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Workflow technology has emerged as one of the leading technologies in modeling, redesigning, and executing
business processes. The management of temporal aspects in the definition of a workflow process has been
considered only recently in the literature. Currently available Workflow Management Systems (WfMS) and
research prototypes offer a very limited support for the definition, detection, and management of temporal
constraints over business processes. In this article, we propose a new advanced workflow conceptual model
for expressing time constraints in business processes and we present a general technique to check different
levels of temporal consistency for workflow schemata at process design time: since a time constraint can
be satisfied in different ways, we propose a classification of temporal workflows according to the way time
constraints are satisfied. Such classification can be used to successfully manage flexible workflows at runtime.
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1. INTRODUCTION

A workflow schema (process model) is a formal description of a business process where
single atomic work units (task) are assigned to processing entities (agent). Instances
of a schema are called cases. An agent may be a software application (e.g., a database
system), a human (e.g., a customer representative), or a combination of both (e.g.,
a human using a software program). A Workflow Management System (WfMS) fully
takes over the responsibility for the coordinated execution of tasks and cases: the
assignment of tasks to agents is accomplished by enforcing procedural constraints.
Organizations use WfMSs to streamline, automate, and manage business processes
that depend on information systems and human resources (e.g., provisioning telephone
services, processing insurance claims, handling bank loan applications, and managing
healthcare processes) [WfMC 1995; Object Management Group 2007].

Adaptivity and flexibility have emerged as strong requirements for WfMSs: indeed,
the complexity and the fast evolution and change of business processes and of the
related organizational needs should be suitably supported by adaptive WfMSs, by
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allowing to: (i) manage exceptions during a workflow execution [van Hee et al. 2007],
(ii) change the process model according to some new organizational needs [Nurcan
2008], and (iii) manage different temporal aspects of workflow as temporal constraints
and deadlines both at design time and at runtime [Eder and Panagos 2000; Combi and
Pozzi 2004].

Even though all these needs are not completely orthogonal, in this article we will
specifically focus on the management of temporal aspects by the WfMS. Research on
WfMSs started to consider the management of temporal aspects in the last decade
[Combi and Pozzi 2003; 2004; Marjanovic and Orlowska 1999; Eder et al. 1999; Chen
and Yang 2007]: one of the most critical needs in companies striving to become more
and more competitive is the ability to control in a flexible and adaptive way the flow
of information and of work throughout the enterprise in a timely manner [Eder and
Panagos 2000]. Especially in this context, time management is important to timely
schedule the workflow process execution, to avoid deadline violations, and to improve
the workflow turnaround times. Many business processes have restrictions such as a
limited duration of subprocesses, terms of delivery, dates of resubmission, or activity
deadlines. Generally, time violations increase the cost of a business process because
they lead to some form of exception handling [Eder et al. 1999].

By temporal flexibility, we mean that the adaptive WfMS is able to represent and
manage both at design and at runtime workflows containing temporal constraints
among tasks [Rinderle et al. 2004]. At design time, temporal flexibility means that
the WfMS is able to verify that a workflow schema can be suitably executed according
to the given temporal constraints. At runtime, temporal flexibility means that the
WfMS is able to reassign task durations according to the previously executed tasks
and to their durations, and to check whether it is possible to end in a proper way the
workflow execution. With regard to temporal flexibility, adaptive WfMSs are required:
indeed, a process could need to be changed as its tasks have to be executed in a shorter
time than the specified one at design time. Moreover, effective exception handling
mechanisms are needed because it could be that some process execution fails to verify
all the given temporal constraints, but the execution has to be suitably managed to
reach an acceptable conclusion (as, for example, in healthcare processes). According to
this scenario, in this article we propose a new framework for the conceptual design of
workflows, which takes into account the modeling and the management of temporal
aspects in WfMSs. In particular, we focus on the following specific features.

—Temporal conceptual modeling of flexible workflows. We present an advanced work-
flow conceptual model close to the WfMC Reference Model [WfMC 1995], capturing
the main temporal aspects of workflow activities (e.g., minimum and maximum du-
rations, delays, temporal relations between activities, deadlines, and other temporal
constraints). In particular, we allow the designer to explicitly model temporal con-
straints that the WfMS has to consider when it has to be temporally adaptive with
respect to the duration of task executions.

—Checking the consistency of temporal workflow schemata. We propose a general
method to determine if, given a workflow schema based on our conceptual model,
there can exist workflow executions (possibly involving different tasks) where tem-
poral constraints are satisfiable. A schema that admits such cases is called consistent.
We will show that the consistency in isolation of any possible workflow execution is
not enough for guaranteeing the consistency of the overall workflow schema. More-
over, we propose different kinds of workflow consistency that can be used by the
WfMS to manage with flexibility the task executions.

—Supporting run-time flexibility through WfMSs. We analyze the implications of the
different kinds of the workflow consistency on the behavior of WfMSs at runtime, that
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is, during case executions. The kind of consistency fixes how to set and to manage the
allowed duration ranges for tasks at runtime. Moreover, some kinds of consistency
allow us to know in advance that the execution of some tasks (identified by the consis-
tency analysis) can require a workflow schema adaptation or an exception handling.
Therefore WfMSs can be programmed in more detail about the management of such
events with respect to a generic programming of exception handling.

Furthermore, we propose an XML-Schema document which defines all the compo-
nents of the model and their temporal attributes as an extension of the XML-Schema
document proposed by the WfMC in WfMC [2002]. As a proof-of-concept we extended
the well-known Yet Another Workflow Language (YAWL) [van der Aalst et al. 2004],
to deal, both at design and at runtime, with temporal workflow schemata based on the
proposed temporal workflow model. The prototype allows one to translate workflow
schema specifications into XML-Schema representations compatible with the WfMC
specification.

The article is structured as follows: in Section 2 we present a conceptual model,
mainly focusing on the representation of workflow temporal aspects. In Section 3 we
propose a general method for checking the temporal consistency of a workflow schema.
We introduce different levels of consistency for a workflow schema and discuss how
such consistencies can be used to characterize the soundness and flexibility of workflow
schemata at design time and the behavior of the WfMSs at runtime. In Section 4 we
consider the proposals from the literature having some relevance for workflow design
and compare them with the one we propose in this article. In Section 5 we briefly
present the XML representation of the constructs of our model and a prototype of an
extension of YAWL to support our proposal. Finally, in Section 6 we sketch out some
concluding remarks.

2. MODELING TEMPORAL WORKFLOWS

Workflow modeling is an effective technique for understanding, automating, and doc-
umenting business processes. Support for heterogeneous processes (human-centered
and system-centered), adaptability, flexibility, and reuse are important challenges for
the design of process modeling languages [van der Aalst et al. 2002]. As flexible and
collaborative processes require human intervention, we need a process modeling lan-
guage at a high level of abstraction, easy to use, and supporting the visualization of its
elements. Additionally, a conceptual workflow model produces high-level specifications
of workflows that are independent from the workflow management software.

The conceptual model presented in this article focuses on formalizing all the tem-
poral aspects related to single atomic activities (tasks) and their temporally adaptive
activation sequences. By using our model, temporal properties of workflow schemata
can be deeply modeled. Our temporal conceptual model is not influenced by any partic-
ular commercial WfMS, and it is close to the recommendations from the WfMC [WfMC
1995]. The graphical notation we introduce for the constructs of the conceptual model is
a straightforward extension of the widely adopted Business Process Modeling Notation
(BPMN) [Object Management Group 2007] to consider temporal aspects.

2.1. The Temporal Conceptual Model

Conceptual models allow designers to represent workflow schemata (process models)
which capture the behavior of processes describing the activities and their execution
flow. A workflow schema defines the tasks to be performed, their order of execution,
and assignment criteria to agents.

In our model a workflow schema is a directed graph, called Workflow Graph. Nodes
correspond to activities and edges represent control flows that define the task depen-
dencies that a WfMS has to consider when managing the order of execution of tasks.
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Task name
Duration

Absolute constraint

(a) task representation

StartCase
EndCase

(b) start and stop symbols

T1
Duration

T2
Duration

Delay

(c) a control flow

Fig. 1. Graphic representation of a task (a); Start and Stop symbols (b); and a control flow (c).

Definition 2.1 (Workflow Graph). A Workflow Graph WG = (N, T , TS, TE, C, F) is a
six-tuple such that N = T ∪ C is a finite set of nodes, T ⊆ N is a finite set of tasks,
TS ∈ T is the Start node, TE ∈ T is the End node, C ⊂ N is a finite set of connectors,
and F ⊂ N × N is the control flow relation, that is, the set of edges.

N is the set of all the activities that belong to the process. There are two different
activity types: task and connector. Tasks represent the elementary work units that
collectively achieve the process goal. They can symbolize either automated or manual
activities that are performed by assigned agents. A task can be initial (Start), final
(End), or intermediate. Connectors are the elementary work units executed by the
WfMS to achieve a correct and ordered sequence for task execution.

