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ABSTRACT 

Colonization by Pseudomonas aeruginosa (Pa) is a hallmark of lung disease in cystic fibrosis (CF), 

where microaerobic conditions develop as a consequence of disease progression. Conditioned 

medium (CM) obtained from Pa clinical strain AA2, unlike the CM from laboratory strain PAO1, 

induces in airway epithelial cells IL-8 mRNA in both aerobic and microaerobic conditions. The 

effect was impaired by protease digestion. Shotgun proteomic analysis (Multidimentional protein 

identification technology: MudPIT) of conditioned medium of PAO1 and AA2 identified 451 and 

235 individual proteins. 

Various proteins were found differentially regulated between strains and culture conditions. Among 

these eleven different proteases were found released by the AA2 strain, while fewer peptides of 

only four of them were detected in the PAO1 strain. Ecotin, a protease inhibitor, was found to be 

highly represented in PAO1 in comparison with AA2 grown in microaerobiosis. These results were 

confirmed by functional assay (zymography) and western blotting. The pattern of expression of 

several proteases and their inhibitor ecotin correlates with pro-inflammatory activity in vitro better 

than other candidate virulence factors. Only 31% of the Pa strains isolates from chronically infected 

CF patients expressed detectable metalloprotease activity while all the isolates derived from 

sporadically infected individuals scored positive (individual strains analyzed: 42, p<0.002). These 

results suggest that high-throughput approaches are critical to unravel the complexity of the pro-

inflammatory microenvironment associated to the presence of Pa and to facilitate the identification 

of key molecules involved in Pa biology/pathology. 

There is considerable interest in the use of azithromycin (AZM) for the treatment of lung disease in 

patients with cystic fibrosis. Although its mechanism of action as an inhibitor of bacterial protein 

synthesis has been well established, it is less clear how AZM ameliorates the lung disease 

associated with P. aeruginosa, which is considered to be resistant to the drug. Modulation of Pa  

virulence factors was suggested as mechanism for AZM beneficial effects in CF patients. We tested 
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the effects of azithromycin on clinical isolate AA2 to establish how this drug might interfere with 

the production of bacterial virulence factors that are relevant to the pathogenesis of airway disease 

in CF patients. We demonstrated that the increase of IL-8 mRNA in CF epithelial cells induced by 

CM from AA2 was significantly reduced when the clinical strain was grown in the presence of 

AZM, suggesting that this macrolide reduces Pa pathogenicity. In the attempt to gain information 

on the identity of the molecules released by Pa clinical strain before and after treatment with AZM 

we applied MudPIT. We found 5 upregulated and 7 downregulated proteins in CM from AA2 

incubated with AZM. Peptides from the alkaline metalloproteinase precursor (APR) were less 

represented in CM derived from AA2 strain grown in presence of AZM than in those from the same 

strain cultured in absence of this macrolide. AZM was observed also to decrease the 

metalloprotease activity and APR expression in CM of Pa isolates derived from sporadically 

infected individuals while any effect was detected in CM of Pa isolates from chronically infected 

CF patients. These results was validated by means of zymography assay and western blot technique. 

The MudPIT analysis of released proteins from Pa clinical isolate grown alone and in presence of 

AZM gives suggestion on the macrolide ability to decrease the expression of substances that 

contributes to Pa virulence, such as alkaline metalloproteinase. The effects of AZM on the 

expression and release of selected polypeptides by Pa strains may help to explain the clinical 

benefits associated with macrolide therapy. 
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INTRODUCTION 

Cystic fibrosis 

Cystic fibrosis (CF) is the most common lethal monogenic disorder in populations of northern 

European descent, among whom the disease occurs in approximately 1 in 3000 births. Birth 

prevalence varies from country to country, and with ethnic background. For example, the disease 

occurs in roughly 1 in 3000 white Americans, 1 in 4000–10000 Latin Americans, and 1 in 15000–

20,000 African Americans 1. Cystic fibrosis is uncommon in Africa and Asia, with a reported 

frequency of 1 in 350000 in Japan 2. 

CF is caused by dysfunction of a single gene encoding the cystic fibrosis transmembrane 

conductance regulator (CFTR) protein, which is expressed in many epithelial cells and blood cells. 

CFTR belongs to a family of transmembrane proteins called adenosine triphosphate (ATP) binding 

cassette transporters, and functions mainly as a chloride channel in the apical membrane of 

epithelial cells lining the target organs (lung, intestine and sweat gland). It has many other 

regulatory roles, including inhibition of sodium transport through the epithelial sodium channel, 

regulation of the outwardly rectifying chloride channel, regulation of ATP channels, regulation of 

intracellular vesicle transport, acidification of intracellular organelles, and inhibition of endogenous 

calcium-activated chloride channels 3-7. CFTR is also involved in bicarbonate–chloride exchange. A 

deficiency in bicarbonate secretion leads to poor solubility and aggregation of luminal mucins 8. 

The CFTR gene encompasses approximately 180000 base pairs on the long arm of chromosome 7. 

The protein contains 1480 amino acids. More than 1500 disease-associated mutations have been 

described in the coding sequence, messenger RNA splice signals, and other regions. It is important 

to understand that the functional consequences of many of these mutations are poorly understood 

and the majority of these mutations are rare (The Cystic Fibrosis Mutation Database. 

http://www.genet.sickkids.on.ca/cftr. Accessed March 20, 2009). These mutations can be classified 

on the basis of the mechanism by which they are believed to cause disease (Fig. 1) 9. 
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Figure 1. Categories of CFTR Mutations. Classes of defects in the CFTR gene include the absence of 
synthesis (class I); defective protein maturation and premature degradation (class II); disordered regulation, 
such as diminished ATP binding and hydrolysis (class III); defective chloride conductance or channel gating 
(class IV); a reduced number of CFTR transcripts due to a promoter or splicing abnormality (class V); and 
accelerated turnover from the cell surface (classVI). (From Reference 9) 
  
The most common mutation, which is termed ΔF508 and is present in approximately 70 percent of 

defective CFTR alleles and in 90 percent of patients with cystic fibrosis in the United States, is 

categorized as a class II defect. CFTR with the ΔF508 mutation lacks a phenylalanine (F) residue at 

position 508. The defective protein retains substantial chloride-channel function in cell-free lipid 

membranes. When synthesized by the normal cellular machinery, however, the protein is rapidly 

recognized as misfolded and is degraded shortly after synthesis, before it can reach its crucial site of 

action at the cell surface. Like ΔF508, several other clinically important mutations — such as 

N1303K, G85E, and G91R — lead to misfolded CFTR protein that is prematurely degraded. About 

5 to 10 percent of CFTR mutations are due to premature truncation or nonsense alleles (designated 

by “X,” such as G542X, a class I mutation). Other CFTR mutations encode properly processed, full-

length CFTR protein that lacks normal ion-channel activity. For example, the G551D mutation 
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(class III) is believed to possess little or no chloride-channel function in vivo because of abnormal 

function of a nucleotide-binding domain, resulting in disordered regulation. The A455E mutation 

(class IV) exhibits only partial CFTR ion-channel activity, a feature that probably explains a less 

severe pulmonary phenotype 10. Other mutation classes include reduced numbers of CFTR 

transcripts (class V) and defective CFTR stability at the cell surface (class VI). 

 

CF Pathophysiology: pulmonary infection and inflammation 

Cystic fibrosis is a complex disease affecting a number of organ systems including the lung and 

upper respiratory tract, the gastrointestinal tract, pancreas, liver, sweat glands and the genitourinary 

tract. Although CF is a multisystem disease, lung involvement is the major cause of morbidity and 

mortality. In CF, a failure of lung defense leads to the establishment of bacterial endobronchitis 

accompanied by intense inflammation and airway destruction. In the human lung, thick, tenacious 

secretions obstruct the distal airways and submucosal glands, which express CFTR 11. Ductular 

dilatation of these glands (associated with blockage by mucus) and the plastering of airway surfaces 

by thick, viscous, neutrophil-dominated mucopurulent debris are among the pathological hallmarks 

of the disease. Pathogens such as Pseudomonas aeruginosa (Pa), Burkholderia cepacia, 

Staphylococcus aureus, and Haemophilus influenzae become well established within firmly fixed 

airway secretions in patients with cystic fibrosis and are not effectively eradicated.  

There are several hypotheses regarding how CFTR dysfunction leads to development of these 

infections. Four hypotheses are outlined below; it is possible that aspects of all four contribute to 

the pathogenesis of the disease. 

The low-volume hypothesis (Fig 2, panel D) postulates that the loss of inhibition of epithelial 

sodium channels, because of CFTR dysfunction, leads to excess sodium and water reabsorption, 

resulting in dehydration of airway surface materials 12 13 14. Concomitant loss of chloride efflux 

prevents the epithelium from correcting the low airway surface water volume. The subsequent 

decrease in periciliary water volume results in a reduction in the lubricating layer between 
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epithelium and mucus, with compression of cilia by mucus causing inhibition of normal ciliary and 

cough clearance of mucus. According to this hypothesis, mucus on the epithelium forms plaques 

with hypoxic niches that can harbour bacteria, particularly Pseudomonas aeruginosa 14 15. 

The alternative high-salt hypothesis contends that the airway epithelial surface in patients with 

cystic fibrosis behaves similarly to sweat ducts, in that CFTR is the major pathway for counter-ion 

absorption (Fig. 2, panel C). This hypothesis argues that in the absence of functional CFTR, excess 

sodium and chloride are retained in airway surface liquid 16 17. The increased concentration of 

chloride in the periciliary layer disrupts the function of important innate salt-sensitive cationic 

antimicrobial peptides, defensins, (eg, human β-defensin 1), allowing bacteria that are cleared by 

normal airways to persist in lungs 18. However, not all defensins are salt-sensitive, it is difficult to 

prove or disprove that the airway surface liquid in CF is hypertonic, and most studies have found 

that airway surface liquid is isotonic in CF. 

 

 
Figure 2. Models Explaining the low-volume hypothesis and high-salt hypothesis. Under normal 
conditions, sodium chloride is absorbed from the airways (Panel A). The first step of this process uses 
sodium and chloride absorptive pathways present in the luminal (apical) membranes of airway-surface 
epithelial cells, designated as the mucosal surface (Panel B). In the high-salt model (Panel C), the situation 
resembles that of the sweat duct, in which the absence of CFTR leads to the inability to reabsorb chloride ion 
from airway-surface liquid. In the low-volume model (Panel D), both sodium and chloride are 
hyperabsorbed. This model predicts a depletion in the volume of airway-surface liquid (shown in blue). The 
thickness of the arrows corresponds to the degree of movement of ions. (From Reference 9) 



7 
 

The cell-receptor hypothesis suggests that cystic fibrosis cell organelles are more acidic 19 or 

alkaline 20 than organelles from normal cells, and that altered pH leads to reduced sialysation of 

glycoconjugates on cystic fibrosis epithelial cell membranes. Increasing numbers of asialoGM1 

molecules—a receptor for many bacterial respiratory pathogens—have been reported on cystic 

fibrosis epithelial cells, resulting in increased binding of P. aeruginosa and S. aureus on these cells 

19 20. In normal hosts, P. aeruginosa binds to functional CFTR and initiates an innate immune 

response, which is rapid and self-limiting. In patients with cystic fibrosis, an increase in asialo-GM1 

in apical cell membranes allows increased binding of P. aeruginosa and Staphylococcus aureus to 

airway epithelium, without initiation of the CFTR-mediated immune response 21. The result is that 

in cystic fibrosis, the rapid, self-limiting response that eliminates P. aeruginosa from the airways is 

lost at the same time as there is enhanced attachment of bacteria to the epithelial surface. However, 

more recent studies revealed that both P. aeruginosa and S. aureus are mainly located in the mucus 

layer on respiratory epithelial cells, rather than directly on cell membranes, which makes it less 

likely that CF cell-specific changes are a key factor in the development of Pa infection 15 22. 

