and
closeness.

3.2.7 Centroid value (Ccen(v))

Ccen(v) := min{f(v, w) : w ∈ N \ {v}}

Where f(v, w) := γv(w)−γw(v), and γv(w) is the number of vertex closer to v than
to w. The centroid value is the most complex node centrality index. It is computed
by focusing the calculus on couples of nodes (v, w) and systematically counting
the nodes that are closer (in term of shortest path) to v or to w. The calculus
proceeds by comparing the node distance from other nodes with the distance of
all other nodes from the others, such that a high centroid value indicates that a
node v is much closer to other nodes. Thus, the centroid value provides a centrality
index always weighted with the values of all other nodes in the graph. Indeed, the
node with the highest centroid value is also the node with the highest number of
neighbors (not only first) if compared with all other nodes. In other terms, a node
v with the highest centroid value is the node with the highest number of neighbors
separated by the shortest path to v. The centroid value suggests that a specific
node has a central position within a graph region characterized by a high density
of interacting nodes. Also here, high and low values are more meaningful when
compared to the average centrality value of the graph G calculated by averaging
the centrality values of all nodes in the graph.

In biological terms

The centroid value of a node in a biological network, for instance a protein-signaling
network, can be interpreted as the probability of a protein to be functionally
capable of organizing discrete protein clusters or modules. Thus, a protein with
high centroid value, compared to the average centroid value of the network, will be
possibly involved in coordinating the activity of other highly connected proteins,
altogether devoted to the regulation of a specific cell activity (for instance, cell
adhesion, gene expression, proliferation etc.). Accordingly, a signaling network
with a very high average centroid value is more likely organizing functional units
or modules, whereas a signaling network with very low average centroid value will
behave more likely as an open cluster of proteins connecting different regulatory
modules. It can be useful to compare the centroid value to algorithms detecting
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Fig. 3.4. The network shows the difference between centroid and closeness. Here node0
has highest centroid value (centroid=1, closeness=0,04) and node7 has highest closeness
value (centroid=-1, closeness= 0,05).

dense regions in a graph, indicating protein clusters, such as, for instance, MCODE
[7].

3.2.8 Stress (Cstr(v))

Cstr(v) :=
∑

s6=v∈N

∑
t6=v∈N

σst(v)

The stress is a node centrality index. Stress is calculated by measuring the
number of shortest paths passing through a node. To calculate the stress of a node
v, all shortest paths in a graph G are calculated and then the number of shortest
paths passing through v is counted. A stressed node is a node traversed by a
high number of shortest paths. Notably and importantly, a high stress values does
not automatically implies that the node v is critical to maintain the connection
between nodes whose paths are passing through it. Indeed, it is possible that two
nodes are connected by means of other shortest paths not passing through the
node v. Also here, high and low values are more meaningful when compared to the
average stress value of the graph G calculated by averaging the stress values of all
nodes in the graph.

In biological terms

The stress of a node in a biological network, for instance a protein-signaling net-
work, can indicate the relevance of a protein as functionally capable of holding
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together communicating nodes. The higher the value the higher the relevance of
the protein in connecting regulatory molecules. Due to the nature of this central-
ity, it is possible that the stress simply indicates a molecule heavily involved in
cellular processes but not relevant to maintain the communication between other
proteins.

3.2.9 S.-P. Betweenness (Cspb(v))

Cspb(v) :=
∑

s6=v∈N

∑
t 6=v∈N

δst(v)

where

δst(v) :=
σst(v)
σst

The S.-P. Betweenness is a node centrality index. It is similar to the stress but

Fig. 3.5. Betweenness vs Stress. In fig. a node4, node10, and node9 present high value
of stress (= 56), and the same value of betweenness (=18.67). In fig.b, node4 presents
the same value of stress of fig.a and higher value of betweenness(=56). This is because
the number of shortest paths passing through node4 is the same in the two network. But
in the second network node4 is the only node connecting the two parts of the network.
In this sense betweenness is more precise than stress giving also information on how the
node is fundamental in the network. If we remove node4 in fig.a, the connection between
the node in the network don’t change so much. If we remove node 4 from fig.b the network
is completely disconnected.

provides a more elaborated and informative centrality index. The betweenness of a
node n is calculated considering couples of nodes (v1, v2) and counting the number
of shortest paths linking v1 and v2 and passing through a node n. Then, the value
is related to the total number of shortest paths linking v1 and v2. Thus, a node
can be traversed by only one path linking v1 and v2, but if this path is the only
connecting v1 and v2 the node n will score a higher betweenness value (in the stress
computation would have had a low score). Thus, a high S.-P. Betweenness score
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means that the node, for certain paths, is crucial to maintain node connections.
Notably, to know the number of paths for which the node is critical it is necessary
to look at the stress. Thus, stress and S.-P. Betweenness can be used to gain
complementary information. Further information could be gained by referring the
S.-P. Betweenness to node couples, thus quantifying the importance of a node for
two connected nodes. Also here, high and low values are more meaningful when
compared to the average S.-P. Betweenness value of the graph G calculated by
averaging the S.-P. Betweenness values of all nodes in the graph.

In biological terms

The S.-P. Betweenness of a node in a biological network, for instance a protein-
signaling network, can indicate the relevance of a protein as functionally capable
of holding together communicating proteins. The higher the value the higher the
relevance of the protein as organizing regulatory molecule. The S.-P. Betweenness
of a protein effectively indicates the capability of a protein to bring in communica-
tion distant proteins. In signaling modules, proteins with high S.-P. Betweenness
are likely crucial to maintain functionally and coherence of signaling mechanisms.

3.3 Normalization and relative centralities

Once centralities have been computed, the question that arise immediately is what
does it means to have a centrality of, for example, 0.4 for a node? This clearly
depends on different parameters as the number of nodes in the network, the max-
imum value of the centrality and on the topological structure of the network. In
order to compare centrality scores between the elements of a graph or between
the elements of different graphs some kind of normalization of centrality values is
needed. Common normalizations applicable to most centralities are to divide each
value by the maximum centrality value or by the sum of all values. We will use
the second in the rest of the thesis defining it as the relative centralities value. So,
given a centrality C, C(G,n) is the value of the centrality of node n in the network
G. We define the relative centrality value of node n as:

relC(G,n) =
C(G,n)∑
i∈N C(G, i)

So a relative centrality of 0.4 means that the node has the 40% of the total cen-
trality of the network. This definition can be applied to all centralities except of
centroid value, since it can have negative values. Relative centrality value will be
used for definition of node centrality interference in chapter 6.

3.4 Conclusions

A review of nodes centralities have been presented. The centralities introduced
have been chosen for their biological relevance, and a possible biological meaning
for each centrality have been hypothesized. Normalization of centralities, useful for
comparison between nodes in a network and between nodes of different networks
have also been considered.
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CentiScaPe

In this chapter we describe the CentiScaPe software [52], a Cytoscape [16], [54]
plugin we implemented to calculate centrality values and integrating topological
analysis of networks with lab experimental data. The vast amount of available
experimental data generating annotated gene or protein complex networks has
increased the quest for networks analysis tools. Biological networks are usually
represented as graphs, where the nodes are biological entities (such as cells, genes,
proteins or metabolites) and the edges are functional and/or physical interactions
between them. Visualization and analysis tools are needed to understand individ-
ual node functions masked by the overall network complexity. Several techniques
suitable to network structural analysis exist, such as the analysis of the global
network structure [1], network motifs [45], network clustering [34] and network
centralities [63]. Particularly, centralities are node parameters that can identify
nodes having a relevant position in the overall network architecture (see chapter
3). Cytoscape is an excellent visualization and analysis tool with the analysis fea-
tures greatly enhanced by plug-ins. Plug-in such as NetworkAnalyzer [6] computes
some node centralities but does not allow direct integration with experimental
data. Applications such as VisANT [35], and Centibin [39] calculate centralities,
although they either calculate fewer centralities or are not suitable to integration
with experimental data. Figure 4.1 shows a comparative evaluation of CentiScaPe
and other applications. CentiScaPe is the only Cytoscape plug-in that computes
several centralities at once. In CentiScaPe, computed centralities can be easily
correlated between each other or with biological parameters derived from the ex-
periments in order to identify the most significant nodes according to both topo-
logical and biological properties. Functional to this capability is the scatter plot by
value options, which allows easy correlating node centrality values to experimental
data defined by the user. Particularly this feature allows a new way to face the
analysis of biological networks, integrating topological analysis and lab experimen-
tal data. This new approach is described in chapter 5. At present version 1.1 is
available and it is downloaded with a rate of about 140 downloads for month (see
Cytoscape website for download statistics). First results using CentiScaPe have
been published in [44] and [53] and presented at 48th ASCB annual meeting [11].
CentiScaPe is also used at GlaxoSmithKline computational biology labs.
Availability: CentiScaPe can be downloaded via the Cytoscape web site:
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Fig. 4.1. Features of CentiScaPe versus Network Analyzer, Visant, Centibin

http://chianti.ucsd.edu/cyto web/plugins/index.php.
Tutorial, centrality descriptions and example data are available at:
http://profs.sci.univr.it/scardoni/centiscape/centiscapepage.php

4.1 System overview

CentiScaPe computes several network centralities for undirected networks. Com-
puted parameters are: Average Distance, Diameter, Degree, Stress, Betweenness,
Radiality, Closeness, Centroid Value and Eccentricity. Plug-in help and on-line
files are provided with definition, description and biological significance for each
centrality (see chapter 3). Min, max and mean values are given for each computed
centrality. Multiple networks analysis is also supported. Centrality values appear
in the Cytoscape attributes browser, so they can be saved and loaded as normal
Cytoscape attributes, thus allowing their visualization with the Cytoscape map-
ping core features. Once computation is completed, the actual analysis begins,
using the graphical interface of CentiScaPe.
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4.2 Algorithm and implementation

To calculate all the centralities the computation of the shortest path between each
pair of nodes in the graph is needed. The algorithm for the shortest path is the
well known Dijkstra algorithm [23]. There are no costs in our network edges, so in
our case the algorithm keeps one as the cost of each edge. To compute Stress and
Betweenness we need all the shortest paths between each pair of nodes and not
only a single shortest path between each pair. To do this the Dijkstra algorithm
has been adjusted as follows. Exploring the graph when calculating the shortest
path between two nodes s and t, the Dijkstra algorithm keep for each node n a
predecessor node p. The predecessor node is the node that is the predecessor of n
in one of the shortest paths between s and t. So in case of the Dijkstra algorithm,
only one predecessor for each node is needed. To have all the shortest paths, we
replace the predecessor p with a set of predecessors for each node n. The set of
predecessors of the node n is the set of all the predecessors of the node n in the
shortest paths set between s and t, i.e. one node is in the set of predecessors of n
if it is a predecessor of n in one of the shortest paths between s and t containing
n. Once the predecessors set of each node n has been computed, also the tree
of all the shortest paths between s and t can be easily computed. Once we have
computed all the shortest paths between each pairs of nodes of our network, the
algorithm of each centralities comes directly from the formal definition of each
centrality. n the case of betweenness, to decrease the computational complexity of
the algorithm, further considerations can be done. A vertex v is in the shortest
path betweenn s and t if d(s, t) = d(s, v)+d(v, t). If this is the case, the number of
shortest paths using v is computed as σst(v) = σsvσvt. Computational complexity
for each centrality value is shown in table 4.1. A well done description of this and

Centrality Computational complexity

Diameter O(mn+ n2)

Average distance O(mn+ n2)

Degree (deg(v)) O(n)

Radiality (rad(v)) O(mn+ n2)

Closeness (clo(v)) O(mn+ n2)

Stress (str(v)) O(mn+ n2)

Betweenness (btw(v)) O(n3)

Centroid Value (cen(v)) O(mn+ n2)

Eccentricity (ecc(v)) O(mn+ n2)

Table 4.1. Computational complexity for each centrality value. n is the number of nodes
and m is the number of edges in the network.

other centralities algorithms can be found in [42]. CentiScaPe is written in Java
as a Cytoscape plugin, in order to exploit all the excellent features of Cytoscape
and to reach the larger number of users. The Java library JFreechart [27] has been
used for some graphic features.
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4.3 Using CentiScaPe

Once CentiScaPe have been started, the main menu will appear as a panel on the
left side of the Cytoscape window as shown in figure 4.2. The panel shows to the

Fig. 4.2. CentiScaPe starting panel. On the left side the main menu appears, to select
the centralities for computation.

user the list of centralities and the user can select all the centralities or some of
them. A banner and a node worked count appear during the computation to show
the computation progress. The numerical results are saved as node or network
attributes in the Cytoscape attributes browser, depending on the kind of parame-
ters, so all the Cytoscape features for managing attributes are supported: after the
computation the centralities are treated as normal Cytoscape attributes. The value
of each centrality is saved as an attribute with name “CentiScaPe” followed by
the name of the centrality. For example the eccentricity is saved in the Cytoscape
attributes browser as “CentiScaPe Eccentricity”. Since the Cytoscape attributes
follow the alphabetical order this make it easy to find all the centralities in the
attributes browser list. There are two kind of centralities: network centralities, and
node centralities.
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Network Centralities

The network centralities concern the entire network and not the single nodes. They
are the Diameter and the Average Distance. They will appear on the data panel
selecting the Cytoscape network attribute browser.

Node Centralities

All other centralities are node parameters and refer to the single nodes. So they
will appear on the attribute browser as node attributes. Using the Node attribute
browser the user can select one or more of them as normal attributes. CentiScaPe
also calculates the min, max and mean value for each centrality. Since they are
network parameters they appear on the Network attribute browser. As for the
other attributes the user can save and load network and node parameters to/from
a file. If an attribute is already loaded or calculated and the user try to recalculate
it, a warning message will appear.