The control flow relation F defines the order of execution between any pair of nodes.
A path between two nodes represents an order of execution among the set of nodes of
the path and it is called flow. Given F, for each node let us define as predecessors set
and successors set of the node the following sets: (i) the predecessors set of a node x ∈ N
is �x = {y ∈ N | (y, x) ∈ F}, (ii) the successors set of a node x ∈ N is x� = {y ∈ N |
(x, y) ∈ F}.

In the following, we present the syntactic and semantic properties of all the workflow
graph components. We restrict ourselves to the main constructs; several other compo-
nents could be straightforwardly added, for example, supertasks and multitasks [Object
Management Group 2007].

2.1.1. Tasks. A task is the basic modeling object in workflow schemata and represents
the atomic unit of work to be executed. The aim of workflow modeling is to capture the
coordination requirements to execute a set of tasks for a given business process. All
the other modeling objects but tasks are internal to the WfMS and are used to specify
rules and constraints for the adaptive coordination of workflow execution. Tasks have
many properties, represented by attributes. Task name and execution duration are
mandatory attributes, while absolute constraint is an optional one. Duration specifies
the allowed temporal span of the activity, while absolute constraint represents a times-
tamped interval the task must be executed within. More details on temporal aspects
are in Section 2.2.2. Every task has one incoming edge and one outgoing edge (see
Figure 1(a)).

2.1.2. Connectors. Connectors represent internal activities executed by the WfMS to
achieve a correct and coordinated execution of tasks. Differently from tasks, connectors
are directly executed by the WfMS and do not need to be assigned to any agent; the
mandatory duration attribute of a connector specifies the temporal span allowed to
the WfMS for executing the connector activity. The graphic representation for connec-
tors in a workflow graph (diamond) is different from the graphic representation for
tasks (rectangle with rounded corners) to underline the conceptual difference of the
corresponding activities.

As in the WfMC Reference Model [WfMC 1995], in our model we have two connector
types: split and join. As depicted in Figure 2, split connectors are nodes with one
incoming edge and two or more outgoing edges: split connectors are routing connectors
specifying that, after the execution of the predecessor, several successors have to be
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Fig. 2. Graphic representation of split connectors as proposed by Object Management Group [2007].
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Fig. 3. Graphic representation of join connectors as proposed by Object Management Group [2007].

considered for the execution. The set of nodes that can start their execution is given by
the features of each split connector. A split connector can be one of the following.

—Total. It specifies that all successors are triggered for a parallel execution. Each
successor execution is independent from the others, so the incoming flow splits into
as many independent flows as the outgoing edges are.

—Alternative. It stands for a choice node. It has two or more outgoing edges represent-
ing mutually exclusive (alternative) flows. This ensures that only one successor node
is selected at runtime. The choice of the successor node depends on the evaluation
of some system conditions such as the availability of agents or some other external
conditions.

—Conditional. It is a specialization of the Alternative connector where there are only
two alternative successors and the choice depends on the state of some workflow
variables instead of some system or external conditions. The boolean expression
that represents the choice is called condition. After the evaluation of the condition,
the successor task associated to the corresponding true value is triggered for the
execution.

—CycleChecker. It represents the control of a cycle and it has the same properties of
the conditional connector. Additionally, it defines suitable cycle attributes: iterations
and deadline. Iterations are represented as an interval expressed as the minimum
and the maximum number of allowed iterations. Deadline is the maximum allowed
duration for completing all the iterations of the cycle. At least one of these two
attributes must be set by the designer to ensure the cycle termination.
Join connectors are nodes with two or more incoming edges and one outgoing edge

only, as shown in Figure 3: join connectors merge more flows into one single flow. A join
connector can be one of the following kinds.
—And. It joins two or more concurrent flows into one flow. It plays the role of syn-

chronizer as it is ready for execution only after the end of the execution of all its
predecessors.

—Or. It joins two or more alternative flows into one. Since alternative flows come from
an Alternative connector or a Conditional one, only one of them can be operative at
runtime. Therefore, the connector is ready for execution after the end of the execution
of the predecessor present on the running flow.
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—CycleMarker. It represents the starting point of a cycle. Each cycle in this model
contains a CycleMarker and a CycleChecker connector. The position of activities with
respect to these two connectors determines the kind of cycle as explained in Sec-
tion 2.1.5. The CycleMarker has always two incoming edges: one comes from the
predecessor node while the other one comes from the last node of the cycle.

2.1.3. Start and End. Figure 1(b) depicts the graphic representation for Start and End
symbols. These constructs enable the creation and the completion of workflow cases
and do not represent proper activities: they have no temporal property. In detail, Start
represents the start symbol of a workflow graph. After the creation of a workflow
instance, the Start successor is triggered for execution. Each workflow graph must
have exactly one Start. End represents the stop symbol of a workflow graph. Each
workflow graph must have one End. When End is reached, the workflow is completed.

2.1.4. Control Flow. Recalling that the control flow relation F defines the order of exe-
cution between any pair of nodes, in Figure 1(c) there is an example of a control flow
between two tasks. The edge orientation suggests the direction of the control flow: the
predecessor must be finished before starting the execution of the successor. Every edge
has a temporal property, delay, that denotes the time that can be used by the WfMS for
its internal activities between the end of the predecessor and the beginning of the suc-
cessor and for managing in an adaptive way the execution of workflow cases according
to the given temporal constraints. More details are given in Section 2.2.

2.1.5. Cycles. The cycle construct allows one to model the iteration of a group of ac-
tivities within a workflow schema. To efficiently manage cycle constructs, some rules
are needed. Every cycle is a subgraph in the workflow schema with one CycleMarker
as starting node and one CycleChecker as ending node of the subgraph, respectively.
The activities of a cycle can be positioned between CycleMarker and CycleChecker or
between CycleChecker and CycleMarker, depending on the kind of cycle wanted.

All the activities belonging to the cycle are repeated as long as the CycleChecker
conditions hold. The workflow execution leaves a cycle if any of the following condi-
tions holds: (i) the CycleChecker condition becomes false; (ii) the number of iterations
reaches the maximum number of allowed iterations specified in CycleMarker; (iii) the
cumulative time of the executed iterations exceeds the deadline value specified in
CycleChecker.

We observe that if the iterations attribute is specified, the workflow can be rewritten
into a cycle-free one. In fact, the cycle subgraph can be replaced by a subgraph contain-
ing iterations copies of the original cycle linearly connected as follows: all CycleMarker
connectors are removed and each CycleChecker one becomes a Conditional connector
where the true-value edge connected to the first node of the following copy and with the
false-value edge connected to the first node after the last copy; the condition of these
Conditional connectors is the original condition of the CycleChecker.

2.1.6. Well-Structured Workflow Graphs. In the following we assume workflow schemata
containing split connectors are full-blocked schemata as defined by WfMC [WfMC
2002], where each split node has a corresponding join node and vice versa. Moreover,
cycles are properly nested. For more details about syntactical correctness issues and
requirements, please see online Appendix A.

2.1.7. Workflow Paths (wf-paths). Due to conditional and alternative flows, not all the
cases of one workflow schema perform exactly the same set of activities. We group
workflow cases into workflow paths (wf-paths) in accordance with the activities actually
executed. A wf-path can be regarded as a workflow subgraph in which every alternative
or conditional connectors has exactly one successor [Eder and Gruber 2002]. When a
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schema contains a cycle, there are as many wf-paths as the possible iterations. It is
sufficient to unroll the cycle as shown in Section 2.1.5: each new Conditional connector
determines a new wf-path. Since in our conceptual model any task cannot have a
0 duration time (see Section 2.2 for the motivation), the number of iterations of a cycle
cannot be infinite even if the designer sets only the deadline of the cycle. Thus, the
number of wf-paths that represent all the cycle iterations is finite and, in the worst
case, it is exponential with respect to the dimension of the workflow encoding.

In order to shortly denote a wf-path, hereinafter we will use the string built by means
of the name of tasks (connectors are ignored) present on wf-path separated by an “-” if
two tasks are in sequence or by “||” if they are on parallel flows (in this case, parallel
tasks are written according to the lexicographical order of their names). For example,
in Figure 4, wf-paths (b) is denoted by T1||(T3-T4) while wf-paths (c) is denoted by
T1||T2. If a workflow schema has no alternative or conditional connectors, one wf-path
only occurs.

2.2. Modeling Time and Temporal Aspects

In this article, we describe how time constraints (i.e., upper and lower bound of tasks
durations, minimum and maximum delays between activity executions, fixed-date con-
straints) can be captured during the conceptual process definition. Therefore, the basic
temporal concepts used in workflow processes are introduced and the conceptual mod-
eling of such kind of temporal information is presented.

