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Abstract

In recent years the integration of spatial data coming from different sources
has become a crucial issue for many geographical applications, in particular
in the process of building and maintaining a Spatial Data Infrastructure
(SDI). In such context new methodologies are necessary in order to acquire
and update spatial datasets by collecting new measurements from different
sources. The traditional approach implemented in GIS systems for updat-
ing spatial data does not usually consider the accuracy of these data, but
just replaces the old geometries with the new ones. The application of such
approach in the case of an SDI, where continuous and incremental updates
occur, will lead very soon to an inconsistent spatial dataset with respect
to spatial relations and relative distances among objects. In this report we
address this problem and we propose a framework for representing multi-
accuracy spatial databases, based on a statistical representation of the ob-
jects geometry, together with a method for the incremental and consistent
update of the database objects, that applies a customized version of the
Kalman filter. Moreover, in the framework we consider also the spatial re-
lations among objects, since they represent a particular kind of observation,
that could be derived from geometries or be observed independently in the
real world. Therefore, also spatial relations among objects coming from dif-
ferent sources need to be compared and we show that they are necessary in
order to obtain a correct result in objects geometry integration.

Keywords: spatial data integration, multi-accuracy spatial data, statistical
update, Kalman filter.



1 Introduction

During the last years the attention of geographical applications towards the
spatial data integration problem has rapidly increased. For instance, many
geographical national o regional agencies, in particular in the European
Union, are facing the challenge of integrating in common Spatial Data In-
frastructures (SDIs) spatial data coming from different sources and acquired
using different technologies and instruments. Therefore, in the GIS commu-
nity there is a need for new data integration methods to consolidate huge
amount of spatial data belonging to different thematic layers. In particular,
those methods have to be able to integrate different observations regarding
the same specific and identified geographical object (or set of objects) or
about different objects among which a particular relation holds. In doing
this, such methods have to consider the metadata describing the quality of
both the datasets to be integrated and the resultant one, and this is an
important issues for the following reasons.

Spatial objects representing geographical features are inherently uncer-
tain because the measurements needed to survey the shape, extension and
position of an object with the maximal accuracy are too expensive, or be-
cause the maximal accuracy is not necessary to satisfy the application re-
quirements. Therefore, a certain amount of error in the representation of a
spatial object always exists. In literature [Sch99, TN02b, Hop08] the term
accuracy is considered as a measure of how closely the recorded values rep-
resent their true values, while uncertainty is a statistical estimate of the
accuracy of a value and thus it is modeled using probability theory. How-
ever, the importance of uncertainty is perceived in different ways by the
different communities that are working in the GIS field.

Considering in particular the vector representation of spatial data (i.e.
spatial datasets are sets of geometries including points, polylines and poly-
gons specified by a list of coordinates in a reference space) we can observe
that: computer scientists working with GIS tend to perceive absolute coordi-
nates as the primary data concerning location of geographical objects and to
consider geometric coordinates as deterministic values. The measurements
from which these coordinates were obtained are seen as unnecessary data
once the absolute point locations have been determined; no record is kept
about the measurements from which they are derived. In this perspective
each relative geometry measure (e.g. distance, angle, etc) and all the other
information (e.g. spatial relationships between objects) can be derived from
absolute coordinates. On the contrary, surveyors typically perceive the mea-
surements concerning geographical objects and the relative object distances
as being the primary data, while the computed coordinates are treated as
random variables. Coordinate values are seen simply as a view of the data:
the one that best fits the measurements at that time. The accuracy of rel-
ative geometry is in practice higher than the absolute accuracy; therefore,
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Figure 1: An example of integration that does not consider the accuracies of
the objects to be integrated, but simply replace old objects with new ones.

(@ (b) (d)

absolute coordinates and relative measures are not equivalent as computer
scientists often believe.

Although it is possible to store measurements, rather than derived co-
ordinates, into a database and calculate the coordinates as required using
all the stored measurement information, this operation is computationally
intensive and hence it is not practical. As a consequence spatial databases
usually store only derived coordinates without any information about their
accuracy. However, some accuracy information have to be attached to spa-
tial data, since the derivation of coordinates from observations is a unique
but not reversible operation [GGAO4a]. Moreover, information about ac-
curacy of spatial data should be used in every operation involving these
uncertain data; in particular, it is fundamental for integrating new observa-
tions coming from different sources, or for correctly interpreting the result of
a query. We also observe that the result of integrating spatial data coming
from different sources is a dataset containing multi-accuracy spatial data
and hence it is crucial that accuracy becomes a part of spatial data repre-
sentation at single object granularity.

Example 1. Fig. 1 illustrates a typical problem that occurs when an inte-
gration is performed simply by replacing older or less accurate objects with
newer or more accurate ones. In particular, Fig. 1(a) and Fig. 1(b) represent
two source databases that have one object in common: a sidewalk that is de-
picted as the light gray polygon in both databases. Each database contains
also an additional object, namely a road and a building, respectively. More-
over, a disjoint condition is defined between the sidewalk and the building in
the second database and we suppose to know that it is the existing relation
between them in the real world. Now suppose that the first database has a
higher absolute metric accuracy than the second one, so in the integrated
database the resulting sidewalk is the one of Fig 1(a), while the other one
is discarded. Finally, the building is simply added in the resulting database
without modifying its geometry and without any consideration about its
accuracy and its relations with other objects. The resulting database is re-



ported in Fig. 1(d): the building overlaps the sidewalk, violating the disjoint
condition defined in the second source database. This is a consequence of
the relative positions between the two geometries representing the sidewalk
in the two source databases as shown in Fig. 1(c).

The contribution of this report is articulated into two points: firstly, in
Sec. 3 we define a methodology for calculating and representing the accu-
racy of spatial data; secondly, in Sec. 4 we propose an integration procedure,
based on the Kalman filter, that considers the accuracy of both the coordi-
nates of the source databases and the topological relations defined among
database objects, producing an integrated database with updated accura-
cies. Finally, some properties of the proposed integration procedure are
discussed in Sec. 5.

Before presenting the proposed framework for handling multi accuracy
spatial data, the following section illustrates some previous works related to
our proposal.

2 Related Work

The need to consider the accuracy of spatial data is widely recognized in
literature. In particular, in [NRB03, BLR*04, LBR"07] Bhanu et al. pro-
pose a probability-based method for modeling and indexing uncertain spa-
tial data. In this model each object is represented by a probability density
function and the authors discuss how to perform spatial database opera-
tions in presence of uncertainty. In particular, in [NRBO03] they present a
method for performing the probabilistic spatial join operation, which, given
two uncertain datasets, finds all pairs of polygons whose probability of over-
lap is larger than a given threshold. In [BLR*04, LBR*07] Bhanu et al.
present a different indexing structure, called Optimized Gaussian Mixture
Hierarchy (OGMH) that supports both uncertain/certain queries on un-
certaint/certain data, in particular they consider the k nearest neighbors
(k-NN) search operation. The proposed model allows the representation of
multi-accuracy spatial databases, because the uncertainty of an object is
described by associating to each vertex of its extent a probability density
function. Therefore, an object can be intended as a d-dimensional random
variable and the similarity between two objects is given by the probability
that the two corresponding random variables are the same.

Another model for representing uncertainty in spatial database is pro-
posed by Tossebro et al. in [TN02a, TN0O2b, TN02¢c, TN03, TN04]. In
[TNO2b] the authors propose a representation of spatial data through un-
certain points, uncertain lines and uncertain regions. The basic idea is that
all uncertain objects, regardless of their type, are known to be within a cer-
tain crisp region, it may also be known where an object is most likely to



be. So they define the concepts of core and support: each object is repre-
sented by two regions, one inside the other, the innermost region is the area
in which the object is certain to be, it is called core and it is the area of
greatest probability; the outermost region is the area in which the object
may be, it is called support and in this area the probability of the object is
above 0. Moreover, it is known that the object is not outside the outermost
region. In [TNO3] this model is refined in order to reduce the storage space
required and to simplify the computation of the core and support regions. In
[TNO02c] the authors extends its model with some constructs for represent-
ing also temporal uncertainty into a spatial database. Finally, in [TN04] the
model is completed with the representation of topological relationships be-
tween uncertain spatial objects, since they cannot be directly inferred from
the object representations.

Unfortunately none of this work deals with the integration process, they
propose a more or less formal model for representing uncertainty and even-
tually they concentrate on query operations. Conflation techniques [Saa88]
have been widely used for integrating two vector spatial databases. These
methods essentially involves two phases: (1) corresponding features in the
two source datasets are recognised through the identification of matching
control points, (2) the two source datasets are aligned using rubber-sheeting
transformations based upon the identified matching control points. These
phases are repeated iteratively, with further control points being identified
as the data sources are brought into alignment. However, conflation tech-
niques typically align the dataset with lower accuracy to the more accurate
one, called target dataset. The positional information related to the control
points within the less accurate dataset is ignored, assuming that the target
dataset is correct. In this way, corresponding features in the two datasets
are aligned but in a sub-optimal manner. Moreover, any updated quality
information are provided for the adjusted dataset.

A more sophisticated approach to the integration problem has to take
into account the accuracies of both source datasets in order to produce a
more accurate integrated database, as done in [GGA04b, HKH06, HKO0S,
Hop08]. These approaches use techniques based on weighted least squares
method to obtain the best fit between the source datasets. The advantage
of such an approach is that resultant positions are optimized taking into
account all the available information, including the positional accuracy of
points in both datasets. Moreover, updated quality parameters are gen-
erated for each point, enabling detailed quality reporting of the resultant
dataset. In [HKHO06, HKO08, Hop08] the authors consider also the problem
of preserving topological relations between objects by representing them as
inequality observations that could be included in the least squares method.
These inequalities are obtained by combining the collinearity and equality
constraints with three other conditions: a point being on the left /right of a
line segment, a point being at a minimum/maximum distance from another



point or from a line segment.

In [SB97] the authors discuss how to use the Kalman filter into a static
context for sequentially improving the best least squares estimate as soon
as new observations are integrated. The key concept above the use of the
Kalman filter is the idea of updating the solution: the new estimate is ex-
pressed as the linear combination of the previous one and the new observa-
tions, in a recursive manner, so that it is not required to store the previous
integrated observations. In [Alt93] the author uses the Kalman filter ap-
proach to estimate the coordinate positions of atoms within a molecule. He
assumes a static structure and he does not introduce any time-dependent
model of change.

These solutions for updating spatial data rely on measure with known ac-
curacy, therefore they are not directly applicable to existing spatial databases
containing only coordinate values. A method has to be defined for deter-
mining the accuracy of these coordinates from the commonly available in-
formation.

