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A b st r a ct
Multicellular tumor spheroids are an important in vitro model of the pre-vascular phase of solid tumors, for sizes well below
the diagnostic limit: therefore a biophysical model of spheroids has the ability to shed light on the internal workings and
organization of tumors at a critical phase of their development. To this end, we have developed a computer program that
integrates the behavior of individual cells and their interactions with other cells and the surrounding environment. It is
based on a quantitative description of metabolism, growth, proliferation and death of single tumor cells, and on equations
that model biochemical and mechanical cell-cell and cell-environment interactions. The program reproduces existing
experimental data on spheroids, and yields unique views of their microenvironment. Simulations show complex internal
flows and motions of nutrients, metabolites and cells, that are otherwise unobservable with current experimental
techniques, and give novel clues on tumor development and strong hints for future therapies.
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In t r o d u ct i o n

Multicellular tumor spheroids (MTS) stand out as the most
important in vitro model of pre-vascular solid tumors [1–8]. MTS
often have a regular, almost spherical structure, and their apparent
simplicity has led to repeated attempts to capture their features
with neat mathematical models. However, the absence of
vascularization and the near sphericity hide an internal complexity
which is not easy to tame either with analytic mathematical models
[9–12], or with numerical models based on rough simplifications
of the biological settings such as cellular automata or other lattice-
based models [13–16]. Moreover the presence of a growing
necrotic core [1] and of an extracellular matrix [17], the
appearance of convective cell motions [18], and the heterogeneous
response to chemotherapics [19], point to the importance of MTS
as an in vitro model of tumors, and most of all to their relevance to
understand tumor heterogeneity, but they also point to the
difficulties of producing a useful, predictive model of MTS.

The appearance of widely different resistance phenomena to
antitumor therapies in similarly grown, isolated MTS of the same
cell type [19] indicates that random fluctuation phenomena play
an all-important role in the growth kinetics of MTS. It is well-
known that the discrete events at the single-cell level (like
transitions from one cell-cycle phase to the next, mitosis, cell
death, etc.) do display some randomness, and one can pinpoint the
source of large-scale variability on these fluctuations, as they are
amplified and propagated by cell-cell and cell-environment
interactions. Thus, the complexity of MTS development can only
be captured by a fine-grained, multiscale model, and we need a
mathematical description at the single-cell level. Since cells

communicate with other cells and the environment, the other
actors of this complex play are the concentration gradients of
important molecular species that depend on the structure of the
extracellular space and of the facilitated transport processes into
and out of individual cells, and the mechanical forces that push
and pull cells as they proliferate with repeated mitoses and then
shrink after death [20]. These processes mix with complex
nonlinear interactions between the biochemical and the mechan-
ical part, and this highlights again the importance of an effective
model at the single-cell level.

On the basis of such motivations, we have developed a
numerical model of MTS that incorporates a working model of
single cells [21,22]. We have first put forward a broad outline of its
structure in reference [23], and it differs from other models
developed in the past [9–16] because it captures at the same time
both the basic features of cell metabolism, growth, proliferation
and death, and provides a true lattice-free calculation of cell
motions, as they are pushed and pulled by the forces exerted by
dividing cells, by the growth of other cells, and by the shrinking of
dead cells. We also wish to stress that the model parameters are
either derived from experiment or are deduced from reasonable
theoretical arguments, so that, essentially, there are no free
parameters – there can only be some residual variability in
biophysically meaningful ranges – the model is truly predictive,
and the results are not merely qualitative but quantitative as well.

Here we illustrate in broad terms the structure of the program
and report the results of the first simulations of single spheroids
(technical implementation details are relegated to Text S1). We
find that the simulations agree quite well with experimental
measurements on real spheroids, and show unexpected and
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important internal patterns. Moreover, we wish to stress that the
methods delineated in this paper represent very general practical
solutions to problems that are common to any simulation of cell
clusters, and they are just as important.

Biochemical behavior of individual cells
The elementary building blocks in this model of MTS are the

individual tumor cells that behave as partly stochastic automata
[21,22]. Figure 1 summarizes the biochemical pathways that are
included in the single-cell model: cell metabolism is driven by
oxygen, glucose and glutamine, and transforms these substances
into energy molecules, molecular building blocks and waste
products, following the well-known biochemical reaction chains
[24]. Further details can be found in the original papers [21,22]
and in Text S1, which also includes important upgrades to the
original model [21,22].

In the present version of the program, the stochasticity is mostly
concentrated in the discrete events: for instance, mitochondria are
partitioned at random between daughter cells at mitosis, and cells
can die because of metabolite accretion, according to a Poissonian
cytotoxicity model (see Text S1).

We remark that in this approach glutamine also stands for the
wider class of aminoacids, and lactate is the paradigm of all
metabolites: we use the concentrations of glutamine and lactate to
represent these two classes of substances in phenomenological
parameterizations wherever needed. Similarly we use the number
of mitochondria and ATP content to model the dynamics of cell
volume; the single-cell model also contains representative
members of the cyclin protein class to compute the passage of

checkpoints and entry into the different cell phases [21,22,25,26],
and finally into mitosis (see also figure S1 for a sketch of the cell
cycle in the simulation program).

The complete map of the biochemical pathways included in the
simulation program is shown in figure S2. This map comprises
only the most basic pathways, however we cannot afford to
introduce a more complex network at this stage of program
development. Indeed, our final aim is the simulation of MTS with
a volume as large as 1 mm3, which corresponds to more than one
million cells, so that simulation results overlap actual experimental
measurements [19,27,28]. Since the differential system involves 19
independent biochemical variables per cell, we must eventually
integrate at least 19 million coupled nonlinear differential
equations for the biochemical cell variables alone (this grows to
at least 25 million equations when we include the position and
velocity variables), and thus even this minimal single-cell model
leads to a daunting computational task (see Text S1 for further
details on the algorithmic complexity of the program).

Reaction-diffusion processes and the environment
Substances like oxygen are transported into and out of cells by

normal diffusion while molecules like glucose require facilitated
diffusion processes. This means that cell membranes play an
important role for substances like glucose, and that in this case the
diffusion of each such molecular species towards cells in the inside
of a spheroid needs the free volume in the extracellular space to
proceed, and that we must model this space as well as the cells to
obtain a realistic simulation. We have shown how to do this in
reference [29], where we have also discussed ways to tame the

F i g u r e 1 . Ro u g h sk e tc h o f t h e b i o c h e m ica l p a t h w a ys i n c o r p o r a t e d i n t h e m o d e l o f si n g l e c e lls. We take into account the main metabolic
pathways (glycolysis, oxidative phosphorylation through the TCA cycle and gluconeogenesis), including the role of mitochondria in the production of
ATP. The model also includes protein and DNA synthesis, and checkpoints controlled by representative members of the cyclin family. The single-cell
model has two spatial compartments (the inside of the cell and its immediate neighborhood, the extracellular space that surrounds it) and transport
of substances between these compartments is regulated by transporters on the cell membrane that are also included in the model. The extracellular
space of each cell communicates by simple diffusion with the neighboring extracellular spaces and with the environment. The complete map of the
biochemical pathways is shown in figure S2.
doi:10.1371/journal.pone.0013942.g001
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exceedingly high stiffness of the very large set of reaction-diffusion
and transport equations that arise in this context (see also Text S1).
The external environment itself is included in these equations, and
evolves in time as well. In the present model, each cell contributes
15 internal variables and 4 extracellular variables: these extracel-
lular variables are the masses of oxygen, glucose, glutamine and
lactate in the extracellular volume surrounding the cell. Because of
its smallness, the extracellular space has an extremely short
characteristic filling time, which can be as fast as few tens of
microseconds. On the other hand, the macroscopic features of
MTS evolve over times as long as months (i.e., times of the order
of 107s), and thus the numerical integrator must be able to handle
phenomena that span 12 orders of magnitude in time [29]. The
internal biochemical reactions included in the numerical model
are much slower and their fastest characteristic times are only as
low as 0:1s, much longer than the diffusion times [29,30]. The
topology of diffusion in the extracellular spaces is obviously
dictated by the cells themselves, and the program uses the network
of cells centers as the scaffolding for the corresponding discretized
diffusion problem. The links between the cells’ centers – i.e., the
proximity relations – are provided by a Delaunay triangulation
[31,32], which is computed repeatedly [33] as the cluster of cells
grows and rearranges itself under the pushes and pulls of volume
growth, mitosis, and the shrinking of dead cells (see also figure S3).
Moreover, the proliferation of cells means that both the number of
cells and the total number of links steadily grow, and that the
differential system of equations that model metabolism, transport
and diffusion changes all the time, and becomes increasingly
complex. The 3D Delaunay triangulation itself is not an
exceedingly heavy computational burden for the program, as it
turns out that efficient algorithms can compute it, on average, with
O(N) time computational complexity [33–35], so that this
algorithm is indeed feasible for very large clusters of cells.

Biomechanical evolution of the simulated MTS
Real cells have passive viscoelastic mechanical features, but they

also move actively under the pushes of their own cytoskeleton, and
to the best of our knowledge there is no comprehensive model of
cellular biomechanics [36,37]. Thus, we resort once again to
phenomenological simplifications, and the first and foremost is
that our cells are stretchable spheres, characterized by their radius,
and a few other parameters that specify their viscoelastic
properties (see Text S1 for a more detailed description and the
list of parameters). We also specify a pairwise interaction force
between cells, repulsive when a cell pushes against a neighbor, and
attractive when we try to detach it from its neighbor. For small
deviations from the equilibrium distance, we assume that the
interaction force is described by the Hertz model (explained in
Text S1), while for large deformations due to compression we set
the force to a fixed saturation value, and for large distances the
attractive force decays to zero (see figure S4). The description of
the interaction forces is tuned to hold also during mitosis (see Text
S1 and figure S5). Even though this is a rough approximation of
the overall mechanical behavior of cells, there are many details
that must be managed to make it work, and they are all described
in Text S1.

Here the Delaunay triangulation that we use as the scaffolding
for the diffusion problem turns out to be useful once again: the
same cell-cell links also define the set of neighbors of each cell, and
therefore the global problem of computing the pairwise interac-
tions between cells can be reduced to a single loop over all cells
and the small limited number of their immediate neighbors, so
that this operation has an O(N) computational complexity only –
and it does not grow when we include the cost of the Delaunay

triangulation [35] – instead of the O(N2) complexity of generic
pairwise interactions.

Resu l ts

The first and most obvious result is the outstanding match of the
growth curves of simulated spheroids with those of real spheroids:
figure 2 shows a few stages of the growth of a simulated spheroid (a
real spheroid is shown for comparison in figure 3), while figure 4
compares the growth curve of a single simulated spheroid with the
growth curves of real spheroids grown in vitro. Here we see that the
growth curves are very much alike, and we found that simulation
runs with different parameters – in the biophysically meaningful
ranges – produce very similar growth curves, in spite of structural
internal changes: the growth curves are thus rather robust with
respect to parameter changes.

