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Abstract. In the last years many countries have developed a Spatial Data Infrastruc-
ture (SDI) to manage their geographical information. Large SDIs require new effective
techniques to continuously integrate spatial data coming from different sources and char-
acterized by different quality levels. This need is recognized in the scientific literature
and is known as data integration or information fusion problem. A specific aspect of spa-
tial data integration concerns the matching and alignment of object geometries. Existing
methods mainly perform the integration by simply aligning the less accurate database
with the more accurate one, assuming that the latter always contains a better represen-
tation of the relevant geometries. Following this approach, spatial entities are merged
together in a sub-optimal manner, causing distortions that potentially reduce the over-
all database quality. This thesis deals with the problem of spatial data integration in a
highly-coupled SDI where members have already adhered to a common global schema,
hence it focuses on the geometric integration problem assuming that some schema match-
ing operations have already been performed. In particular, the thesis initially proposes a
model for representing spatial data together with their quality characteristics, producing
a multi-accuracy spatial database, then it defines a novel integration process that takes
care of the different positional accuracies of the involved source databases. The main
goal of such process is to preserve coherence and consistency of the integrated data and
when possible enhancing its accuracy. The proposed multi-accuracy spatial data model
and the related integration technique represent the basis for a framework able to sup-
port distributed geo-processing in a SDI context. The problem of implementing such
long-running distributed computations is also treated from a practical perspective by
evaluating the applicability of existing workflow technologies. This evaluation leads to
the definition of an ideal software solution, whose characteristics are discussed in the last
chapters by considering the design of the proposed integration process as a motivating
example.
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Introduction

In recent years the amount of available spatial data has grown considerably: tech-
nological advances in acquisition methods and tools have made it possible to collect
an unprecedented amount of high-resolution and high-quality spatial data, while
the proliferation of Internet-based technologies has allowed different organizations
to share these data for paying off acquisition and maintenance costs. For instance,
modern satellites produce about one terabyte of data per day that can be used by
many organizations in addition to the collecting one [56].

A set of organizations interested in maintaining and processing a certain por-
tion of spatial data can build a so virtual organization. The coordination of these
new entities is possible thanks to the development of a common spatial data in-
frastructure, that is becoming a solid reality in many countries. A Spatial Data
Infrastructure (SDI) is a technological infrastructure through which several orga-
nizations with overlapping goals can share data, resources, tools, and competencies
in an effective way. Due to its nature, an SDI is usually government-related and
regulated by precise rules. In Europe, the development of a global SDI is driven
by the INSPIRE project [2] that has been translated into a European directive.
These unavoidable changes pose many additional problems regarding the integra-
tion, storage and processing of spatial data, as well as regarding the development
of supporting software systems. This thesis faces two challenges that usually af-
fect an SDI: (i) the integration of spatial data coming from different sources and
characterized by different quality levels, in particular for what regards positional
accuracy, (ii) the development of a framework for supporting the construction and
maintenance of a distributed and integrated global SDI database.

1.1 Context Overview

This section introduces the context in which the thesis has been developed. In
particular, Sec. 1.1.1 describes the concepts behind the integration of spatial data
characterized by different quality levels, while Sec. 1.1.2 highlights the techno-
logical issues related to the development of an infrastructure for supporting a
distributed integration framework.
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1.1.1 Spatial Data Integration

As geographical agencies start to collaborate for sharing their acquired data and
developed competencies, the integration of spatial data, coming from different
sources and acquired using different technologies and instruments, has become a
primary need. On the one hand, the integration problem is related to the different
data models (schemas) and formats used for representing and storing information:
each agency in an SDI can adopt those data structures fitting best to the pur-
poses for which the information was originally collected. On the other hand, the
integration activity should consider the different accuracies induced by the spe-
cific instruments and technologies used to acquire data, in particular as regards
to metric information. Several research efforts, documented in the scientific liter-
ature, deal with the first aspect of the integration problem, some of them will be
summarized in Sec. 2.3. On the contrary, this thesis concentrates on the second
aspect of the integration problem. It considers the case of a highly coupled SDI
where members have adhered to a common global schema, and assumes that a
previous merging operation on the source schemas has already been performed.

The choice to concentrate on the second aspect of the integration problem has
been inspired by a real-world project regarding the creation of the SDI in the
Italian Lombardy region. Such SDI represents one of the first cases of spatial data
integration between a central reference agency and several municipalities (or ag-
gregation of them) in Italy. Notice that Lombardy has about 1,500 municipalities
and the project has been started by experimenting the cooperation among the cen-
tral regional administration and some selected municipalities. During this project,
traditional rubber-sheeting techniques have been adopted for aligning source ge-
ometries. The problems encountered during this activity have motivated the search
for more sophisticated integration techniques that are presented in this thesis.

Spatial data is characterized by an inherent uncertainty because the measure-
ments needed to survey the shape, extension and position of an object with max-
imum accuracy are often too expensive, or maximum accuracy is not necessary
to satisfy application requirements. Hence, a certain amount of errors in the rep-
resentation of a spatial object always exists. In literature, the term accuracy is
defined as a measure of how closely the reported values represent the true values,
and uncertainty is a statistical estimate of the accuracy of a value modeled with
probability theory [58,66,114,129].

The accuracy concept considered here is related to the position of spatial ob-
jects, not of their attributes in general. Regarding to positional accuracy, we can
observe that the importance of uncertainty is perceived in different ways by the
different communities that work in the geographical field. In particular, computer
scientists working with Geographical Information Systems (GISs) tend to perceive
the absolute geometric coordinates as the primary data concerning object locations
and to treat them as deterministic values. The measurements from which these co-
ordinates were obtained are seen as unnecessary data once absolute point locations
have been determined and no record is kept about them. In this perspective, each
relative geometry measure (e.g. distance, angle, etc) and all the other information
(e.g. spatial relationships between objects) can be derived from absolute coordi-
nates. On the contrary, surveyors typically perceive the measurements concerning
geographical objects and relative object distances as being the primary data, while
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the computed coordinates are treated as derived variables. The coordinate values
are simply seen as a view of the data: the one that best fits the measurements at
that time. Considering that in practice the accuracy of relative geometry is higher
than the accuracy of absolute positions, it can be concluded that absolute coordi-
nates and relative measures are not equivalent as often believed. The concepts of
uncertainty and accuracy of spatial data will be further discussed in Sec. 2.4.

In literature, some authors proposed the introduction of measurements-based
cadastral systems [22, 50, 67,92]. Although it is possible to store measurements
rather than derived coordinates, into a database and compute the coordinates as
required using all the stored measurement information, this operation is computa-
tionally intensive and thus not practical in many applications. As a consequence,
in spatial databases, only derived coordinates are usually stored without any infor-
mation about their accuracy or the original measurements from which they stem.
Having discarded the solutions based on measurements management, some aggre-
gated accuracy information are still needed in order to deal with spatial data in
a correct way, since the derivation of coordinates from observations is a unique
but not reversible operation [49]. In particular, we suppose that a set of metadata
describing accuracy of absolute positions and accuracy of relative distances have
been assigned to each database. This is a very common case in practice, for which
at least average errors about absolute positions and relative distances can be often
recovered or derived by the cartographic scale characterizing the survey process.
Moreover, with the SDI growing the specification of such metadata is becoming a
recognized practice, e.g. the ISO standard for Land Administration [67] explicitly
includes a quality attribute DQ_Element for object classes.

Information about accuracy of spatial data should be used in every operation
involving these uncertain data; in particular, this is important for integrating new
observations coming from different sources, or for correctly interpreting the result
of a query. Moreover, the result of an integration of spatial data coming from differ-
ent sources is a dataset containing spatial data with different accuracies; therefore,
it is crucial that accuracy becomes a stable part of spatial data representation.

The explicit representation of accuracy information, together with the spa-
tial objects themselves, leads to the notion of multi-accuracy spatial database,
which is the key concept of the approach proposed in this thesis. A multi-accuracy
spatial database is a spatial database in which objects are characterized by differ-
ent positional accuracy values; eventually each single object, or even each single
point, in the database can have its own positional accuracy. Moreover, the creation
of a multi-accuracy spatial database highlights the need for new data integration
methods to consolidate the huge amount of spatial data belonging to different data
sources and characterized by different quality levels. In particular, those methods
have to fuse different observations regarding the same specific and identified geo-
graphical object (or set of objects) or different objects among which a particular
relation holds, producing a new integrated dataaset. Such methods have to con-
sider the metadata describing the quality of both the datasets to be integrated
and the resulting one. Notice that this thesis deals with vector representations of
spatial data, namely spatial datasets are represented by set of geometries including
points, polylines and polygons specified using a list of coordinates in a reference
space.
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1.1.2 Distributed Geo-Processing

A few decades ago, paper maps were the principal means to synthesize and rep-
resent geographic information. Clearly, the manipulation of this information was
limited to manual and batch activities. Since then, the rapid development of new
technologies to collect and digitize geographic data, together with an increasing
demand for both interactive manipulation and analysis of this data, has gener-
ated a need for dedicated software applications, namely Geographic Information
Systems (GISs). One of the major tasks of GISs is to efficiently manage huge ge-
ographical databases of complex information. In an SDI context the amount of
spatial data at disposal of each member is growing continuously. This inevitably
increases the amount of processing power needed to manage such data, which soon
exceeds the capabilities of a traditional monolithic geographical application that
runs on a single server or tightly coupled machines. As a consequence, SDI agencies
start to share services, tools and processing resources [104], in addition to spatial
information.

In this thesis, the term geo-processing is used to denote long-running interactive
computations that rely on self-contained, specialized and interoperable services.
The new approach proposed in this thesis for integrating multi-accuracy spatial
data is an example of geographical process. The main characteristics of such kind
of processes can be summarized as follows:

e A geo-process is a distributed application. Not only spatial data could be ge-
ographically and logically distributed in different repositories, but also func-
tionalities can be provided as distributed services [56]. This requirement has
determined the investigation of new technologies for supporting distributed
data processing, as well as distributed data access, in a transparent way for
users.

e A geo-process is an interoperable application, which must be able to deal with
heterogeneous data represented in multiple data formats. At now many differ-
ent data models and data formats have been specified and adopted for captur-
ing and managing spatial data (see Sec. 2.1). Each organization should choose
its preferred format in addition to a particular model, since data can be used
inside an organization for a specific purpose. For addressing this problem the
Open Geospatial Consortium (OGC) [4] has developed a set of interoperability
standards and many techniques have been studied about the definition and
management of ontologies for integrating spatial data in an automatic way,
some of them are summarized in Sec. 2.3.

e A geo-process is collaborative in nature. It has become evident that the needs
for a large variety of spatial datasets and services cannot be satisfied by a single
organization. As organizations start to collaborate, they need new mechanisms
and tools for defining, executing and coordinating collaborative processes [104].

e A geo-process is an interactive activity. Indeed, not all operations can be au-
tomated due to technological limits or economical reasons, and human factors
play a central role in the automation of such processes, i.e. the knowledge of
domain experts is as important as the provided data. Indeed, many process-
ing activities cannot be completely automated and the human intervention is
required during computation. In other cases, the development of fully auto-
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matic procedures may not be reasonable, even if technologically feasible, for
instance, to manage exceptional situations that rarely occur. For example, the
resolution of certain situations during the harmonization of two datasets may
require several interventions of a domain expert.

e A geo-process often includes real-time requirements. In order to be more in-
tegrated in human work, geographical applications should respond to requests
from users, process distributed data, and perform sophisticated analysis in ac-
ceptable time: some information become useless if it is not provided in time.
These requirements force an high level of sophistication, because the manage-
ment of computing resources should be transparent for GIS users, that may
not be able to deal with low level optimizations [57].

e A geo-process can require flexibility. A geo-process may be more or less stable,
it can require ad-hoc computations that are used only once, or it can need to be
enhanced because far from being perfect, or because changes have happened in
the application context. As a result, geo-processes have to be flexible enough to
meet the new emerging requirements as soon as possible and with less effort as
possible. An overview of methods, concepts and terminology concerning process
flexibility is given in [106].

The implementation of a system for this kind of geo-processing can be ex-
tremely challenging: there is the need to integrate existing systems and to expose
them over the network, causing new problems related to security and reliability.
In addition, these systems have also to be flexible for easily adapting to new en-
vironmental conditions and lowering maintenance costs. Workflow Management
Systems (WIMSs) can be good candidates for tackling these emerging challenges.
This class of systems will be analyzed in Part II as candidate solution for support-
ing the exposed requirements.

1.2 Motivating Example

The integration framework proposed in this thesis has been inspired by a real-
world project regarding the creation of a regional SDI in Lombardy, a north-east
region of Italy. In particular, the construction of such SDI has been started in
2008 and has involved several consolidated integration techniques, also presented
in Sec. 2.3. From this project the development of a new integration framework has
been designed, considering the spatial data of a pilot municipality, called Cremona.
A small representation of such data is given in Fig. 1.1. This section illustrates
some issues that can arise during an integration of spatial data when metadata
about positional accuracies are not considered.

The considered scenario requires to integrate together a Regional DataBase
containing less accurate data, called RDB, with a Local DataBase containing more
accurate and up-to-date information, called LDB. Notice that in real-world situa-
tions, it is often cost-prohibitive to start again and collect new datasets of higher
positional accuracy from scratch. In particular, in the considered case there is
the need to upgrade the content of RDB using the available higher accuracy data
contained in LDB, and to maintain the existing information in RDB when no up-
dated data are available. We assume that the two datasets contain information
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represented with the same level of details and at the same scale. Moreover, in cer-
tain cases the real data have been slightly modified in order to better highlight the
found problems and illustrate the properties of the proposed integration technique.

Fig. 1.1. Territory of the Cremona municipality. The pink polygons represents buildings,
while the orange ones are street areas.

Since the two datasets have different quality characteristics, when they are
overlaid corresponding features may not perfectly align and also the spatial rela-
tionships that exist between their features may be violated, this is illustrated by
the following examples.

Ezample 1.1 (Resulting database accuracy). Let us consider the situation in Fig. 1.2
where (a) represents the content of RDB regarding a cross between two streets: the
horizontal one, labeled as “M012AT’," is owned by the Cremona municipality, while
the vertical one, labeled as “P123SX”, is under the region competency. Fig. 1.2.b
depicts the updated information collected by the municipality; in particular, in
recent years the existing cross has been replaced by a roundabout. If this updated
information is integrated in RDB by simply substituting the old representation of
the municipality street with the new one, the situation shown in Fig. 1.3 will be
generated and the regional street will result disconnected from the roundabout.
Such situation is usually solved by applying some rubber-sheeting transformation,
producing a geometry that does not strictly adhere with the real street shape.
Anyway, the most important issue generated by this kind of integration regards the
quality level of the obtained result. Surely, it does not have the accuracy of any of
the source databases: we cannot state that it has the accuracy of the more accurate
LDB, nor of the less accurate RDB. Soon, after some of this integrations, the quality
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Fig. 1.2. Content of the two databases before the integration: (a) represents the content
of RDB, while (b) represents the content of LDB. The vertical street labeled as “P123SX”
is under the region competency, while the street labeled as “M012AT” is owned by the
municipality.

of certain parts of the obtained database can become very low, independently from
the accuracy of the integrated data. O

Fig. 1.3. Result of an integration that simply replaces the old geometry of the mu-
nicipality street in RDB with the new one contained in LDB: the regional street results
disconnected from the roundabout.

Ezample 1.2 (Relative distances). Fig. 1.4.a shows some buildings and street areas
contained in RDB. Inside this area the new hospital depicted in Fig. 1.4.b has been
built and collected in LDB. We assume that some relative distance information is
available between certain buildings and a reference point representing a bus stop.
This bus stop is contained in both databases but with different absolute positions.

Regardless the integration is performed by placing the new hospital in (a), or
the other buildings in (b), different distances are generated between the buildings
and the reference point. In particular, if the new hospital is placed into RDB its
distance with respect to the reference point changes from 75 meters to 68 meters,
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. 120 mt
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Fig. 1.4. A content fragment of the two source databases before the integration: (a)
shows the RDB buildings and streets, a distance of 120 meters exits between a building
and a reference point representing a bus station; (b) shows the new hospital contained
in LDB, a distance of 75 meters exists between it and the reference point.

while if we maintain the absolute position of the reference point in LDB, the
distance between the existing buildings and the reference point changes from 120
meters to 127 meters; moreover, maintaining the LDB position of the reference
point, its location is no longer contained into the street area.

— C

127 mt

75 mt

@ (®)

Fig. 1.5. (a) Result of placing the new hospital building into RDB: the final distance
between it and the reference point changes from 75 meters to 68 meters. (b) Result of
placing the old buildings into LDB: the distance between them and the reference point
changes from 120 meters to 127 meters, while the reference point is no longer contained
into the street area.

This is due to the fact that the accuracy of object coordinates is usually less than
the accuracy of relative distances among object vertices. This may lead to the
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situations in Fig. 1.5 where the available representation is very accurate in terms
of object shapes but less accurate with respect to absolute positions and relative
distances. O

Ezample 1.3 (Topological relations). Fig. 1.6 illustrates the result of inserting into
RDB a new building contained in LDB, which is depicted in green and labeled as
newy. If the new building is overlaid on the RDB content, an overlap is obtained
between it and the surrounding ones. O

y R

Fig. 1.6. Result of a naive integration of new polygons into RDB: an overlap is obtained
between the building with label newa and the surrounding ones.

In order to overcome the problems previously exemplified, this thesis proposes
as a core contribution a statistical method that is able to generate an effective
integration between new observations and the current database content.

Finally, we consider the problem of successfully applying the integration pro-
cedure in a distributed context, such as an SDI environment.

Ezample 1.4 (Distributed integration). Let us suppose that the territory in Fig. 1.1
is subdivided between two SDI members, as depicted in Fig. 1.7 using two different
colours. A new building, labeled as newp, has to be added to the local dataset of
Mb, very close to the boundary between Mby and Mbs. If the integration procedure
is only applied to this local database, some inconsistencies on the boundary be-
tween Mby and Mby can occur. For instance, as depicted in Fig. 1.8, the road area
crossing the two datasets, that is connected before the integration, can become
disconnected. These inconsistencies can be determined by two kinds of problems:

(i) Some points of the boundary objects are shared by adjacent datasets and
they cannot be moved only on one side of the border. In other words, the
integration effects have to be propagated also on Mbs.

(ii) The local accuracy information is partial with respect to the objects surround-
ing newp. In the case considered in Fig. 1.8, we know only some measures of
relative distance between newp and the road area close to it, depicted as red
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Fig. 1.7. Subdivision of the considered region between two SDI members Mb; and Mb,.

lines. In order to obtain a correct integration, the accuracy information for
objects of Mbs that are near to newp are also needed. m]

Fig. 1.8. Example of problem that may arise when an integration is performed locally
without propagating its effects to the adjacent datasets. In particular, the road crossing
the two dataset becomes disconnected, since only the portion laying in Mb; is modified.

1.3 Contribution

The aim of this thesis is to solve the problems exemplified in the previous section
by proposing a framework for dealing with multi-accuracy spatial databases in a
distributed context. More precisely our contribution is articulated into two major
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parts: Part I presents the theoretical statistical framework for the representation
and integration of multi-accuracy spatial data, while Part IT discusses the imple-
mentation of such framework in a distributed context using workflow technologies.
In more details, Part I deals with the following problems:

1.

The definition of a data model for describing a Multi-ACuracy Spatial database,
called MACS model. In such model, metric observations, (i.e. the object co-
ordinates) are represented using probability theory, while logical observations
(i.e. topological relations among objects) are described with a logical approach.

. The definition of a procedure to derive accuracy information for coordinates

starting from the available metadata. In particular, this thesis considers the
case, in which only coordinates are stored inside a spatial database and just few
aggregate accuracy metadata are available, i.e. a maximum granted error for
absolute positions and a maximum grated error for relative distances among
objects.

. The definition of a procedure for integrating two MACS databases and produc-

ing a new MACS database. More specifically, such procedure has to take into
account the accuracy of both source databases and to produce new accuracy
information for the integrated one. The integration procedure is composed of
three steps: the first one integrates together the metric information contained
in the two source datasets, the second one integrates together their logical
observations; finally, the last step checks the coherence between metric and
logical information, and eventually adjusts the resulting metric observations
for satisfying the logical ones. Some formal properties of the integration pro-
cedure are also discussed.

. The definition of a distributed version of the integration procedure in order to

make it applicable in a SDI. Such distributed version is characterized by two
steps: in the first one each local agency performs a partial integration on its own
data, then in the second one the locally integrated data are transmitted back to
a central agency, which applies a global integration by propagating the effects
of the locally performed ones. Moreover, the central agency is responsible for
notifying the other involved local agencies with the integrated data of their
interest.

. The definition of a procedure for reducing the number of information that

has to be transferred to and from the central agency, in order to make the
technique effective in a distributed context, even in presence of a huge amount
of data.

. Finally, the application of the proposed framework in a real world scenario is

illustrated.

The proposed integration process presents many of the characteristics high-

lighted in Sec. 1.1.2. Its implementation can become extremely challenging not
only for the complexity of the involved operations, but also for the need to involve
different agents that concurrently participate to its realization. For this reason,
Part II evaluates the possibility to implement such process exploiting workflow
technologies. In particular, the following contributions are presented:

1.

An overview of the rationale underlying existing workflow technologies and an
introduction to some representative WfMSs.
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2.

1 Introduction

A comparison between the considered existing workflow technologies first from
a more general point of view, using the widely accepted method of workflow
patterns, and secondly from the specific geographical point of view. In particu-
lar, for this second comparison, the implementation of the integration process
presented in Part I is considered, and the strengths and limits of existing
WI(EMSs are highlighted. These two comparisons leads to the definition of the
requirements for an ideal geographical workflow system.

The introduction of a novel business process modeling language, called NEST-
Frow, which has been developed by our University as result of another PhD
thesis. More specifically, besides the language presentation, we discuss the spe-
cific extensions we have introduced for allowing the modeling of geographical
processes, and we present the design of the integration process using this mod-
eling language.

1.4 Thesis Structure

This section summarizes the structure of the thesis and the content of each chap-
ter, eventually reporting its corresponding publications.

Part I Geo-Processing in Theory

Chap. 2 summarizes some background notions and related researches about
the representation spatial data and topological relations, the integration of
spatial data coming from different sources, the modeling and managing of
multi-accuracy spatial data.

Chap. 3 introduces the proposed MACS model for representing multi-accuracy
spatial data. It illustrates the theoretical background and explain how accuracy
parameters can be derived starting from the available metadata.

Chap. 4 introduces the statistical integration framework based on the MACS
model described in Chap. 3. More specifically, three integration aspects are
presented: (i) the integration of metric observations, (ii) the integration of
logical information, and (iii) the integration of metric and logical information
together. Such framework is then extended in order to apply it in a distributed
context, such as an SDI environment. Finally, the application of the integration
framework is discussed using the real-world scenario introduced in Sec. 1.2.

The content of these chapters has been published in [13-15].

Part IT Geo-Processing in Practice

Chap. 5 presents the technological infrastructure considered in this thesis and
describes some representative WfMSs.

Chap. 6 compares the considered WfMSs from two distinct points of view.
Firstly, they are compared in general, using the well-known technique of work-
flow patterns, a tool widely used by the business process community for evalu-
ating the expressiveness and suitability of WIMSs. Secondly, they are compared
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from a more specific geographical viewpoint, by trying to design the proposed
integration framework. From these comparisons, we delineate the essential re-
quirements of an ideal spatial WfMSs.

e Chap. 7 introduces a novel language for modeling geographical processes, called
NestFlow that meets the requirements highlighted in Chap. 6. This presenta-
tion will highlight the extensions we have made for managing geo-processes.
Moreover, we will discuss the NESTFLOW implementation of the integration
framework proposed in Part I.

The content of Chap. 6 related to the comparison between business and scientific
WIMSs in terms of workflow patterns has been published in [88], while the com-
parison related to geographical requirements has been published in [87]. Finally,
the description of the NESTFLOW modeling language contained in Chap. 7 has
been published in [29,30,47,48].

Appendix

e App. A summarizes some probability and statistical notions that are useful for
understanding this thesis.
e App. B contains a brief description of the mentioned workflow patterns.






Part I

Geo-Processing in Theory
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Background: Spatial Data Management

This chapter provides an overview of several basic concepts and introduces some
related work useful for understanding the first part of the thesis. In particular, it
starts by recalling some notions that are well-known in the geographical context,
such as the different existing methods for representing spatial data (Sec. 2.1) and
the definition of the most widespread relations between spatial objects (Sec. 2.2).
Subsequently, it introduces the integration problem in the general case and sum-
marizes some existing integration techniques that represent the starting point for
this thesis development (Sec. 2.3). It then formalizes the concept of uncertainty
and accuracy in spatial data (Sec. 2.4) and it presents some research efforts about
the representation of uncertain spatial objects (Sec. 2.5) and uncertain topological
relations (Sec. 2.6). Finally, it treats the spatial data integration problem when
metadata about accuracy are considered (Sec. 2.7). These last contributions can
be considered as alternative approaches to the one given in this thesis; therefore,
similarities and differences between them are also discussed.

2.1 Spatial Data Representation

A geographic object is a real world entity related to a specific location on the Earth
surface. In particular, each geographic object is characterized by the following
components:

e several thematic or descriptive attributes: alphanumerical attributes that de-
fines characteristics and nature of the object, for instance, the name of a town
or the number of its inhabitants;

e a spatial component or geometric attribute which defines the location, shape,
orientation and size of the object in 2D or 3D space;

e a set of topological relations which describes the relations exiting among the
object and the surrounding ones.

Geographical objects can be described using two fundamental models: object-
based or field-based [89,90]. The object-based model, also referred to as entity-based
or feature-based model, considers the real world as a surface populated by several
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uniquely identified objects. As mentioned above, geographic objects are character-
ized by as set of spatial and non-spatial attributes. In particular, the basic types for
representing geometries in the 2D space are: point (zero-dimensional objects), line
(one-dimensional objects), and surface (two-dimensional objects). Points are nor-
mally used for representing the location of entities whose shape is not considered
useful, or when the area is quite small with respect to the embedding space size.
Lines or linear objects are commonly used for representing networks (road, hy-
drography, and so on). The basic linear geometric type considered in real systems
is the polyline; namely, a set of linear segments, such that each segment endpoint
(called vertex) is shared by exactly two segments, except for two endpoints (called
extreme points) which belong to exactly one segment. A special case of polyline
is the closed one, in which the two endpoints are identical. Such type of polyline
is used to describe the boundary of a polygon. Polygons are the most common
implementation of surfaces and are used for representing entities with a significant
extension or a particular relevance.

Object-based models are suitable for describing the content of a map: the set of
buildings, streets, lakes, rivers in a given region, the set of government entities in a
territory (municipalities, province, region, etc.), and so on. Such models are similar
to those normally used in traditional information systems, since the attributes
are stored as entity properties and one of these properties describes the object
relation with the space. An example of representation using an object-based model
is illustrated in Fig. 2.1.a, where each Italian region is identified by a particular
integer value.

°C

(a) ()

Fig. 2.1. (a) Object-based representation of the Italian regions: each polygon represent-
ing a region is identified by a unique integer identifier. (b) Field-based representation of
the mean annual temperatures in Italy: red regions are those with higher temperatures,
while the blue ones are those with lower temperatures.

In the field-based model the real world is considered as a continuous surface
on which features vary also in a continuous manner. The geographical information
is represented by several functions from the reference space to the set of possi-
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ble values that the represented property can assume. Such functions describe the
distribution of the attribute values on the space. Field-based models are suitable
for describing spatial information such as the average temperature registered in a
particular month, the average amount of rainfall in a year, the land use classifica-
tion, the altimetry, and so on. An example of representation using a this model is
reported in Fig. 2.1.b, where is described the mean annual temperatures in Italy.

In the remainder of this thesis an object-based model is assumed for the de-
scription of geographical objects, in particularly during the MAcs model definition.
As regards to the representation of their spatial component, geometry can be de-
scribed and stored using a vector or raster format [107]. In a vector format spatial
data is represented by the coordinates of points, lines or polygons which constitute
its geographical extent. In particular, in a 2D space a point is represented by a pair
of coordinates p = (z,y), a polyline is represented by a list of points which are the
endpoints of its constituent segments I = (p1,p2,...,pn), and finally a polygon is
represented as a closed polyline that represents its boundary pl = (p1,p2,--.,0n)
where p; = p,. An example of vector representation is illustrated in Fig. 2.2.a.

In a raster format the continuous space is approximated by a discrete one
through the construction of a regular grid, in which each cell is associated to
an alphanumeric value representing a property value. An area or region is then
obtained by the set of adjacent cells with the same value. An example of raster
representation is illustrated in Fig. 2.2.b.

1 - Vegetation

3 - Residential

@ (b)

Fig. 2.2. (a) Example of representation using a vector format. (b) Example of represen-
tation using a raster format.

In this thesis the vector format is assumed for the representation and storage
of spatial components, in particular a statistical approach will be proposed for
describing the coordinates of each location. As regards to this kind of representa-
tion, a technique is needed in order to assign a value to each coordinate. The terms
geo-reference, geo-locate or geo-code are used to denote the act of assigning loca-
tions to atoms of information [80]. The primary requirements of a geo-reference
are: (1) it has to be unique, namely there is only one location associated with
a given geo-reference, and (2) its meaning shall be shared among all the peo-
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ple who wish to work with the given information. Several geo-reference systems
have been developed [107], among them this thesis considers two coordinate sys-
tems that enable every location on the Earth surface to be specified by a set of
numbers: the Cartesian coordinate system and the geographic latitude and longi-
tude system. The Cartesian coordinate system uses two perpendicular axes (z and
y) whose intersection generates the origin of the system and localizes the point
(x =0,y =0). All positions on the plane are determined by two (positive or neg-
ative) values, denoted as coordinates z and y, which specifies the horizontal and
vertical position of the point with respect to the system origin. On the contrary,
in a reference system based on longitude and latitude, the coordinates are define
in terms of angles with respect to well-defined references: the Royal Observatory
of Greenwich, the center of mass, and the axis of rotation. Latitude and longitude
constitute the most comprehensive system of geo-referencing. It supports a wide
range of analysis, including the computation of the distance between two points
on the curved surface of the Earth. However, many technologies for working with
spatial data are inherently “flat”, including paper maps, and GISs that usually
deal with a flattened projection of the Earth surface. Therefore, some projection
techniques are necessary in order to transform a latitude and longitude system
into a Cartesian one. Several projection techniques are available, each of them
preserves certain distinctive properties, such as distance, direction, shape or area.
More specifically, projection techniques are classified on the basis of the preserved
property [80]: conformal projections ensure that the shape of small features on the
Earth surface is preserved, in other words that the projection scale in the x and
y directions are always equal; equivalent projections ensure that areas measured
on the map are always in the same proportion to areas measured on the Earth
surface, and equidistant projections preserve the relative distance between points.
None of the available projection techniques allow to simultaneously preserve all
these properties and there is not a better projection system for all the cases, but
the best projection method depends on the future use of the spatial data.

Besides their distortion properties, another common way to classify projection
techniques is by analogy to the physical model describing the relation between
positions on a flat map surface and positions on the curved Earth surface. Three
major classes can be distinguished [80]: cylindrical projections, azimuthal or planar
projections and conic projections. Cylindrical projections are analogous to wrap a
cylinder paper around the Earth, projecting the Earth features onto it, and then
unwrapping the cylinder. Planar projections are analogous to touch the Earth
with a sheet of flat paper. Finally, conic projections are analogous to wrap a sheet
of paper around the Earth in a cone.

2.2 Spatial Relations

In literature several kinds of relations have been defined between spatial objects. In
this thesis the notion of spatial relation is considered as a mean for describing the
mutual relation that exists between the position of spatial objects. In particular,
since these properties are not subject to a measurement process, but they are
observed to exist or not, they can be expressed as true or false propositions and
treated using a logical approach.
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This section summarizes the principles underlying three well-known types of
spatial relations: topological, cardinal and distance relations. Anyway, in the next
chapters we focus on topological relations, since they are the mostly used and
frequently available in the existing geographical systems.

2.2.1 Topological Relations

Topological relations are a subset of spatial relations characterized by the property
of being preserved under topological transformations, such as translation, rotation
and scaling. These relations are commonly described using the 9-intersection model
originally defined in [38,39]. In the 9-intersection model, the geometry of each
object A is represented by 3 point-sets: its interior A°, its exterior A~, and its
boundary dA. The definition of the binary topological relation existing between
two spatial objects A and B is based on the 9 possible intersections of each object
component. Thus, a topological relation R(A,B) can be represented as a 3 x 3-
matrix, called 9-intersection matriz, defined as:

A°nB° A°n0B A°n B~
R(A,B)=|0AnB° 9An0B 0An B~
A" nB° A n0oB A nB~

For each element ¢, j in the matrix, the value empty (R; ;(A, B) = &), or not empty
(Ri,;(A,B) # @) is considered. In such way, many relations can be distinguished
between surfaces, curves and points. In particular, the boundary of a geometry is
defined as follows: a surface boundary is the ring defining its border, the boundary
of a curve is composed of its end points and the point boundary is empty.

Starting from this model, several refined definitions of topological relations
have been proposed. In particular, since the objects considered in this thesis can
have geometries of different types (point, curve and surface), the set of adopted
topological relations is the one defined by Clementini et al. in [25]. In their work
the authors extend the original model by considering for each 9-intersection its
dimension (i.e., 0 for points, 1 for curves and 2 for surfaces), giving raise to
the extended 9-intersection model. The number of such relations is quite high;
hence, different partitions of the extended 9-intersection matrices have been de-
fined, grouping together similar matrices and assigning a name to each group.
In [25] the authors proposed the following set of binary topological relations
{disjoint, touch, in, contain, overlap, cross, equal}, defined as:

A disjoint B <— AnB=g

A touch B < (A°nB°=2)A (AN B+ 2)

Ain B < (AnB=A)A(A°nB°+ Q)

A contain B < B in A

A overlap B <= dim(A°) = dim(B°) = dim(AnB)A(AnB + A)A(AnB # B)

A cross B <= dim(A° n B°) = max(dim(A°), dim(B°)) -1 A
(AnB+A)A(AnB+B)

e Aequal B <— A=B

This is a complete set of mutually exclusive topological relations, namely a
set of topological relations in which for each pair of objects there is one and
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only one possible relation. Such relations have been implemented in many GIS
systems and included in OCG and ISO standards. Notice that some relations can
be realized only in presence of particular object types. Tab. 2.1 summarizes for
each topological relation the pair of types that can realize it. For instance, an equal
relation can exist only between two objects of the same type, while a point can
never contains a polygon or a curve, and so on.

s/s ¢/¢ Pp/Pp S/C S/p C/S C/p P/S P/C
disjoint v v v v v v v v v
touch Ve v v v v v v v
n v v v v v
contain v ve v v v
overlap v v
cross v v v
equal v v e

Table 2.1. This table reports for each topological relation the pair of geometric objects
that can realize it. S denotes the surface type, C the curve type, and P the point type.

2.2.2 Cardinal Directional Relations

Cardinal directional relations provide a way to determine what is the relative po-
sition of a target object with respect to a reference object by considering some
cardinal directions. The idea behind a qualitative representation of cardinal rela-

NORTH- | | oo | NORTH-
NORTH. N%‘:)T“ NORTH- NORTH- NORTH- WEST N EAST
WEST EAST awy | ® (NE)
(NW) (NE)
WEST EST
MMB
(W) (E)
SOUTH- SOUTH:- SOUTH- SOUTH- SOUTH-
v WEST EAST SOUTH
EST WEST EAST
) (SW) (SE) sw | © | s

(@ (b) (©) (d)

Fig. 2.3. Different space divisions: (a) four cones, (b) eight cones, (c¢) four half-planes,
(d) nine tiles.

tions is to map quantitative directional information (i.e. the degrees of an angle)
into a set of symbols. More precisely, given a reference point P;, which is used to
define directions, and a target point P, whose direction with respect to the ref-
erence point has to be detected, the directional relationships are binary functions
that map the pair (Py, P2) into a symbolic direction d.

The number of available direction symbols depends on the used cardinal di-
rections model. The basic model divides the space around a reference point into
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triangular areas or into half planes, as shown in Fig. 2.3.a, Fig. 2.3.b, and Fig. 2.3.c.
If the reference object is not a point, the most used model, called Dg model [52], is
based on the space decomposition presented in Fig. 2.3.d. It approximates the
reference object with its minimum bounding box (MBB), and subdivides the
space around the reference object into distinct areas, called tiles, using the in-
finite extensions of its MBB sides. The tiles result in the usual set of directions
{N,NE,E, MBB, SE, S, SW,W, NW}. Let us notice that all the tiles are unbounded
and their union coincides with R?. Based on the Dy model, cardinal directions be-
tween two regions can be represented as 3 x 3 matrices containing the value empty
or non-empty for each intersection between the target object A and the tiles gen-
erated by the reference object B:

NWBﬂA NBﬂA NEBﬂA
d’iTRR(A,B) = Wg nA MBBg nA Ep nA
SWBﬁA SBﬁA SEBﬂA

In [51,53], this basic model has been extended to deal with lines, points, and
regions without holes. In this case, a cardinal directional relation is represented
again as a 3 x 3 matrix, but now each cell contains a 9-cells vector, called neighbor
code, which records information about the intersections between the boundary of
a particular tile and the target object A, using 9 bits. Bit 0 (z¢) records the value
of the intersection between A and the direction tile the vector refers to, called DT,
and bits x1 — xg record the values of the intersection between A and the left (L),
bottom-left (BL), bottom (B), bottom-right (BR), right (R), top-right (TR), top
(T) and top-left (TL) boundaries of DT, respectively.

ENEAENEAERCACACAEN
TL T TR R BR B BL L DT
256 128 64 32 16 8 4 2 1

Each neighbor code corresponds to a number between 0 and 256. Therefore, each
matrix can be seen as a 3 x 3 matrix of integer numbers: different matrix config-
urations correspond to different cardinal relations. However, by considering only
connection objects, not all possible configuration represents a correct cardinal di-
rectional relation.

The information contained in neighbor codes can also be represented by using
a b x 5 matrix, called directional matriz.

NWgnA n-nwlignA NpnA nnelgnA NEgnA
w-nwlp N A nwpgn A nlpNnA  nepgnA enelgnA
D(A7B)= WBﬁA wleA MBBBF‘IA elBﬂA EBﬂA
w-swilg N A swpp slpn A sepg N A e-selpnA
SWgnA s-swlp SgnA s-selgpnA SEgnA

In such matrix, a row and a column exist for each tile interior and each boundary
between two tiles, according to the space subdivision in Fig. 2.4.

Each matrix element can assume the value empty or non-empty, depending
on whether the target object A intersects or does not intersect the corresponding
portions of space. A formal model for cardinal relations based on a 5 x 5 matrix is
presented in [120,121].
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Fig. 2.4. Space subdivision corresponding to the direction matrix.

2.2.3 Distance Relations

Distance relations are based on the definition of a distance function in the reference
space. For instance, given two points P = (2p,y,) and @ = (z4,y,) the Euclidean
distance between them is computed as follows:

d(PvQ) = \/(CCP - xq)z + (yp - yq)2

This distance function is well suited in presence of point objects, contrarily
when geographical objects with a significant extension are considered, the concept
of distance shall be properly redefined. For example, let O; and Os be two generic
geographical objects, the distance between them can be extended as follows:

distance(O1,02) = min({d(P,Q) | P O1 AQ € Os})

namely the distance between them is the minimum distance between any pair
of points composing their geometry. This definition of distance between polygons
can become quite unsatisfactory for some applications. Indeed, in many cases the
intended notion of small distance between polygons requires that no point of one
polygon is far from any point of the other polygon, while the previous definition
considers only the smallest distance between any two points, independently from
the distance between the other ones. In order to avoid such issue, the Hausdorff
distance has been defined which considers the maximum distance of a set of points
to the nearest points in the other set. More formally, the Hausdorff distance is
defined as follows:
h(O1,02) = max(min(d(a,b)))
ae0q beOo

Let dist a chosen distance function between geometric objects, and (dy,ds) a
pair of distance values, a distance relation R can be defined between two objects
01 and O as follows:

R(dl,dz)(Ol,Og) <~ (d1 < dist(ol,Og) < dg) (21)
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In other words, a relation exists between two objects O; and Os, with respect to a
pair of distances (dy,ds), if and only if the distance between O; and O, is greater
than d; and smaller than ds. Let us consider the situation in Fig. 2.5 and suppose
d; =0 and dy = d, from Eq. 2.1 it results that A is in relation with C', E and F,
but not with B, D, G and H.

e
e
Te

G
Fig. 2.5. Example of distance relation with d; =0, d2 =d and O; = A.

In some cases, the distance relation between two objects is not defined using a
precise metric observation, but using abstract concepts of proximity and distance.
Such relations are called approximated distance relations. A set of approximated
distance relations has a finite cardinality, for instance the following is a valid set:

{same_location, very_near, near, medium, far, very_far}

The definition of such elements is usually based on the specification of some dis-
tance intervals and a particular ordering among them can be derived. For instance,
relatively to the previous set, the following ordering can be defined:

same_location < very_near < near < medium < far < very_far

Besides to the definition of particular distance relations, several queries based
on the distance notion can be used in real-world applications. A distance or buffer
query selects all the geographical objects which lay on a distance between a mini-
mum value d; and a maximum value ds from a reference point or another geometric
value. For instance, let us consider an object A with geometric attribute g, denoted
as A.g, a reference point P, and two distance values d; =0 and dy = d. A selection
based on the distance can be the following:

O buffer(P,0,d) overlap A.g (A)

which selects all the objects A whose geometry g overlaps a buffer with ray d
centered on the reference point P. As regards to the situation depicted in Fig. 2.6,
the previous query produces as result polygons P; and Ps, while if the relation in
is considered in place of the overlap one, the query returns only polygon Ps.

2.3 Spatial Data Integration
Information fusion is the process of integrating information coming from different

sources to produce new information with added value, reliability, or usefulness [33,
138]. Geographical information fusion is an important function of any interoperable
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Fig. 2.6. Example of distance query with d; =0 and ds = d.

GIS application. In the remainder of this thesis the terms integration and fusion
are used as synonymous.

The integration of two spatial datasets essentially requires to identify differ-
ent objects having a semantic link, and solve structural (schematic) differences
existing between linked objects. Schematic conflicts between two objects with a
semantic link may arise when equivalent concepts are represented differently in lo-
cal data sources. Those conflicts can be associated with names, data types, units,
attributes, and so on. Another kind of conflict can arise in the representation of
the same attribute; for instance, an address can be represented using only one or
multiple attributes. In the GIS community many efforts have been focused on inter-
operability aspects. Most of these approaches propose to enrich local data models
in order to conform to a unified model, and the creation of the Open Geospatial
Consortium (OGC) [4] together with the ISO TC211 standard series are the most
visible outcome of such efforts.

The major issues that characterize the data integration process are: (1) develop-
ing a correct understanding of existing data semantics, (2) establishing an accurate
correlation structure, and (3) choosing a well-suited integrated description, based
on some integration goals and the available data conversion techniques. Such issues
determine the development of three phases in the data integration process [34]:

1. Schemas preparation — this phase includes all preliminary activities which aim
to obtain the convergence of existing descriptions towards a uniform pattern.
Fall into this phase: the enrichment and completion of existing descriptions
with additional information to achieve a uniform level of understanding of data
semantics, the establishment of a global and local thesauri to ease information
exchange, and so on.

2. Correspondences investigation (including conflicts detection) — this phase aims
at the identification and precise description of all correlations among existing
schemas and among existing data objects. Such phase has been deeply treated
in literature, and some results are reported in Sec. 2.3.1.

3. Integration — this phase aims to solve possible conflicts, and creating the in-
tegrated description as a virtual database on top of the existing data sources.
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The integration is performed both at schema and at instance level, producing a
new database where the content has been properly transformed to adhere to a
common schema. Such phase is treated in details in Sec. 2.3.2 and Sec. 2.3.3. In
particular, Sec. 2.3.3 deals with an important and characteristic aspect of spa-
tial data integration: the harmonization of geographical feature components.

As discussed in the introduction, this thesis assumes that a previous integration
phase has been performed, using some of the techniques cited before and summa-
rized in the following sections. In other words, the content of the two databases
are comparable and specified with respect to a common schema.

2.3.1 Ontology-Based Integration

The main problem facing any geographical information fusion is the semantic
heterogeneity, where the concepts and categories used in different geographic in-
formation sources have incompatible meanings.

The semantics of an information source may be described using an ontology.
The task of fusing information compiled through different ontologies is a clas-
sical problem in information science [144], and continues to be a highly active
research issue with many topics, including databases, interoperability, semantic
Web, medical information systems, knowledge representation, data warehousing,
and of course, geographical information systems.

A clear distinction is usually made between the process of identifying the rela-
tionships between corresponding elements in two heterogeneous ontologies, called
ontology integration, and the process of constructing a single combined ontology
based on these identified relationships, called ontology alignment.

Fonseca et al. in [44-46] introduces the concept of ontology-driven GIS which
aims to augment conventional GISs with formal representation of geographical
ontologies, leading to tools that enable improved ontology-based information in-
tegration. A wide variety of related work has addressed the issue of geographical
information integration using ontologies [11,19,34,122,134,135]. However, all these
researches focuses on the integration itself, assuming that the semantic relation be-
tween two ontologies is already known.

A relatively small amount of work has begun to provide techniques for geo-
graphical ontology alignment. The majority of these works adopts an intensional
approach which aims to analyze the definitions of the concepts and categories
used in the input information sources. Intensional techniques usually analyze het-
erogeneous ontologies to identify lexical similarities, structural similarities, or some
combination of them. Kavouras, Kokla et al. use FCA [125] as the basis for their
approach to geographical ontology alignment [70,71,73]. Manoah et al. in [84] ap-
ply the intensional machine learning technique to geographical data. Duckham and
Worboys investigate in [36] the use of description logics and in [148] the application
of a formal algebraic approach. Anyway, the diversity of geographical terms and
concepts makes ontology alignment a semi-automated process which still requires
human domain expert interactions at critical stages in the alignment process.

The study of Duckham and Worboys in [37] is one of the few attempts to
apply an extensional approach for automating information fusion. An extensional
approach uses specific instances to determine how concepts are actually used. In
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particular, at the core of the proposed extensional approach, called ROSETTA,
is the process of inferring semantic relationships from spatial relationships. Geo-
graphical information is richly structured and voluminous source of instances are
available, favoring the use of an extensional approach. However, uncertainty is an
endemic issue of geographical information, which leads to the problem of unreli-
able inference. For these reasons, the authors propose some initial technique to
adapt the automated fusion process in order to operate in presence of imperfect
and uncertain geographical information.