3 Representing Multi-Accuracy Spatial Databases

A multi-accuracy database is a spatial database in which objects are char-
acterized by different accuracy parameters, in the extreme case each single
point in the database can have a different accuracy. In this section we present
an abstract data model for representing multi-accuracy spatial databases,
called MACS database.

Spatial information can be classified into two major groups: metric ob-
servations and logic observations. Metric observations represent quantita-
tive properties of spatial objects, in particular their position and extension.
These observations are subject to uncertainty and have to be treated with
a statistical approach in order to express their different accuracies. Logic
observations describe qualitative properties of spatial objects, like spatial
relations or shape characteristics. This kind of observations represents cer-
tain information, namely they can be only known or unknown and so they
are treated with a logical approach. In geographic applications the most
important category of spatial relations is the set of topological ones. Many
models for this kind of relations have been proposed in literature, starting
from the well known 9-intersection model of Egenhofer et al. [EF91]. In
this paper we assume that metric observations and topological relations are
stored inside a MACS database and they are considered jointly during the
update phase, which integrates new metric or logic observations with the
existing ones, or the integration phase where another MACS database is
integrated with the current one.



3.1 Representing Metric Observations

A MACS database is constituted by a set of objects, called features, adopting
the terminology of the ISO TC 211 International Standards for geographical
information and the Open GeoSpatial Consortium. A feature represents a
real geographic entity and has a fundamental property which is the geometry
describing its extension, shape and position on the Earth surface. In a MACS
database each real position P is represented as a pair of random variables
(zp,yp) (we consider 2D datasets) and its accuracy information is expressed
by the joint probability density function:

fplzp,yp) : E* —[0,1] (1)

This function describes where the position P could be located; its type de-
pends on the survey process and can vary considerably. In this work we
assume that random variables representing real positions have a Gaussian
distribution, since statistically this is the distribution obtained by any ex-
perimental process.

Following this approach, for each position P to be stored in the database,
it should be necessary to store its joint probability density function by means
of a set of parameters that approximate the function fp(zp,yp). This set
of parameters could be very large, moreover visualizing complex probability
density functions or using them in query processing could be very difficult.
Thus, a synthetic description of fp(xp,yp) has to be defined. Considering
the context of geographical applications of recent years, where very few
information about spatial accuracy is available, we propose to adopt the
following representation of absolute positions.

Definition 1 (Soft Absolute Position). The absolute position of a point P
with probability density function fp(xp,yp), is represented by a position
index and a dispersion index. The position index of P, also called represen-
tative point and denoted by P, is the point (j, jty), where p, and p, are
the averages of = and y with respect to fp(zp,yp). The dispersion index of
P represents the dispersion of the probability around P and is given by the
variance-covariance matrix of the x and y variables.
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In many real situations (as the building of a national SDI) the only
available metadata describing the metric quality of coordinates are an error
estimate e for the absolute position, that is the maximum granted error
between the real coordinates and the measurement, and a validity percentage
of that error FR(e), that is the percentage of cases that have to satisfy this



error, for each surveyed area. In [CCHFT98] the authors illustrate how
variance of coordinates can be calculated from this information using the
circular error formula; in this paper we adopt their approach, as shown in
Eq. 3. Since there is no reason for considering different the variance of z
from the variance of y, we can suppose that:

2
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Moreover, the covariance between the z and y coordinates of the same ab-
solute position P is set to zero, assuming that the two components are
mutually independent.

Given the variance and covariance of a position P, the correlation be-
tween different positions can be estimated by modeling the covariance be-
tween them as a function inversely proportional to their distance. In this
way the correlation is greater for near points and it decreases as distance
increases. Let us consider a MACS database containing only two positions
P = (zp,yp) and Q = (xq,yq), the matrix Cpp containing the variance
and covariance of P and (@ is defined as:

U:%p Ozpyp Ozpaqg Ozpyq
Cpp = ZyP,zp O_pr O-Z-P71‘Q Zyp,yQ (4)
z.ep  Yzq.yp zQ TQ,YQ
UyQ,IP o-yQ7yP O-wa’UQ 0-?3(9

In order to simplify the model and reduce the number of unknown pa-

rameters in the matrix, we formulate the following hypothesis.

Definition 2 (Independence hypothesis). Considering surveyed spatial data,
the following hypothesis can be reasonable in applications that deal with
them:

1. The measurement methods currently available allow one to assume
that the x and y coordinates of a position P are mutually independent,
so the covariance between the x and y components of P can be set to
Zero: Ogzpyp = 0

2. Accordingly with the previous assumption, the x coordinate of a po-
sition P does not influence the y coordinate of any other point @, so:

Oxpyg = 0

3. The correlation between the x coordinate of a position P and the x
coordinate of an other position @ is equal to the correlation between
the y coordinate of P and the y coordinate of Q: 04p 2o = Typ o

4. The variance of the x coordinate of a position P coincides with the

variance of its y coordinate, since the value of absolute accuracy are

42 2 2
the same: o3, =0y, =o0p n



Applying the hypothesis contained in Def. 2, the variance-covariance
matrix C'ppg for two positions P and () can be rewritten as follows:

0'123 0 cpg O
0 J% 0 cpg
Cpp = cpg O ‘7(202 0 (5)
0 crg 0 o0p

where ¢cpQ = Ozpzq = Oypye 18 the correlation between the positions P and

e 2 22 2 _ 2 _ 2
Q, while 0p = 03, = 0, and o, = O%o = Oyo-

The remaining unknown parameter is onylng cp@- In order to obtain an
estimation of this parameter we propose the following approach: cpg repre-
sents somehow the “attraction” that P exerts on () and vice versa, thus we
can estimate it by considering the accuracy of the relative distance among
points of the map. Indeed, this is another piece of metadata that is often
available for surveyed spatial datasets, since the accuracy of the relative dis-
tance among the surveyed objects is usually higher than the one derivable
from the accuracy of the absolute coordinates of points. Now supposing
that UflPQ is the variance of the relative distance between the two positions
P and @, that can be calculated using Eq. 3, where e is replaced with the
maximum granted error of the relative distance between absolute positions
and F'r(e) with its percentage of validity, cpg can be calculated as shown
in the following lemma.

Lemma 1 (Covariance estimation). Given the variance aﬁp of the relative

distance between the two points P and ) and the variance of their coordi-

nates U% and aé, the covariance Oupag = Oypyg = CPQ CaN be calculated

as follows:

0123 + Jé - UflPQ
2

CPQ = (6)
Proof. - (sketch) Eq. 6 is obtained by applying the variance propagation law
to the random variable dpg, representing the distance PQ, and the vector
of random variables T = (zp yp x¢ yq), representing the coordinates of the
points P and Q. The relation dpg = ¢g(v) exists, where g is the well-known
function that calculates the distance between two points. Notice that g is
a non-linear function, but it can be easily linearized as dpg ~ Jv, where
J is the Jacobian (the matrix containing the partial derivatives of g with
respect each component of 7). According to the variance propagation law:
Odpg =J - Cy- JT and from here, considering as C, the matrix in Eq. 5, we
obtain the thesis. O

Let us notice that there is a connection between the accuracy of absolute
positions of two points and the accuracy of their relative distance. For
example, if two points P and @ have an absolute accuracy corresponding to



a circular error of ep and eq respectively with a percentage of 95%, than
their relative distance will be affected at most by an error of ep 4 eg in the
95% of the cases. Moreover, we also remark in the following observation
that, in the context of real spatial data integration, only positive values
of covariance are acceptable in order to preserve relative distances among
points.

Observation 1 (Positive covariance constraint). In order to preserve the
relative distance between two position P and Q during the integration and
update process presented in the following sections, the covariance value cpq
between P and Q has to be positive (greater than zero), namely from Eq. 6:

JCQIPQ <oh+ U% (7)

It follows that every time a value of aﬁPQ greater than this limit is obtained

from Eq. 3, it must be substituted with the value 012; + 022. O

The reasoning illustrated above regards only two positions, but its exten-
sion to the network of all points contained in a database is straightforward.
In particular, this procedure must be applied to all possible pair of positions
in the database, altogether there are m = (g) pairs of positions, where n
is the total number of positions. It is easy to show that the procedure ap-
plied considering all the n positions is equivalent to the application of the
procedure to the m pairs of positions in input.

Note that the variance-covariance matrix is symmetric; therefore, only
its upper (or lower) triangle has to be stored, halving the required space.
Anyway, it is clear that the dimension of the matrix for a real database grows
rapidly and its complete storage into a database becomes difficult but not
impracticable. Indeed for each position P with two coordinates (xp,yp),
two variance and (n — 1)/2 covariance values have to be stored. Thus for a
database of n points, requiring to store 2n real numbers, we need to store
additionally 2n+n(n—1)/2 real numbers for the variance-covariance matrix.
However, some optimizations can be adopted, in particular, notice that:

e At the beginning the variance-covariance matrix can be calculated
starting from two metadata describing the metric quality of the dataset:
(e, FR(e)), the error the absolute coordinates and its percentage of
validity, and (eq, F'R(eq)) the same for the relative distance among
points, as shown in the above presented reasoning.

e After the integration with other datasets the variance-covariance ma-
trix will of course change with respect to the calculated one, but in
many cases significant variations are local and so only the portions of
the matrix that have been substantially changed with respect to the



calculated one (e.g. where variations are above a fixed threshold) have
to be stored.

e At a given moment we can also partition the reference space of the
database in regions having homogeneous metric accuracy and store
for each of these areas two metadata describing their metric quality:
(avg(e), FR(avg(e))) of the absolute coordinates and (avg(eq), F R(avg
(eq))) of the relative distance among points.

Given the notion of absolute position, a geometric object is defined as fol-
lows.

Definition 3 (Object or feature). An object O is defined as: O = (ID, Geo,
CL) where:

e ID is an integer representing an unique identifier for the object;

e Geo is the geometry of the object. It is composed of: (i) the set of ab-
solute positions Geo.pos = {Py,..., P,} describing the geometry and
its uncertainty, (ii) the type of geometry Geo.type € {point, curve, sur-
face} and (iii) the representative geometry Geo.rep = {fiz,, fly;s-- -,
e, s Moy, + Which is the point, polyline or polygon used during object vi-
sualisation and querying. In order to handle the case in which only spa-
tial relations among objects are represented (see next section), without
any information about geometries, the empty value for Geo is admit-
ted. It is denoted as (e, and we suppose that geo.pos = Dgeo.rep = 0
and Dgeo.type = null.

e (L is the thematic class to which the object belongs, for example
Building or Road. (]

Notice that on the geometry of each object the following constraints hold:
if Geo.type = point, then |Geo.pos| = |Geo.rep| = 1, if Geo.type = curve,
then |Geo.pos| = |Geo.rep| > 1, if Geo.type = surface, then |Geo.pos| =
|Geo.rep| > 2.