Several experiments [37–42] have yielded many accurate
measurements of oxygen and glucose concentrations and other
quantities vs. spheroid radius; these values are part of the output of
our simulation program as well (see figure 5 and figure 6), and a
comparison with the experimental data is shown in table 1. On the
whole the agreement of simulation data of single spheroids with
the experimental values is quite good, and we wish to stress that
this is not the result of a fit a posteriori, but rather of the a priori
choice of model features and parameters. These results qualify as
true predictions of the numerical model.

The necrotic core of spheroids is another important feature that
is well reproduced in the simulations, and it is clearly visible in
central slices of the simulated spheroid in figure 2. The simulations
also provide detailed, quantitative snapshots of the necrotic core
dynamics; the left column of figure 7 shows the percentage of dead
cells vs. distance from the centroid of a simulated spheroid at
different times. In these snapshots we can clearly observe the
formation of the sharp step that marks the edge of the necrotic
core.

These results indicate that the simulation program is reliable
and robust and reproduces – both quantitatively and qualitatively
– known experimental results. However, it yields much more than
just successful comparisons: figure 8 shows two views of the
spheroid microenvironment that at present would be unobtainable
by other means at this level of resolution. The left panel of figure 8
is a plot of the flow of glucose in the extracellular spaces of a
mature spheroid, superposed on a density plot of extracellular
glucose concentration, and it shows – rather unexpectedly – that
there is an outward flow of extracellular glucose from the central
necrotic region. In the external, viable rim the flow is inward
bound, and there is a spherical shell where the flow is stationary.
The right panel of figure 8 shows the corresponding plot of cell
velocities in the same central slice, and we see that the velocity
vectors point outward in the viable rim, while there are well-
formed vortices in the central region, and the region in-between
displays distinctive chaotic motions: these three regions closely
match the three regions in the left panel. The right column in
figure 7 shows radial velocity vs. distance from the centroid of the
simulated spheroid, and sheds some more light on the nature of
this structure: as more and more cells die and the necrotic core
forms, the dead cells shrink and the core contracts. The
contraction of the necrotic core expels the residual glucose in
the extracellular spaces and produces the observed outward flow.
We found that this behavior is strongly dependent on the
particular value of the diffusion coefficient and on the metabolic
activity of cells. In some simulations – where we used a lower value
for the effective diffusion coefficient of oxygen – we observed a
similar structure with oxygen as well. We remark that in the case

Model of Tumor Spheroids

PLoS ONE | www.plosone.org 3 November 2010 | Volume 5 | Issue 11 | e13942



of lactate we found no such structure, and we obtained a pH value
– derived from the distribution of lactate inside the spheroid – that
is very close to experimental measurements: this indicates that the
discretized reaction-diffusion scheme used in the simulation
program performs correctly, and that the observed flows are not
algorithmic artifacts.

D isc ussi o n

Although the program described in this paper is based on a
model of individual cells that includes only the basic cell functions,

F i g u r e 3 . P h o t o g r a p h o f a s p h e r o i d g r o w n i n v i t r o fr o m H e L a
c e lls i n a g a r. The spheroid is colored with trypan blue to mark dead
cells, where the necrotic core is clearly visible. The agar contains the
spheroid and helps in obtaining a better spherical shape with HeLa
cells, but also stifles spheroid growth because it reduces the effective
diffusion coefficients in the nourishing medium, so that it cannot be
directly compared to the simulated spheroid in the second column of
figure 2 (which has the same size), while it is similar to the larger
spheroid in third column.
doi:10.1371/journal.pone.0013942.g003

F i g u r e 4 . G r o w t h c u r v e o f a si m u l a t e d t u m o r s p h e r o i d (so li d
li n e). The run parameters used in this case are listed in Text S1. The
symbols denote data points taken in different in vitro experiments:
squares = FSA cells (methylcholantrene-transformed mouse fibroblasts)
[45]; diamonds = MCF7 cells (human breast carcinoma) [19]; circles = 9L
cells (rat glioblastoma) [27].
doi:10.1371/journal.pone.0013942.g004

F i g u r e 2 . Sn a p sh o ts o f o n e si m u l a t e d s p h e r o i d t a k e n a t d if f e r e n t t i m es. As the spheroid grows, a necrotic core develops in its central
region, just as it happens in real spheroids. The size of the necrotic core and of the viable cell rim match real measurements.
doi:10.1371/journal.pone.0013942.g002
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the simulation results compare very well with experimental
measurements, and give strong hints on the sources of individual
spheroid variability. Moreover, the images obtained in single runs
reveal unexpected and interesting correlations and an elaborate
structure of the tumor microenvironment that could never be
observed before. This unexpected, complex microstructure – the
formation of different regions, and the flows that characterize
them, along with the complex velocity field – can be discerned in
the flows of the other substances, though not all of them, according
to their effective diffusion coefficient and their metabolism: the
figures of these flows are shown at full-size as supporting
information. Thus if we suppose that, in a more complete
description, there are N substances that characterize the spheroid
microenvironment, and assume that the spherical shell that divides
the two main regions lies in the same position for all of these
substances and that their effective diffusion coefficients are
uncorrelated, then 2N different spheroid structures are determined
by diffusion alone. The variation of some critical parameter (e.g., a
slight change in the metabolic activity due to local fluctuations in
the number of dead cells, and thus a change in the effective
diffusion coefficients) can potentially act as a switch and determine
widely different fates for similar spheroids. This variability cannot
be discerned from growth experiments: the simulations that we
have performed to date indicate that the growth curve alone is not
enough to distinguish between such different states, because it does
not change much even when important substances, like oxygen,
diffuse in markedly different ways. These different states represent
different biochemical configurations of tumor microenvironment,
that might exert distinct selective pressures on cells during tumor
evolution.

The spheroid microstructure that is well evidenced in figure 8,
and in figures S8, S9, S10, S11, S12, S13, S14, S15, S16, S17,
S18, S19, S20, S21 and in Movies S1, S2, S3, shows highly
correlated fluctuations that produce, e.g., islets of proliferating cells

in the sea of dead cells of the core, and cell and mass flows that
follow preferential channels. There is a sort of spheroid-specific
self-organization of the internal structure due to these correlated
fluctuations. Similar cell flows have been observed in the lab and a
recent review has stressed the great significance of such findings
[43]: the simulations suggest that the whole topic of cell flows and
extracellular diffusion should be investigated further. On the basis
of the simulation results, we also conjecture that the flow of
therapeutic drugs may be diverted as well, and let some viable,
proliferating tumor cells escape treatment. This means that the
simulation program could eventually become an important tool to
design novel treatment schedules, and possibly validate the effects
of anti-tumor drugs.

Certainly the model is far from complete, and we plan to add
soon several new features, like a basic model of intracellular
acidity, now accounted for by a simple phenomenological
parameterization, and the effects of pH and salt concentration
on diffusion. However, already in its present form, we believe that
this numerical model is a true testbed of biological complexity and
a real virtual laboratory, and also a source of important biomedical
clues.

M e t h o d s

The simulation program is written in ANSI C++: this
programming language was a natural choice from the very start
for distinct reasons:

N C++ is an object-oriented language, and in a simulation such
as this, it is very natural to define objects that have a clear-cut
biological meaning;

N at present, C++ programming is supported by a vast array of
scientific libraries, and this helps reducing program develop-
ment time;

N the availability of the flexible and powerful C++ library CGAL
[33] that handles the computational geometry structures
utilized by the program (convex hulls, Delaunay triangulations
and alpha shapes);

N the availability of powerful development tools and highly
optimized compilers.

The structure of the program reflects the organization explained
in the paper: a layout is shown in figure 9. The functional blocks
work as follows:

Initialization
At start, the environmental concentrations are set at their

standard levels (see Text S1), and internal variables of all cells are
set at approximate standard values (see Text S1 for the cells’
variables and the physical values that are hard-coded in the
program). During initialization, cells are allowed to grow and
proliferate freely in an environment that is held fixed. The number
of cells is also kept constant, and when a mitosis occurs one of the
daughter cells is discarded. In this initial phase cells can have large
oscillations of their metabolic parameters, and can occasionally
step in parameter regions that would normally spell death: this
does not occur here. Initialization lasts until the oscillations of

F i g u r e 6 . P l o t s o f t h e n o r m a l i z e d a v e r a g e i n t r a c e l l u l a r
c o n c e n t r a t i o n o f l a c t a t e (g r e e n), g l u c ose (b l u e), a n d A T P
(r e d). These plots have been obtained in the same simulation and at
the same time step as the plots of figure 5, and each concentration is
normalized to its peak value. These plots indicate that cell death in the
central region is due both to the accumulation of metabolites (lactate)
and to metabolic stress (starvation).
doi:10.1371/journal.pone.0013942.g006

F i g u r e 5 . C o n c e n t r a t i o ns i n t h e si m u l a t e d s p h e r o i d . The color coded figures on the left show the partial pressure of oxygen, the
concentrations of glucose and lactate in the extracellular spaces, and the pH of the extracellular environment (high values = red, low values = blue).
The corresponding plots in the right column show the average values of these quantities vs. the distance from the centroid of the tumor spheroid.
The small oscillations in the plots close to the spheroid surface are due to fluctuations in the averaging procedure, because the spheroid is slightly
nonspherical.
doi:10.1371/journal.pone.0013942.g005
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metabolic parameters die out.We have determined the duration of
the initialization phase observing the desynchronization of a
population of initially synchronized cells: when oscillations of the
relative fractions of cells in each cell-cycle phase become
undetectable we estimate that cells have reached a stable state.
It turns out that a simulated time of 3:106s (i.e. about 35 days of
simulated time) is sufficient for initialization of cell with a period of
about 20 hours. Usually the starting number of cells is quite small
(normally just one cell to seed the growth of a single spheroid), and
initialization executes in very short real time (a few seconds).

Metabolism, diffusion, transport, and growth
This part of the program solves the combined differential system

of equations that describe internal cell metabolism and diffusion in
the extracellular spaces (described in detail in Text S1), using the
implicit Euler method. This leads to a system of nonlinear
equations, that are solved in turn with a variant of the Newton-
Raphson method. The functional scheme of this important part of
the program is shown in figure 10. We wish to stress that although
the number of variables can be quite large (more than 107 loop
variables), convergence is reasonably fast, because the initial
concentration values are invariably very close to the final ones.

Cell motion
Cell motion is also regulated by differential equations and the

solution uses a strategy based on a semi-implicit method (described
in detail in Text S1). Volume growth is regulated by the part that
handles metabolism and diffusion, therefore it is loosely coupled to
cell motion. However we have implemented an updating
mechanism that effectively decouples the two parts of the program:
this means that the program can use multithreading with shared
memory and exploit the features of multicore processors.