2.3.2 Schema Integration

One of the main issues faced during the integration of spatial data is due to the
schema heterogeneity. Indeed, spatial data can be represented in different formats
and can use the data model that best fits the purposes for which they have been
collected. Schema integration is the process by which several local schemas are in-
tegrated to form a single virtual (global) schema. A mediation system is a software
system that provides to users a uniform view of the different data sources via a
common data model. There are two main approaches to data mediation: in the
global as view approach, the global schema is defined as a set of views over local
schemas, while in the local as view one, local sources are defined as a set of views
over a given global schema, applying sometimes some domain ontologies. In the
first approach query rewriting is straightforward, while adding a new data source
is easier in the second one.

Regardless to the adopted data mediation approach, a framework for data
transformation is always needed, that is a language for schema mapping. A map-
ping is a rule that allows the specification of one-to-one schema transformations
under some constraints. In particular, each mapping is composed of a right term,
a left term, and a restriction. The left term is the global schema construct, while
the right one consists of one or more paths on the source schema constructs. Such
mapping means that the global schema element on the left corresponds to the local
schema path(s) under the given restriction. VirGIS [19] is an example of geograph-
ical mediation system that complies with OGC recommendations with respect to
some of its core software components, that is GML and WFS.

2.3.3 Feature or Point Matching

An important aspect of spatial data integration is the identification of correspond-
ing geometries contained into two distinct databases. Conflation techniques [112]
have been widely used for integrating two vector spatial databases. These meth-
ods essentially involves two phases: (1) corresponding features in the two source
datasets are recognised through the identification of matching control points; (2)
the two source datasets are then aligned using rubber-sheeting transformations
based upon the identified matching control points. These phases are repeated iter-
atively, with further control points being identified as the data sources are brought
into alignment.

As regards to the first phase, matching algorithms can be classified into three
different categories, on the basis of the main considered characteristics:
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e Geometric methods — they list the objects belonging to the two datasets and
compare them on the basis of geometric criteria, such as distances, angles,
position relations and shape characteristics. Distance methods state that if
the distance between two objects contained into the two considered datasets
belongs to a certain value, then the probability they represent the same real-
world object is greater. The most widespread distance criteria are: (1) the
Fuclidean distance, for computing the distance between two points or a point
and a curve, and (2) the Hausdorff distance (see Def. 2.1), for computing the
distance between two curves or polygons. Other geometric methods consider
information about the angles between two linear objects, the direction of a
line, the position relation between two objects (e.g. a point is contained or not
inside a polygon), or the shape characteristics of the objects.

e Topological methods — they analyse the topological characteristics of as set of
objects in order to identify the correlation among them. For instance, consid-
ering the components of two road networks, two intersections are most likely
to represent the same object if their degree, computed as the number of inci-
dent roads, is the same, or if they connect objects that have been previously
identified as the same road.

e Semantic methods — they consider the value of various object attributes during
the integration process: if two objects present the same (or equivalent) value
in a set of attributes, then they are most likely to represent the same object.

The second phase considers instead rubber sheeting transformations, through
which a set of objects, called as a whole a layer, is distorted to allow it to be
seamlessly joined to another layer.

Important problems can arise when different representations of the same data
are characterized by different level of granularity, details (LoDs) or map scales.
This situation can lead to partial or incorrect correspondences between objects.

2.4 Uncertainty in Spatial Data

The term uncertainty is frequently used for denoting different concepts, such as
vagueness, ambiguity, or anything that is undetermined. In the field of geographical
information science, the uncertainty of a measure can be described by a range
of values that possibly includes the true value of the measured object. Three
main interpretations of uncertainty can be distinguished: imprecision, ambiguity,
or vagueness, that correspond to different mathematical theories.

e Imprecision refers to the level of variation associated with a set of mea-
surements or to a lack of quality precision. Imprecision is usually described
through probability and statistical theory; for instance, the confidence region
model [118]. This is the uncertainty aspect considered in the thesis.

o  Ambiguity can be associated with a form of lack of clarity, which implies one or
more meaning, or the existence of one or more relationships. For example, ambi-
guity can make difficult to determine which thematic class an object contained
into a satellite image belongs to. Ambiguity can be quantified by discordant
measures, confusion measures, and non-specificity measures. A measurement
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of information was introduced by Hartley [54], known as Hartley’s measure, to
described ambiguity in a crisp set. Moreover, Shannon’s entropy [115] measures
uncertainty in information theory, based on the probability theory.

Vagueness refers to a lack of clarity in meaning and is normally associated with
a difficult of making a sharp or precise distinction in relation to an object in the
real world. Vagueness differs from ambiguity, because in the second one there
are some specific and distinct interpretations that are all permitted, whereas
with a vague information it is difficult to make any interpretation. Fuzzy set
theory [72] is usually adopted to describe vagueness. In particular, fuzzy topol-
ogy theory is used to model uncertain topological relationships between spatial
objects [126]. Some of this models will be briefly described in Sec. 2.6.

In many cases, error is used a synonym for uncertainty. However, even if uncer-

tainty can be caused by mistakes, it can also be caused by incomplete information.
More specifically, the uncertainty in spatial data can result from the following ma-
jor factors [117]:

Inherent uncertainty in the real world — The natural world is complex, huge,
and nonlinear; this implies that the described spatial entities usually possess
a certain level of uncertainty. For example, spatial entities may not have de-
termined, distinct, or easily identifiable boundaries. These boundaries are fre-
quently a transition zone with a gradual change in class types, such as forest
and grassland. Furthermore, as regards to scale dimension, the measurement
of identical objects in the real world, using the same measurement technology
but at a different level, may produce very different results.

The limitation of human knowledge in cognition of the real world — Spatial
data represented into a GIS is normally the result of an abstraction and ap-
proximation of the spatial features in the real world, not a full and complete
description. Therefore, representations in a spatial database are less detailed
than the whole objects in the real world.

The limitation of measurement technologies for obtaining spatial data — The
accuracy level of spatial data is increasing, but it is restricted by the limitation
of measurement technologies.

The potential generation and propagation of uncertainty in spatial data pro-
cessing and analysis — Errors generated from spatial analysis operations will
significantly affect the quality of the resulting datasets. This leads to the devel-
opment of methods for quantifying such error propagation. Essentially, error
propagation depends upon (1) errors in source datasets, (2) the applied spatial
analysis operations, and (3) the presentation methods used for rendering the
result. Among all the spatial processing and analysis operations, the one that
mostly increases the uncertainty of spatial data, is the integration of datasets
coming from different sources and characterized by different accuracies.

This thesis focuses on both modeling uncertainty in spatial data derived from

the first three aspects, and managing the propagation of uncertainty during spa-
tial data integration. In particular, a framework is presented for managing such
situation and generating accuracy information for the integrated result.
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Spatial Data Acquisition Methods

Spatial data capture methods are typically divided into two categories [117]: (1)
direct method, which includes total station, distance measurement, GPS and laser
scanning, and (2) indirect method, which includes interpolated data from models,
remote sensing data, digitization of existing graphics, and direct digitization from
photogrammetric instruments.

The total station is currently the most widely used instrument for ground sur-
veying. It has the ability to measure both angle and distance by integrated optical
and electronic technologies. The measurement accuracies are affected by both in-
struments characteristics, operator skills, measurement schemes, and instrumental
and weather condition during measurement.

The global positioning system (GPS) is a highly accurate positioning technology
based on pseudo range measurements between the ground receiver and the tracked
satellites. Factors affecting GPS accuracy may includes: the atmosphere, which can
cause signal delay, the multi-path effect, when a signal from a satellite reaches the
antenna over more than one path due to different surface reflection, the number of
available GPS satellites, GPS receiver clock errors, environmental disturbance, and
human factors. GPS positioning accuracy is around 10 to 20 meters, with a stand-
alone GPS positioning mode that uses pseudo-range measurement. A differential
GPS (DGPS) mode uses a reference station to reduce errors in GPS measurements
and the positional accuracy can reach a level of meters. A positioning accuracy
of centimeters can be achieved using a GPS Real-Time Kinematic (RTK) system,
which is a special GPS positioning technique that applies a carrier phase.

Laser scanning is a new technology for capturing three-dimensional spatial
data. The principle of capturing ground surface data with a laser scanner involves
the estimation of the distance from a laser source to a target point by recording
the echo time of the emitted laser beams. The beams are then converted into
the three-dimensional coordinates (x,y,z) for the target point. During this laser
transmission process, the reflective intensity (I) of the target is also detected and
recorded. Laser scanning technologies are usually classified into two categories:
terrestrial laser scanner and airbone laser scanner. The accuracy of a point scanned
by a terrestrial laser scanner can reach an accuracy that varies from millimeters
to centimeters; while the accuracy of a point scanned by an airbone laser scanner
reaches decimeters.

Remote sensing refers to an image technology that captures images of the
Earth or other planet surfaces by using satellite sensors. In particular, thematic
information can be classified or extracted from these captured images either man-
ually or automatically. The accuracy of the captured data is subject to the spatial
resolution of the satellite images, the atmosphere conditions and the instability
of the remote sensors and platforms. The spatial resolution of a civilian remotely
sensed image is continuously improved: from 60m for Landsat, 30m for TM, 10m
for SPOT, 5m for SPOT-5, 1m for IKONOS, 0.67m for QuickBird, and up to 0.5m
for WorldWiew-1. More satellite images can be produced based on the original
collected ones; however, their accuracies are affected also by the quality of the
mathematical models, the accuracy of the control points, and the reliability of the
classification methods.
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Aerial photogrammetry is a mapping technology based on stereo aerial pho-
tographs. The technology is appropriate for mapping large areas and comprises
three consecutive stages: analog photogrammetry, analytical photogrammetry, and
digital photogrammetry. The input of photogrammetry mapping includes stereo
aerial photographs with a certain level of overlap and group control points of the
area to be mapped. The outcomes are digital topographic maps, digital orthopho-
tos, and digital elevation models. The accuracy of the produced data depends on
the accuracy and scale of the aerial photographs, accuracy of the ground control
points, reliability of the algorithms used for the topographic mapping, and human
factors. At present, the accuracy reaches a decimeter level.

Map digitization is a common method from capturing digital spatial data from
maps. Three map digitization methods are used: manual digitization from paper
maps, on-screen digitization for scanned raster maps, and automated raster to
vector conversion of scanned maps. The accuracy of digitized maps is related to
many factors: quality of the used raw paper map, the density and complexity of
the spatial features, the skill and the operational methodology of the operator, the
instrument quality, the data processing software functions used to handling errors,
and the accuracy of control points used for coordinate transformation.

Quality of Spatial Data

The quality of spatial data is usually described by six components: accuracy, pre-
cision, resolution, reliability, logical consistency, and completeness [64].

Accuracy usually refers to the degree to which a measurement is free from
bias. It is the extent to which an estimated value approaches its true value or the
reference value. In [66] accuracy is defined as the closeness of the agreement found
between test results and acceptable reference values, where the test results can
be either measurements or observations. Two kinds of accuracy are recognized in
literature: positional and attribute accuracy.

Positional accuracy refers to the accuracy of the location of a spatial objects.
Positional accuracy can be affected by three categories of errors: random error,
systematic error, and gross error. Random errors are due to occasional factors
affecting the measurement instruments, such as a change in the measurement en-
vironment, and are characterized by irregularity in magnitude and sign. Systematic
errors may be due to functional errors in measurement equipment, they can be
noticed when the magnitude and sign of the error follow a regular pattern. Fi-
nally, gross errors are mistakes made during measurement or data processing.
For instance, they can be caused by the observer misidentifying the target to be
measured, or the introduction of human error in the computational process.

Different objects in the same spatial data can be characterized by different
positional accuracy, generating a so called multi-accuracy spatial database. In par-
ticular, positional accuracy can be classified as: absolute accuracy, which refers
to closeness of reported coordinate values to the reference values or the value ac-
cepted as true, and relative accuracy, which refers to the closeness of one position
measurement to the position of other measurements.

Attribute accuracy regards instead the value of a thematic or descriptive at-
tribute. It is determined by the closeness of its current value to its actual or
reference value.
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Precision parameter is usually adopted in presence of an object-based model
and it describes the ability of a measure to be consistently repeated. In statistics,
it measures the dispersion of an observation around its mean, and it is normally
used as a quality parameter for the measurement. On the contrary, reliability
represents the consistency of a set of measurements. Resolution is the counterpart
of precision in case of a field-based model. It refers to the level of detail that can
be distinguished in an image.

Logical consistency refers to the degree of adherence to logical data structure
rules, attributes and relationships [64]. It can be further classified as: conceptual
consistency, adherence to rules of the conceptual schema, domain consistency,
adherence of values to the value domains, format consistency, degree to which data
are stored in accordance with the physical structure of the dataset, and topological
consistency, correctness of the explicitly encoded topological characteristics of a
dataset. In this thesis the term logical observations is used for denoting spatial
relations.

Finally, completeness denotes the degree to which the entity objects of a dataset
cover all the entity instances of the abstract universe. In other worlds, it refers to
the presence or absence of features, attributes or relationships in comparison with
those contained in the data model or in the natural world.

2.5 Representation of Uncertain Spatial Data

The need to consider the uncertainty of spatial data is widely recognized. In
[17,78,93] Bhanu et al. propose a probability-based method for modeling and
indexing uncertain spatial data. In this model each object is represented by a prob-
ability density function and the authors discuss how to perform spatial database
operations in presence of uncertainty. In particular, in [93] they present a method
for performing the probabilistic spatial join operation, which, given two uncertain
datasets, finds all pairs of polygons whose probability to overlap is larger than
a given threshold. In [17,78] Bhanu et al. present a different indexing structure,
called Optimized Gaussian Mixture Hierarchy (OGMH) that supports both uncer-
tain/certain queries on uncertain/certain data, in particular they consider the k
nearest neighbors (kKNN) search operation. The proposed model allows the repre-
sentation of multi-accuracy spatial databases, because the uncertainty of an object
is described by associating to each vertex of its extent a probability density func-
tion. Therefore, an object can be intended as a d-dimensional random variable (i.e.
a vector of d random variables) and the similarity between two objects is given by
the probability that the two corresponding random variables are the same.
Another model for representing uncertainty in spatial database is introduced by
Tossebro et al. in [128-132]. In [129] the authors propose a representation of spatial
data through uncertain points, uncertain lines and uncertain regions. The basic
idea is that all uncertain objects, regardless of their type, are known to be within a
particular crisp region, it may also be known where an object is most likely to be.
Therefore, they define the concepts of core and support: each object is represented
by two regions, one inside the other: the innermost region is the area in which the
object is certain to be, it is called core and it is the area where the probability
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of finding the object is 1; the outermost region is the area in which the object
may be, it is called support and in this area the probability of finding the object
is above zero. Moreover, it is known that the object is not outside the outermost
region. In [131] this model is refined in order to reduce the required storage space
and to simplify the computation of the core and support regions. In [130] the
authors extend their model with some constructs for representing also temporal
uncertainty into a spatial database. Finally, in [132] the model is completed with
the representation of topological relationships between uncertain spatial objects,
since they cannot be directly inferred from the object representations.

2.6 Representation of Uncertain Topological Relations

As anticipated in Sec. 2.4 fuzzy theory is frequently used for representing topologi-
cal relations among imprecise or vague objects. In order to deal with indeterminate
boundaries, in [26] Clementini and Di Felice define a region with a broad bound-
ary A by using two simple regions A; and As, such that A; € As. The boundary
0A; is called inner boundary of A, while A, represents the outer boundary of
A. The broad boundary AA of the region A is the closed subset of R? comprised
between the inner boundary and the outer boundary. Given these definitions of
boundary, the topological relation between two regions is defined by extending the
9-intersection model as follows:

A°nB° A°nAB A°nB~

AANB® AAnAB AAnB~

A"nB° A nAB A nB~

Based on the empty and nonempty value, this algebraic model provides a total of
44 relations between two spatial regions with a broad boundary.

Another model for dealing with nonexact spatial objects is due to Cohn and
Gotts. In [28] the authors propose a model, called egg-yolk model, based on the
use of two concentric subregions, which indicate the degree of membership in a
vague or fuzzy region. In particular, the egg represents the precise part, and the
yolk represents the vague (fuzzy) part. The egg-yolk model is an extension of the
region connection calculus theory to fuzzy regions. Using this model, 46 relations
between vague regions can be identified. The two models presented in [26] and [28]
have been defined independently and mostly simultaneously. However, while [28] is
based on a previous logical formulation of the authors about spatial representation
and reasoning, the work in [26] is based on the point-set theoretical approach
inspired by Egenhofer. When 2D regions are considered, the 44 relations of [26]
coincide with the 46 relations of [28], the two additional relations are due do the
fact that the first model does not further distinguishes two cases. The most relevant
difference between the two models is the formal definition of the notion “one region
is a crisper version of another one”, which is contained in [28], but not in [26].

In [126] the authors extend the notion of fuzzy topological relation by consid-
ering the relation existing between two fuzzy regions in a fuzzy topological space,
instead of in an ordinary space. This extension to a fuzzy topological space deter-
mine the existence of more topological parts. In particular, a fuzzy region A can
be decomposed into the following parts:
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the core A®, which is the fuzzy interior part with a value equal to one,

the c-boundary 9°A, representing the fuzzy subset of 0A4, s.t. 0A(x) = A(x),
the b-closure A*, representing the fuzzy subset of A, s.t. A(z) > dA(x), and
the outer A~, namely the fuzzy complement of A with value equal to one.

Given such decomposition, a 9-intersection matrix and a 4 x 4 intersection
matrix are formalized. The 9-intersection matrix becomes:

AP AB® A® AVB A® A B~
(AANB® (AANIB (AAB
AAB® A AIB (AAN(B

where (A is called fridge and is defined as the union of the c-boundary and the
b-closure. This intersection matrix can be used when the boundary cannot be
distinguished in detail. Conversely, when the separation between the boundary of
the interior and the boundary of the closure of the fuzzy region cannot be hold,
the following 4 x 4 intersection matrix has to be used. It can be obtained by not
combining the c-boundary with the b-closure:

AP AB® A® ABY A®AO°B A® ADB”
A*AB® A'ABY A'AO°B AtADBT
O°AANB® 9°AAB* 9°ANO°B O°An B~
AAB® A=ABY AAO°B A ADBT

The main contribution of this work is the extension to a topological space, that
makes the approach applicable for the identification of topological relation between
fuzzy sets and crisp sets.

2.7 Integration of Uncertain Spatial Data

In Sec. 2.3 some works concerning the integration of spatial data coming from
different sources have been briefly presented. In particular, conflation techniques
have been cited as methods for matching corresponding geometries between two
datasets. However, they typically align the dataset with lower accuracy to the more
accurate one, called target dataset, without any consideration about accuracy. The
positional information related to the control points within the less accurate dataset
is ignored, assuming that the target one is correct. In this way, corresponding
features in the two datasets are aligned but in a sub-optimal manner. Moreover,
no updated quality information are provided for the adjusted dataset.

In [22,50,92] the authors introduce the concept of measurement-based GIS as
an alternative to the usual notion of coordinate-based GIS. While in the latter sys-
tems the stored coordinate values are the primary source of data and they provide
answer to both metric and topological queries; in the proposed systems, measures
between higher-quality points (i.e. control points), target object boundary mea-
surements and measurements of other objects of interest are stored together with
their accuracy information. This solution provides some advantages during the in-
tegration process, because any new measure can be easily added to the database,
since old or inaccurate measurements can coexists with better ones or deleted
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without difficulty. However, any time a query has to be answered or the spatial
information has to be visualized, the coordinates of each point have to be derived.
In order to overcome this problem, in [22] the authors propose to store also the
obtained coordinates and to periodically process the available measures in order
to make coordinates reliable and consistent. As stated in the introduction, this
thesis considers the more usual case where measurements are not available and
only coordinates are stored.

A more sophisticated approach to the integration problem has to consider
the accuracies of both source datasets in order to produce a more accurate inte-
grated database, as done in [49,58-60]. These approaches use techniques based on
weighted least-squares method to obtain the best fit between the source datasets.
The advantage of such approaches is that resultant positions are determined tak-
ing into account all the available information, including the positional accuracy
of the source positions. Moreover, updated quality parameters are generated, en-
abling detailed quality reporting for the resultant dataset. The integration method
proposed in this thesis is also based on a least-squares estimation of the new coor-
dinates, but it exploits the Kalman filter to perform an incremental computation
of such estimation, namely the integration has not to be performed at once and
there is no need to maintain all the previously integrated information for obtain-
ing the final result. In [58-60] the authors consider also the problem of preserving
topological relations between objects by representing them as inequalities that are
included in the least-squares method. This thesis proposes a different approach
for preserving topological relations during the integration process, similarities and
differences between the two approaches will be discussed in Sec. 4.4.

In [124] the authors discuss how to use the Kalman filter into a static context for
sequentially improving the best least-squares estimate as soon as new observations
are integrated. The key concept above the use of the Kalman filter for sequentially
computing a least-square estimate, is the idea of updating the solution: the new
estimate is expressed as the linear combination of the previous one and the new
observations, in a recursive manner, hence it is not required to store the previously
integrated observations. In [10] the author uses the Kalman filter approach to
estimate the coordinate positions of atoms within a molecule. He assumes a static
structure and he does not introduce any time-dependent model of change. More
details about the Kalman filter and its application in a static content can be found
in Sec. 4.2.

Notice that, all these solutions for updating spatial data rely on measures
with known accuracy; therefore, they are not directly applicable to existing spa-
tial databases storing only coordinates values. A method has to be defined for
determining the accuracy of these coordinates from the commonly available qual-
ity information, as discussed in the following chapter. observations for denoting
spatial relations.

2.8 Summary and Concluding Remarks

This chapter has summarized some basic notions that are useful for understanding
the remainder of the thesis. In particular, the model proposed in Chap. 3 for
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describing a multi-accuracy spatial database uses a field-based representation of
geographical objects, where the spatial component of each object is described in a
2D vector-based format. This thesis concentrates on basic geometric types, such as
point, line, and polygons, and leaves more complex data structures structures, like
the topological ones, to a further investigation. We also abstract from some other
relevant attributes of geographical objects, such as the temporal aspects, because
they are not strictly relevant for the thesis purposes.

Several kind of spatial relations have been introduced in Sec. 2.2. However, in
the following we concentrate on the set of topological relations defined by Clemen-
tini et al. in [25], since they are the most widely used and implemented in GIS
systems. The concept of topological relation has been also extended to represent
relations between two uncertain objects, as described in Sec. 2.6. These represen-
tations usually apply the fuzzy set theory and are suitable for describing situation
in which the shape and extension of the objects cannot be exactly determined, as
for seas or forests. This thesis will adopt a different approach for the representa-
tion of topological relations, because in this case the object uncertainty is due to
measurement errors, not to the vagueness of the involved object boundaries.

Finally, as regards to the integration of spatial data, all results presented in
Sec. 2.3 are considered as a prerequisite for schema matching and corresponding
object identification, but a different approach is taken for the last phase regarding
the geometry alignment. In particular, an approach similar to those presented in
Sec. 2.7 is adopted, which is based on an application of a least-square method.
Actually, the proposed integration procedure is quite different, because it allows
one to perform the integration in multiple steps and eventually in a distributed
way. The differences regard also the role covered by topological relations during
the integration, as it will be clear in Chap. 4.
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A Multi-Accuracy Spatial Data Model

A multi-accuracy spatial database is a database in which objects are characterized
by different accuracy parameters, in the extreme case each single position in the
database can have a different accuracy. This chapter introduces an abstract data
model for representing a Multi-ACcuracy Spatial database, called MACS model.

According to this model spatial information can be classified into two major
groups: metric observations and logical observations. Metric observations represent
quantitative properties of spatial objects, in particular their position and exten-
sion. These observations are subject to uncertainty and have to be treated with
a statistical approach in order to express their different accuracies. Logical ob-
servations describe qualitative properties of spatial objects, like spatial relations
or shape characteristics. These observations represent certain information, namely
they can be only known or unknown, and they are treated with a logical approach.
In geographic applications the most important category of spatial relations is the
set of topological ones, whose theoretical model has been summarized in Sec. 2.2.1.

This thesis assumes that metric observations and topological relations are
stored inside a MACS database and they are considered jointly during the integra-
tion process. The following sections presents how this two kinds of observations are
represented inside a MACS database. In particular, Sec. 3.1 illustrates how metric
observations are represented inside a MACS database, while Sec. 3.2 discusses the
representation of topological information. Finally, Sec. 3.3 presents two accuracy
estimators for a MACSs database.

3.1 Representing Metric Observations

In accordance with the ISO TC 211 international standards for geographic in-
formation [65] and the Open GeoSpatial Consortium [4] terminology, the objects
inside a MACs database are called features. A feature represents a real geographic
entity and has a fundamental property which is the geometry describing its exten-
sion, shape and position on the Earth surface. This section considers 2D datasets
embedded in a Euclidean space E?; its extension to a 3D context is straightforward.

In a MAcCs database each real position P is represented as a pair of random
variables (zp,y,) and its accuracy information is given by the joint probability
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density function: f,(x,,y,) : E* - [0,1]. This function describes where the po-
sition P could be located, its type depends on the survey process and can vary
considerably. This thesis assumes that random variables representing real positions
have a Gaussian distribution, since statistically it is the distribution obtained by
any experimental process. Following this approach, for each position P to be stored
in the database, it should be necessary to store its f,(xp,y,) by means of a set of
parameters that approximate such function. This set of parameters could be very
large; moreover, visualizing complex probability density functions or using them in
query processing could be very difficult and computationally expensive. Therefore,
a synthetic description of f,(z,,y,) has to be defined. Considering the context of
geographical applications of recent years, where very few information about spatial
accuracy is available, the following representation of positions is proposed.

Definition 3.1 (Soft Absolute Position). The absolute position of a point P =
(zp,yp) with probability density function f,(xp,yp), is given by a position index
and a dispersion index. The position index of P, also called representative point
and denoted by P, is the point (g, ,tty,), where p,, and p,, are the averages
of x, and y, with respect to f,(zp,yp). The dispersion index of P represents
the dispersion of the probability around P and is given by the variance-covariance
matrix of the x,, and y,, variables.
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In many real situations, as the building of a shared SDI database, the only
available metadata describing the metric quality of coordinates in each surveyed
area are: an error estimate abs_err for absolute positions, namely the maximum
granted error between real coordinates and measurements, and a validity percent-
age of that error abs_fr, which is the percentage of cases that have to satisfy this
error. These metadata are included in any tender for the production of geograph-
ical datasets (e.g. in survey processes based on areal or satellite photos) and are
also required by recent ISO standards [67], hence we assume that they can be
easily recovered. In [27] the authors illustrate how variance of coordinates can be
computed from these metadata using the circular error formula; in this thesis we
adopt their approach, as shown in Eq. 3.2. In particular, since there is no reason
for considering different the variance of z from the variance of y, we can suppose
that:

2
2 9 o —abs_err
Tap =% =0 7 5 log(1 - abs_fr)

(3.2)

Given the variance of a position, the correlation between different positions
can be estimated by introducing the covariance between their point coordinates.
This correlation is defined in a way such that it is greater for near positions and it
decreases as distance increases. Given two positions P = (x,,y,) and Q = (24, y,),
their variance and covariance values can be represented in a matrix, called C, as
follows:
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This matrix could be fully populated only when all measurements collected
during surveys are known, as done in [22]. This is not the case considered in this
thesis, since we suppose to know only some aggregate metadata about the metric
accuracy of positions at hand. Under these conditions some hypotheses have to
be introduced in order to simplify the model and reduce the number of unknown
parameters in the matrix.

Definition 3.2 (Independence hypotheses). The following hypotheses can be
reasonable when considering surveyed spatial data for which no detailed informa-
tion about ground measurements are available:

1. The z and y coordinates of a position P can be considered mutually indepen-
dent, thus their covariance can be set to zero: oy,y, = 0zy, = 0.

2. The correlation among point positions is assumed to take effects only between
coordinates of the same axis, i.e. the x coordinate of a position P does not
influence the y coordinate of any other position @, and vice versa: o 4, =
Oypzq = 0

3. The correlation between the x coordinate of P and the z coordinate of @ is
equal to the correlation between the y coordinate of P and the y coordinate

of Q: 04z, = 0y,y, = Cpg-

Any other hypotheses lead to an inconsistent state of C' or removes the propagation
effect. O

Clearly, if some additional information about the accuracy of a particular posi-
tion or object, or about the correlation among specific locations is known, it can be
used to properly initialize the corresponding elements of the variance-covariance
matrix. Anyway, the integration technique proposed in the following sections is
independent from the matrix initialization.

Applying the hypotheses contained in Def. 3.2 and considering the covariance
property gup = 0pq, the matrix C' can be rewritten as follows:

012) 0 cpg O
C - 0 O’i 02 Cpq
Cpqg 0 05 0
0 cpg O 03

(3.3)

where cp,, represents the correlation between positions P and @ and is the only
unknown parameter. In order to obtain an estimation of this parameter, the fol-
lowing approach is considered: c,, represents somehow the “attraction” that P
exerts on () and vice versa; therefore, it can be computed by considering the ac-
curacy of the relative distance among positions in a map. Indeed, this is another
piece of metadata that is often available for surveyed spatial datasets, since the
accuracy of the relative distance among surveyed objects is usually higher than
the one derivable from the accuracy of their absolute coordinates. Now supposing
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that Uﬁpq is the variance of the relative distance between two positions P and @,
it can be computed using Eq. 3.2 where abs_err is replaced with the maximum
granted error for the relative distance between absolute positions, and abs_fr with
its percentage of validity. The value ¢, can be obtained as shown in the following
lemma.

2
dpq
distance between two positions P and @ and the variance of their coordinates UZ

Lemma 3.3 (Covariance estimation). Given the variance ¢ of the relative

2 : - - .
and oy, the covariance 0,z = Oypy, = Cpg can be computed as follows:

2, 2_ 2
c _ "% 7%y, (3.4)
rq — 2 :

Proof. - Eq. 3.4 can be obtained by applying the variance propagation law to
the random variable d,,, representing the distance PQ, and the vector of random
variables v = (z, yp T4 Yq), representing the coordinates of the positions P and
Q. More specifically, between the random variable d,, and the vector of random

variables v the following relation exists: dpg = g(v) = /(21 —22)2 + (y1 — y2)2,
where g is the well-known Euclidean distance between two points. Notice that g is
a non-linear function, but it can be easily linearized as dp,q ~ J - v, where J is the
Jacobian, namely the matrix containing the partial derivatives of g with respect
to each component of v.
J:[@ 9 % @] (3.5)
1 Yyr T2 Y2
Let C, the variance-covariance matrix for the random variable v defined as in
Eq. 3.3, and let Cy the variance-covariance matrix for the random variable d,q.
Matrix Cy is composed of a single value: the variance of the distance between
positions P and @, computed starting from the accuracy of the relative distances
(i.e. the value a?lpq). Such matrix is defined as follows:

Ca= [0(21,,q ] =B [(dpq = E(dpq)) - (dpg - E(dpq))T] (3.6)
where E[X] is the expected value of a random variable X. Given Eq. 3.6, the
relation d,q ~ J-v, and the expected value properties, the following can be derived:

Caq = E[(dpq - E[dpq]) : (dpq - E[dpq])T]
=E[(J-v-J-E[v])-(J-v-J-E[v])"]
=E[J-(v-E[V])-(v-E[v])" -J"]
=J-E[(v-E[v]) - (v-E[v]))']-J"

=J-Cyp-J"
The components of the Jacobian matrix are:
0 1 1 T -
8_9:5' 2 5 2z m ) = ( 12 . 2
1 \/(Il—xz) - (y1-92) \/(I1—$2) - (y1-92)
0 1 1 To— X
99 (9 - 11) = (22 — 1)

o1y 2 V(@1 —22)2 = (g1 - y2)? V(@1 —22)% = (y1 - y2)?
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ﬁ _ l . 1 .9 _ _ (yl —yz)
I 2 (w1 -32)% - (1 — 12)? (1 =02) V(@1 - 22)% = (y1 - 42)?
99 _1 ! s — ) = (y2-y1)
Ao 2 \f(z1-22)2 - (11 - 12)? (2 =) V(@1 —22)% = (1 - 12)?

Starting from such Jacobian components and the relation Cy = J-C,,-JT, the value

02 can be computed as follows:
dpq

Ca=[o} 1=7-Cp-J"

(99 o 99 o 99 99 .
Oxy P oy ° oy M oy M
= + + + + JT
99 99 . 99 o 99 >
[ Oy P9 Byy P Oz, 4 dys 1
[ ( Jg 2, Og ) dg 1]
(61'1 Jp i 8$2 “ra %$1+

g o 99 ) g
—_— + —_— . — +
— ( 3891 p 3(}9/2 Cre 35/1

(29 . 99 2)._9
(6951 Cpq+6x2 Uq 8$2+
(@.c +@.a2).@
| \ Oy v 0y e 0y2 |

The value ¢, can be obtained by solving the equation:

(e 2) (P B )

o = or, p+5_$2.cq Oxy \dy, P Oy ‘ 5’_1/1+
dg dg 2) dg ( dg dg 2) dg
(axl “ra * Oy 1) Oxy " oy Cra ™ Oy %q dys

:((1‘1—.TQ)'O'12)+(.T2—.’I}1)'CPQ). (x1 —x2)

V(@1 —22)? + (1 - y2)? V(1 - 22)? + (1 - y2)?

(yl—yz)~a§+(yz—y1)'cpq). (y1-92)
V(@1 = 22)% + (y1 - y2)? V(@1 = 22)% + (y1 - y2)?
(xl—:rg)~cpq+($2—$1)'0,§)' (20 — 1)
\/(CE1 —x2)% + (11 — y2)? \/($1 ~2)2 + (Y1~ y2)?
(y1—y2)'0pq+(y2—y1)'02). (y2—y1)
V-2 (gr-92)? ) ler-22)?+ (i -1)
($1—$2)2‘U;2a (w2 —21)(21 = @2) - Cpg

T (@ w) 4 (- y2)? (21— 22)2 + (g1 - y2)?
(y1—y2)2'012) N (y2 = y1) (Y1 — y2) - Cpq
(1 -22)%+ (Y1 —y2)? (21 -22)%+ (Y1 — y2)?




44 3 A Multi-Accuracy Spatial Data Model

(21— 22) (22 — 1) - Cpgq (I2—$1)2'02
(z1-22)%+ (Y1 - 92)? (21 -22)2 + (y1 —¥y2)?
(Y1 = y2)(y2 = Y1) * Cpq + (yz—y1)2~o§
(x1-22)%+ (y1-12)? (21 -22)%+ (y1 - 92)?
((z1 - 22)* + (1 - y2)*) - 07 . ((x1 - 22)* + (1 — y2)*) - o
(1 - 22) + (Y1 —y2)? (21— 22)% + (Y1 - y2)?
-2 (21 - 22)> + (Y2 - 11)?) - Cpq
(21— 22)%+ (Y1~ y2)?
:U§+05—2'Cpq

obtaining the value:

O

Notice that a connection exists between the accuracy of absolute positions and
the accuracy of their relative distance. For example, if two positions P and @ have
an absolute accuracy corresponding to a circular error of e, and e, respectively,
with a validity percentage of 95%, then their relative distance will be affected at
most by an error of e, + ¢, in the 95% of the cases. Moreover, in the context of
real spatial data integration, only positive values of covariance are acceptable in
order to preserve relative distances among positions.

Observation 3.1 (Positive covariance constraint). In order to preserve the
relative distance between two positions P and @Q during the integration process
presented in the following chapter, the covariance value cpq between P and @) has
to be positive (greater than zero), namely from Eq. 8.4:

2 2 2
O’dpq <O'p+0'q
O

In other words the variance-covariance matrix can contain only non-negative co-
variance elements: a positive covariance is defined between a pair of objects that
influence each other, while a zero covariance is defined between a pair of indepen-
dent objects.

Starting from this observation, it follows that every time a value greater than

this limit is obtained for a?in using Eq. 3.2, it has to be substituted with the value
2

op+ 0.
Lemma 3.4. The covariance matrix C defined in Eq. 3.3 is positive-definite.

Proof. — A symmetric matrix is positive defined if:

1. all diagonal elements are positive;
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2. each diagonal element is greater than the sum of the absolute values of all the
other entries in the corresponding row/column.

The first condition is satisfied by definition, because the variance is a non-
negative value, and thanks to the initialization presented in Def. 3.2, in our case
it is also different from zero. As regards to the second condition, it can be easily
proved by considering the hypotheses of Def. 3.2 (in particular the second one)
and the constraint in Obs. 3.1.

The reasoning illustrated above regards only two positions, but its extension to
the network of all points contained in a database is straightforward. In particular,

this procedure shall be applied to all possible pair of positions in the database,
altogether there are m = % distinct pairs of positions, where n is the total
number of positions.

Clearly, the dimension of the matrix for a real database grows rapidly and its
complete storage into a database can become difficult. Given a network of n po-
sitions, it has a dimension of nxn, where n-(n — 1) is the number of covariance
values, and the remaining n elements are the variance values stored in the diagonal
position. We can observe that the variance-covariance matrix is symmetric; there-
fore, only its upper (or lower) triangle has to be stored, halving the required space.
Moreover, the correlation between a position P and another position ) decreases
with the distance, becoming equal to zero after a certain distance; hence, for each
position the number of covariance values that are different from zero and have to
be actually stored is less than (n —1). Anyway, some other optimizations can be
adopted, they are deeply discussed in Sec. 4.7.

Given the notion of absolute position, a geometric object in a MAcCS database
is defined as follows.

Definition 3.5 (MAcs Object or feature). A MACS object or feature o is de-
fined as a tuple: o = (id, c1,geo) where:

e id is an integer representing the unique identifier for the object.
e cl is the thematic class to which the object belongs to, e.g. Building or Road.
e geo is the geometry of the object, that is composed of:
(i) the set of absolute positions geo.pos = {Py,..., P, } describing the geometry
and its uncertainty,
(ii) the type of geometry geo.type € {point, curve, surface}, and
(iil) the representative geometry geo.rep = {ftz,, fy; ;- - - e, » by, ; Which is the
point, polyline or polygon used during object visualisation and querying.
[m]

Notice that the representative geometry geo.rep can be derived from the rep-
resentative of each absolute position in geo.pos. In order to handle the case in
which only spatial relations among objects are represented (see next section), with
no geometries, the empty value for geo is admitted; it is denoted as @ge, and we
suppose that @geo.pos = Fgeo.rep = @ and Fyeo.type = null. Notice that on each
object geometry the following constraints hold:

e if geo.type = point, then |geo.pos| = |geo.rep| =1,
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e if geo.type = curve, then |geo.pos| = |geo.rep| > 1,
e if geo.type = surface, then |geo.pos| = |geo.rep| > 2.

3.2 Representing Logical Observations

For representing geographical information, another kind of observation is neces-
sary, namely the spatial relations existing among the dataset objects. Several types
of spatial relations have been defined in literature, as described in Sec. 2.2.1. This
thesis focuses on topological relations, since they have been deeply studied in lit-
erature starting from the paper of Egenhofer [38] and they are available in every
current GIS product and also open source software, like the well known Java APIs
called JTS Topology Suite [136]. More specifically, the considered set of mutually
exclusive topological relations is {disjoint, touch, in, contain, overlap, cross, equal}
to which the relations covered_by and covers are added, since they are specializa-
tions of in and contains that require a specific treatment during the integration
process. The reference set of topological relations considered here becomes:

Riopo = {disjoint, touch, in, covered_by, contains, covers, cross, overlap}

The semantics of topological relations in Riqp, is provided in Table 3.2: for
each topological relation, the last column reports the pattern grouping all the
corresponding 9-intersection matrices. Notice that as highlighted in Sec. 2.2.1, the
definition of such relation depends on the geometric type of the involved objects.
For example, the touch relation can only be applied to a pair of surfaces or a
surface and a curve or a point and curve, and so on. Fig. 3.1 shows the decision
tree for the set Riop, which demonstrates that it is a set of mutually exclusive
topological relations.

In the currently available GIS systems, the topological relation existing between
two objects is usually derived from their geometries. However, in a MACS database
absolute positions, composing the objects geometries, are soft data, since they are
subject to measurement errors. As a consequence, from absolute positions only
soft topological relations can be derived, namely topological relations that are
not precisely defined. Sec. 2.6 summarizes some existing models for describing
uncertain topological relations, this thesis proposes a different approach that is
justified by the following claim.

Claim. Topological relations can also be considered as observations useful for rep-
resenting spatial information. This claim has two important consequences: (i) ob-
served topological relations among objects of a dataset have to be stored indepen-
dently from the objects geometries; (ii) observed topological relations have to be
integrated with objects geometries solving possible inconsistency. O

Given this claim, observed topological relations cannot be considered data sub-
ject to measurement error, since they cannot be measured like the width of a
building, but they can only be true or false. Therefore, topological relations are
called hard data, to distinguished them from absolute positions that are soft data,
as explained before. The lack of knowledge about the precise topological relation
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existing between two objects can be represented by a disjunction of topological
relations, that we know might exist between them. If no relation can be excluded,
then the disjunction is composed of all relations of the considered reference set.

Relation Geometry type (S: Corresponding
Name Relation Definition surface, C‘: curve, | patterns of t:.he 9-int.
P: point) matrix
sS/s, C/C, S/C, C/S FFT-FFT-TTT
S/p, C/P FFT -FFT-TFT
disjoint (d) AnB=g P/S, P/C FFT -FFF-TTT
P/P FFT-FFF-TFT
S/S FFT-FTT-TTT
FxT —+T%-Tx*xT
c/C FxT-Txx-Tx%T
FTT —%%%-T T
touch (t) (A°nB°=2)A(ANB)#2) s/C FFT-T**x-»xT
FFT-FTT-Tx*T
c/s FT%x-F%x%x-TxT
FFT-FT % -TTT
S/P, C/P FFT-TFT-FFT
P/C, P/S FTF-FFF-TTT
in (1) (AnB° = A) A (A° 1 B°) = @) S/S, C/C, C/S TFF-TFF-TTT
P/S, P/C TFF-FFF-TTT
_ o o
coverediy (A ﬁ@?; (AA):é‘? :Af)? ) # s/s, C/C TFF -TTF -TTT
(b) C/s T+ F—-+TF-TTT
contains (c) (AnB°=B)A(A°nB°) +@) S/8, €/C, /€ ITT-FFT - FFT
S/P, C/P TFT-FFT-FFT
(4 OQJE; N 30%%‘1“3?0) * s/s, ¢/C TTT - FTT - FFT
covers (v) T+«T-FIT-FFT
s/¢ T+T~-TFT - FFT
T+T-TTT-FFT
equal (e) A-B S/S, C/C TFF-FTF-FFT
P/P TFF-FFF-FFT
dim(A° n B°) = C/s TTT — % %% -TTT
cross (r) (maz(dim(A°), dim(B°)) - 1)A s/C T+T-T*T-TxT
(AnB)*# AAN(AnB)+B c/C 0T —sxx-Tx*T
dim(A°) = dim(B°) = S/S TTT-TTT -TTT
overlap (o) dim(A° n B°) A
(AnB)*# AAN(AnB)+B c/C 1T —%x*x=TxT

Table 3.1. Definition of the reference set of topological relations between two objects A
and B. The pattern is a string “ci,1¢1,2¢1,3 — €2,1¢2,2¢2,3 — ¢3,1¢3,2¢3,3”, Where element ¢; ;
corresponds to cell (4,7) in the 9-intersection matrix. If ¢; ; = * then this position is not
relevant for defining the topological relation, ¢;; = F//T means that the intersection is
(or is not) empty, ¢;; € {0,1,2} means that the intersection has the specified dimension.
Finally, dim(g) computes the dimension of the geometry g.
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Relatively to point (ii) in the claim, we will explain in the following chapter that
in some cases the knowledge about a particular topological relation between two
objects can justify an increment of the accuracy of the relative distance between
some of their positions, in order to preserve a particular configuration.

A=B
VA
A°nNnB° =g
>N
AnB=g AnB°=A

onﬂB °) = maz(dim(A°®),dim(B°)) -1

Fig. 3.1. Topological relation decision tree.

Definition 3.6 (Hard Topological Relation). Given a complete set of mutu-
ally exclusive topological relations Ri.p0, an instance of hard topological relation
is the tuple

<01702)R’)

where:

e 07,05 are objects
e R 2o is the set of topological relations that might exist between 0; and 0,
(e.g. {Disjoint}, {In, Equal}, { Touch, In, Overlap}, etc.).

In particular, sets with more than one relation represent disjunction of topological
relations between o; and os. The set containing all the topological relationships,
called universal relation and denoted with Ry, represents the situation in which
the topological relation between o7 and os is completely unknown. O

From this definition of hard topological relation, it follows that three situations
may occur:
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1. if |R| = 1, the relation is known;

if R = Ry, the relation is completely unknown;

3. if [R| > 1 AR # Ry, the relation is unknown and could be one of the relations
r €R.

o

In the following, where there is no ambiguity, a hard topological relation will be
denoted simply as topological relation.

Even if topological relations cannot be derived from absolute positions, a co-
herence constraint has to be imposed between hard and soft topological relations.

Definition 3.7 (Soft Topological Relation). Given two objects o; and o the
soft topological relation 4.z that exists between them is the topological relation
that can be computed by considering as geometries their representatives. O

For obtaining an effective integration between soft and hard data, r,.s has to
be compatible with the hard topological relation R explicitly stored, as stated by
the following rule.

Definition 3.8 (Hard2Soft Coherence Constraint). Given two objects oy and
0, such that an hard topological relation R has been explicitly defined between
them, and a soft topological relation 4,z can be derived from their representatives,
the following constraints shall be verified: rgoz € R. O

The integration of two MACS databases can determine the violation of the coher-
ence constraint: Sec. 4.4 will discuss in details how to solve this kind of conflicts.

Let us notice that the number of hard topological relations to be stored in a
MaAcs database can be very large; indeed, if the database contains n objects, the
total number of hard topological relations to be stored is n(n - 1)/2, because one
topological relation has to be defined between each pair of objects. This could be
a large number in real databases, hence some optimizations shall be applied in
order to reduce the amount of information that have to be stored. The idea is to
represent hard topological relations among objects using soft topological relations
when possible and store them explicitly only when they are completely or partially
unknown (i.e., when 1 < |R| < |Ry]). In order to apply such optimization, the notion
of confidence region (or support) has to be introduced.