3.2 Representing Logic Observations

For representing geographical information, another kind of observation is
necessary, namely the spatial relations among the objects of a dataset. Sev-
eral types of spatial relations can be considered; in this paper we focus
on topological relations, since they have been deeply studied in literature
starting from the paper of Egenhofer [EF91]| and they are available in every
current GIS product and also open source software, like the well known Java
APIs such as JTS Topology Suite.'.

Lwww.vividsolutions.com /jts/jtshome.htm
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Many different models for the definition of topological relations have
been proposed starting from the well-known 9-intersection model defined
in [EF91, EF95]. In particular, since the objects we are considering have
geometries of different types (point, curve and surface), we adopt the set
of topological relations defined by Clementini et al. in [CFv093]. This is
a complete set of mutually exclusive topological relations, namely a set of
topological relations in which for each pair of objects there is one and only
one possible relation. In the 9-intersection model, the geometry of each
object A is represented by 3 point-sets: its interior A°, its exterior A™, and
its boundary 0A. The definition of binary topological relations between
two spatial objects A and B is based on the 9 possible intersections of each
object component. Thus, a topological relation R(A, B) can be represented
as a 3 x 3-matrix, called 9-intersection matriz, defined as:

A°NB° A°NOB A°NB-
R(A,B)= |9ANB° OANOB 9ANB-
A"NB° A~NOB A NB-

Considering the value empty (@) or not empty (—@) for each inter-
section, many relations can be distinguished between surfaces, curves and
points. In [CFv093], this model has been extended by considering for each
9-intersection its dimension (i.e., 0 for points, 1 for curves and 2 for surfaces),
giving raise to the extended 9-intersection model. Since the number of such
relations is quite high, a partition of the extended 9-intersection matrices has
been defined, grouping together similar matrices and assigning a name to
each group. The result is the definition of the following set of binary, mutu-
ally exclusive topological relations: {Disjoint, Touch, In, Contain, Overlap,
Cross, Equal}. We also consider the relations CoveredBy and Covers, since
they are specializations of In and Contains for which a specific treatment is
necessary during the integration process. The reference set of topological re-
lations considered here is: Ryyp, = { Disjoint, Touch, In, Covered By, Contains,
Covers, Cross, Overlap}.

The semantics of topological relations in Ryep, is provided in Table 1.
The last column presents for each topological relation the pattern grouping
all the corresponding 9-intersection matrices. Notice that the dimension of
the intersection is needed only to discriminate between Cross and Overlap in
the case of pairs of curves; in all the other cases, dimension is not required.
The boundary of a geometry is defined as follows: a surface boundary is
the ring defining its border, the boundary of a curve is composed of its end
points and the point boundary is empty.

In current spatial databases topological relations between objects are
usually derived from their geometries. However, in a MACS database abso-
lute positions, composing the objects geometries, are soft data, namely they
are uncertain. As a consequence, from absolute positions only soft topo-

11



Relation Relation Definition Geometry type | Corresponding
Name (S: surface, C: | patterns of the
curve, P: point) 9-int. matrix
S/S, C/C, _ _
S/o. o8 FFT — FFT — TTT
disjoint (d) | ANB =0 S/P, C/P FFT—FFT—TFT
P/S, P/C FFI'—FFF-TTT
P/P FFT—-FFF—-TFT
S/S FFT—-FTT-TTT
FxT —*Tx-TxT
c/C FxT—Txx—TxT
FTT —xxx—TxT
) o _ FFT —Txx—*xxT
touch (t) (A°NB°=0)A(ANB) #0) s/C FET — FTT —T+T
FTx—Fxx—TxT
C/8 FFT — FTx—-TTT
S/P, C/P FFT—TFT—FFT
P/C, P/S FTF—FFF—TIT
- S/S, C/C, C/S TFF—TFF—TTT
o __ o [e] ) )
in (i) (ANB°=A)A(ANB°) #0) 5 5prc TFF—FFF—TTT
(ANB=A)A(A°NB°) £D)A S/S, C/C TFF-TTF-TTT
coveredBy (b)| 4 go 2 4) c/s T+ F—+TF—TTT
. o I S/S, C/C, S/C TTT —_FFT—FFT
contains (c) (AN B°=B)A(A°NB°) #£0) S/P. C/P TET—FFT—FET
(ANB=B)A(A°NB°)Z0) A | S/S, C/C TTT—FTT—FFT
covers (v) (A°N B # B)
T+«T—FIT—FFT
s/C T+T—TFT —FFT
TxT—-TTT—-FFT
B S/S, C/C TFF—FTF—FFT
equal (e) A=5B P/P TFF—FFF—FFT
dim(A° N B°) = c/s TTT — %% —TIT
cross (r) (maz(dim(A°), dim(B°)) — 1)A S/C T+«T—-T+T—TxT
(ANB)#AAN(ANB)#B C/C OxT —skx—Tx*T
dim(A°) = dim(B°) = S/S TTT —TTT —TTT
overlap (o) dim(A° N B°) A
(ANB)#AAN(ANB)#B C/C 1T —xxx—T T

Legend: The pattern is a string “c1,1¢1,2€1,3 — €2,1C2,2C2,3 — €3,1€3.2¢3,3 ", where
element c; ; corresponds to cell (i,j) in the 9-intersection matriz. If ¢;; = *
then this position is not relevant in defining the topological relation, if c;; =
F/T means that the intersection is (or is not) empty, ¢;; € {0,1,2} means
that the intersection has the specified dimension. Finally, dim(g) computes the
dimension of the geometry g.

Table 1: Definition of the reference set of topological relations between two
objects A and B.
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logical relations can be derived, namely topological relations that are not
precisely defined.

Claim 1. We claim that also topological relations can be considered as ob-
servations useful for representing spatial information. This claim has two
important consequences: (i) observed topological relations among objects of
a dataset have to be stored independently with respect to objects geometries;
(ii) observed topological relations have to be integrated with objects geome-
tries resolving possible inconsistency. O

Moreover, topological relations cannot be considered data subject to
measurement error, since they cannot be measured like the width of a build-
ing, they can only be true, false or unknown. Therefore, we will call them
hard data, to distinguished them from the absolute positions that are soft
data, as explained before. The uncertainty of the knowledge about the topo-
logical relation existing between two objects can be represented by a disjunc-
tion of topological relations, that we know might exists between them. If
we cannot exclude any relations, then the disjunction is composed of all
relations of the considered reference set.

Definition 4 (Hard Topological Relation). Given a complete set of mutu-
ally exclusive topological relations Ry,,,, an instance of topological relation
is defined as: (O1, R, O2) where: Oy, O3 are objects and R € 2%tore is the set
of topological relations that might exist between O and Os (e.g. {Disjoint},
{In, Equal}, { Touch, In, Overlap}, etc.). In particular, sets with more than
one relation represent disjunction of topological relations between O; and
O2. The set R containing all the topological relationships, called universal
relation and denoted with Ry, represents the situation in which the topo-
logical relation between O; and Os is unknown. ]

Consequently as the regards to topological relations three situations may
occur: (i) if |R| = 1 then the relation is known, (i) if R = Ry then the
relation is unknown, and (iii) if |[R| > 1 A R # Ry then the relation is
unknown and could be only one of the relations » € R. In the following,
where there is no ambiguity, a hard topological relation will be denoted
simply as topological relation.

Even if topological relations cannot be derived from absolute positions,
we have to impose a coherence constraint between hard and soft topological
relations. Given two objects A and B the soft topological relation 7,4 that
exists between them can be computed by considering as geometries their
representatives (see Def. 3). For obtaining an effective integration between
soft and hard data, 7, has to be compatible with the hard topological
relation R explicitly stored, i.e. it must be that: ry,p; € R.

We can notice that the number of hard topological relations to be stored
in a MACS database is large, indeed if the database contains n objects, the
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total number of hard topological relations to be stored is n. x (n—1), because
one topological relation has to be defined between each pair of objects. This
could be a large number in real databases, thus some optimizations can be
applied in order to reduce the amount of information that have to be stored.
The idea is to represent hard topological relations among objects using soft
topological relations when possible and store them explicitly only when they
are completely or partially unknown (i.e. 1 < |R| < |Ryl).

First of all, we introduce the notion of support for a position P (Suppp(«))
as the region around P where a given quantity o < 1 of the probability to
find the position P is located. The support of P visualizes the dispersion
index around the representative P. The form of this region depends on
the variance and covariance of P and it is in general an ellipse around the
representative P. According to the independence hypothesis (see Def. 2)
O'%P = agp = op and 0zp,y, = 0, so the support for a position in a MACS
database is a circle with radius 20123 for a ~ 0.95. Given the notion of sup-
port for a position P, an index of maximum dispersion aj; can be defined
which represents the quantity of probability that has to be considered during
the computation of the support for each position in the database. Therefore,
any point outside Suppp(aps) cannot be considered an eligible position for
P. We now extend the concept of support to the geometry of an object.

Definition 5 (Object support estimation). Given an object O = (ID, Geo,
CL) the support of O with respect to the maximum dispersion index
(denoted by Supp(O,ayr)) can be approximated by considering the small-
est buffer region® that contains the support of all its defining positions
O.Geo.pos. The real position of an object cannot be outside its support. [

Condition on objects Soft top. Stored hard Hard
support relation top. relation top. relation
Supp(A, an)NSupp(B,ap) =0 | Adj B - (4, {dj}, B)
Supp(A)aM)msupp(B7aM) 7£® ArB - <A1 {T}vB>
Supp(A, apr)NSupp(B, an) # 0 Ar; B (A, {r1,.,7i,.,rk}, B) | (A {r1,....,m1}, B)
Supp(Avaﬂl)msupp(Bvalﬂ) 7£ 0 Ar B <A7RU7B) <A7 RU7B>

Table 2: Possible cases in the representation of the hard topological relations
between two objects A and B (dj = disjoint).

Thanks to the object support, only topological relations between pairs
of objects (O1,02) that interact (i.e. whose supports are not disjoint) have
to be explicitly stored. Given two objects whose supports are disjoint the
only possible topological relation between them is the disjoint one.

2The buffer operation is a well-known operation available in GIS systems that, given
a geometry g and a ray r, computes the region representing the set of points having a
distance less or equal to r from g.
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In practical cases, the topological relation between two features is known
rather than unknown, so given the coherence constraint previously men-
tioned, we can decide to store only topological relations that contain more
than one element and derive the others from the representatives of the ob-
jects. Thus, given a pair of objects (O1,O2) the possible cases are shown in
Table 2.

