
UNIVERSITA’ DEGLI STUDI DI VERONA 

Dottorato di ricerca in  
biotecnologie applicate 

 
 Ciclo XXII 

S.S.D.: AGR/07 

Study of Bacillus thuringiensis behaviour 

in food environment by genome – wide 

transcriptome analysis  

 

Tesi di dottorato di: Francesca Colla 
Anno accademico 2009/2010 



* Per l’elenco dei Settori Scientifico-Disciplinari (SSD) si veda il D.M. del 4 Ottobre 2000, Allegato A 
“Elenco dei Settori Scientifico –Disciplinari” reperibile sul sito del Ministero dell’Università e della 
Ricerca al seguente indirizzo: http://www.miur.it/atti/2000/alladm001004_01.htm 
 

   
 

UNIVERSITA’ DEGLI STUDI DI VERONA 
 
 

DIPARTIMENTO DI  
 

BIOTECNOLOGIE 
 
 
 

DOTTORATO DI RICERCA IN 
 

BIOTECNOLOGIE APPLICATE 
 
 

CICLO XXII 
 
 

Study of Bacillus thuringiensis behaviour in food environment by  
genome – wide transcriptome analysis 

 
 

S.S.D. AGR/07 
 
 
 
Coordinatore: Prof. Massimo Delledonne 
  Firma __________________________ 
 
 
Tutor:   Prof.  Massimo Delledonne 
  Firma __________________________ 
 
 
Co-Tutor:  Prof. Pier Sandro Cocconcelli 
  Firma __________________________ 
  
      

Dottorando: Dott.ssa  Francesca Colla 
               Firma ________________________ 

 
 
 
 



 
 
INDEX 
 

CHAPTER 1 
INTRODUCTION:                                                                                         

1. THE GENUS BACILLUS                                                                             2 
1.1 Classification and Phylogeny                                                            2 

2. GENERAL PROPERTIES OF BACILLI                                                    3 
2.1 Structure surface of Bacillus                                                             3 

2.1.1 S-layers                                                                                     4 
2.1.2 Capsules                                                                                    4 
2.1.3 Cell wall                                                                                   5 
2.1.4 Flagella                                                                                     6 

2.2 Growth conditions and nutritional requirements                               6 
2.3  The Bacillus endospore                                                                    6 

2.3.1 Sporulation                                                                                6 
2.3.2 The structure of bacterial spores                                               8 
2.3.3 Germination process                                                                11 
2.3.4  Bacilli receptors                                                                       13 

3. OCCURRENCE OF BACILLUS  SPP. IN THE ENVIRONMENT            14 
3.1 The Bacillus cereus group                                                                15 
3.2 B. cereus as pathogenic organism                                                      16 

3.2.1 Emetic syndrome                                                                      16 
3.2.2 Diarrhoeal syndrome                                                                17 
3.2.3 Mode of action of the enterotoxins                                           19 
3.2.4 Regulation of enterotoxin expression                                      20 

3.3 Presence of toxin in other Bacillus spp.                                            22 
4. BACILLUS THURINGIENSIS                                                                      23 

4.1 General characteristics                                                                      23 
4.2 Ecology and serotyping                                                                     24 
4.3  B. thuringiensis Cry proteins 25 
4.4  Mode of action of B. thuringiensis Cry proteins                              25 
4.5 Transcriptional Mechanisms of cry gene                                           27 
4.6 Development of B. thuringiensis biopesticides.                                28 

      BIBLIOGRAPHY                                                                                           30 



 
 
INDEX 
 
CHAPTER 2 

DISTRIBUTION AND EXPRESSION PROFILES OF GENES CODING 

FOR  BACILLUS CEREUS-LIKE ENTEROTOXINS IN BACILLUS 

THURINGIENSIS  STRAINS OF COMMERCIAL INTEREST 

1. INTRODUCTION                                                                                        41 
2. MATERIALS AND METHODS                                                                43 

2.1  Bacterial strains isolation                                             43 
2.2 DNA extraction for PCR and REP                                                    44 
2.3 Detection of crystal proteins                                                              44 
2.4  Repetitive extragenic palindromic DNA sequence (REP)                44 
2.5  Detection of genes coding for enterotoxins                                      45 
2.6  RNA preparation                                                                               45 
2.7 Analysis of toxins expression by RT-PCR                                        46 
2.8  Enterotoxin assay                                                                              46 
2.9  Spores production                                                                             46 
2.10 Food model preparation                                                                  47 

2.1.1  B. thuringiensis spores germination assay in food model       47 
2.1.2 Sample preparation for scanning electron microscopy  
            (SEM)             

48 

2.1.3  X-ray microanalysis                                                                48 
3.RESULTS                                                                                                      48 

3.1. Characterisation of the B. thuringiensis isolated strains 48 
3.2. Detection and expression of enterotoxic genes in                            

 B. thuringiensis isolated strains                                                        
50 

3.3  Enterotoxin production                                                                    51 
3.4  Selection of sporification medium and spores production               51 
3.5  Food model development                                                                 52 
3.6 SEM observations of the germination process                                  54 

3.6.1 Gold coating results                                                                  54 
3.6.2. SEM  X-ray analysis                                                                58 

4.DISCUSSION                                                                                                58 
BIBLIOGRAPHY                                                                                            62 

 
 



 
 
INDEX 
 
CHAPTER 3 

GENOME-WIDE TRANSCRIPTOME ANALYSIS OF  

BACILLUS THURINGIENSIS  SPORE GERMINATION OUTGROWTH  

AND TOXIN PRODUCTION IN FOOD MODEL 

1. INTRODUCTION                                                                                    64 
2  MATERIALS AND METHODS                                                             67 

2.1. Bacterial strain, and growth condition                                          67 
2.2 Spore generation and germination conditions                                67 
2.6. Microarray construction                                                                68 
2.7. RNA isolation, cDNA synthesis, labelling and hybridization           70 
2.8. Microarrays stripping for Re-hybridization                                   71 
2.9. Microarray data analysis                                                               71 
2.10 Relative quantification of enterotoxic gene expression                72 
2.11 Enterotoxin assay in food model                                                   73 

3. RESULTS AND DISCUSSION                                                                73 
3.1 Genome-wide gene expression analysis                                          74 

3.1.1. Microarray validation                                                           74 
3.1.2. Transcriptional analysis                                                         77 
3.1.2. QT-clustering                                                                         78 
3.1.3. Transcriptome analysis of spores                                          80 
3.1.4. Functional analysis                                                                82 

3.2 Enterotoxin gene expression profiles                                               90 
3.3 Enterotoxin assay in CPM model                                                    92 

BIBLIOGRAPHY                                                                                              94 
  
CHAPTER 4  
RESEARCH AND INACTIVATION OF VIRULENCE REGULATING  

SYSTEMS IN BACILLUS SPP. 

 

      1. INTRODUCTION                                                                                      99 
 
 
 
 



 
 
INDEX 
 

1.2 Site-specific chromosomal mutagenesis                                    100 
2. MATERIALS AND METHODS                                                               104 

2.1  Bacterial strains and growth condition                                           104 
2.2 DNA extraction and manipulation                                                   104 
2.3 Optimization of B. thuringiensis electroporation system                104 
2.4 Detection of B.cereus transcriptional regulators homolog in          

     B. thuringiensis UC10070                                                             

105 

2.5 Construction of resE and fnr mutants with homologous              

      recombination system  

105 

2.6 Detection of genes disruption                                                       106 
2.7 Construction of B. thuringiensis resE and fnr mutants                 

      with TargeTron system 106 

2.8 Reverce transcription PCR to evaluate intron expression in         

      B. thuringiensis UC10070 

108 

2.9  Confirmation of knockout by colonies PCR                                108 
3. RESULTS                                                                                                 109 
4. DISCUSSION                                                                                          117 
BIBLIOGRAPHY                                                                                         120 

  
CHAPTER 5  
 GENERAL CONCLUSION                                                                                 123 
 



 

 

 

 

 

 

                                                                CHAPTER 1  

 

 

 

 

 

 

INTRODUCTION: 

THE GENUS BACILLUS 
 

 

 

 
 
 
 
 



 
 

Chapter 1 

1.The genus Bacillus 
 
In 1872, Ferdinand Cohn, characterized the bacterium Bacillus subtilis. This Gram-

positive organism, capable of growth in the presence of oxygen, and able to form a unique 

type of resistant cell called endospore, represented the first member of what was to 

become a large and diverse genus of bacteria named Bacillus, in the Family Bacillaceae . 

The ubiquity and diversity of these bacteria, the resistance of their endospores to chemical 

and physical agents, the developmental cycle of endospore formation, the ability to 

produce antibiotics, the toxicity of their spores and protein crystals for many insects, have 

attracted ongoing interest since their discoveries in the 1870s (Kennet Todar, 2009).  

1.1 Classification and Phylogeny  

The heterogeneity in ecology, physiology, and genetics of Bacillus species made difficult 

to categorize the genus Bacillus. The modern concept of the genus Bacillus can be 

ascribed largely to the work of Nathan R. Smith, Francis E. Clark, and Ruth E. Gordon; in 

the 1930’s these group of scientists,  developed a definition of the genus Bacillus as 

comprising “ rod-shaped bacteria capable of aerobically forming refractile endospores 

that are more resistant than vegetative cells to heat, drying, and other destructive 

agencies”. First attempts to classify Bacillus species were based on two main 

characteristics: aerobic growth and endospore formation. This resulted in grouping of 

many bacteria possessing different physiology and occupying a variety of habitats. In 

Bergey's Manual of Systematic Bacteriology (1st ed. 1986), the G+C content of known 

species of Bacillus is reported to range from 32 to 69% (Holt, 1986), illustrating the 

genomic heterogeneity of the genus. There are variation from species to species, but 

sometimes it can be observed profound differences in G+C content within strains of the 

same species. Phylogenetic classification reported in the Bergey's Manual of Systematic 

Bacteriology (2nd ed. 2004) groups the two most prominent types of endospore-forming 

bacteria, clostridia and bacilli, in the two different Classes of Firmicutes: Clostridia and 

Bacilli. The Phylogenetic evidence, mainly based upon RNA analysis of the small subunit 

of ribosomes (16S rDNA) indicated that Bacillus species showed a kinship with several 

non spore-forming bacteria like Enterococcus, Lactobacillus, Listeria and 

Staphylococcus. With the advent of ssRNA analysis, Bacillus genus, was divided into 

several families of endospore-forming currently assigned to four genera in the family 

Bacillaceae. Within this family, the genus Bacillus, is distinguish from the strictly 
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anaerobic Clostridium spp. for its ability to grow in the presence of air. Many Bacillus 

species can be allocate to one of six taxa that have distinguishable physiologies. This is 

generally consistent with the devision of the genus based on spore morphologies. The six 

groups are: B. polymyxa group (I), B. subtilis group (II), B. brevis group (III), B. 

sphaericus group (IV), and thermophiles (V and VI). Group I includes species that are 

facultative anaerobes and can grow strongly in the absence of oxygen. A variety of sugars 

are fermented to produce acid, and endospores are ellipsoidal. Species belonging to the B. 

subtilis group, are phylogenetically and phenotipically consistent. All these bacteria 

produce acids from a wide range of sugars and some strains, like B. cereus and B. 

licheniformis, are facultative anaerobes. B. licheniformis can use glucose only under 

anaerobic conditions but grows poorly anaerobically. Although B. subtilis is generally 

considered an aerobe, it can grow and sporulate slowly also in anaerobic conditions. 

When glucose, with nitrite is the terminal electron acceptor, it grows strongly 

anaerobically. These bacteria are therefore an intermediate stage between the true 

facultative anaerobes of the group I strains and the strict aerobes in groups III and IV. 

This is reflected in their production of acid from several sugars (Leuschner, Bacillus - 

Central Science Laboratory, York, UK. 2008). The oval endospores produced by these 

bacteria do not swell the mother cell and are generally located centrally or subterminally. 

Group III represents strict aerobes that generally do not produce acid from sugars. They 

produce ellipsoidal spores that swell the mother cell. In group IV all species produce 

spherical spores that may swell the mother cell and contain l-lysine or ornithine in the cell 

wall. All species are strictly aerobic, but some have a limited ability to produce acids 

from sugars. Thermophilic species of the Group V are heterogeneous physiologically and 

morphologically, and grow optimally at > 50° C. Most produce oval spores that swell the 

mother cell. In group VI are thermophilic and acidophilic species which membranes are 

characterized  by the presence of omega-alicyclic fatty acid. 

2. General properties of bacilli 
 
2.1 Structure surface of Bacillus 

Like many gram-positive bacteria, the properties of adhesion, resistance and tactical 

responses, making the surface of Bacillus species rather complex. 
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Fig.1 Bacillus surface. C=capsule, S=S-layer, P=peptidoglycan  (from Kenneth Todar PhD.2009 
University of Wisconsin-Madison).     
 
 
 

The surface of vegetative cells is a laminated structure consisting of a capsule, a 

proteinaceous S-layer, several multi-layers peptidoglycan, and proteins located on the 

outer surface of the plasma membrane. 

2.1.1 S-layers 

S-layers consist in crystalline surface layers of protein or glycoprotein subunits. They can 

be found in Bacillus, like in other bacteria but their function is not completely understood. 

Since it covers the entire cell surface, it seems likely that it can act as a molecular sieve, 

preventing large molecules from entering or leaving the cell. Other roles which have been 

ascribed to bacterial S-layers include protection of the cell from predation and provision 

of attachment sites for exoenzymes. It has recently been shown that in some Gram-

positive bacteria S-layers can mask the negative charge of the peptidoglycan sheets and 

prevent agglutination processes. 

2.1.2 Capsules 

Bacillus species can produce different types of capsules: those of B. anthracis, B. subtilis, 

B. megaterium, and B. licheniformis, contain poly-D- or L-glutamic acid. B. circulans, B. 

megaterium, B. mycoides and B. pumilus, produce carbohydrate capsules, or with more 

complex polysaccharides. Some polysaccharides produced by Bacillus may react with 

antisera of other genera of bacteria, including human pathogens: is the case of B. 

mycoides with Streptococcus pneumoniae or B. pumilus with Neisseria meningitides. The 

capsule is very important for determining virulence in B. anthrax: since it is not produced 
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by the closest B. cereus and B. Thuringiensis, can be used as a criterion for distinguishing 

between these species.  

 

2.1.3 Cell wall 

Bacillus genus does not present much variability in the structure of the cell wall as occur 

in many Gram-positive bacteria. The wall of all Bacillus species consists of peptidoglycan 

of the mesodiaminopilmelic acid (DAP) (Weiss et al.1981). This type of polymer is the 

same type as the one universally found in Gram negative bacteria. DAP can be directly 

cross-linked to D-alanine, as in the Enterobacteriaceae; in other cases, like in most Gram-

positive bacteria, two tetrapeptide side chains of peptidoglycan connect DAP and D-

alanine, by an interpeptide bridge. The presence of teichoic acids bounded to muramic 

acid residues has been reported in large amount for all species. However, the type of 

teichoic acids varies widely between Bacillus species. As in many Gram-positive bacteria 

Bacillus species present lipoteichoic acids associated with the cell membrane, which seem 

to be involved in the synthesis of teichoic acids in the cell wall. 

 
 

 
 

 
Fig.2 Schematic representation of muropeptide subunit of Bacillus peptidoglycan, without intrapeptide 
bridge for DPA and D-alanyne connection 
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2.1.4 Flagella 

Most of the spore-forming aerobic bacteria, are mobile and possess peritrichous flagella 

that cell use to move in the environment in response to external stimuli trough the 

chemotaxis mechanism; the composition of alkaliphile Bacillus species like B. firmus, 

present a low content in basic amino acids, thought to render cell more stable at pH value 

up to 11. Flagellar system and chemotaxis has been extensively studied in B. subtilis. 

 

 

 

A B

 
Fig.3 Flagellar strains: B. cereus (A) B. brevis (B) (from Kenneth Todar PhD.2009 University of 
Wisconsin-Madison).     
 
2.2 Growth conditions and nutritional requirements 
 
Spore-forming bacteria are generally chemoheterotrophs able to implement the process of 

respiration using a variety of simple organic compounds like sugars amino-acids and 

organic acids. In some cases they can ferment carbohydrates with reactions that produce 

glycerol and butanediol. Species such as B. megaterium need no organic factors for 

growth, while others require amino acids or vitamins. Most are mesophilic with an 

optimal of temperature growth between 30 and 45 degrees. Some species are thermophilic 

with optimal growth around 65 ° C. Psychrophiles species are few but are able to develop 

and sporify even at 0 ° C. Bacillus species can grow in a wide range of pH between 2 and 

11. In laboratory environment, and optimal growing conditions, they present  a 

regeneration time of about 25 minutes. 

 
2.3 Bacillus endospore 

2.3.1 Sporulation 

Gram positive bacteria belonging to the Bacillus genus can undergo a complex 

developmental cell differentiation process what allows them to adapt to changing 
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environmental conditions and lack of nutrients by producing highly resistant spores. This 

process, called sporulation, involves progression through different stages including 

initiation, chromosome segregation, sporulation-specific cell division (asymmetric in rod-

shaped bacteria), differential gene expression and specific signal transduction 

mechanisms. The return pathway, leading to vegetative cell growth, involves spore 

germination followed by outgrowth of the germinated spore. All of these aspects of 

sporulation have been studied for many years in great detail and have had both a 

substantial impact on our understanding of many other basic cell processes and have 

started to fuel applied spore research with new ideas. 

In general, factors that may affect sporulation the ability to sporulate are pH, oxygen, and 

temperature. Sporulation appears to be favoured by conditions which result in a decreased 

growth rate in the presence of adequate energy and carbon source reserves. When 

sufficient nutrients are present, the vegetative cell divides rapidly by cell division, but  

environmental triggers like nutrient depletion and/or population density do initiate the 

sporulation process, ultimately resulting in the bacterial spore (Barak and Wilkinson, 

2005; Eichenberger et al, 2004; Errington 2003; Piggot en Hilbert, 2004; Wang et al, 

2006). Spore development involves an unequal cell division, the smaller cell (forespore) 

being engulfed by the larger one so that the endospore develops inside the mother cell. In 

many species, the cell is distended by the spore. Spore formation, which takes several 

hours, is accompanied by morphological, physiological, and biochemical changes, and the 

resulting refractile spore is structurally very different from a vegetative cell. The 

formation of a spore is an expensive and complex process for the bacterial cell. Spores are 

only made under conditions where cell survival is threatened such as starvation for certain 

nutrients or accumulation of toxic wastes. Regulation of sporulation is tight and the first 

few steps are reversible. This helps the cell conserve energy and only sporulate when 

necessary. Initiation of spore formation is controlled by Spo0A, a transcriptional factor 

which modulates gene expression during the transition from the exponential to the 

stationary phase. Spo0A is the response regulator of a two-component, signal transduction 

regulatory system, and in growing cells exists predominantly in the dephosphorylated 

state. Under conditions in which sporulation is initiated, it is phosphorylated by a 

phosphorelay involving a number of kinases and is thereby able to activate or repress 

gene expression by binding specific DNA targets (“0A boxes”) found upstream of 

regulated genes. Subsequently, changes in gene expression are controlled by the synthesis 
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and activation of alternative σ factors which associate with RNA polymerase and alter the 

promoter specificity of the enzyme. Five σ factors are known to be produced at various 

stages. 

Sporulation is a seven step process during which cell will be dramatically reorganized. 

The first stages of sporulation are involved in forming a separate compartment for the 

spore in the mother cell. Activation of Spo0A and σH in the predivisional cell leads to 

asymmetric division. Once this occurs, sporulation is irreversible. The next stages involve 

laying down the various layers of the spore. Both the spore and the mother cell plays a 

role in this process. Within the two compartments, spore development is orchestrated by 

RNA polymerase σE regulated gene expression in the mother cell and σF regulated gene 

expression in the forespore. In the final stages, regulated by σK in the mother cell, and σG 

in the forespore (Wang et al, 2006), the spore dehydrates its cytoplasm while at this stage 

the mothercells lysis as a consequence of programmed cell death (Lewis, 2000), releasing 

the spore in the environment. The sporulation pathway is depicted in Figure 4. 

 

 

 
 
Fig. 4 The morphological stages of sporulation. Patrick Stragier. Annual Review of Genetics, 1996 
 
 
2.3.2 The structure of bacterial spores  
 
The complex structure of the spore protects the cellular compartment from environmental 

challenge providing a formidable resistance against harsh conditions (Table 1). Another 

typical spore property, crucial for its longevity is the spore dormancy. The cross section 
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of the spore in figure 5, reveals all the spore compartments including the core, the inner 

membrane, the cortex, the outer membrane and the coat layers followed by the 

exosporium. 

 

            Table 1     
  

Resistance capacity of growing cells and dormant spores of B. subtilis
_______________________________________________________________ 

Treatments required to kill 90% ofthe population
__________________________________

Growing Dormant
Treatment                                                    cells spores

________________________________________________________________
UV radiation (254 nm)(KJ m-2)                  36                                  330
Wet heat (90°C) (min)                                <0.1                    18
Dry heat (120°C) (min)                              <0.01                     18
H2O2 (15% at 23°C) (min)                        <0.2                            50
Formaldehyde (25 g/l) (min)                      <0.1                       22
Nitrous acid (100 mmol/l) (min)                <0.2                                 100
Freeze dryings (number of cycles)              < 1                                 >20 

________________________________________________________________
Setlow, 2005  

 
 
The outermost layer is the exosporium, which is a thin covering made of proteins. The 

exosporium is the primary site of contact with the environment, including host defences; 

it is not present on B. subtilis spores, but seems to be conserved among pathogenic bacilli 

on members of the B. cereus group. it is a loose-fitting, balloon-like structure composed 

of a paracrystalline basal layer and an external hair-like nap (Gerhardt, P., 1967). The 

filaments of the hair-like nap are apparently formed by a single collagen-like 

glycoprotein, whereas the basal layer is composed of a number of different proteins in 

tight and loose associations. The exosporium is the least understood part of the spore 

structure, but its presence on pathogenic Bacilli and, suggests a possible role in 

interactions with host organisms. Below there is the spore coat which is made up of 

highly cross-linked keratin and layers of spore-specific proteins. The role of many 

individual coat proteins remains unclear. The outer membrane is located between the 

cortex and inner coat layers. Its function is still not well elucidated, It is however an 

essential structure during formation of the spore (Piggot, 2004). The cortex consists of 

loosely cross-linked peptidoglycan. It is of important to maintain spore dormancy and 
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heat resistance, and is thought to contribute to the dehydrated state of the core (Nicholson 

et al, 2000 and references therein). The cortex composition is similar between many 

spore-forming bacteria, including clostridia (Atrih and Foster, 2001). During spore 

germination, the cortex must be degraded quickly to allow the expanding spore core. 

During spore dormancy, spore cortex lytic enzymes are present in the dormant spore 

although in an inactive state. The two crucial cortex lytic enzymes in B. subtilis spore 

germination are CwlJ and SleB. CwlJ is synthesized in the mother cell during sporulation, 

and located in the outer layers of the spore, whereas SleB, synthesized in the forespore, is 

targeted to both the spore inner membrane and the outer spore layers (Bagyan and Setlow, 

2002; Chirakkal et al., 2002). We know that the SleB protein of B. subtilis is a 

muramidase but we do not yet know how it is activated during germination. Not all 

sporeformers have the SleB, CwlJ pair of germination- specific cortex lytic enzymes The 

inner membrane, surrounds the spore core as selective permeability barrier. The 

germination receptors and gene products of the SpoVA operon, essential parts of the 

germination apparatus, (Vepachedu and Setlow, 2005) seems to be partly incorporated in 

this membrane. This suggested that the inner membrane plays an important role in the 

first stages of germination. Moreover, after the activation of the germination receptors, 

the inner membrane contributes in signal transduction directly to other parts of the spore 

as germination signal. Core contains the components of the vegetative bacterial cell (the 

cell wall, cytoplasmic membrane, cytoplasm, nucleoid, DNA, ribosomes, etc.) as well as 

significant quantities of dipicolinic acid and Ca2+ ions. The water content of endospores is 

only about 10-30% of the water content of vegetative cells; therefore, endospores are 

capable of surviving at levels of dehydration that would kill vegetative cells. The low 

water content also provides the endospore with chemical resistance (to chemicals such as 

hydrogen peroxide) and it causes the remaining enzymes of the spore cell to become 

inactive. 

One chemical produced by endospores that is thought to lend to their high resistance is 

dipicolinic acid. This chemical has been found in the spore cell of all endospores 

examined. Dipicolinic acid interacts with calcium ions to form calcium dipicolinate 

(DPA), which is the main substance believed to lend endospores their resistance and 

represents about 10% of the dry weight of an endospore. The spore also contains small 

acid-soluble spore proteins (SASPs). These function to protect DNA from UV radiation, 
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desiccation and dry heat, and they also serve as a carbon and energy source during the 

germination process (conversion back to a vegetative cell). 