Definition 3.9 (Point Confidence Region). The confidence region for a posi-
tion P, denoted as CRp (), is the region around P within which the true location
of P is contained with a probability larger than a predefined confidence level «:
Pr{PeCR,(a)} > . ]

Fig. 3.2.a illustrates an example of confidence region for a position P. The
orientation of the ellipse (relatively to the Cartesian coordinate system) depends on
the correlation between errors in x and y directions. If errors in « and y directions
are uncorrelated, as in the considered case where for any position P it holds that
Oz,y, = 0, the two semi-axes of the error ellipse are parallel to the x and y axes;
therefore, the error ellipse has the shape illustrated in Fig. 3.2.b. Finally, if the
error in the two directions is the same, as in the considered case where agp = ai for
any position P, the error ellipse becomes an error circle, as illustrated in Fig. 3.2.c.
In particular, if a ~ 0.95, the circle radius is equal to 201%.
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Fig. 3.2. (a) Generic confidence region for a position P, (b) confidence region for a
position P when 0.y = 0, (c) confidence region for a position P when o5y = 0 and

2 2
Oz =0y

Given the definition of confidence region for a point, several error models have
been proposed in literature for describing the positional error of spatial features.
As regards to line segments, this thesis considers the error-band model (or G-
band model), originally proposed by Perkal [102] and subsequently extended by
Shi [116] in order to apply it when line endpoints have different error distributions.
The name of the error model suggests that the confidence region is a band around a
measured location of the line, within which the true location of the line is located,
with a probability larger than a predefined confidence level a.

Definition 3.10 (Line Confidence Region). The confidence region for a line
segment PR, denoted as CRp-(«), is the region containing the true location of
the line segment with a probability larger than a predefined confidence level. This
confidence region is obtained as the union of the confidence regions of all points Qy
on the line segment, for k € [0, 1]. This construction ensures that the true location
of all points on the line segment are contained within CR,,(«) with a probability
larger than a predefined confidence level a: Vk € [0,1] . Pr{Qr e CRy ()} > . O

A line segment PR with endpoints P = (xp,y,) and R = (z,,y,) has an infinite
set of intermediate points Qy, for k € [0,1], that can be derived by the following
formula:

1—k M, +7- X,
Qu=(1-k)-P+k-R= El—k%-zyﬁi-zy' ke[0,1] (3.7

The cumulative distribution function of a line segment PR can be defined by
the joint distribution function of the stochastic vectors of points P, R and Qj
for all k € [0,1]. However, such distribution function cannot be used to define
the positional error of a line segment directly. For this purpose, the following
symmetric matrix is defined between any pair of (vertex and intermediate) points
Qi, Q; on the line segment, for any 4,5 € [0,1].

2
T = [UWJ' U”é”’”] (3.8)

Oyiz; Oy,y;

Such matrix describes the linear correlation of the (vertex and intermediate) points
on the segment. In particular, given Eq. 3.7 the elements of the matrix are given
as:
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Jizj =(1-9)(1 —j)'ng +[i(1=5) +j(1=9)] 0zpz, +ij'0925q
Oaiy; = (L=0)(1=35) - Oy, + (L= §) 00y, + (1 =)0u,y, +ij - Oy,
Oyjms = (1 —?)(1 —J)'ngzp fJ(l fl)ayqﬂ?p +_Z(1 _J)prﬂfc{ TU " Tygg
Oy = (1-9)(1 —j)'O'yp +[i(1=j4) +j(1=9)]-0y,y, +1j Loy,

In the case considered in this thesis, the positional error in the x and y com-

ponents of a same endpoint are independent and equal: agl = 051 = 0, and
032 = 0!2/2 = 03, while 02 # 2. Therefore, the matrix in Eq. 3.8 can be simpli-
fied as:

Zgiq; = [ =D)L= 5)of +ij-03]- I (3.9)

where I is the two-dimensional identity matrix. Such matrix is independent of
the rotation angle, because given the following two-dimensional rotation matrix p:

| cosvy siny
| —siny cosy

where v is any rotation angle, the following relation holds:
P Lgiq; P = 2qig,
Let us consider the case i = j, Eq. 3.9 can be simplified as:

Y = [(1-i)%0f +i%-03]- I (3.10)

This indicates that the error ellipse at any implicit point between two endpoints be-
comes an error circle, whose radius can vary, since the error circles of the endpoints
are unequal. In order to determine the minimum radius, let (dX,,,)(dt)|s, =0, it
follows that t 5 = (07)/(0% +03). When i = t 5, the diagonal elements of the matrix
Y4:q; Will equal to their minimum values. This corresponds to the minimum radius
of the error circles.

Q

Qm
©

Fig. 3.3. Confidence region for a line segment when (a) ta > 1/2, (b) ta <1/2, and (c)
ta=1/2.

The location of the minimum error circles on the line segment varies as follows:
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e Ifo?>02, and thust, > 1/2, then the minimum error circle on the line segment
approaches to endpoint R (see Fig. 3.3.a).

e Ifo? <02 and thus ta < 1/2, then the minimum error circle on the line segment
approaches to endpoint P (see Fig. 3.3.b).

e Ifo? =03, and thus t o = 1/2, then the minimum error circle on the line segment
is located at the middle point of the line segment PR (see Fig. 3.3.c).

It follows that the minimum error on the line segment is always closer to the
endpoint with the smallest error circle.

A polygon is obtained by linking line segments to form a closed area. Positional
error of these line segments can be described using the band-error model explained
above. Chun et al. propose in [24] to adopt this model also for describing the posi-
tional error of a polygon, since it is caused by the positional error of its boundary
elements.

Definition 3.11 (Polygon Confidence Region). Joining several line segments
forms a polyline. A special case of polyline, with identical beginning and end
vertices is a closed polygon. A confidence region CRp,. ,, (a), for the polyline

(Py,...,P,), is defined as the region containing the true location of all its points
with a probability larger than a predefined confidence level a: i =1,2,...,m—-1,r ¢
[0,1] . Pr{Pi, e J} > . O

Fig. 3.4 shows a square A with four edges surrounded with the corresponding
error bands.

N 4
y) K
A;
/
N r
7 N

Fig. 3.4. Confidence region of a polygon computed as the union of the confidence regions
of its boundary line segments.

An indezx of mazimum dispersion o, can be defined for the whole database,
which has to be considered during the computation of the support of each database
position. Therefore, any point outside CRy(c,,) cannot be considered an eligible
position for P. However, the computation of the exact confidence region of all
objects in a MACS database can be impracticable. The following definition explains
how the confidence region of each MACS feature is estimated.

Definition 3.12 (Confidence region estimation). Given an object o = (id, c1,
geo), its confidence region with respect to «,,, denoted as CR(o, ), can be
approximated by considering the smallest buffer region of o.geo.rep that contains
the confidence region of all its defining positions o.geo.pos.
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The real position of an object is located inside its confidence region estimation
with a probability larger than or equal to «. O

The buffer operation is a well-known operation available in any GIS system
that, given a geometry g and a distance d, computes the region representing the
set of points having a distance less or equal to d from g. Fig. 3.5 illustrates an
example of estimated confidence region for a line segment and a polygon.

N\ 7 O\
A y
A;
/
N7 7
2 J

€Y (b)

Fig. 3.5. Approximation of a line segment (a) and a polygon (b) confidence region using
a buffer containing the exact confidence region.

Thanks to the notion of object confidence region, only topological relations
between pairs of objects (04, 05) that interact (i.e. whose confidence regions are not
disjoint) have to be explicitly stored. In other words, the only possible topological
relation between two objects whose supports are disjoint is the disjoint one.

Besides this consideration, we can observe that in practical cases, the topolog-
ical relation existing between two features is known rather than unknown, hence
given the coherence constraint previously mentioned, we can decide to store only
hard topological relations that contain more than one element and derive the other
ones from the representatives of the objects. Therefore, given a pair of objects
{01,02) the possible cases are shown in Table 3.2.

Condition on objects support Sr?ef;tticc))ﬁ. Hard top. relation Storiglzl:tai:i top.
CR(o1,an) NCR(02, xpr) = @ o1 dj oy (o1, {dj},02) -
CR(o1,apm ) NCR(02,cpr) + @ 01 T 0o (01, {r},02) -
CR(o1,ap ) NCR(02,cpr) + D 01 7y 0 (o1, {r1,..,7i,.., Tk}, 02) (o1, {r1,..., Tk}, 02)
CR(o1,an ) NCR(02,cpr) + @ 01 T; Og (o1, Ry, 02) (o1, Ry, 02)

Table 3.2. Possible cases in the representation of the hard topological relations between
two objects o1 and o, (dj = disjoint).

Given the definition of soft and hard data, a MAcCs database can be defined as
follows.

Definition 3.13 (MAcs database). A Multi ACcuracy Spatial database (MACs
database) is a 6-tuple: macs = (DB, Cpg, TY,0BJ, REL, av;,, CRpg) Where:
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e DB is the set of position indexes of the absolute positions contained in the MACS
database. For each position index P the following tuple is stored: (id,,zp,yp),
where id,, is the identifier of P, and P= (zp,yp).

e Cpp is the matrix of dispersion indexes (variance and covariance of coordinates)
of db; the problem of storing Cpg will be discussed in the following chapter.

TY is a set of available feature classes for the objects.

OBJ is a set of objects (id,cl,geo) (see Def. 3.5) belonging to the classes of
TY and whose geometry is described through the positions in DB: ¢l € TY and
geo.pos € DB.

e REL is a set of hard topological relations, which are explicitly stored, since they
are not derivable from soft topological relations.

Q;y, 18 the maximum dispersion index.
CRpp is the region representing the support of the database, which is obtained
as the union of the objects supports. O

From the optimization given above about the storing of topological relations,
it follows that the complete set of topological relations that are known for a MAcCS
database is obtained by considering the union of the hard topological relations
explicitly stored, with the soft topological relations that can be derived by object
geometries. Such operation is represented by the function ext(REL,0BJ).

Let us notice that if two objects inside a MACS database have intersecting
geometries, then in order to exactly propagate the integration effects, they shall
share some positions representing their common intersection points (for surfaces
this constraint is referred to their boundary).

o

Fig. 3.6. Dataset considered in Ex. 3.14: the violet polygons represent two buildings,
while the yellow polygon is a road.

Ezample 3.1/ (Example of MACS database). Let us consider the database pre-
sented in Fig. 3.6, denoted here as macs;. Supposing that for macs; the error
abs_err for absolute positions is 0.8m with a percentage of validity of 95%, and
the error rel_err for relative distances is 0.6m with a percentage of 95%, while
its maximum dispersion index «,, has value of 0.75 and its confidence region is
briefly denoted as cr. The representation of this MACS database is reported below.
Let us notice that DB(id) stands for the elements of the vector DB related to the
position with identifier id; similarly, Cpp(id) denotes the elements (variance and
covariances) of the Cpg matrix related to the position with identifier id.
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macsl.DB = {(id0017 2456, 9783), cee <id023, 2456, 7684), ce }

macs;.Cpp = (0.25,0.18, cr)

macs1.TY = { Road, Buildings}

macs1.0BJ = {{obj,, Road, obj;.geo), (obj,, Building, obj,.geo),

(obj,, Building, obj4.geo)}

- obj1.geo.pos = {(DB(ido()l), CDB(idOOl))a N (DB(idogg), CDB(id023)), e }
— objj.geo.type = surface

~ obj.geo.rep = {577907, 5000248, .. ., 577905, 5000221}

macs;.REL = {(obj, {touch, disjoint}, obj,), (obj,, {touch, disjoint},objs)}
macsi.oy = 0.75,

macs1.CRg, = cT

]

As discussed in 3.1 the dimension of the variance-covariance matrix Cpg can be
very huge. The problem of efficiently representing the variance-covariance matrix
will be discussed in Sec. 4.7.

3.3 MAcs Database Accuracy Estimators

In order to evaluate the overall accuracy of a MACS database, an index of accuracy
for metric observations and an index of certainty for logical ones are introduced.
An estimation of certainty for logical observations has been chosen, instead of
uncertainty, for having an index with the same behaviour of the metric accuracy.

Given a position P inside a MACS database macs, the metric accuracy of its
absolute position is defined as the inverse of its variance. Since according to Eq. 3.3
the variance of the x and y coordinates of a position is the same and, as we will
see in Sec. 4.5, remains the same also after the integration procedure, the metric
accuracy of the position P is defined as:

1
accy (P) = =
P

From this, the average global accuracy estimator of a MACS database macs con-
cerning metric observations can be computed as:

ZPiemacs‘DB acCCm (PZ)

|macs.DB]

accy, (macs) =

Similarly, the certainty of a set of topological relations R defined between two
objects o1 and oy can be estimated as:

([1Ru| - |R])
((IRu[-1)-|R])
Considering the reference set of topological relations proposed in Sec. 3.2, we
obtain: acci(R) = (9 - |R|)/(8 - |R|). Therefore, the certainty is the highest when

|R| = 1, namely when the relation is known (acci(R) = 1), and it is the lowest when
R = Ry, namely when the relation is unknown (acc:(R) = 0).

acce(R) =
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The average global certainty estimator of a MACS database macs concerning
logical observations can be computed as follows:

Imacs.0BJ|? - [macs.REL| + ¥z, cpacs g acCt (R;)
|macs.0BJ|?

acc(macs) =

Each known topological relation (i.e. not explicitly stored in macs.REL) has a
unit certainty value, hence the first term |macs.0BJ|? — |macs.REL| computes the
overall certainty of all known relations. To this value the certainty of all unknown
topological relations is added (3, cpacs.rer @¢¢:(R;)). This sum is normalized with
respect to the total number of possible relations (|macs.0BJ|?). Therefore, the cer-
tainty is the highest when all the relations are known and decreases when more
relations are unknown.

3.4 MAcs Implementation Model

Given an existing spatial database, the implementation of the M ACS model requires
to store some additional tables that will contain the position accuracy information
and the hard topological relations explicitly stored. Fig. 3.7 depicts such additional
tables, notice that geometric types have been specified with respect to the OGC
Simple Feature Model [8].

ThematicClass HardTopoRelation

(PK) featureld: Integer (PK) sourceFeaure: Integer
(PK) targetFeature: Integer

(PK) topoRelation: String

geometry: Geometry
A

MacsPosition PositionCovariance
(PK) featureld: Integer < (PK) sourceFeature: Integer
(PK) positionld: Integer (PK) sourcePosition: Integer
representative: Point (PK) targetFeature: Integer

A

variance: Numeric (PK) targetPosition: Integer

covariance: Numeric

Fig. 3.7. Database schema for storing of the MAcCS additional information.

Existing features are supposed to be stored inside a set of tables with a name
corresponding to its thematic class, as represented by the set of overlapping ta-
bles called ThematicClass. These tables contains a set of attributes including an
identifier, which is assumed unique among all these tables, and a generic geomet-
ric attribute, which is used for querying and visualization purposes and can be
specialized in each table.
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Another table, called MacsPosition, stores the absolute positions of each fea-
ture, together with their variance. Notice that the geometry of each absolute posi-
tion can be derived from the corresponding feature geometry; however, this table
stores only positions that will be used during the integration process and assign
to each of them a unique identifier and a variance value. We will highlight in the
following chapter that in some cases only a selection of object positions has to
be considered during the integration, while some other positions are discarded.
Conversely, the covariance between two positions is stored into a separate table:
given a source position, a covariance value is stored for any other interacting posi-
tion; namely, if two positions do not interact (i.e. do not influence each other) no
covariance values are stored between them.

The last presented table is called HardTopoRelation and is used to explicitly
store the set of topological relations that may exist between two objects. Notice
that the topological relation is part of the primary key, indeed between the same
pair of objects different relations can be stored, which constitute a disjunction of
possible relations. Similarly to the previous case, one or more tuples are stored for
the same pair of objects, only if the relation cannot be subsumed for the object
representatives.

3.5 Summary and Concluding Remarks

This chapters has introduced a model for representing together spatial data char-
acterized by different positional accuracies. The model assumes a field-based rep-
resentation of geographical objects and concentrates on how positional accuracy
information can be stably associated to each object or even to each position rep-
resentation. In particular, a statistical description of absolute positions in terms
of random variables has been proposed, while accuracy information is described
through a variance-covariance matrix. A method is also presented for deriving ac-
curacy information starting from the few metadata usually available: an error for
absolute positions and an error for relative distances. Such procedure is only a
way for initialize the variance-covariance matrix when limited information is avail-
able, but the integration method proposed in the following chapter is independent
from the starting matrix initialization. Theoretically, the proposed representation
requires to define a correlation (i.e. a covariance value) between each possible pair
of positions. Actually, in real situations the correlation between two positions de-
creases as the distance between them increases, becoming soon or later equal to
zero. Therefore, the number of covariance values that have to be really stored is
much less than he number of possible position pairs.

Another type of spatial information that has been considered is the set of topo-
logical relations existing between two objects. In the proposed model, topological
relations cannot be derived from object representations, because the latter ones
are subject to measurement errors; conversely, topological relations are consid-
ered data that can be only known or unknown. Therefore, the topological relation
known between two objects has to be explicitly stored, and eventually the lack
of knowledge about an exact topological relation can be modeled using a disjunc-
tion of relations. Again this approach theoretically requires to store a (set of)
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topological relation(s) between any pair of objects, in reality we establish that
a topological relation has to be stored between two objects only if they have an
intersecting confidence region (otherwise the only possible relation is the disjoint
one) and the relation cannot be derived from the relation induced by the object
representatives (i.e. the topological relation is a disjunction of relations). We also
propose some ways to derive the set of possible topological relations between two
objects when no information is available, starting from the relation between their
confidence regions.

Finally, the mathematical definition of MACS database is given together with
some accuracy estimators, which can be used to evaluate its overall quality, and
a description of its database implementation model. The next chapter will discuss
the problem of integrating two MACS databases.



4

Integration of two MAcCS databases

This chapter deals with the integration of two existing M ACs databases. First of all,
it proposes a three steps approach that takes care of the accuracies of both source
databases and produces quality information for the resulting one. In particular, the
first step deals with the integration of metric observations: a statistical approach
is defined that applies the Kalman filter to incrementally obtain the estimate that
best fits all the available information and return also updated quality values for the
result. The second step regards the integration of logical information, topological
relations contained in the two source databases are combined for determining the
set of relations that have to be satisfied by the resulting database. Finally, the last
step treats the problem of integrating together metric and logical information, by
proposing a method for solving generated inconsistencies that can be generated
between soft and hard topological relations during the first two phases.

Subsequently, the proposed integration framework is extended in order to make
its application feasible in a distributed context, such as an SDI, even in presence
of an huge amount of data. In order to apply the proposed technique in such
environment, each phase of the integration process has to be partitioned, so that
it can be performed locally by each local agency. The partial computed results are
then sent back to an central agency which is responsible for combining them to
obtain the global result and propagating the necessary information back to the
involved local agencies. Moreover, some optimization techniques are presented for
reducing the amount of space that is necessary to handle accuracy information.

Finally, the proposed integration technique is validated against the real world
case presented in Sec. 1.2, regarding the construction of a regional SDI in Lom-
bardy (Italy). The aim is to analyze how the various problems highlighted in the
introduction can be solved by the proposed integration process.

The structure of the chapter is the following: Sec. 4.1 discusses in details the
possible scenarios in which the proposed integration framework can be applied.
Sec. 4.2 deals with the statistical integration of measures in the various presented
scenarios, Sec. 4.3 treats the integration of topological relations, while Sec. 4.4
explains how metric and logical observations can be combined together. Some
properties of this integration process are illustrated in Sec. 4.5. The extension of
the proposed technique to a distributed environment is treated in Sec. 4.6, while
Sec. 4.7 presents some compression technique for reducing the amount of covariance
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information that has to be transferred to and from the SDI manager. Finally,
Sec. 4.8 discusses the application of the proposed technique to the motivating
example presented in the introduction.

4.1 Possible Integration Scenarios

During the integration of two MAcCs databases different situations may occur, since
the databases to be integrated can be completely different or can share absolute
positions and/or objects and/or relations. More specifically, the following different
application scenarios can be recognized that are further specified in Tab. 4.1:

(A) The integration of two independent databases having a comparable number
of objects and positions.
(i) The integration of two size-comparable spatial databases describing dif-
ferent geographic themes but sharing a large part of territory.
(ii) The integration of two databases describing the same geographic features
but on adjacent, eventually overlapping, regions.
(B) The update of a reference database macs; with new metric and/or logical
observations represented into another database macss.
(i) The integration of a massive spatial database with some new soft or
hard observations about known positions or objects.
(ii) The update of the geometries of some known objects in a reference
dataset.

Notice that, in Table 4.1 some combinations are not admissible and are not
shown, since the following conditions have to be satisfied:

1. OBJ;.ID N 0BJ2.ID # & = ext(REL;,0BJ; ) N ext(RELy, 0BJy) # &
2. 0BJ;.IDNOBJ,.ID # @ = TY; NTY, # &

The integration of two MACS databases results in a new MACS database. Differ-
ent integration operations can be necessary depending on the particular occurred
scenario. In order to classify all the situations that is necessary to handle, the
general integration operations are first introduced in the following definition, then
each of them will be described in details considering each possible scenario.

Definition 4.1 (MAcS database integration). Given two MAcCs databases
macs; = (DBy,Cpg,,TY1,0BJ1,REL;, @y, CRpp, ) and macss = (DBg, Cpg,, TY2, 0BJo,
REL2, @y, CRopp, ) their integration produces a new database macss = (DBg, Cpg,, TY3,
0BJ3,REL3, Gy, CRps, ), whose components are obtained by applying different op-
erations on the corresponding components of macs; and macsy. Such operations
depend on the interaction that exists between the two source databases, as re-
ported in Table 4.1, in particular:

DB3 = METRICPOSINT(DB;, DB2, Cpg, , Cpg, )
Cpg, = METRICVARINT(Cpg, , Cpg, )

TY3 = TYPEINT(TYl, TYQ)

0BJ3 = OBJECTINT(0BJ;, 0BJ2)

REL3; = LOGICRELINT(REL;,0BJ;,RELy,0BJ3)



4.1 Possible Integration Scenarios

61

Integration scenario

(TYn, 0BJ, DBn, RELA)

Required operations

A.0 - Nothing in common (2,9,0,3) no adjustments of objects geometries
A'? - Some clqsses in common, but no (~2,9,3,2) no adjustments of objects geometries
objects and points

A.2 - Some points in common, but no adjustments of interfering objects ge-

. . (9,2,-2,0) .
classes, objects and relations ometries
A.3 - Some classes and points in com- adjustments of interfering objects ge-
i (~2.2,-2.2) X soneEe

mon, but no objects

ometry

A.4 - Some classes, objects and relations
in common, but no points

(-2, 2,9, ~2)

objects update by geometry replace-
ment and relation integration

A.5 - Some classes, objects, points and
relations in common

(-2, -2, ~&, ~&)

update by geometry modification
and relation integration

B.1 - Some classes and points in com-
mon, but no objects (0BJ, = @)

(-2,2,-2,2)

adjustments of some positions

B.2 - Some classes and points in com-
mon, but no objects (0BJ, #+ &)

(-2,2, -2, )

new objects insertion

B.3 - Some classes, objects and relations
in common, but no points (DB, # &)

(-, 01ID,.ID, @, ~J)

objects update by geometry replace-
ment

B.4 - Some classes, objects and relations
in common, but no points (DB; = &)

(-@,0ID,.1ID, &, &)

objects update by relations integra-
tion

B.5 - Some classes, objects, points and
relations in common

(—@, 0ID,.ID, ~&, ~J)

update by geometry modification
and relations integration

Table 4.1. Possible scenarios in the integration of two MACS databases. In the second
column the tuple (TYn,0BJn,DBn,RELA) represents the intersections (TY; N TY2,0BJ1.ID N
0BJ2.ID, DB;.IDNDB,.ID, ext(REL;,0BJ1) next(REL2,0BJ2)). Function ezt has been defined
in Sec. 3.2, it returns the set all topological relations that are valid into a MACS database,
while @& denotes an empty intersection and —@& a not empty intersecton

e CRos, = Uoeory; CR(0, vy) u

In order to integrate two spatial databases, the preliminary necessary oper-
ation is the identification of common classes, objects and positions. The more
the databases are decoupled and come from independent sources, the more this
operation is tough. As discussed in Sec. 2.3, many works are presented in litera-
ture dealing with this important issue, denoted as schema integration and feature
(point) matching. This thesis supposes that the class, object and position match-
ing operations have already been solved, since it focuses on the impact of spatial
accuracy during an integration process based on object geometries. As mentioned
in the introduction, we assume that the two databases are comparable in terms
of schema and object instances. In particular, they should have the same level of
details, and a one-to-one correspondence among objects has been previously ob-
tained, eventually decomposing some objects in one source database. Therefore,
common objects in the two source databases are supposed to share the same ID
and the same holds also for common positions.

The simplest integration tasks are those regarding classes and objects. More

specifically, the integration of classes produces simply their union:
TYPEINT(TYy,TYs) = TY; UTY, (4.1)

while the integration of the objects is obtained as follows:
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OBJECTINT(0BJy,0BJs) =
{o](0€0BJ; A0.ID ¢ 0BJ5.ID) V (0 € 0BJ2 A 0.ID ¢ 0BJ;.ID)} U
{OBJPOSINT(Ol,OQ) | 01 €0BJy Aog € 0BJy A 01.1ID = OQ.ID} (42)

where OBJPOSINT (01, 02) is the procedure that identifies which positions have to
be integrated and stored in the final database macs3 as representatives for the
object with the same identifier. In particular, this operation is necessary when
corresponding objects are represented with a different number of positions; for
instance, because they have been surveyed with a different scale, or because the
object shape has changed over time. This choice can be done by considering the
object surveying date, namely by keeping the positions of the most recent object,
even its non matching positions, and discarding instead the non matching positions
of the other older object. Otherwise a direct decision of the user is necessary.
The next sections are organized as follows, first the integration of the selected
positions (metric observations) is considered in Sec. 4.2; in particular, a statisti-
cal method for computing the functions METRICPOSINT (DB, DBy, Cpg, , Cpg, ) and
METRICVARINT(Cpg, , Cpp, ) is presented. Sec. 4.3 concentrates on the problem of
integrating topological relations, it illustrates a method forcomputing the func-
tion LOGICRELINT(Ry,R2). Finally, Sec. 4.4 treats the problem of maintaining the
consistency between metric and logical observations on the integrated database.

4.2 Integrating Metric Observations

This section presents in details a method for integrating metric observations con-
tained into two M ACS databases. This method is denoted as METRICPOSINT 1.uiman
(DB1,DBs, Cpg, , Cpp, ), where DBy and DBy are the set of position indices contained
in the two databases, while Cpg, and Cpg, are the corresponding dispersion index
matrices. This method is based on an application of the Kalman filter [69] to the
vectors of coordinates, containing the representative of the positions that have to
be integrated, and the matrices of their variance-covariance estimates.

Given two or more databases to be integrated, least squares-based methods can
be used to find the solution that best fit all information contained in the source
databases, considering also their accuracies. In particular, a least square-based
estimation requires to solve the over-determined system of equations:

A-z-Vl=v
where:

e A is the design matrix that transforms observations into coordinates. This
thesis considers only direct measurements; hence, it coincides with the identity
matrix and can be safely ignored.

e 1 is the vector of parameters to be estimated.

e [ is the vector of observations.

e v is the vector of residuals.

Since the measurement observations can have different accuracies, a weight ma-
trix W is introduced and multiplied in both equation sides. W is proportional to
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observation accuracies; therefore, it is set as the inverse of the covariance matrix:
W =01

W.x-W-£=W-v
=W (L+v)

However, the integration of different data sources frequently cannot be per-
formed at once, but it is a continuous and stable process that has to be executed
any time new data become available or the existing one are updated.

Given an estimate xg, let us suppose to have another set of observations ¢.
The question is how to obtain another estimate 1, without considering again ¢,
but using only the current estimate and the new observations. Indeed, by applying
again the last square estimation, we obtain an equation that still depends on fq:

.731:N1_1~(W0~f0+W1'€1) (43)
where:
Ny =W,
N1 = WO + Wl,

and in general N;;1 = Ny + W, 1.

As explained in [124], the Kalman filter can be used to update a least squares
estimation as new observations are available, without requiring to store the previ-
ous integrated data. More specifically, the Kalman filter is a recursive estimator:
the current state estimate is computed considering only the previous state estimate
and the new available measurements. Eq. 4.3 can be rewritten in order to remove
the dependency from /¢y, obtaining a static (not-time dependent) estimation of the
Kalman filter:

$1:$0+N{1'W1'(€1—SU0)

The matrix K; = N7'- Wy = (Cgt + C1t) - Cr! is called Kalman or gain matrix.
The Kalman filter has been originally designed to work with dynamic systems
in which the new estimate depends on both the new available measurements and
the time change. For instance, it can be applied for determining the position of a
moving object at timestep t+1, starting from its position at timestep ¢, using some
new observations and a model of its trajectory. In particular, given the current
state estimate &, the next state estimate Z;,1);4; is determined into two steps:

1. a predict phase that projects forward in time the current estimate, producing a
priori state estimate #,,1; with its corresponding a priori covariance estimate
Ct+1|ta and

2. an update phase that corrects the a priori estimate on the basis of the new ob-
servations, producing a posteriori state estimate .14, With its corresponding
a posteriori covariance estimate Cy ij41-

In a static context, such as the integration process considered here, the state
does not change due to the time passage, but only due to the availability of new
observations. Therefore, the predict phase is not necessary: the a priori estimate
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Zy41)¢ coincides with the current estimate Zy);, and similarly the a priori covariance
estimate Cy,q); coincides with the current one Cl.

Notice that, in order to effectively integrate two databases, they should share a
common area; otherwise, there is no possibility to define a real correlation between
them and no adjustments propagation is possible. Similarly, when a new object has
to be integrated inside a pre-existing database, some information about its nearest
objects has to be provided for correctly positioning it and adjusting dependent
objects. Nevertheless, the proposed method is able to deal with all the cases in
Table 4.1, in particular even with cases A.0, A.1 and B.4, where no positions are
shared by the two source databases.

Algorithm 4.1 (Metric integration with no common objects or posi-
tions). Considering integration scenarios A.0, A.1 and B.4 of Table 4.1, in which
no positions are shared between the two source MACS databases, the following
integration functions can be applied:

METRICPOSINT 40 (DB1, DBa, Cp, , Cpp, ) = [DB; DB3]

CDB1 Czero
T
Czero CDBz

METRICVARINT 500 (Cog, , Cpp, ) = [ (4.4)

where matrix C,qr, contains only zeros and [a b] is the vector concatenation. O

Rationale. As regards to the vector of position indices, no positions are shared by
the two source databases, hence the result vector is obtained by simply concate-
nating the original ones. Similarly, for the variance-covariance values, we observe
that in the considered integration scenario, no information is available about the
relative distance among the objects of the two source databases, consequently the
covariance among their positions is set to zero. More generally, the covariance o,
between a pair of positions P and @), where P € DBy AP ¢ DBy, and () € DBoAQ) ¢ DBy,
is set to zero, as no information is available about their correlation.

In all the other cases of Tab. 4.1, an initial procedure has to be applied in order
to prepare, starting from the two source databases, the position index vectors and
the corresponding variance-covariance matrices that will be used by the Kalman
filter. Notice that each vector (matrix) should contain position indices (variance-
covariance values) regarding the whole set of objects that the resulting Macs
database will contain. The obtained position index vectors are denoted as Vpg,,
Vpg,, while the obtained covariance matrices as Cpg, and Cpg,. They are built in
different ways, according to the considered scenario presented in Table 4.1, as
described by in the following algorithm.

Algorithm 4.2 (Initialization of vectors and matrices for the application
of the Kalman filter). Given two sets of position indices DBy, DBy and their
corresponding dispersion indices Cpg, , Cpg,, the vectors Vpg, , Vpp, and the variance-
covariance matrices Cpg, , Cpp, are initialized as follows:

(a) cases A.2, A.3, A.5 and B.1, B.5: the two source databases contain some com-
mon positions that have to be integrated.
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(1) For each shared object, drop from each DB; (i € {1,2}) the positions that
are not contained in any object geometry of 0BJ3, as determined by the
function OBJPOSINT defined in Eq. 4.2.

(2) Initialize Vpg,, Vps,, Cpg, and Cpg,, as follows

Vpg, = DBy \1pDBz DBy N1pDBy DBy \1p DBy |
Vos, = [DBy \p DB DBy N1pDB; DB \1p DBy |

where:

e [abc] represents the vector concatenation.

e DB, \1pDB; = {p|peDB; Ap.ID ¢ DB;.ID}
It returns the set of position indices that are contained in DB;, but not
in DBj.

e DB;NpDB; = {p|peDB; Ap.ID e DB;.ID}
It returns for each position contained both in DB; and DBy, the value
contained in DB;. Notice that nip is not commutative, because it always
returns the value of the position index contained in the first database.

—H1—2,1—2(CDB1) 12,102 (Cps, ) Crero |
C1'331= Min2,1-2(Cos;)  Min2,102(CoB,)  Czero

Czero Czero COO B

Coo Czero Czero
01'332 =] Crero Min2,1n2(Cory) Min2,2-1(Cop,)
| Czero  T2-1,1n2(CoB,) T2-1,2-1(Cos,) ]

where:

e C, is the matrix containing very high variance values on the main
diagonal and zero elsewhere.
Czero is the matrix containing only zeros.
I,.5(C) returns the sub-matrix of C containing only the elements ¢; ; € C
where 7 € a and j € b. In particular, the values a and b can be “1 -2,
which means the row (column) of positions p € DB \1p DBy, or “1n2”,
which means the row (column) of positions p € DBy Ngp DBs.

(b) case A.4 and B.2, B.3: DBy contains some new positions that do not exist in
DB; or that have to replace the corresponding positions in DBy. Let us suppose
that DB, contains also some information about the accuracy for the relative
distance between its positions and some positions in DB;.

Vpg, = [DBl N1p DBs DBj Nip DBy DBy \1p DBy ]
Vpg, = [ DBy \1pDB2 DBy N1p DBy DBy \1p DB |

where DB; \1p DB; and DB; N1p DB, are defined as before.
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[ H1—2,1—2 (CDBl ) Czero Czero
CIIJBl = Czero Coo Czero
| Czero czero COO
[ C. A(Cero) A(Cero)
Cégz =| AM(Czero) TMin2,1n2(Cpey) Minz,2-1(Cosy)
| A(Czero) T2-1,1n2(Cos,) T2-1,2-1(Cog,)
where:

® Ceo, Cpero and I, ;,(C) are defined as before.
e A(Cuero) is a matrix containing the covariance between positions ¢ and 7,
when known from relative distance measures, or zero otherwise. O

Rationale. The initialization algorithm is justified by the following considerations.

Case (a) — As regards to the position index vectors, for non-shared positions
only one pair of coordinates is available. However, the two databases have
to be represented together, hence the original vectors have to be normalized
to a common dimension. Therefore, for non-shared positions, another pair of
coordinates is simulated in the other database, equal to the original one, but
with very low accuracy. This information about the accuracy of the simulated
measures is represented by the matrices C,ero and Coo: no correlation exists
between a simulated measure and the other ones (zero covariances), while high
variances (low accuracy) is established for them. Conversely, for shared objects
two pairs of coordinates are available with different accuracies, and the matrices
can be populated accordingly.

Case (b) — The initialization of the position index vectors is performed as above,
while the normalization of the variance-covariance matrices is quite different.
First of all, DB, contains some new positions that are not present in DBy or that
have to replace the ones contained in DB;. Therefore, each common position
in DBy has to become very inaccurate with respect to the one contained in
DBs, hence its variance in Cpg, is replaced with a very high value (matrix Ceo)
and its covariances with respect to other positions become null (matrix Cyero)-
Moreover, we assume that some information about the accuracy of relative
distances between position in DBy and DB; may be known. This information is
eventually inserted into the matrix Cpg, and this is indicated by the use of the
A operator.

Now, the application of the Kalman filter can be considered.

Algorithm 4.3 (Metric Integration with Kalman filter). Given the vectors
Vpe,, Vps, and the matrices Cpg , Cpp,, computed through Alg. 4.2, the Kalman
filter is applied as follows:

Vpg, = Vpg, + K- (Vpg, — A Vpg, )

K is named Kalman or gain matriz and it represents the adjustment applied to
the measurements in Vps, due to the presence of the measurements in Vpg,. It is
obtained as follows:

K= CBBI : (Cfna1 + Cng)_l (4.5)
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A is the design matriz which defines the relation between the observations and
the parameters. Thesis considers only direct measurements; therefore, it can be
omitted. As a consequence, the Kalman integration formula becomes:

Vg, = Vo, + K- (Vps, — Vpg, ) (4.6)
O

From Vpg, it is easy to obtain DBs which represents the result of the function
METRICPOSINT 41man (DB1, DB2, Cpg, , Cpa, )-

The filter allows not only to update the coordinates of the position indices,
but also to estimate the accuracy of the resulting database, namely to update the
covariance matrix as follows:

Cog, = (I —K) - Cpy, - (I -K)" +K-Cp, K" (4.7)

where I is the identity matrix and Cpp, represents the result of the function
METRICVARINT(Cpg, , Cp, )-

The elements of the variance-covariance matrices involved into the integration
process and of the Kalman matrix have the following interesting properties.

Property 4.1. Let us denote with C¢1z,b> czyb, ci)b and k., the coefficients of the
matrices Cpg,, Cps,, Cps, and K in row a and column b, respectively. Given two

positions P = (z,,yp) and @ = (z4,y,), the following properties hold:

e If the elements related to the variance of the z and y components of a position
P are equals in each source matrix, then they also coincide in the Kalman and
the integrated variance-covariance matrix.

1 1 2 2 3 3

c =cC A C =cC = C =cC Ak$p7wp:k

ZTp,Tp YpYp Zp,Tp YpyYp Tp,Tp YprYp YpsYp

e If the elements related to the covariance between the x and y components of
a position P are zero in each source matrix, then they are also zero in the
Kalman and the integrated variance-covariance matrix.

1 _ A1 _N - ~2 _ 2
Capyr = Cyp,ap ; 0= Cepyp = Cypap =
zpyp ~ Cypap = 0 A Kepyp =Kypap =0

e If the elements related to the covariance between the x (or y) components of
two positions P and @ are equals in each source matrix, then they also coincide

in the Kalman and the integrated variance-covariance matrix.
1 _ 1 2 _ 2 3 _ -3 -
Czpvlq - Cypqu A C-'Epv-'l/'q - Cypqu = Cl'pvl'q - Cypqu A kxlﬂxq - kyp7yq

e If the elements related to the covariance between the x and y components of
two positions P and @ are zero in each source matrix, then they are also zero

in the Kalman and the integrated variance-covariance matrix.
1 _ 1 _ 1 _ 1 _ .2 _ .2 _ 22 _ .2
clpqu - quymp - Cyp,zq - CIq»yp O - szhyp - cyp,zp - Cyp,a:q - Cquyp

=c3 =3 =c3  =0=k k =k =k

Tp,Yq — “YqsTp Yp,Tq Tq,Yp Tp,Yq ~ “YqsTp Yp,Tq Tq,Yp
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These properties confirm that the initial configuration of the variance-covarian-
ce matrix (see Eq. 3.3) is preserved by the proposed integration method. Another
important property of the integration method is that the coordinate estimator
defined in Eq. 4.6 is correct or unbiased, as illustrated below.

Property 4.2. The estimator Vpg, defined in Eq. 4.6 is a correct (unbiased) esti-
mator of the parameter Vpp,, namely:

E[Vpg,] = Vps

i.e. the expected value of the random variable Vpg, is equal to the parameter Vpg,
representing the reference or true integrated database content.

Proof. The average of the estimator Vpg, can be rewritten as:
E[Vpg,] = E[Vpg, +K(Vps, — Vs, )]

by applying to this definition the properties of the average operator, the following
transformation can be performed:

E[Vps,] = E[Vpg, +K(Vos, — Vos, )]
[Vog, ] + E[K(Vos, — Vg, )]
[
[

Vg, | + K- E[(Vp, — Vpg, )]

FE
E
E[Vpg, | + K- (E[Vpg, | = E[Vps, ])

by considering that E[Vpg] = E[Vps, ] = E[Vps, | = E[Vps, |- It follows that:

E[VDB?,] = E[VDBl] + K- Czero
= E[Vpg, ]

From which it can be derived by generalization:
E[Vog, ] = E[Vpg]
O

Notice that the effectiveness of a least square-based method can be compro-
mised by the presence of blunders. A blunder is an erroneous observation that is
clearly in contrast with the other available observations. In the integration con-
text, blunders influence the point matching phase of the two source databases.
Several blunder detection techniques have been proposed [147]; however, this the-
sis assumes that the quality of the considered information is ensured by the data
provider, which is responsible for performing a correct point matching of the source
databases, hence we can safely abstract from this problem.

It is clear that in real situations a least squares-based methods cannot be
applied as is to an entire database, in particular for the costs of inverting the
involved matrices. Sec. 4.6 will present a distributed version of this integration
procedure that can help to overcome this kind of problems.
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4.3 Integrating Logical Observations

This section discusses the problem of integrating logical observations contained
into two distinct MACs databases macs; and macs,. In particular, referring to
Def. 4.1, we define a method for computing the function LOGICRELINT(REL, 0BJy,
REL,0BJ>).

As regards to the integration of logical observations, a significant case occurs
when the two databases share at least one object. Anyway, the proposed method is
able to handle any possible case; indeed, different operations are necessary accord-
ing to the rate of objects sharing. In particular, if no objects are shared the known
relations are all preserved, while the new relations between objects of 0BJ; and
objects of 0BJy have to be declared unknown. Actually, considering the confidence
region of these objects, more precise relations can be derived by computing the
relations among their confidence region, as described by the following algorithm.

Algorithm 4.4 (Computation of objects relations from confidence re-
gions relations). Given two sets of objects O; and Oy, where O1.IDN 05.ID = &,
the following function can be defined for representing the knowledge about the
topological relations existing among the objects of O; U Oy. Such function is ob-
tained by considering the relations between their confidence region:

TopPFROMSUPP(O1,05) =
{{o1,02, Rz) | (01,02) € O1 x O2 A Ry = SUPPREL(01,02,) } (4.8)

where SUPPREL(o01, 02, ) is defined as in Lis. 4.1.

Rationale. Considering Lis. 4.1 and starting from the first condition we can ob-
serve that, if the confidence regions of the two objects are disjoint, then for the
confidence region definition (Def. 3.12) the objects are disjoint. Otherwise, if they
have intersecting confidence regions, o; is a surface and the oy confidence region is
inside o; without touching its boundary, then no points of o2 can have a position
that is outside o1, hence oy in o1. The third conditional block shows a situation
that is the inverse of the previous one. Finally, the last conditional block says
that, if the confidence regions of two surfaces intersect without considering the
confidence region of their interior, the surfaces certainly have intersecting interi-
ors, hance the existing relation between them can be only one among in, contains,
covers, covered_by, equal or overlap.

Given the function TOPFROMSUPP(O1,0s), the integration of the topological
relations contained into two MACS databases is performed.

Algorithm 4.5 (Topological relation integration). Given two distinct MAcCs
databases macs; and macss, the integration of the set of topological relations (or
logical observations) that are known in each of them is obtained trough the function
LOGICRELINT(REL;, 0BJy, REL,, 0BJ2) as described below. Notice that in order to
obtain this result, the complete sets of relations known by macs; and macs, have to
be computed. They are denoted as Ry = ext(REL;,0BJ;) and Ry = ext(RELy, 0BJs).
Starting from them, Rg is obtained as follows (referring to Tab. 4.1 for the cases
definition and to Tab. 3.2 for relation symbols):
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Listing 4.1 Algorithm for computing the topological relation existing between
two objects starting from the relation between their supports.

input: o1, 02, @
output: R,

R, < SUPPREL(01, 02, )

1
2
3

if CR(01,a) disjoint CR(o2,a) then
R, = {disjoint}
elseif os.geo.type =S A
CR(o1,a) in oz A
CR(o01,a) disjoint CR(Do2, ) then
R, = {in}
elseif o;.geo.type =S5 A
o1 contains CR(oz2,a) A
CR(Do1,) disjoint CR(o2,a) then
R, = {contains}
elseif o;.geo.type =S5 A
02.geo.type = S A
o1 contains CR(02,a) A
(CR(01,a) N CR(Do1,)) intersects (CR(oz2,a) N CR(Do2,)) then

R. = {in, contains, cover_by, covers, overlap, equal, cross}
end if
return R,

in cases A.0, A.1, A.2, A.3 and B.1, B.2 no objects are shared by the two
source databases macs; and macss, hence:

Rs =Ry URy U ToPFROMSUPP(0BJ;,0BJ2)

where TOPFROMSUPP(0BJ1,0BJ2) has been introduced in Alg. 4.4.
in cases A.4, A.5 and B.3, B.4, B.5 there are some common objects between
the databases to be integrated, hence the function works differently:

R3 =(R1 “1pR2) U(R2 “\1pR1) U
ToPFROMSUPP(0BJ; \1p 0BJ, 0BJ5 \1p 0BJy) U
MERGETOPREL(R], DBJl mID OBJQ, RQ, DBJ2 mID OBJl)
where
— (Ri~mR;j) ={(01,01,Rs) | (01,02,Rz) €R; A (01,02,Ry) £R;}
It returns the topological relations that are defined in R;, such that no
topological relations are defined between the same pair of objects in R;.
— (0BJ; \1p0BJ;) ={o|0€0BJ; A0.ID ¢ OBJ,.ID}
—  The function TOPFROMSUPP has been defined in Alg. 4.4.
— The function MERGETOPREL(R1,O1,Ra,02) is defined as follows:
MERGETOPREL(R;, O1,Rg,02) = (4.9)
<01,02,R) | 01 € 01 N 09 € 02/\
<017 027Rx) €ER1 A (01, OQ,Ry> €ERy AR = Rx n Ry)} (410)
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The result of LOGICRELINT(REL;, 0BJ;,RELy, 0BJs) = RELj is obtained by consid-
ering the entries of R3 that represents disjunction of relations or empty relations. O

The MERGETOPREL function can produce empty relations (as result of the
intersection Ry NRy); these empty relations represent inconsistencies between the
databases to be integrated and have to be solved by the intervention of a domain
expert. Notice that in the source datasets the coherence constraint is originally
satisfied and these inconsistencies can be generated only in the resulting dataset,
as a consequence of the fusion operations performed separately on metric and
logical observations.

S/S S/C S/P

Disjoint
A
1

| Touch |<L>| Contains

| Covered_by | | Covers |
A 3 A A
1 3 3 1

| In | | Equal | | Contains |

C/S C/C C/P

Disjoint

X
1

v
Touch

! 1

Cross |<1—>| Covered_by |

| Touch |<L>| Contains

(o] ) v
Covered_by | | Contains H Covers |
P/S P/C P/P
Disjoint
2 2 2 > X
v
| Touch |<L>| Inside | | Touch |<L>| Inside | @l

Fig. 4.1. Proximity between topological relations classified on the basis of the type of
the involved objects. Let us notice that for not cluttering the representation, the relations
overlap and cross between two curves have been collapsed into a unique box because they
have the same distance from the other relations. The distance between this relations is 1
if the dimension of the intersection between their interior is considered.