Given the definition of soft and hard data a MACS database is defined
as follows.

Definition 6 (MACS database). A Multi ACcuracy Spatial database (MACS
database) is a 6-tuple: DBy,.cs = (DB, Cpp, TY, OBJ, REL, a5, Supppp)
where:

e DB is a set of position index (i.e., 2D points coordinates) of the ab-
solute positions contained in the MACS database. For each position
index P of a position P we store the following tuple: (IDp,xp,yp),
where IDp is the identifier of P, and P= (zp,yp).

e Cpp is the matrix of dispersion indexes (variance and covariance of
coordinates) of DB; we discuss below the problem of storing Cpg.

e TYis a set of available feature classes for the objects.

e OBJ is a set of objects (ID, Geo, CL) (see Def. 3) belonging to the
classes of TY and whose geometry is described through the absolute
positions in DB and Cppg.

e REL is a set of hard topological relations, which are explicitly stored,
since they are not derivable from soft topological relations.

e «j)s is the maximum dispersion index and Note that if two objects has
intersecting geometries, then they must share some positions representing
their common intersections points (for surfaces this constraint is referred to
the boundary) O

We propose three different methods for storing C'pp that corresponds to
three different states of the database:

1. Initially the matrix can be generated starting from two metadata de-
scribing the metric quality of the dataset: (e, FR(e)) of the absolute
positions and (eq, F'R(eq)) of the relative distance among positions, by
applying the procedure shown in Sec. 3.1. Therefore, only the tuple
(0%, 0pq, Supppp) can be stored, to represent the fact that the vari-
ance 0123 and the covariance opg are valid inside the region Supppp.

2. After the integration with another database we may need to store
some values of C'pp, in this case we store only the values that have a
significant difference with respect to a% and opg, we call this matrix
C% 4; in this case we store: (C9p, (0%,0pg, Supppp))-
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3. Finally, after the integration another situation can be obtained, where
in a region, say Rj, some values of variance and covariance are valid
and in another region, say Rs, other values have to be applied; in this
last case we store: (C%B, (U%l,ale,Rl), (J%;Z, opQ,, R2)).

Example 2 (Example of MACS database). Let us consider the database
presented in Fig. 1(a), denoted here as DB .. Supposing that for DBL
the error e for the absolute position is 0.8 meters with a percentage of
validity of 95%, and the error e4 for the relative distance is 0.6 meters with
a percentage of 95%, while its maximum dispersion index «j; has value
0.75 and the region representing its support is briefly indicated as supp.
The representation of this MACS database is reported below. Let us notice
that with DB(id) we denote the elements of the vector DB (position index)
related to the position with identifier id; similarly, with Cpp(id) we denote
the elements (variance and covariances) of the Cpp matrix related to the

position with identifier id.

e DB. DB = {(idoo,2456,9783), ... (idgs3, 2456, 7684), ...}

macs

e DB .Cpp=(0.250.18, Supppp)
e DB .TY = {Road, Sidewalk}
e DB OBJ= {(obj1,0bj1.Geo, Road), (0bja, 0bjs.Geo, Sidewalk)}

- Objl.GBO.pOS = {<DB(’L'd001), CDB(id001)>, ey <DB(id023), CDB(id023)>, N }
— obj1.Geo.type = sur face
— objy.Geo.rep = {2456,9783, ..., 2456, 7684}

e DB!

macs*

REL = {(obj1,{Touch, Disjoint}, objs)}

e DB _ay =0.75

macs

e DB} es-Supppp = Supppp

macs

3.3 MACS database accuracy estimators

In order to evaluate the overall accuracy of a MACS database the following
indexes can be defined. In particular, we introduce an index of metric ac-
curacy and an index of certainty for logic observations. We choose to give
an estimation of certainty for logic observations, instead of uncertainty, in
order to have an index with the same behaviour of the metric accuracy.
Given a position P inside a MACS database DBy,,cs the metric accuracy

of its absolute position is defined as the inverse of its variance 01233. Thus

3Notice that according to Eq. 5 the variance of the position coordinates is the same
and, as we will see in next sections, remain the same also after the integration procedure.
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the metric accuracy of the position P, denoted as accys(P), is defined as:

1
accpyr (P ) = (8)
9p
The average global accuracy estimation of a MACS database DB,,4s con-
cerning the metric observations can be computed as

Z X ach(P,)
accpyr(DBracs) = Pzel’)DBmBm,DBDB| 2
macs-

9)

Moreover, we propose an index for the estimation of the certainty of
the logic observations in a MACS database; in particular, given the set of
topological relations R,, between two objects O; and Oz (R, can contains
one or more relations), the certainty of this information is estimated as:

Ru| ~ |R,|
R,) =
acer(Fn) = T2 T (Ru] - 1

Considering the reference set of topological relations proposed in Sec. 3.2,

we obtain:
_ 77— ‘Rn|

6- |Rn|
Therefore, the certainty is the highest when |R,| = 1, namely when the
relation is known, and it is the lowest when R, = Ry, namely when the
relation is unknown.

The average global certainty estimation of a MACS database DB, 4cs
concerning the logic observation can be computed as follows:

|DBynacs- OBJ|? — | DBpnaes. REL| + ZmeDBmacs.REL ace(r;)
[DBomacs. OBJ?

accr(Ry) (10)

accr(DBpacs) =

(1)

Each known topological relation (i.e. not explicitly stored in REL) has a
unit certainty value, so the first term |DBacs. OBJ|? — | DBpacs. REL| com-
putes the overall certainty of all known relations. To this value the certainty
of all unknown topological relations is added (3, cpp  ppyaccr(ri)). This
global value is then normalised with respect to the total number of possible
topological relations (| DBpacs- OBJ)?), so that the certainty is the highest
when all the relations are known and decreases when more relations are
unknown.

4 Integrating Multi-Accuracy Spatial
Databases

This section deals with the problem of integrating two existing MACS data-
bases. Different situations can occur as shown in Table 3, since the integrat-
ing databases can be completely different or can share absolute positions,

17



and/or objects, and/or relations. More specifically, different application
scenarios can be represented by the integration of two MACS database: (i)
the integration of two size comparable spatial databases describing different
geographic themes but sharing a large part of territory (cases A.* in the
table). (ii) The integration of two databases describing the same geographic
features but on adjacent regions (cases A.* in the table). (iii) The integra-
tion of a massive spatial database with some new soft or hard observation
about known positions or objects (cases B.* in the table). (iv) The update
of the geometries of some known objects in a reference dataset (cases B.* in
the table).

The integration of two MACS databases produces as result a new MACS
database. In order to classify all the situations that is necessary to handle,
we first introduce the general operations needed to integrate two MACS
databases defining its component tasks and then we describe each of them
separately.

Definition 7 (MACS database integration). Given two MACS databases
DB ... = (DB1,Cpg,, TY1, OBJ1, RELy, o, Supppp, ) and DB2 . = (DB,
CpBy, TY2, OBJy, RELy, apr, Supppp, ) their integration produces a new MACS
database DB .. = (DBs,Cpg,, TY3, OBJs, REL3, cpr, Supppp, ) whose com-
ponents can be obtained by applying different operations to the components
of DB} and DB? depending on the interaction that exists between

macs macs?
them, as reported in Table 3, in particular:

DB?

macs

® DB?

macs

= DBjoc
where:

e DBs = metricPosIntegration(DBy, DBs, Cpp,, Cps,)

o Cpp, = metricVarlntegration(Cpg,,Cpp,)

o TY3=TY, &y TYy

e OBJ3 = OBJi ®op; OBJ>

e RELs = logicRelIntegration(ext( OBJy, REL;), ext( OBJ2, REL3))

The function ezt( OBJ, REL) returns the set of all valid relations or relation
disjunctions that either are stored in REL or can be derived as soft relations
from OBJ geometries. O

Notice that, in Table 3 some combinations are not admissible and are
not shown, since the following conditions holds:

OBJ,.IDN OBJs.ID # O —> ext(REL1, OBJ) N ext( RELy, OBJ) # 0
OBJ1.IDN OBJs.ID # 0 = TY1NTY, #* 0
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Description of the cases [ (TYn, OBJ~, DBn, RELQ)

A. Integration of two independent databases
having comparable number of objects and positions

A.0 - Nothing in common (no adjustments of objects (0,0,0,0)
geometries)
A.1 - Some classes in common, but no objects and points (=0,0,0,0)
(no adjustments of objects geometries)
A.2 - Some points in common, but no classes, objects and (0,0,-0,0)
relations (adjustments of interfering objects geome-
tries)

A.3 - Some classes and points in common, but no objects (=0, 0,0, 0)
(adjustments of interfering objects geometry)
A.4 - Some classes, objects and relations in common, but (=0, -0, 0, —-0)
no points (objects update by geometry replacement
and relation integration)

A.5 - Some classes, objects, points and relations in com- (=0, -0, -0, —0)
mon (update by geometry modification and rela-
tion integration)

B. Update of a reference databases DB},
with new metric and/or logic observations represented in DB2,

B.1 - Some classes and points in common, but no objects (=0,0,-0,0)
(OBJ2 = 0) (adjustments of some positions)

B.2 - Some classes and points in common, but no objects (=0,0,-0,0)
(OBJ> # 0) (new objects insertion)

B.3 - Some classes, objects and relations in common, but (=0,0ID2.1ID, 0, —0)
no points (DB2 # () (objects update by geometry

replacement)

B.4 - Some classes, objects and relations in common, but (=0,01ID2.1ID, 0, —0)
no points (DBy = () (objects update by relations in-

tegration)

B.5 - Some classes, objects, points and relations in com- (=0, OID2.1D, =0, —{)

mon (update by geometry modification and rela-
tions integration)

Table 3: Possible cases in the integration of two MACS databases. In the
second column the tuple (T'Yn, OBJn, DBA, RELA) represents the intersec-
tions (TY1NTY2, OBJ;.IDNOBJ2.ID, DBy .IDNDBs.ID, ext(RELy, OBJy)N
EIt(RELQ, OBJ2)>

The preliminary operation that is necessary in order to integrate two
spatial databases is the identification of common classes, objects and posi-
tions. The more the databases are decoupled and come from independent
sources, the more this operation is tough. Many works were presented in
literature dealing with this important issue, denoted as schema integration
and features (point) matching. In this paper, we suppose that the class,
object and position matching has already been solved, since we want to fo-
cus on the impact of the spatial accuracy in the integration process based
on object geometries. Thus, we suppose that common objects in the two
integrating databases share the same ID and the same is valid for common
positions.