Cellular events
This part of the program handles discrete events, like cell-cycle

transitions, mitosis and cell death. In case of mitosis it also
initializes the daughter cells – using the metabolic variables of the
mother cell – and allocates memory for the new cells.

Geometry and topology of cell cluster
Geometrical and topological informations are updated here,

using calls to CGAL methods [33] that compute the convex hull of
the cluster of cells, the Delaunay triangulation of cell centers, and
the alpha shape of the cluster – with an alpha parameter [33]
equal to (2r0)2 where r0 is the average cell radius. This part of the

T a b l e 1 . Comparisons with experimental parameters.

P a r a m e t e r Si m u l a t i o n E x p e ri m e n ts 7 C e ll t y p e Re f .

1Glucose uptake (kg s{1 m {3) 1:44:10{3 5:4{12:6:10{3 Rat-T1, MR1 [37]
1Lactate release (kg s{1 m {3) 1:35:10{3 5:4{9:10{ 3 Rat-T1, MR1 [37]
2pO2 (mmHg) 7 0–20 Rat-T1 [37]

0–40 MR1 [37]

20–60 EMT6/Ro [38]
3pH 6.7 6.6 C6, H35 [39]

6.96–6.99 U118-MG, HTh7 [40]
4DpH 0.77 0.41 U118-MG [40]

0.49+0.08 HTh7 [40]
5Viable cell rim thickness (mm) 155 200 EMT6/Ro [38]

142+16 HTh7 [40]

310+28 U118-MG [40]

198+27 Col12 [41]

225+26 HT29 [41]
6Hypoxic rim thickness (mm) 98 44+52 Col12 [41]

44+52 HT29 [41]

Cell cycle distribution (%) G0/G1 = 57.3 G0/G1 = 58+4 BMG-1 [42]

S = 21.6 S = 19+1

G2/M = 21.1 G2/M = 23+1

Metabolic and histologic parameters in spheroids of approximately 500 mm diameter: comparison between a single, large simulation, carried out with the parameters
listed in Text S1, and experimental data.
Notes:
1Rate of glucose uptake or lactate release per viable spheroid volume (see [37]).
2Central pO2 tension (experiments) or estimated in the centroid (simulations).
3pH has been determined in the central region of the spheroids. This corresponds to a sphere of radius &100mm about the centroid of the spheroid.
4Difference between environmental pH and pH 200 mm below the spheroid surface.
5In our simulations the viable cell rim thickness corresponds to the distance between the spheroid surface and the inner shell where only 5% of the cells are still alive.

Experimental values have been determined by histology.
6These values corresponds to the radius of the necrotic core.
7Cell types are as follows: Rat-T1 = T24Ha-ras-transfected Rat1 cells (Rat1 = spontaneously immortalized rat embryo fibroblasts); MR1 = myc/ T24Ha-ras-cotransfected rat

embryo fibroblasts; EMT6/Ro = mouse mammary tumor cells; C6 = rat glioma cells; H35 = rat hepatoma cells; U118-MG = human glioblastoma cells; HTh7 = human
tyroid carcinoma cells; Col12 = moderately differentiated human colon adenocarcinoma ; HT29 = poorly differentiated human colon adenocarcinoma; BMG-1 = human
glioma cells.

doi:10.1371/journal.pone.0013942.t001
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F i g u r e 7 . F r a ct i o n o f d e a d c e lls (l e f t c o l u m n) a n d a v e r a g e r a d i a l v e l o ci t y (ri g h t c o l u m n) a t d if f e r e n t t i m es. As the spheroid grows, the
necrotic core becomes increasingly well defined, and as dead cells shrink, the radial velocity changes sign and a marked inward motion characterizes
the central region.
doi:10.1371/journal.pone.0013942.g007
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Fig ure 8. T w o vie ws of t h e microstructure of a sim ula t e d sp h eroid , with a b o u t 500mm dia m eter a n d 296264 cells (183893 liv e cells+112371
d e a d cells). (Left panel): flow of extracellular glucose along a central section of the tumor spheroid (yellow arrows) superposed on the plot of glucose
concentration. The length of the arrows is proportional to the glucose flow intensity projected on the plane of the section. At this stage, the necrotic core is
contracting as dead cells gradually shrink, and this leads to a slow outward flow of the glucose stored in the extracellular spaces in this central region. We observe
that such a behavior depends on the effective diffusion coefficient of glucose, and it disappears completely when the diffusion coefficient is high enough. This
also suggests that the flow of glucose and other substances, like therapeutic drugs, is strongly dependent on the biochemistry and structure of extracellular
spaces, and even small changes can lead to markedly different internal spheroid morphologies. (Right panel): individual cell velocities in the simulated spheroid.
This is the same central section as in the left panel, and the velocity vectors are projected on the plane of the section. The length of each vector is proportional to
the projected speed. The velocities in the viable rim show a coherent outward motion, while the velocities in the necrotic core show a rather orderly inward
motion, with some vortices due to local residual cell proliferation. The region in-between is somewhat chaotic and the global structure of this plot mirrors that of
the glucose flow shown on the left. The supporting information includes higher-quality versions of these figures and those of other flows.
doi:10.1371/journal.pone.0013942.g008

Fi g u re 9. F u n cti o n al b l oc ks o f t h e sim ula ti o n p r o g ra m . Program
initialization is followed by a loop that performs biochemical and
biomechanical calculations. This is followed by a check of the status of
individual cells – this is where we decide whether a cell advances in the cell
cycle, undergoes mitosis, or dies. Next the program computes the
geometry and the topology of the cell cluster, and finally it outputs
intermediate statistics and results. The loop continues until a user-defined
stop condition is met. Some parts of the program can proceed in parallel
(like metabolism and cell motion), and we can use multithreaded code.
doi:10.1371/journal.pone.0013942.g009

F i g u r e 1 0 . F u n ct i o n a l b l o c ks o f t h e C++ m e t h o d t h a t c o m p u t es
m e t a b o lic a n d e x t r a c e ll u l a r v a ri a b l es. This part performs a loop
that computes the solution of the nonlinear equations found in the
implicit Euler integration step [29] (see also Text S1). Although the
number of variables can be quite large (more than 107 variables),
convergence is fast, because the initial concentration values are
invariably very close to the final ones.
doi:10.1371/journal.pone.0013942.g010
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program uses this basic information to set all relevant geometrical
and topological variables in the program.

Summary statistics and dump on file
The last step in the loop computes several statistics and outputs

them on summary files. It also writes periodically the whole
configuration of cells on file for further processing.

Program termination
The program repeats the loop until one of the stop conditions is

met: either all cells are dead, or the program executed the required
number of steps. Text S1 contains additional considerations on
algorithmic complexity and on measured performance (see also
figure S6 and figure S7).

Additional processing to extract useful informations from the
simulation data is performed with several standard tools, like
Mathematica [44].

Su p p o r t i n g In f o r m a t i o n

Text S1 Including tables and additional references.
Found at: doi:10.1371/journal.pone.0013942.s001 (0.89 MB
DOC)

Figure S1 Sketch of the cell phases included in the simulation
program. The arrow lengths suggest the relative duration of each
phase. Phase G1 is divided in two parts: an initial subphase where
cells are sensitive to variations in the environmental nutrient
concentration (G1m) and a later subphase where cells are
insensitive to deprivation of nutrients (G1p); in between these
subphases there is an energetic checkpoint [1–3].
Found at: doi:10.1371/journal.pone.0013942.s002 (0.19 MB TIF)

Figure S2 Sketch of the metabolic network. Variables within
circles represent molecular species and are expressed in units of
concentration or mass. Non-obvious symbols are as follows (the
suffixes ext and int denote, respectively, extracellular and
intracellular variables): G= glucose, G6P= glucose-6-phosphate,
STORE= glucose stored in the form of glycogen, AL= lactic acid,
A= glutamine, ATPp= pool of ATP molecules, DNA= nuclear
mass of DNA (normalized to 1 for the whole genome),
mtDNA=mitochondrial DNA. Rates are represented by squares.
The red circuit represents the oxygen sensor, whereas the green
circuit represents the ATP sensor [1,2]. ‘‘Cell cycle checkpoints’’
denotes the molecular circuit of cell cycle control that has been
modeled on the basis of previous studies on the dynamics of the
allosteric effect [19,20]. The biological foundations of this
simplified metabolic network have been given in references 1
and 2. Recent improvements with respect to our previous model
include: internalization rates of glucose, glutamine and lactate are
sensitive to extracellular pH and this dependence is now described
by smoothed functions (see the text for details); synthesis of cellular
proteins, nuclear DNA and mitochondrial DNA are now
described by double-substrate Michaelis-Menten chemical reac-
tions to take into account the dependence of protein and nucleic
acid biosynthesis on glutamine (which stands phenomenologically
for the wider class of aminoacids) and ATP availability.
Found at: doi:10.1371/journal.pone.0013942.s003 (0.77 MB TIF)

Figure S3 The geometry and topology of diffusion. a) Most
substances are carried into and out of the cell by facilitated
diffusion and there is an active mass exchange between cell and
extracellular space. Each cell in the simulation program has its
own extracellular space. b) Extracellular spaces are interconnected
and there is a diffusion flow through the network of connections. c)
The network of interconnected spaces is defined by a Delaunay

triangulation. In this 2D representation, for any red dot we can
define a Voronoy cell, i.e., the set of points in the plane that are
closer to the given dot than to any other dot in the set. The dual
structure is the Delaunay triangulation (Voronoy cells are black
and Delaunay links are green). There is a Delaunay link between
any two dots only if the respective Voronoy cells touch each other,
therefore we can use the Delaunay triangulation to define
proximity. This enables us to set up a discretized version of
diffusion between extracellular spaces, like in b). In addition to the
topology of contacts between cells we also keep into account
geometry: gab in part b) is a geometric factor that modulates
diffusion. d) The actual simulation is in 3D: here the Delaunay
triangulation of a small cluster of cell centers shows up in
transparency.
Found at: doi:10.1371/journal.pone.0013942.s004 (1.37 MB TIF)

Figure S4 Pictorial representation of the interaction force
between two cells. The solid curve shows qualitatively the behavior
of the interaction force, while the insects depict the corresponding
situations (A. cells are compressed against each other, force is
repulsive; B. cells are in contact, the total force vanishes; C. cell
centers are slightly apart, force is attractive because of adhesive
molecules on the cells’ membranes; D. cells are no longer in
contact, the total force vanishes again). The inset on the right
corner shows the definitions of the basic geometric variables.
Found at: doi:10.1371/journal.pone.0013942.s005 (0.36 MB TIF)