A manual intervention of a domain expert is necessary whenever logical obser-
vations contained in the source databases are discordant. However, if the cost of
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a manual intervention is too high or the user is not able to determine the right
relation for the final database, some automatic procedures can be implemented
in order to convert the inconsistency into a loss of certainty. In this regard, the
proximity relationship among topological relations is considered. This relation has
been first introduced in [40] for the definition of conceptual neighborhoods starting
from the 9-intersection matrices. This definition has been extended in [12] in order
to be applied to relations defined by means of sets of 9-intersection matrices, as
those defined in Table 3.2. In particular, the distance between two relations is com-
puted considering the minimum distance between the corresponding 9-intersection
matrices. This thesis adopts the same approach for defining, given a topological
relation 71 between specific object types (e.g. between surfaces), the set of relations
that are near to it. A topological relation 7 is near to another relation 7o, if 7o
is characterized by a matrix with the minimum distance (variation), with respect
to other relations, from the matrix characterizing r1. The following definition for-
mally specifies the proximity between topological relations. Fig. 4.1 illustrates the
proximity between topological relations computed considering the involved object
types. An arc is depicted between two topological relations if they are near and
the label on each arc denotes the distance between them. Let us notice that when
a topological relation has several matrices associated to it, each of these can have
different distances with respect to the matrix of another relation, but for simplicity
only the minimum distance is reported in the diagram.

Definition 4.2 (Topological relation proximity). Given two topological rela-
tions 71 and ro defined between objects of type ¢ and to, and represented by the
set of 9-intersection matrices M7 and Mo, respectively, r1 is said to be near ry if

distance(r1,r2) = min{distance(ri,r) | r #7m1 AT € Riopo}

where the distance function computes the distance between topological relations
as the minimum number of discordant elements between matrices my € M; and
meo € Ms. O

If this kind of approach can be acceptable for the user, it can be assumed that
when the topological relations in the two source databases are not compatible but
are near, then the resulting relation becomes the disjunction of the original ones.
Formally, this result can be obtained by replacing the intersection R, n Ry in
Eq. 4.10 with

near(ry,01.geo.type, og.geo.type) N near(ry, 01.geo.type, o2.geo.type)

where near(r,t1,t2) computes the set of relations that are near to r when objects
of types t; and t are considered.

4.4 Integrating Metric and Logical Observations Together
The complete integration of two MACS databases requires to combine metric and

logical observations together. In particular, Sec. 3.2 has introduced the coherence
constraint between soft topological relations, which are those derived from object
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representatives, and hard topological relations, which are those explicitly stored.
Moreover, the same section has established that for reducing the quantity of stored
information, when a topological relation is known, it can be directly derived from
the geometry of the object representatives without additional information.

In general, after the integration operations presented in the previous sections a
check phase is necessary in order to verify that the coherence constraint is satisfied
in the resulting MAcCS database macss. This means that for each pair of objects
in 0BJ3 the soft topological relation between them has to be computed, denoted
as Tsoft, and compared with the relation eventually stored in REL3, denoted as R.
If r4o5 € R, then the coherence constraint is satisfied, otherwise it is necessary to
modify the positions defining the involved objects geometry, in order to obtain a
new situation where r .z changes and becomes one of the relations of R. Indeed,
we always suppose that logical observations have higher priority with respect to
metric observations, because they are not subject to uncertainty.

The remainder of this section analyzes how metric observations compliant with
a topological relation r; have to be transformed in order to become compliant
with another desired topological relation r5. In doing so, let us notice that some
transitions from one topological relation to another, like the transition disjoint —
touch, require that two distinct positions of the objects become the same position.
This case is denoted with the term position snapping (—<). For other transitions
the inverse operation is required, i.e. a shared position has to be transformed into
two distinct ones. This operation is denoted as position decoupling («~—). Finally,
in some cases the switch of a position location with respect to a curve or surface
is necessary. This operation is denoted as position switching (2).

The following algorithm summarizes the main steps of a position snapping
operation together with the necessary preconditions to their application.

Algorithm 4.6 (Position Snapping). Given two distinct MACs features a and
b, the position snapping operation (—<) produces a new geometry for them such
that at least one position is shared. It can be performed between two features if
and only if there is a position in one of them whose confidence region intersects
the confidence region of the other feature:

(3P . P ea.geo.pos ACR,(a) NCR(b,a) = @)V
(3Q . Q € b.geo.pos ACR4(a) NCR(a, ) = &)

Given such property, the set S containing the pairs of positions to snap is built as
follows:

1. For each position P; € a.geo.pos such that CR,, (@) nCR(b,a) # @, find the
corresponding position (i.e. position at minimum distance) P» € b such that
it is an existing position of b or it is generated by projection. Add the pair
(P1, Py) to the set S.

2. For each position P, € b.geo.pos such that CR,p,(a) nCR(a, ) # &, find the
corresponding position (i.e. position at minimum distance) P; € a such that
it is an existing position of a or it is generated by projection. Add the pair
(Py, Py) to the set S.

3. For each pair (P, P;) € S:
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a) Substitute P, with P; in b. The two objects now share a common position.
b) Consider P, as a new observation for P; to be integrated.

Some alternatives of the general position snapping algorithm presented in
Alg. 4.6 can be necessary to treat particular situations. They are explained in
the following algorithm, while Fig. 4.2 provides some example of their application.

Algorithm 4.7 (Position Snapping Variants). Given two MACS features a
and b, the following alternatives to the general position snapping algorithm in
Alg. 4.6 have been defined:

e One position snapping (a —<1 b): this operation has the same precondition
and behaviour of the general position snapping, but it requires to snap only
one position of b. Therefore, in point 3 not all positions are snapped but only
one pair is chosen. This choice can be random or taken by a human agent.

o Two position snapping (a —<2 b): this operation is similar to the previous
one, but requires to snap exactly two subsequent positions of b. Again, if more
than two pairs are contained in S, a random or human choice is taken among
them in point 3. The precondition is modified as follows in order to require the
existence of at least two positions to snap:

((3P, . Py ca.geo.pos ACR,, (a) NCR(b, ) # @)V

(3Q1 . Q1 € b.geo.pos ACR,, () NCR(a, ) # @))A
(3P, . Py ea.geo.pos ACR,,(a) NCR(D, @) # @)V

(3Q2 . Q2 € b.geo.pos ACR,, () NCR(a, ) + @))

e Right position snapping (a - b): this variants requires that all positions of b
are snapped. The precondition now requires that the confidence region of all
positions in b intersects the confidence region of a, and the confidence region
of all positions in a that have a matching with a position in b shall intersect
the confidence region of b:

V@ e b.geo.pos . CR(a,a) NCRy(a) + @A
YP e match(a,b) . CR(a,a) nCR,(a) + &

where match(a,b) returns all the positions of a that have a matching with a
position of b or that are between two matching positions. Given such precon-
dition, the algorithm requires that the first two phases are substituted by the
following one: V@Q); . b.geo.pos identify the corresponding position P; € a, and
add (P“QZ) to S.

o All positions snapping (a =+ b): this variant requires that all positions of both
a and b are snapped. The precondition in this case requires that the confidence
region of all positions of a intersects the confidence region of b, and that the
confidence region of all positions in a intersects the confidence region of a:

VP ea.geo.pos . CR,(a) NCR(b,a) = @A
VQ e b.geo.pos . CRy(a) NCR(a,a) =&

Given such precondition operations 1 and 2 of the general algorithm require to
find a corresponding position for all positions in a and b. O
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— 3
1 : N
| ~
: a Vi a—— b a \(/leZ a—«; b
| Q :
I
|
ap—— —J a disjoint b aoverlap b
a disjoint b a touch b
@ (b)
a—<b a3 b /
a disjoint b ainb a disjoint b aequal b
© (d)

Fig. 4.2. (a) Example of generic positions snapping that transforms a disjoint relation
between surfaces into a touch one. (b) Example of two positions snapping that transforms
a disjoint relation between curves into an overlap one. (c) Example of right positions
snapping that transform a disjoint relation between a curve and a point into an in one.
(d) Example of all positions snapping that transform a disjoint relation between two
curves into an equal one.

The main steps performed by a position decoupling operation and the necessary
preconditions to their application are summarized in the following algorithm. Some
examples of its application are provided in Fig. 4.3.

Algorithm 4.8 (Position decoupling). Given two MACs features a and b, the
position decoupling operation («—) produces a new geometry for them such that a
shared position has been substituted by two distinct and independent positions. It
can be performed between two features if and only if there is a position P shared
by both of them:

dP . P ea.geo.pos A P € b.geo.pos
The following variants can be recognized:

e In position decoupling (a BN b): the position P has to be substituted with two
positions that are contained in the corresponding objects.
1. Substitute P with two new positions ()1 and Q2 where the distance between
them is the minimum representable distance e such that Q1 in b and Q2 in
a, where in stands for the corresponding topological relation.
2. Maximize the accuracy of relative distance between @1 and Q5.

e In left position decoupling (a SN b): the position P has to be substituted with
two positions 1 and Q2 between which a minimum distance € exists and such
that Q1 in b and Q- disjoint a.

e QOut position decoupling (a Bia b): the position P has to be substituted with
two positions @)1 and @2 between which a minimum distance € exists and such
that Q1 disjoint b and Qo disjoint a.

e Cross position decoupling (a <L b): the position P has to be substituted with
two positions @7 and @2 between which a minimum distance € exists and such
that a cross b after the decoupling.
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e All in position decoupling (a <—m:; b): this position is similar to a &y b, but in
this case all sharing positions have to be decoupled, and after the operation
the topological relation a in b has to be satisfied.

t
e All out position decoupling (a 25 b): this position is similar to a Pisi b, but
in this case all sharing positions have to be decoupled, and after the operation

the topological relation a disjoint b has to be satisfied. O
Q )
e B a
Q
in Ql o£< QZ ing
a,b a<">b b Qi p a<> b .

a equal b a covered by b atouch b a contains b

@ (b)

P_/‘f a2, b 6J <y p
2

a covered by b a cross b a overlap b across b

(© )

Fig. 4.3. (a) Example of in positions decoupling that transforms an equal relation be-
tween two surfaces into a covered by one. (b) Example of in left positions decoupling that
transforms a touch relation between a surface and a point into a contains one. (c) Ex-
ample of out positions decoupling that transform a covered by relation between a surface
and a curve into a cross one. (d) Example of cross positions decoupling that transforms
an overlap between two curves into a cross.

Finally, the details of the position switching operation are defined in the fol-
lowing algorithm. Some examples of its application are provided in Fig. 4.4.

Algorithm 4.9 (Position switching). Given two MACS features a and b, the
position switching operation (2) allows one to change the location of a position of
b with respect to a curve or surface represented by a. This operation is obtained
by combining a snapping operation followed by a decoupling one. In other words
the position P to switch has be firstly substituted by a shared position, secondly
this shared position is decoupled into the desired direction. The following variants
can be recognized:

e In position switching (a > b): Tt is the combination of a -« b followed by
a «<— b. The operation precondition is the precondition of a —< b.
t
e Out position switching (a e b): It is the combination of a -« b followed by

a <% b. The operation precondition is the precondition of a —< b.
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e (lross position switching (a = b): Tt is the combination of a -+« b followed by
a <5 b. The operation precondition is the precondition of a —< b.

e All in position switching (a ga” b): It is the combination of a —»& b followed
by a <—m:; b. The operation precondition is the precondition of a -+ b.
t
o All out position switching (a Oé i1 b): It is the combination of a & b followed

t
by a iu:k b. The operation precondition is the precondition of a -+ b. o

a b a—— b a b a<sp a b
a disjoint b aoverlap b
@
out
ass b
a b a—— b a b a <2 p a b
a overlap b a disjoint b
cr
ass b
f\f"_‘\_,. a——b r\;_‘\_" a<h r\7§_‘
a disjoint b a cross b
! ©

Fig. 4.4. (a) Example of in positions switching that transforms a disjoint relation
between two surfaces into an overlap one. (b) Example of out positions switching that
transform an overlap relation between two surfaces into a disjoint one. (c) Example of
cross positions switching that transform a disjoint relation between two curves into a
cross one.

The previous algorithms defines how the geometry of a MACS feature can be
modified with respect to the geometry of another feature. The following algorithm
describe how metric and logical information can be aligned together, eventually
using such operations.

Algorithm 4.10 (Alignment of positions with respect to logical obser-
vations). Given an integrated MACS databases macsg and the initial databases
macs; and macss, the alignment of positions with respect to logical observations
is an iterative process that is executed until the following condition holds:

{(01, 02) | (01, 02) € 0B.]3 X DBJ3 N 01 Tsoft 02 N (01, OQ,R) € RELg N Tsoft ¢ R} =g
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The iterated core algorithm is composed of the following steps:

1. For each violation of consistency between a pair of objects (o1, 02), the neces-
sary relation transition r4 — rg is identified.

2. For each relation transition its applicability is evaluated; in particular, some
transitions are not admitted a priori, other ones require operations that, in
specific cases, could not be applied (see Tables 4.2-4.10).

3. For each relation transition that is not applicable, since its preconditions are
not satisfied, the user intervention is required.

4. For each relation transition r4 — rp that is applicable and such that oy 74 02
in macs; (¢ €{1,2}) and 745 = 75, namely rp is valid in one of the two source
databases, the accuracy of relative distances between the involved objects is
maximized in macs;. In other words, the covariance of all pairs of positions
(P;,Q;) € o1.geo.pos x oz.geo.pos having intersecting confidence regions are
set to the value (0% + Ué)/2 (see Eq.3.4) in the corresponding matrix Cpg,.
By maximizing the accuracy of the relative distance between the two objects,
they become a rigid body and move accordingly without changing the relative
positions of their points. After this transformation of the covariance matrix
Cps;, the computation of DB3 = METRICPOSINTqiman (DB1,DB2, Cps,, Cop,) 1S
performed again.

5. For each relation transition r4 — rp that is applicable but does not satisfy the
previous condition, it is necessary to modify some pairs of positions (P;,Q;) €
0;.geo.pos x 0y.geo.pos having intersecting supports, through the application
of the operations requested by the transition, as shown in Tables 4.2-4.10. This
leads to the definition of a new DBj that needs to be integrated with DB3 in
order to obtain the final database:

DBfina1 = METRICPOSINT tqiman (DB3, DBy, Cpg, , Cpa; )
O

Notice that in Tables 4.2-4.10 some allowed transitions involve pairs of relations
that are not near. These cases are allowed since the transition can be obtained
with a local geometry modification, i.e. by applying a minimal change on objects
positions.

The main idea underlying phases 4 and 5 is that the positions of objects in-
volved into a particular topological relation have to become a rigid body that can
move in space but in a uniform manner: they have to maintain their relative re-
ciprocal positions in order to keep the effect of the previous transformations. This
is the aim of the covariance correction proposed in phase 4 and in the operations
eventually applied in phase 5. In other words, the idea is that the knowledge of a
particular topological relation augments the confidence about the relative distance
between the involved objects, hence its accuracy increases.

The approach presented here differs from to the one proposed in [58,59] for
several reasons. First of all, this approach considers the integration of both metric
and topological information, while [58,59] the authors suppose to have only one set
of topological relation that has to be valid on the integrated geometry. Using a set
of equations representing the topological relations that are valid in the two source
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rel
d*.*
[ ‘ i*,* ‘ Cx, % ‘ Cx % ‘ T, % ‘ Ox % ‘ b*,* ‘ Vs, %
(1) (4)
ds,s NA NA NA ND i NA NA
a—<b azb
(1) (2)
ds,c ND NA ND n ND ND NA
a—<b azb
(2) (2)
ds,p ND in ND ND ND ND ND
a—><b a2q; b
(1) (2)
do,s NA ND ND in ND NA ND
a -« b azb
1)
da —><1 b
1 1
oo | o o (1)
a=c1b) Np NA NA amb fa=c2bl o np NA
or
da -« 0b
(2) ()
do,p ND ND ND ND ND ND
da < b a® > b
(2) (2)
dp,s in ND ND ND ND ND ND
a-><b a2, b
(2) (2)
dp,c ND ND ND ND ND ND
da—<b| a®—£b
3
dp,p ND ND ND @) ND ND ND ND
az3&b

Table 4.2. Transitions between topological relations: case disjoint — rel. The relation
acronyms are as follows: d disjoint, ¢ touch, ¢ in, b coveredBy, ¢ contains, v covers, e equal,
r cross, and o overlap. Each cell reports in round brackets the distance between the two
considered topological relations and below the operations that have to be applied in order
to obtain the requested relation. The symbol ND indicates that the target relation rel
is not defined for the considered geometric types, while NA indicates that rel cannot be
obtained without the intervention of a domain expert.

datasets is not a valid approach in our case, because if such sets contain discordant
information the method cannot find a solution that satisfy all the equations. More-
over, our method consider not only single relations, but also sets (disjunctions) of
topological relations between objects, hence the number of necessary equations,
that have to be added into the system in the approach of [58] [59], can increase con-
siderably making the integration impracticable. Finally, thanks to the role covered
by the accuracy of the relative distances, most of the topological relations that
are valid before the integration, remain satisfied also in the integrated database:
in practice very few relations are violated after the metric integration phase.

In order to prove that the proposed operations (shown in Tables 4.2-4.10) are
sufficient conditions for obtaining the needed relation transitions, we show below
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rel
t*,*
d*,* ‘ i*,* ‘ Cx % ‘ Cx, % ‘ T, % ‘ O % ‘ by s ‘ Vs, %
t L NA NA NA ND () NA NA
5,8 out ing,
ae3zb a<+~—=>b
1 .1 .1
ts,c () ND NA S R N xp | (e D)
aezb a<—b a<kp
(2) (2)
ts.p ND ) ND ND ND ND
’ out ing,
aezxd a«<=b
1 .1 .1
to,s (1) NA ND xp | e g | e Dy
ae3zb a<—b b<Zq
1 1 1
to,c E}u)t NA NA NA (CT) M NA NA
aezb a<+~—b a —><o b
t 2 ND (2) ND ND ND ND ND
c,p out ing,
aezbd a<+—=b

Table 4.3. Transition between topological relations: case touch — rel. The relation
acronyms are as follows: d disjoint, ¢ touch, i in, b coveredBy, ¢ contains, v covers, e
equal, 7 cross, and o overlap. Each cell reports in round brackets the distance between
the two considered topological relations (“reg. d” means that the transition is allowed
only when the distance between the matrix of the current relation and the requested one
is d) and below the operations that have to be applied in order to obtain the requested
relation. The symbol ND indicates that the target relation rel is not defined for the
considered geometric types, while NA indicates that rel cannot be obtained without the
intervention of a domain expert.

rel
€y %
d*,* ‘ t*,* ‘ i*,» ‘ Cx % ‘ T, % ‘ Ox % ‘ b*‘* ‘ Vs, *
3 3
es,s NA NA NA NA ND NA (”L) E)’u)t
a<~—b a<—b
2 3 3
ec,c NA NA NA NA NA E)u)t (oit (ou)t
a<—>b |[fa<——>b|Ob<>a
3
ep,p E)u)t ND ND ND ND ND ND ND
a<—b

Table 4.4. Transition between topological relations: case equal — rel. The relation
acronyms are as follows: d disjoint, ¢ touch, i in, b coveredBy, ¢ contains, v covers, e
equal, r cross, and o overlap. Each cell reports in round brackets the distance between the
two considered topological relations and below the operations that have to be applied in
order to obtain the requested relation. The symbol ND indicates that the target relation
rel is not defined for the considered geometric types, while NA indicates that rel cannot
be obtained without the intervention of a domain expert.

the proof of this property for the transitions starting from a disjoint relation. In a
similar way the same property can be proved for the other transitions.

Theorem 4.3 (Operations for disjoint transitions). Let us consider Tab. 4.2
showing the allowed transitions starting from the disjoint relation. Fach column,
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rel
T, %
d*,* ty % ‘ i*,* ‘ Cx, % ‘ Cx % ‘ Ox% % ‘ b*,* ‘ Vs, %
(1) (1)
rs,c NA ND NA ND ND ND
a -&
(anbp) a~(bp N a)
(1) (1)
. NA afSp NA | NA | NA |a-esb| NA NA
[eNe]
(0a -« b
or a -« 9b)

Table 4.5. Transition between topological relations: case cross — rel. The relation
acronyms are as follows: d disjoint, ¢ touch, ¢ in, b coveredBy, ¢ contains, v covers, e equal,
r cross, and o overlap. Each cell reports in round brackets the distance between the two
considered topological relations and below the operations that have to be applied in order
to obtain the requested relation. The symbol ND indicates that the target relation rel
is not defined for the considered geometric types, while NA indicates that rel cannot be
obtained without the intervention of a domain expert. bp (ap) is the set of representative
points corresponding to the positions used for representing the geometry of b (a).

rel
T, %
d*,* ‘ (2 ‘ Cx,x ‘ €x % ‘ T, % ‘ Ox, x ‘ b*,* ‘ Vs, %
. (4) (1)
15,5 NA NA NA NA ND out NA
a=zb a—><b
) (2) (1)
ic,s NA NA ND ND out ND ND
a«<—b a—<b
) (2) (2)
ip.S . ND ND ND ND ND ND
’ out
a2 b—-ta
(1) 1) 1)
ic.c NA NA NA NA aflp | oSy |00 0| NA
a® 5«1 b° | a—><2b
) (2) (2)
1P,C out ND ND ND ND ND ND
a<—>b | a—><0b

Table 4.6. Transition between topological relations: case ¢n — rel. The relation acronyms
are as follows: d disjoint, ¢ touch, ¢ in, b coveredBy, ¢ contains, v covers, e equal, r
cross, and o overlap. Each cell reports in round brackets the distance between the two
considered topological relations and below the operations that have to be applied in order
to obtain the requested relation. The symbol ND indicates that the target relation rel
is not defined for the considered geometric types, while NA indicates that rel cannot be
obtained without the intervention of a domain expert.

representing a given target relation rels ., reports for each type pair ti, to the
operations that are a sufficient condition for obtaining the target relation, starting
from two disjoint objects of types t1, to.

Proof. We present the proof for the first column of the table regarding the transi-
tion (a disjoint b) — (a touch b) , the proof for the other columns follows a similar
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rel
Ox %
d»,* [ ‘ 'L*,* ‘ Cx, % ‘ Cx % ‘ T, % ‘ b*,» Vs, *
a—& (anbp) b—-+ (ap\b)|la - (bp\a)
0s,5 NA or NA NA NA NA or or
b—-+ (apnb) a—-€ (ap\b)|b—& (bp\a)
a ;:g b
oc,c NA (8a b or NA NA NA a<lLp NA NA
a —< Ob)

Table 4.7. Transition between topological relations: case overlap — rel. The relation
acronyms are as follows: d disjoint, ¢ touch, ¢ in, b coveredBy, c contains, v covers, e equal,
r cross, and o overlap. Each cell reports in round brackets the distance between the two
considered topological relations and below the operations that have to be applied in order
to obtain the requested relation. The symbol ND indicates that the target relation rel
is not defined for the considered geometric types, while NA indicates that rel cannot be
obtained without the intervention of a domain expert. bp (ap) is the set of representative
points corresponding to the positions used for representing the geometry of b (a).

rel
C %
da(-,a(- ‘ ty % ‘ ia(-,x- ‘ Ex % ‘ Tx, % ‘ Ox % ‘ b*.* ‘ Vs, %
(1) (1)
cs,s NA NA NA NA ND out NA
az2b a -« Ob
2 1 1
cs,c NA NA NA ND ( )t ) ND )
a5 a—-<b
(2) (2)
cs,p out ND ND ND ND ND ND
a=z2b a—<b
(1) (1) (1)
ce.c NA NA NA NA a2y | a2y NA  |9g >« 0b
a® <1 0° | a—><2b
cor | al3b | da—seb| ND ND ND ND ND ND

Table 4.8. Transition between topological relations: case contains — rel. The relation
acronyms are as follows: d disjoint, ¢ touch, i in, b coveredBy, ¢ contains, v covers, e equal,
r cross, and o overlap. Each cell reports in round brackets the distance between the two
considered topological relations and below the operations that have to be applied in order
to obtain the requested relation. The symbol ND indicates that the target relation rel
is not defined for the considered geometric types, while NA indicates that rel cannot be
obtained without the intervention of a domain expert.

reasoning. Here is used the notation introduced in Tab. 3.2 for representing the
patterns of the 9-intersection matrices.

e Type pairs (S5,5), (S,C), (C,C) and (C,S).
According to Tab. 3.2 the pattern for the disjoint relation in these cases is
FFT-FFT-TTT.
— Case (8,9)
If we apply the required operation a —< b when objects types are surfaces,
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rel
bi s
d*,* ‘ ty % ‘ i*,» ‘ Cx % ‘ Cx % ‘ T % Ox% % Vs, *
1 3 1
bs,s NA NA 1.('n.) NA 3) ND ( )t NA
ae5o az3eb a5
b NA ) (1) ND ND ND ND
C,S ing, out
b-ta aezxb a<—b
) (€] €]
i out out
be,c NA NA da ;:né b NA NA aezxb aezxb NA
a® 5«1 b°| a—-<sb

Table 4.9. Transition between topological relations: case coveredBy — rel. The relation
acronyms are as follows: d disjoint, ¢ touch, ¢ in, b coveredBy, ¢ contains, v covers, e equal,
r cross, and o overlap. Each cell reports in round brackets the distance between the two
considered topological relations and below the operations that have to be applied in order
to obtain the requested relation. The symbol ND indicates that the target relation rel
is not defined for the considered geometric types, while NA indicates that rel cannot be
obtained without the intervention of a domain expert.

rel
Vs, %
d*,* ‘ t*,:(- ‘ 7;*,* ‘ Cx % ‘ Ex, % ‘ T, % Ox % b*.*
1 3 3
ve.s NA NA NA i(n) ®) ND Eu)t NA
b ;:é a a3Eb a<——b
1 1 1
vs,c NA @ ND (n) ND (,)t ND ND
a—-eb besq a<Sh
1) (€] (1)
ve,c NA NA NA ek a NA i Py NA
a® 5«1 b°| a—-<sb

Table 4.10. Transition between topological relations: case covers — rel. The relation
acronyms are as follows: d disjoint, ¢ touch, ¢ in, b coveredBy, ¢ contains, v covers, e equal,
r cross, and o overlap. Each cell reports in round brackets the distance between the two
considered topological relations (“req. d” means that the transition is allowed only when
the distance between the matrix of the current scene and the requested relation rel is
d) and below the operations that have to be applied in order to obtain the requested
relation. The symbol ND indicates that the target relation rel is not defined for the
considered geometric types, while NA indicates that rel cannot be obtained without the
intervention of a domain expert.

then the geometries of a and b are locally modified in such a way that after
the modification a and b share at least one position. As a consequence, the
intersection da N db is now not empty and the pattern becomes: FFT —
FTT -TTT, which is the pattern of the touch relation for types (S, S).

— Case (5,C)
The application of the required operation a —< b in presence of a surface
and a curve, leads to the situation in which either dandb becomes not empty



84 4 Integration of two MACS databases

or danb® does Therefore, the resulting pattern becomes FFT - FTT-TTT
or FFT - TFT -TTT, which again are patterns of touch.

-~ Case (C,9)
The reasoning is the dual of the previous one.

- Case (C,C)
When the involved objects are two curves, the required operation is Ja -«
0b or Ja —»<«1 b or a >« 0b. As a consequence, either their boundaries
share a position (9andb # @), or the boundary of one curve shares a position
with the interior of the other (Janb® # @va®nob # &). Therefore, the pattern
becomes FFT -FTT-TTT or FFT -TFT-TTT (FTT-FFT-TTT),
which again are patterns of touch.

e Type pairs (S, P) and (C, P)

According to Table 3.2 the disjoint pattern in these cases is FFT-FFT-TFT.

— Case (S,P)
The required operation is a -« b. The application of this operation leads
to a situation where the point coincides with one curve endpoint: danb #
@ Aa” nb=a. Therefore, the pattern becomes FFT - TFT — FFT, which
is the pattern of touch.

— Case (C,P)
The required operation is da -« b. After the application of such operation,
one endpoint of the curve coincides with the point, thus danb + @Aa™Nb = @.
Therefore, the pattern becomes FFT — TFT — FFT, which is the pattern

of touch.
e Type pairs (P,S) and (P,C): the reasoning in this case is similar to the pre-
vious one. O

4.5 Properties of the Integration Process

This section presents some properties of the proposed integration process. In par-
ticular, we start by discussing the central role covered by the accuracy of each mea-
sure during the integration, showing that the final position of a location depends
not only on the integrated measures, but also on their accuracy and their corre-
lation with near positions. Subsequently, we state that the accuracy of measures
and the certainty of logical observations are always increased after the integration
process or at least coincide with the accuracy and certainty of the most accurate
source database, respectively. In order to demonstrate these properties, we first
analyze the trend of the Kalman matrix coefficients in relation to the different ac-
curacies of the two source databases. Given two MACS databases macs; and macss
that have to be integrated, the coeflicients of the Kalman matrix associate to each
absolute or relative measure a value proportional to its accuracy and normalized
with respect to the overall accuracy of the two source databases. In particular, the
coefficients of the Kalman matrix assume a value as follows:

e The coefficients k;, », =k
value between 0 and 1.

yp.y, Telated to the variance of a position P have a
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a€[0,0.5) if DB2, <,.. DB}

m
Ky, 2, =4 a=0.5 if DBZ, =4cc DBL,
a€(0.5,1] if DB?, >,.. DB},

o The coefficients k;, ., =k, 4, for @ # P related to the covariance between two
different positions P and @) have a value between -1 and 1.

be[-1,0) if DB2, <,.. DB,
Ky, 2, =10=0 if DB2, =, DB}

m
be(0,1] if DB2, >,.. DBL,
e The coefficients k;  , =k, ., corresponding to the covariance between the x

and y coordinates of a same position P, and the coefficients k., ,, =k, o, for
Q@ + P, corresponding to the covariance between the x and y coordinate of two
distinct positions P and @, are zero.

From these characteristics of the Kalman matrix, the first property of the integra-
tion process can be derived.

Property 4.3. Given two MACS databases macs; and macss that have to be inte-
grated, the shift of a position P from its location in macs; increases if its accuracy
in macss is greater than its accuracy in macs;.

Proof. Given the vectors Vpg, and Vpg, built as in Alg. 4.2, the vector of position
indices Vpg, for the integrated database macss is obtained from the Eq. 4.6 as:

Vo, = Vo, + K- (Vo, — Vpg, )

Let us suppose for simplicity that inside the two source databases there are only
two positions P = (z,,y,) and Q = (24, y,). The shift of the integrated = coordinate
of the position P, denoted as %, from its original value in DB}, becomes:

x?’ N 1.217 = k:np,zp ’ (xlz? - xllg) + kmp,xq ’ ( 3 - 1.‘11)
where k; ; is the coefficient of the Kalman matrix in row ¢ and column j, respec-
tively. Independently from the measurements contained in macss (zg and zg), the
shift of xf’, from the value x}o directly depends upon the coefficient k., and ks .,
of the Kalman matrix. The trend of the Kalman matrix coefficients states that the
more the accuracy of the position P in macss, increases with respect to the accu-
racy of the same position in macsy, the more the value of the coefficients k;, ., and
ks, .z, tends to one, determining a greater shift of xg, that can eventually become
equal to 3312). Notice that the shift of P is due not only to a direct update of its
measure in macss, but also to the propagation of the update of other positions, in a
quantity that directly depends upon the accuracy of the relative distance between
them. |

Ezample 4.4. Let us suppose that macs; contains two positions P = (100,100) and
Q = (123,123) that have both an absolute accuracy abs_err of 0.8m (with abs_fr=
95%), while their relative distance has an accuracy of 0.6m (with rel_fr = 95%).
Conversely, macsy contains another measure for P = (103,103) that has to be
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Fig. 4.5. Shift of the positions P and @ with respect to their original measures in macs1,
considering different absolute error abs_err for P in macss.

integrated with the one contained in macs;. The test considers the different shift
of P and @ in macss from their positions in macs;, varying the error abs_err of
P in macsy during the integration. The results of this test are reported in the
graph of Fig. 4.5. The graph clearly illustrates that greater is the accuracy of z,
in macsy (i.e. smaller is its circular error), greater is the shift of both points after
the integration process. Moreover, even if the trend for the two points is similar,
the shift of P is greater than the shift of @), because it is directly involved in the
integration process, while the shift of @ is only due to the propagation of the P
integration.

Property 4.4. Given the MAcCs database macss obtained by integrating two
source MACS databases macs; and macss, the accuracy of each integrated measure
in macsj is not smaller than the accuracy of the corresponding measure in the two
source databases. In particular, if the accuracy of a measure in one database is very
high, then the corresponding measure in the other database does not influence the
integration process and the resulting accuracy corresponds to the greatest one.

Proof. The metric accuracy of a position P is defined in Sec. 3.3 and it inversely
depends on the positions variance. The variance for the integrated position P in
macsg is computed using the Eq. 4.7:

Cpp, = (I —K) - Cpg, - (I =K)” + K- Cpg, -K”

Let us suppose that macss contains a very accurate measure for P, then as stated
above the coefficient k,, ,, (or equivalently k,, ,,) of the Kalman matrix has a
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value near to one. From this, it follows that the resulting variance value in Cpg,
is very close to (at most coincides with) the element contained in Cpg,, namely
to the most accurate one. Conversely, if macs; contains a very accurate measure
for P, then the coefficient k. ,,. of the Kalman matrix has a value near to zero
and the variance value in Cpg, for P is very close to the one in Cpg,. In the other
cases, if the two source databases contain both relatively accurate measures for P,
the diagonal position k;, ., of the Kalman matrix contains a value positive but
smaller than one. This value multiplied with the elements of the original matrices
produces a value that is smaller than the original ones; moreover, their sum is
smaller than each original value as the coefficient of K are normalised with respect
to the overall accuracy of the two databases (the sum of the two original variances).
As a consequence, as the variance of each measure decreases at each iteration, the
quality of the integrated position always increases. |

Ezxample 4.5. Let us consider again the two MACS databases in Ex. 4.4 and perform
the integration between them taking into account the new value of absolute error
computed after the integration process. The variation between the error of the
integrated measures and the error of the same measures in macs; is reported in
the graph of Fig. 4.6, considering different values of absolute error for the position
P in macssy. Notice that as P becomes less accurate, such variation decreases.
When the error of P in macss becomes equal to the error of P in macs; (0.80m),
the variation is still greater than zero: the integration of two measures with the
same accuracy produces a new measure that is more accurate than the two source
ones. Finally, if the measure of P is very inaccurate, it has not effect during the
integration process also as regards to the error of the integrated measure; indeed,
as the error in macss, increases, the error variation settles to a value near to zero.

From this property and the definition of average global accuracy estimator
accey, (macs), given in Sec. 3.3, it directly derives that acc,, (macss) is always greater
than or equal to acc,,(macsy) and acc,, (macss).

Property 4.5. Given a MACS database macsg obtained by integrating two source
Macs databases macs; and macss, the certainty of each logical observation does
not decrease during the integration process, it can only remain unchanged or in-
crease.

Proof. The certainty of each logical observation is defined in Eq. 3.11. Discarding
the optimization mentioned at the end of Sec. 4.3, given two disjunction of topo-
logical relations Ry and R, their integration always produces a set of relations Rg
whose cardinality is smaller than the cardinality of both the original ones, or equal
to the smallest ones (|R3| < min(|R1],|Rz|). Therefore, putting this new cardinality
into the certainty formula, a certainty index is obtained that is equal to the greater
one or is greater than both the original ones. O

From this property and the definition of average global certainty estimator
acci(macs), given in Sec. 3.3, it directly derives that acc;(macss) is always greater
than or equal to acc;(macsy) and acci(macss).

The presented properties allows one to conclude that the proposed integration
process does not decrease (and usually increases) the overall knowledge of a certain



88 4 Integration of two MACS databases

o 1.00
LY
2 0.90 \
E
z 0.80 =4 delta_emor_P
E \ = @= delta_emor R
g 0.70
g
o 0.60
o
=2
= 0.50
=
k=
g 0.40
E \
]
k] 030
: \\
O
= 020 -—.2--..__-‘
1
Z Temo \
- 0.10 L
S
ey
-
0.00 == =g
0.10 | 020 | 040 | 0.60 | 0.80 | 1.00 | 1.20 | 140 | 1.60 | 2.00 | 3.00 | 6.00 |10.00
=#—delta_error P [0.716 (0612 |0.444 |0520|0.234(0.175|0.135|0.106 |0.085|0.058 |0.028 |0.009 |0.004
= 8= delta_emor B |0215 (0204 (0.169 |0.133 |0.102 |0.079 |0.063 |0.050 |0.041 |0.030 [0.016 |0.007 [0.005
Absolute error ofthe position P in macs;

Fig. 4.6. Variation of the absolute error for the integrated positions P and @ in macss
with respect to the value in macs, considering different absolute error for P in macss.

geographical area represented in a MACS database with respect to both metric and

logical observations.

4.6 Distributed Integration of two MAcs databases

This section extends the integration framework previously presented, in order to
make its application feasible in a distributed context even in presence of an huge
amount of data. In particular, the integration context considered in the following

is represented by an SDI environment such that:

e The reference SDI region is partitioned into several areas, which are managed

by local agencies (called SDI members).

e A central agency (called SDI manager) is active and responsible for creating
and maintaining a global repository that contains the current global spatial

database.

e Data are structured in several datasets having different metric accuracies. Each
SDI member provides its own data to the SDI manager and maintains a local

copy for performing its operations.

e Updates, with different levels of accuracy, are handled by each SDI member
and they are propagated automatically to the SDI manager and from here, if

necessary, to the adjacent SDI members.
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The aim of this section is to discuss how metric and logical observations can
be locally integrated by each SDI member and then globally combined together
by the SDI manger in order to obtain the final result.

4.6.1 Distributed Integration of Metric Information

In the SDI context introduced above, it is not reasonable that the SDI manager
performs the integration by applying the proposed procedure on the whole global
SDI database. However, Ex. 1.4 illustrates the problems that can arise when in a
distributed context an update is performed only locally. In particular, the main
issue regards the propagation of the integration effects on near databases owned
by other SDI members.

This section discusses how the Kalman integration introduced in Sec. 4.2 can be
performed locally by each SDI member and then combined globally by a centralized
SDI manager, exploiting the information locally computed.

Given two set of position indices Vpg, and Vpg, to be integrated, they can be
subdivided into m chunks on which Eq. 4.5-4.7 can be computed in parallel to gen-
erate m local estimates Vpg,[4], with i € [1,m]. In other words, each SDI member
can independently apply the metric integration introduced in Sec. 4.2, produc-
ing its local estimate Vpg,[¢]. All these estimates can be subsequently combined
together by the SDI manager to provide the global database estimate Vpg,.

Starting from the estimates Vpg,[i], Cpe,[i] and Ks[¢], computed by each SDI
member on its local data using Eq. 4.5-4.7, the global estimate Vpg, can be deter-
mined by the SDI manager through the following formula, adapted from [55]:

Vos, = Coa, * (Co, * Vos, + (4.11)

32 (Cob 1 Vou, 1] - Gy 1] Von 1))

where Vpg, and Cpg, are the position index vector and the variance-covariance ma-
trix of the previously computed database integration, while the global covariance
matrix Cpg, is obtained from the local covariance estimates Cpg,[¢] and the previous
estimate Cpp, as follows:

i=1

It has been show in [55] that the estimate Vpg, produced by Eq. 4.11 corresponds
to the one produced by directly applying Eq. 4.6 to the global SDI database and
the overall vector of new observations.

Therefore, as regards to metric observations, in the considered integration sce-
nario each SDI member communicates its local estimate to the SDI manager, who
is responsible to globally combine these estimates using Eq. 4.11-4.12. After the
global estimate has been computed, the SDI manager is also responsible to notify
the updates to all the SDI managers that have been affected by the integration.
In the following section the problem of integrating logical observations in a dis-
tributed way is analyzed.
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4.6.2 Distributed Integration of Logical Information

This section discusses how logical information can be integrated in the stated dis-
tributed context. More specifically, the proposed integration process is composed
of three steps: the integration of metric information, the integration of logical
information and the integration of metric and logical information together. The
previous section analyzes how the first phase can be performed in a distributed
way, namely how estimates computed by locally applying the Kalman integration
can be combined together for correctly propagating the integration effects.

Relatively to logical information, it can be observed that the integration proce-
dure introduces in Sec. 4.3 can be locally performed by each SDI member. Such pro-
cedure essentially merges the relations that are known in the two source databases
and determines the other possible ones by using the confidence region of the ob-
jects among which no relations have been explicitly defined. The resulting relations
can regard only objects that are contained in the local database, or pairs of objects
such that one is contained in the local database and the other is contained into
another one.

For the relations that involve only objects contained in the local database, each
SDI member can also locally perform the third integration phase that removes the
generated inconsistencies. In other words, in the database transferred by each SDI
member to the SDI manager is free from logical inconsistencies.

Conversely, for relations regarding two adjacent datasets, the SDI member can
only determine the resulting relations and transfer them to the SDI manager.
The SDI manager will integrate the received relations with the ones originally
contained in its global database. If this integration determines empty relations,
the SDI members that own the involved spatial objects will be notified and their
intervention is required for determining the final relation.

Finally, the SDI manager will perform the last integration phase on the dataset
boundary, in order to verify the presence of inconsistencies between the determined
topological relations and the integrated geometries. At the end of this stage the
SDI manager identifies the portion of the database that has been changed, in terms
of metric and logical information, and from it the SDI members that have to be
notified.

4.7 Efficient Covariance Matrix Representation

As discussed in Sec. 3.1, the dimension of the covariance matrix can hinder the
application of the technique, in particular in a distributed context. This section
proposes an efficient representation of the covariance matrix that substantially
reduces the quantity of information that has to be stored and transferred prior
and after an integration.

Let us consider the scenario reported in Fig. 4.7: the violet polygons are new
buildings contained in a portion of LDB that have to be integrated into a portion
of RDB, the yellow and the overlapped green ones are the buildings and the street
areas contained in both database portions, respectively. The initial global database
in which the two new buildings have to be integrated is composed of 1243 points.
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This means that the size of the covariance matrix to be transferred to the SDI
member for the integration is 2486 x 2486, namely 6,180,196 values potentially
encoded in double precision using 64 bits, for a total of at least 47 MB. Similarly,
the two new buildings are represented using 71 points, hence the covariance matrix
resulting from the integration contains 6,906,384 elements (54 MB) that have to
be transferred back to the SDI manager.

N

Fig. 4.7. Situation before performing the integration: the orange (lighter) polygons are
contained only in the considered portion of the global RDB database, while the violet
(darker) polygons are the new buildings of the considered LDB portion to be integrated;
finally, the yellow polygons and the overlying green ones are the buildings that the inte-
gration process considers as part of both the global and the local SDI database portions.

The size of a covariance matrix can be reduced by representing only the unique
values inside it, together with the positions where these values are located. Notice
that half of the values are zeros, and the variance of the x and y coordinates of each
position coincides, while the covariance between the x coordinates of each pair of
positions has the same value of the covariance between the y coordinates of the
same pair of positions. Anyway, the number of distinct elements inside a covariance
matrix can be further reduced by considering a threshold 7 below which different
covariance values are considered as the same. The choice of the threshold 7 is criti-
cal in order to both reduce the amount of information to be stored and transferred,
and control the effects of this approximation on subsequent operations. The idea
is to represent the covariance values using a fixed point representation, where the
adopted length is determined by the threshold 7. Greater is 7, smaller is the loss
induced by this representation and greater remains the number of distinct values
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inside the covariance matrix. Given this encoding, the matrix can be compressed
by representing it as a list of zones characterized by the same value.

Table 4.11. Results of the covariance matrix compression experiments.

bits unique(Cqy) A(Co) mazx distance avg distance unique(C1) unique(Ct) A(Ch)

15 3 99.99%  8.791360 0.886661 1,275,763 6,954  99,72%
16 5 99.99%  2.678981 0.479957 2,056,498 28,582  98,83%
17 8 99.99%  2.520073 0.780865 2,412,541 44,700  98,18%
18 13 99.99%  1.160076 0.239304 2,555,241 67,158  97.26%
19 23 99.99%  0.102096 0.031367 2,487,269 118,104 95.18%

20 43 99.99%  0.059160 0.014984 2,471,040 197,914 91,93%
21 83 99.98%  0.029044 0.007157 2,449,771 300,705 87,73%
22 164 99.96%  0.011367 0.003272 2,441,795 403,541 83.54%
23 325 99.92%  0.006115 0.001643 2,446,224 483,474 80.28%
24 647 99.84%  0.003190 0.000851 2,455,008 535,180 78.17%
25 1,291 99.68%  0.001914 0.000461 2,443,862 564,681 76.97%
26 2,579 99.37%  0.000867 0.000233 2,448,969 580,246 76,33%
27 5,155  98.73%  0.000394 0.000108 2,472,271 588,600 75,99%
28 10,306  97.46%  0.000195 0.000054 2,454,520 592,710 75.82%
29 20,608 94.93% 0.000101 0.000027 2,467,701 595,124  75.72%
30 41,183  89.87%  0.000004 0.000013 2,441,109 596,440 75,67%
31 81,463  79.96%  0.000028 0.000006 2,464,989 597,639 75.62%
32 149,232 63.29% 0.000014 0.000004 2,506,776 597,985 72.93%

Table 4.11 summarizes the results of this encoding technique applied to the
situation in Fig. 4.7. In particular, the initial global covariance matrix Cy contains
406,546 unique values (on a total of 6,180,196 elements), this matrix has been
approximated using a different number of bits. For each number of bits reported
in the column bits, column unique(C§) contains the number of unique values in the
approximated covariance matrix encoded using this number of bits, column A(Cp)
is the obtained compression ratio, columns max distance and avg distance reports
the maximum and average distance in meters between the points in the exact
resulting database and the database obtained with the approximated covariance
matrix, respectively; column wunique(C1) reports the number of unique values in
the exact integrated covariance matrix, while unique(C$') contains the number of
unique values in the approximated integrated covariance matrix, finally A(CY) is
the compression ratio for the integrated covariance matrix. The compression ratio
is defined as the difference between the number of unique values contained in the
exact matrix and the number of unique values in the approximated matrix, divided
by the number of unique values in the exact matrix.

The average distances in meters between the points in the integrated database
computed using the exact covariance matrix and the corresponding points inte-
grated with the approximated one are reported also in Fig. 4.8. Let us notice that
using an encoding with less than 16 bits, the maximum and average distances are
not negligible, while between 20 to 32 bits they are less than few centimeters.

The compression ratio for the original matrix Cy and for the obtained one C4
are represented in Fig. 4.9, it is evident that the compression is higher, even using
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Fig. 4.8. Relation between the number of bits used for encoding the covariance matrix
and the average distance between corresponding points integrated with the exact and
approximated covariance matrix, respectively.

a greater number of bits, for the original matrix Cy, because it is assumed to be
generated from only two accuracy metadata using the procedure in Eq. 3.3, while
the integrated one is obtained combining the accuracy values of both integrated
databases.