 

 
 
 
 
Fig.5 Schematically representation of the spore structure,(from Department of Microbiology, Cornell 
University. 2007) 
 
 
2.3.3 Germination process 
 
In addition to its intrinsic interest, spore germination has attracted applied interest, 

because it is through germination that spores ultimately cause food spoilage and 

poisoning (Setlow et al., 2003). In order to initiate germination and restore vegetative 

growth when conditions become favourable, bacterial spores must be able to monitor their 

external environment. Spore germination, as defined as those events that result in the loss 

of the spore-specific properties, is an essentially biophysical and degradative process 

(Moir and Smith, 1990). The spore’s inner membrane increases in fluidity (Stewart et al., 

1979) and ion fluxes resume; monovalent cations, potassium and sodium, move across the 

spore membrane, and calcium ions and dipicolinate are excreted. The peptidoglycan of 

the spore cortex is degraded, and the coat layers are partially degraded (Atrih et al., 1998; 

Atrih et al., 1999). ATP synthesis and oxidative metabolism resume (Otani et al., 1986), 

DNA damage is repaired (Nicholson et al., 1997) and the DNA-complexing small acid-

soluble proteins (SASPs) are degraded by a specific protease (Nessi et al., 1998), 

providing a source of amino acids for outgrowth. It occurs without any need for new 
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macromolecular synthesis, so the apparatus required is already present in the mature 

dormant spore. Germination in response to specific chemical nutrients requires specific 

receptor proteins, located at the inner membrane of the spore. After penetrating the outer 

layers of spore coat and cortex, germinant interacts with its receptor: one early 

consequence of this binding is the movement of monovalent cations from the spore core, 

followed by Ca2+ and dipicolinic acid (DPA). Germinant molecules are able to activate 

these receptors, probably by allosteric interaction (Wolgamott and Durham, 1971). This 

initiates a cascade of processes that gradually degrade the protective structures of the 

spore and resume cellular processes and its metabolism, ultimately leading to the 

vegetative cell (Hornstra , 2007). In some species, an ion transport protein is also required 

for these early stages. Early events including loss of heat resistance, ion movements and 

partial rehydration of the spore core, can occur without cortex hydrolysis, although the 

latter is required for complete core rehydration and colony formation from a spore. In B. 

subtilis two crucial cortex lytic enzymes have been identified: one is CwlJ, which is DPA-

responsive and is located at the cortex-coat junction. The second, SleB, is present both in 

outer layers and at the inner spore membrane, and is more resistant to wet heat than is 

CwlJ. Cortex hydrolysis leads to the complete rehydration of the spore core, and then 

enzyme activity within the spore protoplast resumes. We do not yet know what activates 

SleB activity in the spore, and neither do we have any information at all on how the spore 

coat is degraded (Moir, 2 005). 

 

 

 
Fig. 6 Bacillus spore germination. Kort et al. 2005 
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2.3.4  Bacilli receptors 

Bacillus spores are equipped with a specific set of germination receptors that monitor the 

environment for proper outgrowth conditions. As signalling molecules herein function 

germinants, often amino acids or ribosides, which are able to initiate germination when 

present in appropriate concentration and mixture in close proximity of the spore (Foerster 

and Foster, 1966; Gould, 1969). The process of germination involves interaction of 

chemical germinants with presumed specific receptors in the spore, and the transduction 

of this signal in some way. There is no evidence of bulk transport or metabolism of 

germinant (Scott and Ellar, 1978). The full molecular details of the signal transduction 

process in spore germination are not yet clear, but reasonable hypotheses can be 

constructed with the available information, most of which is derived from studies with B. 

subtilis. One hypothesis to explain the germination-associated changes is that the earliest 

events in germination would involve membrane changes that alter permeability 

properties, leading to a redistribution of ions and water in the spore, and thereby activate 

lytic enzymes (Keynan, 1978); evidence of inhibition of spore germination by ion channel 

blockers supports this (Mitchell, 1986), as does the likely membrane association of gerA 

gene products (Moir and Smith, 1990). The germinant has to first permeate the outer coat 

and cortex layers of the spore before coming in contact with the germinant receptors. 

The gerA operon in the genome of B. subtilis, encoding for the germination (Ger) receptor 

GerA, was the first germination operon described (Zuberi et al, 1987), and was shown to 

be involved in L-alanine initiated. germination. Later, gerB and gerK were described, 

both involved in a germination response on a mixture of L-asparagine, D-glucose, D-

fructose and K+ (AGFK response) (Corfe et al, 1994). 

Genomes of almost all sporeformers contain at least one, and usually several of these 

receptor operons, leading to the conclusion that sporeformers respond to different types of 

germinant via multiple receptors, encoded in gene clusters that have diverged from some 

common ancestor(s). Sometimes more than one receptor is involved in the response to 

single or multiple germinants (McCann et al., 1996; Barlass et al., 2002; Ireland and 

Hanna, 2002). The gerA operon, like most of its homologues, encodes three proteins, 

GerAA, GerAB and GerAC. These all have a potential association with the membrane – 

GerAA and AB are integral membrane proteins – GerAA has a predicted membrane-

bound domain that would span the membrane at least five times, whereas GerAB is 

predicted to have 10 membrane spans, and is classified in evolutionary terms as a 
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subfamily of single component membrane transporters (Jack et al., 2000)( it is the only 

one of the three proteins that has homology to any other known protein outside the spore-

forming bacteria). The GerAC protein is a predicted lipoprotein. All are expressed in the 

developing spore compartment, and would therefore be targeted to the inner membrane of 

the spore. Experiments using antibodies against GerAA and GerAC proteins showed that 

they were present in the inner membrane, rather than the outer layers of the spore 

(Hudson et al., 2001) and experiments on GerBA showed that this too was present in the 

inner membrane (Paidhungat and Setlow, 2001). Evidence that receptor proteins directly 

bind germinant comes only, so far, from analysis of mutant phenotypes. A germinant may 

bind without mediating transport, but causing allosteric changes within the membrane 

protein(s). Therefore, we need a better understanding of these receptor proteins, which 

has been hindered by the failure of attempts so far to overexpress and characterize the 

membrane-associated components. 

 

3. Occurrence of Bacillus  spp. in the environment  

Members of the genus Bacillus have a ubiquitous environmental distribution. The 

endospore production  is basic for the dispersion of Bacillus spp..The reservoir of these 

bacteria is the soil. Strains have been isolated from the extremes of deserts and Antarctic 

samples.. The extreme spore resistance capacities have amazed many scientists and have 

been studied, trying to reveal the mechanisms behind spore resistance (Nicholson et al, 

2000 and references therein; Setlow, 2005). They have been proved to be the most 

durable type of cells found in nature: thanks to their dormant state, they can survive for 

extremely long periods, even millions of years. Because of this incredible resistance, the 

presence of spores may causes several problems wherever hygienic and sterile conditions 

are a prerequisite, such as in the food industry and in medical environments. Spores are 

able to resist most of the preservation techniques currently applied and as a consequence 

are responsible for infections, serious food-borne illnesses and significant amount of food 

spoilage (Brul et al, 2006). Industry has developed preservation methods to reduce the 

microbial contamination on food products. As a result of these efforts our food can be 

regarded as safe. Unfortunately, currently used methods are not fully effective against 

spores as a  consequence of their incredible resistance capacities (Oomes and Brul, 2004). 

The omnipresence of Bacillus spores in the environment inevitably results in the presence 

of spores in agricultural and dairy products. In recent years, consumers have shifted their 
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preferences on “fresh-like” foods, since having better taste and texture characteristics, 

these products are expected to be also healthier. However, the use of milder food 

processing conditions, basal to accommodate these preferences, facilitate the presence of 

spores in food products, for frequently not completed inactivation of spore. Furthermore, 

the lack of microbial competition after the treatments,  facilitates the rapid facilitates the 

rapid release of vegetative cells from germinating spores.   

 
3.1 The Bacillus cereus group 
 
The Bacillus cereus group comprises a highly homogeneous subdivision of the genus 

Bacillus that exhibit highly divergent pathogenic properties. 

B. cereus belongs, together with B. anthracis, B. thuringiensis, B. weihenstephanensis, B 

mycoides and B. pseudomycoides, to this group of closely related microorganism.  

The reservoir of these bacteria is the soil, but they are widely distributed in the 

environment, or commensal inhabitants of the intestines of insects. Occasionally  these 

species can cause food poisoning and soft tissue infections, particularly of the eye. B. 

cereus is an opportunistic human pathogen most commonly associated with food 

poisoning (Drobniewski et al. 1993). Other members of this group, currently classified as 

B. thuringiensis, are primarily insect pathogens widely used as a biopesticide (Schnepf et 

al 1998). A third pathogenic phenotype is exhibited by B. anthracis: it is the causal agent 

of anthrax, a zoonotic disease that can be lethal to humans. B. mycoides, B. 

pseudomycoides and psychrotolerant B. weihenstephanensis are less well characterized. 

Although the latter one, capable of growing efficiently at temperatures of 4°C, may form 

a hazard in food products stored at low temperatures (Hornstra 2007). The genome 

analysis of B. weihenstephanensis,  revealed the presence of toxin genes (Stenfors et al, 

2002), but has not yet been demonstrated its responsibility in food-borne disease.  

Despite first studies on B. cereus group started in19th century, the relationships between 

some of these organisms have yet to be completely resolved. The very high genetic 

relationship between B. cereus,  B. anthracis and B. thuringiensis, makes genome based 

differentiation complicated or even impossible (Helgason et al, 2000; Ivanova et al, 

2003). Conventional markers of chromosomal diversity, such as 16S and 23S rRNA 

genes, are essentially identical (Ash et al. 1991, 1992) . Several studies using different 

techniques like pulsed-field gel electrophoresis of chromosomal DNA (Carlson ea al. 

1994), genomic mapping (Carlson et al.1996), multilocus enzyme electrophoresis 
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(Helgason et al. 1998, 2000), BOX-PCR fingerprinting (Kim et al.2001), multilocus 

sequence typing (MLST) (Helgason et al 2004) and amplified fragment length 

polymorphism (AFLP) analysis (Ticknor et al. 2001), have also been suggested that these 

species are so closely related that they should be considered as one species. 

On the other hand, some differences in terms of phenotype within these species, allow 

easy identification using classical methods; B. cereus and B. thuringiensis present  

hemolytic activity, are mobile, resistant to penicillin, and are able to degrade tyrosine and 

produce phosphatise, while B. anthracis does not show any of these characteristics. B. 

thuringiensis produces parasporal toxic crystals, known as δ-endotoxins, which allows to 

discriminate it from B. cereus (Schoeni and Wong, 2005 and references therein). 

Moreover, pathogenicity patterns of these species are very different. Most of the genes 

responsible for virulence of these bacteria are plasmid located. In some case, loss of the 

plasmid corresponds to loss of virulence, making impossible to distinguish between 

bacteria belonging to this group. The evolutionary relationships between all members of 

the group should be  important, not only for understanding the evolution of virulence in 

the B. cereus group, but also for rapidly increasing of scientific and political importance 

that these organisms have acquired in recent years from.  

 

3.2 B. cereus as pathogenic organism 

B. cereus is an opportunistic human pathogen that can cause two types of food-borne 

infections. The emetic syndrome is caused by toxin production in the food product before 

consumption, while the diarrhoeal syndrome is the result of ingested B. cereus spores that 

germinate in the human intestine and produce enterotoxins in the intestinal tract (Granum, 

2001; Schoeni and Wong, 2005). 

 

3.2.1 Emetic syndrome 

Emetic syndrome is a typical example of food intoxication caused by a toxin called 

cereulide, that lead to nausea and vomiting 1-6 hours after ingestion of contaminated food 

(Kramer en Gilbert, 1989; Ehling-Schulz et al, 2004). Similar symptoms are caused by 

Staphylococcus aureus enterotoxin (Granum and Lund, 1997). Cereulide is a heat and pH 

stable circular dodecadepsipeptide (Fig. 7) consisting of three repeating units of four 

amino acids, each consisting of D-O-leucine, D-alanine, L-O-valine and L-valine (Agata 

et al. 1994; Agata et al. 1995b). The structure resembles that of the known potassium 
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ionophore valinomycin (see Figure 7). Indeed cereulide has been shown to be toxic to 

mitochondria by acting as a potassium ionophore. Symptoms are generally mild, and 

patients recover within 24 h, but occasionally fatal cases resulting from emetic syndrome 

have been reported (Mahler et al, 1997). 

 

 

 
 

Fig.7 Comparison of the amino acid compositions of cereulide [D-Ala – D-O-Leu – L-Val – L-O-Val]3 
(left) and of valinomycin [D-Val – L-O-Ala – L-Val – D-O-Val]3 (right) (Teplova et al. 2006) 
 

In 2004 two research groups have shown that the production of cereulide in B.cereus is 

the result of a complicated mechanism operated by a non ribosomal peptide synthetase 

(NRPS) complex (Toh et al. 2004; Horwood et al. 2004). 

 

3.2.2 Diarrhoeal syndrome  

The diarrhoeal syndrome is caused by the production of enterotoxins in the small intestine 

after ingestion of food contaminated by B.cereus vegetative cells. This typical toxico-

infection is characterized by abdominal pain, cramps and diarrhoea, occurring 8 to 16h 

after ingestion (Granum and Lund, 1997). The enterotoxins cause disturbance of the water 

(solute transport) affecting the epithelial lining of the small intestine. Symptoms of the 

disease are very similar to those caused by the food-borne desease from Clostridium 

perfringens, but the pathogenic mechanism appears to be different: the C. perfringens 

enterotoxin is released during sporulation in the small intestine, whereas the enterotoxins 

of B. cereus are produced during growth in the small intestine (McClane, 1997; Granum, 

2007).  

During the 1980’s and 1990’s , with the discovery and identification of enterotoxins, 

many advances in the study of diarrheal syndrome have been possible. New molecular 

biology techniques allowed to aquire knowledges on the production and regulation of 
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enterotoxins. Based on epidemiological data it was estimated that 103 – 108 cells per gram 

of food are sufficient for the manifestation of disease symptoms (Granum and Lund, 

1997). Several virulence factors produced by B. cereus have been described, of which 

three-component enterotoxins hemolysin BL and non-hemolytic NHE are well 

characterized (Beecher and Wong, 1997; Lindback et al, 2004). Another single 

component toxin, enterotoxin T has been described (Agata et al, 1995) encoded by the 

bceT gene, but the role of this enterotoxin in B. cereus initiated food poisoning remains to 

be elucidated. Generally the symptoms associated with diarrheal syndrome are rather 

mild, but a strain of B. cereus producing CytK toxin, responsible for necrotic enteritis, 

caused the deaths of three people in France (Lund et al, 2000). 

 

Haemolysin BL (HBL) 

The first described enterotoxin in B. cereus is the hemolytic toxin BL (HBL). Because of 

its observed effects in vivo and in vitro (Kramer and Gilbert, 1989), it was initially 

defined diarrhoeagenic factor, fluid accumulation factor and vascular permeability factor 

(Shinagawa et al. 1991a, Shinagawa et al. 1991b,  Sutherland and Limond, 1993). HBL is 

a three component protein toxin, encoded by 3 genes organized in 1 operon hblA, hblC 

and hblD genes encode the B, L1, and L2 components, respectively. A fourth gene has 

been found in this operon, hblB,  but its function has not yet been defined. The molecular 

weight of B-component is 38 kDa1, 40 kDa for the L1-component, and 45 kDa the L2-

component.  

 

Non haemolytic enterotoxin (NHE) 

In 1996 investigation of over 300 strains from various sources, including strains from a 

number of outbreaks,  revealed that another unknown enterotoxigenic complex, with 

cytotoxic effects, could have been the causative agent in some of the B.cereus-associated 

food-borne desease (Granum et al. 1996). This three component enterotoxin, named NHE, 

was discovered after an outbreak in Norway (Lund and Granum, 1996). Even though 

NHE contain several structural resemblances to HBL complex, and lead to symptoms 

similar to those caused by HBL, it lacked the haemolytic activity and the cytotoxic 

potential of the two three component is different (Lund and Granum, 1997). 
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Cytotoxin K 

Cytotoxin K (CytK) may also be involved in B. cereus food poisoning. This toxin causes 

more severe diarrhoea including necrotic enteritis. It consist in a single protein toxin with 

molecular weight of approximately 34 kDa. CytK belongs to a family of β-barrel channel-

forming toxins (including Staphylococcus aureus leucocidins and Clostridium perfringens 

b-toxin). It is necrotic and haemolytic (Lund et al., 2000), and also cytotoxic for intestinal 

epithelia (Hardy et al., 2001). It was first characterized in B. cereus strain 91-98: a strain 

isolated from cases of food-borne disease that in France  was responsible for the death of 

three people (Lund et al. 2000). None of the other, enterotoxin genes, previously 

described (hbl and nhe) was detected in this strain, further implicating CytK as a major 

virulence factor. However the cytotoxin K discovered in this outbreak, appeared to be the 

strongest form discovered so far. Later research detected a less potent cytotoxin K 

variants, also named cytotoxin K like or cytK-2, with approximately 89% amino acid 

homologous to the original cytotoxin K (cytK-1) but 20% less toxic on human intestinal 

Caco-2 cells and Vero-cells. However, several B. cereus isolates possess the cytK gene, 

(Guinebretiere et al., 2002); although the mere presence of a gene possibly involved in 

virulence is not sufficient to confer pathogenicity, the transcription level of the gene could 

be important for virulence (Brillard and Lereclus, 2004).  

 

enterotoxin T (Bc-D-ENT) 

Another single component toxin, enterotoxin T (bc-D-ENT), has been described in B. 

cereus (Agata et al, 1995). The bc-D-ENT enterotoxin, encoded by the bceT gene, is 

capable of causing fluid accumulation in ligated rabbit ileal loops (Punyashthiti & 

Finkelstein, 1971), showing cytotoxicity towards Vero cells (Konowalchuk e t al., 1977). 

Unlike for the three first mentioned enterotoxins (Hbl, Nhe and CytK), has not yet been 

shown bc-D-ENT  was involved in food poisoning. The role of this enterotoxin in B. 

cereus food poisoning remains to be elucidated. 

 

3.2.3 Mode of action of the enterotoxins 

The two three-component enterotoxins HBL and NHE present a similar mode of action 

(Lund and Granum, 1997). According to cytotoxicity experiments with VERO-cells all 

three components of the HBL-complex are necessary for maximal enterotoxic activity, 

(Powell, 1987; Rousset and Dubreuil, 2000; Belaiche, 2000; Black et al. 2005). The 
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optimal ratio of each component for HBL activity is 1:1:1 (Beecher et al. 1995). The 

latest model for the action of HBL studied by  Beecher and Lee Wong (1997), suggested 

that all three components bind to the target cells leading to their lysis.  Even for the 

activity of NHE toxin all three component complex are request, although in this case the 

optimal ratio is 10:10:1 (NHE-A : NHE-B : NHE-C) (Lindback et al. 2004). 

The mode of action of cytotoxin K is different from that described for both HBL and 

NHE. The amino-acid sequence of cytotoxin K suggests that cytK belong to the β -barrel 

channel-forming protein family such as the β -toxin from Clostridium perfringens and α – 

and γ - haemolysin of Staphylococcus aureus (Hardy et al. 2001). Its symptoms include  

severe epithelial lesions and bloody diarrhoea. 

 

3.2.4 Regulation of enterotoxin expression  

More then one regulator system have been identified to be important in the B. cereus 

virulence regulation. 

The transcriptional regulator PlcR (Phospholipase C Regulator) takes part in the control 

of most known virulence factors in B. cereus: enterotoxin, haemolysins, phospholipases 

and proteases (Michel et al 2008). It also regulates phospholipase C expression, then is 

called the phospholipase C regulator (PlcR) .Transcription of PlcR is autoinduced 

(Lereclus et al 1996) and is repressed by the sporulation factor Spo0A (Lereclus et al 

2000). To be active PlcR needs the PapR peptide. PapR  is expressed as a propeptide 

under the control of PlcR, is exported out of the cell, is processed to form the active 

peptide either during export or in the extracellular medium, and is captured back by the 

cell through the oligopeptide permease system OppABCDF (Slamti et al. 2002, Gominet 

et al 2001, Declerck et al 2007). Thus, the three partners PlcR, OppABCDF and PapR 

function as a quorum-sensing system. PlcR integrates at least two classes of signals: cell 

growth state through Spo0A and self cell density through PapR (Michel et al 2008). 

However, it seems that other systems may interact with PlcR, assuming a role in 

regulating the pattern expression of B. cereus virulence factors. Variability and 

adaptability, are crucial characteristics of all the organisms that possess the ability to 

survive and prosper in a wide variety of environmental conditions; often virulence factors 

allow them to conquer many different niches throughout the course of infection. 

Recognition of specific signals and conversion of this information into specific 

transcriptional responses, are basal to cope with a variety of environmental situations. In 
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many cases, signalling through a single two-component system results in a coordinated 

change in expression of multiple genes whose products play a role in adaptation to a 

particular environment. Several study focused on the importance of two-component signal 

transduction systems in controlling both metabolism and virulence factors in B. cereus 

(Duport et al. 2006). One of the major controlling factors of gene expression in B.  subtilis 

during fermentative (Nakano et al 1997, Cruz Ramos et al 2000) microaerobic and 

aerobic growth (Hartig et al 2004) is ResDE two-component system; moreover it 

regulates virulence in Staphylococcus aureus under low-oxygen conditions (Yarwood et 

al 2001). Homologs of the B. subtilis ResDE was found in B. cereus. It was demonstrated 

that ResDE, play an important role in the regulation of enterotoxin expression in B. 

cereus. This two-component regulatory system consists of a histidine sensor kinase 

(ResE), bound to the cell membrane, and a cytoplasmic response regulator (ResD), 

(Fig.2). Signals related to oxygen limitation are perceived by ResE that undergoes 

autophosphorylation at a conserved histidine residue. ResD phosphorylation level is 

determined by the balance between both activities of ResE as phosphate donor for ResD, 

and phosphatase of phosphorylated ResD. In B. cereus resE mutant strain, abolition of 

enterotoxin production was observed in all the conditions examined (Duport et al 2006).  

 

 

 

 
 

Fig. 8 Gene organization of the B. cereus chromosome region containing resDE. (Duport et al 2006.) 
 

Subsequent studies described another redox regulator that may act in synergy with ResDE 

to control the expression of fermentation and enterotoxin genes, demonstrating that, 
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although important, ResDE is not essential for both fermentative metabolism and 

enterotoxin expression. This transcriptional regulator, known as CRP-Fnr (fumarate and 

nitrate reduction regulator),  is member of the cyclic AMP receptor protein, and play an 

important role in modulating the expression of many metabolic genes in several 

facultative or strictly anaerobic bacteria (Korner et al 2003). Their functions also include 

the control of virulence factors (Baltes et al 2005, Bartolini et al 2006, Schmiel et al 

2000). Furthermore, the one-component CRP-Fnr regulators are known to act 

coordinately with two-component regulators homologous to ResDE in response to two 

environmental signals: oxygen availability and the presence of alternative electron 

acceptors. CRP-Fnr family proteins, are characterized by a nucleotide-binding domain 

that extends from the N terminus over 170 residues to a C-terminally located helix-turn-

helix structural motif. A short C-terminal sequence with four cysteine residues follow this 

DNA-binding domain. Three Cys residues from this C terminus together with one Cys 

residue from the central part of the protein bind a [4Fe-4S]2+ center that serves as a redox 

sensor (Reents et al 2006).  Transcription of hbl and nhe was dramatically (90%) down-

regulated after CRP-Fnr mutation experiment in B. cereus strains (Duport et al. 2007). 

 

The production of major virulence factors hemolysin BL (Hbl) and nonhemolytic 

enterotoxin (Nhe) in the food-borne pathogen B. cereus, seems to be regulated through 

complex mechanisms. A recent study led by Esbelin and colleagues (2009) clarified some 

aspects of the B. cereus virulence regulation, suggesting a strict interaction between the 

three system previously described. The response regulator ResD was shown to interact 

directly with promoter regions of the enterotoxin regulator genes resDE,  fnr and plcR and 

the enterotoxin structural genes nhe and hbl, but with different affinities. Moreover, 

phosphorylation state of ResD results in a different target expression pattern. This finding 

led to the conclusion that enterotoxin expression and fermentative metabolism may be 

controlled coordinately at the transcription level. It was also clearly defined the role of 

ResDE two component system, as a sentinel capable of sensing redox changes, and 

coordinating responses that modulates B. cereus virulence. 

 

3.3 Presence of toxin in other Bacillus spp. 

In some instances, enterotoxin production from non-B. cereus species has been reported. 