4.3.1 CentiScaPe Results Panel

If one or more node centralities have been selected, a result panel will appear on the
right side of the Cytoscape window (figure 4.4). The first step of the analysis is the
Boolean logic-based result panel of CentiScaPe (figure 4.3). It is possible, by using
the provided sliders in the Results Panel of Cytoscape, to highlight the nodes hav-
ing centralities values that are higher, minor or equal to a threshold value defined
by the user. The slider threshold is initialized to the mean value of each central-
ity so all the nodes having a centrality value less or equal to the threshold are
highlighted by default in the network view with a color depending on the selected
visual mapper of Cytoscape (yellow in figure 4.4). So if one centrality has been
selected, all the nodes having a value less or equal the threshold for that centrality
are highlighted. If more than one centralities has been selected they can be joined
with an AND or an OR operator. If the AND operator is selected, the nodes for
which all the values are less or equal the corresponding threshold are highlighted.
If the OR operator is selected the nodes for which at least one value is less or equal
the corresponding threshold are highlighted. The possibility of highlighting also
the nodes that are more/equal than the threshold is supported. So the user can
select the more/equal option for some centralities, the less/equal option for others
and can join them with the AND or the OR operator. If necessary, one or more
centralities can be deactivated. This feature can immediately answer to questions
as: Which are the nodes having high Betweenness and Stress but low Eccentricity?
Notably, the threshold can also be modified by hand to gain in resolution. In figure
4.4 are highlighted all the nodes having centralities values more/equal than the
corresponding threshold (AND operator). Once the nodes have been selected ac-
cording to their node-specific values, the corresponding subgraph can be extracted
and displayed using normal Cytoscape core features.

4.3.2 Graphic output

Two kind of graphical outputs are supported: plot by centrality and plot by node,
both allowing analysis that are not possible with other centralities tools. The user
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Fig. 4.3. CentiScaPe results panel. Here the less/equals option for Node degree, Stress
and Centroid have been joined with the AND operator. and

can correlate centralities between them or with experimental data, such as, for
example, gene expression level or protein phosphorylation level (plot by centrality),
and can analyze all centralities values node by node (plot by node). Example of
plot by node and plot by centrality are shown in figure 4.5. Graphics can be saved
to a jpeg file.

Plot by centrality

The plot by centrality visualization is an easy and convenient way to discriminate
nodes and/or group of nodes that are most relevant according to a combination
of two selected parameters. It shows correlation between centralities and/or other
quantitative node attributes, such as experimental data from genomic and/or pro-
teomic analysis. The result of the plot by centrality option is a chart where each
individual node, represented by a geometrical shape, is mapped to a Cartesian
axis. In the horizontal and vertical axis, the values of the selected attributes are
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Fig. 4.4. A computation results of CentiScaPe. All nodes having centrality values
more/equal than the corresponding threshold (AND operator) are highlighted.

Fig. 4.5. Example of plot by node (left) and plot by centrality (right) with CentiScaPe.

reported. Most of the relevant nodes are easily identified in the top-right quadrant
of the chart. Figure 4.6 shows a plot of centroid values over intensity of protein
tyrosine phosphorylation in the human kino-phosphatome network derived from
the analysis of human primary polymorphonuclear neutrophils (PMNs) stimulated
with the chemoattractant IL-8 (see chapter 5). The proteins having high values
for both parameters likely play a crucial regulatory role in the network. The user
can plot in five different ways: centrality versus centrality, centrality versus ex-
perimental data, experimental data versus experimental data, a centrality versus
itself and an experimental data versus itself. Notably, a specific way to use the
plot function is to visualize the scatter plot of two experimental data attributes.
This is an extra function of the plug-in and can be used in the same way of the
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Fig. 4.6. Integration of topological analysis with experimental data. Centroid values
are plotted over protein phosphorylation levels in tyrosine. Relevant nodes are easily
identified in the top-right quadrant.The centralities values and the node identifier appear
in CentiScaPe by passing with the mouse over each geometrical shape in the plot.

centrality/centrality option and centrality/experimental attribute option. If the
plot by centrality option is used selecting the same centrality (or the same ex-
perimental attribute) for both the horizontal and the vertical axis, result is an
easy discrimination of nodes having low values from nodes having high values of
the selected parameter (figure 4.7). Thus, the main use of the plot by centrality
feature is to identify group of nodes clustered according to combination of specific
topological and/or experimental properties, in order to extract sub-networks to
be further analyzed. The combination of topological properties with experimental
data is useful to allow more meaningful predictions of sub-network function to be
experimentally validated.

Plot by node

The plot by node option, another unique feature of CentiScaPe, shows for every
single node the value of all calculated centralities represented as a bar graph. The
mean, max and min values are represented with different colors. To facilitate the
visualization, all the values in the graph are normalized and the real values appear
when pointing the mouse over a bar. Figure 4.8 shows, as an example, the values
for the MAPK1 calculated from the global human kino-phosphatome (see chapter
5).

4.4 Conclusions

CentiScaPe is a versatile and user-friendly bioinformatic tool to integrate centrality-
based network analysis with experimental data. CentiScaPe is completely inte-
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Fig. 4.7. A scatter plot degree over degree. As expected this generate a linear distri-
bution: nodes having low values are easily identified in the bottom/left quadrant of the
graph. Nodes with high degree values are in the top/right quadrant.

Fig. 4.8. A plot by node example. For each centrality the specific node value (red), the
mean value (blue), the min value (green), and the max value (white) is shown.

grated into Cytoscape and the possibility of treating centralities as normal at-
tributes permits to enrich the analysis with the Cytoscape core features and with
other Cytoscape plug-ins. The analysis obtained with the Boolean-based result
panel, the plot by node and the plot by centrality options give meaningful re-
sults not accessible to other tools and allow easy categorization of nodes in large
complex networks derived from experimental data.
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A real world example: Centralities in the human
kino-phosphatome

In this chapter a new protocol of analysis of protein interaction networks is intro-
duced through an example of analysis of the human kino-phosphatome. The anal-
ysis starts with the extraction of known interactions from a protein interactome.
In our case we consider kinases and phosphatases interaction i.e. those interac-
tion regarding activation and inhibition of proteins in the network. Kinases and
phosphatases are enzymes involved in the phosphorilation process: they transfer
or remove phosphate groups to/from a protein regulating in this way its activ-
ity. Substantially kinases and phosphatases activate or inhibit other proteins. In
a kino-phosphatome network this process generates a cascade of activations and
inhibitions of proteins corresponding to the transmissions of signals and to the
control of complex processes in cells. The approach to the kino-phosphatome net-
work is to identify the most important proteins for their centrality values and then
to analyze with a lab experiment their activation level. After this, using the Cen-
tiScaPe feature of integrating topological analysis and data from lab experiments,
those values are integrated and those nodes important for both centralities value
and activation level are easily identified. This introduce a new way of facing the
analysis of a protein interaction network based on the Strogatz assertion that in
a biological network “Structure always affects function” [57]. Instead of concen-
trating the analysis, as usual, on the global properties of the network (such degree
distribution, centralities distribution, and so on) we consider in a cause-effect point
of view single nodes of the network relating their centrality values (cause) with
activation level (effects). Most of the contents of this chapter have been published
on [52].

5.1 Centralities analysis

The protocol used for the analysis of the human kino-phosphatome network is the
following:

• The nodes of interest are extracted from the global network, resulting in a
subnetwork to analyze (in our example the subnetwork of human kinases and
phosphatases have been extracted from a human proteins interactome).
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• The centralities values are computed with CentiScaPe. A subnetwork of pro-
teins with all centrality values over the average is extracted.

• The lab experiment identifies which of these proteins present high phosphori-
lation level (in our example in tyrosine and threonine).

• Using CentiScaPe, lab experimental data and centrality values are integrated,
so proteins with high level of activation and high centralities values are easily
identified.

• Further experiments and analysis should be focused on these proteins.

This protocol have been applied as follows. A global human protein interac-
tome data-set (Global Kino-Phosphatome network), including 11120 nodes and
84776 unique undirected interactions (IDs = HGNC), was compiled from pub-
lic data-bases (HPRD, BIND, DIP, IntAct, MINT, others; see [52] on-line file
GLOBAL-HGNC.sif) between human protein kinases and phosphatases. The re-

Fig. 5.1. A scatter plot degree over degree. As expected this generate a linear distribu-
tion. Notably the distribution is not uniform: many nodes display low degree and only
few nodes with high degree, according to the scale-free architecture of biological network.

sulting sub-network, a kino-phosphatome network, consisted of 549 nodes and 3844
unique interactions (see [52] on-line files Table S4 and Kino-Phosphatome.sif), with
406 kinases and 143 phosphatases. The kino-phosphatome network did not con-
tain isolated nodes. We used CentiScaPe to calculate centrality parameters. A
first general overview of the global topological properties of the kino-phosphatome
network comes from the min, max and average values of all computed centrali-
ties along with the diameter and the average distance of the network (table 5.1).
These data provide a general overview of the global topological properties of the
kino-phosphatome network. For instance, an average degree equals to 13.5 with an
average distance of 3 may suggest a highly connected network in which proteins are
strongly functionally interconnected. Computation of network centralities allowed
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CentiScaPe Average Distance 3.0292037280789224

CentiScaPe Betweenness Max value 20159.799011925716

CentiScaPe Betweenness mean value 1112.0036429872616

CentiScaPe Betweenness min value 0.0

CentiScaPe Centroid Max value 18.0

CentiScaPe Centroid mean value -393.07285974499086

CentiScaPe Centroid min value -547.0

CentiScaPe Closeness Max value 8.771929824561404E-4

CentiScaPe Closeness mean value 6.175318530305184E-4

CentiScaPe Closeness min value 3.505082369435682E-4

CentiScaPe Diameter 8.0

CentiScaPe Eccentricity Max value 0.25

CentiScaPe Eccentricity mean value 0.18407494145199213

CentiScaPe Eccentricity min value 0.125

CentiScaPe Radiality Max value 6.91970802919708

CentiScaPe Radiality mean value 5.970796271921072

CentiScaPe Radiality min value 3.7937956204379564

CentiScaPe Stress Max value 210878.0

CentiScaPe Stress mean value 11537.009107468124

CentiScaPe Stress min value 0.0

CentiScaPe degree Max value 102.0

CentiScaPe degree mean value 13.5591985428051

CentiScaPe degree min value 1.0

Table 5.1. Global values of the kino-phosphatome network computed using CentiScaPe.
The table includes min, max and mean value for each centrality and also the global
parameter Diameter and Average Distance.

a first ranking of human kinases and phosphatases according to their central role in
the network (see [52] on-line files Table S6 reporting all node-by-node values of dif-
ferent centralities). To facilitate the identification of nodes with the highest scores
we applied the “plot by centrality” feature of CentiScaPe. A first plotting degree
over degree generated a linear distribution, as expected (see fig. 5.1). However, it
is evident that the distribution is not uniform, with the majority of nodes having a
similar low degree and very few having very high degree. This is consistent with the
known scale-free architecture of biological networks [37]. The scale-free topology
of the kino-phosphatome network was also confirmed with Network Analyzer [6].
A total of 186 nodes (164 kinases and 22 phosphatases) displayed a degree over the
average. The top 10 degrees (64 to 102) were all kinases, with MAPK1 showing
the highest degree (102). Notably, MAPK1 displayed the highest score for most
of the computed centralities (fig. 5.2), suggesting its central regulatory role in the
kino-phosphatome. In contrast, PTPN1 had the highest degree, 46, between all
phosphatases (top 31 among all nodes) and had a rather high score also for other
centralities (fig. 5.3). Thus, degree analysis suggests that MAPK1 and PTPN1
are the most central kinase and phosphatase, respectively. To further support this
suggestion we analyzed the centroid. Plotting centroid over centroid provided a
linear distribution, as expected and as for the degree, also here the distribution
was not uniform (fig 5.1 and fig. 5.4). Average centroid was -393. 242 nodes (206
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Fig. 5.2. Network analysis of human kino-phosphatome. The protein kinase MAPK1
shows high centralities values for most of the computed centralities suggesting its central
role in the network structure and function. For each centrality the specific node value
(red), the mean value (blue), the min value (green), and the max value (white) is shown.

Fig. 5.3. The plot by node representation for PTPN1. The phosphatase PTPN1 presents
the highest degree between all the phosphatases and a rather high score for other cen-
tralities. This suggests that PTPN1 may play a central regulatory role in the network.
For each centrality the specific node value (red), the mean value (blue), the min value
(green), and the max value (white) is shown.

kinases and 36 phosphatases) displayed a centroid over the average. The top 10
centroid (-79 to 8) were all kinases, with MAPK1 showing the highest centroid
value (18). PTPN1 had the highest centroid value, -154, between all phosphatases
(top 22 among all nodes). Thus, as for the degree, also the centroid value analysis
suggests a possible scale-free distribution, with MAPK1 and PTPN1 being the
most central kinase and phosphatase, respectively. This conclusion is also easily
evidenced by plotting the degree over the centroid (fig. 5.5).

Here MAPK1 appears at the top right of the plot and PTPN1 is present in the
top most dispersed region of the plot, thus suggesting their higher scores. Inter-
estingly, from the analysis is evident a non-linear distribution of nodes, with few
dispersed nodes occupying the top right quadrant of the plot (i.e. high degree and
high centroid): these nodes can potentially represent particularly important regula-
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Fig. 5.4. A scatter plot of centroid over centroid. As expected, this generate a linear
distribution. Notably, as for the degree, the distribution is not uniform: many nodes
display low centroid whereas only few nodes have high centroid.

Fig. 5.5. A plot by centralities representation of degree over centroid. In the top right
of the plot appear the nodes having high values of both degree and centroid (including
MAPK1).

tory kinases and phosphatases. This kind of analysis can be iterated by evaluating
all other centralities. To extract the most relevant nodes according to all centrality
values we used CentiScaPe to select all nodes having all centrality values over the
average. Upon filtering we obtained a kino-phosphatome sub-network (fig.5.6) con-
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Fig. 5.6. The subnetwork resulting from the extraction of all nodes having all the
centralities over the average. The network consist of 97 nodes (82 kinases and 15 phos-
phatases) and 962 interactions.

sisting of 97 nodes (82 kinases and 15 phosphatases) and 962 interactions (see [52]
on-line files Table S7, and K-P sub-network.sif).