The effects of the local source database accuracy on the compression factor of
the obtained integrated covariance matrix C; have been also analyzed. Fig. 4.10
summarizes the different compression ratios in two cases: the first one, represented
by the blue solid line, assumes for the local source database LDB an estimated
absolute error of 0.6 meters, and an estimated relative error of 0.4 meters within a
distance d of 200 meters or of 0.8 meters otherwise. Conversely, the green dashed
line represents the case when the local source database LDB is characterized by
an estimated absolute error of 1.4 meters, and an estimated relative error of 0.8
meters within 200 meters or of 1.6 meters otherwise. It can be observed that with
the most accurate hypothesis the compression factor is smaller: indeed, in this
case the objects directly involved in the integration process become more accurate
than in the other case, consequently their variance and covariance values in C}
are subject to a greater change with respect to their original values and they
are less likely affected by the 7 parameter. A similar situation is also determined
by changing the distance d used in the definition of the estimated relative error.
Fig. 4.11 shows how the compression ratio of C; changes in two cases where the
estimated relative error is defined by the same parameters, except for the distance
d that is assumed of 200 meters in one case (solid blue line) and of 1200 meters
in the other one (dashed green line). As you can notice, the compression ratio
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Fig. 4.11. Different compression ratios of the resulting covariance matrix C1 considering
different distances d used for the definition of the relative distance error in LDB.

is greater with the smallest value of d: the propagation of the integration effects
increases as the parameter d increases, since d delimits the influence region of each
object. As a consequence, with a smaller distance d, the number of variance and
covariance values that are updated is smaller.

The proposed compression technique is based on the identification of homo-
geneous zones inside the covariance matrix. Thanks to the way in which the co-
variance matrix is computed and the meaning of its elements, it follows that these
zones correspond also to geographically identifiable regions. Therefore, an alter-
native compact representation of the covariance matrix can be defined as a set of
tuples {(02,0;, R;)}", where R; is the region obtained as the union of the ob-
jects characterized by the same variance o? and covariance o; values. For instance,
in Fig. 4.12 is illustrated the distribution of the variance values after the inte-
gration, where the darker blue objects are those characterized by higher variance
values (lower accuracy), while the lighter blue ones are those with lower variance
values (higher accuracy). The method ensures that the objects directly involved
in the integration process have increased their absolute accuracy (lower variance
values), and that this absolute accuracy decreases as the distance to the updated
objects increases. This compact representation of the variance-covariance matrix
as zones with homogeneous accuracies can also be used for storage purposes, not
only during transferring.
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Fig. 4.12. Variance distribution after the integration process performed with a covari-
ance matrix for the global RDB encoded using 20 bits. The darker blue objects are those
with the higher variance values, while the lighter blue ones are those with the smaller
variance values.

4.8 Integration Applied to a Real-World Case

This section validates the proposed integration technique against the real-world
case presented in Sec. 1.2. The aim is to analyze how the various problems exposed
in the introduction can solved by the proposed integration process. In particular,
the main problems that can arise with an integration that does not consider the
accuracies of the source databases can be summarized by the following points:

1. No information is available about the quality of an integrated database: when
two databases characterized by different accuracies are integrated, what is
the accuracy of the result? Surely, it cannot be the accuracy of any of the
source databases. Moreover, if an object with a certain accuracy is inserted
into a database characterized by a lower accuracy, what do we know about the
accuracy of its relative distance with respect to the surrounding ones?

2. The integrated database can be very accurate in terms of shapes but it can
become very inaccurate in terms of positions and relative distances.

3. Some of the topological relations that are known to be valid in the source
database can be violated by the integrated result.

In the following sections, we recall the problematic situations highlighted in
Sec. 1.2, regarding the construction of an Italian regional SDI in Lombardy. More
specifically, we consider the presence of a global regional database containing less
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accurate data, called RDB, and a local database containing more accurate and up-
to-date information, called LDB, which is owned by a pilot municipality. During

RpB LpB
abs_error 3m 0.8m
abs_fr 95% 95%
1.4m +d/100 if d < 400m 0.6m +d/100 if d < 600m
rel_err
1.8m otherwise 1.2m otherwise
rel_fr 95% 95%

Table 4.12. Initial accuracy parameters for the two source databases.

the integration process the accuracy parameters reported in Tab. 4.12 are assumed
for the two source datasets. The tests have been performed on a Intel 4 Core 3,30
GHz i5-2500K CPU, with 16 GB of RAM on a Windows 7 64-bit operating system.

The aim of this chapter is to illustrate how the found issues can be solved by
the proposed integration technique. Notice that in order to correctly perform the
integration and allow the propagation of its effects, the updated database LDB is
assumed to always share some positions with RDB, namely in case a new object
has to be inserted into the global database, some accuracy metadata about it
and some existing surrounding objects are known. Some details about the process
implementation will be given in Chap. 7.

4.8.1 Role of Accuracy During Metric Integration

This section illustrates the role played by accuracy metadata during the integration
of metric observations. In particular, we recall the situation presented in Ex. 1.1

Fig. 4.13. Situation before performing the integration: the violet polygons represents
the content of RDB, while the green ones are the content of LDB.
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and depicted in Fig. 4.13: the blue polygons are the content of RDB, while the
green ones are contained in LDB. We assume that the horizontal street is owned
by the local municipality which is responsible for collecting its updates, while the
vertical street is under the region competency. During the years the cross between
the municipality and the regional street has been replaced by a roundabout. This
change has been stored into the local database LDB, and has to be integrated
with the content of the regional database. In order to perform this integration, we
assume that some information about the relative distance between the roundabout
and the regional street are contained in LDB. This information is represented by
the shared vertical polygons connected to the roundabout which are very accurate
in terms of relative distances, but very inaccurate in terms of absolute positions
with respect to their representation in RDB.

As mentioned in Ex. 1.1, if the new roundabout is integrated in RDB by simply
placing the new geometries into the old ones, the regional street becomes discon-
nected by the new roundabout. The result of the integration performed with the
proposed approach is illustrated in Fig. 4.14.a. Since LDB is assumed more accu-
rate than RDB, the position of the resulting geometry should not differ much from
the position of LDB. Conversely, if the integration is performed by considering
RDB more accurate than LDB, the result is the one reported in Fig. 4.14.b: in this
case the position of the resulting geometry is near the one of RDB.

(®)

Fig. 4.14. The result of the integration process: (a) considering LDB more accurate than
RDB, and (b) considering the inverse situation.

Tab. 4.13 reports some metadata about the source and the integrate databases;
in particular, the metric accuracy estimator acc,, of each database is highlighted.
As you can notice, the accuracy of the resulting database is greater than both the
source databases.
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RpB LpB RDBresut
Number of features 5 25 25
Number of positons 50 240 240
Covariance matrix dimension (100x100) (480x480) (480x480)
Metric accuracy accp, 0.87 3.25 3.34

Table 4.13. Some information about the source and the integrated databases contained
in Fig. 4.13 and Fig. 4.14, respectively.

4.8.2 Preservation of Relative Distances

This section considers the issue presented in Ex. 1.2 about the preservation of
relative distances. In the considered example, a new building has been collected
by LDB and has to be added into a portion of RDB, we assume that in LDB some
relative distance information is available between the new building and a known
reference point representing a bus stop, and that the same is true in RDB between
the same reference point and an existing building. Notice that the reference point is
present in both databases, but with slightly different positions. A naive integration
that simply places the new building into RDB will produce a database that is
accurate in terms of shapes, but inaccurate in terms of relative distances. Indeed,
as mentioned in the introduction the distance between the new building and the
reference point can vary from about 7-8 meters.

Fig. 4.15 illustrates the content of the two source databases. In particular, the
content of RDB includes the green polygons, the yellow street areas and the black
reference point inside the horizontal street area; while the content of LDB includes
the light red big polygon and the reference point outside the horizontal street area.

RDB LbpB RDBresus
Number of features 9 5 10
Number of positons 170 681 721

Covariance matrix dimension (340 x 340) (1362 x 1362) (1442 x 1442)

Table 4.14. Some information about the source and the integrated databases represented
in Fig. 4.15 and Fig. 4.16, respectively.

The result of the integration performed using the proposed integration method
is illustrated in Fig. 4.16. As you can notice, the relative distance between all
buildings and the horizontal street areas are substantially preserved after the in-
tegration. Indeed, the position of the new building has been slightly modified in
order to preserve the relative distance, this is determined by the fact that the accu-
racy of absolute positions is less than the accuracy of relative distances. Tab. 4.14
reports some information about the involved databases.
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Fig. 4.15. Initial situation before applying the integration procedure: RDB contains the
green buildings, the yellow street areas, and the black reference point inside the horizontal
street area, while LDB contains the light red big building and the black reference point
outside the horizontal street area.

4.8.3 Preservation of Topological Relations

This section treats the problem of the preserving the topological relations during
the integration process. First of all, we consider the case in Ex. 1.3 where a new
building labeled new4 has to be inserted into RDB. The content of the original
datasets is illustrated in Fig. 4.17: the orange and yellow polygons represent the
content of RDB, while the violet and the green ones are the content of LDB. In
particular, the violet polygon is the new building that has to inserted into RDB,
while the surrounding green buildings are the content shared by the two databases.
If the new building is overlaid on RDB, an overlap is obtained between it and the
right orange polygon, This is due to the different accuracies of the two databases,
indeed in LDB the position of this neighbour building is quite different.

The result obtained using the proposed integration technique is reported in
Fig. 4.18: the new building has been perfectly inserted between the two surrounding
ones. In particular, thanks to the role covered by the accuracy of the relative
distance between the new building and the two near ones, the disjoint relation
has been preserved. In particular, this effect is due to the presence of the two
shared buildings in LDB. Tab. 4.15 reports some information about the two source
databases and the integrated one.
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-

Fig. 4.16. The result of the integration performed with the proposed technique: the
relative distance between all the polygons with respect to the horizontal street area are
substantially preserved.

| RDB LpB RDB esuit
Number of features 84 5 86
Number of positons 1209 71 1222

Covariance matrix dimension (2418 x 2418) (142 x 142) (2444 x 2444)

Table 4.15. Some information about the source and the integrated databases represented
in Fig. 4.17 and Fig. 4.18, respectively.

A similar situation is depicted in Fig. 4.19: some new polygons, depicted in
green and labeled as newa-newg, have to be inserted into RDB, whose content is

| RDB LpB RDB esuit
Number of features 216 9 222
Number of positons 2825 261 2934

Covariance matrix dimension (5650 x 5650) (522 x 522) (5868 x 5868)

Table 4.16. Some information about the source and the integrated databases represented
in Fig. 4.19 and Fig. 4.20, respectively.
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Fig. 4.17. Content of the two source databases: the orange polygons represent the build-
ings contained in RDB, while the yellow polygons are its street areas, the violet polygon is
the new building of LDB that has to be inserted into RDB, and finally the green polygons
are the buildings that LDB shares with the global database.

represented by the yellow and orange polygons. In particular, for correctly per-
forming the integration process, the measurements of some street areas of RDB
have performed also in LDB, they are identified by the violet polygons.

If the new buildings are simply placed into RDB, some of them will overlap an
existing neighbour street area. This is due to the different accuracies of the two
source databases. Conversely, by applying the proposed integration process, we
obtain the result depicted in Fig. 4.20.

4.9 Summary and Concluding Remarks

This chapter has discussed the problem of integrating spatial data coming from
different sources and characterized by different positional accuracies. The spatial
data integration problem has become an important research field in recent years,
due to the development of SDIs in many different countries and the need of orga-
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Fig. 4.18. The result of the integration performed with the proposed technique: the
new building labeled with newa is now perfectly inserted between the two surrounding
buildings: thanks to the role covered by the accuracy of relative distances, the disjoint
relation has been preserved.

nizations to share not only data, but also tools, processes and competencies in an
effective way. In literature many research efforts deal with the problem known as
data integration or information fusion. In particular, such activity requires differ-
ent phases that range from the identification of similar concepts to the integration
of entire schemas. In the geographical field, an important activity regards the
feature or point matching and the alignment of different geometries. The main dif-
ficulty in performing this activity is induced by the inherent inaccuracy of spatial
data. A certain amount of error in the representation of spatial data always exists,
because the measurements needed to survey the shape, extension and position of
objects with the maximum accuracy are often too expensive, or because the max-
imum accuracy is not necessary to satisfy the application requirements. Available
integration techniques usually align the dataset with lower accuracy to the more
accurate one, assuming that the last one is correct. In this way, corresponding
features in the two datasets are aligned but in a sub-optimal manner. Moreover,
no updated quality information are provided for the adjusted dataset.

In this chapter we have considered the context of an highly coupled SDI where
members have adhered to a common global schema. Therefore, we assume that a
previous merging operations have already been performed on the local schemas,
and we concentrate on the second aspect of the integration problem regarding the
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Fig. 4.19. Initial situation before the integration: the yellow and orange polygons rep-
resent the content of RDB, the green polygons are the new buildings of LLDB that have to
be inserted into RDB, while the violet ones are the shared street areas contained in LDB.

integration of geometries characterized by different quality levels. Moreover, we
consider the most frequent case in which only derived coordinates are available,
together with just few metadata about the accuracy of absolute positions and
relative distances.

Metric and logical observations are stored together into a MAcCS database and
they are jointly considered during the integration process. More specifically, such
process can be decomposed into three phases: the first one combines together met-
ric information contained in the two source databases, using an application of the
Kalman filter, the second phase regards the integration of logical observations, and
finally the last phase puts together the obtained metric and logical information,
eventually solving inconsistencies. This integration procedure takes care of the ac-
curacy of both source databases and produces also updated quality information
for the resultant one.

In order to make feasible the application of the proposed framework in a dis-
tributed context, even in presence of a huge amount of data, a distributed version
of the integration process has been introduced. Such version allows SDI members
to locally perform the integration of the new data at their disposal, and then to
communicate the updated information to a central SDI manager which is respon-



4.9 Summary and Concluding Remarks 105

Fig. 4.20. The result of the integration performed with the proposed technique: the new
buildings labeled with newa-newr are now perfectly integrated with the surrounding
street areas: thanks to the role covered by the accuracy of relative distances, the disjoint
relations have been preserved.

sible to propagate the integration effects on the neighbour datasets and notify the
other involved SDI members. One of the main issues of the proposed technique
resides on the dimension of the variance-covariance matrix that has to be stored
and managed during the computation. In this respect, a technique is proposed
for compressing such matrix and the effects of this compression on the following
integrations are discussed.

Finally, some properties of the proposed integration procedure and its applica-
tion on some real-world cases have been described. In particular, this application
concentrates on the issues highlighted in the introduction, regarding the integra-
tion of spatial data without considering their accuracy, and it shows how they can
be solved by the proposed framework.

In the following chapters the applicability of workflow technologies is eval-
uated for supporting distributed geographical processes with the characteristics
described in the introduction. In particular, the integration process presented in
this chapter will be used as motivating example through Part II. Indeed, it can
become a distributed application that requires the coordination and collaboration
of several agents with different competencies, and in which not all the operations
can be automated. This last part also discusses some implementation details of
the proposed integration technique.
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Background: Workflow Management Systems

The realization of the integration framework proposed in the previous chapter can
be very challenging, not only for the complexity of the involved operations, but
also for the need to coordinate different and distributed agents in performing such
operations. For this reason, the second part of the thesis investigates the appli-
cability of workflow technologies for the realization of the proposed framework.
Workflow technologies are increasingly applied for building new information sys-
tems, especially when these systems cross the boundary of a single organization.
The use of this technology eases the reuse and integration of existing applica-
tions, facilitates the deployment of new applications and increases their flexibility,
lowering the efforts required to adapt the system to future contingent needs.

Given the characteristics of the proposed integration framework, it seams rea-
sonable to exploit existing workflow technologies for implementing it. The aim
of this chapter is twofold: (1) giving a brief overview of the methods and the
technological infrastructure underpinning workflow technology, and (2) introduc-
ing some real WfMSs in order to expose their strengths and weaknesses. At this
regards, since it is not possible to consider all existing WfMSs, in this chapter we
concentrate on some well-known representatives, which capture the essential solu-
tions. The structure of the chapter is as follows: Sec. 5.1 introduces the business
process management methodology, while Sec. 5.2 discusses the main characteris-
tics of a service oriented architecture, and Sec. 5.3 clarifies the different meanings
underlying the terms workflow. Finally, Sec. 5.4 and Sec. 5.5 presents two main
paradigms in the design of processes, known as control-flow and data-flow oriented,
while Sec. 6.2 introduces some existing offerings in the geographical domain.

Starting from this classification, the following chapter evaluates the possibility
of using workflow technologies for supporting distributed geo-processing. In par-
ticular, the considered WfMSs are compared from a general point of view, using
the well-known workflow patterns [5], and then from a geographical point of view,
considering the implementation of the proposed integration process as case study.
Workflow patterns have been extensively used for evaluating existing workflow
systems; hence, they can be easily used as a comparison mean among different
offerings. Conversely, the proposed integration process is a good representative for
geographical processes, since it presents many of the characteristics highlighted in
the introduction.
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5.1 Business Process Management

An organization can be understood in term of its relevant processes and this is
also true for a virtual organization, like an SDI. A Business Process (BP) is a
collection of interrelated activities that are coordinately performed inside an or-
ganization for achieving a predefined goal [141]. In order to achieve its goals and
fulfill the stackeholders’ needs, any organization have to coordinate the interaction
of different agents. This coordination is obtained exchanging information through
a more or less automated information system.

Business Process Management (BPM) is an approach to describe and manage
an organization in terms of its processes. The main goal of BPM is understanding
how an organization operates, which activities it is performing and the relation-
ships among them. The explicit documentation of BPs allows people inside an
organization to share a common vision on how the organization works, improv-
ing coordination. Ideally, an organization is aware of which BPs are currently
running and how they are related. An organization systematically measures the
performance of its internal processes with the aim of continuously improve them:
new BPs are carefully designed and inefficient ones are discarded or re-engineered.
Essentially, the BPM approach can be seen as a stable process for improving pro-
cesses, opposed to occasional adjustments due to contingent needs. The phases of
this process are reported in Fig. 5.1 and are usually denoted as the BP lifecycle.
The design and analysis phase includes the analysis of existing processes and the

E> 4. Evaluation %

Business 1. Design
Process and Analysis

% 2. Configuration w

Fig. 5.1. BP lifecycle adapted from [141]

3. Enactment

design of desired new ones. Processes are explicitly represented through one or
more BP models which are usually expressed by means of a predefined graphical
modeling language, such as YAWL and BPMN that are described in the following
sections. In the configuration phase, BP models are enhanced with additional in-
formation that facilitates its automatic execution through a computerized system.
After the configuration phase a BP is ready to be executed (enactment). The exe-
cution starts when a particular event occurs, for example a new request is received
from a customer or a stakeholder. A BP is continuously monitored and data about
its execution is recorded for evaluating effectiveness and performance parameters
(evaluation).

BPs can be classified with respect to different aspects [141]. For instance, as
regards to the degree of automation, we can distinguish between fully automated



5.2 Service Oriented Architecture (SOA) 111

processes and processes that require human intervention during their execution.
A BP is usually carried out by human agents, hence their interaction with the
software system is a primary concern. Moreover, with respect to the degree of
repetition, BPs can be also classified in production and collaborative processes.
Production processes are usually well-structured and highly repetitive, in general
these systems prescribe the activities and their execution constraints in a complete
fashion. They are executed hundred of times a day and they are less sensitive to
the used implementation technology, because they are relatively stable and their
usage for long time can pay-off the initial investment for an ad-hoc solution. On
the opposite side, collaborative processes occur only few times before changing,
such as large engineering efforts or scientific experiments: for them it is funda-
mental to carefully track their current state and execution constraints, in order
to ensure controllability and/or reproducibility. For this kind of processes, that
are characterized by long-running executions and a low number of instances, the
applied technology becomes crucial.

The development of an SDI allows to create a virtual organization characterized
by a set of processes that spawn multiple existing organizations. These processes
present some distinctive characteristics with respect to those typically performed
inside an organization. In particular, they can involve sophisticated elaborations on
huge amount of spatial data. Due to the nature of an SDI and the high investment
needed to develop it, it is reasonable to assume that simple processes are automated
or will be automated with specific optimized software systems. The real challenge
in which we are interested is how to build reliable and flexible applications to
support collaborative processes. The integration process proposed in this thesis is
a clear example of this kind of processes.

5.2 Service Oriented Architecture (SOA)

Organizations can exploit different type of software systems for supporting their
activities and automating their information systems. The development of a new
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Fig. 5.2. High-level view of a SOA implementation.

information system rarely starts from scratch: old software systems cannot be
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completely replaced with new ones, due to the high costs induced by both the new
software realization and the training of people inside an organization that have to
use it. This condition is particularly true in the geographical context, where the
amount of available systems, tools and libraries, besides the knowledge needed to
use them, make impractical the development of a completely new system.

Two primary forces drive the introduction of new information technologies: the
need to integrate existing systems for raising automation and the need for more
flexible systems for lowering change efforts: a service oriented architecture try to
meet these needs. The Service Oriented Architecture (SOA) is a software architec-
ture based on loosely coupled autonomous components, called services. A service
usually implements a new reusable function or exposes a function of an existing
software system. A service provides a well defined interface that does not depend on
the implementation language; this interface is enriched with self-describing meta-
data and published in a SOA registry to be automatically discovered and invoked
across the network. Services are basic blocks that can be combined together for
implementing distributed applications.

Service is often synonymous of web-service, because SOA technologies are
mostly driven by web-oriented standards; indeed, they are a well suited tool for
overcoming the organization boundaries. A web-service represent a particular kind
of software component which is accessible through the web and executed on a re-
mote system.

The use of SOA has been encouraged also in the geographical field by the
OGC [4] through the development of a series of standards for spatial data sharing
and processing. In particular, the Web Processing Service (WPS) interface spec-
ification [99] promotes the constructions of standardized services for performing
web-based processing of spatial data. The main characteristics of OGC WPS will
be discussed in Sec. 5.6.1.

5.3 Workflow Management Systems

The term WEMS is commonly abused and actually can denote very different kinds
of systems. For the aims of this thesis, four type of WfMSs can be distinguished:
desktop, server, business and scientific.

Desktop WfMSs — They denote the automation of a set of repetitive steps or
operations inside a particular application, as happens in office automation. This
kind of workflows is not considered any further in this thesis, because it offers lim-
ited functionalities and cannot meet the requirement of a distributed information
system.

Server Workflows — They are programs obtained combining existing services,
for instance using the Business Process Modeling Language (BPEL) [97]. The
construction of these programs is usually supported by the use of an application
server which provides a set of functionalities that allow the easy composition of
new software components. More specifically, an application server is a software
which provides facilities such as security management, data services, transaction
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support, load balancing, and management of large distributed systems. Examples
of Java-based application servers are JBoss Applicaton Server (JBoss AS) [3] and
Oracle GlassFish [1].

The low-level functionalities provided by an application server are usually ex-
ploited through high-level languages and tools built upon them, that are often
classified as WIMSs. However, their purpose is to ease the application develop-
ment and the user is not aware of the underlying defined processes. This is in
contrast with the following two kinds of WfMSs, whose primary aim is to docu-
ment the processes inside an organization.

Process-Aware Information Systems — Business WIMSs or Process-Aware
Information Systems (PAISs) are software systems driven by explicit process spec-
ifications, with the aim to coordinate the involved agents in performing their ac-
tivities. The main goal of a PAIS is to enact a process, manage human resources,
and trace the processes execution, by interpreting a given process specification.
Process specifications managed by PAISs usually focus on the identification of the
involved activities and the order dependencies among them, hence these systems
are classified as control-flow oriented.

The usual architecture of a PAIS is the one described in Fig. 5.3, where rect-
angular boxes represent software components and the oval ones denote data. This
architecture includes a BP Designer, through which a process model can be defined,
but also a BP Engine, which interprets the specification an generates a minimal
user interface for coordinating and monitoring the process execution. This archi-
tecture reveals that not all software systems that take advantage of a graphical
language can be considered a PAIS, including even some W{MSs.

In this thesis we are interested in PAISs that are able to implement interactive
software systems from the provided process specifications. Many open-source and
commercial offerings are available, a good example of such architecture is the open
source YAWL System [127].
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Fig. 5.3. PAIS architecture.

Scientific WfMSs — They are software systems developed for automating large-
scale scientific experiments. The main goals of scientific workflows are reusing
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domain specific functions and tools, and supporting their easy integration through
a graphical environment, ideally allowing domain experts to define sophisticated
analysis (experiments) without any programming knowledge. Moreover, the nature
of the defined computations may require the scheduling on cluster of computers
or remote resources (Grid computing); therefore, many scientific WMSs provides
a support for transparently executing their tasks on a Grid environment.

Unlike business workflows, scientific workflows are usually classified as data-
flow oriented: data drive the computation and relationships among tasks are deter-
mined by data dependencies: a task can execute only and any time the necessary
input is available. This characteristic allows them to support an implicit form of
data parallelism: by subdividing the input data into independent chunks the same
task is automatically performed in parallel many times, depending on the amount
of currently available computational resources.

Examples of scientific workflows are: Kepler [81], Taverna [98] and Triana [83].
These systems are not easy to compare, since each of them provides specialized
functionalities for a particular scientific domain.

For the implementation of the integration process, this thesis concentrates only
the last two kinds of WfMSs. In particular, it takes as representative of PAISs
the YAWL System [127], while as representative of Scientific WfMSs the Kepler
System [81]. This choice has been justified by the fact that the YAWL System
has born after an exhaustive analysis of the existing systems, in order to show
how workflow patterns [5] can be supported in a coherent way. Conversely, Kepler
captures many concepts underlying data-flow systems and at now it seems to be
the most mature and complete open source scientific WfMSs [88]; hence, it can be
considered a good representative of this kind of systems.

5.4 Control-Flow Oriented Modeling Languages

A Control-Flow Oriented (CFO) modeling language describes a process by explic-
itly representing the execution order of the underlying process components, leaving
data dependencies almost implicit. The execution order is partially determined at
design-time by a control-flow relation and partially depends on the state in which
specific language constructs are evaluated. The process state is modeled with a set
of variables and one or more threads of control.

A CFO diagram is a directed graph with at least an initial and a final vertex
marked with specific start and end constructs. The remaining vertices are preex-
isting component occurrences mixed with predefined language constructs, such as
choice, merge, fork and join, collectively called routing constructs. Two vertices of
the diagram are connected by an edge representing a control-flow dependency.

The execution of a CFO diagram can be informally explained in terms of tokens
that flow inside a graph, resembling what happens in Petri Nets theory [91]. A
token is produced by the start element when the process starts, while the end
element consumes all the tokens that reach it. When a token reaches a choice, it
is copied in only one of its outgoing branches depending on the evaluation of a
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specified condition. A tokens that reaches a fork is duplicated on each outgoing
branches. A token that reaches a join, waits until another tokens arrives in the other
incoming branches before continue. Finally, when a token reaches a merge element,
it is directly copied on the outgoing branch. Examples of CFO diagrams will be
discussed in the following when some representative languages are introduced.

The CFO paradigm has been historically adopted for designing process mod-
eling languages (PMLs), becuase it is apparently simpler than DFO one, at least
because data aspects can be ignored at early design stages. This over simplification
is paid at later design stages and during implementation, when data-flow relations
shall be finally integrated in order to obtain a working software system.

5.4.1 Web-Services Business Process Execution Language (BPEL)

The Business Process Execution Language [94], also known as Web Services BPEL
(WS-BPEL), is a standard executable language for specifying workflows through
the composition of web-services.

WS-BPEL is classified as an orchestration language, namely it allows to specify
an executable process that involves some message exchanges with other processes,
such that the message exchange sequences are controlled by the orchestration de-
signer. This is in contrast with choreography languages, such as the Web Service
Choreography (WS-Choreography) language [137], which specifies a protocol for
peer-to-peer interactions with the purpose to guarantee interoperability, for in-
stance by defining some examples of legal sequences of message exchanges. In
other words, orchestration languages concentrate on the presence of a central con-
trol entity which determines the behaviour of the system, while choreography
languages refer to a distributed system which operates according to rules without
a centralized control.

The following is an example of WS-BPEL workflow, taken from [94]. The pro-
cess HelloWorld receives from another process a name, and then prints a message
containing this name. More specifically, the section partnerLinks specify a con-
nection between the current process and another one of type Greeter-Caller; the
section variables holds two variables, one will be used to store the incoming mes-
sage, and the other to store the outgoing message. Finally, the section sequence
specifies the sequence of operations that the process will perform: (1) it receives
a message that activate the process, (2) it compose a string using the received
message, (3) it replies by sending back a greeting string.

<process name="HelloWorld" ...>
<partnerLinks>
<partnerLink name="caller"
partnerLinkType="tns:Greeter-Caller" myRole="Greeter" />
</partnerLinks>

<variables>
<variable name="request" messageType="tns:nameMessage" />
<variable name="response" messageType="tns:greetingMessage" />
</variables>

<sequence name="MainSeq">
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<receive name="ReceiveName" operation="sayHello"
partnerLink="caller" portType="tns:Greeter"
variable="request" createlnstance="yes" />
<assign name="ComposeGreeting">

<copy>
<from
expression=
"concat (’Hello, 7,
bpel:getVariableData(’request’, ’name’), ’!’)" />
<to variable="response" part="greeting" />
</copy>
</assign>

<reply name="SendGreeting" operation="sayHello" partnerLink="caller"
portType="tns:Greeter" variable="response" />
</sequence>
</process>

The creation of a process instance in WS-BPEL is always implicit; activities
that receive messages can be annotated with the attribute createInstance="yes",
in order to indicate that its occurrence causes the creation of a new workflow in-
stance, as in the previous example.

The constructs provided by WS-BPEL are almost structured. In particular,
they allow to specify sequence, parallel and conditional executions, besides to send
and receive messages or handle exceptions.

In WS-BPEL outgoing and incoming messages are described using the Web
Service Description Language (WSDL). A WSDL definition allows one to spec-
ify port types offered by a service, the connections between services, and so on.
WS-BPEL workflows represent stateful long-running interactions in which each
interaction has a beginning, a defined behaviour during its lifetime, and an end.
For instance, a WS-BPEL process describing a purchase order starts with a request
from the customer and ends with the shipping notices and invoices.

WS-BPEL is essentially an XML-based language for which there is not a stan-
dard graphical notation. Some proposes exist in literature for adopting the Business
Process Modeling Notation (BPMN) as a graphical representation of WS-BPEL
constructs. As an illustration of the feasibility of this approach, the BPMN spec-
ification includes an informal and partial mapping [143] from BPMN to BPEL
1.1. However, more specific investigations on this field have exposed fundamental
differences between the two languages, which make the translation difficult and in
some cases impossible [101,139]. Even more difficult is the problem of maintaining
synchronized a BPML graphical model and the generated BPEL code, in the sense
of propagating any modification from one specification to the other, and viceversa.

5.4.2 Business Process Modeling Notation (BPMN)

The Business Process Modeling Notation (BPMN) is a standard graphical language
for specifying business process. It is based on a flowchart technique similar to the
Activity Diagrams [96] of the Unified Modeling Language (UML).

BPMN models consist of diagrams built using a predefined set of graphical
elements, depicted in Fig. 5.4, that can be classified into four main categories:
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Fig. 5.4. Basic BPMN constructs.

Flow elements — they are the main elements.

FEvent: an event is represented as a circle and denotes something that hap-
pens. In particular, start events act as process triggers, i.e. catching an
incoming message starts a process instance, end events represent the result
of a process instance execution, and intermediate events represent some-
thing that happens between a start and end event.

Activity: an activity is represented through a rounded-corner rectangle and
describe the kind of work that has to be done. In particular, it can be a task,
namely a single indivisible unit of work, a sub-process, denoted by a plus
symbol inside the box, or a transaction, a particular kind of sub-process in
which all the contained activities have to be executed as a whole.
Gateway: a gateway is represented as a diamond shape and denotes forking
or merging paths, depending on the expressed condition.

Connecting elements — they connect together flow elements.

Sequence flow: it is represented as a solid line ending with an arrow. It shows
in which order the activities are performed. A sequence flow can also start
from a gateway element, in this case a condition can be specified on each
flow, for determining if it is enabled or not, while a slash symbol denotes
the default flow.

Message flow: it is represented as a dashed line with an open circle at the
start and an open arrowhead at the end. It defines a flow of information
across organization boundaries. Let us notice that a message flow can never
be used to connect activities or events in the same process.

Association: it is represented by using a dotted line and defines an associ-
ation between an artifact or text, and a flow element.

Swim lines — they are visual mechanisms to organize and categorize activities.

Pool: it represents major participants in a process, typically by separating
different organizations. A pool can contain one or more lanes.

Lane: it is used to organize activities inside a pool according to function or
role. It is depicted as a rectangle stretching the width or height of the pool.

Artifacts — they allow the designer to specify some more information.

Data object: it shows which data is required or produced by an activity.
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—  Group: it is represented with a rounded-corner rectangle and dashed lines.
It is used to visually group some activities but it has no effects on the
model.

— Annotation: it allows one to insert some useful comments.

Ezample 5.1 (Order fulfillment). Fig. 5.5 depicts an example of BPMN process
regarding the fulfillment of an order. After the order has been received, a condition
is evaluated about its acceptance. If the order is rejected, it is immediately closed
and the process completed. Otherwise, the process is filled and two activities are

Rejected

Receive
Order

Send Make Accept
Invoice Payment Payment

Fig. 5.5. Example of BPMN process.

performed in parallel: one related to the shipment and one related to the payment.
When the order has been shipped and the payment accepted the order can be
closed and the process completed.

5.4.3 The YAWL System

YAWL System [127] is an open source WEMS based on the Yet Another Workflow
Language (YAWL) modeling language. It is born as an academic research project
of the BPM Research Group from the formal analysis of the existing offerings.

A multiple

Atask instance task

A task followed A task preceded
by an Xor-Split by an Xor-Join
A task followed A task preceded
by an And-Split by an And-Join
A task followed A task preceded
by an Or-Split by an Or-Join

Fig. 5.6. Basic YAWL constructs.

This system has been chosen as representative for PAISs, because it provides
a clearly stated semantics and captures many of the workflow control-flow pat-
terns [109], data patterns [108] and resource patterns [111] in a coherent system.
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Moreover, through the Workflow Patterns initiative [5], it has been compared
against many other existing WfMSs. Sec. 6.1 presents a comparison in terms of
workflow patterns among WS-BPEL, BPMN, YAWL and Kepler.
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Fig. 5.7. Example of task definitions using the YAWL Editor.

The YAWL System is composed of a Java rich client application, called YAWL
Editor, for designing processes, and an Engine which is a web application imple-
mented in the Java Enterprise Edition platform. Fig. 5.6 summarizes the basic
YAWL symbols. In particular:

e An Xor-Split denotes an exclusive choice, only one of its outgoing branches
will be enabled on the basis of a particular condition on workflow variables.

e An Xor-Join waits the completion of only one of its incoming branches to
continue.

e An And-Split denotes a parallel split, all the outgoing branches will be enabled
in parallel.
An And-Join represents a synchronization of all its incoming branches.
An Or-Split denotes a multiple-choice: one or more of its outgoing branches
will be enabled on the basis of particular conditions on workflow variables.
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e An Or-Join represents a synchronization of all its incoming branches that have
been previously activated and that can complete.

o A multiple instance task is a task for which multiple instances may be generated
and executed in parallel.

YAWL provides a good framework for managing human resources, coordinating
their activities and monitoring the process evolution. In particular, the YAWL
Editor allows one to specify how each task will be offered or allocated to a certain
user and how this task will be started by that user. Moreover, we can define
what operations can be performed by the user to which a task has been allocated,
for instance if he can suspend or delegate the task execution to another user.
Finally, some tasks can be marked as automatic, thus they will be executed without
allocating them to any user.

Besides the definition of control-flow relations among activities, the data-flow
relations are specified by means of shared variables. For each task, the set of
internal variables and their mapping with external net variables can be specified.
In this way, an enabled task instance can read the value of one or more variables
and store at completion the produced values on zero or more, not necessarily
distinct, external variables. Fig. 5.7 shows an example of mapping between net
and local variables: task TematicClassIntegration uses in input the variables
macsi, macss and integrationCase, representing respectively the addresses of
the two source MACS databases and the integration case, then it stores the result
into the output variable called thematicClasses.

Once a process specification has been complete, it can be loaded into the En-
gine. A centralized web application allows the workflow administrator to manage
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Fig. 5.8. Work list of the workflow administrator.
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tasks, assign them to users, monitor their execution, as illustrated in Fig. 5.8.
Moreover, he can manage users and roles by defining a hierarchy of roles and the
relationships among them, as illustrated in Fig. 5.9, or he can assign particular
privileges to a user. Through the same web interface, users can see their work list,
containing the task currently allocated or offered to them and the task they are
performing, besides to begin or complete a task.

From a specification YAWL system can automatically generate the graphical
user interface for the distributed application, that allows the management of the
process execution and can be further adapted using XML custom forms.

The strength and weaknesses of YAWL in designing and implementing geo-
processes will be discussed in Sec. 6.2.
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Fig. 5.9. Roles management in YAWL.

Ezample 5.2. Fig. 5.10 depicts the same process presented in Ex. 5.1, regarding
the fulfillment of an order, this time realized in YAWL.

5.5 Data-Flow Oriented Modeling Languages

A Data-Flow Oriented (DFO) modeling language describes a process by explicitly
representing data dependencies among its constituent components. A DFO dia-
gram is the graphical representation of a process described in terms of concurrent
components that communicate through channels. A channel explicitly captures
the notion of data dependency between two components. The state of a process is
mainly determined by the contents of its channels.
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Fig. 5.10. Example of YAWL process.

A channel is a unidirectional queue of ideally unbounded capacity that connects
an output port of a component with the input port of another one, or eventually a
port of the same component creating a self-loop. Components communicate with
each other by receiving and sending messages to their ports. A receive from an
input port removes the first message in the incoming channel queue or waits if the
queue is empty. A send to an output port places a new message in the outgoing
channel without blocking the execution.

If two components A and B are connected through a channel, it means that a
data dependency exists between them, namely that B may need some data pro-
duced by A to continue its execution. More specifically, the presence of a message
in each input port is mandatory for atomic components that implement functions.
Conversely, a composite component can start its execution as soon as it receives
the necessary input, eventually stopping itself if additional inputs are necessary
but are not currently available; similarly, data can be produced on its external
output ports as soon as they are available, and not only at completion. This char-
acteristic makes DFO languages more modular than CFO ones, because they allow
one to isolate any subset of a process components into a sub-process, while with
CFO languages some behavioral-equivalent decompositions are not possible [31].

Moreover, explicit data relations can be used for transparently exploiting paral-
lelism without requiring explicit synchronization, since components free from data
dependencies can run in parallel.

5.5.1 The Kepler System

Kepler [81] is an open-source scientific WfMS developed by the members of the
Science Environment for Ecological Knowledge (SEEK) project and the Scientific
Data Management (SDM) project. It extends Ptolemy II [21], a software system for
modeling, simulating, and designing concurrent, real-time systems, developed at
UC Berkeley. This system has been chosen as representative for scientific WfMSs
because it is one of the most mature and generic one [88].

Kepler inherits from Ptolemy II the support for multiple heterogeneous models
of computations (MoCs), captured by the notion of directors, that allow the rep-
resentation of different kinds of systems. The distinctive characteristic of Kepler is
the separation between the adopted MoC from the structure of the workflow, which
is built combining a set of polymorphic components, called actors. This separa-
tion is also known as the actor-oriented modeling paradigm. An actor implements
a functionality of interest for a particular domain, and its behavior can change
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on the basis of the adopted MoC. Given the same actors configuration, different
execution semantics can be specified through the choice of a particular director
(behavioral polymorphism). A director defines how actors are executed and how
they communicate with each other. The main idea is that a complex model can
be built hierarchically by combining different heterogenous models with different
MoCs. Five main directors are defined:

Synchronous Data-Flow (SDF) Director is designed for representing simple and
sequential workflows in which the actors invocation order can be statically de-
termined from the model before its execution. More specifically, before starting
a workflow execution, the SDF director pre-computes the order in which actors
execute and how many times each actor needs to be fired to complete a single
workflow iteration. It requires that the data consumption and production rate
of each actor have to be constant and declared.

Dynamic Data-Flow (DDF) Director, as the SDF one, executes a workflow in
a single execution thread, meaning that tasks cannot be performed in parallel.
However, unlike the SDF director, the DDF director does not pre-schedule
workflow execution: it determines how to fire actors at run-time, and data
production and consumption rates can change during workflow execution.
Process Network (PN) Director implements the Process Networks computa-
tional model [74], in order to manage workflows that require parallel processing.
In a PN workflow each actor has an independent Java thread and the work-
flow execution is driven by data availability: actors can execute as soon as the
necessary input tokens are available in their input ports. Produced tokens are
passed to the connected actors through channels of ideally unbounded capacity.
These channels are persistent: they retain the received tokens until the actor is
able to consume them. A PN workflow terminates when no other components
can execute due to the lack of input data, unlike the previous two directors
for which the number of desired workflow iterations has to be specified. If to-
kens are always generated and available to downstream actors, a workflow may
not terminate. This director implements the DFO paradigm described in the
previous section and is the only director considered in the following.
Continuous Time (CT) Director is designed for modeling workflows that pre-
dict how a system evolves over time by approximating a mathematical function.
For instance, a CT director can be used to define a system that predict the
population growth over time. The system is usually described in terms of start
conditions and several equations, which are used to predict the state of the
system at some specified time in the future.

Discrete Event (DE) Director works with timestamps as the CT does. However,
timestamps are not used to approximate functions and schedule executions, but
to measure average wait times and occurrence rates. Actors send event tokens,
which consist of tokens containing data and a timestamp; the director reads
these tokens and places them on a global workflow timeline.

Actors communicate by interfaces called ports. Ports can be of input, output or

mixed type and they are connected through channels directed from the output port
of an actor to the input port of another one. Each channel can transport a single
stream of data. In addition to ports, actors can have a set of parameters, which
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configure and customize their behavior. Parameters can be statically specified
during the workflow design, or dynamically determined through parameter ports.

= » —— —
1K file:/Cy h/. . xampl p_kepler_arbitrary_cycles.xml v = | (5] -

File Edit View Workflow Tools Window Help

Q@D Ie@»mm>he

Components | pata | Outine] Workfiow

Search Components

DDE Director

&

Opendap
R

I

execution finished.

Fig. 5.11. Kepler workflow editor.

Fig. 5.11 shows the Kepler interface: the left panel allows user to search the
desired actors to put inside the workflow, the right panel allows user to assemble the
workflow and visualize the result of its execution. Workflow execution is managed
by the buttons on the top menu bar.

For the purposes of this thesis, in the following the use of the PN director is
always assumed. Implicit parallelism and modularity makes DFO languages good
candidate for designing distributed and concurrent systems. However, CFO ap-
proaches are often preferred to DFO ones. The reasons that usually preclude the
adoption of a DFO language for process design can be summarized as follows.
Firstly, DFO languages are apparently more complex to use than CFO ones: it is
recognized that some broadly used constructions are not easy to define [20, 68].
Moreover, in a DFO process model data dependencies shall be explicitly stated
and this activity requires much more efforts than left them unspecified: at some
point data dependencies have to be declared in CFO models, but their declaration
can be postponed at later design stages or classified as an implementation detail.
This approach does not seem a good practice, especially when many concurrent
entities are involved, but this simplification initially payoff [68]. Finally, in some
cases there is the need to specify control-flow relations in DFO process models
for imposing a particular execution order compatible with the existing data de-
pendencies [18]. This can occur when additional information about the system is
available, for instance the presence of side effects, or for avoiding the overhead of
an undesired parallel execution. Furthermore, when data dependencies impose a
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sequential execution, a single control-flow relation can be used to subsume a large
set of data-flow dependencies [68,74].

The strengths and weaknesses of Kepler in implementing geo-processes will be
discussed in Sec. 6.2.

5.6 Geo-Processing Workflow Systems

The first attempt to use workflow technologies for geo-processing is due to Weske
et al. in [85,142]. The authors presented a system called GEO-WASA that allows
the integration of data sources and tools for data analysis, querying and browsing
through the use of a WfMS. GEO-WASA is a specialization of the WASA environ-
ment for geo-processing. From a very abstract point of view, it can be described
as the result of the integration of the process control capabilities of a WfMS and
the spatial data handling and visualisation functionalities of an open GIS system.
The authors highlighted the benefit of using a WfMS compared with a monolithic
GIS system. First of all, GISs are passive systems, in the sense that they respond
to users requests, but do not help to coordinate user activities. Second, users need
not only more tools, but also facilities to integrate them into a consistent envi-
ronment. Finally, many applications are highly dependent on human experts: a
geo-processing activity is a collaborative and interactive activity.

Similarly, in [9] Alonso and Hagen presented a tool called Geo-Opera for sup-
porting the development, execution and management of complex geo-processes.
Geo-Opera does not address requirements of spatial data handling such as index-
ing, storage, or efficient retrieval, for which it relies on existing systems. Its major
contribution is bringing together under a single system functionalities that were
previously available only as part of isolated tasks.

In recent years, Foester at al. in [43] propose a flexible client application based
on OGC standards for processing distributed spatial data over the web. The system
has been developed as a plug-in of the User-friendly Desktop Internet GIS (uDig)
that supports the connection with distributed data services such as Web Map
Service and Web Feature Service. In [113] the authors evolve their client application
by considering the possibility of integrating standardised OGC Web Services using
WS-BPEL. The aim of their work was to develop an OGC-specific client which is
able to: (1) model geo-processing workflows based on OGC web-services using WS-
BPEL, (2) execute and visualize single processes but also geo-processing workflows
and (3) display the results.

The use of WS-BPEL for chaining OGC web services is widely considered in
literature, besides the work presented above it has been adopted also in [123]
and [140] for building spatial-related applications by chaining existing services.

A next step towards the adoption of workflow technologies in the geospatial
domain is the use of scientific WIMSs, such as Kepler, for chaining geographical
web services, as done in [16] and [150]. However, in both these works the aim
is to obtain an automatic process by combining existing tools in an efficient way,
while no attention is given to collaborative aspects. One of the advantages in using
scientific WfMSs is the transparent support of Grid technologies. Several recent
studies consider the use of Grid technologies for managing geographic applications
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in a distributed environment, such as [35,61,62,79,86,103,119]. The definition of
Geospatial Grid is given in [7] where the authors analyze the unique characteris-
tics of spatial data and define the necessary extensions needed for applying the
traditional Grid technology in the geospatial domain.