Isolates of B. circulans, B. lentus, B. licheniformis, B. mycoides, B. subtilis, and B. 
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thuringiensis demonstrated positive results using a commercial RPLA assay (Bacillus 

cereus enterotoxin reverse passive latex agglutination) to detects the L2 component of the 

HBL-complex (Beattie & Williams 1999).  Toxin production by two environmental 

strains of B. pumilus) were reported by Hoult & Tuxford (1991). 

Toxins production by other Bacillus spp. has largely been limited to that of B. 

thuringiensis, a member of the B. cereus group. 

The species B. thuringiensis, B. anthracis, B. cereus, differ in 16S rRNA sequence by 

only nine nucleotides, leading many to the conclusion that these could be considered a 

single species (Ash et al. 1991). Phenotypic differences within this group are very few,   

but the pathogenicity patterns differ significantly.  B. thuringiensis, is characterized  by 

the presence of large crystalline endotoxin molecules which form during sporulation. The 

toxin is insect-specific, and several classes of these toxin molecule, that target particular 

order of insects, were isolated (Schnepf et al. 1998). However conjugative transfers of 

many plasmids among Bacillus cereus  and B. thuringiensis are demonstrated (Yuan et al. 

2007, Van der Auwera et al. 2007). B. cereus and B. thuringiensis are not able to be 

differentiated strictly on the basis of biochemical characteristics (Carlson et al. 1994, 

Damgaard et al. 1996, Yamada et al. 1999). Standards method for detection of B. cereus, 

have been failed to distinguish these two organisms. Damgaard et al. (1996) isolated 

several enterotoxin-producing strains of B. thuringiensis from pasta, bread, and milk. 

Perani et al. (1998) found that 29% of B. thuringiensis strains isolated from the 

environment produced B. cereus-like enterotoxins. From the reports mentioned above 

emerged that an exhaustive investigation into the ubiquity of enterotoxin genes in various 

Bacillus spp. has not been done. Little attention has been paid, either in model systems or 

in food environment, to asses the conditions that could support toxin expression in non-B. 

cereus isolates.  

 
4. Bacillus thuringiensis 
 
4.1 General characteristics 

Bacillus thuringiensis,  like the food-borne and opportunistic pathogen Bacillus cereus, 

belong to the Bacillus cereus sensu latu family. In 1901, a Japanese biologist, Ishiwata 

Shigetane, discovered a previously not described bacterium as the causative agent of a 

disease in silkworms. B. thuringiensis was originally considered a risk for silkworm 

rearing but it has become the heart of microbial insect control. It can form a parasporal 
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crystal during the stationary phase of its growth cycle and was initially characterized as 

an insect pathogen. In 1956, T. Angus demonstrated that the insecticidal activity was 

attributed largely or completely (depending on the insect) to crystalline protein inclusions 

formed in the course of sporulation. This observation led to the development of 

bioinsecticides based on B. thuringiensis to control certain insect species, especially 

among the orders Lepidoptera, Diptera, and Coleoptera. The earliest commercial 

production began in France in 1938, under the name Sporeine. In 1982, Gonzalez et al. 

revealed that the genes coding for crystal proteins were harboured on transmissible 

plasmids. Schnepf and Whiteley (1981) first cloned and characterized the genes coding 

for crystal proteins (cry) from plasmid DNA of B. thuringiensis subsp. kurstaki HD-1, 

toxic to larvae of tobacco. This bacterium has quickly become of commercial interest as 

useful alternative or supplement to synthetic chemical pesticides in forestry and 

agriculture, and it is now the most widely used biologically produced pest control agent. 

In 1995, B. thuringiensis-based bioinsecticides represented about 2% of the total global 

insecticide market. 

 

4.2 Ecology and serotyping  

B thuringiensis seems to be indigenous to many environments (Chaufaux et al. 1997 

Martin et al. 1989). Strains have been isolated worldwide from many habitats, including 

soil (Hastowo et al.1992, Martin et al. 1989), insects (Carozzi et al 1991), stored-product 

dust (Burges et al. 1977, Meadows et al. 1992). Isolation typically involves heat treatment 

for spores selection. Studies on  B. thuringiensis spores persistence in the laboratory, field 

or forest environment revealed that, although rapid declines in population and toxicity 

have been noted, B. thuringiensis spores can survive for many years after spray 

applications (Addison et al. 1993).     

For the identification and classification of B. thuringiensis strains H serotyping, based on 

the immunological reaction to the bacterial flagellar antigen, flagellin, has been 

established as a typing method (de Barjac et al. 1962). Today, the widely diverse B. 

thuringiensis strains are classified into more than 69 different H serotypes (Lecadet et al. 

1999)  and 13 sub-antigenic groups, giving 82 serovars, have been defined as subspecies. 

Although serotyping is the most common classification method used throughout the 

world, it has limitations since only reflects one characteristic of the species and prove 

unreliable as a predictor of insecticidal activity. The production of the parasporal crystal, 
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which defines the quality of B. thuringiensis, is rather too narrow a criterion for 

taxonomic classification (Lysenko et al. 1983). The frequently isolation from the same 

serotype strain, of several new strains, having innate cry genes that were not known 

previously, also demonstrated that H-serotyping might not be enough to represent the 

molecular characteristics of B. thuringiensis species. 

 

4.3 B. thuringiensis Cry proteins  

Individual Cry toxin has a defined spectrum of insecticidal activity, usually restricted to a 

few species in one particular order of Lepidoptera (butterflies and moths), Diptera (flies 

and mosquitoes), Coleoptera (beetles and weevils) and nematodes. 

Natural isolates of B. thuringiensis can produce several different crystal proteins; certain 

combinations of Cry proteins have been shown to exhibit synergistic effects. On the other 

hand different target specificity could be perhaps even undesirable, (Hofte et al. 1989, 

Lambert et al. 1992). 

The toxins were originally classified into four classes according to their amino acid 

sequence homology and insecticidal specificities (Hofte et al. 1989). CryI toxins are toxic 

to lepidopterans; CryIIs are toxic to lepidopterans and dipterans; CryIIIs are toxic to 

coleopterans; CryIVs are toxic to dipterans. CryV and CryVI classes, were added for the 

toxins active against nematode (Feitelson et al. 1992). Each new protoxin discovered, 

acquires a name consisting of the mnemonic Cry and four hierarchical ranks (consisting 

of numbers) (e.g., Cry25Aa1), depending on its place in a phylogenetic tree (Crickmore et 

al. 1998). 

The ongoing discovery of new B. thuringiensis toxin genes and rapid accumulation of 

information on their insecticidal activities has prompted the construction of a database on 

“Bt toxin specificity”: "The Bacillus thuringiensis toxin specificity database" 

http://www.glfc.cfs.nrcan.gc.ca/Bacillus. A 500 delta-endotoxin list with corresponding 

access name for NCBI database sequences, is available in this site;  biological specificity 

is also a component of the orginal nomenclature.  

 

4.4  Mode of action of B. thuringiensis Cry proteins  

During the  sporulation process,  B. thuringiensis cells produces parasporal crystalline 

inclusions containing polypeptides (δ-endotoxins). These protoxins, plasmid encoded by 

cry genes, present molecular masses ranging from 50 to 140 kDa and are toxic to a variety 
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insect species (Angsuthanasombat et al. 1993 ). Upon ingestion by the susceptible insect 

larvae, these inclusions are solubilised in the alkaline environment of the midgut and 

proteolytically digested to  release the toxic fragments (Brown et al. 1990). During this 

proteolytic activation, δ-endotoxins undergo extensive proteolysis at both their C and N 

termini to produce a mature toxic moiety that has a molecular mass of approximately 60 

kDa. A multistage process is generally accepted to describe the mode of action of Cry 

toxin. First, the activated toxins, then pass through the peritrophic matrix, binds to highly 

specific receptors located on the apical microvillus membrane of epithelial midgut cells 

(Bravo et al. 1992, Hofmannet al. 1988). After toxin binding to the receptor, a change in 

the toxin’s conformation, allow toxin insertion into the membrane. Perhaps, following an 

oligomerization, the toxin oligomer induces the formation of a lytic pore in the midgut 

epithelial membrane that that leads to osmotic cell lysis , cessation of feeding, and death 

of the larva (Sacchi et al. 1986, Lorence et al. 1995). Receptor binding is a key factor in 

specificity of activated Cry toxins The activated toxin readily binds to specific receptors 

on the apical brush border of the midgut microvilli.  Two different insect proteins have 

been identified as receptors for Cry toxins: a 120-kDa aminopeptidase N (APN), of also 

called Cry1Ac toxin-binding protein, and the 210-kDa cadherin-like glycoprotein, called 

Cry1Ab toxin-binding protein, each purified from brush border vesicles of susceptible. 

Insect glycolipids were additionally suggested as a receptor in nematodes (Griffitts et al. 

2005). Recent data suggest that toxicity is correlates with irreversible binding that could 

reflect a tighter interaction of the toxin with the receptor or  might be related to insertion 

of the toxin into the membrane (Liang et al. 1995). 
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                                           Fig.9 Proposed mode of action for cry toxin  

 

4.5 Transcriptional mechanisms of cry gene 

The expression of cry genes is considered to be largely sporulation dependent. The 

development of sporulation, is controlled at the transcriptional level by the successive 

activation of σ-factors, which bind the core RNA polymerase to allow the transcription of 

sporulation-specific promoters. σA are the primary sigma factor of vegetative cells; five 

factors called σH, σF, σE, σG, and σK, appear in that order in a temporally regulated 

fashion during development of B. thuringiensis cell cycle. Several cry gene promoters 

have been identified, and their sequences have been previously determined (Yoshisue et 

al. 1993, Dervyn et al. 1995, Brizzard et al. 1991, Brown et al. 1993). Consensus 

sequences recognized by B thuringiensis RNA polymerase containing σE or σK, were 

found after alignment of  promoter regions of these genes (Agaisse et al. 1995, Baum et 

al. 1995). The results are that is likely to be σE or σK -dependent.  Low-level of cry genes 

transcripts has been also detected during the transition phase of B. thuringiensis biological 

cycle, lasting until the onset of sporulation (Poncet et al. 1997, Yoshisue et al. 1995). It is 

thought that this expression may be due to the σH RNA polymerase, and it is suggested 

that Spo0A represses this weak transition phase expression, when the cells enter the 

sporulation phase (Poncet et al. 1997). One case of cry gene expressed during vegetative 

growth was described (Malvar et al. 1994, Sekar et al. 1988). The cry3Aa gene 

expression, isolated from the coleopteran-active B. thuringiensis var. tenebrionis seems to 
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be activated by a non-sporulation-dependent mechanism. The cry3Aa  gene promoter, 

resembles promoters recognized by the primary sigma factor of vegetative cells, σA. 

 

4.6 Development of B. thuringiensis biopesticides 

First Insecticidal B. thuringiensis products were commercialized in France in the late 

1930s (Lambert et al. 1992). By 1995, the U.S. Environmental Protection Agency (EPA), 

registered 182 Bt-based products, but in 1999 constituted less than two percent of the total 

sales of all insecticides (Carpenter et al. 2001, EPA et al 2001). As insect pests have 

become resistant to chemical insecticides. The use of Bt has strongly increased. As 

reported by Beegle and Yamamoto (Beegle et al. 1992), the early Bt formulations 

presented several problems. Standardization was based on spore count rather than 

potency, the products often contained subsp. thuringiensis of low potency. 

After serotyping of Kurstaki HD-1 by  Barjac and Lemille,  this B. thuringiensis supsp. 

became the basis for products competitive with chemical insecticides for performance and 

cost. For many years, all of the B. thuringiensis companies produced only subsp. kurstaki. 

However, other varieties, such as the Coleoptera-active Bt subsp. Tenebrionis (Krieg et 

al. 1983) and the Diptera-active subsp. israelensis (Goldberg et al. 1977), have come to 

be used worldwide for the control of larvae of pest. Today B. thuringiensis subsp. 

israelensis applications comprise up to 50% of all insecticide applications. The relevant 

works of screening and isolation of new B. thuringiensis strains performed during years, 

finally resulted in the production of insect specific commercial products. Some of the 

most frequently used are listed in table 2. 
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Table 2 Bt-based biopesticide active ingredients and products (ROH et al. 2007) 
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1. Introduction  
 
Bacillus thuringiensis, is a ubiquitous gram-positive, spore-forming bacterium known to 

exhibit specific insecticidal activities against certain insects, especially within the orders 

Lepidoptera, Diptera, and Coleoptera; it forms a parasporal crystal during the stationary 

phase of its growth cycle: these toxins, the so-called crystal proteins (Cry protein) or δ-

endotoxins, are plasmid encoded by different cry-type genes. Many different genes 

encoding the B. thuringiensis endotoxins have been isolated and characterized. The high 

specificity of the Cry proteins against insects is mainly due to specific receptors in the 

insect gut, which are not present in the mammalian gut: these toxins are therefore 

considered harmless to humans. Due to its specific activity against insects and minimal 

environmental impact, Bacillus thuringiensis is used extensively around the world as a 

pesticide in forestry and agriculture as useful alternative or supplement to synthetic 

chemical pesticides (Schnepf et al. 1998): it is therefore of great commercial interest. 

Bacillus thuringiensis, like the foodborne and human opportunistic pathogen B.cereus, 

belongs to the Bacillus cereus sensu latu family.  

It is well known that B. cereus is associated with two forms of human food poisoning, the 

emetic and the diarrhoeal syndrome; the pathogenic mechanism of the emetic syndrome is 

a typical example of food intoxication: B. cereus can grow in food prior to consumption 

producing the emetic toxin (cereulide), a heat and pH stable circular dodecadepsipeptide 

that disrupt the energy production by mitochondria, passing the mitochondrial membrane 

and inducing vacuolization of cells (Mikkola et al. 1999). The main symptoms are nausea 

and vomiting, similar to the symptoms caused by Staphylococcus aureus enterotoxin 

(Granum and Lund, 1997). The diarrhoeal syndrome is a typical example of a 

toxicoinfection, caused by enterotoxins after the ingestion of food contaminated with 

Bacillus cereus; the enterotoxins affect the epithelial lining of the small intestine causing 

disturbance of the water solute transport: this may lead to diarrhoea and abdominal 

cramps within 8-16 hours after consumption of contaminated food. At least four different 

enterotoxins have been characterized: the three-component haemolysin BL (HBL), the 

non haemolytic enterotoxin E (NHE), the one-component hemolytic toxins CytK and the 

bc-D- ENT enterotoxin T (Granum and Lund 1997,  Hansen et al., 2003). 

The tripartite hemolytic heat-labile enterotoxin HBL, is the product of an operon that 

includes hblA, hblD, and hblC genes, which respectively encode the binding subunit (B) 

and the L1 and L2 lytic components (Phelps et al 2002). The subunits of the B. cereus 
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NHE also include two lytic components, NH1 and NH2, and a third gene product that 

remains uncharacterized. A third enterotoxin, the so called bc-D-ENT has been described; 

it is a single component protein enterotoxin with activity towards vascular permeability, 

composed of a single 41-kDa subunit: the exact role of this toxin is still unclear compared 

to what is known about HBL and NHE enterotoxins. A fourth enterotoxin, cytotoxin K 

(CytK), is a single-component toxin once reported to be involved in a severe food 

poisoning case that caused the deaths of three individuals (Lund et al. 2000). 

Recent studies showed that most of these genetic determinant have been found frequently 

not only in B. cereus strains, but also in B. thuringiensis strains (Gaviria Rivera et al. 

2000, Hansen and Hendriksen, 2001), while the emetic toxin, whose synthetase gene 

cluster is located on a pXO1-like virulence plasmid, has been found in both B. cereus and 

B. weihenstephanensis strains (Thorsen et al. 2006), but not to date in B. thuringiensis 

(Ehling-Schulz et al., 2006). Classical biochemical and morphological methods of 

classifying bacteria have failed to distinguish B. thuringiensis from B. cereus which are 

closely related and indistinguishable phenotipically and genetically except that the former 

harbours insecticidal plasmid (Schnepf et al 1997, Logan et al. 1984,  Priest et al. 1988). 

However, conjugative transfers of many plasmids among Bacillus cereus  sensu latu 

family are demonstrated (Yuan et al. 2007, Van der Auwera et al. 2007) especially 

between B. cereus and B. thuringiensis, in soil, insect larvae, culture media and foodstuffs 

(Battisti et al.1985, Yuan et al. 2007, Van der Auwera et al. 2007). Despite these 

knowledges, because of its strong insecticidal activities, plant protection products based 

on selected strains of B. thuringiensis are used worldwide in the production of fruits and 

vegetables in greenhouses and in the field.  

B. thuringiensis strains has been isolated from pasta, pitta bread and milk (Damgaard et 

al. 1996), several ready-to-eat foods (Rosenquist et al. 2005), fresh fruits and vegetables 

(Frederiksen et al. 2006), as well as from cabbage for human consumption (Hendriksen 

and Hansen 2006); since some of these isolated strains were indistinguishable from 

commercial B. thuringiensis subsp. kurstaki HD-1, this suggested these strains might be 

residuals of biopesticides applied in the field (Frederiksen et al. 2006, Hendriksen and 

Hansen, 2006). The capacity of these bacteria to form highly resistant dormant particles, 

called spores, enables them to survive in extreme conditions, and throughout the 

manufacturing line. The last decade, when consumer preferences have shifted to mildly 

processed food, new opportunities arose for spore forming spoilage and pathogenic 
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organisms. Current food preservations are only moderately successful against spores; 

application of milder treatments in food processing may not be sufficient to eliminate the 

spores that under favourable conditions, can germinate, growing out to vegetative cells 

and produce virulence factors. Taking into account these finding and previous 

consideration, it stands to reason that the presence of B. thuringiensis in foodstuff and its 

impact on food safety still warrant further investigations.  

The purpose of the first part of this study was the isolation of B.thuringiensis strains, from 

commercial bioinsecticide products, to investigate the distribution of gene coding for B. 

cereus-like enterotoxins, to evaluate  the enterotoxin expression profiles and to assess the 

presence of corresponding proteins. Then a food model, vegetable based, was developed 

to evaluate the behavior of B. thuringiensis spores artificially added to the food matrix, 

after the simulation of an industrial processing treatment. SEM and SEM-X ray technique 

were used to follow the trend of B. thuringiensis biological cycle, from dormant spore to 

vegetative cell. Morphological changes in the structure of the spore were observed and 

described in detail, at different time during the germination process. In order to achieve 

more information on the internal spore structure, we tried a SEM carbon coating 

technique; SEM X-ray analysis was used to examine the release of calcium DPA from B. 

thuringiensis spore which is one of the initial events of the germination process. 

 

2. Materials and methods 
 

2.1  Bacterial strains isolation 

The Bacillus thuringiensis strains examined in this study were isolated from the following 

commercial bio-isecticidal products: Delfin, BAC, Vectobac DT, Lepinox, Rapax, Jack 

pot, B 40, Biolarkim 14, Thuricide HPC, DiPel PRO. 

After resuspending in sterile water, decimal dilutions of commercial powdered 

insecticides, were plated on BCA selective medium plates (Bacillus Cereus Agar Base), 

and incubated at 30°C for up to 72h, for bacterial strains isolations. 

Crystalline inclusion were observed by phase contrast microscopy in all the products 

tested. For all subsequent analysis, the isolated B.thuringiensis strains were cultured on 

Brain Heart Infusion (BHI) broth at 37°C, on continuous shaking, or in BHI medium agar 

plates at 37° C. 
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2.2 DNA extraction for PCR and REP 

For DNA preparation, isolated bacteria were cultured on Brain Heart Infusion (BHI, 

OXOID) broth and incubated overnight at 37°C, on continuous shaking. Genomic DNAs 

for fingerprinting and toxin profile analysis, were extracted from 1.0-ml aliquots of the 

cultures by the use of FTA Starter Pack (WHATMAN), in accordance with the 

manufacturer’s instructions. 

 

 

2.3 Detection of crystal proteins 

The B. thuringiensis isolates were plated on BHI and then inspected for the presence of 

intracellular crystals by phase-contrast microscopy, after growth for 2–3 days at 30°C.  

PCR analyses were carried out to detect the insecticidal toxin genes from all the isolates: 

the X62821 pair of primers reported by Fuping Song et al. 2003, 

5’GCTGTCTACCATGATTCGCTTG3’, 5’CAGTGCAGTAACCTTCTCTTGCA3’ were 

used to amplify the conserved regions of cry1I-type genes; the DiplA 

5'CAAGCCGCAAATCTTGTGGA3' and DiplB 5'ATGGCTTGTTTCGCTACATC3' 

primer set were used for cryIV gene  detection (Carozzi et al. 1991). Amplifications  were 

carried out in a Mastercycler Ep Gradient S Eppendorf PCR for 32 cycles at 94°C for 1 

min, 52°C for 1 min, and 72°C for 5 min. PCR reaction mix was electrophoresed on a 

0.8% agarose gel in TAE1X buffer with SYBR® Safe DNA gel stain (Invitrogen). 

 

2.4  Repetitive extragenic palindromic DNA sequence (REP) 

Repetitive Extragenic Palindromic (REP) PCR using (GTG)5 primer was used to identify 

Bacillus thuringiensis isolates at the strain level. 

REP-PCR reaction was carried out in a total volume of 25 μL with 10ng DNA, 0.5μM 

primer and MasterMix PCR (Promega). Amplification was performed in a Mastercycler 

Ep Gradient S (Eppendorf) as follows: initial denaturation at 95°C for 7 min, followed by 

30 cycles at 90°C for 30 s, 40 °C for 1 min and 65°C for 8 min, and a final extension at 

65°c for 16 min. Profiles obtained were analysed on a 2% agarose gel in TAE1X  with 

SYBR® Safe DNA gel stain (Invitrogen) and a 100bp ladder (Promega corporation) was 

loaded for molecular weight standard. 
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2.5  Detection of genes coding for enterotoxins 

PCR assay was used to characterize toxin profiles of Bacillus thuringiensis strains 

isolated from bio-insecticides. The primer sequences earlier described in a study done in 

2001 by Hansen and Hendriksen, were used to detect genes encoding the production of 

each of the enterotoxins HBL, NHE and bc-D-ENT. Primers and condition described by 

Swiecicka e Mahillon were employed for cytK gene detection; primer set is listed in Table 

2. PCR analysis were carried out in a total volume of 25μL that contained 5ng of DNA, 

0.5μM of each primer and the GoTaq Green Master Mix (Promega). Reaction was 

performed in a Mastercycler Ep Gradient S (Eppendorf) with an initial denaturation of 

5min at 95°C, followed by 30 cycles PCR each comprising 15 s at 94°C, 45s at annealing 

temperatures (indicated in Table 2 for each primer pair) and 1min at 72°C, final extension 

was 7 min at 72°C. PCR reaction mix was electrophoresed on a 1% agarose gel in 

TAE1X buffer with SYBR® Safe DNA gel stain (Invitrogen), and photographed. 

 

Table 1. Primer set for detection of enterotoxic genes in B.thuringiensis isolated strains. For HBL and 
NHE complex, PCR analysis were performed to amplified at least two genes in both the three component 
operons : hblC and hblD genes for the hemolytic toxin, nheB and nheC genes for the non hemolytic toxin.  
 
Genes Primer name SEQ (5’-3’) Annealing 

temperatures 
Amplification 

product 
L2A Fw 5’-AATGGTCATCGGAACTCTAT-3’ hblC L2B Rv 5’-CTCGCTGTTCTGCTGTTAAT-3’ 

52 749pb 

HBLD-N 5’-AATCAAGAGCTGGTCACGAAT-3’ hblD HBLD-C 5’-CACCAATTGACCATGCTAAT-3’ 
51 429pb 

nheB 1500 S Fw 5’-CTATCAGCACTTATGGCAG-3’ nheB nheB 2269 A Rv 5’-ACTCCTAGCGGTGTTCC-3’ 
50 769pb 

nheC 2820 S Fw 5’-CGGTAGTGATTGCTGGG-3’ nheC nheC 3401 A Rv 5’-CAGCATTCGTACTTGCCAA-3’ 
50 581pb 

BCET-N 5’-TTACATTACCAGGACGTGCTT-3’ bceT BCET-C 5’-TGTTTGTGATTGTAATTCAGG-3’ 
53 428pb 

cytKf 5’-GATAATATGACAATGTCTTTAAA-3’ cytK cytKr 5’-GGAGAGAAACCGCTATTTGT-3’ 
52 617pb 

 

 

2.6  RNA preparation 

For RNA extraction,  isolated strains were grown overnight at 37°C in Brain Heart 

Infusion (BHI) broth, in anaerobic condition, until cells reached stationary phase of 

growth. After centrifugation of 1.0-ml aliquots of the cultures, pellets were treated with 

2.0 ml of RNA Protect Bacteria Reagent (Qiagen) solution and stored at -20°C. Total 

RNA was extracted using  RNeasy mini kit (Qiagen) according to the manufacturer’s 

instructions. Quantification of total RNA was performed with Ultrospec 2100 pro 
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Amersham Biosciences spectrophotometer after enzymatic treatment with DNase 

(Ambion) for 30 min at 37°C.  