Our model considers instants and durations as elementary temporal types
[Goralwalla et al. 2001]. Instants are points on the time domain, while durations are
lengths on the time domain. Intervals are derived types and can be defined as the time
span between starting and ending instants. Instants are represented through times-
tamps: each timestamp is defined at a given granularity. In this article we adopt the
approach proposed by Goralwalla et al. [2001] for modeling granularities: a (calendric)
granularity is a unit of measurement for spans of time. For example, the granularity of
days (day) stands for a duration of 24 hours. More generally, a granularity is a special
kind of, possibly varying, duration that can be used as a unit of time. Such granularities
may thus be used as a unit of measure for expressing durations and also for specifying
time points; in such a case, granularities are used for expressing the distance of a time
point from a reference time point, chosen as origin of the time axis. In the following,
without loss of generality we adopt the granularities of the Gregorian calendar, that is,
year, month, week, day, hour, min, as units of measure for expressing durations and the
International standard date notation (ISO 8601:2004 [ISO 2004]) to represent dates
and times (i.e., locations of time points): therefore, for example, a week stands for a
duration of 7 days while 2007-10-13 08:00 represents the instant “8 o’clock on 13th,
October 2007”.

2.2.1. Task Durations and Delays. The duration is a temporal property of both nodes and
edges. A node duration represents the temporal span of the corresponding activity and
is the temporal distance between the starting and ending instants of the activity. The
edge duration, called delay, denotes the time span between the ending instant of the
predecessor and the starting instant of the successor, that is, the duration at disposal of
the WfMS for managing the start of the successor(s) after the end of the predecessor(s).
Even if a delay can be simulated by a dummy task and this substitution could simplify
the workflow graph structure, we prefer to maintain the delay concept to underline it
represents a time span that could be spent by the WfMS to adaptively coordinate the
task executions instead of a time span that is available to a dummy agent.

In the real world, workflow designers cannot use precise values for durations of
node and edges. For example, tasks can be performed by human agents, and generally
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the duration of a task cannot be precisely known at workflow design time; on the
other hand, even for internal activities (e.g., a split) it is not possible to precisely
know how much the WfMS will take to perform them, depending on the workload
of the system. Moreover, delays could be set by the WfMS to correctly manage the
overall temporal constraints the workflow execution has to satisfy. Therefore, allowed
durations should be expressed by using ranges like expected duration ± time tolerance.
Our conceptual model describes all the durations by an attribute having the form
[MinDuration, MaxDuration] Granularity with 0 ≤ MinDuration ≤ MaxDuration, as depicted
in Figure 4. Range bounds represent the minimum and maximum allowed durations.
The minimum duration can represent either an estimate of the required time to carry
out the activity or a constraint to the necessary time to carry out it. For example, to
determine a parameter during a blood analysis it would be necessary to wait until
a reagent reacts before proceeding with the measurement. The maximum duration
represents a deadline to the time to carry out the activity. In our conceptual model,
each workflow component has the duration attribute. If the workflow designer does not
set a duration, we set the attribute value to [1,+∞] MinGranularity, where MinGranularity
is the finest granularity managed by the WfMS.

We do not admit [0,0] MinGranularity to underline that no activity can be executed
without time consumption. A user can always set [0,n] Granularity as a duration at-
tribute to specify that an activity can last 0 Granularity if Granularity is not the minimal
granularity used by the WfMS to measure time.

2.2.2. Temporal Constraints. Besides the basic temporal constraints, expressed through
durations as previously described, our conceptual model allows one to express several
kinds of temporal constraints: from the business perspective they are defined by laws
and regulations, business policies, common practices, as well as mutual agreements and
expectations related to efficiency of business practice [Marjanovic and Orlowska 1999].
Differently from the duration attributes, temporal constraints are not mandatory for
each workflow component: they model additional temporal properties and must be
controlled by the WfMS. We classify temporal constraints for workflows as relative
constraints and absolute constraints.

A relative constraint limits the time distance (duration) between the starting/
ending instants of two nonconsecutive workflow nodes. Our model provides one
type of relative constraint, expressed according to the notation IF[MinDuration,
MaxDuration]IS Granularity, where: (i) IF marks which instant of the first node to use
(IF = S for the starting execution instant or IF = E for the ending one) while IS
marks the instant for the second node; (ii) [MinDuration, MaxDuration] Granularity with
MinDuration ≤ MaxDuration represents the allowed range for the time distance between
the two instants IF and IS.

A finite positive MaxDuration value models a deadline as defined in other workflow
models [Eder et al. 2000; Marjanovic and Orlowska 1999], since it corresponds to
the maximum global allowable execution time for the activities that are present on
possible flows between the first node and the second one. On the other hand, a finite
positive MinDuration represents the minimum execution time that has to be spent before
proceeding after IS: if the global time spent to execute all activities between IF and IS is
less than MinDuration, then the WfMS has to dynamically manage a suitable exception
(like to sleep, for example) that depends from the specific applications. A finite negative
MaxDuration value expresses that the IS has to occur before IF |MaxDuration| instants
at least.

Figure 4(a) depicts two examples of relative constraints. The first one is the edge
connecting Start to T3. It fixes to 18 minutes the maximum time distance and 1 minute
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Fig. 4. Workflow graph(a) and its two wf-paths (b) and (c). The workflow contains also two relative con-
straints (represented as dashed edges) and one absolute constraint on task T2.

the minimum one between the workflow execution start and T3 end; this constraint
has to be evaluated only in wf-paths that contain T3.

Relative constraints are conceptually more expressive than the deadline constructs
used in other models. In fact, relative constraints can model other temporal bindings,
as depicted by the Alt1-Or1 relative constraint of Figure 4(a). This constraint fixes
to 2 hours the maximum time distance between the end of Alt1 and the end of Or1
and it has to be evaluated in every wf-path allowing therefore a global constraint on
the duration of alternative flows of the workflow schema. Relative constraints cannot
be set for activities belonging to mutually exclusive flows. Tasks within a cycle may be
constrained only with respect to other tasks of the same cycle and these constraints
are verified each iteration of the cycle. The CycleChecker and the CycleMarker nodes
can be constrained with respect to any task inside or outside the cycle.

An absolute constraint represents a time interval during which an activity can be
performed; interval bounds are expressed by timestamps. Bounds of an absolute con-
straint are independent from the workflow execution starting point. Figure 4(a) depicts
an example of an absolute constraint: task T2 must be completed within the interval
from 2003-10-13 08:00 to 2003-10-17 16:30. The span of the time interval for the ab-
solute constraint must be greater than or equal to the maximum duration defined for
the corresponding activity.

2.3. A Motivating Example of a Temporal Workflow Schema

As an example of a real workflow schema, we consider here an excerpt from the guide-
line for the diagnosis and treatment of ST-segment Elevation Myocardial Infarction
(STEMI), published by the American College of Cardiology/American Heart Associa-
tion in 2004 [Antman et al. 2004]. Figure 5 depicts the corresponding temporal workflow
schema. The case starts as the patient is admitted to the Emergency Department (ED)
(task T1) that has not to require more than ten minutes. After the admission, the
patient is examined by a physician (task T2) that can take a time between five and
twenty minutes to make the examination. If the diagnosis is a Class-I STEMI occur-
rence (connector C1), then a well-known set of therapy and diagnosis activities has
to fire (true flow). Otherwise, a further patient evaluation has to be done (false flow).
Since the guideline mainly considers Class-I STEMI patients, we have decided to close
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Fig. 5. Workflow graph example of patient admission to an hospital. The dashed edges represent relative
constraints. It is worth noting that the last Or-join 5 could be avoided, maintaining the same expressivity,
if we allow more Ends, one for each alternative path.

the false flow by a generic task (task T3) to represent a further evaluation. The true
flow is composed by three parallel flows starting from connector 1.

The lowest flow contains the (possible) activities related to therapies for ischemic
discomfort: after the evaluation of the presence of ischemic discomfort (conditional con-
nector C2), three administrations of sublingual nitroglycerin are performed (cycle with
internal task T6); a successive intravenous nitroglycerin is administered (connector
C3 and task T7), as needed. The central flow refers to the complementary therapeutic
action consisting of the assumption of beta blocker drugs (task T5). The uppermost flow
refers to the main therapeutic action in presence of a myocardial infarction: reperfusion
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is obtained through a fibrinolytic therapy (task T4). After all these therapeutic actions,
the following activity (task T8) consists of admitting the patient to the Coronary Care
Unit (CCU). After the admission to CCU (lasting at most four minutes), a check about
the blood pressure of the patient is performed and, according to this check, two al-
ternative therapies are provided: in case of hypotension, the physician has to review
the medication (Medication Review (MR)) about diuretics (task T10) while, in case
of absence of hypotension, the physician has to review the medication about diuret-
ics and nitrates. Afterwards, an evaluation of the fibrinolytic therapy is needed (task
T11). According to the result of this evaluation, two alternative Percutaneous Coronary
Intervention (PCI) are executed: indeed, if the fibrinolytic therapy did not obtain reper-
fusion, a rescue PCI is promptly performed (task T12) while if the patient is reperfused,
a facilitated PCI is allowed (task T13). At the end of the chosen PCI, an evaluation of
the overall patient status is done (task T14).