This sub-network possibly represents a group of highly interacting kinases and
phosphatases displaying a critical role in the regulation of protein phosphoryla-
tion in human cells. Further analysis with CentiScaPe or other analysis tools, such
as MCODE [7] or Network Analyzer [6], performing a Gene Ontology database
search [5], or adding functional annotation data, may allow a deeper functional
exploration of this sub network. The regulatory role of proteins belonging to the
kino-phosphatome network may be also experimentally tested in a context-selective
manner. Indeed, the centrality analysis by CentiScaPe can be even more signifi-
cant by superimposing experimental data. To test this possibility, we focused the
analysis on human polymorphonuclear neutrophils (PMNs).

5.2 Phosphoproteomic analysis of chemoattractant
stimulated human PMNs

5.2.1 Human primary polymorphonuclear cells isolation

Human primary polymorphonuclear cells (PMNs) were freshly isolated form whole
blood of healthy donors by ficoll gradient sedimentation. Purity of PMN prepara-
tion was evaluated by flow cytometry and estimated to about 95% of neutrophils.
Isolated PMNs were kept in culture at 37oC in standard buffer (PBS, 1mM CaCl2,
1mM MgCl2, 10% FCS, pH7.2) and used within 1 hour. Viability before the as-
says was more than 90%.
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5.2.2 Human primary polymorphonuclear cell stimulation

Human neutrophils were resuspended in standard buffer at 107/ml and stimu-
lated under stirring at 37oC for 1 min. with the classical chemoattractant fMLP
(100nM). Stimulation was blocked by directly disrupting the cells for 10 min.
in ice-cold lysis buffer containing: 20mM MOPS, pH7.0, 2mM EGTA, 5mM
EDTA, 30mM sodium fluoride, 60mM β-glycerophosphate, 20mM sodium py-
rophosphate, 1mM sodium orthovanadate, 1mM phenylmethylsulfonylfluoride,
3mM benzamidine, 5µM pepstatin A, 10µM leupeptin, 1% Triton X-100. Lysates
were clarified by centrifugation at 12.000xg for 10 min. and kept at 80oC until
further processing.

5.2.3 Evaluation of protein phosphorylation

Protein phosphorylation was evaluated both qualitatively and quantitatively by
using the Kinexus protein array service (see [40]). Kinexus provides a complete
service for high throughput proteomic and phosphoproteomic high sensitive anal-
ysis of cell lysed samples, allowing detection of more than 800 proteins, including
about 200 phosphorylated proteins (about 350 phospho-sites) by means of in-house
validated antibody microarrays (see [41]). 100µl of frozen samples of lysed PMNs
(about 1mg/ml protein concentration) have been sent to Kinexus for the analysis.
Phosphoproteomic antibody microarray data have been delivered by email and
subsequently elaborated to extract values of protein phosphorylation of control
versus agonist-triggered samples. (phosphorylation data files are available on-line:
see [52] PMN-PhosphoSer.NA, PMN-PhosphoTyr.NA, PMN-PhosphoThr.NA).

5.3 Combining topological analysis and experimental data

Data about protein phosphorylation were used as bioinformatic probes and node
attributes to extract, from the Global Kino-Phosphatome network, subnetworks of
protein phosphorylation, to be analyzed with CentiScaPe Experimental data were
loaded as node attributes in Cytoscape and the computed centrality values were
plotted over values of protein phosphorylation. Here, every node is represented
with two coordinates consisting of a computed centrality and of experimental data
regarding protein phosphorylation induced in PMNs by fMLP. In figures 5.7 and
5.8 are shown plots of centroid values over intensity of protein phosphorylation
in threonine or tyrosine residues induced by fMLP triggering in human PMNs.
Notably, in the plot are shown only those proteins whose phosphorylation level
was experimentally determined. The two plots allow immediately evidencing that
proteins phosphorylated in threonine (fig. 5.7) or in tyrosine (fig. 5.8) have differ-
ent topological position in the network, with proteins phosphorylated in tyrosine
showing a higher centrality values. This could suggest that tyrosine phosphoryla-
tion induced in PMNs by chemoattractants involves signaling proteins regulating
clusters of proteins, as the centroid value may suggest. Besides, the top/left quad-
rant is empty in both figures 5.7 and 5.8. So there are no nodes having low centroid
value and high phosphorylation in threonine or tyrosine. This may suggest that
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Fig. 5.7. Integration of topological analysis with experimental data. Centroid values
are plotted over protein phosphorylation levels in threonine, experimentally determined
as described in the text.

Fig. 5.8. The correlations between Centroid value and intensity of protein phosphory-
lation in Tyrosine. Proteins with high Centroid value and high level of phosphorylation
are easy identified in the top/right quadrant of the graph. Pointing the mouse over the
geometrical shapes in the plot shows the corresponding node ID and attribute values

centroid value and activation level are strictly related. Further hypotheses can be
formulated by expanding the analysis to other centralities and by adding more
phopshorylation data. From this type of plotting it is possible to further identify
relevant nodes not only according to topological position but also to experimental
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outputs. Thus, groups of nodes whose regulatory relevance is suggested by cen-
trality analysis are further characterized by the corresponding data of biological
activity.

5.4 Conclusions

In this chapter a protocol of analysis for protein network have been proposed. The
key idea is that of identify most important proteins from both topological and
biological points of view. Through the example of the kino-phosphatome network,
we have seen how CentiScaPe can integrate the two kinds of analysis allowing
an easy characterization of most relevant proteins. The topological analysis and
experimental data do confirm each other’s regulatory relevance and may suggest
further, more focused, experimental verifications. Combination of CentiScaPe with
other bioinformatics tools may help to analyze high throughput genomic and/or
proteomic experimental data and may facilitate the decision process.
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Network centralities interference

As seen in the previous chapter, network centralities allow to understand the role
and the importance of each single node in a protein network. Next step we in-
troduce in this chapter is to understand and measure changes to the topological
structure of the network. The effects of mutation in the network structure have
been studied from a global point of view: nodes are removed from the network and
the effects on some global parameters, as for example diameter, average distance
or global efficiency are evaluated [9], [36], [2], [22]. Our approach wants to answer
to this question: “we remove or add one node in the network, how do other nodes
modify their functionality because of this removal?”. In biological network one or
more nodes are removed or added frequently to the network; this can be due to
several reasons:

• Gene deletion, a mutation in which a part of a chromosome or a sequence of
DNA is missing. Deletion is the loss of genetic material and can results in the
removal of one or more nodes in the network (proteins codified by deleted genes
are missing in the network).

• Drug usage: a drug generally is used to inhibit a protein, this corresponds to
remove the protein from the network.

• Gene duplication: is any duplication of a region of DNA that contains a gene.
In this case the copy of the gene is very similar to the original and two similar
proteins are codified. So the new protein corresponds to a new node in the
graph with most of the edges of the first one.

Obviously we need to understand the consequences of these changes in the network
structure. For instance in the case of a drug usage we can study its effects in the
network functionality in order to prevent side effects of the drug in other parts
of the network that are not directly involved. In the case of gene deletion or
duplication we can better understand when network mutation can compromise
network functionality. We are interested in exploring node by node modifications
in the structure: a mutation can not be important in the whole network, but
can modify completely the functionality of one or more nodes. Since centralities
are related to nodes functionality, the effects of mutations can be understood
analyzing modifications of centralities values due to the mutations. Clearly, the
centrality value of one node is strictly dependent on the network structure, and
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on the presence of other nodes in the network. So if we add or remove a node in
the network, the modification on network structures are reflected on the centrality
values of all the other nodes.

The notion we introduce is “nodes centralities interference”. This notion mea-
sures variations of centrality values of single nodes as consequences of modification
in the network structure, as node adding or deletion. It allow to characterize this
consequences from a node-oriented point of view. Starting from a single node n
we analyze the role of this node identifying the nodes that are strictly dependent
on it measuring variations in their centralities when node n is removed from the
network. Network centralities interference is introduced through some examples
and then it is applied to the kino-phosphatome subnetwork (see chapter 5). Be-
sides, the complementary measures of node centrality robustness, dependence and
competition are introduced. These notions, given a node n, allows to identify the
nodes whose presence in the network strictly affects the centrality values of node
n.

6.1 Interference notion

In figure 6.1 effects of gene duplication on betweenness value are shown. In fig.6.1a

Fig. 6.1. a. Node b is in the shortest paths connecting all the other nodes to node a.
Node b is essential for connecting node a to other nodes. b. Adding node k, with the
same edges of node b, has effects on betweenness value of node b. Now also node k is in
the shortest paths from node a to all the other nodes: betweenness value of node b will
change. Node b is no more essential for connecting node a to the rest of the network.

node b is the only way to reach node a from nodes c,d and e. We suppose that
because of gene duplication, a new node k is added to the network (fig.6.1b). Since
it has the same edges of node b, now there are new shortest paths connecting
node a to the rest of the network: the paths passing through node k. This causes
a variation in the betweenness value of node b. To investigate variations of a
centrality value due to modification in the network structure, we have been inspired
by the notion of “variable interference” used in computer science: to change the
value of a variable A in a computer program, can result in changing the value
of a variable B in another point of the program. So we say that the variable A
interferes with the variable B in the program. This notion have been introduced
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and studied by Goguen [28] and can be defined as follow: Given h and l variables
of a Program P , we can say that h interfere with l if:

∃h1, h2 ∈ H, l1 ∈ L, h1 6= h2 :

[|P |]l(h = h1, l = l1) 6= [|P |]l(h = h2, l = l1),

where H is the domain of the variable h, L is the domain of l and where we
mean with [|P |]l(h = h1, l = l1), the semantics of the program P restricted to the
variable l starting from a generic starting state where h has h1 as value and l has
l1 as value. So, if changes on starting values of variable h have effects on final value
of variable l we have interference from h to l.

We want to introduce a similar notion for network centralities: in the previous
example we can say that the introduction of node k in the network interferes with
the betweenness value of node b. The aim is to characterize modifications in net-
works structures with modification in centrality values as “interference” between
nodes in the network. We start analyzing changes in betweenness value and then
we generalized the results to the other centralities. All definitions consider con-
nected networks i.e. networks where each node is reachable from all the others. If,
after a node deletion the network is not connected then centralities interference
definitions cannot be applied. This case is not realistic in biological network be-
cause of the high size of node and edges and because of robustness property of
such networks.

6.2 Betweenness interference

Consider a network G = (N,E) where N is the set of nodes and E is the set of
edges. Btw(G,n) is the betweenness value of node n in the network. We consider
G|i the network obtained from G removing node i and all its edges from the
network. The betweenness value of node n in the new network is Btw(G|i, n). We
define the “absolute betweenness interference” of node i with respect to node n in
the network G as:

AbsIntBtw(i, n,G) = Btw(G,n)−Btw(G|i, n)

It is the difference of the betweenness value of node n in the network G and the
betweenness value of node n in the network when the node i have been removed.
Potentially the interference value suggests how the betweenness value of node n
changes, depending on the presence of node i in the network. The interference
value can be positive or negative.

• If this value is negative, it means that the role of node n in the network is
higher when the node i is not present in the network. So we can say that node
i has “negative interference” on node n, in the sense that the presence of node
i in the network is “negative” for the node n to play a “central role” in the
network.

• If the interference value is positive, it means that betweenness value of node n
is higher if node i have been added to the network. In this case we say that i
has “positive interference” on node n, in the sense that the presence of node i
is “positive” for node n to play a “central role” in the network.
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We can also use the modulus value of interference

ModIntBtw(i, n,G) = |Btw(G,n)−Btw(G|i, n)|

in order to evaluate if the interference of node i on n is high in absolute value
regardless of its negative or positive value.

We introduce also another value, in order to relate interference value with the
total value of betweenness. We use instead of betweenness its relative value as
defined in section 3.3. The relative interference, or simply interference is defined
as follow:

IntBtw(i, n,G) =
Btw(G,n)∑
j∈N Btw(G,n)

−
Btw(G|i, j)∑
j∈N Btw(G|i, j)

The relative interference shows which fraction of betweenness value a node loses
or gains with respect to the rest of the network. It is the most precise value since
the variation of betweenness is considered with respect to the total betweenness.
A node can increase its absolute betweenness value but at the same time the rela-
tive betweenness value can decrease (as instance if the total value of betweenness
increases). In this case the node loses its importance with respect of the network
even if its absolute betweenness value increases. All this considerations will be
clarified through the next example.

Example

In the table 6.1 are shown betweenness values for the network in figure 6.2. As

Node name Betweenness value

node1 10.0

node0 2.0

node4 0.0

node2 1.33

node3 1.33

node5 1.33

Table 6.1. Betweenness values for the network in figure 6.2. Notice high value of node1
(10), and the same values of nodes2, node3 and node5 (1.33).

expected, the higher value is that of node1, which is the only way node4 can be
connected to the rest of the network. Notice that node4 has 0 as betweenness value
and that node2, node3, and node5, present the same betweenness. This is because
the shortest paths connecting node0 to the rest of the network can pass through one
of these nodes indifferently. We remove node5 from the network obtaining a new
network and we calculate the new values of betweenness and then the interference
of node5 with respect to the other nodes. Resulting network is shown in figure 6.3
and betweenness values in the table 6.2. Notice that betweenness value of node1
is lower. This is because node5 was part of a shortest path connecting node4 with
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Fig. 6.2. In this network node2, node3, node5, are all possible ways to connect node 0
with the rest of the network. node1 is the only way to connect node4 to the rest of the
network.