In [23] the authors propose a WIMS that supports the MapReduce approach for
geospatial applications. The system is called MRGIS, which stand for MapReduce-
enabled GIS and its scheduler exploits two kinds of parallelism. The first one is on
task level and relies on the fact that many operations can be executed in parallel
if they are independent. The other kind of parallelism is on the data level, i.e.
by data partitioning. Most GIS operations work block by block, hence a large
dataset can be split into multiple independent partitions on which the same task
can be executed in parallel. Relatively to this aspect, the difficulty is to estimate
how many chunks to split, and how the partial results can be put back together.
The authors proposed a simulation based approach for determining the optimal
amount of chunks.

The following sections illustrates in more details three main recent contribu-
tions about the development of geo-processing WfMSs.

5.6.1 OGC Standards

The Open Geospatial Consortium (OGC) is an international voluntary consensus
standards organization, originated in 1994 with the aim to define a series of stan-
dards for promoting the interoperability in the geographical field. For the purposes
of this thesis two standards are of major interest: the web feature service and the
web processing service.

The OGC Web Feature Service (WES) Interface Standard [100] defines an
interface for describing data manipulation operations on geographical features in a
standard way. In particular, such data manipulation operations include the ability
to (1) retrieve or query features based on spatial and non-spatial constraints, (2)
create a new feature instance, (3) delete or update an existing feature instance.
The client generates one of this request and posts it to a WFS using HTTP, the
WFEFS executes the request and uses HT'TP for distributing the result.

WEF'S supports two communication models: stateless request-reply and pub-sub.
The last one is a messaging system in which clients address messages to a specific
node in a content hierarchy, called a topic. The system takes care of distributing
the messages arriving from a node publisher to its subscribers.

As regards to the used data format, the Geographical Markup Language
(GML) [6] is the default encoding for transporting geographical features, but other
formats like shapefiles can also be used. The interface provided by each WFS con-
tains three main operations:

GetCapabilities which returns some metadata about the offered service.
DescribeFeatureType which returns the XML schema of the provided data in
order to allow the WFS client to parse the result.

e GetFeature which performs the actual query and returns a GML result set
containing the full geometry and the feature attributes.

The OGC Web Processing Service (WPS) Interface Standard [99] defines how
to specify the inputs and outputs of a geospatial service in order to invoke it in
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a standard way. In particular, it defines how a client can request the execution of
a particular process, and how the output of that process is handled. The aim of
this standard is to facilitate the publishing, discovery and binding of geospatial
processes.

The data required by the WPS can be delivered across a network, embedded
in the request, or they can be accessed by URIs. Similarly, the outputs can be
embedded in the response, or shared with a URI.

WPS operations are invoked by submitting XML or URI-encoded requests to
an online server. WPS can trigger its execution as a web-service, it supports the
simultaneous exposure of processes via HT'TP GET, HTTP POST, or the Simple
Object Access Protocol (SOAP). The interface provided by a WPS is composed
of three main operations:

GetCapabilities which returns some metadata about the service.
DescribeProcess which returns a description of the process including its in-
puts and outputs.

e Execute which returns the output(s) of the process execution.

5.6.2 Humboldt Project

The workflow editor developed in the Humboldt project [63] is a lightweight graph-
ical user interface for geo-processing workflow composition. It allows user to graph-
ically compose OGC-conformant web feature services (WFS) and web processing
services (WPS) into workflow graphs, which can be directly executed in the editor.

Similarly to Kepler, and in general to all scientific WfMSs, the Humboldt Work-
flow Editor applies a data-flow approach to workflow composition. Each node in-
side a workflow can be a computational component (processing node) or a data
providing component (data-providing node). Each edge connects a node associated
to a data providing or computational component to another computation compo-
nent. In case a computational component has multiple inputs, it can have multiple
incoming edges, and conversely if a computational component can have multiple
outputs, it has multiple outgoing edges. Each edge represents a data-flow depen-
dency: a node can execute only when all input nodes provide a piece of data to
the computational node.

In contrast with Kepler, and in general the Process Network model, but in
analogy to YAWL, in Humboldt each computational component is required to be
function-like, namely it cannot run before all necessary inputs are available and it
can produce its output(s) only at completion. Moreover, each processing node is
stateless, it has to produce the same output given the same input: the computation
cannot depend on some state changes.

In the current implementation, the set of data-providing nodes are OGC WF'Ss,
while the set of processing node are OGC WPSs. Each WFS node does not require
any input, the workflow execution engine automatically builds the invoke-me mes-
sate (GetFeature) based on the specified WFS URL and the name of the feature
type to be retrieved. The authors do not consider any WFS query and simply
assumes that all instances of a particular feature type can be retrieved. The in-
put required by each WPS can be the output produced by a previous WPS node,
those offered by a WF'S, or those directly defined by the user, for instance a buffer
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distance. The first two kinds of inputs are called complex, while the third one is
called literal input and refers to simple datatypes, such as string, integer, double,
and so on.

As previously explained, since each Humboldt graph is a data-flow graph, the
execution order only depends upon the defined data dependencies. Therefore, if
no dependencies are defined between two processing nodes, they can be executed
in any order, potentially in parallel.

9 Wortowtttor T

default.wdcs_diagram default20.wdcs_diagram

il

58 eu.esdihumboldtiransformers.wps.em DstssetCleaning (1)
puts

[E1dota e

4, distanceTolerance : 0.0030
|- result (tet/XML)
Outline View
&8 euesdihumboldt.transformers wps.em.DatasetCleaning (2)
{©1asta eapvn
%, distanceTolerance: 0.0030 2 propertis 20 [CEET-
ournurs
| result (text/XML) <+
GROUHDING Properis . Proeny wl
Rulers 8.Grd
== S
Main Editor View Properties
View

Fig. 5.12. Graphical Interface of the Humboldt Workflow Editor

Fig. 5.12 illustrates the interface of the Workflow Editor: it consists of three
views: the main editor view, the outline view and the properties view. The main
editor view contains the graphical representation of the workflow, in which oval
nodes are the data-providing nodes, while the rectangular ones are the processing
nodes. In particular, the representation of each processing node contains the spec-
ification of input and output parameters, that have to be connected with other
processing nodes or data-providing nodes, and of the grounding, namely the infor-
mation on where the processing node is actually accessible (i.e. for WPS it is the
URI and the ProcessIdentifier of the process). The properties view contains
some additional information about the workflow elements that are not included in
the main editor view. Finally, the outline view contains an overview of the whole
workflow diagram in form of tree.

Any time two nodes in the workflow are connected, the system performs a
type matching based on the two nodes metadata (i.e. OGC WFS or OGC WPS
metadata). However, since such metadata can contain errors, the outcome of the
type checking is provided only as a warning for the user and does not prevent
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the definition of the data-flow connection. Moreover, the Workflow Editor allows
a user to specify:

a timeout for a single processing node or for the entire workflow,
whenever the processing nodes have to be executed in parallel when no data-
flow dependencies have been specified between them,

e whenever the execution engine will try to execute each processing node in the
workflow, even if some nodes have already failed,

e the value passing strategy and the storage location for the computed results;
in particular, the value passing strategy can be: pass-by-reference only, pass-
by-value only, or try-both.

Before executing a workflow, it is subject to a twofold validation: first, the
system checks if all inputs have been specified; secondly, it performs a check on
the overall structure of the workflow (e.g. it checks the presence of a tree-like
structure, unconnected nodes, etc.). An input is unspecified if it is unclear where
its value will come from when the workflow will be executed. A literal input is
unspecified, if the designer does not provide any input value, while a complex
input is unspecified, if there is no data-flow edge pointing to the corresponding
node.

The major limits with respect to existing WfMSs, in particular as regards to
the scientific ones, are:

e Inability to insert a whole workflow as node into another workflow, allowing the
reuse of workflows and reducing the size and complexity of the workflow graph.
This inability dramatically reduces the scalability of the system and the chance
to use it for modeling large processes, that usually involve several tasks, task
previously defined, compensation activities, and so on. Moreover, even if such
possibility will be implemented in the future, the adopted function-like style
will reduce the langauge modularity, with respect to Kepler and WS-BPEL
which use stateful processes.

Impossibility to define conditions on the data produced by WFS.

Only acyclic graph are allowed.

As for Kepler, no support for resource management is provided, namely the
system has been designed main for automating batch processes.

5.6.3 ArcGIS Workflow Manager

The ArcGIS Workflow Manager [42] (previously known as ESRI Job Tracking)
is a proprietary WIMS for modeling and executing geographical processes on top
of ArcGIS. In particular, it allows one to develop and enforce repeatable GIS
workflows, ensuring that the right work is completed correctly, by the right person
or team. In particular, it can automate common activities, track the status and
progress of jobs, integrate GIS and other business applications, assign activities
by geometry, allocate resources and verify who is working on what, manage data
coming from different ArcSDE databases, and associate geographical areas to jobs.

Fig. 5.13 shows an example of the system main window: the table on the upper-
right illustrates the list of jobs composing a workflow. Each job is characterized
by an integer identifier, a name, a type, the name of the user to which it has been
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Fig. 5.13. Main window of Arcgis Workflow Manager

assigned, and its status (e.g. done, ready, working, and so on). The bottom part
of the window illustrates the details of a job, for instance it allows one to assign
the job to a particular user, or set a priority. The job list can be visualized also
using an alternative view, called map view, which displays the spatial distribution
of the jobs, as depicted in Fig. 5.14.

In this system, workflows are composed of steps and paths, Fig. 5.15 illustrates
and example of workflow specified in ArcGIS. A step is an individual task to be
completed by a user. A path is a conditional route linking steps. In other words,
paths define what steps will be done, and steps define the activity to be done.
A complete workflow is a network of steps joined by paths. By default, a step
consists of a description of some task that needs to be performed by the user at
that particular point in the overall process. It serves as an indicator to the user
of what needs to be done. The user performs the task, then indicates through
the system interface that the task has been completed, and the workflow engine
can advance to the next step. Additionally, steps can be configured with behavior,
namely the workflow can be set up to automate certain activities for the user.

Any existing ESRI or non-ESRI executable, application or program can be
plugged into the workflow. In particular, developers can use the JTX (Job Track-
ing for ArcGIS) application programming interface and web-services to build ap-
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plications that can be plugged into a workflow. On the contrary, data can be only
provided using ESRI geodatabase technology.

A very important aspect of any business process is the human resources who will
play a role in the initiation, execution, and management of work being performed.
The user management functionality offered by ArcGIS Workflow Manager allows
one to define how steps are allocated and distributed among the different users.
In particular, a job can be initiated by a single user and carried-out entirely by
that person, or a job could involve many players who need to interact with the
job at various stages in its life-cycle. Moreover, workflows can be configured to
automatically assign the job to a user when a specific step is reached; or jobs can
be initially assigned to a group of users, placing the job into a virtual queue from
which each user of the group can pull a task when he is ready to begin a new
job. Finally, a powerful aspect of job management is the use of geographic area to
delineate the working extent of a task. Such area is called area of interest (AOI)
and tracks where a particular work has to be performed. Fig. 5.16 illustrates an
example of an area of interest assignment for the job 440.

Despite ArcGIS Workflow Manager exposes a lot of interesting features, it
remains an add-on of the ArcGIS Suite. This thesis focuses on open solutions
that can be used to build distributed software systems compliant with the OGC
standards.
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5.7 Summary and Concluding Remarks

Workflow technologies are increasingly applied for building new information sys-
tems, especially when these systems cross the boundary of a single organization.
The development of a SDI allows one to create a virtual organization that spawns
multiple existing spatial agencies. Therefore, we evaluates the applicability of exist-
ing WMSs for supporting geographical processes with the characteristics exposed
in the introduction. Therefore, we start in this chapter with a brief overview of the
methods and the technological infrastructure underpinning the workflow concept,
and then we introduce some representative WfMSs.

In particular, we concentrate on the so-called business and scientific WfMSs,
taking BPMN [97], YAWL [127] and Kepler [81] as representatives, and we also
take a look at some emerging geo-processing solutions, considering in particular
the Humboldt project [63] and the ArcGIS Workflow Manager [42].

These systems can be classified we respect to several criteria, that have also
preclude a further analysis of some of them. In particular, Fig. 5.17 shows a classifi-
cation with respect to the kind of processes and the purposes for which the consid-
ered systems have been developed. Some characteristics of geographical processes
make them sometimes similar to and sometimes different from both traditional
business processes and scientific experiments; hence, we have isolated them into a
separate column. As regards to the main purpose of these systems, we can identify
two kind of systems: those oriented to the process automation and those oriented
to agents coordination. The geographical processes we are interested to are those
involving several different human agents that interact together for achieving a pre-
defined goal, as highlighted in Chap. 1. Therefore, in the following we will consider
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Fig. 5.17. Classification of the considered WfMSs with respect to the kind or process
and the purpose for which they have been developed.

as representative for business WfMSs, the YAWL System rather than the BPMN
language with a WS-BPEL execution semantics.
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Fig. 5.18. Classification of the considered WfMSs with respect to the implemented model
of computation and the distribution licence.

Another classification of the considered system is presented in Fig. 5.18 which
compares them with respect to the implemented model of computation and the
kind of licence. Relatively to the model of computation, we can observe that the
Humboldt Project implements a data-flow model similar to the Kepler one, but the
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former one is more prototypical than the second one. For instance, Humboldt does
not allow the presence of cycles and tasks can implement only stateless functions.
Therefore, any Humboldt workflow can be realized as a Kepler workflow, in which
data sources are implemented as WFSs and tasks are implemented as WPSs; hence,
in the following we can safely ignore this system.

Finally, as regards to the distribution licence, ArcGIS Workflow Manager is
the only considered system with a proprietary licence. Moreover, the system is
strictly related to the ArcGIS technology, for instance as regards to the data source
implementation, and it cannot be easily integrated with the OGC standards. For
these reasons, the system will not be considered in the following, even if it provides
several interesting functionalities and is one of the most mature workflow system
for geo-processing.

In order to evaluate the applicability of the chosen W{MSs, the following chap-
ter compares them with respect to two criteria: first from a more general point
of view, using the well-known framework of workflow patterns, then from a geo-
graphical point of view, taking the proposed integration process as use case.
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A Comparison of the Existing WfMSs

This chapter provides a comparison among the existing WfMSs introduced in
the previous chapter. In particular, the comparison is twofold: first the systems
are analyzed using the established workflow patterns methodology, then they are
evaluated from a geo-information point of view, trying to implement some aspects
of the integration process presented in the first part of the thesis.

In the BPM community, the workflow patterns initiative [5] provides a frame-
work to evaluate the suitability of WfMSs for business process design based on
a set of recurring constructions (the so-called patterns). In literature many of-
ferings have been evaluated against workflow patterns, providing a good starting
point for a system comparison. Inspired by these contributions, Sec. 6.1 presents
a pattern-based evaluation of Kepler [81], and compares the obtained results with
the evaluation of YAWL, BPMN and WS-BPEL contained in [110], [146] and [145],
respectively. The section also discusses if some patterns are not directly supported
by Kepler because deemed not to be relevant for that application domain, or due
to the relatively immaturity of the system.

In Sec. 6.2 these systems are also compared from a more specific geograph-
ical point of view, by considering the implementation of the integration process
presented in Chap. 4. This process is a good representative of geographical pro-
cesses, because it has many characteristics highlighted in the introduction. The
proposed comparison allows one to identify the strengths and limits of the consid-
ered WfMSs in the geographical domain and leads in Sec. 6.3 to the definition of
an ideal solution.

6.1 Workflow Pattern Evaluation of the Selected W{fMSs

This section presents the pattern-based evaluation of Kepler and compares such
system with the existing evaluation of YAWL, BPMN and WS-BPEL performed
in [110, 145, 146], respectively. For this evaluation we consider only the standard
constructs provided by the default distribution of Kepler and we do not refer
to any ad-hoc extension or third-party additional libraries of functionalities. In
the following the term task is used as a synonymous of Kepler actor, since it
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is essentially a workflow component implementing a particular functionality of
interest. More details about the various patterns definition can be found in App. B.

6.1.1 Workflow Control-Flow Patterns Evaluation

Workflow Control-Flow Patterns (WCPs) [109] describe a set of recurring con-
structions that are commonly offered by W{MSs for defining the flow of control
among various tasks. In Kepler dependencies among tasks are data dependencies:
a relation A -» B (dashed arrow) between A and B means that B may need some
data produced by A to complete its execution. A control-flow dependency on the
other hand is concerned with the termination of tasks: a relation A — B (solid
arrow) between A and B means that B can start only when A terminates its ex-
ecution. A control-flow dependency can always be represented in terms of a data
dependency by assuming that A produces an output only just before completing
and that output is required to start the following task. Conversely, the opposite
assertion does not hold. In order to evaluate the WCPs support of the three sys-
tems, we always assume that each task needs all the inputs before its execution
and produces its output only at completion.

The following sections analyze how the various WCPs can be realized in Kepler,
while the final results and their comparison with the support provided by the three
representative business WfMSs will be summarized in Tab. 6.1.

(G1) Basic Control-Flow Patterns

Basic control-flow patterns capture elementary aspects of process control. A Se-
quence (WcP-01) relation between two tasks A and B can be obtained by defining
a data-flow dependency between A and B.

A Parallel Split (WcP-02) determines the divergence of an execution branch
into two or more branches that execute in parallel. It can be obtained by redirecting
the output of a task to different channels, in this manner all subsequent tasks
whose input ports are connected to these channel will be activated at the same
time. In particular, the Kepler Relation operator can be used to replicate the
data it receives into different channels.

Conversely, the Synchronization pattern (WcP-03) represents the synchroniza-
tion of two or more parallel branches into a single subsequent branch that is en-
abled only when all the previous branches have completed. In the three considered
systems each task can have one or more input ports and it can execute only when
a data token is available in each channel connected to those ports. Therefore, any
task having more than one input port can be used for synchronizing the execution
of the previous tasks.

An Exclusive Choice (WcP-04) is the divergence of a branch into two or more
branches such that only one of them is executed, based on a particular condition. It
can be obtained in Kepler through the Switch actor which routes the data received
on its data input port to only one of the connected output channels, on the basis
of a control value received in the control input port. The only drawback of this
implementation is the possibility to lose a data token when the control value is
out of range, but we can assume that the conditions used to generate the control
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values are properly implemented to produce a valid output for the selection. If
the exclusive choice regards only two alternatives, you can also model this pattern
through a Boolean Switch actor.

The Simple Merge pattern (WcCP-05) represents the convergence of two or more
incoming branches into a single subsequent branch that is enabled as soon as one of
the incoming branches completes. As regards to this pattern the Kepler Relation
operator can be used with the sequential directors (SDF and DDF) to combine
the output produced by several previous actors into a unique channel. Similarly,
the Nondeterministic Merge actor can be used for the same purpose with the
process network (PN) director.

(G2) Advanced Branching and Synchronization Patterns

Advanced branching and synchronization patterns characterize more complex
branching and merging concepts which arise in business process modeling.

A Multi Choice (WcP-06) extends the Exclusive Choice pattern (Wcp-04) by
allowing one or more outgoing branches to be enabled, based on the evaluation of
a given condition. It can be realized in Kepler by combining a Parallel Split (Wcp-
02) with several Exclusive Choice constructs (WcP-04), one for each branch of the
Parallel Split. In particular, a relation operator can be used to broadcast a value to
different outgoing channels, and in each channel a Boolean Switch actor is used
to decide if the corresponding branch is enable or not, as illustrated in Fig. 6.1. In
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Fig. 6.1. Example of WcpP-06 Multi Choice implemented in Kepler

order to ensure the presence of a default branch, the conditions associated with the
various exclusive choices have to be defined so that at least one of them evaluates
to true. This implementation follows one of the work-around solutions discussed
in [109] which is not considered to constitute a native support for the pattern,
since the decision process associated with the evaluation of the Multi-Choice is
divided across multiple split constructs.

A Structural Synchronizing Merge (Wcp-07) determines the convergence of
two or more branches, which diverged at a unique identifiable point in the model
(represented by a single Multi-Choice construct), into a single subsequent branch



138 6 A Comparison of the Existing WfMSs

that is enabled when each active branch has completed. In other words, this con-
struct does only wait for those incoming branches that will eventually complete.

Similar to the construction presented above for the Multi Choice, several Merge
operators (Wcp-05) followed by a Synchronization construct (WcP-03) can be
used to implement the Structured Synchronizing Merge (WcP-07). In particular,
each pair of branches outgoing the same Exclusive Choice will be merged by a
Relation operator or a Nondeterministic merge actor, depending on the chosen
director, while the merged outputs are synchronized using a task with one input
port for each connected channel. Notice that the various Relation operators (or
the Nondeterministic merge actors) can also be realized with a DDF Boolean
Select actor with the same enablement condition of the corresponding Boolean
Switch, as exemplified in Fig. 6.2. These implementations of WcP-07 are also
considered a work-around and the pattern cannot be considered directly supported
due to the absence of a Multi Choice construct.
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Fig. 6.2. Example of WcP-07 Structured Synchronizing Merge implemented in Kepler.

The unstructured forms of this pattern, Local Synchronizing Merge (Wcp-37)
and General Synchronizing Merge (WcCP-38), require the synchronization of two
or more branches, which diverged earlier in the process, into a single subsequent
branch using local, respectively, global information about their current and future
activations. These patterns cannot be realized in Kepler, since there is no way to
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determine the number of active branches nor if a branch that has not yet been
enabled will be enabled at any future time.

As regards to Multi Merge (WcP-08), we observe that the difference between it
and its safe version Simple Merge (WcP-05) concerns the context in which they are
used. In the former more than one incoming branch can be active simultaneously,
while in the latter only one incoming branch can be active at a time. For all the
three systems, the implementations given for WcP-05 can also be used in an unsafe
context where more than one incoming branch is simultaneously active, producing
the required behavior. Therefore, WcP-08 can be considered supported.

The discriminator and partial join patterns represent the convergence of two
or more incoming branches into a single subsequent branch that is enabled when
exactly k of the n incoming branches have completed. For the discriminator the
value k is one, while for the partial join it is a number between two and n. If the
incoming branches have diverged from a single identifiable point in the model, we
are in the presence of the Structured Discriminator (Wcp-09) or the Structured
Partial Join (WcP-30); otherwise, we refer to Blocking Discriminator (Wcp-28) or
Blocking Partial Join (WcP-31). Finally, if the execution of the remaining branches
is canceled instead of blocked at completion, we have the Canceling Discriminator
(Wep-29) or the Canceling Partial Join (WcP-32). In relation to the Structured
Discriminator (Wcp-09), the Blocking Discriminator (WcP-28), the Structured
Partial Join (WcP-30), and the Blocking Partial Join (WcP-31) patterns, we can
observe that Kepler lacks any support for the partial synchronization of different
tasks. Instances of different tasks that execute in parallel can run independently
from each other until completion or can all be synchronized by connecting their
output ports to the input ports of the same subsequent task.
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Fig. 6.3. Example of WcP-09 Structured Discriminator implemented in Kepler

Fig. 6.3 shows an attempt to implement WcP-09 where task_03 represents the
discriminator. This actor needs two inputs, the first from a Relation operator (or
a Nondeterministic Merge) that merges the data produced by the branches to be
synchronized into a unique channel, and the second from another distinct branch.
The second branch (containing the actor dummy) produces only one value; therefore,
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task_03 is enabled only one time consuming the first data value produced by one
of the branches to be synchronized and blocking all the other data tokens that
subsequently arrive. Even if this solution is able to simulate the behavior of a
(structured) blocking discriminator in an acyclic context, it is not able to reset the
construct when exactly one piece of data is received from each channel connected
with the Relation operator, removing the unnecessary data from the workflow.
Moreover, a dummy constant value or a trigger port has to be used for ensuring a
single enablement of the subsequent actor, this input acts as a control value and
does not influence the computation. Therefore, the pattern cannot be considered
directly supported.

The implementation presented in Fig. 6.3 for the (structured) blocking dis-
criminator cannot be extended for synchronizing an arbitrary number of tasks
(Wcp-30, Wcp-31) by substituting the single dummy value with a list of values
of the desired length k, because there is no guarantee that the k synchronized
threads come from different branches and in the worst case they can all come from
the same branch. For the canceling version of Discriminator (WcP-29) and Partial
Join (WcP-32), we can observe that Kepler does not provide a way to withdraw
an activity or eliminate data tokens previously produced.

The lack of full support for the partial synchronization of different task in-
stances can be considered a real limitation, because during experiments it may
be convenient to start a number of activities in parallel and wait the completion
of only one (or a sub-set) of them before proceeding. For instance, to perform
a complex operation, such as DNA matching, it is reasonable to apply multiple
techniques in parallel: the first available result will be used by the subsequent ac-
tivities, while the other ones can be discarded when they arrive, or the activities
producing them can be canceled altogether. Similarly the absence of mechanisms
for canceling a running activity is limiting. The scientific domain is characterized
by a high degree of uncertainty: if the result provided by an activity does not sat-
isfy the expectations, the user has to be able to cancel the other running activities
and change those that still have to be performed. This limitation probably comes
from the relative immaturity of the considered system and in the future they may
be expected to integrate several facilities for exception handling and managing
compensation activities.

The Generalized And-Join (WcP-33) is an extension of the Synchronization
(Wcp-03) pattern, where the branches to be synchronized can come from several
divergency points. It can be obtained by connecting the output ports of the tasks
to be synchronized with the input ports of a synchronizing task ¢, so that ¢ will
wait the completion of all previous tasks before starting, as stated for its structured
version (Wcp-03). Finally, Thread Merge (WcpP-41) and Thread Split (Wcp-42)
patterns represent the merge, respectively, the generation of several threads of
control from a single point in the model. They can be implemented in Kepler
using the SynchOnTerminator, respectively, the Repeat actor.

(G3) Multiple Instance Patterns

Multiple instance patterns describe situations where there are multiple threads of
execution related to the same activity. The data-flow paradigm underlying scien-
tific WfMSs provides a natural mechanism for generating multiple instances, but
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Kepler is not able to synchronize them at completion: the created instances run
independently from each other until the workflow completes. Therefore, only the
Multiple Instance without Synchronization pattern (Wcp-12) is supported. This
choice probably comes from the assumption that several instances of the same
experiment can be performed in parallel on different inputs and their executions
are mutually independent. When all the experiment instances are terminated, the
scientist collects the obtained results and manually derives global outcomes. This
also originates from the fact that scientific WfMSs have been developed for au-
tomating large-scale experiments, rather than for coordinating the work of a group
of agents.

(G4) State-based Patterns

State-based patterns describe situations in which the execution depends on the
state of a process instance. The Deferred Choice (WCP-16) pattern allows a choice
to be determined by an external input and not by internal data. As such, this
pattern requires interaction with the external environment.

In Kepler the BrowseUI actor allows one to display a web page containing an
HTML form and retrieve the inserted values as XML name/value pairs. This actor
allows users to choose the action that the subsequent task will have to perform
among different alternatives. However, interactions with the external environment
are not limited to user choices: other kinds of interaction can be the arrival of
a message or the expiry of a timer. Therefore, the pattern cannot be considered
directly supported.

Interleaved Parallel Routing (Wcp-17) and Interleaved Routing (WcP-40) are
related to the ability of executing each task in a given set at a time until all tasks
are executed, where in WCP-17 a partial order can also be defined among the tasks
of this set. Therefore, these two patterns can be used to limit the number of running
threads to one at a time, and so the number of used resources. In scientific WfMSs
available resources are automatically managed by the underlying environment (e.g.
a Grid environment) in a transparent way for the user. Therefore, there is no need
to provide users with a method to manually control the number of used resources.
In Kepler, Wcp-17 and WcP-40 can implement by choosing one of the sequential
directors.

The Critical section (WcP-39) pattern describes a situation where two or more
connected subgraphs in the model are identified as “critical sections”, where a
critical section is a set of tasks that can only be executed in mutual exclusion
with the tasks of other critical sections. This pattern is not supported. Finally,
Milestone (WcP-18) represents the situation in which a task is enabled only when
the process instance is in a specific state, represented by a specific execution point.
This pattern is also not supported by Kepler.

(G5) Cancelation and Force Completion Patterns

Cancelation patterns involve the ability to withdrawn an activity (Wcp-19 Cancel
Activity), or a set of task instances in the same process instance (Wcp-25 Cancel
Region) or an entire process instance (WcP-20 Cancel Case). Alternatively, they
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can regard the cancelation (Wcp-26 Cancel Multiple Instance Activity) or the
forced completion (Wcp-27 Complete Multiple Instance Activity) of a multiple
instance activity. Kepler does not support cancelation patterns: there is no way to
cancel or force the completion of an activity that is executing or is scheduled for
execution.

(G6) Iteration Patterns

Iteration patterns capture repetitive behavior in a workflow. Arbitrary cycles
(Wcp-10) are cycles that have more than one entry and/or exit points. They can be
implemented in Kepler by using the Relation operator or the Nondeterministic
Merge actor for representing the various entry points, and the Switch or Boolean
Switch actor for representing the various exit points, as exemplified in Fig. 6.4.
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Fig. 6.4. Example of WcP-10 Arbitrary Cycles implemented in Kepler.

The same construction proposed for arbitrary cycles can also be used to imple-
ment the Structured Loop (Wcp-21), by ensuring the existence of a single entry
and a single exit point. However, this pattern is considered to be directly sup-
ported only in the presence of a specific loop construct. In Kepler a structured
loop can also be obtained using a Ramp actor which works like a for-loop allowing
the execution of one or more tasks a specified number of times.

Kepler supports the hierarchical decomposition of tasks; however, a compos-
ite task cannot contain itself in any of its decompositions, neither directly nor
indirectly. Therefore, the recursion pattern (WcP-22) is not supported in terms
of workflow; recursive definitions can be obtained only in a programmatic way
through the underlying implementation programming language.
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(G7) Termination Patterns

Termination Patterns capture various ways in which a workflow can complete. In
scientific WIMSs a workflow execution terminates when there are not sufficient
data tokens left to execute any task, thus Wcp-11 Implicit Termination is the
commonly supported termination pattern. Kepler also directly supports Explicit
Termination (Wcp-43) by providing a specific construct to explicitly terminate a
workflow execution that reaches a certain point.

(G8) Trigger Patterns

Trigger Patterns capture external signals that may be required to start certain
tasks. A trigger can be obtained by adding an additional input port to a task. The
input value received through this port is not used during the computation, but it
is useful only for synchronization purposes and not during computation. Kepler
natively support this concept by means of trigger ports and trigger messages, re-
spectively. However, channels are persistent: tokens that flow through them are
retained until the connected task is able to consume them. Therefore, only Persis-
tent Trigger (WcCP-24) is supported.

Final Observations

Table 6.1 summarizes the WCPs support of Kepler and compares it to the other
three representative business process modeling languages considered here. Follow-
ing the evaluation criteria established in [109], a “+” rating (direct support) or a
“+” rating (partial support) is assigned when the system provides a construct that
completely, respectively, partially satisfies the description of the pattern when used
in a case satisfying the context assumptions. Otherwise, a “~” rating (no support)
is assigned. In particular, given the difference between the computational models
of scientific and business WfMSs, we give a + to a system either if it can realize the
control-flow dependency expressed by that pattern via a data-flow dependency be-
tween computational tasks and/or routing constructs (e.g. an If, Loop or Merge),
under the assumption that a task instance requires its inputs only before starting
and produces its outputs only at completion. We did not consider work-arounds
such as hard-coding the desired behavior of a pattern in a task as direct support for
that pattern. More details on the definition and evaluation criteria of the various
WCPs can be found in [88].

The support provided by all the considered systems for the basic control-flow
patterns is substantially the same. Conversely, the support of these systems is quite
different with respect to the advanced branching and synchronization patterns. In
particular, the various Discriminator and Partial join patterns are not supported
by Kepler and by WS-BPEL, while BPMN and YAWL provides some support for
them. This is because BPMN and YAWL are defined according to a graph-oriented
paradigm, whereas WS-BPEL is essentially block-structured, except for the flow
construct. On the other hand, some other patterns are fully or partially supported
by the three business WfMSs, but they are not supported at all by Kepler, as in the
cases of the two patterns dealing with the multiple enablement or synchronization
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Table 6.1. Workflow Control-Flow Patterns support in the considered W{fMSs. The
first column reports the patterns group, G1: basic control-flow, G2: advanced branching
and synchronization, G3: multiple-instance, G4: state-based, G5: cancelation and force
completion, G6: iteration, G7: termination, and G8: trigger.

Pattern BPMN WS-BPEL YAWL Kepler

Wcp-01 Sequence
Wcp-02 Parallel Split

G1 Wcp-03 Synchronization
Wcp-04 Exclusive Choice
Wcp-05 Simple Merge

Wcp-06 Multi Choice
Wcp-07 Structured Synchronizing Merge
Wcp-08 Multi Merge
Wcp-09 Structured Discriminator
Wcp-28 Blocking Discriminator
Wcp-29 Canceling Discriminator

G2 Wcp-30 Structured Partial Join
Wcp-31 Blocking Partial Join
Wcp-32 Canceling Partial Join
Wcp-33 Generalized And-Join
Wcp-37 Local Synchronizing Merge
WcpP-38 General Synchronizing Merge
Wcp-41 Thread Merge
Wcp-42 Thread Split

+H o+t A+t

Jr

Wcp-12 M.I. without Synchronization

Wcpr-13 ML.I. with a priori design-time know.

Wcp-14 ML.I. with a priori run-time know.
G3 Wcp-15 M.I. without a priori run-time know.

Wcp-34 Static Partial Join for M.I.

Wcp-35 Canceling Partial Join for M.I.

Wcp-36 Dynamic Partial Join for M.I.

o S o o S S

WcpP-16 Deferred Choice

WcP-17 Interleaved Parallel Routing
G4 Wcp-18 Milestone

Wcp-39 Critical Section

WcPp-40 Interleaved Routing

v+
]

Wcep-19 Cancel Activity
Wcp-20 Cancel Case
G5 Wcp-25 Cancel Region
WcPp-26 Cancel Multiple Instance Activity
Wcp-27 Complete Multiple Instance Activity
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=+ ++ +

WcPp-10 Arbitrary Cycles
G6 Wcp-21 Structured Loop
Wcpr-22 Recursion
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Wcp-11 Implicit Termination

G7 Wcpr-43 Explicit Termination
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WcpP-23 Transient Trigger
WcPp-24 Persistent Trigger
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of branches, such as the Multi Choice (WcpP-06) and Structured Synchronizing
Merge (WcPp-07).

Relatively to the Multiple Instance patterns, we can observe that WS-BPEL
and Kepler are only able to support the M.I. without Synchronization (Wcp-
12) pattern, while BPMN and YAWL provide wider support for such patterns,
especially these languages are also able to synchronize multiple instances of the
same task.

The major difference in the State-Based patterns is the support for the Deferred
Choice (Wcp-16) offered by the three business WfMSs, and for the Critical Section
(Wcp-39) offered by WS-BPEL and YAWL. While for the Cancelation and Force
Completion patterns the lack of support found in Kepler is in contrast with the
support offered by the three business WfMSs for many of them.

Finally, the support for Termination, Iteration and Trigger patterns is substan-
tially the same in all the systems.

6.1.2 Workflow Data Patterns Evalutation

Workflow Data Patterns (WDPs) [108] capture those language features that are
useful for describing and managing data resources during process execution. In
Kepler data are carried only by data tokens and there are no shared variables.
The realization of each data pattern in Kepler is analyzed in the following sections,
while Tab. 6.2 compares the obtained results with the support offered by the chosen
business WIMS representatives.

(G1) Data Visibility Patterns

Data visibility patterns identify potential contexts in which a data construct can
be defined and utilized. In scientific WfMSs data are contained only inside tokens,
variables are local to each task instance, there are no global variables and tasks can
only communicate by providing a value to their output ports and reading a value
from their input ports. Therefore, Kepler supports the Task Data pattern (WDP-
01) and the Multiple Instance Data pattern (WDP-04). These patterns cater for
the definition of data elements accessible only within an execution instance of a
task, that is eventually able to execute multiple times inside the same case. They
are supported since the variables used by tasks are specific to each individual
execution instance. Moreover, the Environment Data pattern (WDP-08), which
allows a workflow instance to access data elements from the external operating
environment, is directly supported via several predefined tasks that allow access
to a local or remote database, or a local or remote file system (e.g. Kepler’s actors
Database Writer or Directory Listing).

(G2) Data Interaction Patterns

Data interaction patterns examine between which types of components data can
be exchanged and which component takes the initiative. Data can be exchanged
within the same process (internal data interaction patterns), or with the external
environment (external data interaction patterns).
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In scientific WfMSs tasks can communicate only through channels that connect
the output port of a task with the input port of another task, and this holds also
for a composite task and its sub-workflow decomposition. Therefore, the patterns
directly supported are: Task to Task (WDP-09), regarding the communication be-
tween tasks of the same case, Block Task to Sub-Workflow Decomposition (WDP-
10), regarding the communication between a composite task and its sub-workflow
tasks, and Sub-Workflow Decomposition to Block Task (WDP-11), regarding the
inverse communication between sub-workflow tasks and a block task. In particular,
in WDP-09 the same channels are used to pass both control-flow and data tokens
(integrated control and data channels [108]), as control-flow is directly specified in
terms of data dependencies; while for WDP-10 and WDP-11 the communication
between a block task and its component, or vice-versa, is also performed through
channels (explicit data passing via data channels [108]).

Patterns Data Interaction - to Multiple Instance Task WDP-12 and Data In-
teraction - from Multiple Instance Task WDP-13 capture data passed to/from a
multiple instance task. In Kepler a new task instance is spawn as soon as the re-
quired input data is available. This instance receives distinct input data through
tokens and works on its own data, without side effects for the other instances,
while the output produced by each task instance is queued in the outgoing chan-
nel. Therefore, WDP-12 is directly supported through the approach classified as
instance-specific data passed by value or by reference [108]. Conversely, WDP-13
cannot be considered directly supported, because it requires the aggregation of
data elements produced by the various instances before passing them to the sub-
sequent task. This problem is correlated with the impossibility of synchronizing
multiple instances of the same task at completion. Finally, Kepler does not provide
a mechanism to communicate between two different instances of the same workflow
(Case to Case WDP-14). The interaction with the external environment can only
be initialized by the task, case or workflow which can request or provide external
data, for instance by writing the computed results into an external database or a
local or remote file system. Therefore, the patterns Task/case/workflow to envi-
ronment - push oriented (WDP-15, WDP-19, WDP-23) and Environment to task/-
case/workflow - pull oriented (WDP-16, WDP-20, WDP-24) are supported; while
the patterns Task/case/workflow to environment - pull oriented (WDP-18, WDP-
22, WDP-26) and Environment to task/case/workflow - push oriented (WDP-17,
WbP-21, WDP-25) are not directly supported.

(G3) Data Transfer Patterns

Data transfer patterns consider the manner in which the actual transfer of data
elements occurs between one process component and another. In scientific WfMSs
data are passed to each task by means of tokens on channels that connect output
and input ports. Each task operates on a copy of the received values, thus the
patterns Data Transfer by Value - Input (WDP-27) and Data Transfer by Value -
Output (WDP-28), regarding the ability to receive or send data elements by value,
are directly supported. Moreover, the received data can also be the name of a
file or the address of an external (remote) resource, and generally no concurrency
restrictions are applied to the shared data. Therefore, the pattern Data Transfer



6.1 Workflow Pattern Evaluation of the Selected WfMSs 147

by Reference - Unlocked (WDP-30), considering the communication between tasks
by passing a reference to the location of the data elements, is supported, while the
pattern Data Transfer by Reference - With Lock (WDP-31), which also requires
the ability to define privileges restrictions or dedicated access, is not directly sup-
ported. A task can copy into its local address space the data value collected by an
external resource (e.g. a remote database), providing support for the Data Trans-
fer - Copy In / Copy Out pattern (WDP-29), which captures the ability to copy
the values of a set of data elements from an external source to an address space
local to the task. Finally, the data transformation patterns (WpP-32, WDP-33),
which capture the ability to apply some transformations on data prior to pass
these to/from a component, are not supported: data can only be transformed by
a task during its execution and not immediately prior or after its execution.

(G4) Data-based Routing Patterns

Data-based Routing Patterns capture the various ways in which data elements can
interact with other perspectives and influence the overall operation of a process
instance [108].

In scientific WfMSs data availability drives the computation, but data depen-
dencies influence only task activation, not its completion. Therefore, the pattern
Task Precondition - Data Existence (WDP-34), requiring the presence of some data
at the time of a task execution, is supported, while the pattern Task Postcondition
- Data Existence (WDP-36), requiring the presence of some data at task comple-
tion, is not supported. Moreover, data dependencies only concern the availability
of data and not their value, thus the patterns Task Precondition - Data Value
(WbDP-35) and Task Postcondition - Data Value (WDP-37), requiring a particular
value for specific parameters at the time of execution, respectively, of completion,
are not supported. As per the data interaction patterns, interactions with the ex-
ternal environment can only be triggered by a task within the workflow and there
is no way for an external event to initialize a task. Therefore, pattern Event-based
Task Trigger (WDP-38), representing the ability for an external event to initiate
a task, is not supported. Similarly, a task is enabled only when the necessary in-
puts are available, and no constraints can be specified about their values. Hence,
Data-based Task Trigger (WDP-39), which allows the triggering of a specific task
when an expression evaluates to true, is also not supported. Finally, the Data-
based Routing pattern (WDP-40), capturing the ability to alter the control-flow
based on the evaluation of data expressions, is supported by Kepler with the same
mechanism as the one described for the Exclusive Choice (WcP-04) and the Multi
Choice (WcP-06) patterns.

Final Observations

Table 6.2 summarizes the WDPs support of Kepler and compares it with YAWL,
BPMN 1.0 and WS-BPEL 1.1.

Business WfMSs provide some additional way to define and use data constructs,
for instance at the case or scope level, while in Kepler data are mainly local to
each task instance and there are no shared variables.
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Table 6.2. Data patterns support in the considered WfMSs. The first column denotes
the patterns group, G1: data visibility, G2: data interaction, G3: data transfer and G4:
data-based routing.

Pattern BPMN BPEL YAWL Kepler
‘WbP-01 Task Data + + + +
‘WbP-02 Block Data + - + -
WDP-03 Scope Data - + + -
a1 WDP-04 Multiple Instance Data + - + +
WbpPp-05 Case Data + + -
‘WpP-06 Folder Data - - + -
WbDP-07 Workflow Data - - + -
‘WbDP-08 Environment Data - + + +
‘WbDP-09 Task to Task + + + +
WDP-10 Block Task to Sub-Workflow Decomp. + + + +
WbDP-11 Sub-Workflow Decomp. to Block Task + + + +
WDP-12 to Multiple Instance Task + + + +
WDP-13 from Multiple Instance Task - - + -
Wpp-14 Case to Case - - + -
‘WbDP-15 Task to Environment — Push-Oriented + + + +
WbDP-16 Environment to Task — Pull-Oriented + + + +
a2 ‘WpDP-17 Environment to Task — Push-Oriented - - + -
‘WbDP-18 Task to Environment — Pull-Oriented - - + -
WbpP-19 Case to Environment — Push-Oriented + + + +
WbDP-20 Environment to Case — Pull-Oriented + + + +
‘WbpP-21 Environment to Case — Push-Oriented - - + -
Wpp-22 Case to Environment — Pull-Oriented - - + -
‘WbDP-23 Workflow to Environment — Push-Or. + + + +
WbDP-24 Environment to Workflow — Pull-Or. + + + +
WbpP-25 Environment to Workflow — Push-Or. - - +
WbpP-26 Workflow to Environment — Pull-Or. - - + -
WDP-27 Data Transfer by Value - Incoming + + + +
WDP-28 Data Transfer by Value - Outgoing + + + +
WbP-29 Data Transfer - Copy In/Copy Out + + + +
G3 WDP-30 Data Transfer by Ref. - Unlocked + + + -
WbDP-31 Data Transfer by Ref. - With Lock - - + +
WpP-32 Data Transformation - Input - - + +
WDP-33 Data Transformation - Output - - + +
‘WbP-34 Task Precondition - Data Existence + +
‘WbP-35 Task Precondition - Data Value - - + +
WbDP-36 Task Postcondition - Data Existence - - + +
G4 WpP-37 Task Postcondition - Data Value - - + +
WbpP-38 Event-based Task Trigger - - + +
WbpP-39 Data-based Task Trigger - - + +
WbpP-40 Data-based Routing + - + +
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Relatively to the data interaction patterns, we can observe that business
WIMSs allow some form of interactions in which the external environment can
proactively offer data to a task, has happens in Environment to Task — Push
Oriented (WDP-17), or in Task to Environment — Pull Oriented (WDP-18), while
in Kepler only the tasks inside the workflow can start the connection with the
external environment.

BPMN and YAWL are able to perform some transformations before passing
a data element to/from a task. Moreover, the three considered business WiMSs
provide some ways to prescribe a mutual exclusive access to data.

Finally, as regards to the data-based routing patterns, the three business
WIMSs under consideration allow the definition of task triggers at the event or data
level, while Kepler is not able to deal with triggers. Moreover, BPEL and YAWL
allow the definition of task preconditions based on data values, while Kepler al-
lows only the definition of task preconditions based on data existence. BPMN
and YAWL allow also the definition of task postconditions, while in Kepler no
postcondition can be specified neither on data existence nor on data value.

6.1.3 Workflow Resource Patterns

Workflow Resource Patterns (WRPs) [111] capture the various ways in which
resources (e.g. human or computational resources) are represented and used in
workflows. Scientific WEMSs consider processes that are usually enacted by only
one user at a time, thus they do not have to manage different agents or different
roles with related authorization and authentication issues [82]. Moreover, little or
no user interaction is needed to perform an activity, no work is assigned to human
agents and human intervention is usually limited to perform run-time decisions.
As a result, only few resource patterns are supported, as discussed in the following
and summarized in Tab. 6.3.

(G1) Creation Patterns

Creation Patterns correspond to limitations on the manner in which a work item
may be executed. They are specified at design time, usually in relation to a task,
and serve to restrict the range of resources that can undertake work items that
corresponding to a task [111]. As stated above, the considered scientific WfMSs do
not provide a mechanism for identifying and distinguishing resources, in particular
with respect to human agents. Work items are automatically executed as soon as
they have the necessary input without the need to be explicitly allocated to a
particular resource. Therefore, only Automatic Execution (WRP-11) is supported.

(G2) Push Patterns

Push Patterns characterize situations where newly created work items are proac-
tively offered or allocated to resources by the system. These may occur indirectly
by advertising work items to selected resources via a shared work list or directly
with work items being allocated to specific resources [111]. In Kepler work items
are directly allocated by the system and executed as soon as they are enabled
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by the availability of the necessary inputs. Therefore, the only supported push
pattern is Distribution on Enablement (WRP-19).

(G3) Pull Patterns

Pull patterns correspond to the situation where individual resources are made
aware of specific work items, that require execution, either via a direct offer from
the system or indirectly through a shared work list. The commitment to undertake
a specific task is initiated by the resource itself rather than the system [111]. In
Kepler it is the director that schedules the execution of work items and these
automatically start to execute when the necessary inputs are available. It follows
that none of the pull patterns are supported by the three systems.