It is possible to observe that there are different temporal constraints for tasks, given
at different granularities. The intertask constraint between the end of task T1 and
the beginning of task T4 represents the most important recommendation from the
guideline to successfully apply the fibrinolytic therapy to patients. Moreover, temporal
constraints between tasks T9 and T12, T9 and T13, T10 and T13 limit the time span
between the definition of therapies and the execution of PCIs. A further constraint
between T8 and T14 specifies a possible range of durations for the activities in the
CCU.

If durations are not specified, then they are set to the default value of [1,+∞] min
since we assume that the minimum granularity managed by the WfMS is minute.

After the definition of the STEMI workflow schema, it is important to verify if it is
possible to carry out a successful execution: for example, an obvious question we need
to answer is whether it is possible to have the fibrinolytic therapy (task T4) within
the allowed time span with respect to the admission of the patient to the Emergency
Department (task T1) when the activities and delays between them assume allowed
time durations. Another possible question is whether the final evaluation of the patient
status (task T14) may be executed satisfying the temporal constraint with respect to
the admission of the patient to the CCU (task T8) disregarding the fact that the patient
undergoes a rescue PCI (task T12) or a facilitated one (task T13). All these kinds of
verifications may be termed design-time evaluation.

After the design-time evaluation, a further evaluation has to be assessed at runtime
(runtime evaluation): for example, if the admission to the ED (task T1) is performed in
8 minutes and the following task T2 is started one minute after, we need to reevaluate
the allowed durations for task T2 in order to be able to start the fibrinolytic therapy
(task T4) within 30 minutes after the admission to ED. Moreover, we could need to
reevaluate the allowed durations for the patient status evaluation (task T14) when
the specific sequence of performed tasks does not involve some temporal constraints
(e.g., for the given patient task T9 and task T12 have been executed and therefore the
constraint between T9 and T13 is not meaningful).

3. CHECKING TEMPORAL WORKFLOW SCHEMATA

The successful completion of a process often depends on the correctness of temporal as-
pects modeled at design time. If temporal constraints are such that any of them cannot
be satisfied, the process cannot be performed successfully. Therefore, preliminary tem-
poral evaluations are needed to state whether the specified temporal constraints can be
satisfied by any workflow instance, where satisfaction means the existence of at least
one assignment of timestamps to the start and to the end instants of activities such
that all constraints hold. When one of such assignments exists, the workflow schema
is called consistent. These preliminary temporal evaluations can be complex because a
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workflow schema may represent many wf-paths and therefore the evaluations have to
be done for each flow separately and suitably merged at the end.

In this section we propose a general method to check the consistency of tempo-
ral schemata and, since there are some different levels of constraint satisfaction, we
propose a classification of workflow schemata in accordance with different kinds of
temporal workflow consistency. This classification can be useful to evaluate, for exam-
ple, the quality of a schema and its flexibility both at design time and at runtime. More
particularly, first we distinguish the design-time evaluation from runtime evaluation
of temporal workflows constraints and, then, we discuss separately each of them.

3.1. Evaluating Temporal Constraints for Workflows

For brevity’s sake, henceforth we name without distinction a duration attribute or an
absolute/relative constraint or a delay as a temporal constraint.

In general, the analysis of temporal constraints of a workflow is a three-stage pro-
cess that starts just after the schema design completion and ends when an instance
execution ends.

(1) Design-time evaluation. It is executed only once, just after the workflow schema
design completion. The goal is to verify all temporal constraints but absolute ones.
It consists of:
(a) converting all the temporal constraints into equivalent ones at the finest gran-

ularity;
(b) verifying the satisfiability of all the temporal constraints but absolute ones.
Absolute constraint satisfiability cannot be verified because in this stage only the
workflow schema is analyzed and, therefore, there is not a starting execution time
necessary to consider temporal absolute constraints.
The result of this stage is a successful validation or a rejection of the schema when
at least one nonsatisfiable constraint is found. If the schema is validated, all its
temporal constraints but absolute ones are expressed in terms of the same temporal
granularity.

(2) Runtime evaluation. It runs in parallel with the workflow instance execution and
its goal is to continuously update the active temporal constraint values given the
actual times of completed activities.
This stage can be divided into two different substages.
(a) Start-time evaluation. It starts when a starting time for a workflow instance

is given. Its goal is to convert and to verify all absolute temporal constraints.
These constraints are converted into relative equivalent ones using the work-
flow instance starting time. Afterwards, all the constraints (new ones included)
are verified again in the same way as done in the first stage. If all the con-
straints are satisfiable, the schema instance is validated and its execution can
start at the given starting time.

(b) Node-by-node evaluation. As an activity completes, if it is involved in some
relative constraints, its actual execution time can compel changes for other
activities/delays involved in the same relative constraints. These changes can
require the WfMS to reduce the allowed duration ranges of some subsequent
activities or to increase the delay before or between two subsequent activities in
order to guarantee the overall constraint satisfaction. On the other hand, some
constraints could be relaxed at runtime because some wf-paths are no longer
possible due to previously executed alternative/conditional splits.

For example, let’s consider a simple workflow where there are three sequential
tasks. Each task has to be completed in 6 minutes at most and there is a relative
constraint stating that all tasks have to be completed in 10 minutes at most. The
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constraints are satisfiable. If the first task lasts 6 minutes, the second and third ones
cannot last more than 4 minutes globally. Therefore, after the first task completion,
the WfMS has to determine new ranges of allowed durations for the following tasks,
before assigning them to agents.

A general method to check constraint consistency in these two stages can be based on
the general method for the Simple Temporal Problem (STP) consistency check [Dechter
et al. 1991].

In the following sections we describe the two stages in more details. First of all, we
show how to convert possible different temporal granularities into a common one and
how to convert absolute constraints into relative equivalent ones once the workflow
instance starting time is given. Then, we recall some concepts on STP and on its con-
sistency check; moreover, we show the equivalence between a wf-path and an STP and,
therefore, that the consistency check of a wf-path is equivalent to check the consistency
of the corresponding STP. We define the workflow consistency in accordance with con-
sistencies of its wf-paths and we also propose three types of temporal consistency of a
workflow schema according to the features of its wf-paths.

Finally, we discuss how these three types of consistency have effect on the behav-
ior of a workflow execution and how they can require different degrees of temporal
adaptiveness to the WfMS.

3.2. Conversion of Temporal Constraints

To verify temporal constraint consistency, we need to convert all the temporal con-
straints specified in the workflow schema at different granularities into the equivalent
ones at the finest granularity managed by the WfMS. Absolute constraints have to be
previously converted into relative ones.

Temporal constraints are always interpreted as allowed time spans between time
points at the finest granularity [Goralwalla et al. 2001]. For instance, assuming that
min is the finest granularity managed by the WfMS, the constraint [0,0] day will be
translated into the equivalent constraint [1, 24 · 60 − 1] min, as the lower bound of the
range is the minimum duration for a span lasting 0 day and the upper bound 24 ·60−1
is the maximum duration for a span lasting less that 1 day, that is, 24 hours.

To deal with the temporal properties that depend on the starting point of the workflow
instance, it is necessary to convert the fixed-date bounds of absolute constraints into
bounds that are dependent from the starting instant of that workflow instance: this
conversion is obtained by subtracting the starting instant of the workflow instance from
the interval fixed-date bounds. As regards the workflow graph, an absolute constraint
conversion is represented by a pair of relative constraints: one between the Start and
the start instant of the node and the other one between the Start and the end instant of
the node. Both constraints have the same converted temporal range, mentioned before.

3.3. Temporal Workflows and the Simple Temporal Problem

Before explaining how we check the consistency of a workflow, it is useful to demon-
strate that the consistency of wf-paths defined by our conceptual model can be checked
by using polynomial-time algorithms in similar way as done by Dechter et al. for Simple
Temporal Problems (STPs) [Dechter et al. 1991].