Node name Betweenness value

node1 6.0

node0 0.0

node4 0.0

node2 2.0

node3 2.0

Table 6.2. Betweenness value for the network in figure 6.3. Node1 value is decreased
(from 10 to 6), and values of nodes2 and node3 are increased (from 1.33 to 2).

node0, and node1 was also part of this path. Besides path connecting node5 to
node4 passing through node1 is also missing. So the number of shortest paths
passing through node1 is decreased. On the contrary, betweenness of node2 and
node3 is higher, since shortest paths passing through node5 and connecting node1
to node0 and node4 to node1 are missing. Consequently the role of node2 and
node3 are more relevant. If we remove another of these two nodes, for example
node3, then node2 will become the only way to connect node0 with the rest of
the network, and its betweenness value will increase again. Table 6.3 shows the
absolute interference and relative interference value of node5 with respect to the
entire network. As expected, the interference value of node5 with respect to node1
is positive, and the same for node0: they are more relevant in the network if
also node5 is part of the network (positive interference). On the contrary, the
interference of node5 with respect to node2 and node3 is negative: node2 and
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Fig. 6.3. Network obtained removing node5 from network in figure 6.2. Here node2 and
node3 are the two possible ways to connect node0 with the rest of the network. The way
for connecting node4 to node0 passing through node1 and node5 is missing.

Node relative btw with node5 relative btw no node5 abs. interference rel. interference

node1 0.63 0.6 4 0.03

node0 0.13 0 2 0.13

node4 0.0 0.0 0 0

node2 0.8 0.2 -0.67 -0.12

node3 0.8 0.2 -0.67 -0.12

Table 6.3. Interference values of node5 for the network in figure 6.2. Even if node1 has 4
as absolute interference its role in the network is still the same: the relative interference is
0.03 so it lost only 3% removing node5. Node2 and node3 present a negative interference
of 0.12. They gain the 12% of betweenness if node5 is removed from the network.

node3 are more relevant if node5 is not part of the network, i.e the presence of
node5 has negative interference with respect to node2 and node3.

6.3 Interference centralities definition

We can now generalize definition used for betweenness to the other centralities.
Given a centrality C, we define the absolute interference of node i with respect to
node n in the network G as follow:

AbsIntC(i, n,G) = C(G,n)− C(G|i, n)

Then we can define the modulus of interference:
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ModIntC(i, n,G) = |C(G,n)− C(G|i, n)|

Finally the relative interference (or simply interference) of the node i with respect
to node n in the network G is:

IntC(i, n,G) =
C(G,n)∑
j∈N C(G, j)

−
C(G|i, n)∑
j∈N C(G|i, j)

Note The relative interference definition can be applied to all centralities defined
in chapter 3 except of centroid value since it can have also negative values.

Next step for a complete analysis of interference is to quantify the interference
of a single node with respect to the entire network. The question is: How node i is
important for the functionality of the entire network? A node can interfere with
high value with respect to few nodes and can have low interference value with
respect to many others. Otherwise one node can interfere with significant values
with respect to the most of the nodes in the network. In the second case the node
can have importance for the entire network functionality and not only for one or
few nodes. In order to quantify the interference with respect to the entire network
we introduce the max interference centrality value and the global interference
value. They can easily derived from the previous definitions. The interference max
value of node i with respect to the network G is defined as follow:

maxIntC(i, G) = max
n∈N|i

{
C(G,n)∑
j∈N C(G, j)

−
C(G|i, n)∑
j∈N C(G|i, j)

}

Then we define global interference value of node i

IntC(i, G) =
∑
n∈N|i

(
C(G,n)∑
j∈N C(G, j)

−
C(G|i, n)∑
j∈N C(G|i, j)

)

and mean interference value

meanIntC(i, G) =

 ∑
n∈N|i

(
C(G,n)∑
j∈N C(G, j)

−
C(G|i, n)∑
j∈N C(G|i, j)

) 1
|N | − 1

where |N | is the number of nodes of the network.

Example

We shows an example of closeness interference for the network in figure 6.4. Ob-
serving the network we can easily identify two clusters having center respectively
in node0 and in node4. We can also see that node12 is the one directly connecting
node0 and node4 and that removing it the shortest path between the two nodes
becomes the one passing for node1, node2 and node3. What we expect is that if
we remove node12 then node0 and node4 become less central in the network (from
a closeness point of view), since the resulting network is more dispersed. On the
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Fig. 6.4. Two cluster with center respectively in node4 and node0 are immediately
identified in this network. They are connected through node12.

node name closeness without node 12 closeness with node12 abs interference interference

node0 0.0303 0.0417 0.0114 0.0076

node4 0.0345 0.0455 0.0110 0.0041

node6 0.0233 0.0286 0.0053 -0.0020

node7 0.0233 0.0286 0.0053 -0.0020

node8 0.0233 0.0286 0.0053 -0.0020

node10 0.0256 0.0303 0.0047 -0.0049

node11 0.0256 0.0303 0.0047 -0.0049

node5 0.0256 0.0303 0.0047 -0.0049

node9 0.0256 0.0303 0.0047 -0.0049

node1 0.0345 0.0323 -0.0022 -0.0260

node3 0.0370 0.0345 -0.0026 -0.0283

node2 0.0370 0.0333 -0.0037 -0.0310

node12 0.0435

Table 6.4. Closeness interference values for the network in figure 6.4. Even if for some
nodes the absolute interference value is positive, the relative interference value is negative.
This mean that removing node12 this nodes gain in absolute closeness value but their
relative closeness value decreases: they are more central with respect to the entire network
if node12 is removed. Node1, node2 and node3 have the highest negative interference since
they replace node12 connecting the two clusters of the network, so they are closer to most
of the nodes.

contrary, node1, node2 and node3 should improve their “importance” if node12 is
not part of the network.

We computed node12 closeness interference for the network. Values of node12
closeness interference with respect to the other nodes are shown in table 6.4. Notice
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that node0 and node4 present positive values of interference. Their interference is
high, because distance between the two clusters of the network is higher removing
node12 from the network. On the contrary their relative interference is positive but
not high because they remain central nodes for the network. So their reduction
of closeness removing node12 is due to the reduction of the total closeness: the
network without node12 is less “compact” but node0 and node4 remain central
nodes in the network. Node1, node2 and node3 present negative interference values.
This is because they are more central if node12 is not part of the network, since
they become closer to the two clusters. In this case also the relative interference
is high since they really become more central in the network. The importance of
node12 is also confirmed by its high betweenness value (49).

To stress results of this analysis, we try to remove node11 from the network.
Node11 is a peripheral node presenting betweenness value equals to 0. Interfer-

node name interference relative interference

node0 -0.0060 -0.0112

node1 -0.0048 -0.0090

node12 -0.0041 -0.0071

node2 -0.0037 -0.0066

node8 -0.0037 -0.0068

node7 -0.0037 -0.0068

node6 -0.0037 -0.0068

node3 -0.0026 -0.0040

node4 -0.0022 -0.0025

node9 -0.0020 -0.0028

node10 -0.0020 -0.0028

node5 -0.0020 -0.0028

Table 6.5. Closeness interference values for node11. All values are low, since node11 is
a “peripheral node”. Removing it from the network has low effects on the rest of the
network

ence values are shown in 6.5. Notice that, as expected, all nodes present similar
values. Particularly node1, node2, node3 don’t have high interference values. Un-
like node12, whose deletion cause important changes for node1 node2 and node3,
node11 has low interference value with respect to the entire network: if removed
or added to the network it does not cause relevant changes for any node. Similarly
to results for attack tolerance in networks [22] the nodes with high betweenness
are best candidate to attack network structure. Notice that this example could
seem trivial if referred to figure 6.4. The results are more impressive if the same
network is drawn randomly as in figure 6.5: an interference analysis in necessary in
this case and always if we treat biological network having hundreds or thousands
of nodes, as in the next example where we analyze the human kino-phosphatome.
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Fig. 6.5. The same network of figure 6.4. Consideration that can be done looking the
figure are not possible in this situation. The interference analysis is absolutely necessary.

6.4 A real word example: interference in the human
kino-phosphatome

As example we calculate interference in the human kino-phosphatome subnetwork
analyzed in chapter 5. The network is shown in the figure 6.6. From a centralities

Fig. 6.6. The subnetwork resulting from the analysis in chapter 5. It consist of 97 nodes
(82 kinases and 15 phosphatases) and 962 interactions.
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analysis we found that Mapk1 and Prkca present high centrality values [52]. The
question is how much they interfere with other proteins in the network and also if
they interfere with the same groups of proteins. We try to calculate and compare
betweenness interference of Mapk1 and Prkca. In table 6.6 first ten values of inter-
ference are shown, for both Mapk1 and Prkca. First of all, interference values are

First ten positive interference value of Mapk1 and Prkca
node Mapk1 interf. Mapk1 rel interf. node Prkca interf. Prkca rel interf.

PPP1CA 7 0,0008 PPP2CA 10,35 0,0012

PPP2CA 3,87 0,0005 MAP3K3 7,41 0,0009

CAMK2G 3,46 0,0004 AURKA 7,07 0,0008

PTEN 3,02 0,0004 MAPK9 6,2 0,0007

RPS6KA3 2,92 0,0003 PTPRC 5,32 0,0006

PTPN11 2,62 0,0003 PTPN1 3,93 0,0004

JAK2 2,61 0,0003 CHEK2 3,68 0,0004

CDC25C 2,3 0,0003 CAMK2G 3,2 0,0004

PDPK1 2,28 0,0003 PPP1R14A 3,12 0,0004

ZAP70 2,25 0,0003 STK11 2,31 0,0003

Table 6.6. First ten positive interference values of Mapk1 and Prkca. Only PPP2CA
and CAMK2G have high value with both Mapk1 and Prkca

not high. Notably, highest between interference relative values are around 0.001.
This means that the variation of betweenness values is only around 0.1% of the
global values and that removing one node does not change so much for the entire
network. This agrees with results on robustness and attack tolerance of biological
networks [2], [9], [36]. Then we can notice that only PPP2CA and CAMK2G are

First ten (absolute value) negative interference values of Mapk1 and Prkca

node Mapk1 interf. Mapk1 rel interf. node Prkca interf. Prkca rel interf.

MAPK3 -29,13 -0,0034 RPS6KA3 -40,04 -0,0047

AKT1 -26,51 -0,0031 GSK3B -24,65 -0,0030

MAPK8 -22,22 -0,0026 MAPK1 -24,65 -0,0030

PRKCA -19 -0,0022 PRKDC -19,94 -0,0024

CDC2 -14,65 -0,0017 PRKCB1 -18,4 -0,0022

SRC -14,19 -0,0017 MAPK8 -16,81 -0,0020

PTK2B -14,11 -0,0017 CDC2 -16,45 -0,0020

FYN -12,78 -0,0015 PRKCZ -16,41 -0,0019

IGF1R -11,04 -0,0013 PTK2B -16,31 -0,0019

MAPK14 -9,49 -0,0011 PRKACA -14,65 -0,0017

Table 6.7. First ten negative interference values for Mapk1 and Prkca. Notice reciprocal
high interference between Mapk1 and Prkca

present in both tables. This is really interesting since it means that the effects
of removing Mapk1 or Prkca are not the same: Mapk1 remotion affects a part
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of the network and Prkca remotion affects another part. Potentially this means
that different functionality in the kino-phosphatome network are affected by the
two proteins. Further analysis and lab experiments could confirm this hypothesis.
Other interesting considerations can be done for table 6.7 where the ten most rele-
vant negative interference value are shown. Here absolute values are higher than for
positive interference indicating that negative interference of Mapk1 and Prkca is
more significant. MAPK8, CDC2, PTK2B are present in both tables, they depends
on both Mapk1 and Prkca. Curiously there is negative interference of Mapk1 with
respect to Prkca (-19). This means that if Mapk1 is inhibited then Prkca assume a
more relevant role in the network. Similarly Prkca has negative interference with
respect to Mapk1 (-24,65): the role of Mapk1 is more relevant if Prkca is not part
of the network. This should suggest, according with betweenness meaning, that
some functionality of Mapk1 can be replaced by Prkca if Mapk1 is inhibited and
conversely Prkca can be replaced by Mapk1 if inhibited. Such hypothesis should
be confirmed by lab experiments, but surely some shortest paths connecting pro-
teins in the network and passing through Mapk1 are replaced by shortest paths
passing through Prkca if Mapk1 is inhibited and similarly for shortest paths pass-
ing through Mapk1 when Prkca is inhibited. In this sense Mapk1 and Prkca are
“competitors” on having a central role in the network. Finally, observing both pos-
itive and negative interference, we can see that Mapk1 has positive interference
with respect to RPS6KA3 and that Prkca has negative interference with the same
protein. So, when Mapk1 is present in the network then RPS6KA3 has a more
central role, on the contrary when Prkca is part of the network RPS6KA3 is less
relevant. Also this hypothesis should be confirmed with further lab experiment.

6.5 Further consideration for network centralities
interference

Other consideration about network interference can be done:

• As argued above, interference naturally induces cluster of proteins that are
similar for their interference values due to the same node. A new clusterization
algorithm can be derived if we group nodes depending on their interference
value: given a node we compute its interference value and we put all the nodes
having high interference in the same cluster. This interference-based modular
decomposition of a network characterizes nodes for their answer to the inhibi-
tion (or adding) of a certain node in the network. If deletion of the node in a
protein network is due to drug usage, the cluster of nodes having high inter-
ference value is the set of proteins where the drug has its greatest effects. In
pharmacology this should permit to predict which proteins are more affected
from the inhibition of another protein in the network. We can so prevent side
effects of the inhibition of a node due to a drug usage.

• We know that biological networks are not easily affected from the removal
of a single node [2], [9], [36]. So a possible scenario is that of removing or
adding more than one node in a network. Definition of interference can be
easily adapted to such a situation, where a set of node is considered. Given
a subset S of the network nodes N (S ∈ N) and a centrality measure C, we
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define the absolute interference of the set of nodes S with respect to a node n
as follow:

AbsIntC(S, n,G) = C(G,n)− C(G\S, n)

Then we can define the modulus of interference:

ModIntC(S, n,G) = |C(G,n)− C(G\S, n)|

Finally the relative interference of the set of nodes S with respect to node n
in the network G is:

IntC(S, n,G) =
C(G,n)∑
j∈N C(G, j)

− C(G\S, n)∑
j∈N C(G\S, j)

• Max interference, global interference and mean interference are similarly de-
fined. Besides the definitions can be easily adapted if we are interested in
removing or adding one or more edges in a network.