Dysregulation of the host inflammatory response has been postulated as the putative basic defect in 

cystic fibrosis. Support for this hypothesis lies in the fact that abnormally high concentrations of 

inflammatory mediators are seen in cystic fibrosis cell cultures and uninfected ex vivo tissue 

samples 23 24 25 26. Furthermore, findings from lung lavage studies show that inflammation is present 

in children as young as 4 weeks of age who are apparently free of infection 27. An increase in 

proinflammatory molecules such as interleukin 8 (IL-8), interleukin 6, tumor necrosis factor alpha 

(TNF- α), and arachidonic acid metabolites has been found in patients with cystic fibrosis 28 29 30. 

Stimulation of the nuclear factor-κB pathway, platelet hyper-reactivity, and abnormalities in 

neutrophil apoptosis have also been reported 31 32 33. At the same time, concentrations of native anti-

inflammatory substances such as interleukin 10, lipoxin, and docosahexaenoic acid are reduced 25 28 

34 leading to an imbalance between proinflammatory and anti-inflammatory mediators that favours 

unabated inflammation. Other evidences suggest that CF airway inflammatory response to 
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infectious agents is exaggerated and/or prolonged 35. CF patients have been shown to exhibit larger 

amounts of neutrophils and IL-8 in bronchoalveolar lavage fluid than non-CF subjects in response 

to similar levels of infection 36. Furthermore, CF airway epithelial cell lines produced larger 

quantities of IL-8 than CFTR-corrected cells in response to IL-1β and TNF- α and to bacterial 

stimulation 37 38 39. Whether inflammation is directly related to the CFTR defect is still disputed, but 

an exaggerated, sustained, and prolonged inflammatory response to bacterial and viral pathogens is 

an accepted feature of CF lung disease. 

Though the debate continues on the pathophysiologic relevance of some of these factors, the bulk of 

the evidence suggests that dehydration of airway surface liquid is a key factor that impairs cilia 

functioning and mucociliary clearance in CF, so inhaled bacteria are not cleared 15 40. 

 

Pseudomonas aeruginosa: phenotipic and adaptive genetic changes 

Pseudomonas aeruginosa is an opportunistic pathogen that causes pneumonia in individuals whose 

natural lung defences are compromised, and it is known to significantly contribute to the 

pathogenesis of cystic fibrosis (CF). It is generally accepted that P. aeruginosa is the most clinically 

important pathogen in CF lung disease. Its prevalence in CF respiratory tract cultures goes from10 

to 30% at ages 0–5 years to 80% at ages ≥ 18 years 41. The presence of P. aeruginosa in the 

respiratory tract and the inflammatory response it elicits are associated with an increase in the rate 

of deterioration in lung function, and these factors are the leading causes of most of the morbidity 

and ultimate mortality in CF 40. Chronic P. aeruginosa infection increases the risk of death 2.6 

times 42.  

Perhaps the most important feature of P. aeruginosa is its ability to persist in the CF lung as a result 

of its tremendous genetic flexibility. Environmental isolates that colonize the airways are motile and 

express numerous exoproducts (e.g. protease, phospholipases and elastase). The organisms rapidly 

switch to a more indolent mode of growth, turning off the expression of immunostimulatory 
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products such as flagella and initiating its biofilm mode of growth; this adaptation plays a critical 

role during chronic infection with P. aeruginosa. 

Early P. aeruginosa isolates are usually non-mucoid, motile and highly susceptible to antibiotics, 

suggesting they are usually acquired from the environment 41 43, although recent outbreaks of so-

called ’epidemic’ strains being passed from patient to patient suggest some isolates might acquire 

an enhanced transmissibility, although the basis for this is unknown 44. The most profound increases 

in the rate of lung function decline occur when P. aeruginosa undergoes phenotypic and genotypic 

changes. P. aeruginosa isolates from the lungs of patients with CF are quite distinctive from those 

causing acute infection in other settings. These characteristics are not present in isolates causing 

initial colonization but appear to be selected within CF airways and occur increasingly with length 

of lung infection. Whereas early isolates appear much like environmental isolates in their 

phenotype, later isolates are more resistant to antibiotics and frequently mucoid 45. Mucoidy is a 

descriptive term for the overproduction of the exopolysaccharide alginate, which is a negatively 

charged, linear copolymer of partially O-acetylated b-1,4-linked D-mannuronic acid and its C5 

epimer, a-L-guluronic acid 46. Additional phenotypic changes seen in CF isolates of P. aeruginosa 

include the loss of O-side chains on LPS making the strains non reactive with typing sera 47, 

distinctive acylation of LPS 48, loss of flagella-dependent motility 49, and increased auxotrophy 50. 

Moreover these bacteria adopt a biofilm mode of growth in vivo. Biofilms are sessile communities 

of bacteria that form in aggregates on surfaces using a hydrated polymeric matrix of their own 

synthesis. Some common clinical characteristics of biofilm infections have been identified: slow 

growth of organisms, stimulation of production of antibodies that are ineffective in clearing 

bacteria, inherent resistance to antibiotics, and an inability to eradicate biofilm infections even in 

hosts with intact immune systems 51.  

Together, alginate production and biofilm formation by mucoid strains of P. aeruginosa contribute 

significantly to the resistance of these organisms to treatment regimens and host defences, resulting 

in a poor prognosis for the CF patient 52. The steps of biofilm formation include initial attachment 
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to a surface such as mucin-covered epithelial cells by free-swimming or planktonic bacteria, 

microcolony formation, development of a mature biofilm and release of planktonic organisms to 

begin the cycle anew 53 54 (Fig. 3). Secretion of an exopolymeric substance (EPS) occurs after initial 

attachment and continues throughout biofilm formation. However, questions remain as to precisely 

when alginate is expressed in relation to the production of other polysaccharides or matrix material 

in the course of CF lung infection. In addition to exopolysaccharides, the biofilm matrix contains a 

significant amount of nucleic acid 55 56. There remain significant gaps in our understanding of how 

P. aeruginosa survives the inflammatory environment of the lung before stable mucoid conversion 

(Fig. 3, steps 1–3). One must consider that during initial colonization, biofilm formation in the CF 

lung probably precludes the switch to mucoidy. An intriguing idea is that these polysaccharides and 

nucleic acids contribute to the matrix EPS of biofilms formed by early colonizing non-mucoid P. 

aeruginosa strains, before the conversion to alginate-producing variants (Fig. 3, step 3). Although 

alginate does not appear to be required for biofilm formation by non-mucoid strains in vitro, 

alginate production (especially in its O-acetylated form) appears to contribute significantly to the 

biofilm architecture. An alginate overproducing P. aeruginosa strain forms highly structured 

biofilms on an abiotic surface as compared with its isogenic, non-mucoid strain. After a delay in 

biofilm initiation, the mucoid strain produced biofilms with large microcolonies separated by water 

channels, whereas the non-mucoid strain rapidly attached and initiated growth but did not exhibit 

the extensive architecture of the mucoid strain 57 58 59. 

Infection of the CF lung by microorganisms causes inflammatory cells to be recruited to the site of 

infection, where they release reactive oxygen species (ROS) and cause extensive tissue damage 52. 

Alginate appears to protect P. aeruginosa from the consequences of this inflammation as it 

scavenges free radicals released by activated macrophages in vitro. Alginate also appears to provide 

protection from phagocytic clearance and defensins, most probably because it provides a physical 

and chemical barrier to the bacterium 52. 
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Alginate production might allow the bacteria to survive and persist better than their non-mucoid 

counterparts, which are more virulent but also better recognized by immune defences. These 

‘persistors’ might then grow and divide, establishing a chronic infection that is difficult to eradicate. 

In this way, the balance is tipped in favour of chronic colonization by mucoid strains of P. 

aeruginosa in the CF lung. 

 

 
Figure 3. Proposed P. aeruginosa virulence strategies during the infectious process. Patients are initially 
colonized with motile (planktonic), non-mucoid P. aeruginosa strains, which attach to a surface such as 
mucin-covered epithelial cells (step 1). Individual bacteria, which express type IV fimbriae and secrete 
homoserine lactone molecules in a form of cell-to-cell communication (quorum sensing), aggregate and form 
microcolonies (step 2). Over time, microcolonies develop into a mature biofilm characterized by secretion of 
an EPS, loss of flagella and type IV fimbriae, and the formation of three-dimensional structures encasing 
both aerobically and anaerobically respiring colonies (step 3). Inflammatory cells are recruited to the site of 
infection, where they release reactive oxygen species (ROS) and cause extensive tissue damage. This applies 
a selective pressure to the colonizing P. aeruginosa strains, leading to mucA mutations, deregulation of AlgT 
and subsequent stable mucoid conversion (step 4). (From Reference 60) 
 

P. aeruginosa has a very large genome—at 6.3 Mbp it is 37% larger than the best-studied bacterial 

pathogen, Escherichia coli, which has a genome size of 4.6 Mbp. With 5570 predicted open reading 

frames, the genetic complexity of P. aeruginosa approaches that of the simple eukaryotic organism, 

Saccharomyces cereviseae. This complete genome offers the potential for a tremendous ability to 

adapt to multiple different environments, including the CF airway. P. aeruginosa isolated from CF 
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sputa have even larger genomes than the laboratory strain, PAO1, suggesting that they have 

acquired new genes during their adaptation, in addition to alterations in those already present 60. 

Responding to environmental signals during acute infections, P. aeruginosa, as other 

microorganisms, reversibly regulates gene expression, thereby adapting its phenotype accordingly. 

During the course of chronic infection, however, reversible gene regulation is often lost, leading to 

the development of mutants that differ genotypically and phenotypically from the originally 

infecting strain when investigated in vitro. Such microevolution has previously been observed in P. 

aeruginosa isolates of a limited number of chronically infected CF patients 61 62 63 64, including loss-

of-function mutations, acquisition or loss of genomic islets/islands, genome rearrangements, 

recombination, or point mutations, in a surprisingly large number of genes. The progressive 

microevolution of P. aeruginosa in patients with CF has been interpreted as an in vivo selection 

process, resulting in less virulent variants, which consequently do less harm to its host than the 

original colonizing strain 63 64. Virulence can be defined in terms of establishment-of-infection 

assays, in which the loss of a virulence factor results in a decrease in the ability to cause acute 

disease, it also includes the capacity of the pathogen to persist in a given host, causing chronic 

infection. The expression of virulence factors needed to induce acute infection is reduced or even 

lost in long-term P. aeruginosa isolates from patients with CF suggesting that adaptation promotes 

selection of less invasive phenotypes as well as favors factors needed for persistent infection. 

Pa isolates from environmental and clinical habitats are equipped with a similar repertoire of 

virulence mechanisms and pathogenicity factors for induction of acute infections, unless 

microevolution in a particular habitat, such as the CF lungs, selects for new clonal variants. 

However, new clonal variants do not differ in virulence from strains isolated earlier from CF lungs 

or from the environment with regard to their capacity to establish and maintain chronic infection 65. 