(G4) Detour Patterns

Detour patterns refer to situations where work item distributions that have been
made for resources are altered either by the system or at the instigation of the
resource. As a consequence of this event, the normal sequence of state transitions
for a work item is varied [111]. Examples of these patterns are the delegation or
escalation of a work item to a given resource, or the deallocation of a work item
from a resource, so that the work item is offered again. These patterns are not sup-
ported because work items are automatically executed and cannot be intentionally
suspended, re-routed and re-allocated.

(G5) Auto-Start Patterns

Auto-start patterns relate to situations where execution of work items is triggered
by specific events in the lifecycle of the work item or the related process definition.
Such events may include the creation or allocation of the work item, completion of
another instance of the same work item or a work item that immediately precedes
the one in question [111].

The Commencement on Creation (WRP-36) pattern is directly supported by
Kepler, it refers to the ability of a resource to commence execution on a work item
as soon as this is created. In Kepler a work item is executed immediately after its
enablement.

(G6) Visibility Patterns

Visibility patterns classify the various scopes in which work item availability and
commitment are able to be viewed by resources [111]. These patterns are not
supported: Kepler does not provide a facility to visualize the list of available or
committed work items.
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Table 6.3. Support of the WRPs by the exisinting business WfMSs considered in this

thesis.

Pattern

BPMN BPEL YAWL Kepler

WRP-1 Direct Distribution
WRP-2 Role-base Distribution
‘WRP-3 Deferred Distribution
WRP-4 Authorization
WRP-5 Separation of Duties

G1 WRrP-6 Case Handling
WRP-7 Retain Familiar
WRP-8 Capability-based Distribution
WRP-9 Organization-based Distribution
WRP-10 History-based Distribution
WRP-11 Automatic Execution

Jr
+
+

Jr

+ o+t

WRP-12 Distribution by Offer — Single Reseouce
WRP-13 Distribution by Offer — Multiple Resources
WRP-14 Distribution by Allocation — Single Resource
WRrP-15 Random Allocation

G2 WRrP-16 Round Robin Allocation
WRP-17 Shortest Queue
WRP-18 Early Distribution
‘WRP-19 Distribution on Enablement
WRP-20 Late Distribution

HH o+ 4+ F |+ +++

it R IR A

WRrP-21 Resource-Initiated Allocation

WRP-22 Resouce-Initiated Execution — Allocated
a3 WRP-23 Resource-Initiated Execution — Offered

WRP-24 System Determined Work Queue Content

WRP-25 Resource Determined Work Queue Contet

WRP-26 Selection Autonomy

++

WRP-27 Delegation

WRrP-28 Escalation

‘WRP-29 Deallocation

WRP-30 Stateful Reallocation
G4 WRp-31 Stateless Reallocation

WRP-32 Suspension/Resumption

WRrP-33 Skip

WRrP-34 Redo

‘WRP-35 Pre-Do

R R

+ 4+

i e B o A B

WRP-36 Commencement on Creation
G5 WRrP-37 CommencementOnAllocation
WRP-38 Piled Execution

WRP-39 Chained Execution

WRP-40 Configurable Unallocated Work Item Visib.

G6 WRP-41 Configurable Allocated Work Item Visibility

a7 WRP-42 Simultaneous Execution
Wcpr-43 Additional Resources

|+ + ]
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(G7) Multiple Resource Patterns

Multiple Resource patterns capture the ability of a resource to simultaneously
work on different work items (Simultaneous Execution - WRP-42) and the ability
of a resource to request additional resources to assist in the execution of a work
item currently undertaken by that resource (Additional Resources - Wcp-43). In
each of the three systems the same resource can work on different work items
simultaneously, hence the Simultaneous Execution pattern is supported. However,
the Additional Resources pattern is not supported.

Final Observations

The resource pattern analysis confirms that Kepler provides a limited attention to
human coordination aspects. In particular, tasks are automatically executed and
there is no way to model task assignment or delegation. As previously mentioned,
this is due in part to the fact that scientific WfMSs have been originally developed
for automating large scale experiments, and in part to the relative immaturity
of these systems. Conversely, the system that provides most attention to agents
coordination is YAWL which support almost all patterns.

6.2 Requirements of a Geo-Processing WfMS

In [105] the authors recognise a new emerging approach in the construction of
SDIs across the world. They observe a shift from the first generation, which was
production oriented and focused on the development of integrated databases, to
the second generation, which is more process oriented and emphasizes partnership
and stakeholders involvement. In this emerging context the coordination of the
involved agents has become one of the most important aspects to consider.

The main question remains if SDIs are distinct from other kind of information
infrastructures, like those for the health care, namely if they have some new and
peculiar requirements that prevent the adoption of standard solutions. SDIs are
special mainly because they apply specialised tools and concepts for handling spa-
tial data, and because their implementation and use require understanding of basic
geographic and cartographic principles [95]. SDIs rely both on spatial data and on
the technology and concepts to handle these data. Hence, they may be different
from other information infrastructures, but are these differences fundamental?

The following sections analyze the adoption of existing workflow technologies
for supporting distributed geo-processing activities. In particular, it considers the
benefit of exploiting existing WfMSs for the design and implementation of the
integration framework presented in the first part of this thesis.

6.2.1 Integration Process Implementation with BPMN

Most of the benefits of PAISs came from the ability to interpret high-level pro-
cess specifications, separating the business logics from the software system logics:
when a change occurs in the organization functioning, due to contingent needs or
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a proactive application of the BPM approach, the new processes are documented
and translated into operational activities. An information system can be easily
realigned to the new conditions by simply changing the interpreted process spec-
ifications and implementing the missing functionalities as services. Actually, this
theoretical alinement is now far from real: an huge gap exists between the docu-
mentation of operational processes and their executable specifications, and this is
even worse in GIS construction.

In order to exemplify such situation, let us consider the integration process
proposed in Part I, whose BPMN representation is depicted in Fig. 6.5. The process
is triggered by a start message which communicates the availability of new or
updated information. On the basis of the relation between the existing database
and the new one, the integration case is determined. If the determined scenario is
valid, namely is one of those defined in Sec. 4.1, the process continues, otherwise
it is terminated. In the first case, the execution continues with the integration
of the thematic classes and of the objects; then, on the basis of the previously
determined integration scenario a choice is taken between a union integration, or
a more complex Kalman integration. Such condition evaluation is represented by
the first empty diamond symbol. In the second case, two parallel computations
are started: one related to the position integration, and the other regarding the
computation of variance-covariance information for the result. Diamond symbols
containing a cross enclose parallel activities, notice that these two parallel branches
are synchronized at a certain point, because the computation of the Kalman matrix
is required by both parallel computations. After the metric integration has been
performed, the integration of logical information is executed and the generated
inconsistencies are determined. Such inconsistencies are solved by the final loop,
which iterates until new inconsistencies are found. Finally, the result is assembled
using the computed information and sent to another process being stored.

The actual process is more complex than the one depicted in Fig. 6.5: for sake
of simplicity many details have been omitted and some aspects have not been
included at all, for instance exception handling and compensation. For obtaining
a specification sufficiently detailed to be executed in some sort of WIMS, some
incremental refinements have to be applied to the process model in Fig. 6.5. How-
ever, obtaining an executable specification from such model is not a simple matter:
a huge gap exists between the documentation of operational processes and their
executable specifications. The first unavoidable refinement is the definition of data
necessary at run-time. A BPMN model can be annotated with data aspects nec-
essary at run-time; however, the data model is fairly primitive and inadequate for
describing data-intensive processes, like the geographical ones. Moreover, let us
notice that in order to describe a minimal set of data-flow interactions between
the integration process and another process which initially provides the updated
information, and finally stores the computed result, these processes have been
placed into two different pools, even if this construct was originally intended for
representing interactions among processes that belong to different organizations.
This is because a message flow can never be used to connect activities or events
within the same pool. For modelling purposes, some authors [141] suggest to break
the standard and use data-flow interactions whenever needed, even if they are not
well defined.
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Fig. 6.5. Integration process design in BPMN.
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As stated in Sec. 5.4.2, BPMN is commonly used a graphical representation for
WS-BPEL, but not all the BPMN constructs can be translated in WS-BPEL and
viceversa [101,139]. For instance, the process in Fig. 6.5 will be translated into
different uncorrelated WS-BPEL processes. Moreover, WS-BPEL is far from be
an high-level language, its strengths reside on creating new services by assembling
existing ones, not to deal with humans, hence any user interaction described in
BPMN cannot be directly translated in WS-BPEL.

As a consequence, many WIMSs leverage existing technologies for providing
advanced tools that can fulfill the gap. The following section considers the use of
PAISs and scientific WMSs for implementing the integration process. The example
proposed in this section and in the following two ones constitute a primary study
on the applicability of existing workflow systems for geo-processing. The processes
have not be completely realized, due to the limits found in the considered systems.
The main purpose of this examples are to define the characteristics of an ideal
solution which will be described in Sec. 6.3.

6.2.2 Integration Process Implementation with YAWL

As explained in the previous chapter, YAWL provides a good framework for man-
aging human resources, coordinating their works and monitoring the process evo-
lution, while it is less suitable for performing long-running intensive computations
dealing with complex data structures.

The YAWL specification of the integration process is depicted in Fig. 6.6, notice
that routing constructs (splits and joins) can only be associated with a task, which
can eventually be a dummy automatic task that does not compare in any work
list. Such tasks are depicted in gray in the diagram of Fig. 6.6.

Determine
Integration

Pos. Vector
Initialization

Var. Matrix Compute Metric Var.
Evaluate Initialization ~Kalman Int. Kalman Logic Determine  Assembly
Integratio Matrix Rel.Int. Incons. Result
Case

Metric Pos. Metric Var.
Int. Union  Int. Union

Fig. 6.6. Integration process design in YAWL.

The first mentioned strength regards the management of user privileges through
the definition of a role hierarchy. However, relatively to this aspect, YAWL allows
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one to define privileges only at task level, but in the considered example we have
the need to specify user privileges also at data level: the same task can be per-
formed by different participant but only with reference to a certain portion of the
territory. For instance, for solving inconsistencies related to topological relations,
some changes on the input geometries can be necessary, in this case only the user
responsible for the particular object can decide how to perform the changes.

The second difficulty in the implementation of the considered process regards
the data management. In YAWL variables can be represented using XML or by
connecting the process specification to a PostgreSQL database. Even if GML is an
XML-based language and PostGIS is a PostgreSQL extension for spatial data man-
agement, a problem remains: conditions on workflow variables are expressed using
XPath and no spatial conditions can be specifies using this language (e.g. based on
topological relations). Moreover, in the considered scenario it should be useful to
natively represent more complex data structures, such as those regarding MACS
positions, hard topological relations, and using a database management system
means escaping from the language constructs, breaking the available validation
facilities.

Moreover, even if the YAWL system can automatically generate a graphical
user interface for the distributed application, no support is provided for the visu-
alization and management of spatial information. This is a real limitation, since
in the geographical field most of the user operations are performed through the
interaction with a map.

6.2.3 Integration Process Implementation with Kepler

The last considered WfMS is Kepler, which has been taken as a reference for scien-
tific WIMSs and the data-flow paradigm. As highlighted in the previous chapter,
it is more suitable for representing repetitive and intensive computation on huge
amount of data, but it provides few facilities for managing human resources and
the interaction with multiple users that concurrently interact.

The Kepler implementation of the integration process is depicted in Fig. 6.7.
The behaviour of the boolean switch (e.g. between the actor Evaluate Integration
Case and actor Thematic Class Integration) can be explained as follows: it re-
ceive from the white input multi-port any type of token which is redirected to the
true (T) or false (F) output port, on the basis of the value of the control token
received from the other input port. Let us notice that thanks to the implicit data
parallelism offered by this system, as soon as the actor LogicRelInt produces an
integrated topological relation, an instance of DetermineInconsistency can start
its execution. Therefore, many instances of this actor can be in execution while
the integration of topological relations is still in progress.

Unfortunately, Kepler does not provide any support for the human resource
management and coordination. The fundamental assumption in this kind of work-
flows is that an experiment is executed by only one scientist at time. Conversely,
processes performed inside an SDI typically involve several agents with different
competencies and roles. Moreover, the support for human activities is very lim-
ited, it is usually reduced only to provide an input to an automated activity or
perform a choice among several alternatives. Therefore, the implementation of the
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Fig. 6.7. Integration process design in Kepler.

necessary interactions during the integration process have to be programmatically
solved, escaping the available language constructs.

6.3 The Ideal Solution

Previous sections have exposed the strength and weakness of existing WfMSs as
tools for implements flexible GISs. Even if these systems offer attractive ready-
to-use features, none of them seems to be completely satisfactory from an archi-
tectural and functional points of view. Not surprisingly, these limitations present
some similarities with those found in the use of classical relational databases for
storing spatial data:

e lack of a geometric model,

e lack of tools supporting spatial data visualization and directly interaction
through maps,

e (difficulties in exploiting spatial data characteristics during geo-processing.

As regards to the first point, spatial data have several unique characteristics com-
pared with data processed in other fields, as deeply analysed in [41] and recalled
in Chap. 2. The main one is the presence of one or more geometric attributes
that require the existence of an underlying geometric model, namely the definition
of some geometric types and operations. Therefore, the modeling of spatial data
requires to augment existing WfMSs with a support for geometric data models.
The visualization of spatial data in forms of maps is an essential character-
istics of any GIS application. A numeric representation of spatial object has no
meaning for a user, as the information is given by the shape and positions of the
objects. Moreover, users usually perform their operation by manipulating a map
representation and not directly object coordinates. Most of the available systems
provides a web-based interface, due to the involved web-based technologies and
the easiness of deploy. These interfaces have to be enhanced with functionalities
for the visualization and interaction with spatial data through maps: the advances
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in web technologies make web interfaces even more rich, but they can be limited
for manipulating an huge amount of vector data in an effective and precise way.

These first two points require some improvement of the existing systems, but
they are not particularly hard to solve. The real challenge resides on the last point
regarding the processing of spatial data. In this kind of processing two forms of
parallelism can be distinguished: functional and data decomposition [57]. Func-
tional decomposition techniques deal with the distribution of operations among
the available resources. The complexity of some analysis requires that services ad-
dressing isolated tasks are combined into multiple processing steps to achieve the
desired results. Therefore, functional parallelism can be achieved by decomposing
complex computation activities into smaller parts (tasks), defining the execution
order of these operations and the dependencies between them, so that some oper-
ations can be performed in parallel while others in sequence. On the other hand,
data decomposition techniques subdivide data into independent chunks, so that
multiple instances of the same activity can be executed in parallel on different
inputs. The partial results produced by each activity instance are finally combined
to form the overall output.

As highlighted before, PAISs are more suitable for representing the functional
decomposition of processes and the interactions among different agents. At any
step the workflow engine can monitor the overall state of the process, which activ-
ities have been performed and which are executing. On the other hand, this kind
of systems provides a poor support for the data decomposition which is essential
for intensive computations. Optimizations at such level have to be addressed in
an ad-hoc manner by the underlying software layer. Conversely, scientific WfMSs
have been developed for supporting intensive computations and can easily exploit
the use of Grid technologies in a transparent way for the user. Scientific workflow
systems have been studied to simplify the composition of computational blocks
and hence they offer a better chance to provide a library for geo-processing. How-
ever, some problematic aspects remain, for instance how to provide to the user a
complete overview of the process execution, or how to seamlessly integrate cross-
cutting concerns like resource management. GIS engineering needs WfMSs able to
combine the strengths of PAISs and scientific WIMSs with a model of computation
suitable for geo-processing.
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Fig. 6.8. Architecture of a geo-processing WfMS.
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The architecture of a possible WEMS for geo-processing is depicted in Fig. 6.8.
As regards to the needed extensions, the first one is the development of a set of
components to handle geographical operations. For instance, Kepler allows one to
perform spatial operations by invoking web-services and some research has been
done for integrating external dedicated applications, like GRASS [149]. However,
as discussed in [133], this solution limits workflow transparency, thus it is prefer-
able to enhance a WIMS with a core library of GIS functionalities. Many APIs
providing geographical functions have been developed, such as the Java Topology
Suite [136]. Anyway, the functionalities offered by these libraries can be currently
combined only in a programmatic way; the idea is to use them for developing a
set of pluggable and standard-based components (e.g. ISO TC211) that can be
graphically assembled by users with limited programming skills.

Moreover, in order to exploit the data parallelism offered by scientific WfMSs,
some specific functions have to be developed for partitioning spatial data into in-
dependent chunks of information and combining the partial results. The specific
characteristics of spatial data pose some additional constraints in the development
of such functions: (1) spatial data do not follow a preconceived pattern, but it can
vary considerably in complexity across a dataset. (2) Most attention is usually
given to the decomposition of data, but in the geographical domain the combi-
nation phase is equally important and in some cases even more difficult, since
during the reconstruction many properties, like topological relations, have to be
preserved.

Relatively to the computational aspect, Kepler supports many different compu-
tational models, some of them specifically developed for modeling dynamic physical
systems. However, in the geographical domain not all these computational models
are necessary. We can safely restrict to the one in which components run in parallel
exchanging data through channels of ideally unbounded capacity, known as Pro-
cess Networks [149], and enhance it with coarse-grained control-flow constructs, in
order to express the control-flow logics that emerges from fine-grained data-flow
relations. This can be useful for mitigating the main drawback of using a data-
driven approach with respect to the control-flow one offered by PAISs, namely the
loss of easy to grasp information about the overall process execution.

Finally, the integration of cross-cutting concerns like security and resource
management plays a central role. Relatively to this aspect, the engine has to be
decoupled from the user interface that will become part of a distributed applica-
tion for supporting the collaborative execution of workflows by several agents in
different locations.

6.4 Summary and Concluding Remarks

This chapter has compared the chosen WfMS representatives first from a general
point of view, using the workflow pattern methodology, and then from a geograph-
ical point of view, considering the proposed integration process as use case.

In the BPM community, workflow patterns are a framework frequently used to
compare the suitability of WfMSs in describing business processes. Many existing
offerings have been evaluated in literature using this tool. In this thesis we present



160 6 A Comparison of the Existing WfMSs

the evaluation of Kepler and compare it with respect to the evaluation of the
other considered WIMSs contained in [127, 145, 146]. We observe that in some
cases a pattern is not directly supported by Kepler because it is considered not
relevant for that application domain; in other cases, it can be useful but it is not
supported probably due to the relative immaturity of the system. In particular, this
system does not support many of the resource patterns related to the coordination
of human agents, this is one of the main weakness of the system in designing
geographical processes with the characteristics highlighted in Chap. 1. Another
importation limitation regards the management of multiple instance tasks, if from
one hand the adopted computational model allows one to transparently exploit
parallelism, since multiple instances of the same task can concurrently execute on
different data, the synchronization of these instances can be quite difficult.

As regards to the geographical comparison, we can observe that processes in
the geographical field can benefit from both the adoption of business and scientific
WIMSs, but none of them is completely satisfactory. The found limitations regard
three different aspects: modeling, visualization and processing of spatial data. The
latter is the most serious one, because it cannot be solved by simply adding fea-
tures to existing WfMSs. The interactive nature of long-running geo-processing
activities, the importance of domain expert knowledge in driving the computa-
tion and the need to coordinate the effort of different agents, are better addressed
by business WfMSs. On the contrary, scientific WIMSs can provide a support for
intensive long-running computations required by geo-processes. The ideal WfMS
for geo-processing has to combine the characteristics of both approaches in a co-
herent system. In particular, the data-flow computation model adopted by scien-
tific WfMSs enhanced with coarse-grained control-flow structures can be the most
suitable solution for geo-processing. For these reasons, the last chapter presents a
different solution, based on a novel modeling language, called NESTFLOW, which
combines both approaches in a coherent way.
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The NESTFLOW Solution

The previous chapter evaluates the applicability of workflow technologies for de-
veloping software systems that support distributed geo-processing. The conclusion
is that none of the available systems is completely satisfactory: the ideal WIMS for
geo-processing has to combine the characteristics of both business and scientific
WIMSs in a coherent way. For this purpose, this chapter introduces a different
modeling language, called NESTFLOW, which has been conceived to explore a
particular PML design solution in which structured control-flow constructs are
tightly-coupled with Asynchronous Message Passing (AMP) connections. This is
clearly a different approach from the established CFO solutions, in which unstruc-
tured control-flow constructs are coupled with parameter passing and shared task
variables. In NESTFLOW control-flow constructs can be composed only in properly
nested structures and task variables cannot be shared among concurrent entities.
In this way, the use of AMP is made mandatory in the right place, i.e. to describe
the interaction among concurrent entities. Data-flow constructs are promoted as
first-class citizens because they are invaluable for offering a uniform hierarchical
decomposition mechanism that increases modularity. Conversely, data-flow con-
structs are a marginal feature in existing CFO languages that focus mainly on
control-flow, in an attempt to design simpler languages. The NESTFLOW rationale
is to fuse control-flow and data-flow aspects for offering a structured control-flow
without any loss of expressiveness and with positive effects on modularity.

This PML has been developed by our research group in the context of another
PhD thesis, and has been extended and applied in this thesis for designing and
developing the proposed framework. In addition to the language presentation, this
chapter discusses the design of the integration process presented in Part I using
this language. The structure of the chapter is as follows: Sec. 7.1 introduces the
control-flow aspects of the language, while Sec. 7.2 presents the data-flow ones.
Sec. 7.3 summarizes two important properties for well-formed NESTFLOW models
and Sec. 7.4 explains the main semantics of the NESTFLOW constructs. Finally,
Sec. 7.5 discusses the realization of the proposed integration process in NESTFLOW.
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7.1 Control-Flow Aspects

This section introduces the basic graphical elements of NESTFLOW and its syntax.
NESTFLOW elements are obtained from graphical primitives, like rounded boxes,
diamonds, or lines, connected together in heterogeneous groups called blocks.
In contrast with existing PMLs, each block is intended to be manipulated as a
whole by a graphical editor that can also enforce the essential syntactical rules.
The NESTFLOW blocks are summarized in Fig. 7.1 using a BNF-like notation that
encodes the basic compositional rules. In particular, a rule (S) == X|Y|Z means
that the meta-symbol (S) can be replaced by one construct chosen among X, Y
or Z.

(P) ::=Process (By==(C) | Seq | Choice |

In

Out (B).

| Catch

0000 O O O < pavoosc®

(C) == Skip | Run | Spawn | Throw | Send |Receive | Empty

— [ ) 1 [ ()

Fig. 7.1. The NESTFLOW modeling language constructs.

In Fig. 7.1 three main syntactical categories can be distinguished: the main
block (P), called Process, non-terminal blocks (B), Seq, Choice, Loop, Par,
Concur, and Catch, and terminal blocks (C'), Skip, Run, Spawn, Throw, Send,
Receive, and Empty. In the following the term block may refer to both terminal
and non-terminal blocks, while the term command is used as an alias for terminal
blocks. Excluding the last three commands that deal with data, the other blocks
are used to describe the main control-flow relations among tasks.

A task is essentially a more or less complex pre-existing process specification
invoked using a Run command or created at run-time with a Spawn command. An
invoked process can be a native procedure implemented with a general-purpose
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programming language or any other previously defined NESTFLOW process model.
The ability of reusing an existing process specification is essential for supporting
a uniform hierarchical decomposition that in turn enhances the overall system
modularity. A native procedure can be used to implement an automatic task,
drive an external program or interact with human agents by means of a graphical
user interface.

A process specification is obtained starting from the main process (P) and by
recursively nesting multiple blocks (B) and commands (C') following the grammar
in Fig. 7.1 and some additional syntactical rules that are explained in Sec. 7.3. A
sequence of blocks of arbitrary length n can be obtained by nesting n—1 Seq blocks.
The limit of only two children has been introduced to simply the exposition, but
nothing prevent one to define a more general construct with multiple children.
Choice and Par blocks can have two or more branches. Each branch ¢ of a Choice
block is annotated with a condition ¢, (Z) over a set of variables Z, except the last
one which is called default branch and is marked with an oblique bar /. A Par block
is used to execute in parallel two or more inner blocks that have to synchronize
at the end of the block before leaving it. A Loop block has two branches, both of
them can be expanded with further inner blocks or they can be also used alone
closing the other branch with a Skip command. Concur is a block with initially
two branches, one depicted as a solid line that represents the main flow, and one
with a shaded line that denotes the possibility of adding one more branches at
run-time with a Spawn command, as explained in Sec. 7.4. NESTFLOW is designed
not only for creating process models but also for displaying their execution: the
Concur block offers a basic mechanism to make visible the creation and destruction
of dynamic entities by growing and shrinking the displayed model instance. PMLs
usually do not offer any representation of this dynamic behavior and concurrent
instances are usually left implicit. Catch is a block with two or more branches. The
first branch, depicted as a solid line, represents the main flow; the other branches,
each one annotated with a type &;, represent the alternative execution of the block
if an exception of type &; occurs on the first branch.

NESTFLOW distinguishes between a task type and its instances. A task instance
is denoted as t: T, where t € Z is an identifier chosen among the set of valid
identifiers Z, and T € 7 is its type. In the graphical representation the textual
identifier can be left implicit, because a task instance is uniquely identified by its
place in the model, as further explained in the following sections.

7.2 Data-Flow Aspects

A process specification shall be accompanied with the declaration of its input and
output streams as well as local variables by using the keywords in, out and var,
respectively. Input and output streams represent the interface of the process, while
variables capture the main part of its internal state.

It is assumed that every stream, variable and process has a type and an identi-
fier, for instance x: Int denotes a variable with identifier x and type Int. The same
notation holds for streams, but for convenience a subscript in or out is added to
the identifier, especially when no declaration is given. As stated above, a process
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instance invoked in a run command is declared in a similar way with the difference
that its identifier can be omitted in the graphical representation.

A stream is simply a queue for objects of the same type that can be used for
modeling, not only the information flow, but also the set of objects needed and
produced by a task. An instance of A can refer to one of its own interface stream
a through the dot notation this.a, where this is a language keyword. Similarly,
a stream «a of an internal component instance b: B is referred by b.c«, where b is
the instance identifier and « is an interface stream of B. The dot-notation ensures
that all streams in a component are uniquely identified and the keyword this can
be left implicit.

As regards to the available stream and variable types, NESTFLOW has been
extended with all geometric types defined in the JTS library [136], which are those
defined by the OGC Simple Features Specification for SQL, and the MACS concepts
presented in Chap. 3, for instance, MACS feature, hard topological relation, MACs
database, etc. In the feature other complex types, such as topological structures,
linear networks, and so on, will be added.

The flow of objects among internal tasks of a model is expressed through the
notion of link that is a unidirectional connection between two streams. A link is
graphically denoted using a dashed line with an hollow arrow pointing to the task
that exposes the input stream. Depending on involved commands, link ends are
also annotated with stream or variable identifiers as summarized in Fig. 7.2.

Links can be distinguished in internal and external ones, as in Fig. 7.2.a,
Fig. 7.2.b and Fig. 7.2.d, respectively. Internal links connect two streams inside
the same process, while external links are dangling dashed lines that represent an
interaction with the environment.

Aout ,8 in - _a Udin Xout
-------- ; S
Qa, y oT “Zaul Ain Aot
G- (R) ®) L@ G
X
X B

Fig. 7.2. Different combinations of NESTFLOW links. Tasks are denoted by A and B and
the corresponding task instance identifiers by lower-case letters. Streams are denoted by
the initial Greek letters o and (3, while x and y are variables. S and R denote commands
Send and Receive, respectively.

One strength of NESTFLOW resides on the possibility to hide links and their
related commands any time they can be subsumed by the main control-flow. For in-
stance, internal links with the same source and target can be grouped into a unique
collapsed link and then subsumed by a control-flow relation with the same direc-
tion; moreover, Receive and Send commands with hidden links can be subsumed
as well in a well-formed model. The remaining links mostly describe interactions
among concurrent tasks. Message passing is sufficiently expressive to encode pa-
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rameter passing mechanism, hence parameter passing notation can be considered
as a syntactic abbreviation for representing message exchange.

A process can declare zero or more variables with their own type. Variables are
visible only inside the component where they have been declared and their scope
does not extend to components contained in it. For shortening the presentation,
NESTFLOW does not include operators to express computations on variables: it can
be assumed without losing generality that any computation can be implemented
as a native task eventually labeled with the respective expression. For example, a
task denoted with x < x+y, as in Fig. 7.3, means that exists a native task with
two input streams x;,:Int, y,,:Int and an output stream x,,;:Int that taken
the value of the variables x and y in the same scope computes their sum and stores
it again in x. The connection between variables and streams is obtained by means
of Send/Receive commands and links. Thanks to this kind of encoding, the setof
constructs can be reduced without losing expressiveness.

Fig. 7.3. (a) Example of an expression involving two variables x and y. Both variables
are the input of a task implementing the function f(z,y) =z = y. The computed result
is stored in the same variable z. (b) Functional-style parameter passing. (¢) The two
notations can be implemented the basic with message passing mechanism.

7.3 Well-Formed Models

Properties of well-formed models are construction rules that can be statically
checked without executing a model. These properties are important because they
can guarantee the presence of a good run-time behavior that can be hard to prove
otherwise. A type system is the prime example of these properties: if types in a
model are coherent, then many faulty states cannot be reached when it is executed.
For instance, a link can connect only an output stream with an input stream of the
same type or a super-type; a Spawn command can be placed only inside a Concur
block; and so on. An exhaustive formalization of all NESTFLOW well-formedness
properties is out of the scope of this thesis, it can be found in [47]; instead, this
section wants to introduce the most relevant ones, namely:

e Only one place per component instance — it guarantees that there are no con-
current executions of the same component which may leave the process in an
inconsistent state. At the same time it simplifies data-flow graphical specifica-
tion, because the source and the target of a link are uniquely identified without
explicitly stating task identifiers.



166 7 The NEsTFLOW Solution

e No shared variables among parallel branches — it prunes away non-deterministic
executions caused by the exact timing of events that are not completely under
the designer’s control. It also forces the use of AMP constructs when they are
more suitable.

Both properties can be relaxed at the expense of making their check and the
graphical representation more complex. For example, two or more parallel branches
can access in read-only mode to the same variable without causing inconsistencies;
read-only access can be easily verified by checking whenever a variable appears as
an output or a left-value in an assignment statement.

7.4 Run-time Behavior

The complete state of a process is given by the state of its streams, its variables,
and the component instances contained in it. In NESTFLOW a component instance
is stateful: it retains its state over multiple executions. This characteristics is in
contrast with many existing PMLs, such as YAWL. Any new instance starts from
an initial state, which may be modified by sequential executions of the component
internal blocks. NESTFLOW blocks have the following behavior:

e Seq — It runs the first inner block (B) until completion, then it executes the
next one.

e Choice — It evaluates conditions ¢;(Z) associated to each branch in a fixed
order. As soon as a condition is true, the corresponding branch is executed,
otherwise the default (rightmost) one is chosen.

e Loop — It executes blocks contained in its two branches multiple times. After
the execution of the right branch in Fig. 7.1, condition ¢(T) is evaluated. If
the condition is false the loop exits, otherwise it executes the left and the right
branch in sequence.

e Par — It executes the specified branches in parallel each with its own thread
of control. The condition 9 (Z) at the end of the parallel block can be used to
define a generalized partial join. This condition is evaluated whenever possible
on the available variables every time a parallel branch completes. A variable
x € T is available if is not involved in a running parallel branch, otherwise it
is considered unknown and so the part of ¥ concerning x. When (Z) is true,
the remaining running branches are cancelled by raising an exception. In any
case, a parallel block is leaved only when all threads have been completed or
reverted.

e Concur — It is the scope of a dynamic component creation. It initially executes
the main body (B) but one or more parallel branches can be added at run-time
using a Spawn; all threads join before exiting the block.

e Catch — It executes the default branch and if an exception of type &; is raised
inside it, the current execution is interrupted and resumed from the branch
annotated with the proper exception type &; to handle the exceptional situation.
For example, in Fig. 7.1 the non-terminal block (B) in the second branch is
executed when an exception of type ¢ is raised by a Throw command in the
default branch. An exception raised inside a parallel branch that does not
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contain a corresponding Catch block, causes also the interruption of all the
other tasks that are running in the parallel branches, through the raise of an
interrupt exception on those branches, in order to revert the entire block. All
these different exceptions (i.e. the initial exception and the various interrupt
ones) are grouped into a single exception before leaving the parallel block.

e Skip — It is useful for obtaining specific control-flow structures from generic
ones; for instance, the usual while and repeat-until loops can be obtained re-
placing the right or the left branch of a Loop with it, respectively.

e Run — It executes a component instance and the current thread of control
is suspended until the component completes. The command has no special
symbol, it is only labeled with the invoked component type and optionally
with the component instance identifier.

e Spawn — It creates a new task instance ¢:7 that is immediately executed into a
new parallel branch added to the inner Concur block containing the command.

e Throw — It raises an exception of the specified type, reverting recursively all
blocks that contain it until a proper handler is reached.

e Send — It inserts the value of one or more variables into one or more correspond-
ing output streams. A Send is non-blocking: the execution continues with the
next tasks without waiting.

e Receive — It stores into one variable an object extracted from one of the
available input streams. The Receive temporally suspends the current thread
of control until an object arrives or a timeout 6 expires. A Receive with a
timeout 6 can be annotated as in Fig. 7.2(d). A multiple Receive stores the
first arrived object from a stream !, into the corresponding variable x;, resets
the others to unbounded and continues the execution; this behavior is called
or-receive. A sequence of Receive commands can be grouped into a unique and-
receive which waits an object from each connected stream before proceeding
and is denoted as in Fig. 7.2.c.

e Empty. It removes all objects in a specified stream a.

A Send has only output streams and a Receive only input ones: regardless
of its name, a stream can have a different direction depending on the internal or
external perspective. Furthermore, Send and Receive commands can be viewed
as special component instances with their own identifiers, hence each variable =
involved in a Send s:S can be considered as an output stream s.x,,¢, while each
variable y of a Receive r:R can be considered as an input stream 7.y, .

7.5 Design of the Integration Process

This section discusses the NESTFLOW design of the integration process proposed
in Part I, both in its local and distributed version. This process is a good represen-
tative of the geographical processes considered in this thesis, as it presents many of
the characteristics exposed in the introduction. Indeed, it is a distributed applica-
tion that requires the coordination and collaboration of several SDI members with
different competencies, and in which not all the operations can be automated.
From the comparison performed in the previous chapter, we can observe that
processes in the geographical field can benefit from both the adoption of business
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and scientific WEMSs, but none of them are completely satisfactory. The ideal
WIMS for geo-processing has to combine the characteristics of both approaches
in a coherent system. In particular, the most suitable solution for geo-processing
seems to be the DFO approach adopted by scientific WfMSs enhanced with coarse-
grained control-flow structures.

NEsTFLOW is an example of modeling language in which control-flow con-
structs are coupled with data-flow abstractions. Through the models of the follow-
ing sections it will be clear the importance of having data-flow constructs for
representing data interactions and dependencies among objects, together with
control-flow constructs that help to enforce scheduling constraints and simplify
the representation.

Let us notice that in many cases the abbreviations introduced in Fig. 7.3 are
used to represent message passing in a compact way without introducing addi-
tional constructs. Moreover, tasks are assumed to exchange references to a MACS
database, but for brevity in some cases only the term database is used.

7.5.1 The Main INTEGRATION Process

Fig. 7.4 depicts the main steps of the integration process presented in Chap. 4, the
colored tasks are compound tasks whose decompositions are discussed in the fol-
lowing sub-sections. The process starts when two messages are received, containing
the reference to the two MACS databases to be integrated. The first Receive is
decorated with a logic and A symbol, denoting the fact that it waits the arrival
of both messages before continuing the process execution. Such Receive puts the
references obtained from the input streams in; and ins into the variables macs;
and macss, respectively.

The subsequent Catch block manages the situation in which an invalid integra-
tion case is detected. More specifically, task DetermineIntegrationCase receives
in input the two databases to be integrated and determines, on the basis of their
characteristics, the integration scenario, which is stored in the variable case. In
particular, such evaluation is performed by considering the intersection between
the set of thematic classes, objects, positions and relations contained in the two
databases, as exemplified by Tab. 4.1 in Chap. 4. If the determined integration
case is one of those defined in Sec. 4.1, then the process execution continues, oth-
erwise an InvalidIntegrationCaseEx exception is thrown, which is captured by
the Catch block and the corresponding branch is executed. Such branch contains
only a send command that inserts the value of the case variable into the output
stream out;.

The first integration operation TypeInt regards the integration of the thematic
classes contained into the two source MAcCS databases. In particular, it receives
in input the two source sets of thematic classes and produces in output a set
containing their union, which is stored into the variable ty. Subsequently, task
ObjectInt is performed, it receives in input the set of source objects and produces
in output a set of integrated objects that is stored in the variable obj. This is a
composite task whose details are discussed in the following section. Let us notice
that task TypeInt and ObjectInt have no data dependencies, thus they could
potentially execute in parallel. However, since the first task is very simple and the
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Integration :

InvalidIntCaseEx

in macs1, macs2: MacsDatabase
out macs3: MacsDatabase

var case: String macs1, macs2

var iQueue: Queue<(HardTopoRel, SoftTopoRel)> DeterminelntegrationCase
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var ty: Set<String>
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Fig. 7.4. The NESTFLOW representation of the main integration process. For brevity,
S={A.0,A.1, A2, A3, A4, A5 B.1,B.2, B.3, B4, B.5}, and S1 = {A.0, A.1, B.4}.
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time required by its execution is very limited, they have been constrained to run
in sequence.

After the integration of thematic classes and of objects, the positions integra-
tion and the update of accuracy information have to be performed. In order to do
these, the integration case is evaluated again: if the integration case belongs to the
set S1 ={A.0, A.1, B.4}, then the simple union integration is performed, otherwise
the Kalman integration is computed. In the first case, tasks MetricPosIntUnion
and MetricVarIntUnion compute Eq. 4.4 and store the resulting position vector
and covariance matrix into variables v and c, respectively. In the other case, be-
fore performing the Kalman integration, the vectors of positions and the matrices
of covariances used during the computation have to be initialized, as illustrated
in Alg. 4.4. More specifically, such initializations are performed in parallel, the
two position vectors are stored into variables vi; and vo, while the two covariance
matrices are stored into variables c; and co. After the initialization of the covari-
ance matrices, the Kalman matrix is computed and stored into variable k by task
ComputeKalmanMatrix.

The computed Kalman matrix is needed for performing both the integration of
the position vectors, and the computation of the new covariances for the integrated
result. Therefore, a synchronization is needed between the two parallel branches,
which is represented by a message passing interaction between them: after the
Kalman matrix have been stored into variable k in the right branch, a send is
performed which puts its value into another variable k’ used by the left branch.
Let us notice that in NESTFLOW parallel branches cannot share variables; there-
fore, two distinct variables have been used for storing the Kalman matrix. Notice
that this interaction has been realized in BPMN and YAWL using a control-flow
dependency which has lead to an unstructured composition, as shown in Fig. 6.5
and Fig. 6.6.

Task MetricPosIntKalman and MetricVarIntKalman perform the Kalman in-
tegration of the position vectors and of the covariance matrices; the result of these
operations is stored into variables v and c, respectively. After the metric integra-
tion, task LogicRelInt computes the sets of topological relations that are valid
in the resulting database. The details of this compound task will be discussed in
Sec. 7.5.3; it can observed that the task can send and receive messages to and from
the external environment if empty relations are determined at this stage.

The following loop is responsible to determine and solve existing inconsistencies
between the topological relations in rel and those that can be derived from the in-
tegrated objects geometry in v. Initially, task DetermineInconsistency searches
for existing inconsistencies and stores them into the queue iQueue. If this queue
is not empty, the left branch of the loop is performed which takes the first incon-
sistency in iQueue and try to solve it through the task SolveInconsistency. The
details of such task will be discussed in Sec. 7.5.4. The loop is performed again
until all inconsistencies have been solved.

When all inconsistencies have been solved, task AssemblyResult is performed
which builds the resulting MAcCS database from the previously computed informa-
tion and stores it into the variable macss. The content of this variable is inserted
into the output stream outs by the final Send command.
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7.5.2 The OBJECTINT Process

Fig. 7.5 depicts the details of the process that performs the integration of the two
source object sets. The process structure is quite simple: it receives from the input

ObjectInt :

in macs1, macs2: MacsDatabase
out obj, os: Set<MacsFeature>
var oq: Queue<MacsFeature>
var o, p: MacsFeature

oq

og.enqueue(macsl.obj)
og.enqueue(macs2.obj)

oq
Q)
o = oq.dequeue()
o
?
0 € macsl.obj A 0 € macs2.0bj A
o.id € macs2.obj o.id € macs1.obj o[€ macs1.obj
obj, 0 obj, 0
obj = obj U {0} obj = obj U {0} macs2.obj, o macs1.obj, o
obj obj p € macs2.0bj A p.id =o0.id| |p € macsl.objA p.id =o.id
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4 obj
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oQueue # @
<O
obj out
---------------------------------------------------------- b
D,

Fig. 7.5. The NESTFLOW representation of the OBJECTINT process.
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streams in; and ins the references to the two MACS databases, then two internal
variables obj and oq are initialized. The first one is used to build the process
result, while the second one is used to store the objects that have to be analyzed.
The main Loop block processes the queue oq containing the union of the source
objects: for each object o in oq a different operation is performed for adding it to
the result, depending on the fact that it is contained only in one or both the source
databases. More specifically, if o is contained in only one source database, then
it is simply added to obj. Otherwise the corresponding object p contained in the
other source database is retrieved and task ObjectPosInt is performed, in order
to determine the set of positions that will be considered during the integration.
The final result is inserted into the output stream out by the final Send.

7.5.3 The LOGRELINT Process

Fig. 7.6 illustrates the details of the process that integrates the topological in-
formation contained into the two source MACS databases. The initial Receive
command waits the availability of data in all three input channels in;, ins and
ing. The first two input channels are used to receive the source MACS databases,
while the last one is used to receive a value denoting the current integration sce-
nario. In particular, if the value of the variable case is one among A.2, A.3, A.5,
B.1, B.5, then the left branch is executed; otherwise, the execution continues with
the right one.

In the left branch of the Choice block, task TopFromSupp is initially performed.
It implements the algorithm defined in Alg. 4.4, which computes the set of topo-
logical relations that can be derived from the support of the objects in the two
source databases. The computed result is stored into the variable rel, which is
used by the following task that assemblies the result by performing the union of
the original sets of topological relations and the set rel, and stores such result
into the variable relSet.

Conversely, the right branch contains a Par block with two branches. The first
branch of the Par block computes two sets of objects: one containing the objects
of the first database that are not contained in the second one, and the other
containing the objects of the second database that are not contained in the first
one. The first set of objects is stored into the variable o1, while the second one into
the variable 02. Using the value of such variables, task TopFromSupp is executed
and the produced result is stored in the variable r;. At the same time, the second
branch of the par block computes two sets of objects: one containing the objects of
macs; whose identifiers are contained also in macss,, and the other containing the
objects of macsy whose identifiers are contained also in macs;. The first set is stored
in variable oIntq, while the second one in variable oInts. These variables are used
by task MergeTopoRel which computes Eq. 4.10, namely it merges the topological
relations contained into the source databases by performing the intersection of
the relations defined for the same pair of objects. As highlighted in Sec. 4.3 these
intersections can produce empty sets any time discordant relations are stored in
the source databases. In this case task MergeTopRel sends a message for notifying
the user that an inconsistent situation has been reached, then its execution stops
until a message is received that contains information about how to solve such



LogicRellnt :

case €S

7.5 Design of the Integration Process

in macs1, macs2: MacsDatabase

in case: String

outrelSet : Set<HardTopoRel>

varrel : HardTopoRel

varol, 02, olnt1, oInt2 : Set<MacsFeature>
varrl, r2: Set<HardTopoRel>

macs1.obj, macs2.obj

TopFromSupp(macs1.obj, macs2.obj)

macs1.obj, macs2.obj macs1.obj, macs2.0bj

rel

0l = macs1.obj \;p macs2.obj

02 = macs2.obj \;p macs1.obj

olntl = macs1.obj Nip macs2.obj
olnt2 = macs2.obj N;p macs1.obj

macsl.rel, macs2.rel, rel 01,02 olnt1, oInt2
relSet =macs1.rel U macs2.rel U {rel} ¥
relSet olntl, olnt2

TopFromSupp(o1, 02)

MergeTopoRel(olnt;, olnt;)
r2

o1, 02
rl

emptyRel empty rel of r,
emptyRel

Iz

emptyRel ~ p-----%----
RequireUserIntervention | ,awRel

r, contains empty rels

macsl.rel, macs2.rel, r1, r2

relSet = (macsl.rel \;p macs2.rel) U (macs2.rel \;p macsl.rel) Url Ur2

relSet

Fig. 7.6. The NESTFLOW representation of the LOGICRELINT process. For brevity, set
S={A.2, A3, A5, B.1, B.5}

situation. The result computed by MergeTopRel is stored into the variable ra.
This task is an example of situation in which not all inputs are necessary before
starting a compound task execution, and not all outputs are produced at the end.
Moreover, in some cases such input/output values can be not necessary at all. In
order to represent the same behaviour with BPMN or YAWL, the tasks composing
MergeTopRel could not be isolated into a unique task, but they shall be represented

explicitly.

emptyRel
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After the completion of the two parallel branches, the subsequent task computes
the resulting set of topological relations by performing the union between the set
of relations contained only in the first database, the set of relations contained only
in the second database, and the two computed sets r; and ro. The result of this
task is stored into the variable relSet. Finally, the content of the variable relSet
is inserted into the output stream out by the last send command.

7.5.4 The SOLVEINCONSISTENCY Process

The details of the process for solving inconsistencies between hard and soft topolog-
ical relations are depicted in Fig. 7.7. This process receives from its input streams a
reference to the two source databases, stored respectively into the variables macs;
and macss, a reference to the database obtained from a previous metric integration,
contained into variable macsg, and an inconsistency contained into the variable i.
Each inconsistency is represented as a pair formed by a hard and a soft topological
relation (R,7s0p) such that re.p ¢ R.

The first task IdentifyRelTransition identifies the transition ¢t = r4 — rp,
such that r4 is the topological relation derivable from the current object geome-
tries, while rp is a new topological relation such that rp € R. Subsequently the
applicability of ¢ is verified and stored in the boolean variable b. If the identi-
fied transition is not applicable, relatively to what specified in Tab. 4.2-4.10, a
NotApplTransitionEx exception is thrown, which is captured by the right branch
of the Catch block that sends the transition t to the output stream out;. Oth-
erwise if the transition can be applied, the computation continues with the left
branch of the first Choice block.