Figure S5 The geometry of mitosis. R0 is the radius of the initial
cells, while R1 and R2 are the radii of the daughter cells: because of
random asymmetries during mitosis, the daughter cells usually
have different sizes. The program places the two daughter cells
inside the region initially occupied by the mother, and the axis
connecting the centers points in a random direction. This forces
the two cells to push one against the other, and as cells separate the
axis rotates, so that the new configuration fits the positions of
neighboring cells. The cells’ centers are separated by a distance
which is roughly 0.4 R0.
Found at: doi:10.1371/journal.pone.0013942.s006 (0.16 MB TIF)

Figure S6 CPU time needed to simulate 1 hour, vs. the number
of cells in the spheroid. In this run, the precision of the solution of
the global diffusion transport and metabolism problem is fixed at
1% and the timestep is 50 s (so that tCPU is actually the CPU time
needed to simulate 72 elementary timesteps). The solid curve
shows the fit (S.69) in Text S1.
Found at: doi:10.1371/journal.pone.0013942.s007 (0.15 MB TIF)

Figure S7 Total CPU time vs. N. This figure shows the total
CPU time vs. N in the same run as figure S6. The solid curve is a
simple fit with a quadratic polynomial function.
Found at: doi:10.1371/journal.pone.0013942.s008 (0.14 MB TIF)

Figure S8 Oxygen concentration and flow at simulated
time= 14 days. Cells are coloured to show the oxygen concentra-
tion (color mapping, blue= low concentration, red= high concen-
tration), while the yellow arrows show the oxygen flow (arrow
length proportional to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s009 (2.06 MB TIF)

Figure S9 Oxygen concentration and flow at simulated
time= 16 days. Cells are coloured to show the oxygen concentra-
tion (color mapping, blue= low concentration, red= high concen-
tration), while the yellow arrows show the oxygen flow (arrow
length proportional to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s010 (1.14 MB TIF)

Figure S10 Oxygen concentration and flow at simulated
time= 17 days. Cells are coloured to show the oxygen concentra-
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tion (color mapping, blue= low concentration, red= high concen-
tration), while the yellow arrows show the oxygen flow (arrow
length proportional to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s011 (4.88 MB TIF)

Figure S11 Extracellular glucose concentration and flow at
simulated time= 14 days. Cells are coloured to show the
concentration of extracellular glucose (color mapping, blue= low
concentration, red= high concentration), while the yellow arrows
show the flow of extracellular glucose (arrow length proportional
to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s012 (2.05 MB TIF)

Figure S12 Extracellular glucose concentration and flow at
simulated time= 15 days. Cells are coloured to show the
concentration of extracellular glucose (color mapping, blue= low
concentration, red= high concentration), while the yellow arrows
show the flow of extracellular glucose (arrow length proportional
to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s013 (2.88 MB TIF)

Figure S13 Extracellular glucose concentration and flow at
simulated time= 16 days. Cells are coloured to show the
concentration of extracellular glucose (color mapping, blue= low
concentration, red= high concentration), while the yellow arrows
show the flow of extracellular glucose (arrow length proportional
to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s014 (1.15 MB TIF)

Figure S14 Extracellular glucose concentration and flow at
simulated time= 17 days. Cells are coloured to show the
concentration of extracellular glucose (color mapping, blue= low
concentration, red= high concentration), while the yellow arrows
show the flow of extracellular glucose (arrow length proportional
to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s015 (4.97 MB TIF)

Figure S15 Extracellular glutamine concentration and flow at
simulated time= 14 days. Cells are coloured to show the
concentration of extracellular glutamine (color mapping, blue=
low concentration, red= high concentration), while the yellow
arrows show the flow of extracellular glutamine (arrow length
proportional to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s016 (2.06 MB TIF)

Figure S16 Extracellular glutamine concentration and flow at
simulated time= 17 days. Cells are coloured to show the
concentration of extracellular glutamine (color mapping, blue=
low concentration, red= high concentration), while the yellow
arrows show the flow of extracellular glutamine (arrow length
proportional to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s017 (4.94 MB TIF)

Figure S17 Extracellular glutamine concentration and flow at
simulated time= 18 days. Cells are coloured to show the
concentration of extracellular glutamine (color mapping, blue=
low concentration, red= high concentration), while the yellow

arrows show the flow of extracellular glutamine (arrow length
proportional to flow intensity).
Found at: doi:10.1371/journal.pone.0013942.s018 (6.11 MB TIF)

Figure S18 Extracellular lactate concentration and flow at
simulated time= 18 days. Cells are coloured to show the
concentration of extracellular lactate (color mapping, blue= low
concentration, red= high concentration), while the yellow arrows
show the flow of extracellular lactate (arrow length proportional to
flow intensity). Lactate always flows outward in the simulation: this
is a single snapshot taken after both glucose and glutamine have
developed their split flow regime.
Found at: doi:10.1371/journal.pone.0013942.s019 (6.07 MB TIF)

Figure S19 Velocity vectors projected on the plane of the slice at
simulated time= 14 days. The vectors show the cells’ motions in
the plane of the slice (yellow arrows, arrow length proportional to
flow intensity). Cells in the core perform complex looping motions,
while cells in the viable rim always push outward.
Found at: doi:10.1371/journal.pone.0013942.s020 (1.62 MB TIF)

Figure S20 Velocity vectors projected on the plane of the slice at
simulated time= 16 days. The vectors show the cells’ motions in
the plane of the slice (yellow arrows, arrow length proportional to
flow intensity). Cells in the core perform complex looping motions,
while cells in the viable rim always push outward.
Found at: doi:10.1371/journal.pone.0013942.s021 (3.08 MB TIF)

Figure S21 Velocity vectors projected on the plane of the slice at
simulated time= 18 days. The vectors show the cells’ motions in
the plane of the slice (yellow arrows, arrow length proportional to
flow intensity). Cells in the core perform complex looping motions,
while cells in the viable rim always push outward.
Found at: doi:10.1371/journal.pone.0013942.s022 (5.00 MB TIF)

Movie S1 Movie of a central slice of a simulated tumor spheroid
showing the development of the necrotic core (red= live cells,
black= dead cells).
Found at: doi:10.1371/journal.pone.0013942.s023 (5.99 MB
MOV)

Movie S2 Movie of a central slice of a simulated tumor spheroid
showing the flow of extracellular glucose (same coding as figures
S11, S12, S13, S14).
Found at: doi:10.1371/journal.pone.0013942.s024 (21.18 MB
MOV)

Movie S3 Movie of a central slice of a simulated tumor spheroid
showing the map of projected cell velocities (same coding as figures
S19, S20, S21).
Found at: doi:10.1371/journal.pone.0013942.s025 (28.40 MB
MOV)
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Introduction 

 

This supplementary text contains a systematic overview of the mathematical and 

computational details of the model introduced in the main text, and is divided 

in six parts. We start with a review of the single-cell model which summarizes 

the internal biochemical machinery included in the simulated cells: although 

this has already been described before [1,2], here we include some recent 

improvements and in the second part we summarize the setup of the numerical 

method for diffusion and transport processes. This is followed by a review of the 

dynamical interactions whereby cells interact mechanically with one another. 

Finally we list all the parameters used in the simulation program and include 

broad considerations on the computational complexity of the model. The last 

section contains a selection of images obtained in the simulations. 

 

A. Brief review of the single-cell model 

 

The cells in the simulation program behave as automata that obey mostly 

deterministic rules, although they also include some circumscribed but 

important randomness. Each cell has many individual status variables that are 

listed in table S1, and steps through well-defined phases before dividing. After 

cell division the old cell is erased from the program’s cell list, the daughter cells 

are added to the list and each of them starts a new independent cell cycle. The 

cell cycle is sketched in figure S1. 

 

We approximate cells as soft spheres of radius r, surrounded by a thin layer that 

represents the extracellular space. The extracellular space is essential for a 

proper description of diffusion of molecules like glucose that are transported 

across the cell membranes by facilitated diffusion, and the variables that 

characterize the extracellular space around each cell are also included in the list 

of status variables.  
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The biochemistry of cells 

 

The biochemical model of an isolated tumor cell developed in references [1] and 

[2] is outlined in figure S2 and comprises the following parts: 

 

1. Glucose uptake and retention by cells 
2. Glucose-6-phosphate utilization by cells 
3. Glycogen storage 
4. Glutamine (aminoacid) uptake 
5. Oxygen uptake 
6. ATP production and consumption 
7. Lactate production 
8. DNA synthesis 
9. Protein synthesis 
10. Mitochondrial proliferation 
11. Dynamics of cell volume 
12. Checkpoints and phase changes 
13. Corrections due to internal and environmental pH 
14. Other corrections 

 

Now we describe in detail each item in the list. 

Glucose uptake and retention by cells 

 

The equations that regulate the metabolism and transport of glucose are 

 

dm
G ,C

dt
= M

G
m

G ,C
t( )!" #$ + TG m

G ,c
t( ),m

G ,C
t( )!" #$      (S.1a) 
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( ! TG mG ,c t( ),mG ,C t( ))* +,    (S.1b) 

 

where m
G ,C

 and m
G ,c

 denote respectively the mass of glucose inside the cell (C) 

and inside the surrounding extracellular volume (c).  

 

The metabolic (MG) and the transport (TG) functions are respectively  
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where  
 
v
max,1

= VMAX1·h·S  

 

h, a2c, c2a are correction factors that shall be specified later on, S is the cell 

surface, VC is the cell volume, Vc is the extracellular volume, and finally the 

values v
max,2

= VMAX2 ; v
max,22

= VMAX22 ; K1, K2, K22,  are cellular parameters (see 

below). 

 

The metabolic function (MG) in equation (S.1a) corresponds to hexokinase and 

glucokinase activity1.  

The first term on the rhs of equation (S.1b) describes diffusion on the disordered 

lattice of extracellular volumes; here DG is the glucose diffusion coefficient 

either in the extracellular space or in the enviroment (water) (see table S5), the 

gbc’s are numerical coefficients that belong to the discretization of the diffusion 

problem on the cell network (see section B), and the triangular bracket b  

denotes the set of the adjacent extracellular spaces. This diffusion part is 

necessary for the consistency of the whole procedure: diffusion in the cell 

cluster and transport into and out of the cell are inescapably related (see section 

B and ref. 4). 

 

 

Glucose-6-phosphate (G6P) utilization by cells 

 

The equation that regulates the G6P content of the cell is  
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dmG6P,C

dt
= !MG mG ,C( ) ! g

1
+ g

2
+ g

3( )       (S.3) 

 

where m
G6P,C

 is the mass of G6P inside cell C, and the rates gi denote different 

paths of G6P utilization (see also figure S2 and reference [1]) 

 

g
1
= t pH ·coeffg1( )m G6P( ),C         (S.4a) 

g
2
= coeffg2·SensO2( )m

G6P( ),C        (S.4b) 

g
3
= coeffg3( )m

G6P( ),C          (S.4c) 

 

The underlying utilization model is straighforward, all the rates gi are simply 

proportional to G6P content of the cell, as this fits quite well the existing 

experimental data [1]. 