Therefore the microevolution of P. aeruginosa strains within CF lungs leads to populations of 

genotypes/phenotypes with distinct pathogenic potential, which differ from that of early isolates but 

are not necessarily less virulent for the CF host. Bacterial microevolution generates diversity that 
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protects communities from unstable environmental conditions, as those present in the lung of 

patients with CF with its differential supply of nutrients, oxygen, and exposure to host defense and 

antimicrobials; inversely, heterogeneous micromilieu tend to maintain diversity to allow persistence 

of bacterial strains in a specific niche. 

 

Pseudomonas aeruginosa: establishment of chronic infection 

CFTR is proposed to be a receptor for P. aeruginosa binding to airway epithelium for subsequent 

phagocytosis and clearance by desquamation 66 67. The diminished or non-existent binding of P. 

aeruginosa to the CF epithelium leads to a reduced initial clearance, allowing the organisms 

sufficient time to take advantage of the dehydrated ASL and remain within the airway lumen by 

binding to mucins via the bacterial FliD protein 68. It is postulated that this mechanism is important 

in the initiation of endobronchial infection. Subsequently, the microbial cells survive and grow 

within a hypoxic environment 15 69, wherein increased production of alginate occurs 3 70, further 

serving to protect the microbe from host defenses.  

A schematic model of the pathogenic events hypothesized to lead to chronic Pa infection in airways 

of CF patients is outlined in Figure 5. This sequence consistent with several aspects of the low-

volume hypothesis. 

First, CF airway epithelia excessively absorb Na+ and Cl– (and water) from the lumen, deplete the 

periciliary liquid layer (PCL), and slow/abolish mucus clearance (Fig. 5a and 5b) 12 71 72. 

Accelerated Na+ absorption, which reflects the absence of CFTR’s normal inhibitory activity on 

ENaC, is fueled by an increased turnover rate of ATP-consuming Na+-K+-ATPase pumps leading to 

two- to threefold increases in CF airway epithelial O2 consumption 73. Second, despite the failure to 

clear mucus from airway surfaces, goblet cells likely continue to secrete mucins and generate 

plaques and plugs on CF airway surfaces (Fig. 5c). It is anticipated that the combined defects of 

excessive volume absorption and continued mucin secretion increases the concentration of mucins 

within of the adherent plaques / plugs, generating mucus contents of about 15–20%, as reported in 
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vivo. Thus, the combination of the increased O2 consumption by the CF epithelium, coupled with 

the deep mucus plaques forming on airway surfaces that restrict O2 diffusion (Fig. 5c, blue color in 

bar), creates steep O2 gradients and hypoxic niches within the adherent mucus plaques and plugs. 

Third, bacteria deposited on thickened mucus can penetrate into hypoxic zones (Fig. 5d). When the 

normal rotational mucus transport ceased due to excessive volume absorption, the vertical 

“currents” within transported mucus are abolished, but motile P. aeruginosa still penetrate 

thickened mucus 15. Note that environmental P. aeruginosa strains such as those that characterize 

early infection are motile and would likely penetrate mucus readily and evade host neutrophils and 

macrophages, which appear unable to penetrate thickened mucus. Fourth, P. aeruginosa can grow 

in hypoxic/anaerobic CF mucus (Fig. 5e). In part, growth under anaerobic conditions may be 

supported by the terminal electron acceptor, nitrate (∼20 μM), contained in ASL. Importantly, they 

exhibit adaptations consistent with biofilm formation, e.g. alginate production. The increased 

alginate formation may represent a stress response to hypoxia that is part of the process that forms 

biofilmlike macrocolonies, the predominant phenotype of P. aeruginosa in CF airways. Finally, the 

capacity of P. aeruginosa to proliferate in hypoxic mucus will generate fully hypoxic (anaerobic) 

conditions in patients with persistent CF airways infection (Fig. 5f, blu bar). 

The reduced O2 tension in the mucopurulent intraluminal contents of CF airways may, therefore, be 

one variable contributing to the persistence of P. aeruginosa macrocolonies in CF airways. The 

consequences of the macrocolony growth state include resistance to antibiotics 40 and host 

phagocyte killing (Fig. 5f), all of which contribute to the persistence of P. aeruginosa infection and 

the chronic destructive airways disease characteristics of CF. 
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Pseudomonas aeruginosa: secreted virulence determinants 

The wealth of literature describing the mechanisms of virulence and pathogenesis of P.aeruginosa 

reflects their reliance not on a single virulence factor, but rather the precise and delicate interplay 

between different factors leading from efficient colonization and biofilm formation to tissue 

necrosis, invasion and dissemination, as well as activation of both local and systemic inflammatory 

responses. The numerous virulence factors are associated with the ability of Pa to adhere to host cell 

surfaces, to form biofilms and to secrete hydrolytic enzymes and toxic compounds. Expression of 

the virulence factors is controlled by several complex cascades that include quorum-sensing (QS) 

Figure 4. Schematic model of the pathogenic 
events hypothesized to lead to chronic P. 
aeruginosa infection in airways of CF 
patients. (a) The presence of the low-viscosity 
PCL facilitates efficient mucociliary clearance 
(denoted by vector). A normal rate of epithelial 
O2 consumption (QO2; left) produces no O2 
gradients within this thin ASL (denoted by red 
bar). (b) Excessive CF volume depletion 
(denoted by vertical arrows) removes the PCL, 
mucus becomes adherent to epithelial surfaces, 
and mucus transport slows/stops (bidirectional 
vector). The raised O2 consumption (left) does 
not generate gradients in thin films of ASL. (c) 
The raised CF epithelial QO2 generates steep 
hypoxic gradients (blue color in bar) in 
thickened mucus masses. (d) P. aeruginosa 
bacteria deposited on mucus surfaces penetrate 
actively and/or into hypoxic zones within the 
mucus masses. (e) P. aeruginosa adapts to 
hypoxic niches within mucus masses with 
increased alginate formation and the creation of 
macrocolonies. (f) Macrocolonies resist 
secondary defenses, including neutrophils, 
setting the stage for chronic infection. The 
presence of increased macrocolony density 
and, to a lesser extent neutrophils, render the 
now mucopurulent mass hypoxic (blue bar). 
(From Reference 15) 
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and two-component-system networks. QS is a mechanism shared by Gram-negative bacteria that 

allows bacteria-to-bacteria cell signaling through small molecules, acyl homoserine lactones (AHL), 

also known as autoinducers that diffuse freely across bacterial membranes. When a certain bacterial 

density or “quorum” is obtained, these molecules reach a threshold concentration at which, as 

cofactors of transcriptional regulators, they allow coordinated gene expression expression in an 

entire bacterial population. This coordinated gene expression concerns survival genes and more 

importantly, genes coding for virulence factors and biofilm formation. There are two such QS 

systems in P. aeruginosa, las and rhl that interact in a hierarchical manner, the first activating the 

second and both following similar overall pathways. Briefly, a gene encoding an autoinducer 

synthase (“I” genes, lasI or rhlI) is activated, the synthesized autoinducer (oxododecanyl or 

oxohexanoyl-homoserine lactone) diffuses into the environment, reaches a threshold concentration 

allowing it to bind to transcriptional activators forming a complex that activates, among others, 

genes coding virulence factors such as elastase, ExoA, type II secretion system apparatus proteins, 

alkaline protease, alginate, pyocyanin and pyoverdine. 

 

Pseudomonas Proteases 

Major virulence factors produced by P.aeruginosa include secreted proteases that damage host 

tissues. One of the best characterized Pseudomonas proteases is Elastase B, or lasB, that is a 

metalloproteinase secreted into the extracellular space through a type II secretion system. Elastase 

has been shown to have a role in the pathogenesis of P. aeruginosa respiratory infections by 

rupturing the respiratory epithelium through tight-junction destruction, thus increasing epithelial 

permeability and facilitating neutrophil recruitment 74. P. aeruginosa elastase can also decrease host 

immune response through cleavage of respiratory tract surfactant proteins A and D and Proteinase-

activated receptor 2 into inactive forms 75 76. This protease can also inactivate host inflammatory 

cytokines such as TNF- α and interferon-γ (IFN- γ) 77. 
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Other proteases secreted by P. aeruginosa such as protease IV also have a role in pathogenesis. 

Although, protease IV is particularly known to participate in the pathogenesis of P. aeruginosa 

keratitis 78, it has only recently been established that protease IV is also involved in the 

pathogenesis of lung infection through degradation of surfactant proteins A, D and B 79.  

Alkaline protease (APR) is a zinc metalloprotease which is similar to the protease secreted by 

Serratia marcescens and has been classified in the serralysin family. This fibrin lysing protease is 

secreted by Pa through a type I secretion system 80. Expression of APR depends on the apr genes 81. 

In contrast to most proteins secreted from P. aeruginosa, which are translocated to the extracellular 

medium by a two-step mechanism, APR employs an independent secretion pathway with a one-step 

mechanism without an N-terminal signal peptide 82. Although its pathogenic role is only clear in 

corneal infections as is the case for most P. aeruginosa proteases, it may participate in the 

pathogenesis of acute lung injury. This is known to modulate inflammatory and immune responses 

by altering the bioavaibility of cytokines. APR is reported to degrade IFN- γ 83 and “regulated on 

activation, normal T cells expressed and secreted” (RANTES) 84, thereby decreasing the 

bioavailability of these cytokines. 

 

Type III secretion system  

Type III secretion systems (TTSS) are shared among Yersinia, Salmonella, Shigella and 

Pseudomonas species as a mechanism to directly inject toxins into the host cells. The type III 

secretion system of P. aeruginosa is a complex pilus-like structure allowing the translocation of 

effector proteins from the bacteria, across the bacterial membranes and into the eukaryotic 

cytoplasm through a needle-like appendage forming a pore in the eukaryotic membrane 85. There 

are four known toxins, variably expressed in different strains and isolates, injected into host cells by 

Pa through the TTSS: ExoY, ExoS, ExoT and ExoU. 

ExoU is a phopholipase 86 and is correlated with acute cytotoxicity in epithelial cells and 

macrophages, and contributes to injury in models systems. ExoY is an adenylate cyclase, which 
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elevates the intracellular cAMP levels in cultured mammalian cells and causes actin cytoskeleton 

reorganization 87. ExoS and ExoT are similar, yet distinct, possessing N-terminal RhoGAP and C-

terminal ADP-ribosyltransferase domains. 

ExoS is a bifunctional cytotoxin with two active domains, a C-terminal ADP-ribosyltranferase 

domain and an N-terminal Rho GTPase-activating protein (GAP) domain. The ADP-

ribosyltransferase activity necessitates a eukaryotic cell cofactor: 14-3-3 protein. The pathogenic 

role of ExoS is mainly attributable to the ADP-ribosyltranferase activity leading to disruption of 

normal cytoskeletal organization 88, although GAP activity also plays a similar role 89. Additionally, 

it has recently been shown that the C-terminal domain binds to TLR2 and the N-terminal domain 

binds to TLR4, showing that ExoS may also modulate the host immune and inflammatory 

response90. 

 

Macrolides in CF: antipseudomonal effects of azithromycin  

The term “macrolide” encompasses a diverse family of unrelated compounds with large 

macrolactam rings. The macrolide antibiotics consist of 14-, 15-, 16- member macrolactam ring 

antimicrobials. Erythromycin was discovered in 1952 and is the most widely used macrolide. 