6.6 Nodes centrality robustness, dependence and
competition value

As just seen, centralities interference give answer to the question:“which are the
nodes whose functionality is affected by node n?”. Similarly we can analyze the
effects of a node with respect to the entire network using the mean interference
value. But another question can be of interest: if we are interested in a particular
protein we’d like to know if its functionality can be affected by other proteins and
how much. The question is, conversely to interference: “which are the nodes affect-
ing node n?”. To answer to this question we introduce the notion of robustness,
competition and dependence value of a node with respect to a particular centrality.
Given a network G = (N,E) a centrality measure C and a node n ∈ N , we define
the centrality robustness of node n as follow:

RobC(n,G) =
1

maxi∈N|n{|IntC(i, n,G)|}

Robustness depends on the maximum interference value that can affect the cen-
trality value of the node. If it is low, the node can be easily “attacked” by removing
or adding particular nodes. If it is high, the node is “robust”, i.e. there is no node
removal or adding that can affect its centrality value and consequently function-
ality. Notice that we consider absolute value of interference. To consider only the
positive interference we define positive robustness value as:

PosRobC(n,G) =
1

maxi∈N|n{IntC(i, n,G)}

where
IntC(i, n,G) ≥ 0

If low, this value means that the node is “central” because of the presence of
at least another node in the network, if high the central role of the node is not
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dependent on other nodes. Similarly we consider negative interference defining
negative robustness as

NegRobC(n,G) =
1

maxi∈N|n{|IntC(i, n,G)|}

where
IntC(i, n,G) ≤ 0

Low negative robustness means that the central role of the node can be “improved”
removing a particular node from the network. In this sense the two nodes (node
considered and the removed one) are “competitors” in the network. If negative
robustness is high, the central role of the node cannot be improved removing a
particular node from the network.

In some cases it is more intuitive to use the reciprocal of negative and posi-
tive robustness. We define the reciprocal of positive robustness as the dependence
value:

DepC(n,G) = max
i∈N|n

{IntC(i, n,G)}

where
IntC(i, n,G) ≥ 0

If high this value means that node n is dependent on another node to have a central
role in the network, i.e. if that node is removed than node n looses a consistent
part of its central role (its centrality measures decreases). If low, node n does not
strictly depends on the presence of other nodes in the network. Similarly we define
the competition value as the reciprocal of negative robustness:

CompC(n,G) = max
i∈N|n

{|IntC(i, n,G)|}

where
IntC(i, n,G) ≤ 0

If high this value means that node n can consistently improve its central role if
another node is removed from the network, i.e. if that node is removed than node
n improves its central role (its centrality measures increases). In this sense the two
nodes are “competitors” in the network.

Considering robustness, competition and dependence, we are interested in a
single node. In this case the variation due to robustness (or competition or depen-
dence) can be related to the centrality value of the node in the starting network
(the network with no node deletion). Such notions of relative robustness, relative
dependence and relative competition are defined as the fraction of the variation
of the centrality value with respect to the starting centrality value. Given the cen-
trality C and a node n the relative centrality value in the network G is defined as
in section 3.3.

relC(n,G) =
C(n,G)∑

i∈N IntC(i, G)

The relative robustness is
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relRobC(n,G) =
relC(n,G)

maxi∈N|n{|IntC(i, n,G)|}

Similarly for dependence value:

relDepC(n,G) =
DepC(n,G)
relC(n,G)

and competition value:

relCompC(n,G) =
CompC(n,G)
relC(n,G)

Also the total robustness dependence and competition value can be used in order
to characterize the entire network. Total robustness of a node n with respect to
the centrality C in the network G is:

TotRobC(n,G) =
1∑

i∈N|n
IntC(i, n,G)

If low the central role of the node depends on the presence in the network of other
nodes. If high, the central role of the node is quite independent from other nodes
(but the node can have high dependence from one or few nodes). Similarly are
defined the total dependence value:

TotDepC(n,G) =
∑
i∈N|n

IntC(i, n,G)

where
IntC(i, n,G) ≥ 0

and the total competition value:

TotCompC(n,G) =
∑
i∈N|n

|IntC(i, n,G)|

where
IntC(i, n,G) ≤ 0

The role of node centrality robustness, dependence and competition value is shown
in the next example.

Example

Consider the network in figure 6.7 and its betweenness values reported in table
6.8. Node3 and node6 have the highest values of betweenness (25.64), node4 and
node5 presents the third highest value (12). As expected they have a central role
in the network from a “betweenness” point of view. But does their values depend
on other nodes or they are not affected by node deletion? Robustness analysis
of node3 and node4 can answer to this question and are reported respectively in
tables 6.9 and 6.10.
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Fig. 6.7. Node3 and node6 have highest betweenness (25.64). Betweenness value of node4
and node5 is 12.

node name betweenness relative betweenness

node0 0.79 0.0098

node1 0.79 0.0098

node2 0.79 0.0098

node3 25.64 0.3205

node4 12.00 0.1500

node5 12.00 0.1500

node6 25.64 0.3205

node7 0.79 0.0098

node8 0.79 0.0098

node9 0.79 0.0098

total 80.00

Table 6.8. Betweenness value for the network in figure 6.7.

Node3 has higher robustness value (1.4824) than node4 (0.5385). This agree
with considerations that can be done observing the figure 6.7. We can see that
node4 is in the shortest paths connecting node0, node1 and node2 with node7,
node8 and node9. But if we remove node6, node4 looses this role and become a
“peripheral node” connecting only node0, node1, node2 between them. This is
shown in figure 6.8. This can not happen to node3 since it is connected to both
node6 and node5. Node3 has highest dependence on node5 equals to 0.09999. The
relative dependence value is 0.3118 indicating that node3 looses about the 31% of
its starting betweenness value if node5 is removed from the network. Indeed, if we
delete node5 the betweenness value of node3 become the same of node4, since they
connect the same nodes through the same paths: those passing through node6. But
dependence of node4 on node6 is higher (0.1143, with relative dependence 0.7619 i.e
it looses about 76% of its starting betweenness value if node6 is removed from the
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Node3 robustness dependence and competition values
Removed node none nodes 7,8,9 nodes 0,1,2 node4 node5 node6

Betweenness 25.6429 22.0000 16.5000 36.5000 15.0000 35.0000

Relative betweenness 0.3205 0.3667 0.2750 0.5368 0.2206 0.4167

Interference (relative) -0.0461 0.0455 -0.2162 0.0999 -0.0961

Dependence (node5) 0.0999 Rel. dependence 0.3118

Competition(node4) 0.2162 Rel. competition 0.6746

Robustness 4.6247 Rel. robustness 1.4824

Table 6.9. Robustness, dependence and competition values of node3 6.7.

Node4 robustness dependence and competition values
Removed node none nodes 7,8,9 nodes 0,1,2 node3 node5 node6

Betweenness 12.0000 10.0000 7.0000 36.0000 15.0000 3.0000

Relative betweenness 0.1500 0.1667 0.1167 0.4286 0.2206 0.0357

Interference (relative) -0.0167 0.0333 -0.2786 -0.0706 0.1143

Dependence (node6) 0.1143 Rel. dependence 0.7619

Competition (node3) 0.2786 Rel. competition 1.8571

Robustness 3.5897 Rel. robustness 0.5385

Table 6.10. Robustness, dependence and competition values of node4.

Fig. 6.8. Network of figure 6.7 after removing node6. Node4 becomes a peripheral node

network): as previous seen if we remove node6 then node4 becomes a “peripheral”
node and node3 become the only way to connect the “top” of the network with
the “bottom”.

Also the competition value of both nodes is very informative. The highest values
of node3 depends on deletion of node4 and the highest value of node4 depends on



62 6 Network centralities interference

node3. In this sense they are really “competitors” in the network. If we remove
node3 then node4 becomes the only connection for the “top” and “bottom” of the
network. The same for node3 if we remove node4. But node4 competition values
is higher (1.875). This is due to the fact that starting betweenness value of node4
is lower (12) than node3 value. So the increase of betweenness of node4 is higher,
the 185% of the starting value.

6.7 Conclusions

The notion of node centralities interference have been introduced in this chapter.
The main idea is that of considering the relevance of a node with respect to other
nodes measuring the impact that a node has on the centrality values of the oth-
ers. If a node is important in the network its remotion cause high variation in
the centrality values of the other nodes. This approach allows to identify nodes
whose role is strictly dependent on another node in the network. Node centralities
interference answers to the question: “Which are the nodes affected by node n?”.
Interference have been illustrated with some examples and an interference analysis
have been applied to Mapk1 and Prkca in the kino-phosphatome network. Simi-
larly the notion of robustness, dependence and competition value of a node have
been introduced. These notions allow to identify if the central role of a node is
dependent on some other nodes in the network, or if the node is structurally cen-
tral in the network (robust). Robustness answer to the question: “Which are the
nodes affecting node n?”. Further analysis and lab experiments should investigate
the role of this notion in a protein network.
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Abstract Interpretation for dynamic simulation of
pathways

In this chapter we describe the use of abstract interpretation [18], [19], [20] to ana-
lyze dynamic simulations of a biological pathways, through an example of analysis
of the mitotic oscillator pathway [30], [29]. A pathway is a biological network that
consists of a series of chemical reactions occurring within a cell, catalyzed by en-
zymes, to achieve in either the formation of a metabolic product to be used or
stored by the cell, or the initiation of another metabolic pathway. Many of these
pathways are elaborate, and involve a step by step modification of the initial sub-
stance to shape it into the product with the exact chemical structure desired. First
approach to pathways is to simulate their behaviour in order to find properties of
interest [10] but, because of their growing complexity some models that were pro-
posed in the past in computer science for modeling and analyzing software and
concurrent systems, can be used to deal with pathways. We present how some well-
known abstract domains, classically used in static analysis of software can be used
to extract informations from a simulation program. The congruence domain [32]
is used to automatically find oscillations in the proteins concentration, intervals
and constants domains [18], are used to characterize the range of proteins concen-
tration. This allow to execute simulations with a wide range of different starting
parameters, as starting proteins concentration, function parameters and so on, and
to automatically extract the properties of interests. The main result, which open
new possibilities in the field of simulation of biological systems, is that thousands
of simulations with different starting parameters can be done automatically in
a few time extracting information in order to characterize oscillation conditions,
and to guarantee important properties about proteins concentration in such a big
amount of starting values. This can be important for two reasons:

• We can completely characterize starting values of a simulation, identifying the
condition leading the system to particular behaviour as oscillation or concen-
tration values in some range.

• We have a possible solution to the problem of parameters estimation: for most
of pathways kinetics parameters are not or partially available but the behavior
of the system in particular condition is known. So the method can be used to
evaluate with a brute force algorithm some parameters of the system in order
to identifying those parameters satisfying the final behavior.
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Since abstract interpretation has been successful used for analyzing industrial soft-
ware of more than hundreds thousands of statements [12], it seems an appropriate
method for approaching also pathways of similar size. In order to show which can
be the role of abstract interpretation in doing that, we introduce a simple pathways
formalization and we apply it and our analysis to the mitotic oscillator pathway.
Some considerations about the model: we know that abstract interpretation is a
technique that is independent of the model used, since we can apply it to programs
written in different languages and described by different models as automata, hy-
brid systems and so on. So, as in software analysis, where abstract interpretation
can be applied to any model, in system biology the idea is that abstract interpre-
tation should be something for giving more power to all the models just cited. It
is to say, that we can use abstract interpretation for extracting numerical prop-
erties from a pathway, and it is not important if we formalize it using as model
a rewriting systems, a Petri-net, π-calculus, P-systems or something else, because
in a certain sense abstract interpretation can work in an “higher level”: the only
thing we need is a well defined semantics for the model we use. The main idea
is that of starting from a program simulating a pathway behaviour, we extract
the properties of interest by analyzing the program by abstract interpretation:
practically we analyze the simulation program. A preliminary work about this was
presented at PLID 2005 [50] and then presented at EAAI [51] and published on
conference proceedings.

7.1 Preliminaries

7.1.1 Pathways

Cells are considered the fundamental unit of the living organisms. In complex be-
ing, they are divided in classes and have different functions for the system they
belong to. For doing that, the cells necessarily need the ability of interacting with
the environment and among them, and in a certain sense, they are able to re-
ceive and to transmit informations. The only way they have to interact with the
outside is clearly through biochemical reactions between the molecules compound-
ing them. Each different input coming from the environment, produces a set of
chemical reactions in a cell, that are the “answer” of the cell to the input. Those
reactions depend on some parameters, such as the concentration of the reactants
and the functions that regulate the speed of a reaction, and they are organized in
very complex networks, that are called pathways. Usually pathways are modeled
by differential equations, that represents the changes in the concentration of the
molecules of the pathway. This approach is useful and well-studied [56] [59] [30],
and is essentially based on standard numerical techniques for solving differential
equations, as for example the Eulero’s method and similar. Different problems
concern the pathways simulation: the first is that we want to do simulations with
different starting values in order to characterize the pathway’s behavior with re-
spect to these parameters, and such simulations result in a too large amount of
data to be treated without automatic methods; The second is that not always all
the parameters characterizing the pathway are known and we need to infer this
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missing parameters through software simulation; The third is that many exam-
ples of pathways are built by several thousands of molecules and reactions, and
we need new techniques allowing to treat this kind of objects, for automatically
simulate and analyze them. Since a similar amount of data was in the past treated
in software analysis, it is a diffuse opinion that some models that were proposed in
the past in computer science for modeling and analyzing software and concurrent
systems, can be modified for analyzing, modeling and testing pathways, solving in
such a way the complexity problems. All the main models belonging to theoretical
computer science have been proposed for this purpose, for qualitative and quan-
titative analysis. Model checking have been successfully [14] applied to programs
that simulate cells behaviour. This approach can answer to classical question of
model checking tools as “Is it possible that a cell starting from a state satisfy-
ing the property P can reach a state that satisfies the property S?”, or “What
are all the initial states that would lead to a particular final state satisfying the
property P?”. In [24] and [58] the rewrite-system based language MAUDE [15]
is used for modeling a pathway including more than 650 proteins and 500 rules,
and the MAUDE model-checker is used for analyzing the pathways with standard
temporal logic questions. In the same way hybrid systems and automata have
been proposed [4] [3] since they seem to be a good model for representing the
typical behaviour of some biological systems passing from discrete states to other
depending on continuous function. Some other mathematical structures that are
used for studying computer networks and concurrent systems are of large use for
modeling biological systems as the π-calculus model [49], and also its stochastic
version [48], [43], Petri-nets [31] and P-systems [47]. The open question about
these models is only whether they will be able to face the complexity of biological
pathways; it seems that at least some powerful techniques of abstractions will be
needed. Our approach based on simulation of differential equations with numerical
methods uses the abstract interpretation approach to simplify the analysis in order
to facing more complex pathways and a greater numbers of simulation.