Moreover tpH and SensO2 are correction terms (see below) and coeffg1, coeffg2, 

coeffg3 are cellular parameters (see below). 

 

The metabolic function (MG) has been defined above for glucose, and corresponds 

to glucose transformation into G6P.  

 

 

 

Glycogen storage 

 

Glucose is partly stored as glycogen. Its production/consumption, follows the 

equation 

 

d

dt
Store = g

3
+ p

11( ) ! r
1
+ r

2
+ r

3( )        (S.5) 

 

where Store is the glycogen mass inside the cell, the rates ri correspond to 

different paths of Store utilization, the rate p11 corresponds to glycogen 
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production via the glutamine pathway (defined below), and finally the rate g3 is 

associated to the glycogen production path from G6P conversion 

 

r
1
= t pH ·coeffr1( )

Store

VC ·Kmc + Store
       (S.6a) 

 

r
2
= g

3
·SensO2

Store

VC ·Kmc + Store
       (S.6b) 

 

r
3
= SensO2·SensATP·

1

30
·
PM

G

PM
ATP

· ATP
St
! ATPOx( )

Store

V
C
·Kmc + Store

   (S.6c) 

 

p
11
= t p11 t pH ·coeffr1( )·

mA,C

VC ·Kmd + mA,C

· 1! SensATP( )      (S.6d) 

 

Notice that these rates are modeled with simple Michaelis-Menten functions, 

where the substrate is the Store itself (for consumption) or glutamine (for 

production). 

In addition to the symbols already defined in the previous sections, there are also 

other correction factors, tp11, SensATP, and SensO2 (defined later). There is also a 

couple of additional parameters, Kmd and Kmc, and two molecular weights, PMG 

and PMATP (all quantities identified by symbols like PMX are molecular weights): 

they are all listed in table S2. There are also two quantities related to ATP, ATPSt 

and ATPOx, which are defined in the section on ATP. 

 

 

Glutamine (aminoacid) uptake 

 

The equations that regulate the metabolism and transport of glutamine are 

 

dm
A,C

dt
= M

A
m

A,C
t( )!" #$ + TA m

A,c
t( ),m

A,C
t( )!" #$      (S.7a) 
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dmA,c

dt
= DA

mA,b t( )

Vb t( )
!
mA,c t( )

Vc t( )

"

#$
%

&'
gbc

b

( ! TA mA,c t( ),mA,C t( ))* +,    (S.7c) 

 

where m
A,C

 and m
A,c

 denote respectively the mass of glutamine inside the cell 

(C) and inside the surrounding extracellular volume (c). As for glucose, equation 

(S.7c) includes a diffusion term and DA is the diffusion constant of glutamine 

either in the extracellular space or in the enviroment (water) (see table S5). 

 

The metabolic (MA) and the transport (TA) functions are respectively  

 

MA mA,C( ) = ! p
11
+ p

22( )

!
VMAXPAATPp·mA,C

VC
2
Kmp + ATPp·mA,C

!
VMAXDNAAATPp·mA,C

VC
2
KmDNA + ATPp·mA,C

!
VMAXMA ·ATPp·mA,C

V
2

CKmM + ATPp·mA,C

 

           (S.8a) 

T
A
m

A,C
,m

A,c( ) = a2cA·
v

max,A
m

A,c

V
c
KmA + m

A,c

! c2aA·
v

max,A
m

A,C

V
C
KmA + m

A,C

    (S.8b) 

 
where v

max,A
= VMAXA·S , and   

 

p
22
= 3·SensO2·SensATP·

1

30
·
PMG

PMATP

· ATPSt ! ATPOx( )
mA,C

VC ·Kmd + mA,C

  (S.9) 

 

is the rate of glutamine consumption for ATP production (see below), and the 

three double-substrate Michaelis-Menten rates correspond to protein production, 

DNA synthesis, and glutamine consumption for mitochondrial proliferation. In 

these formulas there are two additional correction factors, a2cA and c2aA, 

defined below, and several parameters, VMAXA, VMAXPA, VMAXDNAA, VMAXMA, 

Kmp, KmDNA, KmM, all listed below.  

 

 

Oxygen uptake 

 

The equation for oxygen metabolism and diffusion is  
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dmO2,C

dt
= DO2

mO2,B t( )

VB t( )
!
mO2,C t( )

VC t( )

"

#$
%

&'
gBC

B

( + MO2 mO2,C t( ))* +,    (S.10) 

 
where DO2 is the oxygen diffusion coefficient either in water or in the cluster of 

cells (see table S5), and the metabolic function is  

 

MO2 mO2,C( ) = !6
PMO2

PMG

g
2
+ r

2
+ r

3
+ p

22( )       (S.11) 

 
There is no extracellular quantity here, as oxygen diffuses normally over the cell 

and there is no specific transport process. 

ATP production and consumption 

 

The differential equation for ATP is  

 

d

dt
ATPp = ATPtot          (S.12) 

 

where ATPp is the total ATP mass in the cell, and ATPtot is the total variation 

rate. ATPtot is a sum of several contributions: 

 

• ATPOx (ATP production rate from oxidative phosphorylation) 

• ATPNOx (ATP production rate from anaerobic glycolysis) 

• ATP2 (ATP production rate from glycogen (Store) ) 

• ATP3 (ATP production rate from aminoacids (glutamine) ) 

• ConsATP (ATP consumption rate due to gluconeogenesis) 

• ConsATP1 (parameterization of the ATP consumption proportional to 

cellular volume) 

• ConsATP2 (ATP consumption rate for protein synthesis) 

• ConsATP3 (ATP consumption rate for DNA synthesis) 

• ConsATP5 (ATP consumption rate for mitochondrial proliferation) 

 

which are defined by the equations 
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ATPOx = 30
PMATP

PMG

g
2
+ r

2( )         (S.13.a) 

 

ATPNOx = 2
PMATP

PMG

g
1
+ r

1( )         (S.13.b) 

 

ATP2 = 30
PM

ATP

PM
G

r
3
         (S.13.c) 

 

ATP3 = 28
PMATP

PMG

p
22

        (S.13.d) 

 

ConsATP = 2
PMATP

PMG

p
11

        (S.13.e) 

 

ConsATP
1
= vworkC1·ATPp         (S.13.f) 

 

ConsATP
2
=
VMAXPATPATPp·mA,C

VC
2
Kmp + ATPp·mA,C

       (S.13.g) 

 

ConsATP
3
=
VMAXDNAATPATPp·mA,C

VC
2
KmDNA + ATPp·mA,C

      (S.13.h) 

 

ConsATP
5
=
VMAXMATP ·ATPp·mA,C

V
2

CKmM + ATPp·mA,C

       (S.13.i) 

 

ATPtot = ATPOx + ATPNox + ATP2 + ATP3

!ConsATP ! ConsATP
1
! ConsATP

2
! ConsATP

3
! ConsATP

5

  (S.13.j) 

 

In these equations there are a few additional parameters, v
work

, C1 , VMAXP
ATP

, 

VMAXDNA
ATP

, and VMAXM
ATP

, which are specified below. 
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Here we remark that some of these terms are representative of large classes of 

processes, in particular ConsATP1 represents all those processes that utilize ATP 

and are extensively distributed over the cellular volume1.  

 

 

Lactate production 

 

The equations that regulate the production and transport of lactate are 

 

dm
AcL ,C

dt
= M

AcL
m

AcL ,C
t( )!" #$ + TAcL m

AcL ,c
t( ),m

AcL ,C
t( )!" #$     (S.14a) 

dmAcL ,c

dt
= DAcL

mAcL ,b t( )

Vb t( )
!
mAcL ,c t( )

Vc t( )

"

#$
%

&'
gbc

b

( ! TAcL mAcL ,c t( ),mAcL ,C t( ))* +,   (S.14.b) 

 

where DAcL is the lactate diffusion coefficient either in the extracellular space or 

in the enviroment (water) (see table S5), and  

 

MAcL mAcL ,C( ) = 2g1 + 2r1         (S.15a) 

T
AcL

m
AcL ,C

,m
AcL ,c( ) = a2cAcL·

v
max,AcL

m
AcL ,c

V
c
·KmAcL + m

AcL ,c

! c2aAcL·
v
max,AcL

m
AcL ,C

V
C
·KmAcL + m

AcL ,C

 

           (S.15b) 

 

where v
max,AcL

= VMAXAcL·S , and, as before, a2cAcL and c2aAcL are correction 

factors, while VMAXAcL and KmAcL are cellular parameters. 

 

 

DNA synthesis 

 

The equation for DNA synthesis is 

                                         

1 Notice also that a term ConsATP4 is missing: the name is reserved to a class of 
processes not yet included in the program.  
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dDNA

dt
= v

DNA
          (S.16) 

 

where DNA is the fraction of a complete DNA molecule, and v
DNA

 is the rate of 

DNA synthesis from a double-substrate Michaelis-Menten term: 

 

v
DNA

=
VMAXDNA·m

ATP
·m

A

V
2

C
KmDNA + m

ATP
·m

A

       (S.17) 

 
Here the glutamine mass (mA) represents the contribution of the other 

aminoacids as well.  

 

 

Protein synthesis 

 

The equation for protein production is similar to (S.16), with the difference that 

now it represents a whole class of substances (all the proteins):  

 
dmp

dt
= vp           (S.18) 

 
where mp  is the total protein mass in the cell, andvp  is the rate of protein 

production from a double-substrate Michaelis-Menten term: 

 

vp =
VMAXP·ATPp·mA

V
2

CKmp + ATPp·mA

        (S.19) 

 

The protein mass determines also the amounts (masses) of some specific 

proteins, pRb (retinoblastoma protein) and three cyclins (D, E, X = A+B):  

 

pRb_fraction = 1.5e-2 times mp  

cyclinD_fraction = 10.e-3 times mp  

cyclinE_fraction = 3.e-3 times mp  

cyclinX_fraction = 14.e-3 times mp  
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The amount of pRb that is carried over to daughter cells in mitosis is important 

because this indirectly determines the duration of the G1-phase, and we model 

the fluctuating duration of the G1-phase assuming that pRb is bound to parts of 

the nucleus that are partitioned binomially at mitosis. This modeling requires 

one additional cell parameter, NUCLEAR_OBJ, which is the (fictitious) number of 

parts to which pRb is bound. 