 

2.7 Analysis of toxins expression by RT-PCR 

Reverse transcription (RT) was performed using 1 ng of total RNA from commercial 

Bacillus thuringiensis strains cells. To test the presence of mRNA for genes coding toxins 

previously detected by PCR (hblB – hblC, nheB – nheC, cytK, bceT), VersoTM 1-Step 

RT-PCR Reddy MixTMKit (Thermo Scientific) protocol was used. 

 

2.8  Enterotoxin assay 

Bacillus thuringiensis UC10070 var. kurstaki, was tested for the ability to product the 

diarrheal enterotoxins HBL (haemolytic fraction L2) with the reverse passive latex 

agglutination test using BCET-RPLA toxin detection kit (Oxoid). After 1% inoculum of 

the B. thuringiensis strain in BHI broth, and incubation at 37°C for 18 hours on shaking 

(250 cycles/min), the culture was centrifuged; supernatants was sterile filtered and stored 

at -20°C until the assay were performed following the manufacturers’ instructions.  

 

2.9  Spores production  

Bacillus thuringiensis UC10070 var. kurstaki, was selected to generate spores for the 

following experiments in this study.  Growth density and sporulation frequencies were 

initially compared by using the following three agar media: BHI medium (OXOID, UK), 

Peptonised Milk (1%peptonized milk, 1% dextrose, 0.2% yeast extract, 1.216 mM 

MgSO4, 0.072 Mm FeSO4, 0,139 mM ZnSO4, 0.118mM MnSO4). BP medium (Bacillus 

Genetic Stock Center, Ohio State University) 0,7% Bactopeptone (Difco), 0.68% 

KH2PO4, 0.012% MGSO4, 1.7% Agar, 1.216 mM MgSO4, 0.072 Mm FeSO4, 0,139 mM 

ZnSO4, 0.118mM MnSO4, Glucose 0.3%.  

The pH of Peptonised Milk and BP medium, were adjusted to 7.0 with KOH: salts were 

added at 55°C after sterilization by autoclaving.  

Plates with each of the three medium considered, were inoculated with 500μl of B. 

thuringiensis UC10070 overnight cultures, and incubated for 4 days at 37°C. Spores were 

harvested and purified by extensive washing with MilliQ water at 4°C .  

The spore crops were inspected by phase-contrast microscopy for the presence of 

vegetative cells, germinating spores, and debris. To estimate the number of spores 
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formed, 1-ml volume of spore suspension was then placed in a 1.5-ml tube, heated at 

60°C for 20 min, diluted and plated on BHI agar. Colonies were counted after 12 h of 

growth at 37°C. 

 

2.10 Food model preparation 

Three commercial UHT vegetable creams based on pepper, artichoke and spinach, and 

one pasteurized purée, compounded from courgettes, potatoes and milk, were tested with 

the aim of identify the best to support the growth of the microorganism object of this 

study. The commercial UHT vegetable creams (20 ml) were dispensed in sterile tube and 

stored at – 20°C.  

Fresh courgettes and potatoes, were washed, trimmed, peeled, and added to UHT milk 

with a ratio of 3:1:1; the  mixture obtained, named CPM model, was heated at 100°C for 

15 min, and dispensed  in sterile tubes with rates of 20ml before freezing at – 20°C. 

Before proceeding with the experiments, values of pH and aw on the four vegetable mix 

was recorded. After inoculum in the four vegetable matrices with 107 ufc/ml of B. 

thuringiensis cells, growth ability of B. thuringiensis will be monitored by plate counting 

in Brain Heart Infusion up to a week of storage at 4°C and room temperature. 

 

2.11 B. thuringiensis spores germination assay in food model 

In this step of the work, the CPM model was tested for the B. thuringiensis spores 

germination assay. Recipe of the CPM model was modified by adding bacteriological 

agar to a concentration of 15g/l : mixture was mixed, heated at 100°C for 15 min, and 

then dispensed in 20 ml plates. After spreading of 100 μl of 107 ufc/ml of B. thuringiensis 

spores, CPM plates were anaerobically stored with  Anaerocult® A mini foil bags, and 

heat treated for 15 minutes at 70 ° C, to activate spores. Germination process was 

monitored by phase contrast microscope: observations were carried out on spores, 

outgrowing spores, vegetative and sporulating cells: specifically at 10’, 40’ , 2 h, 12 h and  

24h after heat activation. 
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2.12  Sample preparation for scanning electron microscopy (SEM) 

Samples for scanning electron microscopy (SEM) were prepared as follows: a square 

section of about 1 cm each side of the food model after inoculum with spores suspension, 

was taken from each plate in the times previously listed during germination process. They 

were then dehydrated stepwise in ethanol  50%, 75%, 95%, and finally 100%, for 

overnight each at room temperature. Critical point drying was performed in a Baltec 

CPD030 dryer. When carbon coating was used, the specimens were mounted on SEM 

discs and coated with carbon for electrical conductivity. Finally, they were observed with 

a Philips XL30 ESEM scanning electron microscope. Gold coated samples were prepared 

as above described and then specimens were coated with gold for electrical conductivity 

as described by Palumbo et al. (2004). The specimens were analyzed under both low and 

high vacuum SEM conditions: high vacuum 3 x 10-4 Pa, 7000 count rate by dead time 

33%, dwell time 60 milliseconds and low vacuum 1.199 x 102 Pa (Bassi et al. 2008).  

 

2.13  X-ray microanalysis 

Germination was studied in spore samples by means of X-ray microanalysis using the 

carbon coating technique for sample preparation: the specimens were mounted on SEM 

discs and coated with carbon for electrical conductivity. SEM images of single specimen 

fields (ranging from 1-5μm) were taken. X-ray microanalysis was then performed using a 

Philips XL30 ESEM. The elements calcium, phosphorus and sulphur were each detected 

using energy-dispersive X-ray microanalysis (Edax model Genesis 2000 XMS 60 SEM, 

Mahwah, NJ 07430, USA) and the Detector (CDU-UTW Shappire, software SEM 

genesis). The following instrumental conditions were maintained constant throughout the 

analysis: high vacuum 3 x 10-4 Pa, 7000 count rate by dead time 33%, dwell time 60 msec 

and low vacuum 1,199 x 102 Pa. Element microanalysis was used to detect variation in 

the calcium content of spores. 

 

3. Results 

 
3.1. Characterisation of the B. thuringiensis isolated strains  

After culturing of commercial bio-pesticide products considered in this study, a total of 

10 Bacillus thuringiensis strains were isolated (Table 3). Bacillus thuringiensis var. 
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kurstaki H3a 3b was present in BAC, Delfin, Lepinox, Rapax, Jack Pot and Thuricide 

HPC; B. thuringiensis var israelensis H:14 were isolated from Biolarkim 14 and Vectobac 

DT, Bacillus thuringiensis var. kurstaki ABTS-351 from DiPel PRO DF, Bacillus 

thuringiensis var. aizawai was  present in B40. All the isolates were confirmed to be B. 

thuringiensis, belonging to the B. cereus group, because of their content of either crystal 

proteins, visualized by phase-contrast microscopy or cry genes, as detected by PCR. As 

expected, from the 10 isolates, 8 strains were positive for cry-1IA gene, which is present 

in the commercially used strains B. thuringiensis subsp. kurstaki and B. thuringiensis 

subsp. aizawai. In addition, 2 strains out of the 10 B. thuringiensis isolates, belonging to 

serovar israelensis,  were positive for cry-4 gene (Table 3). 

Profiles obtained after amplification of repetitive extragenic palindromic DNA sequences 

(REP-PCR) (Fig 1), confirmed the isolation of three different B. thuringiensis serovars 

from the products analyzed: B. thuringiensis var. kurstaki, B. thuringiensis var. 

israelensis and B. thuringiensis var. aizawai. 

 

      Table 2. Classification of B. thuringiensis strains isolated from bio-insecticidal products 
 

 

Bio-insecticidal 
commercial names 

Strains Name Serotype Cry gene 

Delfin B.Thuringiensis var. kurstaki UC10070 H3a 3b cry-1IA 
BAC B. thuringiensis var. kurstaki UC10071 H3a 3b cry-1IA 
Vectobac DT B. thuringiensis var israelensis UC10072 H14 cryIV 
Lepinox B. thuringiensis var. kurstaki UC10073 H3a 3b cry-1IA 
Rapax B. thuringiensis var. kurstaki UC10074 H3a 3b cry-1IA 
Jack pot B. thuringiensis var. kurstaki UC10075 H3a 3b cry-1IA 
B 40 B. thuringiensis var. aizawai UC10076 - cry-1IA 
Biolarkim 14 B. thuringiensis var israelensis UC10077 H14 cryIV 
Thuricide HPC B. thuringiensis var. kurstaki UC10078 - cry-1IA 
DiPel PRO DF DF B. thuringiensis var. kurstaki UC10079 ABTS-351 cry-1IA 

. 
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Fig. 1. Agarose gel electrophoresis of REP-PCR. Shown are B.thuringiensis subsp. kurstaki H3a 3b from Delfin, Bac, 
Lepinox, Rapax, Jack pot, (lanes 1, 2, 3, 4, 9), B. thuringiensis subsp. aizawai from B40 (lane 8), isolates 
indistinguishable from the Dipel strain (lane 10), and B. thuringiensis var israelensis from Vectobac DT and Biolarkim 
14 and (lanes 5, 6) 
 
 
3.2. Detection and expression of enterotoxic genes in B. thuringiensis isolated strains 

The PCR analysis revealed that all the B. thuringiensis strains isolated from commercial 

products tested (Delfin, BAC, Vectobac DT, Lepinox, Rapax, Jack pot, B 40, Biolarkim 

14, Thuricide HPC, DiPelPRO) harbored genes for HBL and NHE enterotoxins, as well 

as the genes coding for CytK and bc-D-ENT toxins (Table 4).  
To clarify whether the enterotoxic genes are not only present but also expressed in 

laboratory medium, RT-PCR was performed on three B. thuringiensis strains each 

belonging to a different serovar from those isolated. All the four toxic genes examined 

resulted expressed at the conditions tested (Table 5).  

 
       Table 3. Detection of enterotoxic genes by  PCR analysis on B. thuringiensis isolates.      
 

n° Strains tested Serotype hblC   hblD nheB    nheC cytK bceT

5 B .t var. kurstaki H3a 3b +          + +          + + + 

2 B. t var. israelensis H14 +          + +          + + + 

1 B. t var. aizauwai - +          + +          + + + 

1 B. t var. kurstaki ABTS-351 +          + +          + + + 

1 B .t var. kurstaki - +          + +          + + + 

   
 
    

 50



 
Chapter 2 

   Table 4. Enterotoxic genes expression of B. thuringiensis isolates assessed by RT- PCR 
 

Genes Strains tested serotype
    hblC   hblD             nheB   nheC        cytK        bceT

B. t. var.   kurstaki H3a 3b +      +                     +         +               +             + 

B. t. var.  israelensis H14 +      +                     +         +               +             + 

B. t  var.  aizauwai - +      +                     +         +               +             + 
 

 

3.3 Enterotoxin production 

The production of the L2 component of HBL enterotoxin, involved in the diarrhoeal 

syndrome, was assessed in the supernatant of B. thuringiensis UC10070 broth culture. 

The enterotoxic activity observed, are reported in figure 2. Detection of L2 component 

from hemolysin BL, gave positive result in the strain object of the study for the growth 

condition tested.   

 

1

2

3

4

5

6

a     b    c    d     e     f     g     h

Latex 
control

sensitized latex 

Latex 
control

sensitized latex 
Enterotoxin
control

B. thuringiensis
UC10070 culture

 
Fig.2 Enterotoxin-Reversed Passive Latex Agglutination reaction. Wells from “a” to “g” contain serial 
dilutions of the samples; well “h” is the negative control. The first row, shows the positive agglutination 
reaction generated by the control enterotoxin, provided by the kit (the respective negative control is in row 
2). The  positive response of sensitized latex added to the B. thuringiensis culture is clearly shown in the 
fourth row.  
 

3.4 Selection of sporification medium and spores production 

As it is worldwide used for large-scale production of bio-insecticides, Bacillus 

thuringiensis UC10070 var. kurstaki, was selected to generate spores for the following 

analysis. Experiments were performed to identify the best medium to induced 

sporification.  All the three media tested, yielded high spores counts (Table 5), however 

intact vegetative cells were still visible in BHI and Peptonised milk media. On the 

contrary although lower counts were achieved on BP agar, only  very few vegetative cells 

and germinating spores (less than 1%) were observed in this medium, when the spore 
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crops were inspected by phase-contrast. Hence, spore of  B. thuringiensis UC10070 were 

produced from cells cultured in BP by incubation for 4 days at 37°C, allowing to obtain a 

spore suspension of 1.5 x108 ufc/ml.  

 

 

                          Table 5. Comparison of the growth efficiency of B. thuringiensis strains  
                             in three media. Standard deviations were as follows: BHI/ 7,08E+08,  
                             Peptonized milk/1,41E+08, BP/5,63E+07. 

N° of CFU/ml in: Strain 
BHI Peptonized milk BP 

B.Thuringiensis UC10070 1,22E+09 2,57E+08 1,51E+08 

 
                           
3.5  Food model development 

In this study four types of different vegetables matrix were tested for the ability to support 

the development of commercial B. thuringiensis spores and the following growth of 

vegetative cells. Chemical analysis of the primary factors affecting microbial growth, pH 

and free water availability (aw), allowed a first selection of the best model to use for 

analysis. Values observed are listed in Table 6.  

 

                                             Table 6. pH and aW parameters assessed  in the  
                                                  four vegetables matrix considered. 

Pepper 4.63              0.97
Artichoke 5.63              0.94
Spinach 5.94              0.94
CPM                  5.95              0.97

pH                a w

 
                                                
 

Pepper cream presented an optimum value of aW, as the CMP model, but the pH seemed 

too restrictive to support the growth of B. thuringiensis. The cream of artichoke and 

spinach showed a pH value suitable for the development of the bacterium, but low water 

availability probably limited spores germination and growth of vegetative cells. CPM 

showed the optimum values for both parameters analyzed.  
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B. thuringiensis growth dynamics on the different vegetables considered, was monitored 

during a week; growth curves obtained are reported in figures 3.A and 3.B.. Some B. 

thuringiensis  strains can grow up to 55°C while others can grow as low as 4- 5°C. 

The experiment was performed in two different conditions: a permissive temperature 

(room temperature) and one more limiting (8°C), just to test the ability of B. thuringiensis  

UC10070, to grow in food model even at refrigerator temperature. Obviously, relevant 

differences were found in the kinetics of B. thuringiensis determined in each condition. 

The results confirmed that room temperature could contribute to higher growth dynamics 

of B. thuringiensis; the temperature as low as 8°C delayed the onset of the bacterial 

growth but it doesn't arrest the B. thuringiensis biological cycle, as it can be observed by 

levelling of the kinetics curve. As expected CPM model resulted the best to support 

growth of B. thuringiensis cells; the low pH, seemed the most limiting parameter for 

microorganism development, as shown by the curve of cell death in pepper cream.  
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Bt  growth in food model at 8°C
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Fig.3 Kinetics of growth of B. thuringiensis  observed in four different vegetables mix at room temperature 
(A) and  refrigerator temperature (B). 
                                                                      

 

Given the findings above, CPM model was chosen to test its ability to support, not only 

cell growth but also the germination process of B. thuringiensis spores for the next steps 

of the work. Recipe of the CPM model was modified by adding bacteriological agar in 

order to dispense the matrix on plates and to facilitate the spreading of B. thuringiensis 

spore suspension. The thermal treatment for 15’ at 70°C, and incubation in anaerobic 

conditions, were used to reproduce, in food model, the industrial processing which 

foodstuffs are submitted, as for play the real trend of spore germination, outgrowth, and 

cell growth in processed foods. 

 

3.6 SEM observations of the germination process 

To identify the critical steps of B. thuringiensis germination, the process was monitored 

by scanning electron microscopy (SEM) and SEM-Xray techniques (Bassi et al. 2009) 

harvesting cells at various time points during growth in  the CPM food model. 

 

3.6.1 Gold coating results 

First, observations were performed using the gold coating technique under high vacuum 

conditions. This technique allowed us to view morphological changes limited to the 

surface of B. thuringiensis cells and spores. Spores, obtained as described in section 2.9, 
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were transferred to CPM model plates and heated at 70°C for 15 minutes. This activation 

is usually followed by a cascade of reactions that results in rapid and significant 

morphological changes in the overall structure of spores.  

In Fig.4 A-B-C-D, are shown dormant spores, and spores coated by cell wall residues 

(exosporium); the exosporium is not a universal part of the spore structure but seems to be 

conserved among pathogenic Bacilli and it is present on members of the B. cereus group. 

The spore coat, providing the spore with resistance against exogenous lytic enzymes, 

organic solvents and a range of oxidative chemicals (Driks, 1999; Nicholson et al. 2000, 

Setlow et al. 2000).  

Parasporal body protein inclusions, containing Cry proteins, were observed (Fig. 5 A-B-

C-D). The crystal protein is produced during sporulation and is accumulated both as an 

inclusion and as part of the spore coat. Parasporal inclusions produced by the present 

isolate morphologically fell into three groups: spherical (Fig. 5 C), rhomboid (Fig. 5 B-

D), and irregular-shaped (Fig.5 D).  

Ten minutes after heat shock in plates, the spores synchronously initiated germination 

(Fig. 6). Optical microscopic analysis of samples obtained at this time point, showed a 

nearly complete transition from phase-bright spores to phase-dark germinated cells, that 

coincides with the entrance of water to the core, resulting in a partly dehydrated core 

environment.  

SEM microscopic analysis revealed that after 40 minutes, the outer layer of spores began 

to dissolve, spores began to break their external layer and assumed an elongated structure 

respect to the more round shape of dormant spores ( Fig 7). 

After two hours from heat activation, cells burst out definitely of the remaining protective 

spore structures (spore coat) and initiated chromosome segregation, as demonstrated by 

the septa formation and the first round of cell division. In figure 8, are shown round 

shaped cell forms. These are probably protoplasts which derive from lytic activity of new 

outgrowing cells, characterised by a weak cell wall.  

Mature vegetative cells, could be observed 12 hours after spore activation, high cellular 

density together with a beginning of autolysis are represented in figure 9. 
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        Fig 4. Dormant spore of B. thuringiensis UC10070 in food model 

  

A B

  

C D

        Fig.5 Crystal proteins in B. thuringiensis UC10070 

   

A B

   

C D
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          Fig.6 B. thuringiensis UC10070 spore 10 minutes after heat activation 

    
           Fig.7 B. thuringiensis UC10070 spore 40 minutes after heat activation 

   
            Fig.8 B. thuringiensis UC10070 cells 2 h after heat activation of spores 

     
          Fig.9 B. thuringiensis UC10070 cells 12 h after heat activation of spores 

   

 57



 
Chapter 2 

3.6.2. SEM X-ray analysis 

To deeper investigate on the germination process, we used X-ray microanalysis (together 

with the high resolution carbon-coating SEM technique) to examine the release of 

calcium-DPA from B. thuringiensis spores. The release of this compound is one of the 

initial events of the germination process. Energy dispersive analysis of X-rays (EDAX) is 

a method to analyze the elemental composition at the ultrastructural level. When the 

electrons from external sources strike the atoms in the material, energy in the form of an 

X-ray photon is emitted, thus giving the characteristics X-ray of the element (Russ, 1978; 

et al., 1995). A major 

advantage of EDAX is the ability to observe morphology and chemical composition of 

cells simultaneously (Hayat, 1980). 

After heat treatment, the rapid release of the spore content of calcium dipicolinate, 

detected by SEM microanalysis gave a first evidence of immediate germination in food 

model. The release of calcium dipicolinate, started already after ten minutes from 

pasteurization as we can see in figure 12. 
 

Hall and Gupta, 1982; Murr, 1982; Hobbs et al., 1986; Hiom  
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(7) (7)

(6) (6)

2 2

3 3

4 4

5 5

88
99

(10) (10)

 
Fig.12 SEM (left) and X-ray microanalysis (right) m  the same picture. The spores (1),(6), (7) d (10) 

pores have

 

 

4. Discussion

ap of an
sen  already showed no calcium inside, as represented by the ab ce of a fluorescent spot. These s

triggered the germination process. 

 
In the first part of this study the isolation of B .thuringiensis strains from commercial bio-

insecticide products was used to investigate the distribution of gene coding for B. cereus-

like enterotoxins and to evaluate the enterotoxin expression profiles.  

The pathogenic profile of 10 strains isolated from B. thuringiensis-based biopesticides 

was defined. PCR analysis revealed that all the 10 strains possess two genes of NHE and 
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HBL complexes, the two best-characterized three component toxins of B. cereus, as well 

nsis have shown that these organisms share relatively 

is. There is considerable evidence that B. 

uringiensis and B. cereus should be considered a single species: modern molecular 

methods including chromosomal DNA hybridization (Kaneko et al. 1978), phospholipid 

and fatty acid analysis (Black et al 1997, Kampfer et al. 1994), 16S rRNA sequence 

comparison (Ash C. et al 1991, Rossler D., et al. 1991), amplified fragment length 

polymorphism analysis (Keim P., et al. 1997), and genomic restriction digest analysis 

(Carlson C. et al. 1994, Carlson C. et al. 1996) proved to be far from providing effective 

methods to distinguish the two species supporting the single-species hypothesis. An 

attempt to distinguish B. thuringiensis isolates from B. cereus by analysis of a 16S rRNA 

variable region largely failed, yielding many false positives and negatives. The most

s, though it was demonstrated that conjugative transfer of 

lasmids among B. cereus spp. are possible. Since commercial B. thuringiensis strains 

ess genes for all of the four known B. cereus enterotoxins, HBL, NHE, 

bers, 

as cyTK and bceT single genes, coding for cytotoxin K and bc-D-ENT enterotoxins 

respectively; the importance of frequent occurrence of bceT in B. cereus organisms is not 

yet fully understood; the role of CytK in food borne disease needs further study, although  

it has recently been shown that cytK gene was strongly transcribed in a clinical strain 

responsible for the death of three persons (Lund et al 2000).  

Reverse transcription assay, showed that toxic genes detected by PCR, are all expressed 

in the isolated strains; moreover agglutination tests gave positive results for the L2 

component of the toxic complex HBL in UC10070 B. thuringiensis strain analyzed. 

As stated before the members of the B. cereus group, are closely related. Studies on B. 

cereus, B. anthracis and B. thuringie

high levels of chromosomal base sequence identity. 

No confirmed food borne illness cases caused by B. thuringiensis have been described 

yet. This, however, may also be due to the difficulties encountered in the discrimination 

between B. cereus and B. thuringiens

th

 

reliable method for distinguishing the two species is still the detection of the parasporal 

nclusions in B. thuringiensii

p

harbour and expr

bc-D-ENT and CytK, there is a risk that high levels of these organisms may cause human 

diseases.  

Recent studies found high counts of B. cereus-like organisms in fresh cucum

tomatoes and other fresh vegetables; counts performed on fresh foods for sale in Danish 

retail shops, revealed that more then 104 CFU/g of B. thuringiensis strains, 
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indistinguishable from the commercial strains from biopesticides, are present, more likely 

not due to growth of the organisms, but as natural contaminants or residues of B. 

thuringiensis insecticides (Rosenquist et al. 2005). Significant high counts of B. cereus-

like organisms are also increasingly associated with heat-treated products, where 

improper cooling after cooking may induce growth of this organisms after spore 

germination. The CPM model proposed in this work was chosen for its ability to support 

ation, 

rmant state, to recover the active 

 harmless to humans, an increasing use of this bacterium has been highlighted, 

growth of B. thuringiensis cells; moreover, the model was found to be an excellent 

substrate not only for cell growth but also for B. thuringiensis spores germination. By 

using CPM model it was possible to reproduce the real trend of spore germin

outgrowth, and cell growth, trough the simulation of an industrial processing which 

foodstuffs are submitted; after pasteurisation treatment and anaerobic packaging, B. 

thuringiensis spores were activated from its do

metabolism that leads to the realise of new vegetative cells and their duplication. This 

finding, together with the pathogenic profile described above, gave evidence that the 

increasing popularity of cooked chilled foods may leads to problems with spore-forming 

bacteria such as B. cereus and B. thuringiensis.  To better investigate on the 

morphological changes during germination, we used SEM technique, combined with X-

ray microanalysis. SEM methods could be used to observe the surface morphology of 

spores; X-ray microanalysis permitted us to distinguish which spores are germinating by 

determining their chemical compositions (i.e. release of calcium DPA). Moreover, 

morphology and chemistry could be studied simultaneously, enabling us to observe the 

structures of spores as they initiate the germination process. Our study provides a suitable 

method to acquire new knowledge on the biological cycle of opportunistic pathogens that 

can occur in processed foods.  