7.1.2 Abstract interpretation

The software analysis method we propose, to help the efforts in the direction of
analyzing complex systems as biological pathways, is abstract interpretation [18],
[19], [20]. It is a general theory aiming to approximate the properties of discrete
and continuous dynamical systems. The idea is that of systematically deriving,
from a complex model, a simpler approximate model preserving the properties
that become salient during a simulation or a predictive analysis. It is based on a
simple mathematical structure, that is the Galois insertion: given two Poset (C,≤),
(A,≤) we say that (A,C, α, γ) is a Galois insertion with α : C → A, γ : A → C
if for all a ∈ A and for all c ∈ C we have α(c) ≤ a ⇔ c ≤ γ(a) and α ◦ γ = id.
C is called the concrete domain, A is called the abstract domain, α and γ are re-
spectively the abstraction and concretization functions. The basic concept is this:
instead of calculating the behaviour of a program in a concrete domain, that is not
possible for the well known results about calculability, we calculate this behaviour
in an abstract domain that is defined for the specific property we want to know.
The structure of the Galois insertion is used for passing from concrete to abstract
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domain and back ensuring some useful properties as soundness and some-times
completeness. For pathways simulation and analysis, we use a simplified abstract
interpretation framework, based not on the abstract computation but on the ab-
straction of concrete computation. Abstract computation is needed to ensure the
termination of the analysis. But since we analyze finite simulation the problem of
termination is avoided and abstracting concrete simulations we gain in precision.
A lot of specific domain were presented, for equally specific properties, as finding
the signs of variables, finding if a variable belongs to an interval and find if a
variable belong to a congruence class (for example if the variable x = 5 mod 8).
Other relational abstractions are also able to find numerical relation between vari-
ables in a program. A little review about the most used abstract domains can
be found in [17] remanding to other more detailed works. The power of abstract
interpretation have been demonstrated by some concrete successful example at in-
dustrial level [12], where abstract interpretation was used for analyzing programs
of hundred thousand of statements in a software for airplanes control. This exam-
ple shows how abstract interpretation is a well-founded techniques and more than
a simple mathematical theory.

7.2 Modeling pathways

7.2.1 Pathway definition

We said that a pathway consists of a series of chemical reactions occurring within a
cell. These chemical reaction can be divided in activation and inhibition reactions.
We consider an activation reaction when one enzyme (p1) works as a catalyst of a
reaction that transforms a molecule (that is called a substrate) s in a product (p2).
Some times p1 is not an enzyme but it is a molecule (substrate) whose reaction
with another molecule s produce the protein p2. p1 can also works to inhibit a
reaction that transforms the substrate s in the product p2, so we say that p1

inhibits p2. Graphically, pathways can be represented as direct graphs, in which
the nodes are the molecules, and the edges are the reactions between them. The
edges are represented as continuous arrow if the role of the reaction is activation
and with dashed arrow if its role is of inhibition. Formally we can define a pathway
as a mathematical structure, defined by a set P of proteins (nodes) and by a set
of ordered pairs A ⊆ P × P called edges or actions. Every edge a = (p1, p2) ∈ A
represents a chemical reaction between two molecules. Each reaction represented
by an edge is provided with a reaction speed, that is the speed of production of
a molecule p depending on some functions that can be summarized following this
scheme [56]:

• zero-order reaction: converts substrate into product at a fixed rate independent
of substrate concentration.

• first-order reaction: converts substrate into product at a rate proportional to
substrate concentration.

• second-order reaction: creates product at a rate proportional to either the prod-
uct of two substrate concentrations or the square of a single substrate concen-
tration.
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• higher order reactions are similarly defined.

In other cases, the rate of production of the result of the reaction p depends on
some differential equations, that are in the most of cases of the standard form of
the Michaelis-Menten equation:

d[p]
dt

=
Vmax[s]
[s] + km

The square brackets represents concentrations, so [s] is the concentration of the
substrate s, end d[p] is the variation of the concentration of the protein p, de-
pending on the constant parameters Vmax and km that have to be estimated from
experimental data. These values comes from laboratory studies about the reaction
considered and they are different with respect to different reactions. Some other
reactions are well modeled by the Hill functions:

d[p]
dt

=
[s]n

[s]n +Kn
H

.

As previously, the values of n and KH depend on the reaction and comes from
laboratory studies.

Example 7.1. We can see in figure 7.1 a tipical example of pathway with feedback,
where a product inhibits one of its activators. The protein X3 indeed inhibits

Fig. 7.1. An example of pathway with feedback. Nodes are the molecules, the edges are
the reactions. Continuous arrow are activation reactions and dashed arrow are inhibition
reactions.

the reaction between X5 and X1. This is a typical example of pathway that can
subtend with the proper condition to oscillatory behaviour.

We have an oscillatory behaviour when the concentration amount of a molecule in
a biological phenomenon does not reach a steady value but it oscillates between
a min and a max value. Oscillations have a great importance in biology, since
a lot of systems present this behaviour (for instance the circadian rhythm, the



70 7 Abstract Interpretation for dynamic simulation of pathways

heart pulsation, or the insulin production). In our model to each protein p ∈ P
is associated a variable Xp representing the concentration of p that is activated
(usually expressed in Moles1), i.e. that quantity of protein p that has been activated
by an enzyme and can be used as activator of some other reactions. Sometimes it
is indicated also with the name of the protein between square brackets (ex.: [Xp]);
The value Xp changes according to the differential equation of the pathway. A
configuration or a state of the pathway is given by an assignment of values to the
variables, and can be viewed as a “snapshot” of the system. Formally:

Definition 7.2. State of a pathway. Given a n−protein pathway PW a config-
uration or a state of PW is represented as a vector s =< h1, . . . , hn > where
hi, i = 1 . . . n are the concentration values assigned respectively to the protein
p1 . . . pn of the pathway.

7.2.2 The pathway simulation

We suppose that the system is provided with a counter increasing at each turn
from a configuration to another in order to have information about the temporal
evolution of the model. To simulate the behaviour of the system we use the well
known Euler’s method: We start from an initial state s0, corresponding to a rea-
sonable initial assignment of values to the variables, and with the correct values for
the constants of the differential equations coming from experimental data. Then,
at each small step in time, the concentrations are substituted in the differential
equations for calculating the rate of production of each protein pi of the pathway.
The rate of change is multiplied by the size of the time step and the results are
added to the respective concentrations obtaining the new values of concentration
for each protein pi, and so the successive configuration. The procedure is repeated
and if the time step chosen is sufficiently small we obtain a sequence of states:

s0 → s1 → s2 → . . .

simulating the behaviour of the system. The symbol → indicates that the state si
is obtained from si−1 through one step of the method described above. At each
step, we have to calculate the new concentrations and to update the respective
variables of the system. In figure 7.2 is represented the mitotic oscillator pathway
and the result of a simulation with the Eulero’s method, according with results
in [29]. In the rest of the chapter, if not differently specified, the starting values of
the examples are that of this figure.

7.2.3 Semantics for pathways

For correctly applying abstract interpretation to biochemical pathways we have to
formalize some concepts. We need a collecting semantics for the pathway so, first
of all, we define the lub of two state of a pathway.

1 The mole is the SI term identifying the number of particles in a given amount of
matter. It is a dimensionless quantity (meaning a number without units) numerically
equal to Avogadro’s number (= 6.02214151023).
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Fig. 7.2. The mitotic oscillator pathway. C represents cycline, M is cdc2-kinase and X
is the protease. The negative feedback structure is clearly visible. In the right the be-
haviour of the mitotic oscillator pathway, with starting values: vi = 0.025µMmin−1, vd =
0.25µMmin−1,Kd = 0.02µM, kd = 0.01min−1, VM1 = 3min−1, V2 = 1.5min−1, VM3 =
1min−1, V4 = 0.5min−1,Kc = 0.5µM,K1 = 0.01,K2 = 0.01,K3 = 0.01,K4 = 0.01;C =
0.01µM,M = 0.01, X = 0.01. The method used is Eulero’s with a step of 0.01.

Definition 7.3. Given two states si =< h1,i, . . . , hn,i > and sl =< h1,l, . . . , hn,l >
we define

si ∨ sl =< h1,i ∪ h1,l, . . . , hn,i ∪ hn,l >

Definition 7.4. Given a pathway PW and a starting state (or configuration) s0
we can define the semantics of pathway [[PW ]] : Rn → ℘(R)n as:

[[PW ]]t0,tf (s0) =
i=tf∨
i=t0

si, where si → si+1.

t0, tf ∈ N are respectively the starting and ending time of the semantics. It
means that program semantics is considered only from time t0 to time tf and
not for the entire simulation time. If L is a set of variable of the pathway, we use
[[PW ]]t0,tfL (s0) meaning the semantics of the pathway restricted to L.

Obviuosly, if we are interested in the values of the variables during the complete
simulation, we have t0 = 0 and tf equals to the simulation time, so they can be
omitted. Therefore [[PW ]](s0) is the set of all the values that each variable can
have during the simulation. If t0 = 0 and tf = T the semantics defined above
correspond to the collecting semantics of the following simulation program in the
program point P1:

s0=h1...hn; time := 0;
While time <= T do

-calulate the new values for h1...hn
(according with the simulation method)
-increment time
-update h1...hn

P1:
endWhile
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Note. Because of our definition of pathway simulation our semantics based model
is completely independent from the simulation method used. In our example we
use the Eulero’s method but also Runge-Kutta can be used. Besides this frame-
work can also applied to methods not based on ordinary differential equations.
Some preliminary tests have been successfully done using P-systems [47]. Since
abstract interpretation can be applied to any computer programs, our abstract
interpretation based analysis can be applied to any simulation program.

7.2.4 Abstract semantics for pathways

Once the semantics have been defined, we approximate it through abstract inter-
pretation techniques. Usually we need only to choose the proper abstract domain
and the abstraction function α. Classically, the concrete values and the concrete
operations are respectively replaced by abstract values and abstract operations.
This is the normal use of abstract interpretation theory which guarantees the
correctness of the abstract operations used and the termination of the analysis.
Correctness of an abstract function f# is so defined: α(f(x)) ⊆ f#(α(x)), where
x is the element of the concrete domain, f is the concrete function, and α is the
abstraction function. Analyzing pathways we don’t need to use abstract interpreta-
tion in such classical way, i.e. we don’t need to use abstract operators. The reason
is that this kind of approximation looses to many informations i.e. it is not enough
precise [51]. Thereby, in order to make our analysis more precise, we will abstract
concrete computations. This is justified by the fact that our simulation are finite
in time and we do not need to use abstract interpretation to avoid the termination
problem of the program analysis. The new way we use abstract interpretation is
that of having an intelligent reader that is able to observe and analyze data com-
ing from simulations that are too complex for human mind. This happens in two
cases: the first is when we have a simulation of a pathway with thousand of nodes
and we want to extract properties for many of this nodes, the second is when we
have pathway not so large, as the mitotic oscillator pathway of figure 7.2, but we
want to infer properties for thousands of different starting values. In both cases is
not possible to extract information from the model without automatic tools. At
present, the strategy used is to simulate a pathway and to show with a graphical
output the concentration behaviour with respect to time as in figure 7.2. This
not allow to characterize completely the pathway behaviour since the number of
simulation we can do is limited. This limit is avoided with the abstractions we
are going to use. The abstract semantics we consider, obtained abstracting the
collecting semantics, is formalized in the next definitions.

Definition 7.5. Let α : R → A be the abstract function defined on the abstract
domain A. Given a state si =< h1,i, . . . , hn,i > we define α : Rn → An as:

α(si) =< α(h1,i), . . . , α(hn,i) >

Definition 7.6. Given two states si =< h1,i, . . . , hn,i > and sl =< h1,l, . . . , hn,l >
and the abstract function α : Rn → An we define:

α(si) ∨ α(sl) =< α(h1,i) ∪ α(h1,l), . . . , α(hn,i) ∪ α(hn,l) > .
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So the abstract semantics of the pathway PW can be defined:

Definition 7.7. Given a starting state s0 we define

α([[PW ]]t0,tf (s0)) =
i=tf∨
i=t0

α(si), where si → si+1.

Also this semantics can be restricted to a set of variables L. This semantics is
equivalent to execute the concrete calculus and then to abstract the collecting
semantics of the variables at each step. The difference with respect to the ab-
stract semantics classicaly used is that here no abstract functions are used. As
consequence of the properties of abstract interpretation we have the correctness
properties for the simulation from a starting state s0:

[[PW ]](s0) ⊆ α([[PW ]](s0))

This ensures that abstracting the semantics we loose informations in a “good” way,
since we will never find wrong properties about the concrete computation but at
most a superset of properties. So we can be not precise, but never wrong.

7.3 Abstract interpretation based analysis of pathways

Through some simple examples, we can now explore how abstract interpretation
is useful in analyzing biochemical pathways, that is the kernel of this chapter. The
results are obtained through an analyzer built in the Java language. The analyzer,
take in input a Java class describing the pathway and a simulation step (in our case
a single step of Eulero’s computation for the pathway), it computes the concrete
semantics (i.e. the simulation) and the output semantics as defined in the previous
section (definition 7.7). To sum up, the steps of the analysis are:

• The simulation is computed according to the simulation method used
• The collecting semantics of the computation is stored
• The collecting semantics from time t0 to time tf of the simulation is abstracted

according to the chosen domain.