Mitochondrial proliferation 

 

The number of mitochondria is described by the continuous variable M, which 

follows the differential equation  

 
dM

dt
= v

M
          (S.20) 

 
where v

M
 is the rate of mitochondrial proliferation and is associated to a double-

substrate Michaelis-Menten term which is proportional to the production of 

mitochondrial DNA: 

 

vM =
VMAXM ·ATPp·mA,C

V
2

CKmM + ATPp·mA,C

        (S.21) 

 
where VMAXM is yet another cellular parameter. 

 

Mitochondria are partitioned randomly between the daughter cells at mitosis. 

Experimental observations indicate that this partitioning follows a binomial 

distribution [5,6], however, in order to better reproduce the observed 

desynchronization of disperse cell populations [7], mitochodria are clustered in 

small groups – a noteworthy fact that is experimentally observed [8] – and it is 

these groups that are actually shared between cells; the clustering factor 

ClusteringFactor belongs to the list of cell parameters as well.  
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Dynamics of cell volume 

 

Cellular volume is a notoriously complicated cellular variable [9,10], and in 

particular it is related to osmotic pressure, and thus to the concentration of 

many substances inside cells. Here we take the total ATP mass as representative 

of this vast array of substances, and we assume that the cellular volume is partly 

determined by the total ATP mass. In addition, there are fixed volume 

contributions from the cell nucleus and from the organelles. The organelles 

themselves are variable in number, and again, we take the number of 

mitochondria as representative of the whole class of cellular organelles. These 

considerations yield the following – extremely simplified – formula for the 

volume of living cells:  

 

VC = V
min
1+ DNA( ) + C2·Mit + C1·ATPp       (S.22) 

 

where DNA is the fraction of synthetized DNA molecule as in eq. (S.16), while C1, 

C2 and Vmin are cellular parameters. Since Vmin is the nuclear volume, eq. (S.22) 

takes into account the effective doubling of nuclear volume during the S-phase. 

 

In the program we also assume that a cell can become apoptotic – for reasons 

explained below, in the section on cell-phase transitions – and after death the 

volume gradually shrinks [11] according to the equation 

 

dVC

dt
= !DVap·VC          (S.23) 

 

which has the exact solution  

 

VC = V0 exp !DVap·t( )         (S.24) 

 

where DVap is yet another cellular parameter, and V0 is the cell’s volume at 

death. This shrinking continues until V
C
= V

min
 and then stops: thus the cluster of 

cells eventually contains a sizeble volume of dead cells’ residues.  
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Corrections due to internal and environmental pH 

 

The equations above include several correction factors that modify the enzyme 

activity according to the internal and the extracellular pH 

 

pHC = pH inside cell C 

pH
c
= pH in the extracellular space 

We plan to include in the program a rather complete model of cellular acidity, 

but at the moment the internal pH is fixed and the external pH is computed 

from a simple model of the buffering capacity of the standard nutrient solutions 

[2]. If [AcL] is the lactate concentration, then the pH of the enviroment and of 

the extracellular spaces is  

 

pH = 7.5443!
AcL[ ]

BufCapEnv
        (S.25) 

 

where2,12 BufCapEnv = 0.19953 kg/m3.  

 

The pH value is used to compute the following correction factors [2,13-16]:  

 

t
pH = correction of metabolic rates (depends on internal pH, and thus at the 

moment it is fixed) 

t
p11= fine tuning of p11 (depends on internal pH, and thus at the moment it is 

fixed) 

a2c = correction to transport of glucose from extracellullar space into cell 

c2a = correction to transport of glucose from cell to extracellullar space 

a2cA= correction to transport of glutamine from extracellullar space into cell  

c2aA= correction to transport of glutamine from cell to extracellullar space 

a2cAcL = correction to transport of lactate from extracellullar space into cell 

c2aAcL = correction to transport of lactate from cell to extracellullar space 
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The defining equations are:  

 

t pH =
1

2
1+ tanh tpH _ slope·pHC ! tpH _ thr( )"# $%      (S.26a) 

t p11 =
1

2
1+ tanh tp11_ slope·pHC ! tp11_ thr( )"# $%      (S.26b) 

a2c =
1

2
1+ tanh a2c_ slope·pHc ! a2c_ thr( )"# $%      (S.26c) 

c2a =
1

2
1+ tanh c2a_ slope·pHC ! c2a_ thr( )"# $%      (S.26d) 

a2cA =
1

2
1+ tanh a2cA_ slope·pHc ! a2cA_ thr( )"# $%      (S.26e) 

c2aA =
1

2
1+ tanh c2aA_ slope·pHC ! c2aA_ thr( )"# $%      (S.26f) 

a2cAcL = 2 ! tanh a2cAcL _ slope·pHc ! a2cAcL _ thr( )     (S.26g) 

c2aAcL = 2 ! tanh c2aAcL _ slope·pHC ! c2aAcL _ thr( )     (S.26h) 

 

These equations are smoothed versions of piecewise linear approximations of 

experimental data [2,13-16]. 

 

 

Other corrections 

 

There are a few additional correction factors related to oxygen and ATP [1,2]: 

 

h = correction to glucose transport due to oxygen concentration 

SensO2 = correction to glucose metabolism due to oxygen concentration 

SensATP  = this factor is used to switch ATP production between oxidative 

phosphorylation and anaerobic glycolysis 

 

The equations that define these correction factors are [1,2]:  
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h = 0.5 1.3 1!
m
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V
C
O2st

"
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%
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V
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"
#$

%
&'
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*

+
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.
/
0
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2
3
0

40

   (S.27) 

 

SensO2 =
m
O2,C

V
C
K
O2

+ m
O2,C

        (S.28) 

 

SensATP =
1

2
1! tanh 100·

ATPOx ! ATP
St( )

ATP
St

"

#$
%

&'
(

)
*
*

+

,
-
-
=
1

2
1! tanh 100·

ATPOx

ATP
St

!1
"
#$

%
&'

(

)
*

+

,
-

.
/
0

10

2
3
0

40
 

           (S.29) 

The equations for h and SensATP are smoothed versions of piecewise linear 

approximations, and ATPSt is a standard rate (this is a cellular parameter as 

well), that acts as a threshold that separates the two regimes of oxidative 

phosphorylation and anaerobic glycolysis. There are a two more parameters in 

these definitions, O2St, the standard oxygen concentration, and KO2. ATPOx is the 

rate of ATP production from oxidative phosphorylation (defined above, in the 

section on ATP). The hyperbolic tangents that occur in the formulas do not have 

any special meaning, they are only practical approximations of smoothed step 

functions. 

 

 

Cell phase transitions 

 

The transitions from one cell phase to the next are regulated by a complex 

biochemical machinery that we include only in small part, and as it interacts in 

deep ways with cell metabolism.  

Each cell in the simulation is in a certain phase of the cell’s cycle, and there are 

specific rules that determine the transition from one phase to the next.  

We define the following phases (sketched in fig. S1):  
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1. G1m phase: G1 phase prior to the commitment to enter S phase (variable 

duration); 

2. G1p phase: G1 phase after the commitment to enter S phase (variable 

duration); 

3. S phase (variable duration); 

4. G2 phase (variable duration); 

5. M phase (fixed duration); 

6. Death (indefinite duration); 

 

The dynamics of the G1m-G1p and of the G1p-S transitions is regulated by the 

pRb protein: pRb forms a complex with an enzyme E and carries 16 putative 

phosphorylation sites [17,18]. In this context, the enzymatic reaction catalyzed 

by E is a phenomenological model of the reactions controlled by the transcription 

factor E2F that associates with pRb in real cells.  

The pRB-E complex is synthesized in the G2 phase and it is partitioned at random 

between the daughter cells at mitosis. At the beginning of the G1m phase the 

cyclin D protein (CycD) is expressed and it phosphorylates the pRB-E complex 

upon rapid association with specific cyclin-dependent kinases [17,18]. The 

phosphorylation event is assumed to occur following the reversible bimolecular 

interaction between cyclin D and the pRb complex: a detailed study has shown 

that the precise mechanism of pRb phosphorylation is irrelevant with respect to 

the dynamics of the system’s response [17]. Upon partial phosphorylation of the 

pRb protein, a fraction of E molecules are released and catalyze a reaction 

whereby a substrate S is converted into a product P. When the concentration of S 

falls below the threshold Thresh_S_start the expression of the cyclin E protein 

(CycE) is activated and this marks the progression of the cell from the G1m phase 

to the following G1p-phase. CycE participates to pRb phosphorylation upon 

instantaneous association with specific cyclin-dependent kinases and leads to the 

hyperphosphorylation of the pRb with full E detachment. When the 

concentration of S falls below the threshold Thresh_S_stop the cell progresses to 

the S-phase. At the end of the G1m- and G1p-phases, the cyclins CycD and CycE 

are destroyed by a proteolytic degradation that is assumed to occur faster than 

the considered reaction kinetics. The nature of pRb phosphorylation naturally 
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introduces a threshold and a time delay in the reaction catalyzed by E with 

characteristic times comparable with the cell progression through the various 

cell cycle phases [19,20].  

 

 The program computes first the attachment probabability  
 

p =
1

2N[A]
0

N A[ ]
0
+ B[ ]

0
+
k!

k
+

"
#$

%
&'
! N A[ ]

0
+ B[ ]

0
+
k!

k
+

"
#$

%
&'

2

! 4N A[ ]
0
B[ ]

0

(
)
*

+*

,
-
*

.*
  (S.30) 

 

and then the fraction and the number of molecules with at least k occupied 

phosphorylation sites:  

 

Pk = P occupied sites ! k( ) =
N

l

"

#$
%

&'
p
l 1( p( )

N ( l

l= k

N

)      (S.31) 

 

NAV A[ ]( )·Pk = NAV A[ ]
N

l

!

"#
$

%&
p
l
1' p( )

N ' l

l= k

N

(      (S.32) 

 

where A[ ]  is the concentration of the pRb protein, and B[ ]  is the concentration 

of the phosphorylating complex, which – as explained above – we identify with 

the sum of the D and E cyclins (that we assume to be phosphorylated, in a 

cytoplasm with plenty of ATP). Here N and k are cell parameters (although in 

this case we do not expect them to change in different cell lines – see below). 

 

Finally pRb_ONOFFratio is the ratio of the detachment-attachment rates (of the 

mediated phosphorylation process of pRb): 

 

k
!

k
+

 = pRb_ONOFFratio 

 

We remark that all the quantities related to pRb phosphorylation process depend 

directly on pRb concentration, and thus on protein mass, and they do not require 

additional differential equations. 
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The concentration of the enzyme E (E2F) released by the configurational switch 

of the pRb protein is given by 

 

E[ ]
0
= A[ ]

0

N

l

!