Azithromycin, clarithromycin and dithromycin are semi-synthetic macrolides similar in structure to 

erythromycin. Macrolide antibiotics inhibit RNA-dependent protein synthesis by reversibly binding 

to the 50S ribosomal subunit of a susceptible microorganism. Macrolides are bacteriostatic against 

Staphylococcus aureus, Haemophilus influenzae and streptococci, but may be bactericidal in high 

concentrations. They may also possess anti-pseudomonal activity 91. 

By conventional standards P. aeruginosa is insensitive to therapeutic concentrations of macrolides; 

however macrolides have been reported to positively influence the clinical outcome in patients 

suffering from chronic P. aeruginosa infection in diffuse panbronchiolitis 92. Diffuse 

panbronchiolitis was first reported in Japan and is characterized by an inflammatory cell infiltration 

in the respiratory bronchioles, leading to their obstruction and dilatation. As disease progresses, 
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patients typically become colonized with mucoid strains of P. aeruginosa accompanied by cystic 

changes of the lung and by poor clinical prognosis due to progressive deterioration of respiratory 

function. The remarkable parallels between diffuse panbronchiolitis and CF led to the question of 

whether macrolide antibiotics would also be of benefit in patients with CF and to large-scale 

randomized controlled trials to elucidate the properties of macrolides for chronic P. aeruginosa 

infection of the lung in CF patients 93. The majority of clinical studies report positive trends 

concerning the therapeutic potential of macrolide therapy 94. However, the mechanisms of action in 

chronic P. aeruginosa infection remain obscure 95. 

The minimum inhibitory concentration (MIC) of macrolides for P. aeruginosa is very high, usually 

exceeding 500μg/ml. P. aeruginosa is equipped with type IV pili, which confer twitching motility 

once bound to smooth surfaces and to disaccharides of the bronchi. These pili allow single bacterial 

cells to attach to each other and contribute to the generation of biofilms. Clarithromycin at very low 

concentrations equal to 0.03× MIC is not able to reduce the production of type IV pili by the 

bacteria. However, using electronic microscopy it was evident that clarithromycin inhibits the 

assembly of pili, thus restricting twitching motility and the subsequent formation of biofilm 96. 

Moreover piliated P. aeruginosa exposed to erythromycin have decreased adherence to acid-injured 

mouse tracheal epithelia compared with bacteria exposed to other antibiotics 97. Macrolides may 

reduce biofilm formation by inhibiting the exopolysaccharide alginate production by guanosine 

diphospho-D-mannose dehydrogenase 98 or by preventing fimbriae dependent, twitching motility 95. 

Flagellin expression, which is the major component of the bacterial flagellar filament and enables P. 

aeruginosa motility is reduced by macrolides 99.  

Azithromycin (AZM) is an azalide which differs from erythromycin by the addition of a methyl-

substituted nitrogen atom into the lactone ring (Fig. 5).  
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Figure 5. Chemical structure of azithromycin. 

 

These modifications in structure result in better gastrointestinal tolerability and tissue penetration. 

In addition, there is a decreased risk of interaction with other drugs metabolized by the cytochrome 

P-450 enzyme system, and increased half-life compared with other macrolides. It has no direct 

killing effect against the Gram-negative bacteria, Pseudomonas aeruginosa, but it is active against 

other Gram-negative bacteria, such as Haemophilus influenzae and Moraxella catarrhalis. It has a 

similar, though less potent, spectrum of activity as erythromycin against Gram-positive bacteria, 

such as Streptococci and Staphylococcus aureus. 

Following the therapeutic success of macrolide antibiotics in the treatment of patients with diffuse 

panbronchiolitis chronically infected with P. aeruginosa, azithromycin has been studied as a 

potential therapy for CF patients with chronic P. aeruginosa infections 100. Several randomized 

clinical trials have evaluated the clinical efficacy of long-term AZM treatment 101 102. Most recently, 

a multi-center trial conducted in the US demonstrated that 6 months of AZM therapy resulted in a 

significant improvement in lung function, an increase in body weight, as well as a reduction in 

pulmonary exacerbations and anti-pseudomonas antibiotic use 103. 

Although the efficacy of AZM in CF patients with chronic P. aeruginosa infection has been well 

demonstrated, its mechanism of action remains elusive. Several studies have suggested that 
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macrolides have anti-inflammatory effects that likely contribute to the clinical efficacy of AZM. 

AZM and other macrolides have been observed to have direct anti-inflammatory effects in vitro and 

in animal studies 104 105. AZM may modulate inflammatory pathways by downregulating pro-

inflammatory cytokines (such as TNF-α, IL-8, NFkB) and by interfering with neutrophil 

recruitment and chemotaxis 106 107 108. Although these in vitro studies suggest a compelling 

biological effect, the correlation between clinical efficacy and anti-inflammatory effects in CF 

patients has not yet been clearly established. 

Alternatively, the antibacterial effects of AZM and other macrolides have often been overlooked 

because AZM is neither bactericidal nor bacteriostatic against P. aeruginosa at physiologically 

achievable concentrations in sputum or serum 109. However, in vitro studies have suggested that at 

sub-inhibitory concentrations, AZM can decrease the production of bacterial virulence factors such 

as pyocyanin, elastase, protease and phospholipase C (PLC) 110 111. AZM can also interfere with 

cell-to-cell signaling (quorum-sensing), motility, and biofilm formation, all of which are important 

in virulence 112 113 114 115. These effects may directly alter the virulence of P. aeruginosa infecting 

the airways of CF patients, and/or act indirectly by modulating the pro-inflammatory effects of the 

bacteria.  
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AIMS OF THE STUDY 

Persistence of P. aeruginosa in the CF airway involves the emergence of several genotypic and 

phenotypic changes during bacterial lung colonization.  

Pa isolates in CF airways are quite different, not only from isolates in other settings, but also from 

the prototypical laboratory strain PAO1. Although the PAO1 strain has been highly informative, 

this laboratory-adapted strain was recovered from a wound infection over 50 years ago and its 

genome was sequenced a decade ago 116. It clearly does not represent the Pa diversity of the natural 

population belonging to the same species and CF colonized patients 117. Furthermore, while early 

isolates are quite similar to environmental isolates, the long term colonization of CF airways selects 

pathoadaptive variants derived from the initially acquired strain 118. 

 In CF airways P. aeruginosa  may, at least in part, encounter a low-oxygen environment which 

develops during infection or as a consequence of biofilm creation 15 52. Pa strains often grow on the 

mucus plugs without direct contact with epithelium. However, the product of their metabolism or 

response to environmental stimuli are released in the extracellular space contributing to the 

pathogenetic event associated with the presence of Pa. The released proteins have a range of 

biological functions ranging from host cell toxicity to more subtle alterations of the host cell for the 

benefit of the invader.  

In the attempt to gain information on the identity of the molecules released by Pa strains under 

aerobic and microaerobic conditions and to identify candidate molecules involved in Pa virulence 

under comparable in vivo conditions, we applied a recently developed shotgun proteomic approach 

119 on protein-free conditioned medium obtained from a laboratory (PAO1) and clinical (AA2) 

strain.  

Most studies focusing on CF have investigated specific biomarkers or the transcriptome 120 121 122. 

Proteomic analysis has been applied for investigating CF 123 124 125 126 127 122 128, but only a few 

authors have utilized this approach for investigating proteins found in the extracellular milieu 
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Proteome analysis of several clinical Pa strains revealed almost identical patterns for the cellular 

extracts, whereas interclonal diversity and intraclonal diversity were demonstrated for the 

secretomes of cultured P. aeruginosa 129 130. 

In the last years, azithromycin a macrolide antibiotic has shown promising results in the treatment 

of chronic infections by P. aeruginosa. In fact, AZM is widely used currently as maintenance 

therapy in P. aeruginosa chronic respiratory infections since several studies have demonstrated its 

clinical benefit such as improvement in FEV1 and fewer pulmonary exacerbations 102 103. 

The improvement in lung function could not be directly correlated with bacterial eradication, 

suggesting indirect effects of azithromycin on the immunostimulatory capabilities of the P. 

aeruginosa found in the airways of these patients and/or the direct effects on the host immune 

response. The effect of a macrolide antibiotic on decreasing released exoproducts could diminish 

the immunostimulatory potential of P. aeruginosa in the airways, even without bactericidal activity 

against the organisms. 

In light of the clinical data supporting the use of azithromycin in CF patients, we sought to better 

characterize the effects of the drug on the proteins released by the Pa clinical isolate AA2 and 

strains derived from sporadically infected CF individuals and chronically infected CF patients. We 

postulated that clinically achievable levels of azithromycin could inhibit the expression of P. 

aeruginosa exoproducts, which contribute to infection and the activation of host pro-inflammatory 

signaling. 

Rapid and large-scale identification of Pa released proteins, in particular those associated with the 

adaptation to the microaerobic environment and proteins associated with strains isolated from long-

term colonization in patients, could help to understand which molecules are involved in the intrinsic 

adaptation ability of Pa and provide a list of possible targets for therapeutic intervention. Moreover  

this approach could identify potential targets for pharmacological intervention through AZM and 

explain the clinical benefits associated with macrolide therapy. 
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MATERIALS AND METHODS 

Collection of bacterial conditioned media (CM) 

Pa PAO1 laboratory strain and AA2 isolate from a CF patient at the onset of chronic colonization, 

kindly provided by B. Tummler (Medizinische Hochschule Hannover, Hannover, Germany) 118, 

were inoculated onto trypticase soy agar (Difco, BD Biosciences) plates and allowed to grow at 

37°C overnight. They were then inoculated into modified Vogel-Bonner medium (MVBM) 131 and 

incubated overnight with continuous agitation.  

The day after, Pa cells were diluted in MVBM at a concentration of 1 x 108 cfu/ml (OD of 0.1 at 

600 nm). The cultures were incubated at 37°C for 16 hours with continuous agitation in aerobiosis 

or in an anaerobic jar in microaerophilic conditions by adding a sachet containing ascorbic acid as 

active component (Oxoid, Basingstoke, UK). The Pa cultures incubated in aerobiosis were also 

exposed to 8 μg/ml AZM (Pfizer, Roma, Italy). The concentration of 8 μg/ml for AZM, which is in 

the sub-MIC range for P. aeruginosa, is consistent with those described in lungs of patients treated 

with this macrolide 99 132. 

The cultures were then normalized to an optical density of 0.2 OD at 600 nm by adding MVBM. 

CM from normalized bacterial cultures were collected by centrifugation (7000 g, 30 min, 4°C), and 

filtered through a 0.22-µm filter to remove any remaining bacteria. The CM were concentrated 

about 17-fold through centrifugation (800xg, 10 min, 25°C) with Amicon® Ultra-15 30K NMWL 

centrifugal filter devices (Millipore Corporation, Bedford, MA, USA), precoated with 10mg/ml 

bovine serum albumin (BSA, Sigma-Aldrich). The samples were then ultracentrifuged at 69400 g 

for 1 h at 4°C and the CM were subjected to gel filtration by means of PD-10 Desalting Columns 

(GE Healthcare Bio-Sciences AB, Uppsala, Sweden). CM (now 15X concentrated after the 

desalting process) were filtered through a 0.22-µm filter and stored at -80°C. 

Pa strains, isolated from the airways of CF patients followed up at the Cystic Fibrosis Center of 

Verona, were cultured as described previously. Written informed consent was obtained from the 
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patients as it was approved by the local ethical committee. The day after inoculation, these Pa 

clinical isolates were diluted in TSB at a concentration of 1 x 108 cfu/ml (OD of 0.1 at 600 nm) and 

were incubated at 37°C for 16 hours with continuous agitation in aerobiosis in absence and in 

presence of AZM at a concentration of 8 μg/ml. Finally the cultures were normalized to an optical 

density of 0.2 OD at 600 nm by adding TSB, filtered through a 0.22-µm filter and stored at -80°C. 