The abstract analysis we consider are: congruence analysis, interval analysis, con-
stant analysis.

7.4 A real world example: the mitotic oscillator

We apply the abstract interpretation based analysis to the mitotic oscillator path-
way. The mitotic oscillator pathway is the one governing the crucial process of
the cell division. This pathway is important for its regular oscillatory behaviour
meaning that the concentration amount of molecules does not reach a steady state
value, but it oscillate between a min and a max value with a constant period,
regulating the fact that in dividing cells mitosis recurs at regular intervals. All
the data about the mitotic oscillator comes from the works of Goldbeter [30] [29].
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Oscillations have a great importance in biology, since there are a lot of systems
that presents this kind of behaviour, as for example the circadian rythm, the heart
pulsation, or the insuline production. We can see in figure 7.2 a simple rapresenta-
tion of the mitotic oscillator pathway. Cycline (C) activates cdc2-kinase (X) which
activate the protease (M) which inhibits cycline. This kind of structure where a
product inhibits one of its activators is called negative feedback structure and
usually subtends to an oscillator behaviour.

According with the Goldbeter analysis, the corresponding differential equations
regulating the pathway are:

d[C]
dt

= vi − vdX
C

Kd + C
− kdC, (7.1)

d[M ]
dt

= V1
1−M

K1 + (1−M)
− V2

M

K2 +M
, (7.2)

d[X]
dt

= V3
1−X

K3 + (1−X)
− V4

X

K4 +X
(7.3)

with

V1 =
C

Kc + C
VM1, V3 = MVM3.

Example 1: congruence domain, finding pathways oscillations

The first example introduces the use of the congruence domain [32]. Formally, if A
is a set of natural numbers we say that A ∈ [k + nZ], k, n ∈ N if ∀a ∈ A we have
a = k mod n. The abstraction function α abstract the set A in the corresponding
congruence class where n is as large as possible. If no congruence class can be
found for the set A it is abstracted in the > element meaning that A does not
belong to a congruence class. The mitotic oscillator we consider is well known for
the regularity precision of its oscillations, and an abstract interpretation analysis
based on the congruence domain can automatically capture such a behavior, that
is strictly related to a periodic changing on the concentrations values. The idea is
simple but powerful. For each protein P we introduce a new variable called TimeP
representing at each moment the last time in which the derivative of the function
representing concentration of P passes from positive to negative. In this moment
the concentration of P stops its growing and begin to decrease and an oscillation
occurs. If the period of oscillation is constant then the collecting semantics of
the variable TimeP belong obviously to a congruence class [k + nZ] where n is
the period of oscillation. A possible oscillatory behaviour of the mitotic oscillator
pathway is shown in figure 7.3. The starting values are the same of figure 7.2
except for parameter V2 = 0.5. We focus the attention to cycline concentration.
The collecting semantics of the variable TimeC , as in definition 7.4, starting at
time 1 until time 100, results on the next set of values:

[[PW ]]1,100|TimeC
(s0) = {7, 19, 31, 43, 55, 67, 79, 91}

If we abstract this sequence according to the congruence domain abstract function,
the result is the next congruence class:
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Fig. 7.3. The behaviour of the mitotic oscillator pathway with V2 = 0.5 and simulation
time = 100.

α([[PW ]]1,100|TimeC
(s0)) = α({7, 19, 31, 43, 55, 67, 79, 91}) = 7 + 12Z,

This means that Cyclin concentration oscillates from time 7 with a period of 12.
The oscillatory behaviour is automatically captured by our analysis. The abstrac-
tion function is used as a clever reader of long and complex series of numbers, and
is able to extract the regularity in a set representing the collecting semantics of
a variable. Additional information can be request about the oscillations, as time
of the first oscillation, time of last oscillation, and number of oscillations. So the
complete output of our Java-tool analysis is given by:

Time_C = 7 + 12Z
Oscillations number = 8 first oscillation = 7 last oscillation = 91

The power of this method is that now we can try all the simulations we want. We
are no more dependent from a graphical output and we can see how the oscillation
behavior changes if we change some starting parameters, for a very large range
of values. For example we can answer to this question: “how does the oscillation
change if we change the values of the parameters VM1 and V2 in the equations
of the model?” In the table 7.1 is reported the oscillation period of the cyclin,
obtained by our simulation analysis changing VM1 from 0.1 to 3.0, with a step of
0.1 and changing V2 from 0.1 to 3 with a step of 0.1. The starting time of analysis
is 30 and the ending time of analysis is 100. The results for the value of V2 from 2.3
to 3.0 is not reported in the table for problem of space since for this values of V2 we
have no oscillation for all the values of VM1. The time requested for the analysis is
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VM1 \ V2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
0.1 N N N N N N N N N N N N N N N N N N N N N N
0.2 N N N N N N N N N N N N N N N N N N N N N N
0.3 36 N N N N N N N N N N N N N N N N N N N N N
0.4 28 48 N N N N N N N N N N N N N N N N N N N N
0.5 24 35 N N N N N N N N N N N N N N N N N N N N
0.6 22 28 42 N N N N N N N N N N N N N N N N N N N
0.7 21 24 34 43 N N N N N N N N N N N N N N N N N N
0.8 20 22 29 38 42 N N N N N N N N N N N N N N N N N
0.9 19 20 25 34 38 N N N N N N N N N N N N N N N N N
1.0 18 19 23 29 34 37 N N N N N N N N N N N N N N N N
1.1 18 18 21 26 31 34 35 N N N N N N N N N N N N N N N
1.2 17 17 19 24 28 32 33 34 N N N N N N N N N N N N N N
1.3 17 16 18 21 26 29 31 32 N N N N N N N N N N N N N N
1.4 17 16 17 20 24 28 30 31 31 N N N N N N N N N N N N N
1.5 16 15 17 19 22 26 28 29 30 29 N N N N N N N N N N N N
1.6 16 15 16 18 21 24 26 28 29 29 29 N N N N N N N N N N N
1.7 16 14 15 17 20 23 25 26 27 28 28 N N N N N N N N N N N
1.8 16 14 15 17 19 21 24 25 26 27 27 27 N N N N N N N N N N
1.9 16 14 14 16 18 20 23 24 25 26 26 26 27 N N N N N N N N N
2.0 15 14 14 15 17 19 21 23 24 25 25 25 26 26 N N N N N N N N
2.1 15 14 14 15 16 18 20 22 23 24 24 25 24 25 N N N N N N N N
2.2 15 13 13 14 16 18 20 21 23 23 24 24 24 24 24 N N N N N N N
2.3 15 13 13 14 15 17 19 21 22 22 23 23 24 24 23 24 N N N N N N
2.4 15 13 13 14 15 16 18 20 21 22 22 23 23 23 23 24 24 N N N N N
2.5 15 13 13 13 14 16 17 19 20 21 22 22 22 23 23 22 22 N N N N N
2.6 15 13 12 13 14 15 17 18 20 21 21 21 22 22 22 22 22 23 N N N N
2.7 15 12 12 13 13 15 16 18 19 20 20 21 21 21 21 22 21 20 23 N N N
2.8 15 12 12 12 13 14 16 17 19 20 20 20 21 21 21 21 21 21 21 23 N N
2.9 15 12 12 12 13 14 15 17 18 19 19 20 20 20 21 21 21 21 20 21 N N
3.0 15 12 12 12 13 14 15 16 17 18 19 19 20 20 20 20 20 20 20 20 21 N

Table 7.1. The oscillation period of cyclin concentration with respect to the values of
the parameters VM1 and V2. N means that no oscillation occurs. Time of analysis is from
30 to 100.

18885 millisecond, in a pentium III, 451Mhz with 322Mb of memory. In less than
20 seconds we have characterized the oscillator behaviour of 900 simulations with
different starting parameters!

Example 2: Interval domain

The second example concerns the well-known intervals domain, introduced for the
first time by Cousot&Cousot [18] in 1977. One of the most important informations
we have to extract from a pathway, is the one concerning the values of concentra-
tion, particularly we want to know if a particular protein concentration remains
in a certain range of values. Given a set A of rational the abstraction function α
abstracts A in an interval of the form [a b] where a and b are respectively the min-
imum and the maximum values in A. Table 7.2 represents an example of results
of interval analysis where VM1 changes from 0.1 to 1.0, with a step of 0.1 and V2

changes from 0.1 to 3 with a step of 0.1. The execution time is 3265 milliseconds
(pentium III, 451Mhz 322Mb memory), the analysis starts at time 20 and stops at
time 100. Looking at the table we are guaranteed that the protein concentrations
remain in the intervals indicated for all the simulation time. Something better can
also be done if we are wondering if the cyclin goes over a certain value. Suppose
that our question is: which are the values of VM1 and V2 for which the cyclin
concentration goes over the value of 1.5? The results are reported in the table
7.3 obtained in 19786 milliseconds (pentium III, 451Mhz 322Mb memory). So we
have characterized in few seconds the starting values of VM1 (from 0.1 to 3) and
V2 (from 0.1 to 1.7) for which cyclin concentration goes over 1.5, and a second
important result is found.
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VM1 \ V2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57]
0.2 [0.0 0.81] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57]
0.3 [0.0 0.48] [0.46 1.21] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57]
0.4 [0.0 0.36] [0.01 0.71] [0.46 1.52] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57]
0.5 [0.0 0.29] [0.0 0.51] [0.3 0.92] [0.46 1.55] [0.46 1.57] [0.46 1.57] [0.46 1.57] [0.46 1.57]
0.6 [0.0 0.25] [0.0 0.41] [0.05 0.66] [0.46 1.13] [0.46 1.56] [0.46 1.57] [0.46 1.57] [0.46 1.57]
0.7 [0.0 0.22] [0.0 0.34] [0.01 0.52] [0.26 0.81] [0.46 1.33] [0.46 1.56] [0.46 1.57] [0.46 1.57]
0.8 [0.0 0.2] [0.0 0.3] [0.0 0.44] [0.1 0.63] [0.46 0.95] [0.46 1.5] [0.46 1.56] [0.46 1.57]
0.9 [0.0 0.18] [0.0 0.27] [0.0 0.38] [0.03 0.53] [0.26 0.75] [0.46 1.09] [0.46 1.54] [0.46 1.56]
1.0 [0.0 0.16] [0.0 0.24] [0.0 0.33] [0.01 0.45] [0.14 0.62] [0.44 0.86] [0.46 1.23] [0.46 1.55]

Table 7.2. The concentration intervals of cycline with respect to parameters VM1 and
V2. Analysis time is from 20 to 99.

VM1 \ V2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.1 yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
0.2 0.81 yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
0.3 0.48 1.21 yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
0.4 0.36 0.71 yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
0.5 0.29 0.51 0.92 yes yes yes yes yes yes yes yes yes yes yes yes yes yes
0.6 0.25 0.41 0.66 1.13 yes yes yes yes yes yes yes yes yes yes yes yes yes
0.7 0.22 0.34 0.52 0.81 1.33 yes yes yes yes yes yes yes yes yes yes yes yes
0.8 0.2 0.3 0.44 0.63 0.95 1.5 yes yes yes yes yes yes yes yes yes yes yes
0.9 0.18 0.27 0.38 0.53 0.75 1.09 yes yes yes yes yes yes yes yes yes yes yes
1.0 0.16 0.24 0.33 0.45 0.62 0.86 1.23 yes yes yes yes yes yes yes yes yes yes
1.1 0.15 0.22 0.3 0.4 0.53 0.71 0.96 1.37 yes yes yes yes yes yes yes yes yes
1.2 0.14 0.2 0.27 0.36 0.46 0.6 0.8 1.07 1.49 yes yes yes yes yes yes yes yes
1.3 0.13 0.19 0.25 0.32 0.42 0.53 0.68 0.88 1.18 yes yes yes yes yes yes yes yes
1.4 0.13 0.18 0.23 0.3 0.38 0.47 0.59 0.75 0.97 1.28 yes yes yes yes yes yes yes
1.5 0.12 0.17 0.22 0.28 0.34 0.43 0.53 0.66 0.83 1.06 1.39 yes yes yes yes yes yes
1.6 0.11 0.16 0.21 0.26 0.32 0.39 0.48 0.59 0.72 0.9 1.14 1.48 yes yes yes yes yes
1.7 0.11 0.15 0.19 0.24 0.3 0.36 0.44 0.53 0.64 0.79 0.97 1.23 yes yes yes yes yes
1.8 0.1 0.15 0.18 0.23 0.28 0.34 0.4 0.48 0.58 0.7 0.85 1.05 1.31 yes yes yes yes
1.9 0.1 0.14 0.18 0.22 0.26 0.31 0.37 0.45 0.53 0.63 0.76 0.91 1.12 1.4 yes yes yes
2.0 0.1 0.14 0.17 0.21 0.25 0.29 0.35 0.41 0.49 0.58 0.68 0.81 0.98 1.19 1.48 yes yes
2.1 0.09 0.13 0.16 0.2 0.23 0.28 0.33 0.39 0.45 0.53 0.62 0.73 0.87 1.04 1.26 yes yes
2.2 0.09 0.13 0.16 0.19 0.22 0.26 0.31 0.36 0.42 0.49 0.57 0.67 0.78 0.92 1.1 1.33 yes
2.3 0.09 0.12 0.15 0.18 0.21 0.25 0.29 0.34 0.39 0.46 0.53 0.61 0.71 0.83 0.98 1.16 1.41
2.4 0.08 0.12 0.14 0.17 0.2 0.24 0.28 0.32 0.37 0.43 0.49 0.57 0.65 0.76 0.88 1.03 1.23
2.5 0.08 0.12 0.14 0.17 0.2 0.23 0.27 0.31 0.35 0.4 0.46 0.53 0.6 0.69 0.8 0.93 1.09
2.6 0.08 0.11 0.14 0.16 0.19 0.22 0.25 0.29 0.33 0.38 0.43 0.49 0.56 0.64 0.74 0.85 0.98
2.7 0.08 0.11 0.13 0.16 0.18 0.21 0.24 0.28 0.32 0.36 0.41 0.46 0.53 0.6 0.68 0.78 0.89
2.8 0.08 0.11 0.13 0.15 0.18 0.2 0.23 0.27 0.3 0.34 0.39 0.44 0.5 0.56 0.63 0.72 0.82
2.9 0.07 0.1 0.12 0.15 0.17 0.2 0.23 0.26 0.29 0.33 0.37 0.42 0.47 0.53 0.59 0.67 0.76
3.0 0.07 0.1 0.12 0.14 0.17 0.19 0.22 0.25 0.28 0.31 0.35 0.4 0.44 0.5 0.56 0.63 0.7

Table 7.3. The max values of the cyclin concentration with respect to the parameters
VM1 and V2. Time of analysis is from 20 to 99. ‘yes’ means that concentration is greater
than 1.5.