For sake of simplicity, we recall that we want to check whether all temporal con-
straints of a wf-path are consistent, where consistency means the existence of at
least one assignment of timestamps to start and end times of activities, such that
all constraints hold. The constraints that may cause the overall consistency to fail are
the relative ones: without them, consistency is guaranteed as it is always possible to
find an assignment to start and end times of activities that satisfy the single specific
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constraint on activity durations and delays. Instead, when relative constraints are set,
it is possible that a relative constraint on the time distance between activities A and B
cannot be satisfied, since the sum of the minimal durations for the activities and edges
from A to B is larger than the maximum duration the constraint allows. Similarly, the
sum of the maximum durations of the activities and edges may be smaller than the
minimum time distance in the constraint. Moreover, even if a path is consistent, it is
possible that for an activity with constraint [a, b], all satisfying assignments fall into
[a′, b′], where a < a′ and b′ < b. The maximum is reduced since a relative constraint
applies, and the sum of the minimal durations for other activities does not allow this
activity to execute in more than b′. A symmetric argument holds for the minimum. In
this case, we would like to find a′ and b′. This analysis (and eventually new intervals de-
termination) can be carried out by showing that a wf-path is equivalent to an instance
of the STP and using the well-known results stated for it. An STP consists of a set of
variables, {X1, . . . , Xn}, specifying time points, and a set of constraints for the distances
between these variables. Each constraint is specified as a single range of allowed values
between two variables and there cannot exist more than one constraint in the set for a
given pair of variables. Any constraint is in the form a ≤ Xj − Xi ≤ b. A solution is an
assignment {X1 = v1, X2 = v2, . . . , Xn = vn} such that all constraints are satisfied. An
STP can be associated to a directed weighted graph, called distance graph. Its nodes
are the variables and its edges are the constraints. For each constraint a ≤ Xj − Xi ≤ b,
two edges (Xj, Xi) and (Xi, Xj) are defined with weights −a and b respectively. An STP
is consistent, that is, all its constraints can be satisfied, if its distance graph has no
negative cycles. An algorithm to detect negative cycles is the Floyd-Warshall’s all-pairs
shortest-path algorithm [Cormen et al. 2001]. Starting from a distance graph, this
algorithm yields a complete weighted graph, called d-graph. If the d-graph has all
positive self-loops then the distance graph has no negative cycles and each (i, j) edge
label is the shortest path length between i and j in the distance graph. Each STP con-
straint range obtained from these shortest path lengths is a subrange of the original
one [Dechter et al. 1991]. The Floyd-Warshall’s algorithm has complexity O(n3), where
n is the number of nodes [Cormen et al. 2001]: hence the problem of consistency for
STPs can be solved in time O(n3). Here we shall prove that every wf-path of our model
can be expressed as an STP.

THEOREM 3.1. The temporal wf-paths of our conceptual model represent simple tem-
poral problems.

PROOF. To demonstrate the theorem we only need to show that a wf-path can be
translated into an equivalent STP.

The translation has to transform the activity nodes and edges with their temporal
properties into equivalent time point variables and temporal constraints of an STP.
This task is accomplished by three steps.

(1) Nodes conversion. Given a workflow graph, each node A is converted to two vari-
ables, AS and AE, representing its start and end instants. The duration attribute
of A, [a, b] is converted to the constraint a ≤ AE − AS ≤ b.

(2) Edges conversion. An edge from node A to node B with delay [c, d] is converted to
the constraint c ≤ BS − AE ≤ d.

(3) Relative constraint conversion. A relative constraint edge between two nodes A and
B is converted to the constraint using the variables that represents the time in-
stants declared in the constraint; for example, the constraint E[1, 30]S min between
tasks T1 and T4 in Figure 5 is converted to the constraint 1 ≤ T4S − T1E ≤ 30.

COROLLARY 3.2. The consistency of a wf-path graph can be checked in time O(n3).
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PROOF. As stated in Theorem 3.1, each wf-path can be transformed into an equivalent
STP problem. Applying the Floyd-Warshall’s algorithm to the STP associated distance
graph, it is possible to say whether the original problem is consistent, as described at
the start of this section.

3.4. Design-Time Temporal Workflow Consistency

Given a workflow schema, its temporal consistency check can be done starting from the
consistency check of its wf-paths. As shown in the previous section, given a wf-path,
it is possible to state whether all of its temporal constraints are satisfiable and, if so,
to determine the optimal ranges for them in a polynomial time. Optimal range means
that for each of its instants there exists at least one temporal solution (i.e., a time
assignment to all activities) that uses such duration. Considering all the wf-paths, we
could say that a workflow schema is temporally consistent if all of its wf-paths are
consistent.

However, from the point of view of the WfMS, this näive definition of temporal
consistency of a workflow schema does not suffice to successfully manage the tasks and
their assignment to agents. For example, it could be that for a task there are disjoint
ranges of allowed durations from different wf-paths: in this case the actual duration
of the task will exclude the possibility of executing some wf-paths and this could be
a problem since such excluded wf-paths could be the required ones to successfully
complete the workflow. Another possible situation is when the range for an activity
allows the execution of any wf-paths. A more subtle situation is when different duration
ranges for an activity allow any successive execution flow, but the range is known only
when we fix the previously executed activities (i.e., the flow from the start case to the
considered activity): in this case the WfMS has to adaptively manage the duration of
the considered activity according to the actual execution flow. Therefore, it is necessary
to further analyze and detail the concept of workflow consistency to manage the allowed
duration ranges in a right way. To do that, we have first to introduce the preliminary
concept of prefix, to group together wf-paths having some common set of activities and
edges.

Definition 3.3 (activity/edge prefix). A prefix of a given activity/edge y is the set
of all the wf-paths that have the same successor for each alternative or conditional
connector that precedes y. An activity x precedes an activity y either it belongs to the
predecessor set of y or precedes an activity of this set.

Hereinafter a prefix of a given activity/edge y can be represented by the wf-path
notation specifying the common part that wf-paths of the prefix share. This way, it
is straightforward to define a partial order 	 among prefixes according to the lexico-
graphical order induced by this notation. For example, in Figure 5, considering prefixes
T1-T2 and T1-T2-(T4||T5), it holds T1-T2 	 T1-T2-(T4||T5). It is worth noting that for
any prefixes α, β such that α 	 β the wf-paths of β belong to α too, that is, α ⊇ β.

Considering a given prefix, let’s determine for each activity/edge of the prefix the
intersection of the allowed ranges in its different wf-paths. If all such intersections are
not empty, we consider them as new activity/edge ranges and, therefore, we determine
the consistency for each wf-path of the prefix. If all wf-paths are still consistent, it can
be that such consistency checks reduced the allowed ranges for some activities/edges:
in this case, we reapply the previous steps by deriving the new intersection for all
activity/edge ranges and checking again the consistency of each (updated) wf-path.
These steps have to be iterated until there are no more range modifications. After this
iteration, the new ranges represent the duration ranges for activities/edges allowed
for any wf-path of the given prefix and, therefore, we say that the prefix is consistent.
In case that any intersection results to be empty or any wf-path results to be not
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Function buildCommonRanges(S)

Input: S: set of consistent
Output: the check status and a new set of temporal ranges for activities and delays
do

foreach task t present into any do
t range = intersection of t-ranges present into

foreach connector c present into any do
c range = intersection of c-ranges present into ;

;
foreach delay d present into any do

d range = intersection of d-ranges into wf-paths

R = collection of these new ranges;
if (at least one range is empty) then

return (’emptyRangeFound’,

foreach p ∈ S do
Execute Floyd-Warshall on the distance graph corresponding to p with ranges in R;

while (at least one range has changed ∧ no range is empty ∧ no is inconsistent);
if (at least one is inconsistent) then

return (’noConsistentPathFound’,
else if (at least one range is empty) then

return (’emptyRangeFound’, 0)
else

return (’commonRangesFound’, R)

0)

0)

wf-paths

wf-path
wf-paths;

wf-paths

wf-path

wf-path

wf-path

wf-path

wf-path

Fig. 6. A simple algorithm for prefix consistency check. Given a set of wf-paths that form a prefix, the algo-
rithm returns the set of activity/edge temporal ranges (if any) that works in any wf-path; if any inconsistency
arises during the computation of temporal ranges, it returns the empty set. Moreover, it returns a flag that
qualifies the set returned.

consistent, it means that for at least one activity/edge there does not exist a common
duration range for all wf-paths of the prefix and, thus, the prefix is not consistent.
Figure 6 presents the algorithm that checks the consistency of a given prefix according
to this approach.

As a consequence of this new characterization, it is possible to improve the workflow
schema consistency concept by defining three different levels of consistency. To discuss
these levels of consistency, we shall consider as a complete workflow the last tasks of the
STEMI workflow schema (see Figure 5) starting from task T8 as depicted in Figures 7, 8,
and 9: this part of the workflow schema consists of the task T8, followed by either T9
or T10, T11, either T12 or T13, and finally T14; the missing values for delays and
durations are set to [1,+∞] min, while all durations for tasks and relative constraints,
edges, and connectors are already expressed at the finest granularity of minutes. As
there are two alternative splits, we have four different wf-paths: T8-T9-T11-T12-T14,
T8-T9-T11-T13-T14, T8-T10-T11-T12-T14, and T8-T10-T11-T13-T14, respectively.

The first kind of consistency we focus on is the most desirable one from the planning
point of view.