The simplest integration tasks are those regarding classes and objects.
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Indeed, the integration of the classes produces simply their union: T'Y7 @y,
TY,; = TY1UTY5, while the integration of the objects is obtained as follows:

OBJ; Dob; OBJy = (12)
{o| (0 € OBJy No.ID ¢ OBJy.ID) V (0o € OBJy A o.ID ¢ OBJ,.ID)} U
{objPosIntegration(o1,02) | 01 € OBJy A oy € OBJy A 01.ID = 09.1D}

where objPosIntegration(o1, 02) is the procedure that identifies which posi-
tions have to be integrated and stored in the final database DB .. as rep-
resentatives for the object with identifier ID = 01.1D = 05.ID. This choice
can be done by considering the object surveying date, namely by keeping
the positions of the most recent object, even its non matching positions,
and discarding instead the non matching positions of the other older ob-
ject. Otherwise a direct decision of the user that supervises the integration
process is necessary.

The next subsections are organized as follows, first the integration
of positions (metric observations) is considered in Sec. 4.1; in particu-
lar, a statistical method for computing the functions metricPosIntegra-
tion(DBy, DB, Cpp,,Cpp,) and metric VarIntegration(Cpp,,Cpp,) is pre-
sented. In Sec. 4.2 we concentrate on the problem of integrating topological
relations (logic observations); in particular, a method for computing the
function logicRellntegration(Ry, Ry) is illustrated. Finally, in Sec. 4.3 we
treat the problem of maintaining the consistency between metric and logic
observations on the integrated database.

4.1 Integrating Metric Observations

This section presents in detail a method for integrating metric observa-
tions contained into two MACS databases. This method is denoted here
as metricPosIntegrationq,., (DB1, DBa, Cpp,,Cpp,), where DBy and DBy
are the set of position indexes contained in the two databases, while Cpp,
and Cpp, are the corresponding dispersion index matrices. This method is
based on the application of the Kalman filter to the vectors of coordinates
VpB,, VbB,, containing the representative of the positions that have to be
integrated, and the matrix of the variance-covariance estimates CbBl and
C'hp, for these positions.

The use of the Kalman filter for performing the integration has the fol-
lowing important advantage. The least squares-based methods are able to
provide the solution that best fit all the information contained in the source
datasets; however, the integration cannot always be performed in one time,
but it can be necessary or convenient to perform sequential integrations in
order to obtain the final result. For instance, this approach is unavoidable
when there are more different sources to integrate or when the size of the
considered area requires to perform multiple integration steps, each one on
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a different sub-area. As stated in [SB97] the Kalman filter can be applied
for updating the least squares estimate as new integration are performed,
in a recursive manner so that it is not necessary to store the previously in-
tegrated observations. Even if the Kalman filter has been designed to work
with dynamic systems in which the estimate depends on both the new ob-
servations and the time change, that filter can also be applied in a static
context, as during the integration of different datasets. In particular, given
the current estimate 23, the Kalman filter normally provides the updated
solution &y 1x41 into two steps: a prediction phase that projects forward
(in time) the current state, providing a priori estimate Tpq1)r based only
on the current estimate, and a correction phase that corrects the a priori
estimate based on the new measurements. In a static system the state does
not change in time, so the prediction phase is not necessary: the a priori
estimate %), corresponds to the current estimate .

Notice that, in order to be effectively integrate two databases, they
should share an area, otherwise there is no possibility to define a real corre-
lation between them and no adjustment propagation is possible. Similarly,
when a new object has to be integrated inside a preexisting database, some
information about its nearest objects has to be provided for correctly posi-
tioning it and adjusting dependent objects. However, the proposed method
is able to deal with all the cases presented in Table 3, in particular for cases
A.0, A.1 and B.4 the following integration functions can be applied.

Observation 2 (Metric integration with no common objects (positions)).
Considering cases A.0, A.1 and B.4 of Table 3, the following integration
functions can be applied:

metricPosIntegration (DBi1, DBs,Cppg,,Cpp,) = [DB1 DBy]

union

OD31 Czero :|
T
Czero CDBQ

metric VarIntegration,,,;,,(Cpp,, Cpp,) = [
where the matriz C,er, contains only zeros.

Proof. This result is due to Obs. 1 and the hypothesis in Def. 2, since we
have no information about the relative distance among objects of the two
integrate databases. O

In other words, the covariance opg between pair of positions P and @),
where P € DBy AP & DBy and QQ € DBy A Q & DBy, is set to zero, as no
information is available about their correlation.

In all the other cases, the vectors Vpp,, Vpp, and the matrices C7, B, and
C'D32 are built in different ways, according to the considered scenario (see
Table 3), as show in the following observation .
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Observation 3 (Initialization of vectors and matrices for the application
of the Kalman filter). Given two sets of position indexes DBy, DBy and
the corresponding dispersion indexes Cpp,, Cpp,, the vectors Vpp,, Vpa,
and the corresponding variance-covariance matrices C’DBl, CbBQ are build
as follows:

e cases A.2, A.3, A.5 and B.1, B.5: first we drop from each DB; (i €
{1,2}) the positions that are not contained in any object geometry of
OBJ3 (see Eq. (12))

Vg, :[DBl \ID DBy DBy Nip DBy DBy \ID DBl]
VbB, :[DBl \ID DBy DB Nip DBy DBy \ID DBl]
[TI1_21-2(Cpp,) Mi-2102(CpB,)  Chrero)
Chp, = |Thn2,1-2(Cpp,) Thn2,102(Cos,)  Chero

CzeT‘O CZE'I"O COO a
COO CZ@TO CZ@T‘O i
Chp, = | Crero Thr2,1n2(Cpp,) Min22-1(Cpog,)
| Crero H2-1,1n2(CpB,) Tla—12-1(Cpp,) |

e case A.4 and B.2, B.3: DBs contains some new positions that do not
exist in DBy or that have to be completely replaced with the corre-
sponding positions in DB1. We suppose that DBy contains also some
information about the accuracy for the relative distance between its
positions and some positions in DBj.

Vpp, =[DB1 \ip DBy DB; Nip DBy DBy \1p DBi]
Vpp, =[DB1 \1p DB2 DBy Njp DBy DBy \p DB]
_H1—271—2(CD31) Czero Czero

C/DB1 = Czero Coo Czero
L Clero Crro Cxo
[ Co A(Ozero) A(Czem)

Chp, = | A(Crero) Min2,1n2(Cps,) in22-1(Cpay)
| A(Crero) TIo—11n2(CpB,) Ha—12-1(Cps,)

where [a b c| represents the vector concatenation, DB; \;p DB; = {p | p €
DB; Np.ID ¢ DB;.ID}, DB; Nip DB; = {p | p € DB; A p.ID € DB;.ID} and
I, 4(C) computes the matriz by keeping only the elements c;; € C where
i€aandj€b. a) can be “1 — 27, which means the row (columns) of
positions p € DBy \;p DB, or “1 N27, which means the row (columns) of
positions p € DBy Nip DBs. Finally, Cw is the matriz containing very high
variance values on the main diagonal and zero elsewhere, and Agp(Crero) is
a matrix containing the covariance between positions i and j, when known
from relative distance measures, or zero otherwise.
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Proof. This result is obtained for the first cases by considering that: (i) the
two databases have to be represented together and for the non-shared objects
we only have one pair of coordinates, thus we simulate to have another pair
of coordinates in the other database, equal to the original one, but with
very low accuracy; (ii) for the shared objects we have instead two pairs
of coordinates with different accuracy and we can populate the matrices
accordingly. For the second cases we can observe that DBs contains some
new points that are not present in DB; or that have to be replaced with
the ones contained in DB;. Therefore, each common position contained in
DB; becomes very inaccurate with respect to the one contained in DBy and
so its variance is replaced with very high values. Moreover, between some
positions in DBy and DB; some information about the accuracy of relative
distance might be known, so this information is eventually inserted into the
matrix C'p  (this is indicated by the use of the A operator). O

Now the application of the Kalman’s filter is straightforward.

Method 1 (Position Integration (Kalman’s filter)). Given the vectors Vpp,,

Vpp, and the matrix Cpp , C'hp, the Kalman's filter is applied as follows:

VpB, = Vpp, + K(VD32 —A- VDBl)

K is named Kalman or Gain matriz and it represents the correction ap-
plied to the measurements contained in Vpp, due to the presence of the
measurements in Vppg,:

K = Chp, - (Cpp, + Chp,) ™" (13)

A is the design matriz which defines the relation between the observations
and the parameters; in this paper we consider only direct measurements and
so it can be omitted.

VDBg =Vpp + K- (VD32 — VDBl) (14)
OJ

From Vpp, we can easily obtain DBs; which represents the result of the
function metricPosIntegrationkaman(DB1, DB2,Cpp,,CpB,).

The filter allows not only to update the coordinates of the position in-
dexes, but also to estimate the accuracy of the resulting database, that is
to update the variance-covariance matrix as follows:

Cppy=(I-K) - Cpp,-(I-K)' +K-Chp, K" (15)

Cpp, is the result of the function metricVarIntegration(Cpg,,Cba,)-
It is clear that in real situation the least squares-based methods cannot
be applied to an entire database, in particular for the costs of inverting the
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involved matrices. In Sec. 3 a concept of threshold for covariance values has
been defined, so that covariance values have to be stored only between points
that really interact, and only for those points it is reasonable to propagate
the integration effects. In the same manner, given the two source datasets,
a selection on the database positions can be made, considering during the
integration process only the positions which are mutually correlated to the
new integrated ones.

4.2 Integrating Logic Observations

This section discusses the problem of integrating logic observations con-
tained into two distinct MACS databases DB. ... DB .. In particu-
lar, referring to Def. 7, we define a method for computing the function
logicRelIntegration(REL1, OBJy, RELy, OBJs).

In order to integrate two set of relations, the significant cases require that
the databases share at least one object. Anyway, the proposed method is
able to handle any possible cases; indeed, different operations are necessary
according to the rate of sharing objects. In particular, if no objects are
shared the known relations are all preserved, while the new relations between
objects of OBJ; and objects of OBJy have to be declared unknown. Actually,
considering the support of these objects some more precise relations can be
derived by computing the relations among their support as shown in the
following observation.

Observation 4 (Objects relations from supports relations). Given two sets
of topological relations R1 and Re among two sets of objects O1 and Oo
respectively, where O1.IDN O9.ID = 0, the following function can be defined
for representing the knowledge about the topological relations existing among
the objects of O1 U Oy. It is obtained by considering the relations between
objects supports:

topFromSupp(Ry1, O1, Rz, O2) = {(01,02,7%) | (01,02) € O1xXO2ATs € Riopo}
where r; is defined as in Fig. 2.