"#
$

%&
p
l
1' p( )

N ' l

l= k

N

(         (S.33) 

 
and this determines the variation of the concentration of substrate S which leads 

to the threshold mechanism for the G1m-G1p commitment point 

 

d S[ ]
dt

! "
k3MM · E[ ]

0
S[ ]

KmMM + S[ ]
        (S.34) 

 

(where k3MM and kmMM are two additional cell parameters). The cell crosses the 

G1m-G1p commitment point when the concentration of the substrate S reaches a 

low value Thresh_S_start. A still lower value Thresh_S_stop corresponds to the 

G1-S checkpoint transition.  

 

DNA synthesis takes place during the S-phase only, and the program contains a  

variable that takes care of synthesized DNA (measured in units of complete  

molecule). When this counter equals 1 the S-phase ends and the cell enters phase 

G2. 

 

The G2-phase ends when there is a sufficient amount of cyclin A + cyclin B (at 

least CycXThr). Finally the M-phase has a fixed duration (M_T_MEAN).  

 

In the program we also define a special cell phase which corresponds to death. 

We introduce an average death rate due to metabolites in the environment:  

 

death rate = aR [AcL]C        (S.35) 

 

where [AcL]C is the lactate concentration inside the cell, so that the probability 

that a given cell survives during a timestep !t  is  

 

exp !a
R
AcL[ ]

C
·"t( )          (S.36) 
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(this is the just the conventional expression for the survival probability in 

toxicology21).  

A cell can also die if there are not enough nutrients: we check for this condition 

at the start of each phase, and if the ATP content of the cell is less than a 

minimum mass ATPmin, the cell dies. The value ATPmin is calculated assuming 

that any residual cytoplasmic volume – which in our minimal model of the cell’s 

volume depends on the total ATP content of the cell – must be at least as large 

as the total mitocondrial volume, then from the volume formula (S.22), we find  

 

ATPmin =
C2·Mit

C1
         (S.37) 
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B. Combined numerical solution of the diffusion and transport 
problem 

 

In the previous section we have introduced several non-linear differential 

equations: these equations are used to simultaneously model both internal cell 

metabolism, and transport and diffusion. The equations have a rather 

conventional structure, as it often happens in biology, where the models are 

often concerned with enzyme action in the synthesis and destruction of 

molecular species, and in the regulation of transport of molecules into and out 

of the cell or cellular compartments.  

The modeling of transport and diffusion is achieved by discretization of the 

diffusion problem: the cells’ centers provide a natural discretization scaffolding 

and we use a Delaunay triangulation to define proximity relations [22-28]. Figure 

S3 shows schematically the cells and their extracellular spaces, together with 

two simple examples of triangulation, both in 2D and in 3D. The molecular 

species in the program can be grouped in three different classes. The first class 

includes substances that are neither transported outside the cell nor diffuse to 

neighboring cells, and obey differential equations with the generic form  

 

dm
C

dt
= M m

C( )          (S.38) 

 

where m
C

 is the mass of the substance in cell C, and M m
C( )  is a function that 

depends on the current state of the cell (e.g., in the case of stored glycogen, this 

function is implicitly defined by equation (S.5) and is equal to 

g
3
+ p

11( ) ! r
1
+ r

2
+ r

3( ) ). In this case, the algorithmically stable solution derived 

from the implicit Euler method is 

 

m
C

n+1
= m

C

n
+ !t·M m

C

n+1( )         (S.39) 

 

where m
C

n  is the mass of substance in the cell at the n-th timestep. 
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The second class of substances behaves like oxygen, which is metabolized by the 

cell, but is free to diffuse from cell to cell, and obeys equations with the generic 

form  

 

dmC

dt
= M mC( ) + D

mB

VB
!
mC

VC

"

#$
%

&'
gBC

B

(       (S.40) 

 

where in addition to the metabolic term there is a diffusion term as well (and 

the sum runs over all adjacent cells B – here adjacency is defined by the 

Delaunay triangulation). Now the algorithmically stable solution derived from 

the implicit Euler method is equivalent to the Backward Differentiation Method 

method for partial differential equations [29], and writes 

 

mC

n+1
= mC

n
+ !t M mC

n+1( ) + D
mB

n+1

VB
"
mC

n+1

VC

#

$%
&

'(
gBC

B

)
*

+
,
,

-

.
/
/
    (S.41) 

 

The last class of substances is like glucose, which is transported across the cell 

membrane by facilitated diffusion. This case requires two equations per cell 

 

dm
C

dt
= M m

C( ) + T m
c
,m

C( )         (S.42a) 

dmc

dt
= !T mc ,mC( ) + D

mb

Vb
!
mc

Vc

"

#$
%

&'
gbc

b

(       (S.42b) 

 

where the first equation describes internal metabolism and transport across the 

cell membrane into (or from) extracellular space, while the second equation 

describes the mass balance in the extracellular space, which exchanges mass 

with the cell and is linked to the rest of the system by diffusion (the 

extracellular space corresponding to cell C is denoted by a lowercase c, and the 

sum num runs over  the adjacent extracellular spaces b). Now the algorithmically 

stable solution derived from the implicit Euler method produces the pair of 

equations  
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m
C

n+1
= m

C

n
+ !t M m

C

n+1( ) + T m
c

n+1
,m

C

n+1( )"
#

$
%       (S.43a) 

mc

n+1
= mc

n
+ !t "T mc

n+1
,mC

n+1( ) + D
mb

n+1

Vb
"
mc

n+1

Vc

#

$%
&

'(
gbc

b

)
*

+
,
,

-

.
/
/
    (S.43b) 

 

Finally, taking into account all substances, we are left with a large set of 

nonlinear equations like (S.39), (S.41), (S.43a) and (S.43b). These equations are 

solved iteratively with Newton-Raphson steps [30]; these steps usually converge, 

but may occasionally fail if the mass is very close to zero, and in this case they 

are substituted by steps performed with the secant method [30]. The 

convergence condition is that for all masses the inequality  

 

m
n+1

! m
n
< " ·

m
n+1

+ m
n

2
        (S.44) 

 
holds, where !  is a given precision, i.e., the difference between two successive 

values in the iteration must be less than a given fraction of the estimated mass.  

 

 

C. Biomechanical modeling 

 

Mechanical interactions between cells are – if possible – even more complex than 

the biochemical network described above, and we know that cells are viscoelastic 

structures which are actively shaped by the cytoskeleton [31].   

 

The simulation work faces the following difficulties: 

 

• existing theoretical models capture only part of the actual features of 

cells and are not really applicable to the complex reality of cells in 

clusters (e.g., reference [32] describes an interesting model of 

erythrocytes, which are however both simpler and different from other 

human cells; the model is also inapplicable here, because it would lead to 

an exceedingly high computational complexity); 
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• many measurements are inapplicable to the simulation of cells (pipette 

aspiration techniques [33-35], as well as optical and magnetic tweezers 

measurements [36,37] and experiments that utilize atomic force 

microscopes [38-45], provide interesting data, but in a contexts that are 

different from those that we want to simulate); 

• cells adapt their shape both to environment and to internal events (the 

most notable of which is obviously the mitosis) 

• cells live in a high-viscosity environment where both the internal viscosity 

of cells and the external viscosity of the extracellular environment matter.  

 

Clearly, phenomenological approximations and parameterizations carry even 

more weight in this context. We approximate the mechanical behavior of cells as 

follows:  

 

• cells are (soft) spheres, and are characterized by the position of their 

center (a 3D vector) and by their radius; 

• we assume that cells are close-packed, and this leads to the introduction 

of an effective radius that is important in repulsive interactions with 

other cells;  

• adhesion forces are usually very short-ranged, but here we assume a much 

larger range, and in this way we account for the cell’s extensibility and 

deformation;  

• we assume that cells are surrounded by viscous material similar to that 

found in the extracellular matrix [46];  

 

In the following paragraphs we explain all this in further detail.  

 

 

Cell-cell forces 

 

We use a parameterization of the cell-cell forces that is somewhat similar to 

that used in references [47] and [48]. For small deformations of the cell 
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membrane, it is reasonable to assume that it behaves as in the Hertz problem 

(interaction of two spherical membranes) or as in the Boussinesq problem 

(axisymmetric pressure on a flat membrane) [49,50]: in both cases the force is 

proportional to k
C
x
3 2

, where x is the relative deviation from the equilibrium 

position and k
C

 is a constant related to the problem parameters. In the Hertz 

problem the intensity of the force is 

 

F
12
=

R
1
R
2
R
1
+ R

2( )
3

4

1!"
1

2

E
1

+
1!"

2

2

E
2

#
$%

&
'(

R
1
+ R

2
! d

R
1
+ R

2

#

$%
&

'(

3 2

      (S.45) 

 

where R denotes the radius, d is the distance of the two spheres’ centers, E is 

Young’s modulus, !  is Poisson’s ratio, and the subscripts denote sphere 1 or 2, so 

that in this case  

 

k
C
=

R
1
R
2
R
1
+ R

2( )
3

4

1!"
1

2

E
1

+
1!"

2

2

E
2

#
$%

&
'(

        (S.46) 

 

and  

 

x =
d ! R

1
+ R

2( )
R
1
+ R

2( )
         (S.47) 

 

Under compression the repulsive force (S.45) can be quite large, especially after 

mitosis: such large forces are not observed in real cells, and thus we assume that 

at small enough separations d the force flattens out and has a constant modulus. 

We set the position of this flattening so that we obtain the observed duration of 

mitosis. 

 

When cells are drawn apart the force is attractive, because of adhesion 

molecules on the cell membrane [51]. The force range of the adhesion molecules 

is quite small (tens of nanometers) but here we assume a far larger range, as 
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large as a few microns: in this way we account – albeit phenomenologically – for 

shape deformations in the case of attractive forces. Cell-cell adhesion depends on 

the number of links between adhesion molecules on both cell membranes [52], 

and is a probabilistic process: if we assume a roughly Gaussian probability 

density which depends on the relative deviation x, then  

 

p x( ) =
1

2!" 2
exp #

x # x0( )
2

2" 2

$

%
&

'

(
)        (S.48) 

 
is the probability density that a link is detached at relative distance x, where x

0
 

and ! 2  are parameters that must be adjusted. This means that the average 

number of detached links at relative distance x is proportional to the cumulative 

probability 

 

P x( ) = p !x( )d !x
0

x

" =
1

2#$ 2
exp %

!x % x0( )
2

2$ 2

&

'
(

)

*
+ d !x

0

x

" ,
1

2
1+ erf

x % x0
2$

&
'(

)
*+

-

.
/

0

1
2   (S.49) 

 

Computing the error function in the simulation program leads to an increase of 

the computational load, and thus we replace the expression (S.49) with the 

approximate formula  

 

P x( ) !
1

2
1+ tanh

2

"# 2
x $ x

0( )
%

&'
(

)*
+

,
-
-

.