B. thuringiensis exhibits a wide variety of insecticidal specificities against several insect 

species, which depends on the specificity of delta-endotoxin encoded by the cry genes; 

therefore, the Cry toxins seems the most prominent of a number of virulence factors 

allowing the development of the bacteria in insect larvae: more recent characterizations 

has shown that proteases and chitinases, may contribute to virulence. As these virulence 

factors are

to control pests in biological agriculture; however, our study suggests the importance of 

considering the ability of this bacterium to produce also a variety of other toxins and 

virulence factors that can affect humans.  
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Additional investigations are needed to clarify whether the genes are expressed in food 

after contamination of the bacteria or spores, but taking this enterotoxigenic potential into 

account, as well as the fact that B. thuringiensis cannot be separated from B. cereus at the 

chromosomal level, vegetable producers and food authorities responsible for food safety, 

should consider the amount of B. thuringiensis insecticide residue left on products after 

harvest. Data obtained in this study, suggest that the authorization which permits the 

release of large amounts of B .thuringiensis in bioinsecticides should be revised, through 

adequate procedures to evaluate safety, and excluding the use of enterotoxigenic strains. 

The European Food Safety Authority has recommended that processors should ensure that 

levels of B.cereus bacteria between 103 and 105/g are not reached at the day of 

consumption (Eur. Food Saf. Authority, 2005). It would be important to consider that this 

statement should apply also to residues of commercial enterotoxin-encoding B. 

thuringiensis strains.  
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1. Introduction  
The Bacillus cereus sensu lato group, forms a highly homogeneous subdivision of the 

genus Bacillus and comprises six Gram-positive, spore forming species: B. anthracis, B. 

thuringiensis, B. weihenstephanensis, B mycoides, B. pseudomycoides and B. cereus. 

Notorius is B. anthracis, the cause of the often-lethal disease anthrax; in 1877 it was the 

first bacterium shown to be responsible of a disease.  The food pathogen B. cereus, is a 

normal inhabitant of the soil, but can be regularly isolated from foods such as grains and 

spices: it is responsible of two types of foodborne diseases leading to an emetic or 

diarrheal syndrome. The insect pathogen B. thuringiensis, is of great economical 

importance, being used worldwide as an insecticide.  

The capacity of these bacteria to form highly resistant dormant particles, called spores, 

enables them to survive in extreme conditions and to occupy and complete a full life cycle 

within several different environmental niches (soil, decaying organic matter, plant 

surfaces, insect and mammalian guts). Under favourable conditions, spores may germinate, 

loosing their resistance capacities, and grow out to vegetative cells. The omnipresence of 

Bacillus spores in the environment inevitably results in the presence of spores in 

agricultural and dairy products. Since spores are able to resist most of the preservation 

techniques currently applied, they are responsible for infections, serious food-borne 

illnesses and significant amount of food spoilage (Brul et al, 2006). Bacillus spores are 

equipped with a specific set of germination receptors that continuously monitor the 

environment for proper outgrowth conditions: possibly the diversity in ecological 

background has resulted in a differently developed set of germination receptors, but little is 

still known about the life cycle of these bacteria.  Availability of information by progress 

in bacterial genome sequencing, aids to more investigate Bacillus features. 

Comparison of B. anthracis, B. cereus, and B. thuringiensis genomes ( Ivanova et al. 2003, 

Han et al 2006), has allowed genome-scale comparison of sequences related to the 

physiology, sporulation and virulence of these bacteria; the very high genetic relationship 

found, made genome based differentiation complicated or even impossible and led to the 

conclusion that the three taxa should be considered a single bacterial species. Despite such 

biological arguments for unification, a separate species status for these bacteria has been 

maintained because of their distinctive pathogenic features; their pathogenicity patterns 

differ significantly: the principal virulence factors of B. anthracis are encoded by genes 

located on two plasmids pXO1 and pXO2 (Okinaka et al 1999). Similarly, the crystal 
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protein genes responsible for the major features of insect toxicity of B. thuringiensis 

isolates are almost invariably plasmid encoded (Schnepf et al 1998). The virulence genes 

of B. cereus, are chromosomal (Guttmann et al 2000, Ivanova et al 2003). The evolutionary 

relationships between all members of the group have yet to be definitively established; this 

is important, not only for understanding the evolution of virulence in the B. cereus group, 

but also for rapidly and accurately characterizing these organisms, a concern which has 

become of increasing scientific and political importance in recent years. 

B. thuringiensis is an environmentally common Gram-positive bacterium. As the other 

members of the B. cereus family, it can exist in two morphologies:  the vegetative cell and 

a dormant spore. The most distinctive property of B. thuringiensis, is its 

entomopathogenicity and production of insecticidal Cry toxin proteins that accumulate in 

the mother cell as crystalline inclusions during sporulation of the bacterium. Due to 

specific activity against insects, formulations of B. thuringiensis spores has been exploited 

as pesticides, for more than 40 years, to control agriculturally and medically important 

pest. However, most of genetic determinants involved in B. cereus-associated food borne 

illness, like haemolysin BL (HBL), non haemolytic enterotoxin (NHE), cytotoxin K, and 

bc-D-ENT enterotoxin, have been found frequently also in B. thuringiensis strains.  As the 

B. thuringiensis spores survive many of the currently applied food preservation treatments, 

they can persist in food as residues of biopesticides applied in the field (Frederiksen et al., 

2006; Hendriksen and Hansen, 2006). Only rigorous methods have been shown to be 

capable of destroying all spores present in food. Hence, the presence of B. thuringiensis in 

foodstuff and its impact on food safety still needs further investigation.  

The research in this thesis aim to describes the germination of B. thuringiensis spores in 

vegetable food. The first purpose of this study was the development of a vegetable based 

food model, that would allow to asses the behaviour of B. thuringiensis spores in food, 

after the simulation of an industrial processing treatment. Genome-wide microarray-based 

transcriptome analysis, was used to explore transcriptional changes and to understand the 

molecular mechanism, behind the process of B. thuringiensis spore germination, outgrowth 

and toxin production, in food model. RT-qPCR analysis were performed to quantify the 

expression, in food, of the major virulence genes involved in B. cereus-associated food 

borne disease. The production of the L2 component of HBL enterotoxin, involved in the 

diarrhoeal syndrome was assessed, in culture medium and in food model, to confirm that 

trend of HBL mRNAs, evaluated with RT-qPCR, and microarray analysis, leads to toxic 
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protein biosynthesis. Transcriptomic has been demonstrated to be not only a powerful tool 

to study the germination and outgrowth of B. thuringiensis spores, but also a suitable 

method to assess the environmental response to bacterial pathogens in food. Data obtained, 

provide new basic knowledge on Bacillus cereus group.  

 

2  Materials and methods 
 

2.1. Bacterial strain, and growth condition  

Bacillus thuringiensis UC10070 var. kurstaki serotype H3a 3b, was employed for all the 

experiments. This strain was isolated from a commercial bio-insecticidal product in our 

laboratory, by plating on BCA selective medium agar plates, decimal dilution of the 

commercial powdered after incubation at 30°C for up to 72h (see section 2.1, chapter 2). 

The strain was then routinely cultured on Brain Heart Infusion (BHI, OXOID) broth at 

37°C, on continuous shaking. 

  

2.2 Spore generation and germination conditions 

Spore of  B. thuringiensis UC10070 were produced from cells cultured in BP medium 

(Bacillus Genetic Stock Center, Ohio State University). BP plates were inoculated with 

500μl of B. thuringiensis UC10070 overnight cultures, and incubated for 4 days at 37°C. 

Spores were harvested and purified by extensive washing with MilliQ water at 4°C 

(Nicholson, et al. 1990). The spore crops, inspected by phase-contrast microscopy, were 

free (>99%) of vegetative cells, germinating spores, and debris (see section 3.3, chapter 2). 

Spore suspensions were stored at -20°C for use in subsequent analysis. 

The CPM model described in the previous chapter was employed to monitor the 

germination process of B. thuringiensis spores developed in food matrix (see section 3.4, 

chapter 2).  After spreading with 100 μl of B. thuringiensis spores suspension (107 cfu/ml) 

on the CPM model plates, inoculated vegetable mix were anaerobically stored with  

Anaerocult® A mini foil bags, and heat treated for 15 minutes at 70° C, to activate spores. 

Germination process was monitored by phase contrast microscope: observations were 

carried out on spores, outgrowing spores, vegetative and sporulating cells. 

At the same time, 1 ml samples for RNA isolation were harvested with saline water at 

regular intervals. The samples were spun down in a microcentrifuge, and pellets were 

rapidly frozen in liquid nitrogen.  
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2.6. Microarray construction 

Genome of B. thuringiensis 97-27 sv. Konkukian serotype H34 (NCBI reference 

sequences: chromosome NC_005957, plasmid NC_006578 - IMG annotations, Doe Joint 

Genome Institute), was chosen for high homology with B. thuringiensis UC10070, to 

design probes corresponding to 5,197 genes spotted in duplicates onto ElectraSenseH 12K 

microarrays chip (CombiMatrix Corp. Mukilteo, WA).  

The chip used contains 12,544 individually addressable electrodes linked by the 

semiconductor circuitry. Contact pads on the array allow for electrical connectivity with an 

external device to control custom synthesis of unique probes at each electrode, and 

electrochemical detection with the ElectraSenseH microarray reader (CombiMatrix Corp, 

WA). Each electrode has a distinct DNA probe above it, and each electrode can be read 

electronically or fluorescently to determine the level of hybridization for a specific DNA 

sequence. Probes were designed using the Combimatrix Automated Probe-Design Suite of 

programs (CombiMatrix Corp., WA) and were selected without secondary structure and 

with homogeneous melting temperature (Table 1). The program started the design on the 

3’end until finding a good oligo probe. Maximum distance from 3’ end is 1500 bp.  

Probes corresponding to 5,197 genes of B. thuringiensis genome were synthesized in 2 

replicates randomly distributed on the chip. Thirteen negative control probes designed on 3 

Arabidopsis genes (Table 1) were synthesized in 30 replicates randomly distributed on the 

chip. 13 spike control probes (Ambion, USA) were synthesized in 30 replicates randomly 

distributed on the chip. Other negative control probes were designed on plant, phage and 

bacterial genome (Table 1). 

 

 

Table 1. Oligo design program and negative controls designed on the chip 
 
Oligo length 35-40 
Tm range 80-86 
%GC 35-60 
Tm Struct 65°C (Tm min -10) 
Tm X Hyb 65°C (Tm min -15) 
Nbr Oligo 1 
Dist 3’-1500 
Prohibited (NTP)5 
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negative controls: 
Neg_lambda1_1283_35_S Neg_lambda1 CTGATGCCGTTAACGATTTGCTGAACACACCAGTG 
Neg_lambda1_1070_35_S Neg_lambda1 AAAACAGCCGCATTATGGGGATCCTCAACTGTGAG 
Neg_lambda1_847_35_S Neg_lambda1 CTTGTTAACAGCACCGATGCGATCACCGTCATGCG 
Neg_lambda1_587_35_S Neg_lambda1 GTAATTACGGTGCTGCGCTGGAGAAACAGGGTGTG 
Neg_lambda1_359_35_S Neg_lambda1 ATCCGATGGTGGACGGCATTCTGCTCGATATGGAC 
Neg_agro1_1065_35_S Neg_agro1 CGATTTCTCAGGCATATACCAGCTTCGTATGGCTG 
Neg_agro1_614_35_S Neg_agro1 AATGCGTGTTACCCTGGGATGTTCGTGGAACAACG 
Neg_agro1_407_35_S Neg_agro1 GAAGACGCGAAGGCAATGGGGAAGACAGTCCTTTG 
Neg_agro1_192_35_S Neg_agro1 CATGATCGCCACGAACACCAAGCCATTTCATCCGG 
Neg_bant_349_38_S Neg_bant CCACAAGCATTAACAAATGCAGTTGAGATTTTAGGTGG 
Neg_lambda4_665_35_S Neg_lambda4 GCGGCTTCCTTTCCATTAACAAACTTTCGCAGTAA 
Neg_lambda4_348_35_S Neg_lambda4 GAACTTCGTCAACGGAAACAGTTACGCCGATCCGG 
Neg_lambda4_9_35_S Neg_lambda4 TATCCGGCAGGAAACACTGAATGAATGCACCCGTG 
Neg_lambda6_866_35_S Neg_lambda6 CAAACACAGACTGGATTTACGGGGTGGATCTATGA 
Neg_lambda6_647_35_S Neg_lambda6 ATTTTGCTGGGTGGGCTAACGATATCCGCCTGATG 
Neg_lambda6_290_38_S Neg_lambda6 ATATTATCAAGCAGCAAGGCGGCATGTTTGGACCAAAT 
Neg_lambda6_89_36_S Neg_lambda6 CCAGACTATCAAATATGCTGCTTGAGGCTTATTCGG 
NM_129257.2_3147_40_S NM_129257.2 CCGATTCATAGCTTATTTCTGCATGGTTACATTCCAGAAG 
NM_129257.2_2946_39_S NM_129257.2 AGATAAAGAAAGCATGGTCCTTAAGTATCTCGGAAGCTT 
NM_129257.2_2701_40_S NM_129257.2 GCACATTTTATGGCTAAAGACACAATGGACCATTTAAACA 
NM_129257.2_2500_40_S NM_129257.2 GCGTTAGATTTCCTAATATTATTAGTTGCGGGAGCTTGTT 
Neg_lambda2_992_35_S Neg_lambda2 ACCCTGATGAGTTCGTGTCCGTACAACTGGCGTAA 
Neg_lambda2_752_35_S Neg_lambda2 TCGTGTATTCCGGACAGTACGTGGAAAACGGCGTC 
Neg_lambda2_528_35_S Neg_lambda2 CACGTATGACCCGACCGACGATATCGAAGCCTACG 
Neg_lambda2_234_35_S Neg_lambda2 CAAGCCGAAGCATGAAGTGAATCCGCAGATGACCC 
Neg_lambda2_34_39_S Neg_lambda2 GCAAATGAGCAGAAATTTAAGTTTGATCCGCTGTTTCTG 
Neg_agro2_848_35_S Neg_agro2 ATGTGAAGCGCGTCCTAAAGGAGGTGAGAGGATGA 
Neg_agro2_648_40_S Neg_agro2 TGTACGCATACCCTCCATCTACACGATAAATCCGGATGGA 
Neg_agro2_448_35_S Neg_agro2 GCACAAGAGAAGGCTGTTGCAGACCGTATACGTGC 
Neg_agro2_248_35_S Neg_agro2 ATTATCTTTTCTTCAAGGCTAGCAAGGTTCTCCCA 
NM_105969.2_1475_40_S NM_105969.2 TTTGAACCTAAAGCCGATGTGGTGCTAATACATAAACAAT 
NM_105969.2_1243_40_S NM_105969.2 GCTGGAATCAGGGTACTCACTCATAAATGAACAGAAACTT 
NM_105969.2_1014_40_S NM_105969.2 ACGAGAAAGATGGTATATCGCGGAAAGATGTTATAAGCAT
NM_105969.2_813_40_S NM_105969.2 TGATGAATCTTGCGGATAATCCTACAAGGGTAAGTGTAGG 
NM_105969.2_610_39_S NM_105969.2 AGTTATAATGTCTGCAGGAGAGTTGGAATCTGATAGAGC 
Neg_labmda3_656_35_S Neg_labmda3 TTGCTGCAGGCAAGGTCAACATTCCGGTTGTATCC 
Neg_lambda5_558_35_S Neg_lambda5 CAATGTTCTGCCTGTTCTGTACGGGGAAATGCGCG 
Neg_lambda5_260_35_S Neg_lambda5 TAATTCATATTGTTCCCAGAGTCGCCGGGGCCAAG 
Neg_agro3_619_35_S Neg_agro3 AAGGAGCATCAAAAGACTGCGGTCATCTTTGGGGC 
Neg_agro3_400_35_S Neg_agro3 GACAACCTGGAGACGATGGACAAACGCTTAACAGC 
Neg_agro3_180_35_S Neg_agro3 TTATGGCGTCACCGGCCTACTAACTTCGCTCAACC 
Neg_haedu_403_35_S Neg_haedu GAGATTTTAAATAACGCAATAAGACGCGCGCTACG 
Neg_haedu_203_38_S Neg_haedu AGCGTTATAATAAAGGCTACACCGGCAACATATTACAG 
NM_117721.1_3446_35_S NM_117721.1 TCGTTATCGAACTCCCGGTTCCTCTAATGATGATG 
NM_117721.1_3246_35_S NM_117721.1 CGGATTCTCCGCTGTACGTTTGGAGTTCAGAATGG 
NM_117721.1_3037_35_S NM_117721.1 GTGGTAAGCCAAGTCATGTTGGTGGTGAGAGAGAG 
NM_117721.1_2837_40_S NM_117721.1 CATTGAGTGGATTGCGTTTCACAAATTCATTGCTGGAAGA 
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2.7. RNA isolation, cDNA synthesis, labelling and hybridization                                               

After harvesting with saline water, cells grown in CPM model agar plates, were RNA 

extracted using RNeasy mini kit (QIAGEN) according to the manufacturer’s instructions.  

Samples lysis was carried out in a FastPrep instrument (MP Biomedicals) with different 

setting for spores, germinating spores and vegetative cells: spores and germinating spores 

were processed three times for 50 seconds each in the FastPrep machine at setting 6.5 m/s 

using zirconium beads; vegetative cells were treated only one time for 40 seconds at 6.0 

m/s. 

RNA samples were resuspended in 40 μl of RNase-free water and rapidly frozen at -80°C. 

The quantity and quality were determined by NanoDrop® ND-1000 (NanoDrop 

Technologies, Inc.) and analysis on a RNA 6000 Nano LabChip (Agilent Technologies) 

using a 2100 bioanalyzer (Agilent Technologies).  

RNA amplification was performed using the MessageAmp™ II-Bacteria Kit for 

prokaryotic RNA (Ambion, USA). The MessageAmp II-Bacteria Kit is a linear in vitro 

transcription based RNA amplification system (Van Gelder et al., 1990) to produce 

amplified RNA (aRNA also commonly called copied RNA or cRNA). Five hundred 

nanograms of template RNA were polyadenilated each poly(A) RNA sample was 

converted to cDNA using T7 oligo(dT) primers and amplification by in vitro transcription 

to synthesize amino allyl-modified aRNA. The purified aRNA, (20 µg per sample), was 

labelled with Cy-5 dye; Cy5-aRNA was subsequently purified and its concentration was 

determined using NanoDrop® ND-1000 (NanoDrop Technologies, Inc.). During 

fragmentation reaction, Cy5-aRNA (6 μg per sample) was fragmented to lengths of 50–200 

bases. The fragmented Cy5-aRNA was then mixed with hybridization buffer (6× SSPE, 

0.05% Tween-20, 20 mM EDTA, 25% deionised formamide, 0.1 mg/mL sheared salmon 

sperm DNA and 0.04% SDS). Hybridization and washing were performed as indicated by 

CombiMatrix. Slides were scanned with a Perkin Elmer Scanarray 4000 XL raw data was 

extracted with Scanarray Express 4.0 and Microarray Imager (CombiMatrix) software.  

The experiment was carried out in triplicate (biological triplicate). 

Each gene was present at least in duplicate on the slide, so each sample was hybridized in 

duplicate on the same microarray (technical duplicate). 

 

 

 

 70



 
Chapter 3 

2.8. Microarrays stripping for Re-hybridization 

RNA targets labelled were stripped from CombiMatrix 12K microarrays in according 

manufacturer’s instructions of the CustomArray Stripping Kit. Stripping and re-

hybridization were repeated six time for each microarray used for a total of 12 

hybridization. 

 

2.9. Microarray data analysis 

The fluorescence signal for Cy5 channel and background subtractions were determined 

with Microarray Imager software (CombiMatrix Corp.). The fluorescence signal of each 

spot was calculated as the difference between the mean of pixel intensities and the mean of 

background fluorescence signals, defined by surrounding pixel intensity (Heiskanen et al. 

2000). Background level was defined as the average signal of the negative and degradation 

controls plus two times their standard deviation. The normalization between arrays was 

performed using the quantile normalization method using the R software. Normalized 

signals were Log2 transformed and differentially expressed genes in the different 

conditions tested were identified with a one-way ANOVA test, for p-value < 0.05 and for 

induction or repression ratio equal or higher than 1-fold. Microsoft Excel was used for the 

elaboration of the data; a quality control of the data was estimated according to the 

principal component analysis (PCA).  

Filtered data were then analysed using Microarray Expression Viewer software (MEV-

TIGR; http://www.tm4.org/ mev.html), (Saed et al., 2003); to identify groups of genes with 

similar transcription profiles, the significantly regulated genes were subdivided into 

clusters with different expression patterns by using K-means clustering (MacQueen, 1967).  

To calculate mRNA abundance in dormant spores, Significance Analysis of Microarrays 

(SAM) using a one class design was used (Tuscher et al., 2001).  

For a functional interpretation of the transcriptional activity, the B. thuringiensis 97-27 sv. 

Konkukian genome annotations (provided at Integrated Microbial Genomes data 

management system (IMG), http://img.jgi.doe.gov/, U.S. Department of Energy Joint 

Genome Institute (DOE JGI)), were used.  Six groups of functionally related genes were 

identified and ordered by HCL hierarchical clustering using Microarray Expression Viewer 

software MEV-TIGR (see above). 
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2.10 Relative quantification of enterotoxic gene expression  

RNA used for all the quantification experiments, was the same prepared for microarray 

analysis as described above (section 2.7). An additional extraction step was performed 24 

hours after heat activation of spores in food model. RT-qPCR was performed on a Light-

Cycler Instrument and the FastStart DNA MasterPlus SYBR Green I kit (Roche). The 

mRNA level changes of each enterotoxic gene in the different conditions analyzed were 

normalized to the mRNA level of the unregulated P1-P4 gene encoding for 16S rRNA. The 

various oligonucleotide primer sets used for reference and target genes amplification, are 

shown in Table 2. Primer sets were designed against the complete nucleotide sequence, as 

deposited on GenBank, using Vector NTI 9.0.0 (InforMax, Frederick, MD). The optimum 

annealing temperature for each primer set was determined prior to the analysis of 

experimental samples. Reverse transcription was performed using 200 ng DNA-free RNA, 

random primers, and the Transcriptor First Strand cDNA Synthesis kit (Roche), following 

the supplier’s recommendations. A sample volume of 20 μl was used for all quantification 

assays, which contained a 1X final concentration of SYBR green PCR master mix, 0.5 µM 

gene specific primers, and 1or 2 μl template. Lightcycler experimental run protocol was 

used for amplification. Samples were heated at  95 °C for 10 min before cycling for 45 

cycles of 95°C for 10 s, 56°C or 57°C for 20 s, and 72°C for 25 s. In each step the 

temperature transition rate was 20°C/s. A melting curve plotted at the end of each run 

verified the specificity of the amplification product. All samples and standards were run in 

triplicate. Prior to quantitative analysis, standard curves were constructed for housekeeping 

and target genes using cDNA from late log B. thuringiensis cells grown in BHI medium: 

serial dilutions of the cDNA (1:1; 1:10; 1:100; 1:1000; 1:10,000) with nuclease-free water 

were used to generate standard curves for target genes as well as P1P4, which covered 3-5 

orders of magnitude in the range of the samples in order to calculate the specific efficiency 

(E) using LightCycler Software 3.5. After completion of PCR, the LightCycler software 

calculates the copy number of target molecules by plotting logarithm of fluorescence 

versus cycle number and setting a baseline x-axis. The baseline identifies the cycle in 

which the log-linear signal can be distinguished from the background for each sample. The 

x-axis crossing point of each standard is measured and plotted against the logarithm of 

concentration to produce a standard curve. The concentrations of target sequence in the 

samples are extrapolated from the standard curve. The LightCycler Software 3.5. displays 

only the slope of a standard curve, which can be used to calculate the efficiency using the 
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equation E=10–1/slope. Relative expression levels between samples were then calculated 

as fold changes, where each PCR cycle represents a two-fold change.  

 

Table 2. Primer set of four enterotoxin target gene used for RT-qPCR 
 

Genes SEQ (5’-3’) Annealing 
temperatures 

Amplification 
product 

Fw 5’-AAATTATTGAACCGGCTGCTC-3’ hblC real Rv 5’-TCAATTGCTTCACGAGCTGC-3’ 
57 168pb 

Fw 5’-GCTGGATTCCAAGATGTAATG-3’ nheC real Rv 5’-TTGATGCTGAATCATATTCCC-3’ 57 149pb 

Fw 5’-GAGGATAAAGAACATTTAGACG-3’ bceT real Rv 5’-CTGCGTAATCGTGAATGTAG-3’ 57 159pb 

Fw 5’-CTGGCGCTAGTGCAACATTA-3’ cytK real Rv 5’-GGCGTTGCAGAAGCTTTAAC-3’ 56 171pb 

 

2.11 Enterotoxin assay in food model  

Spores of B. thuringiensis UC10070 were added to CPM model at a concentration of 106 

cfu/g.; inoculated samples were then anaerobically stored with  Anaerocult® A mini foil 

bags, and heat treated for 15 minutes at 70 ° C, to activate spores. At defined time after 

heat activation (40’, 2h, 12h, 24h) one volume of sodium chloride solution (0.85%) were 

added to 10g of vegetable mix samples. After homogenization, each sample were 

centrifuged (9,000 g) for 30 minutes at 4°C; supernatants were filtered and analyzed for the 

presence of the L2 component of the diarrheal enterotoxins HBL according to the BCET-

RPLA protocol. 