Definition 3.4 (Workflow Strong Consistency). A workflow schema is strongly con-
sistent if the prefix of Start is consistent.

If a workflow is strongly consistent, a first consequence is that the WfMS can commu-
nicate a preliminary task duration range to every agent. Moreover, the time required
by an activity does not affect the following possible flows, but only the duration range
for the following activities. It is worth noting that at runtime, as we will discuss in the
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Fig. 7. Strong consistency case: (a) Original workflow graph schema; (b) the result of consistency analysis.
The schema is strongly consistent; ranges for activities/edges are the intersections of all wf-paths ranges
calculated. The boldface ranges are different from the corresponding ones in (a).

next section, this range could be adaptively enlarged or restricted in accordance with
the execution time of the previous completed tasks. An example of a strongly consistent
workflow schema is given in Figure 7(a). All wf-paths are consistent in isolation. The
prefix of Start (i.e., the set of all four wf-paths) results to be consistent and the new
derived ranges are depicted in Figure 7(b). For example, task T11 has the reduced
range [2,7] min.

The second type of consistency is the history-dependent one.

Definition 3.5 (Workflow History-Dependent Consistency). A workflow schema is
history-dependent consistent if: (i) the prefix of Start is not consistent, and (ii) there
exists at least one join connector such that all its prefixes globally contain all the
possible wf-paths and each of its prefixes is consistent. The consistency of prefixes
is evaluated in the following way: the allowed range of each activity/edge preceding
the given join is restricted to have a single value for each prefix of the considered
activity/edge.

If a workflow is history-dependent consistent, at least one activity has more than
one disjoint duration range. Each duration range is associated to one or more prefixes
of the activity (this explains the expression “history-dependent”) but duration ranges
do not restrict any possible following flow. The WfMS can communicate a preliminary
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Fig. 8. History-dependent consistency case: (a) Original workflow graph schema with two relative con-
straints reduced (the boldface ones); (b) the result of consistency analysis. The schema is history-dependent
consistent. The boldface ranges are different from the corresponding ones in (a).

set of task duration ranges to agents for each task and to itself for each connector. For
each activity, exactly one of the given ranges could be used (enlarged or restricted) in
accordance with the execution time of the previous completed activities. Therefore, the
time required by an activity does not affect the following possible flows, but only the
duration range for the following activities. It is worth noting that to check the history-
dependent consistency it is sufficient to consider the last join connectors (there could
be several last join connectors if they are on parallel flows) as we will discuss in the
following.

An example of a history-dependent consistent workflow schema is given in Fig-
ure 8(a). This schema differs from the original schema of Figure 7(a) for the two relative
constraint values: T9-T12 new value is S[30,35]E min and T10-T13 one is S[58,60]E min.
This schema is not strongly consistent because the consistency check for the prefix of
Start determines that task T11 has an empty duration range. So, prefixes of 4 are
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considered (i.e., prefixes T8-T9-T11-T12, T8-T9-T11-T13, T8-T10-T11-T12, and T8-T10-
T11-T13). Since they are consistent and all the considered activities/edges preceding

4 have nonempty common ranges for their respective prefixes, the schema is history-
dependent consistent. Task T11 has two ranges of possible durations, that is, [2, 2] min
and [3, 9] min: the former range is the result of deriving the common range for wf-paths
of prefix T8-T9-T11, while the other one is the result considering the wf-paths of prefix
T8-T10-T11. In this case, even though it is not possible to have any common range of
durations for T11 at design time, we know that there are allowed durations for T11
not preventing any following flow. The same consideration could be done for task T8,
having in this case a single prefix composed by four different wf-paths.

The less desirable consistency is the weak one.
Definition 3.6 (Workflow Weak Consistency). A workflow schema is weakly consis-

tent if: (i) all of its wf-paths are consistent in isolation and (ii) it is not history-dependent
consistent.

If a workflow is weakly consistent, a first consequence is that an instance could not
end successfully. Indeed, there is at least one activity in a prefix having nonintersecting
ranges for two different wf-paths of the prefix. In this case, it could be that the consid-
ered task takes a duration that prevents the execution of the path that the workflow
has to follow.

Figure 9(a) represents the original workflow schema with two relative constraint
values modified: the constraint between T9 and T12 is changed from S[30,40]E min to
S[30,35]E min and the constraint T9-T13 is changed from S[40,60]E min to S[58,60]E
min. Having modified these relative constraints, the calculated ranges for T11 change
(Figure 9(b)): in particular, for the prefix T8-T9-T11 we have an empty intersection,
as the two ranges for the wf-paths belonging to the prefix are [2,2] min and [3,9] min,
respectively. It means that it is not possible in the prefix T8-T9-T11 to derive a duration
range for task T11 allowing any possible following path, that is, either T12 or T13.

Since each wf-path is consistent in isolation, the workflow is weakly consistent.
The general algorithm consistencyCheck(G) determining the consistency type of a

workflow is depicted in Figure 10. Given a workflow graph G, consistencyCheck(G)
checks if each wf-path of G is consistent and, if so, it tries to determine the tempo-
ral ranges that can be used in any wf-path for activities/edges following the starting
point. If such common ranges are possible (i.e., they are not-empty and all wf-paths
with such ranges are consistent), then the workflow is strongly consistent and the
algorithm returns the strong consistency status with the new set of temporal ranges.
Otherwise, the algorithm determines all last -Join connectors in wf-paths and tries
to find, for any of them, if there exists a temporal assignment satisfying all tempo-
ral constraints such that for each activity/edge a that precedes the considered -Join
connector there exists a common temporal range for each of prefixes of a (algorithm
consistencyCheck(G, rootActivity) in Figure 11). -Join connectors are considered
because they distinguish different past histories: indeed, after an -Join connector,
activities/edges have more prefixes than activities/edges preceding it have, and with
more prefixes it is possible to analyze the consistency of a workflow according to differ-
ent histories, separately.
If there exists an -Join connector such that all its prefixes are strongly consistent and
every activity/edge preceding it has a common temporal range among its prefixes, then
the workflow is history-dependent consistent.
If it is not possible to determine a history-dependent consistency, then the algorithm
returns the weak consistent status because each wf-path is consistent.

The algorithm consistencyCheck(G, rootActivity) in Figure 11 determines whether
all prefixes of the element rootActivity of the workflow G are all strongly consistent
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Fig. 9. Weak consistency case: (a) Original workflow graph schema with two relative constraints reduced
(the boldface ones); (b) the result of consistency analysis. The schema is weakly consistent because the only
task that has all its prefixes consistent is T14 and each of these prefixes has cardinality one. It is not possible
to derive duration ranges for tasks ensuring a successful execution of any wf-path (so we use gray color
reporting the original ranges).

and whether every activity/edge preceding rootActivity has a single temporal range for
each of its prefixes. We recall that if the two conditions hold for a rootActivity r, it is
possible to assign to each activity/edge preceding r a temporal range that could depend
from the history (i.e., the previously executed tasks), but that does not prevent any
possible wf-path after the activity/edge.

A final note regards the time complexity of the workflow consistency check. In the pre-
vious section we state that the consistency check of a wf-path can be done in time O(n3),
where n is the number of nodes of the wf-path graph. Since buildCommonRanges(S) (Fig-
ure 6) makes a limited number of operations on the results of checking the consistency
of wf-paths, the time complexity of the whole process can be determined by multiply-
ing O(n3) by the number of possible wf-paths of S and by the maximum number of
iterations of the do-while cycle. Such maximum number, even though in our experi-
mental tests results to be around the number 4, in the worst case analysis is limited by
the maximum extension of temporal ranges present into wf-paths (MaxRange). There-
fore, the time complexity of buildCommonRanges(S) is pseudopolynomial with respect
to the cardinality of S, n and MaxRange, that is, O(n3 |S| MaxRange). As regards
consistencyCheck(G, rootActivity), the complexity can be estimated by multiplying
the complexity of buildCommonRanges by the number of possible prefixes of rootActivity
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Fig. 10. ConsistencyCheck(G) determines whether a workflow schema is consistent and, if so, the kind of
consistency by means of algorithm consistencyCheck(G, rootActivity). Moreover, it returns the set of temporal
ranges can be used as initial ranges to start the workflow execution.

and by the number of iterations of the do-while cycle. The number KrootActivity of possible
prefixes of rootActivity is given by counting all possible flows from Start to rootActivity.
As in the previous case, the number of iterations of the do-while cycle is limited by the
maximum extension of temporal ranges present into wf-paths of prefixes of rootActivity
(MaxRange). Thus the overall complexity of consistencyCheck(G, rootActivity) can be
expressed as O(KrootActivity |SrootActivity| n3 MaxRange2) where SrootActivity is the average
cardinality of prefixes of rootActivity, observing that the product KrootActivity |SrootActivity|
corresponds to the total number of wf-paths of all prefixes of rootActivity. Denoting
by w the number of wf-paths of the graph, it holds that KrootActivity |SrootActivity| ≤ w
and so the consistencyCheck(G, rootActivity) complexity can be approximated as
O(w n3 MaxRange2).