 

Cell cultures 

16HBE14o- AS3 cell line, with CF phenotype (lacking CFTR expression following transfection 

with an antisense CFTR sequence phenotype, a kind gift from P. Davis (Case Western Reserve 

University, Cleveland, OH, USA) 133 was grown in Eagle's MEM (Cambrex Bio Science, Verviers, 

Belgium) supplemented with 10% fetal bovine serum (FBS) (Cambrex Bio Science), 1% L-

glutamine (Cambrex Bio Science) and 0.4% G418 sulfate (Calbiochem, CN biosciences, La Jolla, 

CA, USA). 

Epithelial respiratory cell lines were cultured at 37°C in a humidified atmosphere with 5% CO2. 

Cells were seeded in a concentration of 4.5 x 105 cells/cm2 and, after 24 hours, were exposed to 

10% of CM derived from the AA2 strain for 4 hours prepared as described below. 

In the presence of this concentration of CM the cell viability was >95% as determined by the Tripan 

Blue exclusion test. 

 

Protease digestion of CM 

To demonstrate a role for polypeptides in determining the pro-inflammatory response detected in 

cell lines, the 15X concentrated bacterial CM derived from the AA2 strain grown in aerobiosis was 

incubated at 37°C overnight with and without concentrations of trypsin (Sigma-Aldrich) ranging 

from 200 ng/ml to 3.125 ng/ml. The same surnatants were then treated with 250 µM of trypsin 

inhibitor from Glycine max (Sigma-Aldrich Inc., St Louis, MO, USA) for 1 hour at room 
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temperature. Finally, the CM was subjected to gelatin/zymography assay to evaluate the extent of 

protease activity and select the appropriate experimental condition. 

 

RNA isolation, reverse transcription and quantification 

Cells were lysed. Total RNA was extracted with the Total RNA Isolation kit (Roche, Germany) and 

converted to cDNA using the High Capacity cDNA Archive Kit (Applied Biosystems, USA). The 

reaction was then incubated at 25°C for 10 min and at 37°C for 2 hrs. Relative quantification of 

gene expression was performed by real time quantitative PCR analysis as previously described 107. 

Results were expressed as mean ± standard deviation (SD). 

 

Sample preparation for proteomics analysis 

A total of 200 µL of each sample was concentrated to 20 µL and brought to pH 7.9 by the addition 

of ammonium bicarbonate. 

One µg aliquot of sequencing grade modified trypsin (Promega Inc., Madison, WI, USA) was 

added and the mixture was incubated at 37 °C overnight. The reaction was stopped by acidification 

with trifluoroacetic acid (Sigma-Aldrich Inc., St Louis, MO, USA) and the sample was desalted and 

concentrated using PepClean C-18 Spin Columns (PIERCE Biotechnology Inc., Rockford, IL, 

USA). The eluent was dried in a vacuum system and reconstituted in 5% acetonitrile, 0.1% formic 

acid. 

 

Proteomics analysis  

Trypsin-digested samples were analyzed by two dimensional micro-chromatography coupled to ion 

trap mass spectrometry (2DC-MS/MS, also referred to as Multidimensional Protein Identification 

Technology, MudPIT), using ProteomeX-2 system (Thermo Electron Corporation, San José, CA, 

USA). Briefly, 7 µl of the digested peptide mixture was loaded onto a strong cation exchange 

column (Biobasic-SCX column, 0.32 i.d. 100 mm, 5 µm, Thermo Electron Corporation, Bellefonte, 
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PA, USA), eluted stepwise with salt injections of increasing molarity (0, 20, 40, 80, 120, 200, 400, 

600, 700 mM) and then captured in turn onto two peptide traps (Zorbax 300 SB-C18, 0.3 i.d. x 5 

mm, 5 µm, Agilent Technologies, Palo Alto, CA) for concentration and desalting prior to separation 

on reversed-phase C18 column (Biobasic-18, 0.180 i.d. 100 mm, 5 µm, Thermo Electron 

Corporation) with an acetonitrile gradient (eluent A, 0.1% formic acid in water; eluent B, 0.1% 

formic acid in acetonitrile); the gradient profile was 5% eluent B for 5 min, 5 to 65% B  in 45 min, 

65% B for 3 min and 65 to 95% in 10 min; flow-rate 1 µL/min.The eluting peptides were 

electrosprayed directly into a LTQ linear ion trap mass spectrometer equipped with a nano-

electrospray ionization source (Thermo Finnigan Corp., San Jose, CA, USA). The heated capillary 

was held at 185 °C; full mass spectra were acquired in positive mode and over a 400–2000 m/z 

range, followed by five MS/MS events sequentially generated in a data dependent mode on the first 

to the fifth most intense ions selected from the full MS spectrum scans using dynamic exclusion for 

MS/MS analysis (collision energy 35%). 

 

Data handling 

Using the Bioworks 3.2, based the SEQUEST algorithm (University of Washington, licensed to 

ThermoElectron Corp.) the experimental mass spectra , were correlated to peptide sequences 

obtained by matching with the theoretical mass spectra produced from the Pa protein database, 

downloaded from the NCBI website (www.ncbi.nlm.nih.gov) and updated to October 2008. 

The validity of peptide/spectrum matches was assessed using SEQUEST defined parameter 

thresholds. Spectra or peptide matches were only retained if they had a minimum Xcorr (cross-

correlation score) of 1.5 for +1, 2.0 for +2 and 2.5 for +3 spectra and if it had a Δcn (normalized 

difference in cross-correlation score) of at least 0.08 134; a threshold of peptide probability < 1*10-3 

was assigned 135.  

Protein lists, obtained from multiple analyses 136, were processed through other software and 

statistical tools in order to extract further information. In particular, to visualize the protein lists in a 
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more comprehensible format, we used the MAProMA (Multidimensional Algorithm Protein Map) 

software 137, which also used for performing qualitative and quantitative comparisons, among 

different protein lists 138 139. 

Localization and function of identified proteins were defined by using a ftp service 

(ftp.proteomica.org). Moreover, in order to predict unknown subcellular localizations, we used 

pSORTb software (http://www.psort.org) 140. 

Global cluster analysis was performed using R, a free software environment for statistical 

evaluation and graphics (www.r-project.org). Full protein profiles, associated to the SEQUEST 

score, were clustered using the Ward method distance 141 142. 

Protein-protein interactions and gene-gene functional interactions were examined using Cytoscape 

2.6.1 (http://www.Cytoscape.org). By means of a cytoscape plugin, Bionetbuilder 

(http://err.bio.nyu.edu/cytoscape/bionetbuilder/), and STRING 8 (http://string.embl.de/) 143, known 

interactions were retrieved from several databases such as Prolink, DIP, KEGG, BIND and others.  

 

Gelatin/zymography for metalloprotease activity 

The CM utilized were treated as follows: 5 µl of 5x SDS sample buffer (5%SDS, 0.5M Tris-HCl pH 

6.8, 25% glycerol) were added to 20 µl of CM. The sample was run on a SDS-PAGE gel containing 

1 mg/ml gelatin (Sigma-Aldrich). The gel was washed twice (20 min/cycle) with 2.5% Triton X-

100 at room temperature, incubated in 200 ml of activation buffer (10 mM Tris-HCl, 1.25% Triton 

X-100, 5 mM CaCl2, 1 µM ZnCl2) overnight at 37°C, stained with Coomassie Brilliant Blue G-250 

in 20% methanol/ 10% phosphoric acid/ 10% ammonium sulphate and destained in water. 

 

Western blot analysis of exoenzyme S and alkaline metalloprotease precursor 

Proteins were precipitated from 12 ml of CM by drop-wise addition of 10% (final concentration) 

tricloroacetic acid with stirring at 4°C. The sample was then centrifuged at 3000 g for 30 min and 
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washed 3 times with an excess of an acetone: methanol (8:1) mixture. The pellet was air-dried, 

resuspended in SDS sample buffer, subjected to SDS-PAGE and Western blotting. 

The sample proteins (20 µl per lane) were electrophoresed on SDS-PAGE using 10% acrylamide 

gel and transferred onto a nitrocellulose membrane (HybondTM ECLTM, Amersham, NJ, USA) 144, 

using a mini trans-blot apparatus (Bio-Rad, California, USA) following the manufacturer’s 

instructions. To verify equal loading, proteins were separated in 10% polyacrylamide gel containing 

SDS and stained with Coomassie Brilliant Blue G-250 in 20% methanol/ 10% phosphoric acid/ 

10% ammonium sulfate, destained in water and examined for staining intensity. Non-specific 

binding on the membrane was blocked with 5% dry non-fat milk or 5% bovine serum albumin 

(BSA, Sigma-Aldrich) in TBS-T buffer (0.2% Tween 20 in Tris-buffered saline pH 7.5) for 1 h at 

room temperature. The membrane was incubated with a 1:1000 dilution of chicken polyclonal 

antibody raised against exoenzyme S (Abcam plc., Cambridge, UK) or with a 1:500 dilution of 

purified rabbit IgG against APR, a kind gift from G. Döring (University of Tübingen, Germany)145, 

in TBS-T with 1% BSA overnight at 4°C. The blot was washed four times in TBS-T and then 

incubated for 1 h at room temperature with goat anti-chicken IgG secondary antibody conjugated to 

biotin (SouthernBiotech, Birmingham, AL, USA) diluted 1:25000 or donkey anti-rabbit IgG 

secondary antibody conjugated to horseradish peroxidase (Amersham, NJ, USA) diluted 1:15000 in 

TBS-T with 1% BSA. The membrane was washed again four times in TBS-T and finally incubated 

with streptavidin conjugated to horseradish peroxidase (BioLegend, San Diego, CA, USA) diluted 

1:35000 in TBS-T with 1% BSA for 1 h at room temperature. Bound proteins were visualized using 

the ECL detection system (Millipore Corporation, Bedford, MA, USA). 
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RESULTS 

Effects of PAO1 and AA2 CM on IL-8 mRNA expression in a CF epithelial airway cell line 

Looking for potential virulence factors in contact with lung epithelium of CF patients and 

contributing to the typical inflammatory response, we measured the induction of a pro-

inflammatory marker (IL-8) expressed by a CF epithelial airway cell line, 16HBE 14o- AS3, in 

response to CM derived from Pa strains. Following exposure of the CF cell line to 10% of 15X CM 

derived from AA2 grown in both aerobic and microaerobic conditions, expression of IL-8 was 

induced approximately 5.2 and 3.7 times respectively (Fig. 6). The induction of IL-8 mRNA was 

higher approximately 25% after treatment with CM from AA2 grown in aerobiosis in comparison to 

the same treatment with CM from AA2 grown in microaerobiosis (Fig. 6). When cells were 

exposed to CM derived from the laboratory strain PAO1, no statistically significant regulation of 

expression was detected in both aerobic and anaerobic conditions (Fig. 6). These data indicate that 

colonization of CF lung by clinical strains is associated with the presence of specific pro-

inflammatory molecules in the extracellular milieu.  