 

3. Results and discussion 

The CPM model (see sections 2.10 and 3.5, chapter 2), inoculated with B. thuringiensis 

spores was used to analyse the molecular mechanism behind the process of spore 

germination, cell outgrow and toxins production and the possible role of B. thuringiensis in 

food intoxication.  

B. thuringiensis UC10070 strain, was used in this study since, for its large use in biological 

agriculture to control a wide range of caterpillars in vegetables, tomatoes, vines, fruit trees, 

kiwifruit and tobacco, it is expected to possibly contaminate foods.  

Spores of B. thuringiensis UC10070 were produced from cells cultured in BP medium agar 

plates; after incubation for 4 days at 37°C a spore suspension of 1.5 x 108 cfu/ml was 

obtained. The CPM model previously described, was chosen for its ability to support the 

development of the B. thuringiensis biological cycle, from the dormant spore state to the 
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vegetative cell production, trough the germination process. It also provides a suitable 

model for simulating the industrial processing which foodstuffs are submitted, allowing an 

efficient system to assess  the behaviour of a potential pathogen in food. 

To identify the critical time for the extracting RNA from the outgrowing cells, the 

germination process was monitored by SEM and SEM-Xray techniques (see section 3.6, 

chapter 2) harvesting cells at various time points during growth in  the CPM food model. 

 

3.1 Genome-wide gene expression analysis 

3.1.1. Microarray validation 

Total RNA extractions were performed at different times to determine rate of B. 

thuringiensis UC10070 genes differentially expressed in food model, during spore 

germination, outgrowth and vegetative cells growth. Samples for RNA isolation were 

harvested from dormant spore (SP), after 40 minutes from heat activation (GSP), after 2 

hours during outgrowing process (C2h), and from vegetative/sporulating cells (C12h), 12 

hours from activation of spores. For each sampling, cells were rapidly harvested and 

frozen, to stabilize the nucleic acid in the different steps of the biological cycle; the bead-

beating method performed in the FastPrep instruments, was an efficient system to extract 

RNA without enzymatic treatment: nucleic acids could be isolated efficiently from spores, 

germinating spores and vegetative cells. After isolations, RNA was quantified and RNA 

integrity was verified , (see figure 10); values of RNA integrity number (RIN) from 7 to 9 

were obtained. Two prominent bands, corresponding to the 16S and 23S rRNA subunits, 

were observed in all samples on the bioanalyzer gel (Fig. 10); RNA from spores showed 

one additional band corresponding to an rRNA species (Fig.10-A; Fig. 11, sample 1-2-3), 

slightly smaller than the normal 23S rRNA, as already described in Bacillus subtilis and in 

Clostridium novji (Plomp et al. 2007).  
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     Fig. 10  Electropherogram Summary for RNA integrity at each  time extraction: A= SP,  
B=GSP, C=C2h, D=C12h. 
 
 

 

 
         Fig. 11 RNA integrity Gel Image, measured by 2100 bioanalyzer (Agilent Technologies). 

                     In all samples analysed there are two major bands corresponding to the 16S and 23rRNA  
                     subunits. An extra band smaller than the 23S one, appears only in spore. 
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RNA isolated from each condition, was used to prepare fluorescently labelled cDNA 

which was hybridized onto synthesized 35-mer oligonucleotide slides. After washing and 

scanning, fluorescence intensity data were extracted and analyzed. Since total RNA was 

used for labelling, exogenous RNA negative controls from plant were used to define a 

background level and eliminate non-specific hybridization signals during data 

normalisation. 

Principal Component Analysis (PCA) of the array data is showed in Graphic 1. The two 

main components explain 60,38 % and 13,26% of variance. Gene expression was found to 

be highly dynamic during the B. thuringiensis  life cycle and was found to involve a large 

number of genes.  

 

 

 
 

Graphic 1. Signal distributions for three biological replicates. In the two-dimensional principal component 
analysis (PCA) 1,646 differentially expressed genes were included and identified in a supervised way to 
distinguish between the 4 distinct conditions analyzed. The 12 spheres represent every replicates for each of 
the four condition of B. thuringiensis biological cycle. Spheres with the same color represent biological 
samples of the same condition (Red =SP, Orange=GSP, Yellow=C2h, Green=C12h).The first two principal 
components account for 73,64% of variation of the data (PC1 = 60,38 % , PC2 =13,26%).  
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3.1.2. Transcriptional analysis 

Gene expression was found to be highly dynamic during germination and outgrowth of the 

germinated spore, and was found to involve a large number of genes, which is consistent 

with the relevant metabolic and morphologic changes that accompanies the Bacillus life 

cycle. Fold-change was employed as a measure of biological significance for gene 

selection (Chen et al., 2006). As shown in Table 3, four comparisons were done to identify 

genes regulated during different stages of B. thuringiensis life cycle. A total of 1,646 probe 

sets were found to be differentially expressed and modulated. In figure 12 the number of 

differentially expressed probe sets in the four comparisons done are graphically 

represented. 

 
Table 3.. Number of differentially expressed probe sets with a minimum 2-fold change is reported as 
number of up- and down-regulated genes referred to the first condition when compared to the second one. 
Comparisons are listed in the first column. 
 
 

14                          299                            313  
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Probe sets >2

Down regulated

Probe sets >2
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Comparison
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Fig. 12 Graphic representation of the number of differentially expressed probe sets in the 4 comparisons 
done during different stages of B. thuringiensis life cycle. 
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Spore is a metabolically dormant cell and any transcriptional response is inactivated. 

Therefore, the comparison between RNA content of spores and all the other conditions 

analyzed, indicates the difference in the mRNAs abundance. Ipotehetically, transcripts 

having a role in germination already present in spores, are transcribed during previous 

phases.  
The presence of 299 up-regulated genes in “GSP” vs “SP” reflect the transfer of the 

dormant spore to an active state, that initiates with a cascade of processes that gradually 

degrade the protective structures of the spore and resume cellular processes and its 

metabolism, ultimately leading to the vegetative cell. Only transcripts of 14 genes, present 

in the SP were less present in GSP. These transcripts, whose functions will be explained in 

more detail in the next section, are probably transcribed during sporulation phase to equip 

the spore with systems of adaptation against harsh environmental conditions and codes for 

transposase IS660, forespore specific protein, small acid soluble protein, PAP2 family 

protein, and other proteins with unknown functions. 

The comparison between the two intermediate conditions such as “GSP” and “C2h” 

showed only 42 differentially expressed genes;  this finding together with the small amount 

of total regulated genes in “C2h” vs “C12h”, gave evidence of the big transition in bacterial 

cell needs during germination process, and probably mean that resume of metabolic 

activity develops during first 40 minutes after spore activation.  

 

3.1.2. QT-clustering 

To identify potential co-regulated genes and to reveal patterns of temporal gene 

expression, the individual expression profiles of the 1,646 differentially expressed probe 

sets previously identified, were clustered into 5 groups of genes with similar expression 

profiles by K-means clustering (Fig. 14). Genes were subdivided in the optimal number of 

groups revealed by “Figure of merit” analysis (Fig.13). The groups were subsequently 

ordered by the timing of expression. 

The first cluster (Group 1) groups the majority of genes, and consist of 824 genes, the 

transcripts of which were present in the dormant spores and disappeared rapidly during 

later stages of the biological cycle. In the second and third cluster (Group 2, and 3) are 

grouped approximately 407 genes, the expression of which occurred during the first 40 

minutes of the germination process. According to previously published data on the 
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temporal gene expression during Bacillus spp. spores outgrowth (Keijser et al, 2007), 

important house-keeping genes, encoding proteins such as translation initiation factor, 

ribosomal proteins, and elongation factors, were found to be transcribed in the first 40 

minutes after activation of dormant spores, together with ample modulation of their 

expression levels during outgrowth and vegetative cycle.  Group 4 consist of 210 genes 

that presented an over expression profile at the initiation of vegetative growth. 

Approximately 205 genes, clustered in Group 5, were strong positively modulated in the 

time occurring  between vegetative growth and initiation of stationary phase. 

 

 
Fig.13 Figure of merit technique was used to identify the optimal number of cluster useful for microarray 
data analysis. Number 5 were selected as it corresponds to the point of inflection 
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Fig.14 Gene expression profiles during spore germination and outgrowth. By K-means clustering.According 
to their gene expression pattern, genes were grouped in 5 clusters. The mean log2 ratio of the individual 
genes in the 5 K-means clusters is plotted at the various time points (different time of life cycle in food 
model) over the average value. The bars indicate the standard deviations of the individual genes in the 12 K-
means clusters 
 
 
3.1.3. Transcriptome analysis of spores 

In agreement with recent studies that confirm the presence of stable RNA in spores, 

transcripts of approximately 950 genes were found to be present in the dormant spore 

during analysis (Fig. 15). A 38% of these mRNAs had no known function; the second 

largest group (10%) were predicted to encode transport proteins for aminoacids, 

carbohydrates, lipids, cations and nucleotides. The 7% of transcripts was founded to 

consist of genes coding for enzyme transferase, mainly belonging to acetyltransferase 

(GNAT) family, involved in the regulation of cell growth for their important role in 
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transcription and DNA repair (Carrozza et al. 2003). Others mRNAs were predicted to 

encode for amminoacil-tRNA sintetasi (7%), energy production and conversion (5%), 

transcriptional regulator factors (4%), ribosomal proteins (30 and 50 S) together with 5S, 

16S and 23S rRNA (3%), DNA repair (2%), and membrane protein (2,3%). Many 

transcripts identified in the dormant spores, belonged to genes expressed at a late stage of 

pre-spore formation; the late sporulation transcripts found, included genes encoding small 

acid soluble proteins (SASPs), transposase, forespore-specific protein, RNA polymerase 

σK-factors, and sporulation proteins for stages 0, II, III, V (spoA gene family);  the SASPs 

do protect the DNA during spore dormancy by complete saturation and tight binding, 

changing the structure to a more stable conformation (Setlow, 1995). Insertion sequences 

like ISs transposases, are small mobile units of DNA, which serve as the sites for 

recognition and cleavage by Tpases in transposition reactions; they plays an important role 

in internal genetic rearrangements in the genome, likely to support the mechanisms of 

adaptation to extreme environments, such as those with high or low pH, high or low 

temperature, high pressure, or high salinity (Takami et al. 2001). The RNA polymerase 

σK-factor factor plays a key role in sporulation, as it is the first transcription factor whose 

activity is cell specific, and it sets into motion the entire cascade of compartmentalized 

gene expression. Spo0A gene acts as both activator and repressor of gene expression during 

the initial stage of sporulation process (Molle et al. 2003). 

In addition, there were a kind of transcripts already present in the dormant spore, that 

seemed to be necessary to rapidly supply spores going to germinate: the mRNAs founded 

for spore germination proteins (encoded from GerA operon), spore coat degradation 

proteins like cell wall endopeptidase, glycosyltransferase, involved in cell wall biogenesis, 

and  rehydration systems (like aquaporin Z) should be essential to initiates a cascade of 

processes that gradually degrade the protective structures of the spore and resume cellular 

processes and its metabolism, ultimately leading to the vegetative cell. 
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SAM Plotsheet for dormant spore transcript
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Fig. 15. Statistical analysis of mRNAs transcript present in B. thuringiensis dormant spore. SAM plot 
resulted from “one class” data analysis, shows the distribution of 950 genes found to be significant for Delta 
= 1,738 obtained by array centered data normalisation.  
 
 
3.1.4. Functional analysis 

In order to have a functional interpretation of the transcriptional activity during 

germination process and outgrowth, six groups of functionally related genes were 

identified using B. thuringiensis 97-27 sv. Konkukian genome annotations and ordered by 

hierarchical clustering (Fig.16). Functional categories were then analyzed in relation to 

their expression pattern as shown in Table 4. 

 

Table 4. Analysis of overrepresented genes with specific function during germination, outgrowth, and 
vegetative cell growth. Significantly overrepresented gene with specific functions are indicated in red; orange 
boxes indicate genes significantly represented, while the slightly modulated genes are shown in yellow. 
 

SPORE SPORE40' 2H CELLS 12H CELLS
Transciption-regulation     
Transport     
Ribosomal activity     
Cell wall biosinthesis     
DNA repair     
Virulence     
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Ribosomal activity

Transport

Transcription-Regulation

 

Cell wall byosinthesis DNA repair

Virulence

 
 

 

 

Fig.16. Hierarchic clustering of transcriptional profiles of genes associated with: transcription and 
regulation of transcription, transport, ribosomal activity, membrane biosynthesis, DNA repair, and 
virulence. Rows represent time points from spore to vegetative/sporulating cell. Red and green indicate 
genes that are induced and repressed, respectively. 
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• Transport 

One of the biggest significantly overrepresented group of functional genes identified, 

encodes for proteins involved in transport of various molecules; ABC transporters specific 

for ions, sugars, and other organic compounds like drug/metabolite, were founded already 

in spores transcript. 

For efficient outgrowth and to rapidly supply the germinated spore with the essential 

metabolite, the immediate initiation of transport functions is likely to be necessary .  

The expression of the glycine betaine transport protein OpuAB, a widely diffuse bacterial 

system for cell protection against high solute concentration, may suggest that osmotic 

defence is important in the earliest stages of outgrowth, in agreement with previous studies 

on germination process (Keijser et al, 2007). Genes coding for aquaporin proteins was 

found to be significantly represented in this category: since these pore-forming integral 

membrane proteins, allow bacterial cells to control and efficiently regulate water 

homeostasis, essential for many biological processes, microbial aquaporins are likely to be 

involved in the first step of germination, which require a rapid re-hydratation of the 

cytoplasm as proposed by Kruse et al. (2006). A large number of transporter genes 

encoded putative multidrug transporters, such as SMR and Bcr/CflA family, which were 

upregulated during the first 40 min of outgrowth, may also provide the germinated spore 

with a transient resistance against antimicrobial complexes. Active export during early 

stages of outgrowth may also provide the germinated spore with a transient resistance 

against antimicrobial complexes, which render cells resistant to different antimicrobial 

compounds.  

 

• Transcription and regulation 

Many genes involved in transcriptional regulation for rapid recover of cell function were 

found to be already present among the spore transcript pool. A large number, includes 

genes coding for protein involved in the regulation of different biological processes in 

response to external stimuli; examples are members of TetR, MarR and MerR (expecially 

found in C12h)  transcription factors families (TFs),  that were identified as common 

families to Bacillales, Lactobacillales and Clostridia (Samadhi Moreno-Campuzano et al, 

2006), which are responsible for rapid adaptation of the bacteria to changing environmental 

conditions, including resistance to different antimicrobial compounds and oxidative stress 

agents, controlling the expression of drug efflux pumps. Members of GntR family proteins, 
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also found in dormant spore, respond to environmental changes affecting the carbohydrate 

metabolism of the cell and may provide bacteria the ability to grow in the presence of 

several carbon sources and to rapidly adapt their gene expression to changing nutrient 

conditions (Reizer 1991). Transcript coding for the fumarate and nitrate reduction regulator 

CRP-Fnr, member of the cyclic AMP receptor proteins, was slightly up-regulated in spore; 

it is known to play an important role in modulating the expression of many metabolic 

genes in several facultative or strictly anaerobic bacteria; their functions also include the 

control of virulence factors (Baltes et al 2005, Bartolini et al 2006). In addition, transcript 

for RNA polymerase σ-factor, ECF type, that control genes involved in cell envelope 

functions (protein transport and secretion processes), in responses to extra-cytoplasmic 

stress in B. subtilis and B. licheniformis (Tina Wecke et al. 2006), and  RNA polymerase 

σK factor, responsible for the expression of sporulation specific genes in the mother cell, 

were found in dormant spore. During outgrowth and vegetative cells growth, genes 

regulating complex involved in DNA replication, transcription (DNA polymerase III, 

DNA-directed RNA polymerase delta subunit) and RNA translation, like transcription 

elongation antitermination factor protein NusG, which function was recently assessed in in 

B. subtilis (Yakhnin et al. 2008), were overrepresented. During late stages of outgrowth, 

the cell appeared to prepare for septation, as indicated by the overexpression of septation 

ring formation regulator EzrA (Jeff Errington, 2001), giving evidence that  transition of the 

dormant spore to an actively growing vegetative cell, appears to be completed. Transcript 

for the transcriptional regulator PlcR (Phospholipase C Regulator) were found to be up-

regulated  in the late stage of cell vegetative growth. It takes part in the control of most 

known virulence factors in B. cereus (enterotoxin, haemolysins, phospholipases and 

proteases), (Michel et al 2008) acting as a quorum-sensing system. To be active PlcR needs 

the PapR peptide, transcript of which was also found to be overrepresented in 

vegetative/sporulating cells. It is thought that PlcR can monitor cell growth state through 

Spo0A sporulation protein, and self cell density through PapR peptide. 

Transcript coding for a two-component sensor histidine kinase response regulator , was 

found to be up-regulated in vegetative cell. Several study focused on the importance of 

two-component signal transduction systems in controlling both metabolism and virulence 

factors in B. cereus (Duport et al. 2006).  
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• Ribosomal activity 

The germination process took place through a sequence of time-ordered events. The 

distribution of transcript coding for rRNA shows that dormant spores contained 

populations of ribosomes or ribosomal precursors: genes coding for 16 S, 5 S, and 23 S 

ribosomal RNA were overrepresented, but analysis showed a low amount of transcripts for 

both small and large rRNA subunit (30 and 50S). Spore seems to be also defective of 

transcripts for ribosomal proteins (L1-L34, S1-S21), synthesis of which started during the 

first 40 minutes after spore activation when rate of both rRNA and ribosomal proteins 

synthesis strongly increases. Transcripts level involved in the cellular process of translation 

remain stable for subsequent step of analysis.  

 

• Cell wall biosynthesis  

Expression pattern analysis of genes coding for proteins involved in cell wall biosynthesis, 

reveals an abundant distribution in dormant spore of mRNAs for transpeptidase enzyme 

(D-alanyl-D-alanine carboxypeptidase family protein) that cross-links the peptidoglycan 

chains to form rigid cell walls and glycosyltransferase, involved in cell wall biogenesis; 

much effort has been put forward to the identification of glycosyltransferases because of 

their importance for synthesis of cell wall matrix polysaccharides: enzymes involved in 

nucleotide sugar transport are also important because of the potential to manipulate the 

composition of cell walls through substrate level control (David M. Gibeaut et al. 2000). 

 

• DNA repair 

A number of general DNA repair genes are expressed actively during 

vegetative/sporulating cells (12H cells). These specific transcripts are still abundant in the 

dormant spore where are likely to exert their function upon spore germination.  At the 

same time  transcript of gene coding for protein involved in more specific repair activity 

can be found in dormant spore. Nucleotide excision repair, and DNA repair protein RadC, 

that was supposed to be involved in the protection of spores against harsh environmental 

conditions and damaging following X- and UV-irradiation (Felzenszwalb et al. 1986). 

DNA of dormant spores is believed to be in a supercoiled state, providing protection 

against damage. The helicase activity of Holliday junction RuvB, and methionine gamma-

lyase, showed during early stages of germination, may be necessary to relax rapidly the 
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supercoiled DNA allowing an efficient reactivation of transcription, likely after the partial 

degradation of the SASPs that coat and protect DNA during spore dormant state. 

 
• Virulence 

B. thuringiensis was initially characterized as an insect pathogen, and its insecticidal 

activity was attributed to the parasporal crystals encoded by the known cry gene. 

In the previous chapter our results indicate that B. thuringiensis shows a set of genes 

coding for virulence factors common to the opportunistic pathogen B. cereus. This set of 

genes includes the hbl operon (hblCDBA), that codes for the hemolytic enterotoxin, and the 

three non hemolytic enterotoxin genes nheABC, which are considered as the primary 

factors in diarrheal B. cereus food poisoning. Moreover the bceT gene coding for 

enterotoxinT, function of which is not well understood and the cytK gene coding for the 

haemolytic citotoxin K. This last was firstly identified in a B. cereus strain from a cases of 

food-borne disease and responsible for the death of three people (Lund et al., 2000). Also 

one channel forming type III hemolysin and other defence systems harmless to humans, 

like phospholypase, were found in both B. cereus and B. thuringiensis.  

In the microarray experiment the intensity values of probes specific for both hbl and nhe 

operons, and for bceT gene, were not considered significant by statistical data analysis. 

Genes coding for delta-endotoxin (cry1Ia), cytotoxin K, haemolysin type III, and possible 

phospholipases, were found to be modulated during B. thuringiensis biological cycle; 

transcript for enterotoxin cell wall-binding protein, were also found to be significantly 

modulated. From the analysis of transcriptional profiles it was suggested that all the 

associated virulence genes, were upregulated especially during the late stage of cell 

growth. However RT-qPCR analysis were performed to validate this data and to clarify the 

real expression pattern of the major virulence genes in B. thuringiensis.  

As shown in figure 17, transcripts encoding for insecticidal crystalline toxin (Cry1IA gene) 

active against insect species of the order Lepidoptera, were found to strongly increase in 

the time frame between 2 and 12 hours after spore activation. A common characteristic of 

the cry genes is their expression during the stationary phase; in most cases, δ-endotoxin 

synthesis and sporulation are closely coupled. These δ-endotoxins, synthesized as 

protoxins, are produced in large quantities during sporulation and are packaged into 

intracellular inclusions. The transcription of many cry genes (e.g., cry4Aa, cry4Ba, 

cry11Aa, cry15Aa, etc.) is likely to be σK-dependent and the expression of all these cry 
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genes is therefore considered to be sporulation dependent (Schnepf  et al 1998). However, 

in our study, transcription of cry1IA genes in B. thuringiensis were detected during the 

transition phase, even in the absence of abundant σK RNA polymerase transcript. Studies 

reported that low-level transcription of the cry4A, cry4B, and cry11A genes in B. 

thuringiensis, probably due to other σ factor RNA polymerase, has been detected during 

the transition phase, lasting until the onset of sporulation (Poncet el al. 1997, Yoshisue et 

al. 1995). 
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Fig.17 Gene graph for expression ratio from spore (SP) to vegetative cell (C12h) of Cry1IA gene, coding for 
δ-endotoxin in B.thuringiensis  
 

Our results reveal that transcriptional activation of cytK gene, encoding for cytotoxin K, 

starts quite early during the B. thuringiensis cell cycle: only after 40 minutes after spore 

activation (Fig. 18), the overexpression of cytK gene were observed. Unexpectedly, in the 

time frame between SP and GSP, cytK  transcript seems to be slightly modulated, probably 

due to gene transcription during sporulation phase, resulting in slight accumulation of cytK 

transcript in spore. Cytotoxin K was first characterized in B. cereus strain 391-98, a strain 

isolated from cases of food-borne disease and responsible for the death of three people 

(Lund et al., 2000); interestingly, none of the other, commonly described enterotoxin genes 

(for example hbl and nhe) was detected in this strain, further implicating CytK as a major 

virulence factor. In vitro production of B. cereus-like enterotoxins, were observed to start 

when the total count is about 107 cfu/ml; such counts are normally encountered in the (late) 

exponential growth phase (Lucas Maria Wijnands, 2008). Considering the strong increase 

of CytK transcript found after 40 minutes in food model, one could assume that the 
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production of enterotoxins occurs soon after. Moreover, the strong up-regulation of genes 

involved in the recover of metabolic activity founded in GSP condition, and the rapids 

morphological changes, observed with SEM technique during the first two hours after 

spore activation (section 3.6, chapter 2), could indicate that  B.thuringiensis UC10070 

biological cycle total, evolves faster in food model, than laboratory medium.  

Bacillus cereus is known to produce several extracellular hemolysins, including the 

hemolysin type III, considered as potential factors of virulence of the opportunistic 

pathogen. Studies on the B. cereus hemolysin III activity suggested that it acts as a pore-

forming hemolysin that show an in vitro activity on human erythrocyte. During our 

analysis B. thuringiensis transcript for hemolysin type III, were found to be 

overrepresented expecially in the late stage of cell growth (Fig 18); a milder but still 

significant increase of the transcription level, were observed immediately after the first 40 

minutes during germination.  
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Fig.18 Gene graph for expression ratio from spore (SP) to vegetative cell (C12h) of the CytK gene, coding 
for  cytotoxinK, and the homologous in B.cereus gene coding for hemolysin type III. 
 