Finally, the time complexity of consistencyCheck(G) is given by the order of com-
plexity of consistencyCheck(G, rootActivity) multiplied by the dimension of JoinSet.
An estimation of the (worst-case) dimension of JoinSet is given assuming that the
last Join connectors are on a parallel path (each on a different branch) and their
degree is 2: in this case the dimension of JoinSet is less than the half of the number
of wf-paths of the graph. Therefore the time complexity is O(w2 n3 MaxRange2).

This last number w depends on the number of alternative or conditional or cycle
connectors in the workflow schema and by their relative positions. An upper bound can
be easily determined assuming that all of these connectors are not nested, but are in
sequence. For each alternative connector, there are as many wf-paths as the outgoing
edges of the connector. For each conditional connector, there are two wf-paths. For
each cycle, there are as many wf-paths as the maximum number of iterations of the
cycle. Labeling by c the total number of conditional connectors, by a = max{|al � |} the
maximum among the outdegrees of the alternative connectors and by m the maximum
number of iterations for the cycles of the schema, an estimation of the number of
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Fig. 11. ConsistencyCheck(G, rootActivity) determines whether all prefixes of the element rootActivity of
the workflow G are all strongly consistent and whether each activity/edge preceding rootActivity has a single
temporal range for each of its prefixes. If so, it returns the set of temporal ranges can be used as initial ranges
for the prefixes.

wf-paths is 1 ≤ w ≤ 2c(a + 1) j(m+ 1)i, where j is the number of alternative connectors
and i is the number of cycle constructs. It’s worth to note that the number of wf-paths
can be exponential with respect to the graph order even if the schema admits only
one cycle construct (i = 1) and there are no alternative split or conditional operators
( j = 0∧c = 0) because mcan assume a exponential value with respect to the dimension
of the instance.

In summary, the upper bound to the time complexity of the workflow consistency
check is exponential with respect to the number of conditional/alternative/cycle con-
nectors and to the dimension of width of temporal ranges.

3.5. Runtime Temporal Workflow Consistency

During the execution, a temporal WfMS has also to verify that the considered (partial)
case can reach its end in a consistent way, that is, satisfying all the given temporal
constraints. To do that, the WfMS has to check the consistency of the workflow graph
obtained from the original one by updating the durations of completed activities and
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Fig. 12. Strong consistency runtime case: (a) Workflow schema after the execution of tasks wf-path T8-T9
assuming that T8 and T9 last their maximum allowed time while all delays and connectors among these
activities last the minimum time; (b) workflow schema after the execution of tasks wf-path T8-T10 with
analogous assumptions about tasks, connectors, and delays. Boldface label represents the value changed
with respect to the original one.

delays to their actual values. Moreover, the workflow graph has to be pruned of the
wf-paths that have not been followed.

In the following, we discuss the computational issues for the runtime evaluation of
workflow consistency according to the consistency classification that we have proposed
in Section 3.4.

3.5.1. Runtime Checking Strongly Consistent Workflows. A first benefit of strong consistency
is that at the start of an execution the preliminary allowed range for each task is
available to the WfMS either for internal evaluation of workload balancing among
agents or for transmission to the (human) agents involved with workflow execution.
During the execution, the WfMS has to manage the change of the recomputed allowed
ranges: these ranges could be restricted or enlarged depending on the actual duration
of the already executed activities and on the excluded wf-paths (e.g., due to previous
alternative/conditional splits).

Let us consider how the WfMS has to deal with runtime consistency by considering
the execution of the workflow schema obtained after the evaluation of design-time
strong consistency, depicted in Figure 7(b).
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In Figure 12 we show two different executions: in subfigure (a) we consider the
runtime consistency evaluation just before the execution of task T11 after the execu-
tion of activities T8, C4, T9, and 3, while in subfigure (b) we consider the runtime
consistency evaluation just before the execution of task T11 and after the execution
of activities T8, C4, T10, and 3. In these executions tasks required their maximum
allowed time, while the connectors and delays used the minimum one. It is worth
to observe that the new duration ranges for tasks T11 and T12 are restricted with
respect to the ranges computed at design time when T11 follows T8 and T9: indeed,
ranges [2,7] min and [25,30] min for tasks T11 and T12 are restricted to [2,5] min and
[25,28] min, respectively. On the other side, when T11 follows the execution of T8 and
T10, the new duration ranges for tasks T11 and T12 are enlarged and assume the new
values [2,9] min and [25,35] min, respectively.

3.5.2. Runtime Checking History-Dependent Consistent Workflows. With a history-dependent
consistent workflow schema, more flexibility is required either to the WfMS or to the
agents because for each task there can be more allowed preliminary disjoint ranges. In
particular, for the WfMS it is more complex to manage the workload balancing due to
the presence of (possibly) several ranges for each activity. As in the strong consistency
case, during the execution the WfMS has to manage the restriction or enlargement
of the allowed ranges; moreover, it has to manage the changes about the number of
possible ranges for each activity. It is worth to note that at some point during the
workflow execution, the number of temporal ranges for each activity decreases to one
and, therefore, the remaining partial schema becomes strongly consistent.

Let us consider how the WfMS has to deal with runtime consistency by considering
the execution of the workflow schema obtained after the evaluation of design-time
history-dependent consistency, depicted in Figure 8(b). In this case tasks T11, T12,
T13, and T14 have different allowed ranges according to their prefixes.

In Figure 13 we show two different executions: in subfigure (a) we consider the run-
time consistency evaluation just before the execution of task T11 after the execution
of activities T8, C4, T9, and 3, while in subfigure (b) we consider the runtime consis-
tency evaluation just before the execution of task T11 after the execution of activities
T8, C4, T10, and 3. In these executions, tasks required their maximum allowed time,
while connectors and delays used the minimum one. It is worth to observe that for task
T11, the allowed range remains the same computed at design time. Moreover, when
evaluating the consistency of prefixes T8-T9-T11 and T8-T10-T11 separately, both the
two corresponding workflow schemata result to be strongly consistent: it means that
when the WfMS is ready to assign the execution of task T11, it is also able to derive
the (preliminary) single temporal range for each activity following T11. Any of these
single temporal ranges depends only on the execution history preceding task T11: for
example, for task T13, it is possible to derive the range [35, 45] min when T8-T9 are ex-
ecuted before T11, while the interval [39, 45] min is derived when T8-T10 are executed
before T11.

3.5.3. Runtime Issues with Weakly Consistent Workflows. Weak consistency does not guar-
antee the successful execution of any wf-path. In particular, the WfMS has to man-
age suitable exceptions when any task needs to be executed and there is no allowed
nonempty range for it.

For example, considering the weak consistency case depicted in Figure 9, any execu-
tion involving tasks T8 and T9 determines that T11 has no allowed temporal range to
be executed without preventing any possible further wf-path.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 2, Article 19, Publication date: July 2012.



Conceptual Modeling of Flexible Temporal Workflows 19:25

T8-Admission
to CCU
[2,2] min

C4-Hypotension?
[1,1] min

T9-MR: diuretics
and nitrates

[2,2] min

3
[1,1] min

T11-Fibrinolytic
th. eval.
[2,2] min

C5-Reperfusion?
[1,1] min

T12-
Rescue PCI

[25,25] min

T13-
Facilitated PCI

[35,45] min

4
[1,14] min

T14-Patient
Status Eval.

[4,7] min

(a)

[1,1] min

false
[1,1] min

[1,1] min

[1,1] min

[1,1] min

false
[1,1] min

true
[1,1] min

[1,24] min [1,14] min

[1,14] min

S[45,70]E min

S[30,35]E min

S[40,60]E min

T8-Admission
to CCU
[2,2] min

C4-Hypotension?
[1,1] min

T10-MR:
diuretics
[4,4] min

3
[1,1] min

T11-Fibrinolytic
th. eval.
[3,9] min

C5-Reperfusion?
[1,1] min

T12-
Rescue PCI

[25,35] min

T13-
Facilitated PCI

[39,45] min

4
[1,1] min

T14-Patient
Status Eval.

[4,4] min

(b)

[1,1] min

true
[1,1] min

[1,1] min

[1,1] min

[1,1] min

false
[1,1] min

true
[1,1] min

[1,21] min [1,1] min

[1,1] min

S[45,70]E min

S[58,60]E min

Fig. 13. History-dependent consistency runtime case: (a) Workflow schema after the execution of tasks
wf-path T8-T9 assuming that T8 and T9 last their maximum allowed time while all delays and connectors
among these activities last the minimum time; (b) workflow schema after the execution of tasks wf-path
T8-T10 with analogous assumptions about tasks, connectors, and delays. Boldface label represents the value
changed with respect to the original one.