Example 3: Constant domain

With the last analysis, we want now to characterize the constant behaviour of
some proteins concentration, i.e. we want to know if a protein concentration is
constant during a simulation. The constants domain, used in software analysis to
find if a variable assume a constant value during the execution of a program is
what we need. An abstraction analysis on the constants domain is able to find if
a sequence of values is constant; a set of rational numbers A is abstracted in the
value x ∈ Q if ∀a ∈ A, a = x, i.e. x is the only element of A, it is abstracted in the
> element otherwise. It seems simple, but for thousands of values we can not do it
without such an automatic tool. The values in A can also be rounded in order to
verify if the values are constant within some tolerance limits. For example, the set
{1.176158945472801, 1.176158969592738, 1.176158994270660, 1.1761590195060,
1.176159045298546} if rounded at the fourth decimal number is constant and re-
sults in the value 1.1761. Looking at the table 7.3, we notice that for some values
of VM1 and V2 the concentration of cyclin goes over the value 1.5. We may ask
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Fig. 7.4. A possible behaviour of the mitotic oscillator pathway: proteins concentration
goes to constant values with VM1 = 1.7, V2 = 1.2 and simulation time of 300.

if it takes some constant values in those cases. This consideration is supported
by the results in figure 7.3, where after few time the reactants concentration be-
come constant. So the question is: “are there some values of VM1 and V2 for which
the concentration of cyclin remains constant from time 250 to 300?” Table 7.4,
obtained in 49034 milliseconds (pentium III, 451Mhz 322Mb memory) is the an-
swer. Other interesting consideration can be done using the notion of abstract

VM1 \ V2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.6 N N N N N N N N N N N N N N N N N N N N
0.7 N N N N N N N N N N N N N N N N N N N N
0.8 N N N N N 1.46 N N N N N N N N N N N N N N
0.9 N N N N N N 1.68 N N N N N N N N N N N N N
1.0 N N N N N N N 1.89 N N N N N N N N N N N N
1.1 N N N N N N N 1.3 2.07 N N N N N N N N N N N
1.2 N N N N N N N N 1.46 N N N N N N N N N N N
1.3 N N N N N N N N N 1.61 N N N N N N N N N N
1.4 N N N N N N N N N 1.22 1.75 N N N N N N N N N
1.5 N N N N N N N N N N 1.34 1.89 N N N N N N N N
1.6 N N N N N N N N N N 1.08 1.46 2.01 N N N N N N N
1.7 N N N N N N N N N N N 1.18 1.57 N N N N N N N
1.8 N N N N N N N N N N N N 1.27 1.68 N N N N N N
1.9 N N N N N N N N N N N N N 1.36 1.79 N N N N N
2.0 N N N N N N N N N N N N N 1.14 1.46 1.89 N N N N
2.1 N N N N N N N N N N N N N N 1.22 1.55 1.98 N N N
2.2 N N N N N N N N N N N N N N N 1.3 1.64 N N N
2.3 N N N N N N N N N N N N N N N 1.12 1.38 1.72 N N
2.4 N N N N N N N N N N N N N N N N 1.19 1.46 1.81 N
2.5 N N N N N N N N N N N N N N N N N 1.26 1.53 1.89

Table 7.4. The constant cyclin behaviour with respect to the parameters VM1 and V2.
Time of analysis is from 250 to 300. ‘N’ means that no constant concentration was found.
The constant value of cyclin concentration is rounded to the second decimal.
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interference for biological pathways introduced in the next section.

7.5 Abstract interference for biological pathways

In this section we introduce the notion of abstract interference for biological path-
way. The aim is to characterize results of dynamic simulations as seen in the
previous section in terms of interference as defined by Goguen [28]. Given h and l
variables of a Program P , we can say that h interfere with l if:

∃h1, h2 ∈ H, l1 ∈ L, h1 6= h2 :

[|P |]l(h = h1, l = l1) 6= [|P |]l(h = h2, l = l1),

where H is the domain of the variable h, L is the domain of l and where we
mean with [|P |]l(h = h1, l = l1), the semantics of the program P restricted to the
variable l starting from a generic starting state where h has h1 as value and l has l1
as value. So, if changes on starting values of variable h has effects on final value of
variable l we have interference from h to l. In our pathway simulations the variable
h can be a starting concentration value of a protein or a constant parameters of
the Michaelis-Menten equation, and variable l can be the concentration value of
another protein. As example we refer to the pathway with feedback of figure 7.1.
Differential equation characterizing the pathway are those previously defined:

d[X1]
dt

= 10XK
3 X5 − 5X0.5

1 ,
d[X2]
dt

= 5X0.5
1 − 10X0.5

2 ,

d[X3]
dt

= 5X0.5
2 − 1.25X0.5

3 ,
d[X4]
dt

= 5X0.5
2 − 1.25X0.5

3 , X5 = 0.5

The values for the initial state of concentration are the following:

x1 = 1.1, X2 = 0.5, X3 = 0.9, X4 = 0.75,

In figure 7.5 the pathway simulation is shown. Notice that changing the value
of K from 0 to −16 the behaviour of the pathway completely changes. From an
“interference” point of view we can say that variable K interfere with the vari-
ables X1, X2, X3, X4 of the simulation program. In this way we have characterize
pathway simulation as variable interference. But we can go beyond applying the
interval analysis on variable X3. The result is that with K = 0 the variable X3 is
in the interval [0.648 0.912], and with K = −16 the variable X3 is in the interval
[0.899 1.220]. So using abstract interpretation we can say that variable K interferes
with the property of variable X3 of being in such an interval. The idea of charac-
terizing variable interference in terms of abstract properties have been introduced
in program security [26] where interference of properties of variables is introduced.
Similarly, we introduce the notion of abstract interference for biological pathways.

Definition 7.8. Abstract interference 1 Given the pathway PW and the vari-
able h and l, we say that h interfere with l with respect to the property α if

∃h1, h2 ∈ H, l1 ∈ L, h1 6= h2 :

α([|PW |]l(h = h1, l = l1)) 6= α([|PW |]l(h = h2, l = l1)),
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Fig. 7.5. On the left protein concentration with K=0, on the right with K=-16

So, in our example if α is the abstraction on the intervals domain, we say that K
interferes with the variable X3 with respect to the property α since we have:

α([|FP |]X3(K = 0, X3 = ⊥)) = [0.648 0.912]

6=

α([|FP |]X3(K = −16, X3 = ⊥)) = [0.899 1.220]

So, changing the value of the variable K we interfere with the abstract property
of the variable X1 of being in a particular interval. But similarly to abstract
interference used in program security, we can observe abstract properties of both
the variables. So we introduce a second definition for abstract interference where
we consider the abstract property φ and the abstract property α

Definition 7.9. Abstract interference 2
Given the pathway PW and the variables h and l, the property φ of the variable

h interferes with l with respect to the property α if:

∃h#
1 , h

#
2 ∈ φ(H), l1 ∈ L, h#

1 6= h#
2 :

α([|PW |]l(h#
1 , l1)) 6= α([|PW |]l(h#

2 , l1))

In our example we consider α as the constant abstraction φ the interval abstrac-
tion. We abstract the starting concentration of X1 and we evaluate its interference
with starting concentration of X2. We find that the property of X1 of being in the
interval [0.1 2.8] interfere with the property of the variable X2 of being constant
after 3 seconds with a constant value of 0.25. Indeed we have

α([|FP |]X2(X1 ∈ [0.1 2.8], X2 = 0.5)) = 0.25

6=

α([|FP |]X2(X1 ∈ [0.1 2.9], X2 = 0.5)) = >

Also the interference between variables properties have been characterized.
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7.5.1 Abstract interference and mitotic oscillator

Thanks to abstract interference, deeper considerations can be done regarding the
example of the mitotic oscillator.

• Looking to table 7.2, if VM1 = 0.1 the V2 property of being in the interval
[0.1 0.8] has no interference with the property of cyclin concentration of being
in the interval [0.1 1.57].

• In table 7.3 if VM1 ∈ [2.3 3.00] the property V2 ∈ [0.1 1.7] has no interference
with the cyclin property of remaining in the interval [0.07 1.41]

• Looking at the same table, if VM1 = 1.6, the property V2 ∈ [1.1 1.7] has
interference with cyclin property of being in [0.07 1.5]

• If V2 = 0.1, the property VM1 ∈ [2 3] has no interference with the property of
cyclin of oscillating with a period of 15.

7.6 Conclusions

A possible use of the abstract interpretation theory on the simulation of biological
pathways have been presented, particularly the abstraction on constants, intervals
and congruences domains. We have shown how they can be used for extracting
automatically properties about oscillatory behaviour and proteins concentration
from thousands of simulations in few seconds. The advantages of this techniques
are the following:

• The procedure is completely automated. So it is also simple to explore a large
range of values to verify the desired property. For example, if you want to try
one thousand of starting values for a variable, without abstract interpretation
analysis you have to analyze one thousand of resulting graphs. With this kind of
analysis the extraction of the properties of interest can be done automatically.

• We can set the precision we want, and we have obviously more precision than
seeing graphical output. For example we have found the precise time from
where a concentration value become constant that is not an information we can
extract from a graphical output. Besides, we have automatically the output
for all the proteins of the pathway: running one time our analysis we know
immediately which proteins have the desired property.

• The method can be applied with no difficulties to pathways of thousand of pro-
teins: abstract interpretation has been used to analyze programs of more than
hundreds thousands of statements [12]. A pathway with thousands of proteins is
only a program with thousands of variables to analyze. If the simulation model
is well studied (differential equation or other) we can extract automatically the
properties of all the proteins in one simulation.

The interactions between proteins in a pathway have been characterized with the
notion of interference and abstract interference between variables [26], meaning
that abstractions can also be applied to input parameters. Other abstract domains
can be used to capture these kind of relations between input and output variables.
For example in table 7.1 it seems to be a relation between VM1 and V2 that cause
the oscillation of cyclin, and such a relation should be captured by polyhedral
analysis [21].





8

Conclusions

This thesis, treating both topological and dynamic points of view, concerns sev-
eral aspects of biological networks analysis. Regarding the topological analysis of
biological networks, the main contribution is the node-oriented point of view of
the analysis. It means that instead of concentrating on global properties of the
networks, we analyze them in order to extract properties of single nodes. An ex-
cellent method to face this problem is to use node centralities. Node centralities
allow to identify nodes in a network having a relevant role in the network struc-
ture. This can not be enough if we are dealing with a biological network, since
the role of a protein depends also on its biological activity that can be detected
with lab experiments. Our approach is to integrate centralities analysis and data
from biological experiments. A protocol of analysis have been produced, and the
CentiScaPe tool for computing network centralities and integrating topological
analysis with biological data have been designed and implemented. CentiScaPe
have been applied to a human kino-phosphatome network and according to our
protocol, kinases and phosphatases with highest centralities values have been ex-
tracted creating a new subnetwork of most central kinases and phosphatases. A
lab experiment established which of this proteins presented high activation level
and through CentiScaPe the proteins with both high centrality values and high
activation level have been easily identified. The notion of node centralities inter-
ference have also been introduced to deal with central role of nodes in a biological
network. It allow to identify which are the nodes that are more affected by the
remotion of a particular node measuring the variation on their centralities values
when such a node is removed from the network. The application of node centralities
interference to the human kino-phosphatome revealed that different proteins affect
centralities values of different nodes. Similarly to node centralities interference, the
notion of centrality robustness of a node is introduced. This notion reveals if the
central role of a node depends on other particular nodes in the network or if the
node is “robust” in the sense that even if we remove or add other nodes the central
role of the node remains almost unchanged. Further studies are needed to com-
pletely characterize the biological meaning of each centralities and to evaluate new
analysis using node centralities interference and node centralities robustness. Lab
experiments similar to the one of chapter 5 should be done to relate interference
values and activation level of proteins.
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The dynamic aspects of biological networks analysis have been treated from an
abstract interpretation point of view. Abstract interpretation is a powerful frame-
work for the analysis of software and is excellent in deriving numerical properties
of programs. Dealing with pathways, abstract interpretation have been adapted to
the analysis of pathways simulation. Intervals domain and constants domain have
been succesfully used to automatically extract information about reactants con-
centration. The intervals domain allow to determine the range of concentration
of the proteins, and the constants domain have been used to know if a protein
concentration become constant after a certain time. The other domain of anal-
ysis used is the congruences domain, that if applied to pathways simulation can
easily identify regular oscillating behaviour in reactants concentration. The use
of abstract interpretation allows to execute thousands of simulation and to com-
pletely and automatically characterize the behaviour of the pathways. In such a
way it can be used also to solve the problem of parameters estimation where miss-
ing parameters can be detected with a brute force algorithm combined with the
abstract interpretation analysis. The abstract interpretation approach have been
succesfully applied to the mitotic oscillator pathway, characterizing the behaviour
of the pathway depending on some reactants. To help the analysis of relation be-
tween reactants in the network, the notions of variables interference and variables
abstract interference have been introduced and adapted to biological pathways
simulation. They allow to find relations between properties of different reactants
of the pathway. Using the abstract interference techniques we can say, for instance,
which range of concentration of a protein can induce an oscillating behaviour of
the pathway. This part of the work can be enriched also with other domain and
with further example of analysis.
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