 

 
Figure 6. IL-8 mRNA expression. Expression of IL-8 mRNA based on real-time PCR analysis in 16HBE 
14o- AS3 cells after treatment with 10% of CM of AA2 and PAO1 grown in aerobic or microaerobic 
conditions. The values represent the expression levels relative to 16HBE 14o- AS3 treated with 10% of 
MVBM (means +/- SD). (n=5; *p<0.05, **p<0.01).  
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Effects of tryptic digested CM on IL-8 mRNA expression in a CF cell line 

Many different molecules may be the cause of the pro-inflammatory effect. To evaluate whether 

polypeptides are involved, we incubated CM overnight at 37°C in the presence or absence of 

trypsin. Effective protein degradation was evaluated utilizing the decrease of the gelatinase activity, 

readibly detectable in the AA2 strain, as a marker. Loss of metalloprotease activity in both 

experimental conditions was detected (data not shown) and was followed by a decreased expression 

of IL-8 mRNA of about 60% and 50% without and with trypsin respectively (Fig.7). These results 

indicate that spontaneus autolytic activity occurs, probably due to the presence of MMPs in the CM, 

and that polypeptides play a relevant role in the induction of pro-inflammatory mediators in the 

experimental model that we utilized.  

 

 
Figure 7. IL-8 mRNA expression after treatment with bacterial CM  incubated at 37°C in the absence 
and presence of the trypsin. Expression of IL-8 mRNA based on real-time PCR analysis in 16HBE 14o- 
AS3 cell line after treatment with 10% of CM of AA2 grown in aerobic conditions and incubated at 37°C 
overnight in the absence and presence of the trypsin. The values represent the percentage of  expression 
levels relative to 16HBE 14o- AS3 treated with 10% of AA2 grown in aerobiosis (means +/- SD). (n=3; 
*p<0.05).



32 
 

Identification of proteins released by PAO1 and AA2 in aerobic and microaerobic conditions 

As the former experiments point to the polypeptidic origin of a relevant portion of the pro-

inflammatory activity present in the conditioned medium, we studied its composition using a high-

throughput proteomic analysis (MudPIT). To identify the maximum number of proteins and to 

verify the reproducibility of this approach we performed multiple analyses following established 

procedures 136.  

MudPIT analysis identified a total of 451 and 235 proteins in the CM of AA2 and PAO1, 

respectively, grown in both experimental conditions (aerobiosis and microaerobiosis). More 

precisely, 75 of 96 (78%) of the proteins identified in PAO1 are shared by the AA2 strain grown in 

aerobiosis. However, this represents only 33% of the AA2 secretome (75 of 223). In 

microaerobiosis, these percentages change only slightly to 75 % (104 of 139) for PAO1 and to 45 % 

(104 of 228) for AA2 (Table 1). 

Aerobiosis 

In the PAO1 strain cultured in aerobic conditions we identified 96 distinct proteins: 46% of 

identified proteins were characterized by identification of two or more peptides and 52% of proteins 

were detected at least 2 times (Table 1). Figure 8A reports the virtual 2D map obtained plotting 

theoretical pI and MW of identified proteins in CM of PAO1, grown in aerobic conditions. 

Specifically, the colour/shape code of theoretical spots, permits a rapid evaluation of the 

identification frequency obtained in seven different individual analyses and a visual description of 

protein distribution relative to their MW and pI . 

Under the same experimental conditions we identified 223 proteins (37% of proteins with two or 

more peptides and 42% at least two times) in the AA2 strain. The corresponding virtual 2D map is 

shown in figure 8B. 

Comparing the protein lists obtained for the two different strains, 75 proteins result to be shared, 

whereas 148 and 21 unique proteins were specifically identified in clinical (AA2) and laboratory 

(PAO1) strains, respectively (Table 1). 
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Figure 8. Virtual 2D maps of proteins identified in CM of (A) PAO1 and (B) AA2 grown under aerobic 
conditions. 2D maps obtained plotting theoretical pI an MW of identified proteins. The color/shape code of 
theoretical spots is related to the identification frequency from 7 different analysis: yellow/triangles ≤2, 
blue/squares 3-4 and red/circles ≥5.  
 

Microaerobiosis 

During infection or as a consequence of biofilm in CF airways, bacteria may encounter a low-

oxygen environment 15 52. When oxygen is scarce or not available, Pa can utilize alternative external 

electron acceptors such as nitrate, nitrite or nitrous oxide 15. For these reasons, with the same 

approach used in aerobic conditions, we analyzed CM of PAO1 and AA2 strains grown in 

microaerobic conditions.  

A 
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Furthermore, 139 and 228 proteins were identified for laboratory (PAO1) and clinical isolated 

strains (AA2), respectively. In this case, 104 proteins result to be shared, whereas 124 and 35 

proteins were distinct for AA2 and PAO1 strains, respectively (Table 1). 

For PAO1, 63% of proteins were identified with two or more peptides and 53% were detected at 

least two times. For the clinical strain, AA2, 40% of proteins were identified with two or more 

peptides and 45% were detected at least two times.  

Among the four different samples, the two strains in both experimental conditions, 61 proteins were 

found to be shared (Table 1). 

 

 +O2 -O2 
Shared 
proteins 

Total 
distinct 
proteins 

PAO1 96 139 78 157 

AA2 223 228 147 304 

Shared 
proteins 75 104 61  

Total 
distinct 
proteins 

244 263  337 

 

Table 1. Total and shared proteins identified by MudPIT proteomic analysis of bacterial CM. 

 

Semiquantitative evaluation of protein expression and hierarchical clustering 

The determination of protein differences between two or more biological systems is the most 

challenging technical task in proteomics. Label-based approaches for protein quantitation are not 

always practical or feasible. Consequently, more simple alternative approaches were developed to 

compare protein abundance and are based on label-free quantitation methods 146. 
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In previous works we have used the label-free approach and demonstrated the correlation between 

score value, obtained from the SEQUEST algorithm, and relative amount of protein 138 139. In this 

context, specific algorithms, Dave and DCI, have been developed 139. Other authors have obtained 

good results using spectral sampling 136, peptide hits 147 or sequence coverage 148.  

Based on these findings we compared the lists produced by MudPIT analyses on CM of the 

laboratory and clinical strains with Dave and DCI (using 0.4 and 400 thresholds, respectively). In 

particular, under aerobic conditions, 18 proteins resulted differentially expressed between the two 

strains. Twelve of these were predicted to be up-regulated and 6 down-regulated in the CM of 

clinical strain (Fig 9A). Applying the same elaboration, under microaerobic conditions, 17 proteins 

were up-regulated and 5 were down-regulated in the CM of clinical strain (Fig. 9B). Some proteins, 

such as the flagellar capping protein FliD (GI 15596291) and peptidyl-prolyl cis-trans isomerase A 

(GI 15598423) were exclusively present in the laboratory strain grown under aerobic conditions 

(Fig. 9A). Under microaerobic conditions, in addition to flagellar capping protein FliD, other 

relevant proteins such as flagellin type B (GI 15596289) and branched-chain amino acid transport 

(GI 15596271) were exclusively identified in the laboratory strain (Fig. 9B). 

On the contrary, under aerobic conditions, some proteins resulted to be exclusively present in 

clinical strain, such as hypothetical protein PA0572 (GI 15595769), hypothetical protein PA1245 

(GI 15596442), chitin-binding protein CbpD (GI 15596049), succinyl-CoA synthetase (GI 

15596786), hypothetical protein PA3351 (GI 15598547) and  hypothetical protein PA3931 (GI 

15599126). Finally, under microaerobic conditions, electron transfer flavoprotein (GI 15598147) 

resulted to be exclusively present in the clinical strain (Fig. 9B).  
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Figure 9. Comparison of differentially expressed proteins in PAO1 versus AA2 in (A) aerobic and (B) 
microaerobic conditions. Positive Dave values (black bars) correspond to up-regulation in PAO1 versus 
AA2, negative Dave values (grey bars) indicate down-regulation in PAO1 versus AA2 (7 analyses).  

A 

B 
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The protein lists of the CM of each strain in the two different conditions were compared. In 

microaerobiosis 6 proteins were up-regulated in PAO1 (Fig. 10A). In the AA2 strain 10 proteins 

were modulated (7 up- and 3 down-regulated, fig. 10B). Of note, probable binding protein 

component of ABC (GI 15597400) and hypothetical protein PA0856 (GI 15596053), presented a 

similar up-regulation from aerobiosis to microaerobiosis for both laboratory and clinical strains. 

Several proteases were identified by the MudPIT approach (Table 2). 

 

 

 
Figure 10. Comparison of differentially expressed proteins in microaerobic versus aerobic conditions 
for PAO1 and AA2 strains. Positive Dave values (black bars) correspond to up-regulation in PAO1 (A) 
and/or AA2 (B) grown under microaerobic conditions. Negative Dave values (grey bars) indicate up-
regulation in AA2 (B) grown under aerobic conditions (data represent the result of 7 individual analyses). 
 

A 
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Table 2. Identification of metalloproteinases and proteases in P.Aeruginosa CM. +, identified protein;  -, never identified protein. 

NCBI GI  

Uniprot 

ID  Gene names Reference  PAO1 AA2 PAO+O2 

AA2+O

2 

15596446  Q03023  aprA (PA1249)  gi|15596446|ref|NP_249940.1| alkaline metalloproteinase precursor  - + + ++++ 

15597068  P14789  lasA (PA1871)  gi|15597068|ref|NP_250562.1| LasA protease  - +++ - +++ 

15599370  Q9HWK6  prpL (PA4175)  gi|15599370|ref|NP_252864.1| probable endoproteinase (Protease IV)  + + + +++ 

15598919  P14756  lasB (PA3724)  gi|15598919|ref|NP_252413.1| elastase LasB  - - - ++ 

15595864  Q9I5Q4  PA0667  gi|15595864|ref|NP_249358.1| hypothetical protein PA0667  + +++ + ++ 

15600667  Q9HT96  PA5474  gi|15600667|ref|NP_254161.1| probable metalloprotease  - - - ++ 

15596444  Q03025  aprE (PA1247)  gi|15596444|ref|NP_249938.1| alkaline protease secretion protein AprE  - - - ++ 

15595552  Q9I6D8  pfpI (PA0355)  gi|15595552|ref|NP_249046.1| protease PfpI  - ++ + ++ 

15597951  Q9I088  eco (PA2755)  gi|15597951|ref|NP_251445.1| ecotin  ++++ ++ + - 

            

15600417  Q9HTW6  pepP (PA5224)  gi|15600417|ref|NP_253911.1| aminopeptidase P  - - - + 

15598453  Q9HYY3  prc (PA3257)  gi|15598453|ref|NP_251947.1| periplasmic tail-specific protease  - - - + 

15598522  Q9HYR9  clpP2(PA3326)  gi|15598522|ref|NP_252016.1| ATP-dependent Clp protease  - - - + 

 

Regulation of metalloproteinases and proteases was defined by protein identification frequency on seven specimens for each strain. Alkaline metalloproteinase 
APR (GI:15596446) resulted overexpressed, in AA2 strain grown under aerobic conditions,  by Dave and DCI evaluation.
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Although these proteins, except APR, did not pass the Dave and DCI thresholds (passing expressed 

as ++++), nevertheless, they were identified in the AA2 strain, with a higher identification 

frequency than in the PAO1 strain (+ to +++). It is of relevance to note that ecotin (GI 15597951), a 

protease inhibitor, was readily identified in the CM of PAO1 and its peptides were detected with 

higher frequency under microaerobiosis.  