Proof. Considering Fig. 2 and starting from the first conditional block we
can observe that, if the objects supports are disjoint, then for the support
definition (Def. 5) the two objects are disjoint. If they have intersecting
support, o1 is a surface and the oo support is inside 07 without touching oy
boundary, then no points of oy can have a position that is outside o1, thus
09 in 09. The third conditional block shows a situation that is the inverse of
the previous one. Finally, in the last conditional block we say that, if two
surfaces has intersecting supports excluding their support boundary, they
certainly have intersecting interiors, thus the existing relation between them
can be only one of the following relations: in, contains, covers, coveredBy,
equal or overlap. O
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Supp(01,0) disjoint Supp(o2,0t)
TNO

02.GeoType =S A
Supp(o1,Q) in 02 A

Supp(o1,0) disjoint Supp(Foz,a) TNO

01.GeoType =S A
01 contains Supp(02,00) A

Supp(do1,0) disjoint Supp(oz,0) _lNO

01.GeoType =S A
02.GeoType =S A
(Supp(01,00) \ Supp(Fo1,00))
intersects
(Supp(02,0) \ Supp(Jo2,0))

r,={in, contains, coveredBy, covers,
equal, overlap, cross}

Figure 2: Algorithm for deriving the topological relation between two objects
starting from the relation between their supports.

Method 2 (Relation integration). Given two distinct MACS databases
DB .. DB? ... the integration of the sets of topological relations (or
logic observations) that are known in each of them is represented by the
function logicRelIntegration(RELy, OBJy, RELy, OBJs). In order to obtain
this result we first compute the complete set of relations known by DBL
(DB2,,.s), denoted as Ry = ext(RELy, OBJ;) (Ry = ext(RELy, OB.Jy)), and,

starting from them, we compute Rj3 as follows (referring to Table 3 for the
cases definition and to Table 1 for relation symbols):

e in cases A.0, A.1, A.2, A.3 and B.1, B.2 no objects are shared by the
integrating databases DB} and DB?

macs maCS:
R3s = Ry U Ry U topFromSupp(Ry, OBJy, Re, OBJ3)
where topFromSupp(Ry1, OBJy, Ry, OBJs) has been introduced in Obs. 4.

e in cases A.4, A.5 and B.3, B.4, B.5 there are some common objects
between the integrating databases, thus the function works differently:

R3 =(Ry \p R2) U (R2 \1p R1) U
topFromSupp(Rl, OBJ; \ID OBJo, Ry, OBJ \ID OBJ;) U
me'rgeTopRel(Rl, OBJy Nip OBJy, Ry, OBJy Nip OBJl)

where (R; \ip Rj) = {{(a,b,73) | (a,b,rz) € R; A {a,b,7y) ¢ R;} and
(OBJZ' \ID OBJj) = {0 | o€ OBJ; No.ID & OBJ]'.ID}.
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Finally, the function mergeTopRel(R1, O1, Ra, O2) is defined as follows:

mergeTopRel(Ry, 01, R, 02) = {{01,02,7) | 01 € O1 N 02 € O3A
(01,02,71) € R1 A {01,02,12) € Ro Ar =71 N1a)} (16)

The result of the function logicRellntegration(REL,, RELy) = REL3 is ob-
tained by considering the entries of R3 that represents disjunction of rela-
tions or empty relations. Il

Notice that, the mergeTopRel function can produce empty relations (as
result of the intersection r; N rg2); these empty relations represent inconsis-
tencies between the integrating databases and have to be solved by human
intervention.

The human intervention is necessary whenever the logic observations
contained in the source databases are contrasting. However, if the cost of
human intervention is too high or the user is not able to determine the
right relation for the final database, then some automatic procedures can be
implemented in order to convert the inconsistency into a loss of accuracy.
For this purpose we consider the proximity relationship among topological
relations first introduced in [EM95] for the definition of conceptual neigh-
borhoods starting from the the 9-intersection matrices. This definition has
been extended in [BCP05] in order to be applied to relations defined by
means of sets of 9-intersection matrices, as those defined in Table 1. In
particular, the distance between two relations is computed considering the
minimum distance between the corresponding 9-intersection matrices. In
this report we adopt the same approach for defining, given a topological
relation rel; between specific object types (for example, between surfaces),
the set of relations that are near to it. We say that a topological relation
rely is near another relation rels, if rels is characterized by a matrix with
the minimum distance (variation) with respect to the matrix characteriz-
ing rely. The following definition formally specifies the proximity between
topological relations. Fig. 3 illustrates proximity between topological rela-
tions calculated on the basis of the type of the involved objects. An arc
is depicted between two topological relations if they are near and the label
on each arc denotes the distance between them. Let us notice that when a
topological relation have several matrices associated to it, each of these can
have different distances with respect to the matrix of another relation but
for simplicity only the minimum distance is reported in the diagram.

Definition 8 (Topological relation proximity). Given two topological re-
lations rel; and rels both defined between objects of type t; and to; and
represented by the set of 9-intersection matrices M; and Ma, respectively.
We say that rely is near rels if

distance(rely, rely) = min(distance(rely,r) | v # reli A1 € Riopo)
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where distance() calculates the distance between two topological relations as
the minimum number of discordant elements between two matrices m; € M,
and mo € Ms.

S/s s/C S/P

A
1

| Touch |<L>| Contains

| Covered_by | | Covers |
A A A A 1
1 3 3|1 Y
| In | | Equal | | Contains |
c/s C/P
Disjoint
A
1
To‘lzch
1 1 2 2

| Touch |<L>| Contains

\ 4
In \ 4 v
| Covered_by | | Contains |<L>| Covers |
P/S P/C P/P
2 2 2 2 1
v
Touch |<L>| Contains Touch |<L>| Contains @

Figure 3: Proximity between topological relations classified on the basis of
the type of the involved objects. Let us notice that for not cluttering the
diagram, the relations QOverlap and Cross between two curves have been
collapsed into a unique box because they have the same distance from the
other relations. The distance between them is 1 if we consider the dimension
of the intersection between their interior.

If this kind of approach can be admissible for the user, we can as-
sume that when the topological relations in the source databases are not
compatible but are near with respect to Def. 8, then the resulting re-
lation becomes the union of the original ones. Formally we can ob-
tain this result by substituting the intersection r; N ry in Eq. 16 with
near(ry, 01.Geo.type, 02. Geo.type) N near(ra, 01. Geo.type, 02. Geo. Type), where
near(r,t1,t2) computes the set of relations that are near to r when objects
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of types t1 and t9 are considered.

4.3 Integrating Metric and Logic Observations

The complete integration of two MACS databases requires to combine metric
and logic observations together. In particular, in Sec. 3.2 we have introduced

Operation[ Syntax [ Precondition [ Semantics
positions a—«—b | AP : P € a.Geo.pos, identify the pair of positions
snapping Suppp (a) N Supp(b, ) # OV (P’, Q') to snap (they can be
3Q : Q € b.Geo.pos, existing positions or positions
Supp(a, ) N Suppg (o) # 0 generated by projection), substitute
Q@' with P’ in b and consider Q’ as a
new observation of the position of P’
to be integrated.
one a—<«—1b | asfora—«—b as for a —« b, but only one
position substitution is admitted.
snapping
two a —«2b | asfor a —« b and: as for a —« b, but exactly
positions 3P : P € a.Geo.pos, two subsequent positions must be
snapping Suppp () N Supp(b, @) = OV snapped.
3Q : Q € b.Geo.pos,
Supp(a, @) N Suppg(a) =0
right a—=b | YQ € b.Geo.pos : for all Q; € b.Geo.pos identify the
positions Supp(a, ) N Suppg (a) # OA pair of positions (P;, Q;) to snap,
snapping VP € match(a,b) : substitute @; with corresponding
Supp(b, ) N Suppp(a) # 0 P; € a.Geo.pos and consider posi-
tions Q; new observations of the po-
sitions P; to be integrated.
all a=3&=b | VP € a.Geo.pos : identify the pairs of positions
positions Suppp (a) N Supp(b, ) # OA (P;, Q;) to snap (no positions of
snapping VQ € b.Geo.pos : a or b have to remain dangling),
Supp(a, ) N Suppg (o) # 0 substitute each @; with correspond-
ing P; and consider @; new observa-
tions of the positions P; to be inte-
grated.

Table 4: Positions snapping operations. match(a,b) returns all the positions
of a that have a matching with a position of b or that are between two
matching positions.

the coherence constraint between soft topological relations, which are those
derived from object representatives, and hard topological relations, which
are those explicitly stored. Moreover, in the same section we have established
that for reducing the quantity of stored information, when the topological
relation is known, it can be derived directly from the geometries of the
objects representatives without additional information.

However, in general, after the integration operations presented in the
previous sections a check phase is necessary in order to verify that the co-
herence constraint is satisfied in the resulting MACS database DB2 ... This
means that for each pair of objects of OBJ3 the soft topological relation be-
tween them has to be compute, denoted as rs,r, and compare it with the

relation eventually stored in REL3, denoted as R. If 7,3 € R then the
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coherence constraint is satisfied, otherwise it is necessary to modify the po-
sitions defining the objects geometries, in order to obtain a new situation
where the 7,4 changes and becomes one of the relations in R. Indeed,
we always suppose that the logic observations have priority with respect to
metric observations.

The remainder of this section analyses how metric observations compli-
ant with a topological relation rel; have to be transformed in order to be-
come compliant with another desired topological relation rels. In doing so,
let us notice that some transitions from one topological relation to another,
like the transition disjoint — touch, require that two distinct positions of
the two objects in relation becomes the same position. We denote this case
with the term positions snapping (—< ). For other transitions the inverse
operation is required, i.e. a shared position has to be transformed into two
distinct ones. We denote this operation as positions decoupling («—— ). Fi-
nally, in some cases the switch of location for a position with respect to a
curve or surface is necessary. This operation is denoted as positions switch-
ing (). In Tables 4, 5 and 6 the operations semantics and the necessary
preconditions for their application are summarized.