4. RELATED WORK

Many research papers have been published and several approaches for time modeling
have been proposed. In this section we compare our conceptual model with other similar
conceptual models from the literature. In order to summarize the main aspects of the
other approaches, Table I shows a compact comparison between the main features of
our conceptual model and the corresponding features of the other proposals on temporal
workflows.

Eder and colleagues started to investigate on temporal constraints in workflows since
the end of nineties and in the last years they focused on applying and extending the pro-
posed techniques in specific workflow-related domains, such as that of coreographies
and interorganizational workflows [Eder et al. 1999, 2000, 2007, 2008; Bierbaumer
et al. 2005; Eder and Tahamtan 2008a, 2008b; Pichler et al. 2009]. Basically, these
proposals are based on a structure named Timed Workflow Graph (TWG), allowing one
to represent temporal properties of tasks, named in this context “activity nodes”. TWG
is a Directed Acyclic Graph (DAG), in which nodes are activities and oriented edges are
control flows. DAGs are not not suitable to represent complex workflow processes and
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Table I. Compact Comparison between the Main Features of Our Conceptual Model and the
Corresponding Features of the Other Proposals in the Literature

Our Marjanovic’s Bettini’s Chen’s
model TWG model model model

WfMC compliance yes yes yes yes, partially yes
Cycles representation yes no no no no
Tasks-connectors distinction yes no yes, partially no no
Ranges for durations yes no yes yes yes
Delay specification yes yes no yes yes
Relative constraints yes yes yes yes yes
Unbounded intervals yes no no yes no
Consistency check algorithm yes yes yes yes yes
Consistency classification yes no no yes, partially yes

iterative executions, such as cycles, cannot be mapped by DAGs. The TWG approach
is based on the Critical Path Method (CPM) [Taha 2010] extended to consider explicit
time constraints between start and end of different activities [Eder et al. 1999] and,
then, to consider in a proper way the presence of conditional branches in a workflow
schema. CPM [Taha 2010] is a well-known method used in project planning to identify
the overall time length of a project and the activities that are in the critical path,
that is, the path that mainly determines the overall length of the project. Eder and
colleagues in Eder et al. [1999; 2000] focused on introducing temporal constraints and
alternative paths, but did not consider the issue related to the fact that activities may
have a set of allowed durations, that cannot be fixed at design time and that could
require a runtime evaluation to “tune” the initial temporal workflow schema to the
actual workflow execution: indeed, being based on CPM, each task of TWG is described
by one single value of duration. Recently, in Eder and Tahamtan [2008a, 2008b], Eder
et al. [2008], and Pichler et al. [2009] different applications and extensions have been
provided to TWG: in particular, in Eder and Tahamtan [2008a, 2008b] temporal con-
sistency methods are proposed for federated choreographies and interorganizational
workflows, while in Eder et al. [2008] an extension of TWG is proposed, dealing with
possibly different task durations, where both task durations and conditional paths are
characterized by probability functions. Finally, TWG does not provide multiple gran-
ularity management: all the temporal attributes are expressed by absolute integers
representing a number of workflow temporal units.

Marjanovic et al. define in Marjanovic and Orlowska [1999] a conceptual model
that classifies temporal aspects of workflow schemata as: “basic temporal constraint”,
“limited duration constraint”, “deadline constraint”, and “interdependent temporal con-
straint”. A basic temporal constraint limits the expected duration of one single task: in
our model the duration is specified by a range, represented by the minimum and maxi-
mum durations. A limited duration constraint is an upper bound for the duration of the
workflow execution: in our proposal it can be expressed by a relative constraint between
the Start node and each End node of the workflow graph. A deadline constraint, in terms
of absolute time, limits when a task can start or complete during a workflow execution:
this constraint corresponds to the absolute constraint of our model. An interdepen-
dent temporal constraint limits the time distance between two tasks in a workflow
model: it has the same meaning of the relative constraint in our model. Marjanovic
and Orlowska’s [1999] model does not permit any delay interval between consecutive
activities: the completion instant of a task corresponds to the starting instant of the
subsequent task.

The model by Bettini et al. [2002b] is quite different from the previous ones. First of
all, the nodes of a workflow graph are not tasks but correspond to temporal instants.
Every task is represented by two nodes: the starting instant and the ending instant.
Every edge in the workflow graph represents the temporal distance between two nodes:
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edge label is an interval representing the time distance between the connected nodes.
If a pair of nodes represents the starting and the ending instants of a task, the label
on the connecting edge is the allowed duration of the task. In the same way, if a pair of
nodes represents the ending instant of a task and the starting instant of another task,
the connecting label edge represents the allowed delay between the first task execution
ending instant and the second task execution starting instant. Bettini et al. [2002b]
do not consider the issue of consistency for multiple wf-paths, while they focus of the
consistency check for temporal workflow schemata with multiple granularities, show-
ing that it is a NP-complete problem [Bettini et al. 2002a]. Indeed, in their approach
the conversion of a graph of interval constraints for activities at different granulari-
ties into a graph with all the constraints at the same (finest) granularity produces a
graph having more than one temporal interval constraint between nodes; this kind of
graph can be checked only by using exponential-time algorithms unless P=NP [Dechter
et al. 1991]. It is worth noting that granularity conversions in our approach are simply
conversions among time units and we do not consider more sophisticated granularity
conversions [Bettini et al. 2002b; Goralwalla et al. 2001].

In Chen and Yang [2007], Chen and Yang focus on specific algorithms for selecting
at runtime some suitable checkpoints allowing the verification of temporal constraints
on grid workflows. As the focus of this article is on runtime evaluation of temporal con-
straints, the proposal from Chen and Yang [2007] could be considered as complementary
to our conceptual model. Nevertheless, it is interesting to highlight some differences
in the concept of temporal consistency that the authors introduce to motivate their
proposal. They propose the concepts of strong consistency and weak consistency of a
constraint and consider only upper bound constraints: a temporal constraint between
two activities (i.e., between their ends, according to the approach in Eder et al. [1999])
is strongly consistent if the maximum time distance between the ends of the given
activities, evaluated by considering the past execution history, is less than the given
value for the temporal constraint. A temporal constraint is weakly consistent if its
value is between the mean time distance and the maximum time distance for the given
tasks, on the base of the past execution history.

As this approach is based on TWGs, proposed in Eder et al. [1999, 2000], there is
not a clear distinction between task constraints and edge/connector constraints: all
the delays managed by the WfMS are considered as part of the duration of the next
tasks. Thus, there is not a clear distinction between constraints that the agents have to
manage in executing the assigned activities and constraints which affect the (internal)
activities of the WfMS. In Chen and Yang [2007], constraints are given at a single basic
time unit.

5. XML REPRESENTATION OF WORKFLOW GRAPHS AND A PROTOTYPE IMPLEMENTATION

The WfMC Reference Model [WfMC 1995] can be described in terms of the XML-Schema
proposed by the WfMC [WfMC 2002]. We have extended this schema by adding new
modeling constructs so that a WfMS capable of managing the XML descriptions from
the WfMC may also deploy the XML schema based on our conceptual model exploiting
our time constructs. More details are given in online Appendix B.

Finally, we have implemented an extension to the well-known WfMS YAWL [van der
Aalst et al. 2004] to support workflow modeling and time management at workflow
design time. The reason for developing such an extension is twofold. First, it is the
creation of a tool supporting the design and the verification of temporal workflow
schemata. Second, it is to show, as a proof-of-concept, that our theoretical and method-
ological proposal can be realized in a tool supporting the specification of real-world
workflow schemata. More details about our implementation are in online Appendix C.
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6. CONCLUSIONS

Time is a fundamental concept of every workflow process, and procedures for checking
temporal workflow consistency are a crucial component of a WfMS. At the best of our
knowledge, currently there are no proposals for temporal modeling of complex workflow
processes, whose schema temporal consistency is checked.

In this article, we introduced a powerful temporal conceptual model, which extends
in a seamless way the basic model proposed by the WfMC: it provides constructs to
formalize complex processes, such as conditional or parallel executions and cycles.
The specification of a large number of temporal constraints enables the designer to
describe temporal properties of tasks. The constraints can refer to either relative or
absolute times. The temporal constraints belonging to the same workflow schema can
be expressed using different time granularities. We also proposed different kinds of
workflow temporal consistency and discussed how to check them at design time; more-
over, we described how these consistencies require different levels of flexibility from
the WfMS at runtime. All the components of this model have also been represented
by an XML-Schema document, which extends the XML-Schema specification proposed
by the WfMC. A proof-of-concept prototype supporting our conceptual model has been
realized extending the YAWL WfMS.

ELECTRONIC APPENDIX

The electronic appendix to this article can be accessed in the ACM Digital Library.
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