The protein lists were used for unsupervised hierarchical clustering of Pa CM based on their 

proteomic profiles (Fig. 11). The resulting analysis indicates that the clustering is affected more by 

strain type than by culture conditions (+/- O2). In fact, heat map analysis shows that some protein 

expression traits changed significantly between the two strains rather than in the same strain under 

different conditions. This result is confirmed by the number of differentially expressed proteins 

(Figs. 9 and 10). 

 

 
Figure 11. Unsupervised hierarchical clustering of four Pseudomonas aeruginosa CM based on their 
proteomic profile. Hierarchical clustering analysis was based on the SEQUEST score of proteins identified 
with high confidence in multiple replicate analyses in each experimental condition.  
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Validation of semi-quantitative data obtained by MudPIT analysis 

To confirm the semi-quantitative data obtained from MudPIT analysis we selected two pro-

inflammatory candidates (exoenzyme S and the alkaline metalloprotease APR) that feature a 

different regulation under aerobic versus microaerobic conditions.  

From MudPIT analysis the results show that, in aerobiosis, exoenzyme S was undetectable in PAO1 

and found in AA2 while, in microaerobiosis, exoenzyme S was found in the PAO1 strain and 

upregulated in AA2 (Fig. 9). Western blot analysis fully confirms these findings (Fig. 12, lane A).  

Members of the metalloprotease family of enzymes were poorly expressed by the PAO1 strain. The 

AA2 strain appears to express a much larger set of proteases and increase their expression under 

aerobic conditions (Table 2). Functional assay (zymography) and Western blot analysis for APR, 

one of the metalloproteases detected in the CM, fully confirmed the findings made by MudPIT 

analysis (Fig. 12, lanes B and C). 

 

 
 

Figure 12. Target validation. Western blotting analysis showing exoenzyme S upregulation in conditoned 
medium of AA2 grown in microaerobiosis in comparison to aerobiosis (A). Down-regulation of 
metalloprotease activity and expression in AA2 strain grown in microaerobiosis versus aerobiosis as shown 
by a zymography assay (B)  and Western blot specific for a major Pa alkaline metalloproteinase, APR (C). 
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Metalloprotease activity in Pa strains correlates with clinical parameters 

To evaluate at what extent MMP expression could be associated to specific clinical features we 

have evaluated a collection of Pa strains, isolated from CF patients featuring sporadic or chronic 

colonization, for MMP activity. This colonization represents a clinically relevant condition as 

chronic respiratory infection is a hallmark of CF important for maintaining lung inflammation 

leading to compromised respiratory function. Since the early description of CF, pulmonary infection 

has been recognized as having the greatest role in morbidity and mortality leading to premature 

death in 90% of patients 145. More precisely chronic colonization was defined as the isolation of at 

least 3 isolates within 6 months (minimum 30 days interval) while sporadic colonization refer to the 

isolation of Pa in the bronchial tree in presence or absence of direct or indirect signs of 

inflammation 145. Within this context we have evaluated MMP activity in CM derived from 35 

isolates defined as chronic and 7 classified as sporadic. All of the sporadic strains release detectable 

amount of MMP activity while only 11 of 35 (31%) scored positive for the assays among the 

chronic strains (p=0.0012, Fisher's exact test). We then evaluated whether MMP activity was 

associated to APR expression, the main MMP detected in our analysis. This association was not 

detected in all the strains positive for MMP activity indicating the presence of other MMPs as the 

major source of proteolytic activity in some strains (Fig. 13). 
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Figure 13. Metalloproteinase activity assay (zymogram) and Western blot in Pa clinical isolates. Figure 
13. Pa strains were isolated by patients identified as chronically infected (A) or sporadically infected (B) (see 
methods for description of clinical criteria). Note that anti APR antisera do not react with all the samples 
showing MMP activity thus suggesting that this activity depends also from MMPs other that APR, the major 
form identified by MudPIT analysis. More details of the series analyzed is provided in the results section. 
 

Effects of CM from PAO1 and AA2  cultured in presence of AZM on IL-8 mRNA expression 

in a CF epithelial airway cell line 

Many P. aeruginosa gene products evoke the epithelial secretion of IL-8, the PMN chemokine that 

is thought to be especially important in the pathogenesis of CF lung disease. By decreasing the 

A 
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expression of exoproducts, AZM should also decrease the epithelial expression of IL-8, which is 

induced by many P aeruginosa gene products. 

We measured the induction of pro-inflammatory marker IL-8 mRNA expressed by a CF epithelial 

airway cell line, 16HBE 14o- AS3 in response to CM derived from Pa strains grown in presence or 

absence of AZM. After exposure of the CF cell line to 10% of 15X CM derived from AA2 and 

PAO1 grown without AZM we found inductions of expression of IL-8 mRNA of respectively about 

4 and 1.4 times (Fig. 14). The induction of these cytokine was about 20% lower after treatment with 

CM from both AA2 and PAO1 grown in presence of the macrolide compared to those derived from 

Pa strains grown in absence of AZM (Fig. 14). Based on these data, AZM appears to decrease the 

bacterial ability to induce the release of pro-inflammatory mediators by CF airway epithelial cells. 

 

 

Figure 14. IL-8 mRNA expression. Expression of IL-8 mRNA based on real-time PCR analysis in 16HBE 
14o- AS3 cells after treatment with 10% of CM of AA2 and PAO1 grown in absence or presence of AZM 
(8μg/ml) . The values represent the expression levels relative to 16HBE 14o- AS3 treated with 10% of 
MVBM (means +/- SD). (n=5; *p<0.05).  
 

Identification of proteins released by AA2 strain grown in absence or presence of AZM 

The relative effect of azithromycin on exoproducts expression by the AA2 strain was studied by 

comparing the proteins present in aliquots of CM from the isolate cultured in absence or presence of  

the macrolide. In order to attempt to identify candidate factors released by AA2 strain CM, obtained 
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from Pa after incubation at 37 °C for 16 hours, was digested with trypsin and resulting peptide 

mixture was analyzed by MudPIT approach. To identify highest number of proteins and to 

investigate the internal reproducibility of our approach we performed multiple analysis. Comparing 

the lists produced analyzing by MudPIT technique, for clinical strain AA2 grown without and with 

AZM, 12 proteins resulted differentially expressed (5 and 7 proteins were up-regulated and down-

regulated in CM of clinical strain incubated with AZM, respectively) (Fig. 15). 

 

 
Figure 15. Comparison of differentially expressed proteins in absence of AZM versus presence of the 
macrolide for AA2 strain. Positive Dave values (black bars) correspond to down-regulation in AA2 grown 
in absence of AZM. Negative Dave values (grey bars) indicate down-regulation in AA2 grown in presence of 
AZM (data represent the result of 7 individual analyses).  
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In particular, we noticed that when the clinical strain AA2 was cultured in the presence of AZM the 

peptides derived from the alkaline metalloprotease APR were much less represented. Functional 

assay (zymography) and Western blot analysis for this protease fully confirmed the findings made 

by MudPIT analysis (Fig 16 A and B). 

 

 
Figure 16. Target validation. Down-regulation of metalloprotease activity and expression in AA2 strain 
grown in presence of AZM versus absence of it as shown by a zymography assay (A) and Western blot 
specific for a major Pa alkaline metalloproteinase, APR (B). 
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Effect of AZM on the metalloprotease activity in Pa clinical strain associated to sporadic and 

chronic infection in CF patients 

We then evaluated the effect of macrolide AZM in a limited series of Pa strains, isolated from CF 

patients,  featuring sporadic or chronic colonization (details of the series analyzed is provided in the 

results section above). We measured MMP activity (zymography) and alkaline metalloprotease 

release (western blotting). Within this context we have observed a decreased MMP activity and a 

strongly reduced release of APR in CM derived from 3 isolates, defined as sporadic, cultured in 

presence of AZM (Fig. 17B). We then evaluated whether MMP activity and APR release were 

affected by AZM treatment in CM from other 3 isolates classified as chronic (Fig. 17A). AZM had 

no effect on these chronic strains. This implies that azithromycin might have the greatest efficacy 

against early isolates of P. aeruginosa in CF, than against the strains from patients with 

longstanding infection. 
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Figure 17. Metalloproteinase activity assay (zymogram) and Western blot in Pa clinical isolates grown 
in absence or in presence of AZM: Pa strains were isolated by patients identified as chronically infected 
(A) or sporadically infected (B). Note that AZM had any effect neither on the gelatinase activity nor the APR 
release in Pa clinical isolates from CF patients chronically infected (A) while the antibiotic strongly 
decreased the metalloproteinase activity and APR presence in CM from Pa clinical strain of CF subjects 
sporadically infected (B). 

A 

B 
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DISCUSSION 

Inflammation in CF is a hallmark of the disease and the causative event associated to the negative 

outcome of these patients that almost invariably suffer and eventually die because of chronic 

pulmonary disease. Identification of all the players in this complex scenario is mandatory to 

approach this lethal disease and develop effective therapeutic protocols. We focused our attention to 

the role of extracellular mediators of inflammation released by P. aeruginosa as we observed that 

Pa-conditioned medium (CM) derived from the AA2 clinical strain had a pro-inflammatory 

capability that induce the RNA messenger expression of the pro-inflammatory cytokine IL-8 by CF 

bronchial epithelial cells. The effect was not due to small molecular weight products as measured 

by utilizing a CM medium subjected to a 30 kDa cut-off ultrafiltration and a further 10kDa cut-off 

gel filtration step for buffer exchange. The involvement of polypeptides was demonstrated by the 

substantial loss of effect when the CM was incubated for autolysis at 37°C or subjected to protease 

digestion. These results suggest the presence of polypeptidic virulence factors in CM derived from 

clinical isolates of Pa.  

In this work we aimed to describe bacterial released proteins and, possibly, to identify 

candidate pro-inflammatory mediators among them. In addition, we have evaluated the effect of 

variable oxygen concentrations on the protein production of a representative clinical Pa strain 

(AA2), comparing its adaptation to microaerobiosis to that of PAO1, a prototypical laboratory 

strain. In the studies reported herein, we have also examined the effects of the macrolide 

azithromycin on P. aeruginosa protein synthesis as they may help to explain the documented 

clinical benefits associated with AZM therapy. For the identification of proteins in the bacterial CM 

we utilized the MudPIT approach that has been demonstrated to be relatively rapid, sensitive and 

reproducible 139.  

Of interest is the observation that the different number of proteins modulated in PAO1 and 

AA2 by the change from aerobiosis to microaerobiosis, leads to an almost identical extent of 
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rearrangement of the proteomic profile in both strains. In fact, 66% (157 of 235) distinct proteins in 

PAO1 and 67% (304 of 451) in AA2 strains were found modulated by the different growing 

conditions. Given that the genomic structure and organization of the individual strains can be 

considered identical on a large scale, it is tempting to speculate that a similar set of transcription 

factors is activated by the change of oxygen concentration in the individual strains that may 

consequently act on a larger set of unrepressed promoters present in the AA2 strain.  

Altogether these results indicate that Pa clinical strains likely utilize a more complex protein 

synthesis program in comparison with the laboratory strain and underline the importance of using 

appropriate cellular models for translational studies, specifically in the field of biomarker discovery. 