Method 3 (Alignment of positions with respect to logic observations).
Given an integrated MACS databases DB> ... and the initial databases
DB ... and DB? .. the alignment of positions with respect to logic ob-
servations is an iterate process that is executed until the following condition

holds:

{(01,02) ’ (01,02) € OBJ3 x OBJ3 A 01 Tsoft 02 A (17)
<01,02,R> € REL3 A Tsoft g_f R} =0

The core algorithm, that is reiterated, is composed of the following tasks:

e for each consistency violation between a pair of objects (01, 02), the
necessary relation transition r4 — rp is identified;

e for each relation transition its applicability is evaluated; in particular,
some transition are not admitted a priori, some others require opera-
tions that, in specific cases, could not be applied (Tables 4-6 in this
section and Tables 7-15 in Appendix);

e for each relation transition that is not applicable, since its precondi-
tions are not satisfied, the user intervention is requested;

e for each relation transition r4 — rp that is applicable and such
that 01 T 02 in DB .. (i € {1,2}) and 75 = rp, we augment
the accuracy of the relative distance among all the position pairs
(P;, Qi) € 01.Geo.pos x 03.Geo.pos having intersecting supports by

setting the covariance equals to the value (0% + U?g) /2 (see Eq.6) in
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the corresponding matrix C'pp,. Then we repeat the computation of
DBs =metricPosIntegration yaman(DB1, DBa, Cpp,,Cpp,)-

e for each relation transition r4 — rpg that is applicable but does not
satisfy the previous condition, it is necessary to modify some pairs
of positions (Pj,Q;) € o01.Geo.pos x 03.Geo.pos having intersecting
supports, by applying the operations requested by the transition, as
shown in Tables 7-15 in Appendix.. This leads to the definition of a
new DB; and to a new variance-covariance matrix C DB, that needs to
be integrated with DB3 in order to obtain the final database: DBfy,q =
metricPos Integrationy,, .,(DBs, DBy, Cpp,, CDB’s)' O

Notice that, in Tables 7-15 some allowed transitions involve pairs of
relations that are not near. These cases are considered since the transition
can be obtained with a local geometry modification, i.e. by applying a
minimal change on objects positions.

The main idea underlying phases 4 and 5 is: the positions of the objects
involved into a particular topological relation shall become a rigid body
that can move in space but in a uniform manner: they have to maintain
their relative reciprocal positions in order to keep the effect of the previous
transformations. This is the aim of the covariance correction the is proposed
in phase 4 and in the operations eventually applied in phase 5.

Notice that our approach is different with respect to the one presented
in [Hop08] [HKO08]; first of all, we consider the integration of both metric and
topological information, while they suppose to have only one set of topo-
logical relation that has to be valid on the integrated geometry. We cannot
use sets of equations representing the topological relations that are valid
in the two source datasets, because if they contains discordant information
the method cannot find a solution that satisfy all the equations. Moreover,
our method consider not only single relation, but also sets (disjunctions) of
topological relations between objects, so the number of necessary equations,
that have to be added into the system in the approach of [Hop08][HKO8],
can increase considerably making the integration impracticable. Finally,
thanks to the role covered by the accuracy of the relative distances, most of
the topological relations that are valid before the update, remain satisfied
also in the integrated database: typically in practice very few relations are
violated after the integration process.

In oder to prove that the proposed operations (shown in Tables 7-15)
are a sufficient condition for obtaining the needed relation transitions, we
show below the proof of this property for the transitions that start from a
disjoint relation. In a similar way the same property can be proved for other
transitions.

Theorem 1 (Operations for disjoint transitions). Let us consider the first
part of Table 7, showing the allowed transitions starting from the disjoint
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Operation[ Syntax [ Precondition Semantics

mn a—"b 3P : substitute P with two new positions

positions P € a.Geo.pos, Q1 € a.Geo.pos and Q2 € b.Geo.pos,

decoupling P € b.Geo.pos where the distance between @1 and
Q2 is the minimum representable dis-
tance € such that Q2 in a and
Q1 in b. Finally, the accuracy of the
relative distance between Q@1 and Q2
is maximized.

. nr, in in ..

n left po- | a<—=10 as for a «—— b as for a «—— b, but requiring that

sitions de- Q1 tn b and Q2 disjoint a.

coupling

out po- | a Lut g as for a — = b as for a < b, but requiring that

sitions Q1 disjoint b and Q2 disjoint a

decoupling

cross po- | a b as for a —— b as for a <> b, but requiring that

sittons a cross b after decoupling.

decoupling

all out | a t*:i b as for a —— b as for a <% b (or a LN b), but

(in  left) requiring that all sharing positions

positions are decoupled and that, after the

decoupling operation, the relation a in b (or

a disjoint b) is satisfied.

Table 5: Positions decoupling operations. (The distance € could be a pa-
rameter set by the user, however it has always to be significantly lower w.r.t.
the average error of absolute coordinates).

Operation [ Syntax [ Precondition [ Semantics
in positions in as for @ — b it is the combination of a —« b
=b .
switching = followed by a «-— b.
out positions out b as for @ — b it is the combination of a —«— b
—
switching 4= followed by a 24t
cross positions cr it is the combination of a —« b
- az=b as for a -« b or
switching followed by a «<—— b.
in
all in positions | a=,; b | asfora—£1b it is the combination of a —&= b fol-
itchi n
swiching lowed by a «<—= b
out
all out posi- | a =2, b | asfora—£0b it is the combination of a —&= b fol-
; itchi out
tions switching lowed by @ <= b

Table 6: Positions switching
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relation. Each column, representing a given target relation rel, ., reports
for each type pair ti,ts the operations that represent a sufficient condition
to obtain, starting from two disjoint objects of types t1,ts, the target relation.

Proof. We present the proof for the first column of the table, the proof for
the other columns follows a similar reasoning:

Transition (a disjoint b) — (a touch b), for type pairs (S,5), (S,C),
(C,C) and (C,S): according to Table 1 the pattern for disjoint in these
cases is FFFT — FFT — TTT. If we apply the required operation a —+« b,
when objects types are (S,5), then the geometries of a and b is locally
modified, so that after the modification a and b share a position. As a
consequence, the intersection da N db becomes not empty and the pattern
becomes: FFFT — FTT — TT7T, which is the pattern of the touch relation
for types (.5, S). When objects types are (S, C), either da N b becomes not
empty or da N b° does, thus the pattern becomes FFT — FTT — TTT or
FFT-TFT-TTT, which again are patterns of touch. A dual reasoning can
be applied when objects types are (C,S). When objects types are (C,C),
the required operation is da —+«— 0b, or da —+«—1 b, or a —+«—1 0b. As a
consequence, either da N b becomes not empty or da N b° (a° N Ab) does,
thus the pattern becomes FFT — FTT — TTT or FFT — TFT —TTT
(FTT — FFT —TTT), which again are patterns of touch.

Transition (a disjoint b) — (a touch b), for type pairs (S, P) and (C, P):
according to Table 1 the pattern for disjoint in these cases is FFT —FF1T —
TFT. If we apply the operation a —«— b (0a —« b), then da N b becomes
not empty and a~ N b becomes empty, thus the pattern becomes FFT —
TFT — FFT, which is the pattern of touch.

Transition (a disjoint b) — (a touch b), for type pairs (P, S) and (P, C):
the reasoning in this case is similar to the previous one. O

5 Properties of the Integration Process

This section presents some properties of the integration method proposed in
Sec. 4. First of all, we describe the trend of the coefficients of the Kalman
matrix in relation to the different accuracies of the two source databases.
Then we discuss the central role covered by the accuracy of each measure
during the integration. We show that the shift of a position from its original
location depends not only upon the value of the integrated measures, but also
on the accuracy of these measures and its correlation with near positions.
Finally, we state that the accuracy of the integrated metric and the certainty
of the logic observations are always increased after the integration process
or at least coincide with the accuracy and certainty of the most accurate
source database.
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Property 1. Given two MACS database DB ... and DB? ., that have to
be integrated, the coefficients of the Kalman matrix associate to each abso-
lute or relative measure in DB2 - a value proportional to its accuracy and
normalised with respect to the overall accuracy of the two source databases.
In particular, the coefficients of the Kalman matrix related to xp assume a

value as follows:

e The coefficient & related to the variance of P has a value between

0 and 1.

Tp,xTp

a€[0,0.5) if DB? ., <acc DB

macs

={ a=05 if DB, ,.; =acc DB (18)

macs macs

a € (0.5,1] if DB, >acc DB!

macs

rp,rp

e The coefficients k;p, ., for Q@ # P related to the covariance between
the x coordinate of P and the x coordinate of another point () have a
value between -1 and 1.

be[-1,0) if DB, <ace DB}

macs

b=0 if DB2, .. =qcc DB (19)

macs macs

be (0,1 if DB, >acc DBL

macs macs

k

Tp,xQ —

e The coefficients ks, 4, for Q # P corresponding to the covariance
between the x coordinate of P and the y coordinate of another point
Q are zero.

From these characteristics of the coefficients of the Kalman matrix, we
can state the first property of the integration process.

Property 2. Given two MACS databases DB. .. and DB? . that have to
be integrated, the shift of a position P in DB increases if the accuracy

macs
of P in DB?,,., is greater than the accuracy of P in DBL .

Proof. Given the vectors Vpp, and Vpp, built as explained in Obs. 3, the
vector of position indexes Vpp, for the integrated database DB2,, . is ob-
tained using the Eq. 14 as follows:

VpB;, = Vpp, + K - (VD32 — VDBl)

Let us suppose for simplicity that inside the two source databases there
are only two positions P = (zp,yp) and Q = (zq,yg). The shift of the
integrated = coordinate of position P, denoted as m?l’;, from its original value

. 1 .
in DB,,,., becomes:

3 1 2 1 2 1
Tp = Tp = kopap(®p — Tp) + kapag (20 — 2q)
where k; ; is the coefficient of the Kalman matrix in row ¢ and column j.
The terms related to the y coordinates can be eliminated since the = and y
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coordinates are considered mutually independent and so the correspondent
elements in the Kalman matrix is zero. Independently from the measure-
ments contained in DB? . (z% and :1:22), the shift of 3, from its original
value 33}3 directly depends upon the coefficient k. ,, and kx},’m of the
Kalman matrix. Property 1 states that more the accuracy of the position
P in DB?, .. increases with respect to the accuracy of the same position in
DB .., more the value of the coefficients k;, ., and kzp.zq tend to one,
determining a greater shift of Jjg that can eventually become equal to x%.
Let us notice that the shift of P is due not only to a direct update of its
measure in DBy, but also to the propagation of the update of other posi-
tions, in a measure that directly depends upon the accuracy of the relative

distance between them. O

Example 3. Let us suppose that DB = contains two positions P =

(100,100) and @ = (123,123) that have both an absolute accuracy e of
0.8 meters (with Fr(e) = 95%), while their relative distance has an accu-
racy of 0.6 meters (with Fr(eg)= 95%). Moreover, DB2,, . contains another
measure for P = (103, 103) that has to be integrated with the one contained
in DBL ... We perform the integration between the measures of the two
source databases varying the error e(P?) of P in DB? ., and we analyze
the different shift of P and @ in DB .. from their original positions in
DB ... The results of this test are reported in the graph of Fig. 4. The
graph clearly illustrates that grater is the accuracy of zp in DBy (smaller
is its circular error), grater is the shift of both points after the integration
process. Moreover, even if the trend for the two points is similar, the shift of
P is greater because it is directly involved in the integration process, while

the shift of @ is due only to the propagation of the P integration.