In case the desired relation rp is valid in one of the two source databases,
task ChangeCovariances determines the necessary modification to be applied in
the source covariance matrices, in order to make the relation satisfied also in the
integrated database. Then a new metric integration is performed between the
modified source databases macs; and macsy, by tasks MetricPosIntKalman and
MetricVarIntKalman that update the corresponding components of macss.

Conversely, if the relation rp is not valid in any of the two source databases,
task DetermineGeomChanges initially determines the necessary changes to apply
to the object geometries, as specified in Alg. 4.6-4.9. Then the identified changes
are applied by task ApplyGeomChanges, obtaining a new MACS database that is
stored in variable macss. Then a new metric integration is performed between
macss and the newly generated macsy. The results of such integration are stored
in the variable macss. Finally, the updated content of macss is sent to the output
stream outs by the last send command.

7.5.5 The DISTRIBUTEDINTEGRATION Process

This section discusses the NESTFLOW representation of the distributed version
of the process presented in Chap. 4. Let us notice that in this process different
and geographically distributed agents are involved: one SDI manager and several
SDI members. Fig. 7.8-7.9 illustrates the process performed by each SDI member,
while Fig. 7.10 reports the process of the SDI manager.
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Solvelnconsistency : ()
in macs1, macs2, macs3: MacsDatabase
in iz (HardTopoRel, SoftTopoRel)
out macs3: MacsDatabase
R var t: (SoftTopoRel, SoftTopoRel)
var b : Boolean
var macs4: MacsDatabase
O var o: Set<MacsFeature>

i
‘ IdentifyRelTransition
t =rp—-rg

t
VerifyTransitionApplicability

b
e NotApplTransitionEx
b ) ,
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Fig. 7.7. The NESTFLOW representation of the SOLVEINCONSISTENCY process.

The first task performed by each SDI member consists in the specification of
a remote URI representing the address of the SDI manager process. This address
will be subsequently used for sending messages to the SDI manager and invoking
its services. This operation is manually performed by a human user, as suggested
by the icon decoration placed inside the task SpecifySdiManagerUri. This is a
startup operation that has to be performed prior to all the other ones.

The Concur block contained in the second branch of the Par block denotes the
fact that many local integration processes can be performed in parallel by each SDI



176 7 The NEsTFLOW Solution

member. More specifically, as soon as new or updated data are received trough the
input stream in;, the Spawn command inside the Loop block starts a new instance
of task Lip which is responsible for performing the local integration of these new
data with the existing ones. Notice that the execution of a Spawn command simply
places into a dynamically created parallel branch a new instance of the spawned
task. The output of the Spawn command is the identifier of the created instance
which is placed into the variable ¢. The Concur dashed branch is a graphical
representation of the dynamic creation of a parallel branch with a new instance of
the spawned task. Each execution of the Spawn command generates at run-time a

DistributedIntegration :

[& SpecifySdiManagerUri ]
sdi

8 Termination

end
inl

q

Fig. 7.8. The NESTFLOW representation of th DISTRIBUTEDINTEGRATION process.

new parallel branch containing a new instance of Lip. Such task instance receives
from the input stream lin; a reference to the new MACS database, and from the
other input stream lin, its identifier.

The Loop blocks in the third and fourth branch are used for assembling the re-
sult produced by each dynamic instance without breaking the encapsulation. More
specifically, the output produced by each dynamic Lip instance is sent to the out-
put stream out; which belongs to the global process, and similarly the input of each
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dynamic Lip instance is received through the input stream ins of the global pro-
cess. In other words, the external environment does not known the existence of such
dynamic instances and communicates only with task DistributedIntegration.

The Loop block in the third branch is responsible for sending the result of
the local integration to the SDI manager. In particular, the first two Receive
commands collect the instance identifier, stored into variable ¢', the address of the
SDI manager, stored into variable sdi’, and the result of the local integration,
stored in macs3. The subsequent send command sends to sdi’ the tuple (this,
¢, macs3) through the output stream out;, where this is a language keyword
representing the identifier of the current process. The SDI manager will use the
reference in this for communicating with the current process, while the reference
in ¢ will be returned together with the result, in order to correctly redirect the
received data.

The Loop in the fourth branch does a similar work for the input. The process
receives from the input stream ins the result of the global integration performed
by the SDI manager. More specifically, it receives a tuple (x, macsy) containing
a reference x to the specific dynamic instance of Lip and the integrated MACS
database macsy. The returned reference x is one of those previously sent to the
SDI manager by the send command in the third branch.

macs2
RetrieveLocalDatabase
macsl
macs1, macs2 .-..--.--.9_11:[_1.4>
IntegrationProcess out?
macs3  JTTTTTTTTTTTTTTCT
macs3
CompressVarMatrix
macs3
? loutl
sdi loutz
macs3 . lout3

macs3, macs4
SynchLocalData

Fig. 7.9. NESTFLOW representation of the LIP process.

The details of the Lip process are illustrated in Fig. 7.9. The process starts by
receiving the MAcCS database to be integrated and the address of the SDI man-
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ager. The database macss is used by task RetrieveLocalDatabase to retrieve
the information of the local database that has to be integrated, such information
are stored into the variable macs1. An instance of task IntegrationProcess (de-
picted in Fig. 7.4) is then executed. Notice that, while its output streams out;
and outs becomes output streams of the Lip process, the output streams outs
is connected to the subsequent task CompressVarMatrix. This task compress the
covariance matrix as explained in Sec. 4.7 and updates the MACS database refer-
enced by macss. The reference ¢’ to the current instance, the address sdi of the
SDI manager and the result of the local integration are sent to the outer process
by the following three send commands. Finally, through the input stream ling it
receives from the outer process, the result of the global integration performed by
the SDI manager. This result is used to synchronize the local data by the last task
SynchLocalData.

Fig. 7.10 illustrates the global integration performed by the SDI manager. It
initially receives a tuple (p, ¢, macs) containing the reference of the invoking
process p, the reference to the particular instance ¢ and the MACS database to be
integrated macs. Task Gid performs the global integration presented in Sec. 4.6,
then the result is sent to process p together with the reference to the instance ¢,
and to all the other involved SDI members whose address has been identified and
stored into the list mlist.

Globallntegration : f
I

g Termination

end

Fig. 7.10. NESTFLOW representation of the GLOBALINTEGRATION process performed by
the SDI manager.
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7.6 Summary and Concluding Remarks

In the previous chapter we have highlighted the need in the geographical domain
for a WEMS that combines the strengths of both business and scientific WfMSs in a
coherent way. In particular, it should inherit from scientific WfMSs a data-oriented
computational model, in which data aspects are considered a primary aspect to
be modeled, but this model has to be enhanced with some high-level control-flow
constructs in order to allow more sophisticated constructions.

NESTFLOW is conceived to explore a particular modeling language design so-
lution in which structured control-flow constructs are tightly-coupled with asyn-
chronous message passing connections. This language has been developed by our
University in the context of another PhD thesis, and has been extended and applied
here for designing the proposed integration framework. The NESTFLOW design of
such process is presented at the end of the chapter, where it becomes clear how the
explicit representation of data-flow dependencies together with the use of advanced
control-flow structures can ease the design and development of geo-processes.

In this thesis only the core constructs of NESTFLOW have been used. A future
work of this part regards the further extension and specialization of the NEST-
Frow language for the geographical domain. In particular, the development of a
library of standard components implementing geographical operations, such as the
evaluation of topological relations, as well as the definition of components for the
visualization of the process execution from a geographical point of view. Relatively
to the management of users and roles, the system can be extended by consider the
Geo-RBAC model proposed in [32], which allows one to defined privileges for a
task considering also the area in which that task has to be performed.






8

Conclusions

This thesis deals with two important problems that usually affect an SDI: the
integration of spatial data coming from different sources and characterized by
different quality levels, and the development of a framework for supporting the
construction and maintenance of a distributed and integrated global SDI database.

Relatively to the first contribution, this thesis can be considered as a starting
point to deeply study and analyze the role of accuracy in any operation regarding
spatial data. In particular, the thesis starts by introducing a model for representing
accuracy information of spatial data and by proposing an integration framework
based on this model. The model considers a statistical treatment of measurements
and the integration framework is an application of the Kalman filter in a static
context, where estimates do not change due to the time passage, but only for the
presence of new and updated observations. The integration is also driven by the
knowledge of the existing topological relations, which are treated with a logical
approach since they are not subject to measurement errors. In other words, in some
cases the integrated measurements can be adjusted in order to satisfy a particular
topological relation.

The proposed integration procedure has been applied to solve some typical sit-
uations encountered during the construction of a regional SDI in Lombardy (Italy),
while its massive application to two real-world databases require to face several
additional questions. First of all, the computational complexity of the approach
is mainly determined by the cost of inverting the involved variance-covariance
matrices during the application of the Kalman filter. If the database contains n
positions, then the dimension of the variance-covariance matrix is approximately
n?, and this dimension can be very high for real databases. For this reason, we
propose some techniques for reducing the number of covariance information that
have to be stored and eventually transferred in case of a distributed environment.
However, the matrix keeps its full dimension during the computation; hence, the
first future extension can be the development of other approaches to reduce the
cost of the inversion operation.

Another critical aspect for the massive application of the proposed integration
procedure is the first assumption about the preliminary database alignment. In-
deed, the approach assumes that the two databases share the same schema, and
corresponding objects are characterized by the same identifier. This matching op-
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eration is far from being simple and is still an open research problem. In some cases
the source databases can be characterized by different scales, or level of details,
several objects can be aggregated into a unique one, or vice-versa. Therefore, a
future work regards the study of the preliminary matching phase that allows one
to label corresponding objects with the same identifier.

The last integration phase aligns metric and logical observations together, if
some inconsistencies exist between the desired topological relations and the inte-
grated positions, the last ones can be slightly modified in order to satisfy the first
ones. In case the desired topological relation is satisfied by the geometry of one
source database, then the relative distances between the involved objects in this
database are made more accurate; moreover, we known that a configuration exists
that satisfy the desired properties. Conversely, if the desired topological relation is
not satisfied by any source database, then the geometry has to be properly mod-
ified ad hoc, and in such case we cannot exclude that new inconsistencies can be
generated elsewhere. However, we can observe that thanks to the role taken by
the accuracy of relative distances, the topological relations that are valid in the
source database are substantially preserved during the metric integration. There-
fore, the number of generated inconsistencies, that have to be treated with the last
integration phase, is very limited.

Another important extension regards the use of the accuracy information con-
tained into a MACS database in the query and visualization of spatial objects.
For instance, let us consider the distance queries presented in Sec. 2.2.3, in this
case a certain level of required accuracy can be specified for the result. Similarly,
queries involving topological relations can require a certain level of certainty. As
regards to the visualization aspects, the possibility to give a graphical overview of
object uncertainty, in terms of its confidence region, can become a powerful tool
in the geographical field, where user interactions are generally performed through
maps, and not directly on numeric coordinates. In a first stage, the approximation
introduced in Def. 3.12 can be applied, which estimates the confidence region of
an object as the smallest buffer region containing the confidence region of all its
defining positions.

The second part of the thesis deals with the realization of the proposed integra-
tion framework. This framework is a good example of geographical process with
the characteristics highlighted in the introduction; therefore we decide to evaluate
the applicability of existing workflow technologies for its realization. Many W{fMSs
are available, anyway we decide to concentrate on two representatives YAWL and
Kepler which well exemplified two different approaches to process design. In par-
ticular, YAWL is a representative of the control-flow oriented approach, in which
processes are described by defining the execution order to the constituent tasks.
This system gives also much attention to the coordination aspects and to the
management of human resources. Conversely, Kepler is a representative of the
data-flow oriented approach, in which processes are described by explicitly repre-
senting the existing data dependencies among tasks. This system is also oriented
to the automation of repetitive processes, rather than to the coordination aspects.

YAWL and Kepler are compared from two perspective: on the one hand from
a general point of view by considering the widely accepted method of workflow
patterns, and on the other hand from a spatial point of view by considering the
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design of the integration process as use case. The obtained results highlight that
both systems provides interesting and promising functionalities for the realization
of geographical process, but none of them is completely satisfactory. Several defi-
ciencies have to be filled in both kind of systems, and the most important one re-
gards the adopted computational model. The final conclusion is that the data-flow
computational model provided by Kepler is more satisfactory, because it is more
adequate in case of long-running and data-intensive computations, but in some
cases the presence of high-level control-flow structure can be desirable. For this
reason, the last chapter introduces a novel modeling language called NESTFLOW
in which structured control-flow constructs are tightly-coupled with Asynchronous
Message Passing (AMP) connections. Such language has be extended in this thesis
with some data types for the geometry representation, and applied for the realiza-
tion of the proposed integration process. In particular, each integration step has
been implemented in Java and assembled using NESTFLOW. Clearly many other
extensions of this language are necessary for obtaining a complete geographical
WIMS, for instance as regards to the management of human resources, but the
initial results are satisfactory.

For future work we plan to extend the system with a library of graphical com-
ponents for geo-processing, taking them from existing APT like JTS [136], in order
to allow a domain expert (which is not an IT expert) to assemble its necessary
processes. Another important extension regards the support for an automatic com-
position of geographical services on the basis of their semantic description. In other
words, the designer can be driven in the workflow construction by a description of
the activity performed by the task and its interface. In this way only tasks with a
compatible interfaces can be concatenated and tasks performing similar activities
can be easily identified. Some research work about the semantic description of
geographical services are present in [75-77], while Kepler provides an example of
ontology-based classification of the available functionalities for ease their search
and retrieval.
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Appendices






A

Statistical Background

A.1 Probability Theory

An event is a collection of outcomes of an experiment. Events consisting of a single
outcome are known as simple or elementary events. The collection of all possible
outcomes for an experiment is defined as sample space. Sure and impossible events
are denoted by (2 and @, respectively.

Definition A.1 (Probability). Given a random experiment, the probability of
an element A can be approximated by the following ratio:

Pr(A) = limy— oo n
n

where n is the number (sufficiently large) of times the experiment is repeated,
while m is the number of occurrence of A in the experiment. O

From the definition it follows that 0 < Pr(A) < 1, in particular Pr(£2) = 1 and
Pr(@) = 0. Moreover, let A and B two events, the following axioms hold:

1. 0<Pr(A)<land 0<Pr(B) <1

2. Pr(2) =1 and Pr(@) =0

3. Pr(AuB)=Pr(A) +Pr(B)-Pr(An B)

4. If Ao B, Pr(A) > Pr(B) and Pr(A4) - Pr(B) = Pr(A|B)
where Pr(A|B) is the probability that the event A occurs and the event B
does not occurs.

5. For any event A, Pr(A¢) =1-Pr(A)
where A% is the event “A does not occur” and is called complement event.

6. If events Ay, Ag,..., A, are mutually exclusive and exhaustive events (i.e. at
least one of them occurs), the probability of their union is equal to 1: Pr(4; u
+UA,)=Pr(4;)+...Pr(4,) =1

Definition A.2 (Random variable). Given a random experiment with sample
space {2, a random variable X is a function X : {2 - R.

e The probability Pr(X = z) of the random variable X equal to a constant x is
called probability density function of X.
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e The probability Pr(X < z) of the random variable X not greater than the
constant x is called distribution function of X. ]

Definition A.3 (Expectation). Let X a random variable with probability den-
sity function f(z). The expectation of this random variable is denoted as E(X)
and is equal to the weighted average of its outcomes.

E(X) = [: xf(x)dx
O

Definition A.4 (Variance). Let X a random variable with probability density
function f(x). The variance of this random variable is denoted as o(X) or simply
0% . Tt corresponds to the expectation of the random variable (X - E(X))2.

0*(X) = B[(X - E(X))?]
O

The variance of a random variable X represents the dispersion of the distribution
around its mean value.

The expectation and the variance have the following properties:

o2(X) = B(X)? - [B(X))?

For any constant a, E(a) = a and 0(a) =0

For any constant ¢, E(cX) = cE(X) and 02(zC) = c?0?(X)

B(XY) = B(X)E(Y) + E[(x - E(X)) - (y - E(1))]

Let x1,x2,...,2, be n random variables, the expectation and the variance of
their sum are

GU o=

E(zxy+xo+-+xy)=E(x1) + E(x) +-E(xy)

02(1,1 + Tg + - +:L'n) = i_:lE‘[(:L'2 —E(ml))(xj —E(l'j))]

6. Let x1,x2,...,2, be n random variables, the expectation of their product is
E(xlax% 7xn) = E(Z’l)E(l'g)E(iﬂn)

7. Let x1,x2,...,2, be n random variables. Suppose that the expectation and
the variance of each of these random variables are FE(zy) = 4 and o2 (x3,) = 0.

The expectation and the variance of the random variable y = — - ¥_; xy are:
n
E(y) = p

2

g
o (y) = —
n
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Definition A.5 (Covariance). Let X and Y two random variables, the covari-
ance oxy of these two variables is given as

oxy = E[(X - E(X))(Y - E(Y))]

The covariance has the following properties:

1

2

. An alternative computation method is:

oxy = E[(X - E(X))(Y - E(Y))]
- BE[XY - XBE(Y)-YE(X) + E(X)E(Y)]
- B(XY) - E(X)E(Y)

. Let X and Y two independent random variables

oxy = E(XY)-E(X)E(Y)=0

A.2 Fuzzy Theory

Fuzzy set theory can be applied to represent spatial objects with vague properties.

Definition A.6 (Fuzzy set). Given a universe U, a fuzzy set A in U is defined
by a membership function g4 : U — [0,1] that associate to each element u € U
the degree of membership of u belonging to A. If pa(u) = 0, element u does
not belong to A, while p4(u) = 1 means that u definitely belongs to A. The set
{z el |pa(x) >0} is called support of A.

Let A and B two fuzzy set with membership functions p4 and pp, respectively.

Five fundamental operators on fuzzy sets are defined as follows:

1.

Tk W N

O © 00O U ix W

—_

Inclusion: A2 B if and only if Vu el . pa(u) > up(u)

. Equivalence: A= B ifand onlyif A2 BAB2A

. Union: C = AuB if and only if Vu el . pc(u) = max{pa(u), pp(u)}

. Intersection: D = An B if and only if Vu el . up(u) = min{pa(u), up(u)}
. Complement: E = A® if and only if Yu e U . pp(u) =1 - pa(u)

For any nonempty fuzzy set A, B and C the following propositions are true:

. Indempotency: AuUA=Aand AnA=A

. Commutation: AuB=BuAand AnB=BnA

. Association: (AuB)uC=Au(Bu(C)and (AnB)nC=An(BnC)

. Absorption: (AnB)uA=Aand (AuB)nA=A

. Distributivity: An(BuC) = (AnB)u(AnC) and Au(BnC) = (AuB)n(AuC)
. Identity: Aul =U and Aug=Aand AnU=Aand Ang=0

. Tnvolution: (A%)¢ = A

. De Morgan’s law: (Au B)® = A n B and (An B)“ = A uB®

CAUAC 2 U

. ANAC x g
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Definition A.7 (Fuzzy topology). Let X be a nonempty set and I the closed
unit interval. A family § of fuzzy sets in X is called fuzzy topology if and only if:

1.3, Xeéd
2.if A,Bed, then AnBed
3.Viel . A;ed. UA; €6

The pair (X,4) is called fuzzy topological space. Every member of § is called
an open fuzzy set, while its complement, denoted by § is a closed fuzzy set.

Definition A.8 (Interior and closure). Given a fuzzy set A:

1. Set A° is said to be the interior of A, if it is an open subset of A; i.e. A° =
{Bed:Bc A}

2. The closure A of A is the intersection of all closed subsets of A: A= N{Bed :
B2 A}

Definition A.9 (Boundary). The boundary of a fuzzy set A is defined as: 94 =
AU (A©).

Definition A.10 (I-Fuzzy subset). Let X be a nonempty set, I be the closed
interval [0, 1]. An I-fuzzy subset A on X is a mapping (called membership function
on A) pa : X — I. The family of all the [0,1]-fuzzy or I-fuzzy subsets on X is
denoted as IX and consists of all mappings from X to I.

The set IX is called I-fuzzy topological space, X is called the carrier domain of
each I-fuzzy subset on it, and I is called the value domain of each I-fuzzy subset
on X, while A € I’X is called crisp subset on X.
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Workflow Patterns

B.1 Control-Flow Patterns

This section briefly recalls the control-flow patterns presented in [109].

Basic Control-Flow Patterns capture elementary aspects of process control.

Sequence (Wcp-01): a task in a process is enabled after the completion of
a preceding activity in the same process.

Parallel Split (Wcp-02): the divergence of a branch into two or more parallel
branches each of which execute concurrently.

Synchronization (Wcp-03): the convergence of two or more branches into
a single subsequent branch such that the thread of control is passed to the
subsequent branch when all input branches have been enabled.

Ezclusive Choice (WcP-04): the divergence of a branch into two or more
branches such that when the incoming branch is enabled, the thread of
control is immediately passed to precisely one of the outgoing branches
based on the outcome of a logic expression associated with the branch.
Simple Merge (Wcp-05): the convergence of two or more branches into a
single subsequent branch such that each enablement of an incoming branch
results in the thread of control being passed to the subsequent branch.

Advanced Branching and Syncronization Patterns this group characterize more
complex thread branching and merging concepts which arise in business pro-
cesses.

Multi-Choice (WcP-06): the divergence of a branch into two or more
branches. When the incoming branch is enabled, the thread of control is
immediately passed to one or more of the outgoing branches based on the
outcome of distinct logic expressions associated to each branch.

Structured Synchronizing Merge (WcP-07): the convergence of two or more
branches (which diverged earlier in the process at a uniquely identifiable
point) into a single subsequent branch. The thread of control is passed to the
subsequent branch when each active incoming branch has been enabled. The
Structured Synchronizing Merge occurs in a structured context, i.e. there
must be a single Multi-Choice construct earlier in the process model with
which the Structured Synchronizing Merge is associated and it must merge
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all of the branches emanating from the Multi-Choice. These branches must
either flow from the Structured Synchronizing Merge without any splits or
joins or they must be structured in form (i.e. balanced splits and joins).
Multi-Merge (WcP-08): the convergence of two or more branches into a
single subsequent branch such that each enablement of an incoming branch
results in the thread of control being passed to the subsequent branch.
Structured Discriminator (WcpP-09): the convergence of two or more branches
into a single subsequent branch following a corresponding divergence earlier
in the process model such that the thread of control is passed to the subse-
quent branch when the first incoming branch has been enabled. Subsequent
enablements of incoming branches do not result in the thread of control
being passed on. The Structured Discriminator construct resets when all
incoming branches have been enabled. The Structured Discriminator occurs
in a structured context, i.e. there must be a single Parallel Split construct
earlier in the process model with which the Structured Discriminator is
associated and it must merge all of the branches emanating from the Struc-
tured Discriminator. These branches must either flow from the Parallel Split
to the Structured Discriminator without any splits or joins or they must be
structured in form (i.e. balanced splits and joins).

Blocking Discriminator (WcP-28): the convergence of two or more branches
into a single subsequent branch following one or more corresponding diver-
gences earlier in the process model. The thread of control is passed to
the subsequent branch when the first active incoming branch has been en-
abled. The Blocking Discriminator construct resets when all active incoming
branches have been enabled once for the same process instance. Subsequent
enablements of incoming branches are blocked until the Blocking Discrim-
inator has reset.

Cancelling Discriminator (WCP-29): the convergence of two or more branches
into a single subsequent branch following one or more corresponding diver-
gences earlier in the process model. The thread of control is passed to the
subsequent branch when the first active incoming branch has been enabled.
Triggering the Cancelling Discriminator also cancels the execution of all of
the other incoming branches and resets the construct.

Structured Partial Join (WCP-30): the convergence of two or more branches
(say m) into a single subsequent branch following a corresponding diver-
gence earlier in the process model such that the thread of control is passed
to the subsequent branch when k of the incoming branches have been en-
abled, where k is less than m. Subsequent enablements of incoming branches
do not result in the thread of control being passed on. The join construct
resets when all active incoming branches have been enabled. The join occurs
in a structured context, i.e. there must be a single Parallel Split construct
earlier in the process model with which the join is associated and it must
merge all of the branches emanating from the Parallel Split. These branches
must either flow from the Parallel Split to the join without any splits or
joins or be structured in form (i.e. balanced splits and joins).

Blocking Partial Join (WcP-31): the convergence of two or more branches
(say n) into a single subsequent branch following one or more corresponding
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divergences earlier in the process model. The thread of control is passed to
the subsequent branch when k of the incoming branches has been enabled
(where 2 < k < m). The join construct resets when all active incoming
branches have been enabled once for the same process instance. Subsequent
enablements of incoming branches are blocked until the join has reset.

—  Cancelling Partial Join (WCP-32): the convergence of two or more branches
(say n) into a single subsequent branch following one or more corresponding
divergences earlier in the process model. The thread of control is passed to
the subsequent branch when k of the incoming branches have been enabled
where k is less than n. Triggering the join also cancels the execution of all
of the other incoming branches and resets the construct.

—  Generalised AND-Join (WCP-33): the convergence of two or more branches
into a single subsequent branch such that the thread of control is passed to
the subsequent branch when all input branches have been enabled. Addi-
tional triggers received on one or more branches between firings of the join
persist and are retained for future firings.

—  Local Synchronizing Merge (WcCP-37): the convergence of two or more
branches which diverged earlier in the process into a single subsequent
branch such that the thread of control is passed to the subsequent branch
when each active incoming branch has been enabled. Determination of how
many branches require synchronization is made on the basis on informa-
tion locally available to the merge construct. This may be communicated
directly to the merge by the preceding diverging construct or alternatively
it can be determined on the basis of local data such as the threads of control
arriving at the merge.

— General Synchronizing Merge (WcP-38): the convergence of two or more
branches which diverged earlier in the process into a single subsequent
branch such that the thread of control is passed to the subsequent branch
when either (1) each active incoming branch has been enabled or (2) it is
not possible that any branch that has not yet been enabled will be enabled
at any future time.

—  Thread Merge (WcCP-41): at a given point in a process, a nominated number
of execution threads in a single branch of the same process instance should
be merged together into a single thread of execution.

—  Thread Split (WCP-42): at a given point in a process, a nominated number
of execution threads can be initiated in a single branch of the same process
instance.

Multiple Instance Patterns describe situations where multiple concurrent in-

stances of a task or sub-process execute simultaneously and may need to be

synchronized upon completion.

—  Multiple Instances without Synchronization (WCP-12): within a given pro-
cess instance, multiple instances of a task can be created. These instances
are independent of each other and run concurrently. There is no requirement
to synchronize them upon completion.

—  Multiple Instances with a Priori Design-Time Knowledge (WcP-13): within
a given process instance, multiple instances of a task can be created. The
required number of instances is known at design time. These instances are
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independent of each other and run concurrently. It is necessary to synchro-
nize the task instances at completion before any subsequent tasks can be
triggered.

Multiple Instances with a Priori Run-Time Knowledge (WcCP-14): within a
given process instance, multiple instances of a task can be created. The re-
quired number of instances may depend on a number of run-time factors, in-
cluding state data, resource availability and inter-process communications,
but is known before the task instances must be created. Once initiated,
these instances are independent of each other and run concurrently. It is
necessary to synchronize the instances at completion before any subsequent
tasks can be triggered.

Multiple Instances without a Priori Run-Time Knowledge (WCP-15): within
a given process instance, multiple instances of a task can be created. The
required number of instances may depend on a number of runtime factors,
including state data, resource availability and inter-process communications
and is not known until the final instance has completed. Once initiated,
these instances are independent of each other and run concurrently. At any
time, whilst instances are running, it is possible for additional instances
to be initiated. It is neccesary to synchronize the instances at completion
before any subsequent tasks can be triggered.

Static Partial Join for Multiple Instances (WCP-34): within a given process
instance, multiple concurrent instances of a task (say m) can be created.
The required number of instances is known when the first task instance
commences. Once n of the task instances have completed (where n is less
than m), the next task in the process is triggered. Subsequent completions of
the remaining m-n instances are inconsequential, however all instances must
have completed in order for the join construct to reset and be subsequently
re-enabled.

Cancelling Partial Join for Multiple Instances (WcCP-35): within a given
process instance, multiple concurrent instances of a task (say m) can be
created. The required number of instances is known when the first task
instance commences. Once n of the task instances have completed (where n
is less than m), the next task in the process is triggered and the remaining
m-n instances are cancelled.

Dynamic Partial Join for Multiple Instances (WcP-36): within a given pro-
cess instance, multiple concurrent instances of a task can be created. The
required number of instances may depend on a number of runtime factors,
including state data, resource availability and inter-process communications
and is not known until the final instance has completed. At any time, whilst
instances are running, it is possible for additional instances to be initiated
providing the ability to do so had not been disabled. A completion condition
is specified which is evaluated each time an instance of the task completes.
Once the completion condition evaluates to true, the next task in the pro-
cess is triggered. Subsequent completions of the remaining task instances
are inconsequential and no new instances can be created.

State-Based Patterns reflects situations for which the execution depends upon
the notion of state.
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—  Deferred Choice (WcP-16): a point in a process where one of several
branches is chosen based on interaction with the operating environment.
Prior to the decision, all branches represent possible future courses of ex-
ecution. The decision is made by initiating the first task in one of the
branches i.e. there is no explicit choice but rather a race between differ-
ent branches. After the decision is made, execution alternatives in branches
other than the one selected are withdrawn.

— Interleaved Partial Order Routing (WCP-17): a set of tasks has a partial
ordering defining the order in which they must be executed. Each task in
the set must be executed once and they can by completed in any order
according with the partial order. However, as an additional requirement,
no two tasks can be executed at the same time (i.e. no two tasks can be
active for the same process instance at the same time).

—  Milestone (WcP-18): a task is only enabled when the process instance (of
which it is part) is in a specific state (typically a parallel branch). The state
is assumed to be a specific execution point (also known as a milestone) in
the process model. When this execution point is reached the nominated task
can be enabled. If the process instance has progressed beyond this state,
then the task cannot be enabled now or at any future time (i.e. the deadline
has expired). Note that the execution does not influence the state itself, i.e.
unlike normal control-flow dependencies it is a test rather than a trigger.

—  Critical Section (WcP-39): two or more connected subgraphs of a process
model are identified as “critical sections”. At runtime for a given process
instance, only tasks in one of these “critical sections” can be active at any
given time. Once execution of the tasks in one “critical section” commences,
it must complete before another “critical section” can commence.

— Interleaved Routing (WcCP-40): each member of a set of tasks must be ex-
ecuted once. They can be executed in any order but no two tasks can be
executed at the same time (i.e. no two tasks can be active for the same
process instance at the same time). Once all of the tasks have completed,
the next task in the process can be initiated.

Cancelation and Force Completion Patterns categorize the various cancelation

scenarios that may arise in a business process.

—  Cancel Activity (Wcp-19): an enabled activity is withdrawn prior to its
commencing execution. If the activity has started, it is disabled and, where
possible, the currently running instance is halted and removed.

—  Cancel Case (WcP-20): a complete process instance is removed. This in-
cludes currently executing activities, those which may execute at some fu-
ture time and all sub-processes. The process instance is recorded as having
completed unsuccessfully.

—  Cancel Region (WcPp-25): the ability to disable a set of activities in a pro-
cess instance. If any of the activities are already executing, then they are
withdrawn. The activities need not ba a connected subset of the overall
process model.

—  Cancel Multiple Instance Activity (WcP-26): within a given process in-
stance, multiple instances of a task can be created. The required number of
instances is known at design time. These instances are independent of each
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other and run concurrently. At any time, the multiple instance task can be
cancelled and any instances which have not completed are withdrawn. Task
instances that have already completed are unaffected.

Complete Multiple Instance Activity (WCP-27): within a given process in-
stance, multiple instances of a task can be created. The required number of
instances is known at design time. These instances are independent of each
other and run concurrently. It is necessary to synchronize the instances at
completion before any subsequent tasks can be triggered. During the course
of execution, it is possible that the task needs to be forcibly completed such
that any remaining instances are withdrawn and the thread of control is
passed to subsequent tasks.

Iteration Patterns describe various ways in which repetitive tasks or subpro-
cesses can be specified in a process.

Arbitrary Cycles (Wcp-10): the ability to represent cycles in a process
model that have more than one entry or exit point. It must be possible for
individual entry and exit points to be associated with distinct branches.
Structured Loop (WcP-21): the ability to execute a task or sub-process
repeatedly. The loop has either a pre-test or post-test condition associated
with it that is either evaluated at the beginning or end of the loop to
determine whether it should continue. The looping structure has a single
entry and exit point.

Recursion (WcCP-22): the ability of a task to invoke itself during its exe-
cution or an ancestor in terms of the overall decomposition structure with
which it is associated.

Termination Patterns address the issue of when the execution of a process can

be

considered to be finished.

Implicit Termination (WCP-11): a given process (or sub-process) instance
should terminate when there are no remaining work items that are able to
be done either now or at any time in the future and the process instance is
not in deadlock.

Ezplicit Termination (WCP-43): a given process (or sub-process) instance
should terminate when it reaches a nominated state. Typically this is de-
noted by a specific end node. When this end node is reached, any remaining
work in the process instance is cancelled and the overall process instance is
recorded as having completed successfully, regardless of whether there are
any tasks in progress or remaining to be executed.

Trigger Patterns identify constructs that allow to continue/start the execution

of

a process only when a signal from the operating environment has been

reached.

Transient Trigger (WcP-23): the ability for a task instance to be triggered
by a signal from another part of the process or from the external environ-
ment. These triggers are transient in nature and are lost if not acted on
immediately by the receiving task. A trigger can only be utilized if there is
a task instance waiting for it at the time it is received.

Persistent Trigger (WCP-24): the ability for a task to be triggered by a
signal from another part of the process or from the external environment.
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These triggers are persistent in form and are retained by the process until
they can be acted on by the receiving task.

B.2 Data Patterns

This section briefly recalls the data patterns presented in [108].

Data Visibility patterns define the binding of a data element and its region of

visi

bility.

Task Data (WDP-01) corresponds to a data element defined in the context of
a particular task. It is typically only accessible within a given task instance
and has the same life-span as the task instance to which it is bound.
Block Data (WDP-02) corresponds to a data element defined in the context
of a particular block or net within a process that is hierarchical in form.
The data element is visible throughout the block and it has a life-span
corresponding to the life-span of the block.

Scope Data (WDP-03) corresponds to a data element bound to a set of tasks
in a process. If the process is hierarchical in form, the tasks are assumed to
be in the same block although they need not be directly connected. A scope
data element is visible only to the tasks of which the scope is comprised. It
has the same lifespan as the block in which it resides.

Multiple Instance Data (WDP-04) corresponds to a data element in a spe-
cific executioninstance of a task where the task may execute multiple times,
possibly concurrently.

Case Data (WDP-05) corresponds to a data element that is accessible to
all tasks within a process instance. It has a life-span that is the same as the
process instance.

Folder Data (WDP-06) corresponds to a data element that is defined outside
the context of the process that is able to be coupled with particular process
instances during their execution. Once married up with a process instance,
the data element is accessible to all tasks in the process instance.
Workflow Data (WDP-07) corresponds to a data element that is accessible
throughout all tasks in cases for a given process.

Environment Data (WDP-08) correspond to a data element that is defined
outside the context of the process but accessible within it during execution.
It is possible for an environment data element to be accessed by different
case of different processes.

Data Interaction Patterns are of two main types: internal data interaction

pat

terns, which describe the various ways in which data elements are commu-

nicated between the main components in a process (the first four ones), and
external data interaction patterns, which describe the various ways in which

dat

a elements are communicated between the main components in a process

and the operating environment (the last four ones).

Data Interaction between Tasks (WDP-09) distinguishes the way in which
data elements are passed between tasks in a process instance.
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—  Data Interaction between Block Task and Sub-process Decomposition (WDP-
10, WDP-11) describes the manner in which data elements are passed to and
from a composite task which has an associated sub-process decomposition.

—  Data Interaction with Multiple Instance Tasks (WDP-12, WDP-13) de-
scribes the manner in which data is passed to and from a multiple instance
task.

— Data Interaction between Cases (WDP-14) denotes the communication of a
data element from one case to another.

— Data Interaction Task to Environment Push-Oriented (WDP-15): the abil-
ity of a task to initiate the passing of data elements to a resource or service
in the operating environment.

— Data Interaction Environment to Task Pull-Oriented (WDP-16): the abil-
ity of a task to request data elements from resources or services in the
operational environment.

— Data Interaction Environment to Task Push-Oriented (WDP-17): the abil-
ity for a task to receive and utilise data elements passed to it from services
and resources in the operating environment on an unscheduled basis.

— Data Interaction Task to Environment Pull-Oriented (WDP-18): the abil-
ity of a task to receive and respond to requests for data elements from
services and resources in the operational environment.

— Data Interaction - Case to Environment - Push-Oriented (WDP-19): the
ability of a case to initiate the passing of data elements to a resource or
service in the operational environment.

— Data Interaction - Environment to Case - Pull-Oriented (WDP-20): the
ability of a case to request data from services or resources in the operational
environment.

— Data Interaction - Environment to Case - Push-Oriented (WDP-21): the
ability of a case to accept data elements passed to it from services or re-
sources in the operating environment.

—  Data Interaction - Case to Environment - Pull-Oriented (WDP-22): the
ability of a case to respond to requests for data elements from a service or
resource in the operating environment.

—  Data Interaction - Workflow to Environment - Push-Oriented (WDP-23):
the ability of a process environment to pass data elements to resources or
services in the operational environment.

—  Data Interaction - Environment to Workflow - Pull-Oriented (WDP-24):
the ability of a process environment to pass data elements to resources or
services in the operational environment.

—  Data Interaction - Environment to Workflow - Push-Oriented (WDP-25):
the ability of services or resources in the operating environment to pass
global data to a process.

—  Data Interaction - Workflow to Environment - Pull-Oriented (WDP-26):
the ability of services or resources in the operating environment to pass
global data to a process.

Data transfer patterns deal with the mechanics of how a data element is actually

transported to or from a task instance in an executing process.
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—  Data Transfer by Value (WDP-27, WDP-28) recognizes the situation where
the transport of a data element is actually based on copying its value be-
tween one task and another.

— Data Transfer — Copy In/Copy Out (WDP-29) corresponds to the situation
where the data elements are copied from an external source (either within
or outside the process environment) into its address space at the commence-
ment of execution and to copy their final values back at completion.

— Data Transfer by Reference — Unlocked (WDP-30) corresponds to the sce-
nario where data elements are passed by reference rather than by value.

— Data Transfer by Reference — With Lock (WDP-31) is an extension of the
preceding pattern that also provides a measure of concurrency control by
registering a lock over the transferred data element to ensure that the re-
ceiving task retains complete control over it and can rely on its integrity.

— Data Transformation — Input (WDP-32) corresponds to the ability to apply
a transformation function to a data element prior to it being passed to a
process component.

— Data Transformation — Output (WDP-33) corresponds to the ability to ap-
ply a transformation function to a data element immediately prior to it
being passed out of a process component.

o Data-based Routing capture the various ways in which data elements can in-
teract with other perspectives (e.g. control-flow) and influence the overall op-
eration of a process instance.

—  Task Precondition — Data Fxistence (WDP-34) represents the ability to
define a precondition for tasks based on the presence of data elements at
the time of execution.

—  Task Precondition — Data Value (WDP-35) represents the ability to define
a precondition for tasks based on the value of specific parameters at the
time of execution.

—  Task Postcondition — Data Existence (WDP-36) represents the ability to
define a precondition for tasks based on the presence of data elements at
the time of completion.

—  Task Postcondition — Data Value (WDP-37) represents the ability to define
a precondition for tasks based on the value of specific parameters at the
time of completion.

—  Event-based Task Trigger (WDP-38) represents the ability for an external
event to initiate a task and to pass data elements to it.

— Data-based Task Trigger (WDP-39) reprsents the ability to trigger a specific
task when an expression based on data elements in the process instance
evaluates to true.

—  Data-based Routing (WDP-40) provides the ability to alter the control-flow
within a case based on the evaluation of data-based expressions. A data-
based routing expression is associated with each outgoing arc of an OR-split
or XOR-split.

B.3 Resource Patterns

This section briefly recalls the resource patterns presented in [111].
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e (reation Patterns describe the various ways in which work items can be allo-
cated to one or several resources at run-time.

Direct Distribution (WRP-1) corresponds to the situation where a work item
is directly offered or allocated to one or more specifically named resource.
Role-based Distribution (WRP-2) corresponds to the situation where a work
item is directly offered or allocated to one or more specifically named roles,
each of which contain one or more users.

Deferred Distribution (WRP-3) corresponds to the situation where the iden-
tification of the resource that a work item will be offered or allocated to is
delayed until run-time, typically by nominating a data resource from which
it can be obtained.

Authorization (WRP-4) identifies privileges that can be assigned to specific
resources during the execution of a process. These privileges define the
range of actions that the resource may undertake during the execution of
the process.

Separation of Duties (WRP-5) corresponds to a constraint that exists be-
tween two tasks requiring that they not be executed by the same user within
a given process instance.

Case Handling (WRP-6) corresponds to the ability to allocate all work items
in a case to the same resource at the time of commencement.

Retain Familiar (WRP-7) corresponds to a constraint that exists between
two tasks requiring that where possible they be executed by the same user
within a given process instance.

Capability-based Distribution (WRP-8) corresponds to the situation where
a work item is offered or allocated to one or more resources based on capa-
bilities that they possess.

Organization-based Distribution (WRP-9) corresponds to the situation where
a work item is offered or allocated to one or more resources based on their
position or other responsibilities within the organization.

History-based Distribution (WRP-10) corresponds to the situation where a
work item is offered or allocated to one or more resources based on their
preceding execution history.

Automatic Execution (WRP-11) corresponds to the situation where a work
item can be executed without needing to be distributed to a resource.

e Push Patterns apply in situations where work items are forwarded to resources
by the system that is automating a business process.

Distribution by Offer Single Resource (WRP-12) corresponds to the situ-
ation where a work item is offered to a specific resource on a non-binding
basis.

Distribution by Offer Multiple Resources (WRP-13) corresponds to the
situation where a work item is offered to several resources on a non-binding
basis with expectation that one of them might commit to undertaking it.
Distribution by Allocation Single Resource (WRP-14) corresponds to the
situation where a work item is allocated to a specific resource on a binding
basis and they are expected to complete it at some future time.

Random Allocation (WRP-15) corresponds to the allocation of a work item
to a specific resource selected from a group of resources on a random basis.
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Round Robin Allocation (WRP-16) corresponds to the allocation of a work
item to a specific resource selected from a group of resources on a round
robin basis basis.

Shortest Queue (WRP-17) corresponds to the allocation of a work item to
a specific resource selected from a group of resources based on who has the
least work pending (i.e. the shortest work queue).

Early Distribution (WRP-18) corresponds to the situation where a work
item can be offered or allocated to a resource ahead of the time that it is
actually enabled and can be completed.

Distribution on Enablement (WRP-19) corresponds to the situation where
a work item is offered or allocated to a resource at the same time that it is
enabled and can be completed.

Late Distribution (WRP-20) corresponds to the situation where a work item
is offered or allocated to a resource at some time after the time at which it
is enabled.

Pull Patterns correspond to work distribution actions that are initiated by the
actual resources undertaking them.

Resource-Initiated Allocation (WRP-21) corresponds to the situation where
a resource commits to undertaking a work item that has been offered to
them.

Resource-Initiated Execution Allocated Work Item (WRP-22) corresponds
to the situation where a resource starts a work item that has been offered
to them.

Resource-Initiated Execution Offered Work Item (WRP-23) corresponds
to the situation where a resource commits to undertake and immediately
starts a work item that has been offered to them.

System-Determined Work Queue Content (WRP-24) corresponds to the
ability for the system to impose an ordering on the sequence in which re-
sources see and/or can undertake their work items.

Resource-Determined Work Queue Content (WRP-25) corresponds to the
ability for the resource to impose an ordering/reordering on the sequence
in which they see and/or can undertake their work items.

Selection Autonomy (WRP-26) corresponds to the ability for a resource to
choose which work item they undertake next.

Detour Patterns identify approaches for deviating from the work distribution
strategy implied by the process model and provide various means for resources,
as well as the enabling system itself, to deal with unexpected or undesirable
workload situations that may arise.

Delegation (WRP-27) corresponds to the situation where a resource allo-
cates a work item that is currently allocated to them to another resource.
FEscalation (WRP-28) corresponds to the situation where the system changes
an existing work item offer or allocation and redistributes the work item to
another user with the goal of expediting a work item.

Deallocation (WRP-29) corresponds to the situation where a resource (or
group of resources) chooses to make a work item previously offered or allo-
cated to them available for redistribution to other resources.
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Stateful Reallocation (WRP-30) corresponds to the situation where a re-
source chooses to allocate a work item that they have already started (but
not completed) executing to another resource and to retain any associated
state information.

Stateless Reallocation (WRP-31) corresponds to the situation where a re-
source chooses to allocate a work item that they have already started (but
not completed) executing to another resource without retaining any asso-
ciated state information.

Suspension/Resumption (WRP-32) corresponds to the ability of a resource
to suspend and resume execution of a work item.

Skip (WRP-33) corresponds to the ability of a resource to skip a work item
allocated to it and mark the work item as complete.

Redo (WRP-34) corresponds to the ability of a resource to redo a work
item that has previously been completed in a case. This may necessitate
that work items subsequent to it (and hence dependent on its results) also
be repeated.

Pre-Do (WRP-35) corresponds to the ability of a resource to execute a
work item in the current case ahead of the time that it has been offered or
allocated to any resources.

Auto-Start Patterns identify various means of expediting process execution by
automating various aspects of work item handling.

Commencement on Creation (WRP-36) corresponds to the ability of a re-
source to commence execution on a work item as soon as it is created.
Commencement on Allocation (WRP-37) corresponds to the ability of a
resource to commence execution on a work item as soon as it is allocated
to them.

Chained Ezecution (WRP-39) corresponds the ability to automatically start
the next work item in a case once the previous one has completed.

Piled Ezecution (WRP-38) corresponds to the ability to initiate the next
instance of a work item corresponding to a given task (perhaps in a different
case) once the previous one has completed such that all work items are
allocated to the same resource.

Visibility Patterns delineate the ability to configure the extent of disclosure
about the state of progress on particular work items.

Configurable Unallocated Work Item Visibility (WRP-40) corresponds to
the ability to configure the visibility of unallocated work items by process
participants.

Configurable Allocated Work Item Visibility (WRP-41) corresponds to the
ability to configure the visibility of allocated or executing work items by
process participants.

Multiple resource patterns identify work situations where the correspondence
between work items and resources is not one-to-one.

Simultaneous Execution (WRP-42) corresponds to the ability for a resource
to execute more than one work item simultaneously.

Additional Resources (WcP-43) corresponds to the ability for a given re-
source to request additional resources to assist in the execution of a work
item that it is currently undertaking.
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