Transcript coding for possible enterotoxin cell wall-binding protein, were found to be 

overexpressed at the late stage of growth (from 2 to 12 hours); this could suggests the 

possibility that the cell is activated to produce components of the enterotoxic proteins 

complex at the later sporulation stage.  

The significant expression level of CytK gene and other associated virulence factor gene 

(hemolysin type III, enterotoxin cell wall-binding protein), observed during the biological 

cycle of B. thuringiensis, gave evidence  of  the potential human pathogenicity of this 
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microorganism, which may possess the ability to produce toxins known to be involved in 

food borne disease.  

 

3.2 Enterotoxin gene expression profiles 
  
The use of microarray technology to assess gene expression levels is now widespread; 

however, to evaluate the performance of expression of specific genes and validate the 

microarray results, independent mRNA quantisation techniques, remains a desirable 

element. Given the extensive use of the B.thuringiensis UC10070, in forestry agriculture as 

pesticide, it seemed important to deepen investigate in food model the expression level of 

genes coding for virulence factors involved in food poisoning by using relative 

quantification of enterotoxic gene expression (RT-qPCR) technique. The total RNA, from 

the same samples used for microarray transcriptome analyses, was used for relative 

quantification to evaluate hblC, nheC, bceT and cytK  mRNA levels, during the B. 

thuringiensis life cycle in food model. In table 5 are reported as normalized ratio, the 

relative expression of target genes in the test samples, which was determined using mRNA 

level of the unregulated P1-P4 gene (encoding for 16S rRNA) as the normaliser. In food 

model, toxin mRNAs were detected, in variable amounts, at all investigated growth stages 

of B. thuringiensis UC10070, including the first 40 minutes after thermal activation of 

spores. We could observe that toxin expression start quite early during B. thuringiensis 

biological cycle in food model; however the level of mRNA, for all the four genes 

analyzed, was found to particularly increase in the time corresponding to the 2 hours after 

spore activation (C2h) with the exception of cytK. From our previous observation, C2h 

corresponds to the early log phase of B. thuringiensis growth in food model: cell outgrowth 

is completed and cell division is at the maximum level (see section 3.6 chapter 2). Thus, at 

this stage, most of the genes involved in the metabolic activity are overrepresented in 

microarray analysis. 

Overall, two different expression kinetics were observed (Fig. 19): the tripartite toxin 

transcripts hblC and nheC present the maximum expression at C2h, with values 

respectively threefold and twofold greater then in germinating spore (GSP).  When the 

cells were entering the late log/early stationary phase (C12h) the level of mRNA decrease 

for these two genes. On the contrary, transcripts corresponding to cytK and bceT genes, 

raises more gradually reaching the maximum expression at  C12h (bceT) and C24h (cytK). 
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One might hypothesize that a great and early production of hblC and nheC is due to time 

required for the HBL and NHE three-component proteins assembly, compared to CytK and 

bc-D-ENT, two single component toxins. Although no information on the B. cereus toxin 

expression in food is available, studies on B. cereus enterotoxins production in broth, 

report that the highest toxin level is achieved during the late log/early stationary phase for 

cultures grown, and that no significant increase in toxin production occurs during full and 

late stationary phase (John L. McKillip 2000). Our analysis in food, shows a higher level 

of transcripts during the log phase not reported for laboratory medium. According to 

previous finding, no significant increase in toxin expression occurred during full and late 

stationary phase except for cytK mRNAs. Thus, cytK expression pattern differs from the 

other trends showing in stationary phase a transcript level greater than the late log/early 

stationary phase. The relative quantification expression of cytK, confirmed the trend 

observed during microarray analysis. 

The amount of toxin expression in B. cereus is dependent on the culture medium, as well 

as extrinsic factors, such as pH, aeration, and the presence and concentration of certain 

carbohydrates (John L. McKillip 2000): our finding confirm that the presence of starch, as 

ingredient in the food model described in this study, tends to support enterotoxin 

production  as previously described in B. cereus by Garcia-Arribas & Kramer (1990).  

 

Table 5: Relative quantification of virulence gene expression during B.thuringiensis biological cycle in 
food model. m: medium value of triplicate experiments and sd: standard deviation. 
 

Gene(s) Quantification of virulence genes expression during B. thuringiensis 
biological cycle 

  GSP C2h C12h C24h 
  m        sd m        sd m        sd m 

hblC 0.69 ± 1.85 2.70 ± 0.72 1.65 ± 1.85 1.24 ± 4.28 
nheC 1.05 ± 0.83 2.17 ± 1.88 2.01 ± 1.06 1.22 ± 2.00 
cytK 0.69 ± 2.26 0,93 ± 2.27 1,42 ± 0.56 1,72 ± 1.61 
bceT  0.93 ± 0.72 1.37 ± 0.81 1.52 ± 0.65 1.38 ± 1.44 
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Virulence genes expression pattern
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Fig 19. Istograms represent the expression pattern of virulence gene, in the different condition analyzed 
during B. thuringiensis biological cycle. Changes in the mRNA level for hbl, nhe, cytK and bceT genes under 
anaerobic growth condition in food model, were calculated in relation to the mRNA level for each target gene 
under aerobic growth condition in BHI medium. 
 
 
 
 
 
3.3 Enterotoxin assay in CPM model  

The production of the L2 component of HBL enterotoxin, involved in the diarrhoeal 

syndrome, was assessed in CPM model inoculated with spores of B. thuringiensis 

UC10070. Analysis was performed at 40’, 2h, 12h and 24h from spore activation, to 

confirm that trend of HBL mRNAs, evaluated with RT-qPCR, leads to toxic protein 

biosynthesis. Time corresponding to spore condition, was not assessed because considered 

as a metabolically dormant state. Enterotoxin activities observed are reported in figure 20, 

A-B. No latex agglutination reactions were found up to 40 minutes after germination 

induction by thermal treatment (first row). The detection of the L2 component from 

hemolysin BL, gave positive result at the first dilution of the sampling carried out 2 hours 

after spore activation (fourth row). Up to 24 hours after the beginning of the B. 

thuringiensis biological cycle, the toxin component has been detected. These observations, 

in agreement with the transcriptional pattern reported in the previous section, demonstrate 

as the strong increase of hblC gene expression, found in the time corresponding to the two 

hours after heat activation of spores, leads to immediate toxin production. In studies on 

hemolysin BL characterisation, a growth period of 5 to 6 hours was used for in vitro 

routine production of enterotoxins (Beecher and Lee Wong, 1994; Dietrich et al. 1999). 

Our data suggest that in food model the translation process occur only two hours after 
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spore activation. Given this finding above we could assume that B. thuringiensis can 

complete an entire life cycle in food systems and produce enterotoxins as already 

demonstrated in laboratory cultures. 
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Fig.20A.Enterotoxin-Reversed Passive Latex Agglutination reaction. Wells from “a” to “g” contain two-
fold serial dilutions of the samples; well “h” is the negative control. Agglutination reaction were performed 
on food model artificially contaminated with B. thuringiensis UC10070 spores, for sampling generated 40’ 
(row 4), 2h (row 7), 12h (row 10), 24h (row 12) after spore activation. Results classified as (+), (++) were 
considered to be positive.B. Orizontal istograms reported the L2 component enterotoxin production during B. 
thuringiensis biological cycle. On x ass are reported supernatant dilution 1: not diluted, 2. dilution 1:2, 
3.dilution 1:4, 4. dilution 1:6, 5.dilution 1:8, 6.dilution 1:8, 7.dilution 1:16. 
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1. Introduction 
In pathogenic bacteria, the production of virulence factors employ various types of 

regulatory processes and is often regulated in response to changes in the bacterial cell 

environment. In Gram-positive bacteria, these processes may involve two-component 

systems, alternative sigma factors, or stand-alone transcription regulators. In some 

cases, the three regulatory mechanisms act together, each controlling a part in the 

production of virulence factors. This situation for instance is found in the nosocomial 

infection agent Staphylococcus aureus, in which more than 40 cell-surface or secreted 

proteins, involved in bacterial virulence, are controlled by a complex pathway 

involving the transcriptional regulator SarA, the two component regulator Agr and the 

general stress response regulator SigB (Novick 2003). In some other species, most of 

the virulence factors are controlled by a master regulator, which are therefore members 

of the same regulon. Virulence regulons may include a large number of genes: for 

example, the PrfA regulon of the foodborne pathogen Listeria monocytogenes includes 

73 genes located on the chromosome (Milohanic et al 2003).  

Identification of Bacillus cereus strains able to cause gastro-intestinal disorders, is 

complicated by the fact that mechanisms leading to infection are different and 

complex. Characterization of genes coding for diarrhogenic toxins, does not seem 

sufficient for the risk management associated to the different species. Not all the 

strains in which genes are identified, show the same ability to cause the disease. It was 

assumed that other genetic determinants, such as regulator systems of extracellular 

virulence factors, may be basic to guide pathogenic activity in Bacillus cereus, and 

other Bacillus spp.. Aim of a part of the work was the acquirement of more knowledge 

in regulating mechanisms of virulence in Bacillus genus.  

ResDE two-component system is known as one of the major controlling factors of 

catabolic gene expression in fermentative (Nakano et al 1997, Cruz Ramos et al 2000), 

microaerobic, and aerobic growth (Hartig et al 2004) in Bacillus subtilis; moreover it 

regulates virulence in Staphylococcus aureus under low-oxigen conditions (Yarwood 

et al 2001). Homologs of the B. subtilis ResDE was found in B. cereus and was also 

demonstrated to play a role in the regulation of enterotoxin expression in B. cereus: the 

resE mutation abolished the production of enterotoxins under all of the conditions 

examined (Duport et al 2006). This finding led to the conclusion that enterotoxin 
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expression and fermentative metabolism may be controlled coordinately at the 

transcription level. However, the ResDE system, although important, is not essential 

for both fermentative metabolism and enterotoxin expression; another redox regulator 

that may act in synergy with ResDE to control the expression of fermentation and 

enterotoxin genes is the member of the cyclic AMP receptor protein (CRP)-Fnr 

(fumarate and nitrate reduction regulator) family (Korner et al 2003). The CRP-Fnr 

regulators play an important role in modulating the expression of numerous metabolic 

genes in many facultative and strictly anaerobic bacteria. Their functions also include 

the control of virulence factors (Baltes et al 2005, Bartolini et al 2006, Schmiel et al 

2000). A recent study led by Esbelin and colleagues (2009) clarified some aspects of 

the B. cereus virulence regulation; a strict interaction between the two-component 

signal transduction systems ResDE and the one-component CRP-Fnr regulators, was 

described as a basic mechanism for controlling the production of major virulence 

factors hemolysin BL (Hbl) and nonhemolytic enterotoxin (Nhe) in the food-borne 

pathogen B. cereus.  

Genome wide transcriptome analysis of B. thuringiensis UC10070 performed in the 

previous chapter, revealed the expression of gene coding for the one-component CRP-

Fnr regulators. Transcript for a histidine sensor kinase with high homology with that 

described for B. cereus two-component regulatory system ResDE, was also found. In 

this section, amplification of ResDE and FnR loci were carried out to assess gene 

functionality of both transcriptional regulators in B. thuringiensis UC10070. 

Inactivation of these general regulating systems, through null mutants construction, 

were then considered to evaluate changes in growth performance, cellular metabolism 

and toxins expression, in B. thuringiensis UC10070, and to lay scientific basis for 

management of potential risks associated with B. thuringiensis, and other Bacillus spp. 

in food intoxication. 

 

1.2 Site-specific chromosomal mutagenesis 

Integration of plasmid DNA has been successfully used to elucidate at least parts of 

bacterial chromosomes, by generating mutations (Niaudet et al. 1982, Shortle et al. 

1982, Stahl et al. 1984), by mapping unselectable genes (Haldenwang et al. 1980, 

Wilson et al. 1986, Vosman et al 1982), and by cloning genes (Niaudet et al 1982, 

Vosman et al. 1987). The development of a useful integration strategy based on the use 
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of plasmids could provide an important tool for exploring the chromosome. For several 

organisms it has been shown that a plasmid that is unable to replicate in the recipient 

strain can integrate efficiently into the host chromosome when it carries chromosomal 

sequences. In bacteria, the most straightforward approach to integration relies on a 

non-replicating plasmid which carries a homologous chromosomal DNA segment and 

an antibiotic-resistance marker (Gutterson & Koshland, 1983; Leenhouts et al., 1989). 

The region of homology provided usually stimulates the integration of the plasmid 

DNA by a Campbell-like mechanism, which leads to duplication of the homologous 

chromosomal insert as a consequence of this mode of integration as shown in figure 1. 

This Campbell-type integration event was first demonstrated in B. subtilis by Young, 

M. (1983).  

 

 

 
 

Fig.1 Schematic representation of plasmid integration in chromosome via Campbell Like mechanism. 
(Young, M. 1983). 

 

 

Besides homologous recombination performed for initial experiments, a novel 

approach based on Group II intron property, was considered in this study for 

generation of site-specific chromosomal mutagenesis. 

 Mobile group II introns, can be found in bacterial and organellar genomes. They use a 

mobility mechanism termed retrohoming, mediated by a ribonucleoprotein complex 
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(RT + intron lariat),  to insert themselves into any desired DNA target and to generate 

higly specific chromosomal gene disruption (Fig 2). They are both catalytic RNAs and 

retrotransposable elements and use an extraordinary mobility mechanism in which the 

excised intron RNA reverse splices directly into a DNA target site and is then reverse 

transcribed by the intron-encoded protein. After DNA insertion, the introns remove 

themselves by protein-assisted, autocatalytic RNA splicing, thereby minimizing host 

damage (Jin Zhong et al 2003). 

 The Lactococcus lactis Ll.LtrB intron has been developed into a “targetron” that can 

be retargeted to inactivate specific genes of interest (Frazier et al 2003, Mohr et al 

2001, Karberg et al 2000). Basal in this system the homing of the ribonucleoprotein 

complex (RNP) that consists of the group II intron RNA molecule (Ll.LtrB) and the 

associated LtrA protein. The specificity of the subsequent integration event is 

conferred by the basepairing between exon binding site 1 (EBS1), EBS2, and δ of the 

RNA molecule, with intron binding site 1 (IBS1), IBS2, and δ’ within the target gene 

(Fig. 1). Hence, the intron can be targeted to specific genes by replacing  EBS1 and 

EBS2 with sequences complimentary to the insertion site within the gene of interest. 

Ll.LtrB and LtrA are expressed from a donor plasmid, from which the L1.LtrB intron 

splices out of its flanking 5’ and 3’ exons and forms an RNA lariat that associates with 

LtrA (Karberg et al 2000, Long et al 2003). The LtrA protein facilitates formation of 

the intron’s catalytic structure and recognition of the target gene. L1.LtrB reverse 

splices into the insertion site, while LtrA synthesizes an antisense copy of the RNA, 

catalyzing the reverse transcription of the intron RNA sequence. 

Several studies have shown that this optimized targetron system works at high 

efficiency in different Clostridia spp. (Heap et al. 2007) and Gram negative bacteria 

(Rodriguez et al. 2008, Jun Yao et al. 2007), but no studies are reported in literature for 

the genus Bacillus. In the present study, we have adapted the TargeTron group II 

intron mutagenesis  system for B. thuringiensis. 
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Fig. 2 Schematically representation of intron retrohoming mechanism. Martinez-Abarca et al. 2000  
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2. Materials And Methods 
 
2.1  Bacterial strains and growth condition 
 
Bacillus thuringiensis UC10070 var. kurstaki serotype H3a3b was used to perform 

insertional inactivation in this part of the study. Strain isolation was carried out from a 

commercial bio-insecticidal product in our laboratory, by plating on BCA selective 

medium agar plates, decimal dilution of the commercial powdered after incubation at 

30°C for up to 72h of (see section 2.1, chapter 2). For the mutagenesis experiment, B. 

thuringiensis UC10070 were routinely grown on Brain Heart Infusion broth (BHI, 

Oxoid) at 37°C on continuous shaking at 250 rpm, or in Luria-Bertani (LB) agar plates 

at the same temperature. Escherichia coli TB1 strains (genotype: F- ara Δ(lac-proAB) 

[Φ80dlac Δ(lacZ)M15] rpsL(StrR) thi hsdR) were propagated in LB medium. When 

required, antibiotics were used at the following concentrations: 100 µg of ampicillin 

ml-1, or 15 µg chloramphenicol ml-1  for E. coli and 5µg of erythromycin ml-1 , or 15 

µg chloramphenicol ml-1  for B. thuringiensis. 

 

2.2 DNA extraction and manipulation 

Bacillus thuringiensis UC10070 genomic DNA , was extracted from 1.0-ml aliquots of 

the broth cultures by the use of FTA Starter Pack (WHATMAN), in accordance with 

the manufacturer’s instructions. Restriction enzymes were used as recommended by 

the supplier (Promega or BioLabs, NEW ENGLAND). Plasmid DNA was isolated 

from E. coli using the Wizard Plus SV Minipreps DNA Purification System kit 

(Promega). For plasmid DNA isolation from B. thuringiensis UC10070 PAL miniprep 

procedure was used (Voskuil et al 1993).  

 

2.3 Optimization of B. thuringiensis electroporation system 

Transformation experiments were carried out using pPSC10 plasmid to optimize 

electroporation system in B. thuringiensis UC10070. To prepare competent cells, B. 

thuringiensis UC10070 was grown in brain heart infusion medium  (BHI, OXOID) 

containing 0.5 M sucrose (BHIS) at 37°C with shaking until the culture reached an 

optical density at 600 nm of 0.2. The cells were then harvested by centrifugation for 15 

min at 4°C and 2,500 RPM. Pellet were washed once in 1 volume and thrice in 1/10th 

volume of 5 mM HEPES (N-2-hydroxyethylpiperazine- N9-2-ethanesulfonic acid ) 
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0.5M sucrose (Sue Kalaman et al. 1995). Electroporation of 100 µl of the cell 

suspension was performed in a 0.2-cm electrode gap cuvette with a Bio-Rad Gene 

Pulser set at: 2.500 V/cm, 2.5uF, 200 Ω. Following electroporation, the cells were 

transferred to 3 ml of BHIS and grown for 3 h at 37°C and 250 rpm before being 

plated on Luria broth medium (LB) containing 250ug/ml of erythromycin ml-1.  

 

2.4 Detection of B. cereus transcriptional regulators homolog in B. thuringiensis 

UC10070 

Nucleotide sequences of resDE (1,776 kbp) and fnr (1,405 kbp) loci, are available in 

the database EMBL-Ebi with entry ID:DQ402422 and DQ681074 respectively. Primer 

set previously reported by Duport et al (2006, 2007) for B. cereus F4430/73, was used 

to amplify both the 2.91-kbp ResDE and 1,405-bp fnr B. cereus loci, from B. 

thuringiensis UC10070. Polymerase chain reactions (PCR) were carried out in a total 

volume of 25 µl, with 0.5 µM of each primers, MgCl2 15mM, and 0.5U of Taq 

polymerase (Promega) and 1X Buffer provided with Taq enzyme. Amplifications was 

performed in a Mastercycler Ep Gradient S Eppendorf PCR as follow: 1cycle at 94°C 

for 4 min and 35 cycles at 94°C for 30 s,  50°C for 1 min, and 72°C for 5 min. A final 

elongation step was performed at 72°C for 5 min. PCR reaction mix were 

electrophoresed on a 0.8% agarose gel in TAE1X buffer with SYBR® Safe DNA gel 

stain (Invitrogen).  

 

2.5 Construction of resE and fnr mutants with homologous recombination system  

To construct insertional inactivation mutants, internal fragments of the resE (324 bp) 

and fnr (288 bp) genes were first amplified by using the primer pair 5-

CGTCTTGAAAAGATCCGTCA-3 and 5-AAATCAACCGTTAACGCAAC-3’ and 

the primer pair 5’-GCAAACGAAGTTCCGAGATT-3’ and 5- 

GCAGAGCAATCTTCACAAGC -3, respectively, and cloned into the pGEM-T Easy 

vector (Promega) according to the manufacturer's instructions. Recombinant plasmids 

were digested with EcoRI and NotI in parallel with the pMUTIN4 vector (Bacillus 

Genetic Stock Center, USA,) as described by Duport et al (2006). After heat 

inactivation of the enzymes, fragments and plasmid (3:1) were mixed for ligation. The 

ligation mixtures were used  to transform competent cells of E. coli TB1. Recombinant 

plasmids named respectively pMresE and pMfnr, were extracted and then introduced 
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into B. thuringiensis UC10070 by two different electroporation experiments as 

previously described. Prior to strain transformations, primer set previously described 

were used to amplify fragments cloned in both vectors. Amplification products were 

sent to a commercial sequencing facility (BMR Cribi Padova Italy) for sequencing. 

The homologous recombination was expected in a single crossover event. The 

integrants were selected on LB plates by using erythromycin resistance. 

 

2.6 Detection of genes disruption  

To verify the successful insertion of the inactivation vectors pMresE and pMfnr in the 

desired target sites, PCR screening on the ErmR clones was performed.  Colonies were 

grown in the presence of antibiotic at increasing concentrations from 5 up to 64 µg per 

ml-1.  Gene disruption was verified by sizing of the PCR fragments generated from the 

target chromosomal region. The oligodeoxynucleotide primer pspacF 5’-CCTTGC 

CTACCTAGCTTCC- 3’, complementary to a region of the pMUTIN4 vector 

promoter, was designed using Vector NTI 9.0.0 (InforMax, Frederick, MD); primers 

complementary with genes to be knocked out, were used paired with pspacF : 

respectively resEf2 5’-ACGCCGCTTTACAATCAAAC-3', and fnrLocR 5'-TCGT 

ACAACAATTGGCCCTT-3’. 

PCR amplification reaction  was carried out in a total volume of 25 µl  that contained 

5ng of DNA, 0.5μM of each primer and the GoTaq Green Master Mix (Promega). 

Reaction was performed in a Mastercycler Ep Gradient S (Eppendorf)  with an initial 

denaturation of 4min at 95°C, followed by 30 cycles PCR each comprising 15 s at 

94°C, 45s at annealing temperatures (annealing temperature from 50 to 55°C were 

tested to increase reaction efficiencies) and 2 min at 72°C, final extension was 7 min at 

72°C. PCR reaction mix was electrophoresed on a 1% agarose gel in TAE1X buffer 

with SYBR® Safe DNA gel stain (Invitrogen). 

 

2.7 Construction of B. thuringiensis resE and fnr mutants with TargeTron system 

The target sites for resE and fnr genes inactivation of was found sending the sequence 

to www.sigma-aldrich.com/targetronaccess. The “TargeTron algorithm design site”, 

identifies all potential insertion sites for intron insertion along gene sequences: (1kb 

normally presents from 5 to 11) and a set of 3 primer (IBS, ebs1, ebs2) for each gene, 

suitable for intron re-targeting. In table 1 are listed primer sets for intron retargeting. 
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Table 1. Primer sets corresponding to chosen design options in target genes identified by the 
TargeTron algorithm. The target sites are named by their insertion point within the DNA sequences and 
are noted as sense (s) or anti-sense(a). 
 

genes 
Primer 
name/ 
position 

SEQ (5’-3’) 

IBS 
563/564a 

 
5’-AAAAAAGCTTATAATTATCCTTAAACGCCAAGAAAGTGCGCCCAGATAGGGTG- 3’ 
 

EBS1d 
563/564a 

 
5’-
CAGATTGTACAAATGTGGTGATAACAGATAAGTCAAGAAAGTTAACTTACCTTTCTTTGT 
-3’ 
 

resE 
 

EBS2 
563/564a 

 
5’TGAACGCAAGTTTCTAATTTCGATTGCGTTTCGATAGAGGAAAGTGTC 3’ 
 

IBS 
1062/1063s 

 
5’-AAAAAAGCTTATAATTATCCTTAGATTGCTCTGCTGTGCGCCCAGATAGGGTG- 3’ 
 

EBS1d 
1062/1063s 

 
5’-CAGA TTGT ACAAA T GT GGTGATAACAGATAAGTCTCTGCTTCTAACTTAC 
CTTTCTTTGT- 3’ 
 

fnr 

EBS2 
1062/1063s 

 
5’-TGAACGCAAGTTTCTAATTTCGATTCAATCTCGATAGAGGAAAGTGTCT- 3 
 

 
 

Once target site and the three primer were identified, intron retargeting PCR was 

performed in Mastercycler Ep Gradient S (Eppendorf), in a final volume of 50 µl, thus 

composed: 1 µl of the "Four primer master mix" ” (IBS, EBS1,EBS2 and the EBS 

universal primer provided by the kit), 1µl of Intron template, Red Taq (Sigma) 25 µl, 

nuclease free water 23 µl. Samples was subjected to an amplification cycle with pre-

denaturation at 94°C for 30’’, annealing for 30’’ at 55°C, extension at 72°C for 30”, 

and one cycle at 72°C for 2’.  