Property 3. Given the MACS database DB .. obtained by integrating
two source MACS databases DB. ... and DB?,,.., the accuracy of each in-
tegrated measure in DB3 .. is not smaller than the accuracy of the corre-
sponding measure in the two source databases. In particular, if the accuracy
of a measure in one database is very high, then the corresponding measure
in the other database does not influence the integration process and the

resulting accuracy corresponds to the greatest one.

Proof. The metric accuracy of a position P is defined in Eq. 8 and it inversely
depends on the position variance. The variance for the integrated position
Pin DB . is computed using the Eq. 15 as:

macs
Cpp, = (I —K) Cpp, -(I-K)"' +K-Cpp, - K"
Let us suppose that DB2 . contains a very accurate measure for P, then

from Property 1 it results that the coefficient k;, ,, (or equivalently ky, )
of the Kalman matrix has a value near one. From this, it follows that the
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Figure 4: Shift of the positions P and @ with respect to their original mea-

sures in DB .. considering different absolute error e(P?) for P in DB? ...

resulting variance value in C'pp, is very closed to (at most coincides with) the
element contained in C'pp,, namely to the most accurate one. Conversely, if
DB?2,,. contains a very accurate measure for P, then the coefficient k., .,
of the Kalman matrix has a value near zero and the variance value in Cpp,
for P is very closed to the one in Cpp,. In the other cases, if the two
source databases contain both relative accurate measures for P, the diagonal
position kp p of the Kalman matrix contains a positive but smaller than one
element. This element multiplied with the elements of the original matrices
produces values that are smaller than the original ones; moreover, their sum
is smaller than each original value as the coefficient of K are normalised
with respect to the overall accuracy of the two databases (the sum of the
two original variances). Finally, as the variance of each measure decreases
at each iteration, the quality of the integrated position always increase. []

Example 4. Let us consider again the two MACS databases in Example 3
and perform the integration between them taking into account the new value
of absolute error calculated after the integration process. The error values
for the integrated measures is reported in the graph of Fig. 5, considering
different values for the absolute error e(P?) of the position P in DB2,,...
We can notice that as P is more accurate, then the error of the integrated
measures decreases. Moreover, if the error e(P?) is equal to the error e(P1)
of P in DB; (0.80 meters), then the integrated measure has an error that
is smaller then the original ones: the integration of two measures with the

same accuracy produces a new measure that is more accurate than the two
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source ones. Finally, if the measure of P is very inaccurate, then it has
not effect during the integration process also as regards to the error of the
integrated measure, indeed as e(P?) increases the resulting error for the
integrated measure settles to a value near the original error in DB .. (0.80
meters).
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Figure 5: Variation of the absolute error for the integrated positions P
and Q in DB2,,., with respect to the value in DB, .., considering different
absolute error for P in DBs.

Property 4. The average global accuracy concerning the metric observa-
tions of an integrated MACS database DB, is always grater than the av-

erage global accuracy concerning the metric observations of both the source
databases.

Proof. The proof directly derives from the definition of average global accu-
racy of metric observations given in Eq. 9 and from the previous property.
In particular, the global metric accuracy of a MACS database is equal to the
average of the accuracies of each point and as these accuracies increase at
every integration, then also their average increase at every integration. [

Property 5. Given a MACS database DB .. obtained by integrating two
source MACS databases DB. .. and DB? .., the certainty of each logic
observations does not decrease during the integration process, it can only

remains unchanged or increases.

Proof. The certainty of each logic observations is defined in Eq. 10. Discard-
ing the optimization mentioned at the end of Sec. 4.2, given two disjunction
of topological relations R. and R2, their integration always produces a set
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of relations R? whose cardinality is smaller than the cardinality of both the
original ones, or equal to the smallest ones (|R3| < min(|RL|, |R2|). There-
fore, putting this new cardinality into the certainty formula, we obtain a
certainty index that is equal to the grater one or is grater than both the
original ones. O

Property 6. The average global certainty concerning logic observations of
an integrated MACS database is always grater than or equal to the maximum
average global certainty of the source databases.

Proof. The average global certainty concerning logic observations is defined
in Eq. 11. First of all, we can observe that the number of objects contained
into the integrated database is always grater or equal to the number of ob-
jects contained in the two source databases. Moreover, some of the unknown
relations can become known during the integration process but none of the
known relation can become unknown. Finally, as proved above the certainty
index of the unknown relations augments at each integration. O

From the presented properties we can conlude that the proposed integra-
tion process does not decrease (and usually increases) the overall knowledge
of a certain geographical area represented in a MACS database with respect
to both metric and logic observations.

6 Conclusions

The integration of spatial data is an important activity, especially in an
open and distributed environment, such a Spatial Data Infrastructure (SDI).
Spatial data is inherently characterized by some accuracy parameters that
have to be considered during an integration process. Unfortunately, it is
not a common practice to attach accuracy information to the spatial data
stored inside a spatial database.

In this paper we proposed a model for representing a multi-accuracy
spatial database, called MACS, and we discuss how accuracy values can
be derived from the commonly available information stored inside a spa-
tial database. Then we proposed a methodology for integrating two MACS
databases containing metric and logic observations and we discussed how
these two kind of information can be combined and kept consistent in the
resulting database. The proposed methodology allows not only to integrate
metric observations and maintaining them consistent with the desired topo-
logical relations, but also provides an accuracy estimate for the resulting
database. Finally, some properties of the proposed integration procedure
are presented, they principally illustrate how considering the accuracy of
measures can affect the resulting integrated dataset and its resulting accu-
racy.
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A Appendix

This section contains the tables explaining all the possible transitions be-
tween topological relations. In each cell is reported in round brackets the
distance between the two considered topological relations (“req. d” means
that the transition is allowed only when the distance between the matrix
of the current scene and the requested relation rel is d) and below the op-
erations that have to be applied in order to obtain the requested relation.
The symbol ND indicates that the target relation rel is not defined for the
considered geometric types, while NA indicates that rel cannot be obtained

without a human intervention.

ads«xb—arelb

rel

d*7* t*,* ’i*,* [ [ Cx % [ T, % [ Ox % [ b*,* [ Vs, x
1 4
s O B
a—<—b NA NA NA ND az=b NA NA
1 2
sl O B
a——b ND NA ND az=b ND ND NA
2 2
nl @ @
a—<—b ND a=, b ND ND ND ND | ND
1 2
s @ @
a—<—b NA ND ND az=b ND NA | ND
@ O [ O
da —<+1 b NA NA NA a=b | a—+2ob | NA NA
dC,C’ or
a —+«—1 0b
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s @ @
a—<—b a2, b ND ND ND ND ND | ND
g @ )
PCl g —— b a® —&=b ND ND ND ND ND | ND
y ®)
PP ND ND ND a==b | ND ND ND | ND

Table 7: Transitions between topological relations: case disjoint — rel.

Refer

[A1t93]

[BCPO5)]

ences

R. B. Altman. A probabilistic algorithm for calculating struc-
ture: Borrowing from simulated annealing. In Ninth Annual
Conference on Uncertainty in Artificial Intelligence, Washing-

ton, D. C., 1993. Morgan Kaufman.

Alberto Belussi, Barbara Catania, and Paola Podesta. Towards
topological consistency and similarity of multiresolution geo-

38



aex+b—areld

. rel
o d*,* [ t*,* [ i*,* [ Cx % [ T, x [ O % [ b*,* [ Vs %
ess| NA | NA|NA|NA[ND| NA ®) )
a——b a——b
2) 3) (3)
e NA NA | NA | NA | NA (
e a 2% | 9a <% b | 9b 2L a
epr| @ |Inp|ND|ND | ND | ND ND ND
a——b
Table 8: Transition between topological relations: case equal — rel.
atixb—areld
‘ rel
o s [ tax | Cox | €xx | Tax | O0xx | bix | vk
tss| U INA| NA | NA| ND (3) NA NA
ing,
ate==2b a—=b
tse| U Inp| Na | np | (ed ) ND ND (req. 1)
ate==b a5 b a Lt p
ts p gﬂ ND ) ND ND ND ND
ing,
ate==b a—=b
tes| B Ina| np | np | (@D ND (rjg‘ D1~
ate=3b a<b bLL g
tee| D Ina| Na [ Na| D ) NA NA
aEeE=b a<<Sb | a—eab
ter| B x| @ ND | ND ND ND ND
ae==3b a L p

Table 9: Transition between topological relations: case touch — rel.

[BLR"04]

[CCHF+93]

[CFvO93]

graphical maps. In GIS ’05: Proceedings of the 13th annual
ACM international workshop on Geographic information sys-
tems, pages 220-229, New York, NY, USA, 2005. ACM.

B. Bhanu, R. Li, C. Ravishankar, M. Kurth, and J. Ni. In-
dexing structure for handling uncertain spatial data. In Sizth
International Symposium on Spatial Accuracy Assessment in
Natural Resources and Environmental Sciences, 2004.

Maria A. Cobb, Miyi J. Chung, III Harold Foley, Frederick E.
Petry, Kevin B. Shaw, and H. Vincent Miller. A rule-based
approach for the conflation of attributed vector data. Geoin-
formatica, 2(1):7-35, 1998.

Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom.
A small set of formal topological relationships suitable for end-
user interaction. In S§D93: Proceedings of the 3rd International
Symposium on Advances in Spatial Databases, pages 277-295.
Springer-Verlag, 1993.

39



atxxb—arelb

rel

d*,* t*,* Cx % [ Cx [ T, % Ox % [ b*,* [ Vs *
is.s | NA NA | NA | NA ND @) ) NA
a=b a——b
ics | NA NA | ND | ND 2) ND &) ND
a——b a——b
ip,s E)i)t ) ND ND ND ND ND ND
a=2b b—t=a
1) (1) (1)
) out out
ic,c NA NA NA | NA ey N P NA
a® —<+—1b° | a—<2b
ip,C E)i)t &) ND ND ND ND ND ND
a+——b | a——0b

Table 10: Transition between topological relations: case in — rel.
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Table 12: Transition between topological relations: case cross — rel. bp
(ap) is the set of representative points corresponding to the positions used
for representing the geometry of b (a).
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Table 13: Transition between topological relations: case overlap — rel. bp
(ap) is the set of representative points corresponding to the positions used
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Table 14: Transition between topological relations: case coveredBy — rel.
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