Based on a literature search, potentially interesting candidates to act as pro-inflammatory 

molecules that are found expressed in the CM of the clinical strain are exoenzyme S (GI 15599036), 

alkaline metalloproteinase precursor (GI 15596446), hypothetical protein PA1245 (GI 15596442), 

and outer membrane protein OprF precursor (GI 15596974) involved in transport (such as the 

arginine/ornithine binding protein AotJ). Other proteins, such as flagellar capping protein FliD (GI 

15596291) and flagellin type B (GI 15596289), appear to be involved in the mechanims of motility 

and/or attachment and have been previously detected 150. AprX (synonym of PA1245) gene is 

contiguous to the genes encoding the three proteins constituting the ABC exporter of the alkaline 

protease, aprA. This gene belongs to the same transcriptional unit as the aprD, aprE and aprF genes 

and encodes a new protein of unknown function, which can be secreted by the alkaline protease 

secretion apparatus when expressed in Escherichia coli 81 151.  

Other proteins identified are involved in metabolic pathways, in post-translational modifications, in 

adaptation and in the secretion/export apparatus. 

Some of these proteins are known to be localized in the membrane or in the intracellular 

compartment as well as in the periplasm. To rule out the possibility that cell lysis processes 

associated to the experimental growing conditions 152 could explain the differential protein release 

detected in the CM, we utilized CM obtained from cells grown at the same optical density, during 
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the exponential growing phase. We have also verified that this value correlates with the same 

number of colony-forming units per millilitre (two different experiments, data not shown). 

Therefore a different degree of cell lysis/death in the different samples cannot explain the different 

number of proteins identified by MudPIT analysis.  

Semi-quantitative evaluation of protein profiles in the different experimental conditions using 

in-silico analysis identified several candidates as differentially expressed. In particular, we found 

exoenzyme S and alkaline metalloproteinase up-regulated in CM of the isolated clinical strain. 

These data predict an up-regulation for exoenzyme S and down-regulation for alkaline 

metalloproteinase in microaerobiosis. We focused our initial analysis on these two targets in both 

strains as they represent interesting candidates for their known capability of inducing the release of 

pro-inflammatory cytokines. 

Exoenzyme S is a virulence factor produced by Pa. This toxin possesses two distinct 

mechanisms of action. Not only can it be delivered into the cytosol of the target cell by means of a 

type III contact-dependent mechanism, but it can also interact with the cell by acting as a soluble 

extracellular factor. In both ways it causes cytotoxicity by inducing apoptosis of T cells, as well as 

activating monocytes, leading to the production of pro-inflammatory cytokines and chemokines. As 

a consequence, it contributes to inflammatory responses during Pa infection 153. A phosphorylation-

independent interaction has been reported to occur between 14-3-3 proteins and a C-terminal 

domain within exoenzyme S 154 155. The 14-3-3 proteins are a group of highly conserved 

intracellular dimeric molecules, expressed in plants, invertebrates and higher eukaryotes. More than 

200 14-3-3 binding partners have been found that are involved in cell cycle regulation, apoptosis, 

stress responses, cell metabolism and malignant transformation 155. Exoenzyme S was undetectable 

in aerobiosis but  was detected by western blot analysis in the CM of PAO1 grown in 

microaerobiosis. In the AA2 strain it was found expressed in aerobiosis and up-regulated in 

microaerobiosis, exactly as identified by MudPIT analysis (Fig.12). Even if the specific expression 

of exoenzyme S in the AA2 strain makes it an attractive candidate as an inducer of pro-
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inflammatory cytokines in our experimental system, its pattern of expression does not correspond to 

that of IL-8 detected in epithelial cells.  

We therefore turned our attention to the metalloprotease family of enzymes, known for their 

strong proteolytic activities in cells and tissues, where they act on fibrin and elastin. It has been 

demonstrated that Pa elastase is responsible for the rupture of the tight-junction of epithelium and 

an increase of permeability, leading to tissue invasion and spreading of bacteria 156. By means of 

zymography, we could confirm the predicted increase of proteolytic activity in the CM of AA2 

grown in aerobiosis in comparison to microaerobic conditions (Fig. 12 B). Western blot analysis 

with antibodies specific for APR also confirmed the predicted expression and modulation (Fig. 12 

C). Given that a strong induction of MMP activity and APR was detected in the AA2 strain, this 

result is in agreement with the possibility that this may represent part of the functional response to 

the aerobic condition by Pa strains.  

Functional and physical interactions of the alkaline metalloproteinase family of proteins was 

reconstructed combining interaction network analysis in combination with expression data (Fig. 

18). This approach has recently been emphasized to reveal potential functional interaction between 

multiple candidate proteins or genes 157 158 159. Within this reconstructed network proteases 

specifically identified in AA2 CM grown under aerobic conditions are present. In particular, LasA, 

LasB and Protease IV might play an important role in pathogenesis of P. aeruginosa infection 

through the activation of  protease-activated receptor 2 (PAR-2), thereby modulating host 

inflammatory and immune response 160. Protein AprE has been reported to be involved in the 

secretion of alkaline protease 81. Among the proteins predicted to be part of this interactome map 

(Fig. 18) we observed hypothetical PA0572 that, like APR protein, was found up-regulated in the 

AA2 CM under aerobic conditions according to MAPROMA differential analysis. We observed a 

stronger induction of pro-inflammatory activity by the AA2 CM in comparison to the PAO1 strains 

grown in both experimental conditions and we also observed a significant increase of the effect 

when AA2 was grown in aerobiosis, a condition associated to the release of larger amounts of APR 
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and other MMPs. However, the PAO1 strain still expresses detectable (although lower) amounts of 

MMPs according to MudPIT and APR-specific western blot analysis. The lack of induction of 

significant amounts of pro-inflammatory mediators by the PAO1 CM in epithelial cells can be 

explained by the presence of high levels of ecotin, a dimeric periplasmic protein acting as a potent 

inhibitor of many trypsin-like serine proteases that has been shown to protect bacteria against 

neutrophil elastase 161. This protein was identified in the CM of PAO1 with much higher frequency 

under microaerobic conditions. We therefore propose that the relative amounts of MMPs and their 

inhibitors must be taken into account when we evaluate the biological effects of the CM, which 

reflects more precisely the microenvironment where multiple factors simultaneously act on the 

cells.  

The precise mechanism/s that correlate MMP activity with the expression of pro-

inflammatory mediators in epithelial cells remains an open question but the possibility to evaluate 

in an unbiased manner the complexity of the bacterial proteins released in the extracellular milieu 

appears critical to appreciate the connection and the final effect of specific compounds. 
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Figure 18. AA2 metalloproteinase interactome. In red: proteases identified by the MudPIT approach. In 
yellow: other proteins identified by the MudPIT approach. In pink: other proteins predicted to be part of the 
aprA interactome. 
 

In light of the results obtained we studied the effects of the macrolide antibiotic azithromycin 

on the proteins released from Pa clinical strains. AZM does not act rapidly enough to stop the early 

stages of bacterial growth, but can interfere with protein synthesis in the late log to early stationary 

phases. Thus, the organisms are inhibited in their adaptive responses, such as biofilm formation and 

siderophore expression, as well as in the production of immunostimulatory exoproducts 114.We 

observed that Pa-conditioned medium derived from the AA2 clinical strain exposed to AZM had a 

reduced pro-inflammatory capability in comparison with the untreated sample as measured by its 

capabilty to induce the expression of the cytokine IL-8 by CF bronchial epithelial cells. Inhibition 

of P. aeruginosa exoproduct expression and the subsequent decreased IL-8 production might  

contribute to the clinical benefits associated with azithromycin therapy in CF patients. As bacteria-
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induced airway inflammation is a major cause of pulmonary symptoms in CF patients, the ability of 

azithromycin to inhibit IL-8 expression and the resultant PMN recruitment could be reflected in 

improved lung function and fewer pulmonary exacerbations.  

Semiquantitative evaluation of protein profiles in AA2 grown in absence and in presence of 

the macrolide antibiotic identified a dozen of exoproducts as differentially expressed. In particular, 

we found alkaline metalloproteinase to be down-regulated in CM of the isolated clinical strain AA2 

exposed to AZM. Subsequently we observed a decrease of proteolytic activity in the CM of AA2 

grown in presence of AZM (Fig. 16 A). Western blot analysis with antibodies specific for APR also 

confirmed the predicted reduced expression and modulation due to the exposure of AA2 isolate to 

macrolide (Fig. 16 B). Finally we evaluated the effect of AZM in a collection of Pa strains isolated 

from CF patients, featuring sporadic or chronic colonization on MMP activity and alkaline 

metalloprotease release. We have observed a decreased MMP activity and strongly reduced 

secretion of APR in CM derived from isolates defined as sporadic cultured in presence of AZM 

(Fig. 17A) while in CM from isolates classified as chronic the MMP activity and APR release were 

unaffected by AZM treatment (Fig. 17B). Moreover some chronic clinical strains had no 

metalloprotease activity and detectable level of APR expression. No effects of azithromycin were 

recorded on clinical strains of P. aeruginosa derived from CF patients with established lung disease 

in comparison to those observed for the strains causing sporadic colonization. In these chronically 

infected patients, much of the bacterial burden is expected to be in the form of biofilms, which are 

refractory to antimicrobial therapy. However, there is a dynamic equilibrium between organisms 

within the biofilm and planktonic bacteria that break off and begin to replicate, behaving more like 

wild-type organisms with the expression of immunostimulatory exoproducts. Although our data 

suggest that AZM is ineffective against chronic bacteria, there may be subpopulations of bacteria 

within the airways that are replicating, particularly during an acute pulmonary exacerbation, and are 

potential targets for azithromycin. The results here presented prompt us to speculate that Azm might 

act not only on the host side of the infection but also to the bacteria inhibiting the release of pro-
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inflammatory mediators, thus contributing to its clinical benefits recorded in CF patients. 

Interestingly there was a substantially greater effect of the drug on the more immunostimulatory 

strains, those classified as sporadic and corresponding to early host colonization events. This 

implies that azithromycin would have the greatest effect against early isolates of P. aeruginosa in 

CF, those that are more similar to the laboratory strain PAO1 and other environmental strains, than 

against the strains from patients with longstanding infection, undergoing adaptation processes to the 

host microenvironment. Azithromycin may also target the planktonic organisms that emerge from 

the bacterial biomass but may not be well-represented in sputum cultures.  

Altogether the results reported indicate that:   

1) the approach we describe can be of use to select potential targets to dissect the role played 

by the individual secreted proteins and their synergy in the pathogenesis of Pa-mediated lung 

disease in CF.  

2) MudPIT analysis is reliable and capable in providing semi-quantitative data that can be 

analyzed by appropriate analytical algorithms useful for the identification of complex functional 

networks.  

3) the analysis of CM derived from the Pa strain grown at different oxygen concentration  is 

provided and can contribute to a better understanding of  the mechanisms of survival in a 

microaerobic niche.  

4) the differential patterns of proteins released by a clinical strain in comparison to the 

laboratory strain PAO1 may help in elucidating its strategy of adaptation in the CF lung as well as 

the pathogenesis of chronic infections. Understanding these complex mechanisms of adaptation 

may help in finding effective anti-bacterial drugs which target specific biomarkers responsible for 

the consequences of lung colonization by Pa in CF. 

 5) the analysis of CM derived from the Pa clinical isolates grown in absence and in presence 

of azithromycin is provided and can contribute to a better explaining the variable response to Pa 

infection and sensitivity to AZM known to occur in CF patients.  
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Finally, the correlation reported among MMP activity/expression and specific clinical 

conditions suggest that MMPs might play a role in the clinical manifestations of Pa infection 

supporting a link among MMP expression/activity and Pa virulence in CF patients. Future 

evaluation of MMP activity in a larger series of clinical isolates may provide insights on the 

correlation between this parameter and lung function in patients colonized by Pa strains. 
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