The PCR products of 350 and 288 bp, were electrophoresed  on a 2% agarose gel and 

purified with GenElute PCR Clean-up Kit (Sigma). 

Intron fragments (about 20-25ng/µl), were ligated in pJIR750ai vector (10,262 kpb-

Sigma), after in parallel HindIII/BsrgI digestion, so assembled: 2µl B10X, BsrgI 1µl, 

HindIII 1µl, DNA 10 µl, H2O 6µl: 20µl reaction incubated for 30’ at 37°C, 30’ at 

60°C, 10’ at 80°C (for enzymes inactivation).  

Each digestion reaction was purified by Microclean protocol (Labogen). Linearized 

vector  was submitted to an alkaline phosphatase treatment (CIAP-calf Drive-promega) 

following  the manufacturer’s instructions to prevent recircularization during ligation.  
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The ligation reactions was assembled as in Quik-Link T4 DnA Ligation Kit protocol 

(Sigma) then transformed in. B. thuringiensis UC10070 with Bio-Rad Gene Pulser 

electroporator set to the following parameters: 2.500 v/cm, 2.5uf, 200 Ω. Competent 

cells were prepared as previously described (section 2.3). For mutants selection, 

electroporated culture, after 3 hours recovery, was spread on LB plates with 5µg/ml 

chloramphenicol, and incubated o.n. at 37°C. Plasmid DNA from transformed colonies 

was isolated with previously described (Voskuil et al 1993), and analysed by 

electrophoresis on 0, 8% agarose gel. PCR reactions were carried out to amplify the 

intron regions from transformed colonies (on plasmid DNA ), and from intron template 

before targeted mutagenesis experiments. The primer sets and condition described for 

intron re-targeting PCR were used. Products obtained were purified and sent to a 

commercial sequencing facility (BMR Cribi Padova Italy) for sequencing.   

                

2.8 Reverse transcription PCR to evaluate intron expression in B. thuringiensis 

UC10070 

RNA from processed colonies was isolated in reason of 1ug/ul, after lysis in TE buffer 

(10mM Tris-Cl, 1mM EDTA), containing lysozyme 10mg/ml, with column extraction 

technique, following manufacture’s instruction of the total RNA purification Protocol, 

of “RNeasy mini Kit” (Qiagen). Subsequently, RNA was treated with DNasi (Ambion) 

and stored at -80°C in aliquots of 10ul in order to preserve RNA stability. 

To assess intron expression, RNA was analysed by RT-PCR following the procedure 

of “One-Step” (AB-gene) protocol, which provides a single amplification cycle in 50ul 

reaction volume,  assembled as follows: 1ug RNA template, 50U retro-transcriptase 

enzyme (Riverse-it RTase Blend), primer-sense and anti-sense from TargeTron 

algorithm design (specific for resE and fnr genes) 0.2uM, Master-Mix 2X RT-PCR 

composed by: Thermoprime Plus Dna Polymerase (final concentration 1.25U/50ul), 

Buffer for reaction optimisation, dNTPs mix (final concentration 0.2mM for each 

nucleotide), MgCl2 (final concentration 1.5mm). 

 

2.9  Confirmation of knockout by colonies PCR 
 
Two strategy were used to verify by PCR the intron insertions. Specific primers for 

resE and fnr fragments, that flank the insertion site, were designed (Table 2) to amplify 
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the entire inserted intron. Gene specific primers and an intron specific primer were 

used to amplify across gene-intron junctions. 

 

Table 2 Primer set used to amplify the entire inserted intron, in PCR reaction for knockout 
confirmation.  
 
Genes Primer name SEQ (5’-3’) Annealing 

temperatures 
Amplification 

product 
TTresEF 5’-GTCGGAAAACCAGTGCAATC-3’ resE TTresER 5’-TCCCACGTGACACTTCAAAA-3’ 

52 216pb 

fnrF 5’-GCAAACGAAGTTCCGAGATT-3’ fnr fnrR 5- GCAGAGCAATCTTCACAAGC -3 
51 288pb 

 

 

3.  Results  
The role of both ResDE two component system, and the one-component CRP-Fnr 

regulators, as sentinels capable of sensing redox changes, and coordinating responses 

that modulates B. cereus virulence, was clearly defined in recent studies (Esbelin et al 

2009). Genome-wide transcriptomic analysis (see section 3.1.4, Cap.3), revealed the 

expression of genes coding for FnR regulator, and the probably sensor kinase of the 

two component system ResDE , during B. thuringiensis UC10070 biological cycle.  

In this part of the work, the detection by PCR amplification of B. thuringiensis 

UC10070 chromosomal regions containing entire resDE (fig. 3A) and fnr loci (Fig. 

3B), indicated that resDE and fnr genes, could compose transcriptional units included 

into a larger operon, supporting the transcriptional activity already observed in the 

previous chapter.  

To generate site-specific mutations in B. thuringiensis UC10070, the construction of 4 

vectors were performed. In order to construct insertional inactivation mutants, we 

made several tests to optimize electroporation system in B. thuringiensis strains. A 

new protocol for preparing competent cells, and specific parameters of electroporation 

were developed to achieve a transformation frequency of 5x105 cfu per µg of pPSC10 

vector DNA, in B. thuringiensis UC10070. 

Chromosomal fragments of B. thuringiensis UC10070, corresponding to internal 

region of resE and fnr transcriptional regulators, were cloned into pMUTIN4 vector 

(Fig. 4) in E. coli TB1. These fragments were of 325 and 288 bb respectively, and the 

resulting plasmids were designated pMresE and pMfnr.  
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Both pMresE and pMfnr plasmids carries an origin of replication for E. coli (colE1 

replication origin) and selection of ampicillin resistance. Vectors fails to replicates in 

Bacillus but an ErmR gene is present to select Bacillus colonies if the plasmid 

integrates into the chromosome. We examined whether  pMresE and pMfnr could be 

used as a vehicle to insert DNA sequences into the chromosome of B.thuringiensis 

UC10070. After cloning of pMresE and pMfnr in E. coli TB1, PCR amplification and 

sequencing  of resE and fnr fragments confirmed that both cloned fragments presented 

a 100% identity with chromosomal sequences of B. thuringiensis UC10070. E. coli 

TB1 plasmid DNA were isolated and EcoRI/NotI digested: electrophoretic analysis 

showed both pMresE and pMfnr vectors linearized and the respectively fragments 

corresponding to 325 and 288 bp (Fig. 5 A-B) giving evidence of the correct 

construction of the inactivation vector. As a control in each electroporation 

experiment, the pPSC10 cloning vector, which replicates in B. thuringiensis, was used 

to transform competent cells to ErmR. The transformation frequency of pPSC10 was 

constant (of 5x105  transformants per µg of pPSC10 vector DNA). No transformant 

was obtained with vector pMUTIN4 without a chromosomal insert. Colonies were 

obtained with both pMresE and pMfnr. To assess the stability of the ErmR phenotype 

of transformants, colonies were grown at increasing concentration of antibiotic; in 

some cases there growth were observed up to a concentration of 15 µg per ml-1 . Total 

DNA was extracted from each resistant colony for PCR analysis. In  Figure 6 (A and 

B) are schematically shown the desirable Campbell-like integration of both 

inactivation vectors, generated by a single crossover event. PCR reactions were 

performed with specifics primers designed on the target genes and pspac promoter 

region of both vectors. Fragment lengths expected was 525bp and 438 bp, for resE and 

fnr genes respectively. In each transformation experiment the PCR analysis on 

resistant colonies gave products different as expected (Fig.7). Data obtained did not 

support the Campbell-like integration.  
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Fig. 3 Detection by PCR amplification of reDE (lane 1, A) and fnr (lane 1, B) Loci in B. thuringiensis 
UC 10070. 
 

 

 
Fig. 4 Map of the pMUTIN4 plasmid transformed in B. thuringiensis UC10070. The vector replicates 
in E.coli via the colE1 replication origin, and selection of ampicillin resistance. It fails to replicates in 
Bacillus but an ErmR gene is present to select Bacillus colonies if the plasmid integrates into the 
chromosome. In the multiple cloning site, red blocks indicates the restriction enzymes used for cloning 
of resE and fnr fragments. Baillus Genetic Stock Center image. 
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Fig. 5 Elettrophoretic profiles of digested pMfnr (A) and pMresE (B) insertional vectors. pMUTIN4 
was used as control (lane1 A, lane 1 B). Not1/EcoR1 treatment, generated linearized vectors and the 
corresponding inserted fragment of 288 bp (fnr gene) and 325bp (resE gene). 
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 B 
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fnrLocRfnrLocF
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Fig. 6 Schematic representations of the relevant parts of the chromosomes of strain B. thuringiensis 
UC10070 before and after Campbell-like integration of plasmid pMresE (A) and pMfnr (B).. The 
directions of each gene harboured by plasmids are shown by arrows. Yellow arrow indicates pspac gene 
vector promoter. 
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Fig. 7 PCR products obtained after B. thuringiensis UC10070 electroporation with pTGRE2 
inactivation vector. Not specific bands are shown in lane 1-2-3. No amplification products were detected 
for one colony tested.   
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The TargeTron gene knock-out system was optimized for use in B. thuringiensis. Two 

inactivation vectors were constructed to achieve specific insertional inactivation in B. 

thuringiensis UC10070. TargeTron expression vector pJIR750ai (10,262 bp) was used 

for this experiment (Fig. 8). This circularized vector was constructed for targeted gene 

knockouts in gram-positive bacteria. The expression of the group II intron RNA is 

under the control of the b-2 toxin gene promoter, cpb2 specific for Clostridium 

perfringens type A; moreover it present the following attributes: a plasmid origin for 

replication in E.coli to facilitate cloning (pIP404 ori), a plasmid origin for replication 

in Firmicutes  (pMB1ori); a chloramphenicol antibiotic resistance gene and  the RNP 

(Ll.LtrB and LtrA) ORF. The basic principle of this system is that basepairing between 

the  two loops (EBS1 and EBS2) and δ site within the Ll.LtrB  RNA structure and the 

target DNA sequence, guide the insertion event. Thus, changing the sequences of 

EBS1 and EBS2 to allow basepairing to the target site within the gene  (IBS1 and 

IBS2) , through a “retargeting PCR”, facilitates insertion of the intron into this specific 

sequence. Sequence elements that flank the IBS1 and IBS2 sites within the targeted 

gene are also recognized by the RNP complex. The TargeTron computer algorithm 

identifies potential insertion sites within any DNA sequence (Perutka et al. 2004). For 

each B. thuringiensis gene targeted for inactivation, the TargeTron algorithm (Sigma-

Aldrich) was used to identify potential insertion sites and to design primers necessary 

to retarget the Ll.LtrB intronA PCR product that encompasses EBS1, EBS2, and δ in 

Ll.LtrB is amplified with specific primers. The PCR fragment was cloned between the 

HindIII and BsrgI sites in pJIR750ai vector to retarget the group II intron.  

The TargeTron algorithm identified eight potential insertion sites within resE and nine 

in fnr. We chose targets located between nucleotides 563 and 564 (563/564a) and 

between nucleotides 1062 and 1063 (1062/1063s) respectively for resE and fnr target 

genes. The RNP recognizes in one case the targets on the antisense strand (designation 

“a”), while the other on the sense strand (designation “s”). These target sites were 

chosen based on the e-value derived from the algorithm (563/564a e-value = 0.114; 

1062/1063s e-value = 0.045). The two targetron plasmids with targeting positions 

563/564a (pTGRE2) and 1062/1063 (pTGOX), were transformed into B. thuringiensis 

UC10070. Two sets of primer were employed for each targetron plasmid for PCR 

screening to amplify in one case the entire inserted intron regions of (more or less) 
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2,000 kbp (Fig. 9A) , and another smaller regions in which intron insertions were 

expected (Fig. 9 B). Transformants were screened for the CmR. Several independent 

electroporation experiments were performed. The isolation of resistant colonies 

harbouring targetron plasmids (Fig. 10) after each transformation experiment, gave 

evidence of the efficient electroporation system developed for B. thuringiensis 

UC10070 (section 2.3). However, the PCR screening on CmR colonies, did not allow 

the detection of group II intron insertion at 563/564 and 1062/1063 target sites, 

respectively in resE and fnr genes. Sequence alignments between intron template and 

retarget introns from both pTGRE2 and pTGOX, showed single nucleotide variations 

replacing EBS1 and EBS2 regions in targetron plasmids. These data confirmed intron 

retargeting in pTGRE2 and pTGOX vectors. The activity of cpb2 promoter was 

assessed in B. thuringiensis UC10070. The reverse transcription assay performed on 

total RNA isolated from resistant colonies, confirmed the expression of re-targeted 

intron (Fig.11). No fragments amplification were observed in control reaction 

performed without reverse transcriptase enzyme. 

 

 

 

 
Fig. 8  Map of the pJIR750ai plasmid used to transform B. thuringiensis UC10070. The vector specific 
for inactivation of retargeted genes in gram positive microorganism, contains remaining portion of 
Intron group II, a promoter upstairs intron sequence, and a chloramphenicol resistance to select mutants.  
www.sigmaaldrich.com image. 
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Fig. 9 Primer design for detection of intron insertions. Arrows indicates each primer used. A. 
Amplification of the entire inserted intron regions. B. The re-target intron primer sets for the initial PCR 
step (IBS, EBS1d, EBS2) could be used paired with genes specific primers to amplify regions in which 
intron insertions were expected. 
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Fig.10 Plasmid DNA from B.thuringiensis UC10070 CmR colonies after transformation with pTGRE2 
(lanes 1-2-3-4-5-6-7) and pTGOX (lanes 8-9-10-11-12-13-14-15-16-17-18)  vector.  
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Fig. 11 Reverse transcription assay for retargeted intron expression in B.thuringiensis UC10070. Total  
RNA extracted from colonies transformed with pTGRE, was analysed by RT-PCR to assess the intron 
expression. 
 

 
4.Discussion 
B. thuringiensis belong to the B. cereus group. Since B. thuringiensis harbour and 

express genes coding for B. cereus-virulence factors, it could consider potentially 

dangerous for humans. However very little is known about how it can cause disease. 

To deeper investigate on important features, such as bacterial virulence mechanisms, 

the availability of molecular tools for creating knockout mutations of relevant genes is 

required. Gene knockout strategies routinely involve the introduction of plasmid or 

other extrachromosomal DNA into recipient strains to generate null mutant strains. 

Various protocols have been developed for electroporation and gene inactivation of 

gram-positive bacteria: cell weakening agents, variable washing buffer compositions 

and a variety of electric pulses, aim at the improvement of transformation efficiency; 

on the other hand, several non-replicative plasmids, useful for homologous 

recombination, have been constructed and employed to achieve ever more efficient 

chromosomal integration in Gram positive microorganism; an example is the one-step 

gene inactivation procedure developed for Bacillus subtilis by using the non replicative 

vector pMutin.  Not last, the targetron system has been demonstrated to be useful for 

genetic analysis in different bacterial species. However these protocols were not 

successful in our hands for B. thuringiensis UC10070. Although  ErmR  clones were 

achieved in several transformation experiments with pMUTIN derivative vectors 

constructed in this work, none of them was identified as null mutants. 
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 It was supposed that colonies containing both mutated and not mutated cells resulted 

from transformation experiments. This could explain growth of some colonies in 

erythromycin BHI broth (15 µg per ml-1).  

The presence of restriction modification (RM) systems in recalcitrant Bacillus isolates, 

were reported (Groot et al 2008). The suggested function of RM systems in 

microorganisms is protection against invasion of foreign DNA. It was supposed that 

DNA modification occurred on inactivation vectors after transformation in B. 

thuringiensis, could explain at least part of the low frequency of recombination 

observed. However both plasmids pPSC10, used as control in electroporation 

experiments, and pJIR750ai were transformed at quite high frequency and stably 

maintained in  B. thuringiensis UC10070. Hence, a low frequency of B. thuringiensis 

recombination and the presence of chromosomal rearrangements could explain the 

failure of these experiments.   

To use a different approach a group II intron strategy was adopted. One of the 

advantages of group II introns is that, once expressed, the RNP is relatively host 

factor-independent. Moreover, high levels of DNA transformation are not necessary, as 

required for efficient homologous recombination procedures, because a single 

targetron plasmid can express multiple copies of the group II intron. However, intron 

integration frequencies vary widely between target sites, and can make the screening 

effort required to isolate a mutant prohibitively laborious, particularly if no simple 

phenotypic screen for gene inactivation is available. This approach did not lead to any 

null mutants for both resDE and fnr genetic loci. Although pJIR750ai were 

transformed at quite high frequency and stably maintained in B. thuringiensis 

UC10070, the transcription experiments revealed that the re-targeted intron was 

expressed in B. thuringiensis UC10070, and non mutants harbouring the desired 

insertion were isolated.  

For future attempts could be considered the ingenious solution founded from Heap and 

co-worker (2007) for Clostridium spp. The introduction of an antibiotic resistance gene 

into the group II intron, which is itself interrupted by a self-splicing group I intron, was 

proposed using pMTL007 vector, derivative of pJIR750ai, to facilitate mutants 

screening. The three elements are arranged such that only after successful insertion of 

the group II intron into its target, when the nested group I intron will have spliced out, 

the integrity of the antibiotic resistance gene is restored. Acquisition of antibiotic 
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resistance is thereby strictly coupled to integration, and can be used to positively select 

for integration events. Moreover, the use of a T7 promoter (inducible with IPTG), for 

controlled production of the group II intron RNA, could lead to a strong increase in 

mutants selection efficiency. 
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General conclusions 
B. thuringiensis was first characterized for its ability to produce a parasporal crystal 

active against several insect species, especially of the order Lepidoptera, Diptera, and 

Coleoptera. Due to its insect activities it is worldwide used in forestry and agriculture to 

control pests. Recent studies showed that most of the genetic determinants for B. cereus 

virulence, such as haemolysin BL (HBL), non haemolytic enterotoxin (NHE), cytotoxin 

K, and bc-D-ENT enterotoxin, are harboured by B. thuringiensis strains. Phylogenetic 

studies based on the analysis of chromosomal genes bring controversial results, and it is 

unclear whether B. cereus and B. thuringiensis are varieties of the same species or 

different species (Ivanova et al. 2003). Hence, what may seem to be a minor problem of 

taxonomy may therefore have serious implications for virulence and pathogenicity.  

Since B. thuringiensis can contaminate food, being residual in spore form after treatment 

in the fields, it is ever more urgent to deepen investigate the potential risks arising from 

the presence of B. thuringiensis in food industry. This work of thesis was aimed to 

achieve a deeper scientific information on the food-associated bacilli, taking the 

advantage of new genome based  molecular approaches, focusing the attention on B. 

thuringiensis strains used as commercial biopesticides.  

The in vitro pathogenic profile of ten commercial B. thuringiensis strains, was 

characterised by the high distribution of the nhe, hbl, bceT and cytK genes. Enterotoxin 

genes were detected by PCR in all the strains analyzed. RT-PCR analysis confirmed the 

enterotoxin genes expression. Toxin productions was detected by RPLA test in the strains 

belonging to the widely used subsp. kurstaki.  

These features and the difficult discrimination between B. thuringiensis  and B. cereus, 

suggested that the role of B. thuringiensis in outbreaks of foodborne disease may have 

been underestimated. The development of a vegetable based food model, that would 

allow to asses the behaviour of B. thuringiensis spores, after the simulation of an 

industrial processing treatment, was an important point in this study. The analysis of 

Bacillus spore envelope, and its ability to interact with food environment, have been 

performed using SEM and SEM X-ray microanalysis applied to the food model proposed. 

In more detail, particular attention was devoted to morphological and chemical changes of 

B. thuringiensis spores during germination process in food. We observed a rapid 

evolution of the B. thuringiensis biological cycle compared to that of other spore forming 
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bacteria like Clostridium spp. (Bassi et al. 2008, personal communication). Interesting 

was that only two hours after spore activation, cell outgrowth was completed and cell 

division was at the maximum level. 

In order to assess and to lay basis for manage risks associated with B. thuringiensis 

outgrowth in foodstuffs, we need to gain more information on its life cycle; and this is 

what we have done through transcriptome analysis of B. thuringiensis in four different 

stages of the biological cycle, from dormant spore to vegetative/sporulating cells. We 

could emphasized that mRNA is a component of bacterial spores. We discovered that 

spores are equipped with a large amount of transcripts probably useful to front the next 

steps of outgrowth. Dormant spores contained populations of ribosomes; during the first 

40 minutes after spore activation, rate of both rRNA and ribosomal proteins synthesis 

strongly increased. A basic and strong activation of polyfunctional genes seemed to begin 

in germinant spores: most of the genes involved in the metabolic activity (house-keeping 

genes, translation initiation factor, ribosomal proteins, and elongation factors) were 

overrepresented at this time in microarray analysis. A large number of transcripts for 

protein involved in the regulation of different biological process, including resistance to 

different antimicrobial compounds and oxidative stress agents, were found to be present 

in B. thuringiensis vegetative cells. We hypothesized that B. thuringiensis cells may 

activate these systems in response to external stimuli for cell defence and adaptation to 

changing environmental conditions in food model. The transcripts for germination 

proteins (ger type) found in spore, are an index of the expression of this genes in previous 

sporulation stage and suggested the importance during dormancy, to monitor the 

environment for proper outgrowth conditions. This finding could explain the ability of  B. 

cereus-like microrganism to occupy and complete a full life cycle within several different 

environmental niches. According to literature data, all the associated virulence genes, 

represented in microarray analysis, were up-regulated especially during the late stage of 

cell growth. RT-qPCR analysis were performed to quantify the expression, in food, of the 

major virulence genes involved in B. cereus-associated food borne disease. Toxin 

mRNAs were detected, in variable amounts, at all investigated growth stages of B. 

thuringiensis, with a strong increase during the log phase of microorganism growth. 

Although no information on the B. cereus toxin expression in food are available, previous 

in vitro studies on B. cereus enterotoxins production, reported that the highest toxin level 

is achieved during the late log/early stationary phase. The production of the L2 
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component of HBL enterotoxin, involved in the diarrhoeal syndrome was detected in food 

model, even in low amount, during the early log phase. We concluded that B. 

thuringiensis can complete an entire life cycle in food systems after an industrial 

processing simulation, producing enterotoxins as observed in broth cultures. 

Transcriptomic has been demonstrated to be not only a powerful tool to study the 

germination and outgrowth of B. thuringiensis spores, but also a suitable method to assess 

the environmental response to bacterial pathogens in food. Data obtained, provide new 

basic knowledge on Bacillus cereus group. 

These data extends our knowledge on the metabolic versatility of B. thuringiensis and 

also added to our view of virulence traits of this potential food-pathogen.  

Given this finding, the need to identify systems for manage the risks associated with B. 

thuringiensis in industrial fields has became clear. An experimental approach was 

described in the last part of this work of thesis. Identification and inactivation of general 

systems for regulating virulence, through null mutants construction, were considered to 

evaluate changes in growth performance, cellular metabolism and toxins expression, in 

the studied microorganism. Besides homologous recombination, the mobility mechanism 

of group II introns were assessed to generate highly specific chromosomal gene 

disruption in B. thuringiensis. 

A novel approach and several experiments were performed to achieve the desired 

chromosomal inactivation, however no attempts gave the expected results.  

Recent studies has been showed difficulties encountered screening mutants obtained with 

intron group II inactivation, in particular when, as in this case, it is not possible using 

phenotypic assay to recognise mutated cells: most common inconvenience is the presence 

of mixed colonies from which is difficult to separate mutated from wild type cells. 

Literature reports how the introduction of an antibiotic resistance into Group II intron 

sequence, and use of a T7 promoter (inducible with IPTG), could led to a strong 

increasing in mutants selection efficiency. Since high frequency of chromosomal 

integration is reported for B. subtilis by using the non-replicative vector pMUTIN, this 

one-step gene inactivation procedure was not useful for B. thuringiensis UC10070 in this 

study. It was supposed that industrial B. thuringiensis strains are recalcitrant to genetic 

manipulation. Restriction modification (RM) systems in recalcitrant Bacillus isolates, 

were reported (Groot et al 2008). The presence of RM systems like protection against 

invasion of foreign DNA was not verified in these microorganisms, but it could explain 
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the low frequency of recombination observed despite the good efficiency of 

transformation. 

Since B. thuringiensis is widely used and popular in biological farming, a careful 

monitoring of the strains used should be justified. Literature reports widespread the risks 

associated with the food-pathogen B. cereus, but those related to B. thuringiensis are 

often underestimated. From data obtained in this study we could assume that B. 

thuringiensis could actually be responsible for many of the food borne outbreaks 

previously attributed to B. cereus; taking this enterotoxigenic potential into account, as 

well as the fact that B. thuringiensis cannot be separated from B. cereus at the 

chromosomal level, food producers and food authorities, responsible for food safety, 

should consider the risk of B. thuringiensis insecticide residue in the food chain. 
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