/
0
0
       (S.50) 

 

(the hyperbolic tangent approximates the error function everywhere to better 

than 2% precision). Finally we take a force that is proportional both to the 

number of links and to the previously calculated shape k
C
x
3 2

:  

 

F
a
x( ) !

1

2
1+ tanh

2

"# 2
x $ x

0( )
%

&'
(

)*
+

,
-
-

.

/
0
0
k
C
x
3 2

     (S.51) 
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The values of the parameters E, ! , 
2

!"
2

, and x
0
 are listed in table S4 and the 

modulus of the force is shown in figure S4; the direction of the force is always 

along the line that connects the cell centers. 

 

 

Brownian motion 

 

Cells are small and Brownian motion, i.e. random molecular forces, could play an 

important role, however in the high viscosity medium of a cell spheroid we find 

that Brownian motion is negligible. It is easy to estimate this from the 1D 

Langevin equation for Brownian motion along x:  

 

m
d
2
x

dt
2
= !"

dx

dt
+ n t( )          (S.52) 

 

where m is the cell’s mass, !  is the friction coefficient, and n t( )  is a white 

noise process which is associated to the molecular thermal motion. It can easily 

be shown that the mean square fluctuation [53] is  

 

x
2
t( ) = 2

kT

!
t          (S.53) 

 

and does not depend on the particle mass. Now if we take cells in a high-

viscosity environment, ! " 1 Pa·s , and estimate the friction coefficient using the 

Stokes-Einstein formula for a cell with radius r ! 5 "m, we find 

! = 6"#r $ 9.4·10
%5

 N·s/m , then at T ! 300 K the mean square fluctuation and the 

RMS fluctuation are 

 

x
2
t( ) ! 8.8·10

"17
 m

2
s( ) t         (S.54a) 

x
2
t( ) ! 9.4 nm s( ) t         (S.54b) 
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so that it takes a time t ! 104 s for an RMS fluctuation of 1 "m to develop. It 

follows that the Brownian motion of cells is negligible in the case a simulation of 

tumor spheroids with reasonable time steps (the time step cannot in any case be 

longer than the duration of the shortest phase, which is the M-phase and lasts ~ 

2000 s. moreover time steps should be shorter than ~ 100 s to provide a good 

sampling schedule of most biochemical processes).  

 

 

 

 

Dynamical equations 
 

The dynamical equations for the motion of cells are similar to those of 

dissipative particle dynamics [54,55], without stochastic terms (since Brownian 

motion is negligible): 

 

m
n

dv
n

dt
= !" v

n
! "

n,k

v
n
! v

k( )· rn ! rk( )

r
n
! r

k

2
r
n
! r

k( )
k

# + F
n
+ F

n,k

k

#    (S.55) 

 

where the indices n and k denote cells, the sums 
k

! are over all neighboring 

cells, m
n
 denotes the mass, r

n
 and v

n
 are position and velocity vectors of the 

cell, !  is the environmental friction coefficient, !
n,k

 is the friction between the 

n-th and the k-th cell, F
n
 is an external force (like gravity), and finally F

n,k
 is the 

force that cell k exerts on cell n.  

 

Analysis of the simplified dynamical equations 

 

The equations (S.55) include a cell-cell friction that acts only along the line that 

joins the cells’ centers, and if we relax this constraint, the equations become 

somewhat simpler and easier to analyze:  
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m
n

dv
n

dt
= !" v

n
! "

n,k
v
n
! v

k( )
k

# + F
n
+ F

n,k

k

#      (S.56) 

 

If there are N cells, then the system of equations (S.56) is a linear system of 3N 

ordinary differential equations, and we can solve it using an implicit-explicit 

Euler method [56,57] (implicit over velocities, explicit over intercellular forces 

which are assumed to change slowly), so that the discretized version of the 

differential equation now writes 

 

v
n
t + !t( ) = v

n
t( ) + "

#
m

n

v
n
t + !t( ) "

1

m
n

#
n,k
v
n
t + !t( ) " v

k
t + !t( )( )

k

$
%
&
'

+
1

m
n

F
n
t( ) + F

n,k
t( )

k

$(

)
*

+

,
-
.
/
0
!t

 (S.57a) 

r
n
t + !t( ) = r

n
t( ) + v

n
t + !t( )!t        (S.57b) 

 

Equations (S.57a) are a linear system that could in principle be solved using one 

of the standard methods [29], however the computational complexity of the 

standard exact solutions is ! 3N( )
3( ) , and since N can be of the order of several 

hundreds of thousands or a few millions of cells, the computational burden of 

the exact solutions is huge. For this reason we resort to an approximate, iterative 

method (this holds for the solution of the complete differential system (S.55) as 

well). Formally solving the equations (S.57a) for v
n
t + !t( ) , we find  

 

v
n
t + !t( ) =

v
n
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n,k
v
k
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12

3
45
!t
m
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   (S.58) 

 

and we can rewrite this as 
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   (S.59) 

 

where the index i identifies the i-th iteration. It is easy to see that the iterative 

algorithm converges: we start by subtracting two successive iterations 
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from which we obtain the series of inequalities 
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and convergence follows when we notice that  

 

c = max
n

!
n,k

k

" #t
m

n
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'
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i.e., the maximum difference max
n

v
k

i+1( )
t + !t( ) " v

k

i( )
t + !t( )  between successive 

iterations approaches zero for large i. 

 

In the section on Brownian motion we have already taken a rather high 

environmental viscosity ! " 1 Pa·s , which corresponds to the viscosity of the 

hyaluronate and collagen in extracellular spaces [58,59]; the viscosity of cell-cell 

interactions is even higher [31-45], of the order of ! " 200 Pa·s . If we take cells 

with radius r ! 5 "m, so that  m ! 5#10-13 kg, we note that ! " 9.4·10
#5

 N·s/m  and 

that !
n,k

k

" # 0.02 N·s/m , and we let !t  = 100 s, then we find c ! 0.995 . Using this 

value we can estimate the worst-case convergence speed: from equation (S.62) we 

see that we achieve a ten-fold accuracy improvement after s steps, so that 

c
s
= 1 10 , i.e., s = !1 log

10
c " 500 . We remark here that this estimate depends 

critically on the environmental viscosity: we assume the viscosity of hyaluronate, 

but if we took a lower viscosity environment, like water with ! " 0.001 Pa·s , we 

would find ! " 9.4·10
#8

 N·s/m  and c ! 0.999995 , so that s ! 500000. In the case of a 

water environment, convergence of the iterative algorithm is so slow that it 

becomes totally impractical, but fortunately we can stick to the other, more 

favourable case. 

 

 

Solution of the complete nonlinear system of dynamical equations 

 

The simplified equations (S.56) are useful to analyze algorithmic convergence, 

but the program utilizes the full equations (S.55). In this case the equations 

obtained from the implicit-explicit Euler method for the x-component of the 

velocity vector are  
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(similar equations hold for the y and z component of the velocity). These 

equations can also be put into matrix form  
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The formal solution of the equations (S.64) is  
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and this equation can be recast in the iterative form 
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where once again the index i identifies the i-th iteration. 

 

 

Mitosis 

 

When a cell completes the M-phase it is replaced by two daughter cells. The 

program selects a random direction for the axis that joins the centers of the 

daughter cells, and then it computes the positions of their centers. Since the 

total volume of the daughter cells is equal to the volume of the mother, the 

radius of each daughter cell is roughly equal to 80% of the radius R
0
 of the 

mother, i.e., the distance between the new centers is about 0.4 R
0
 (see figure 

S5). Here the centers are only representative of an “average” cell position and are 

used to compute forces; the new cells are actually compressed and deformed to 

fit in the original volume.  

The distance 0.4 R
0
 also sets the maximum value of the repulsive force: indeed 

when the daughter cells are not surrounded by other cells, the distance of their 

centers must increase from about 0.4 R
0
 to 1.6R

0
 in a time equal to the duration 

of the M-phase. For cells with radius R
0
! 5 µm  this means that the distance 

traveled by each cell is about 3 !m. If we take the total duration of the M-phase 

about 2000 s, then the average speed of each cell is about 1.5 nm/s, and the 
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average repulsive force is F = ! v "  30 pN, taking a cell-cell viscosity ! " 200 Pa·s  

as above.  
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D. List of biophysical constants, parameter values 

 

Table S1: list of cell status variables in the simulation program. 

 
basic informations 
name cell name (identifier)  
mark optional label to select a subset of cells (i.e., cells with a marker of some kind) 
type cell phenotype (cell-specific list of parameters) 
T local cell temperature (not used now) 

 
cell state 

 

phase cell phase 
death_condition label that records the reason of death (valid for dead cells only) 
age cell age (since birth) 
phase_age age of present cell phase 
age_mother age of mother at mitosis 
n_mitosis number of cell generations since start of simulation 

 
geometric and topological informations 
x,y,z cell position vector 
vx, vy, vz cell velocity vector 
r cell radius 
surface cell surface 
volume cell volume 
mass cell mass 
  
volume_extra volume of extracellular space surrounding cell 
  
neigh number of neighbors 
vneigh list of neighboring cells 
vdist distances to neighboring cells 
vcsurf contact surfaces with neighboring cells 
gnk vector of geometric factors 
contact_surf total contact area with neighboring cells 
  
isonCH boolean variable that is true if the cell is in contact with the environment 
env_surf cell-environment contact area 

 
metabolic variables  
pHi internal pH 
M number of mitochondria  
G mass of glucose inside cell 
G6P mass of G6P inside cell 
O2 mass of oxygen inside cell 
store mass of glycogen inside cell 
A mass of glutamine inside cell 
AcL mass of lactic acid inside cell 
protein total mass of proteins inside cell 
prot_rate total protein production rate 
DNA total amount of DNA produced by replication 
DNA_rate DNA replication rate 
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Table S1: list of cell status variables in the simulation program. (ctd.) 

 
rates 
GAbsRate glucose absorption rate 
GConsRate glucose consumption rate 
AAbsRate glutamine absorption rate 
AConsRate glutamine consumption rate 
StoreFillRate glycogen production rate 
StoreConsRate glycogen consumption rate 
AcLRate lactic acid production rate 
AcLOutRate lactic acid expulsion rate 

 
ATP-related variables 
ATP_St standard ATP 
ATP_Ox ATP production rate (by oxidative phosphorylation) 
ATP_NOx ATP production rate (by anaerobic glycolysis) 
ATP2 ATP production rate from the glycogen store 
ATP3 ATP production rate from glutamine 
ConsATP total ATP consumption rate due to metabolic activity 
ConsATP_1 ATP consumption rate associated to mitochondrial activity and other volume-

dependent processes 
ConsATP_2 ATP consumption rate associated to the production of proteins 
ConsATP_3 ATP consumption rate associated to DNA production 
ConsATP_4 (reserved for future use) 
ConsATP_5 ATP consumption rate associated to mitochondrial proliferation 
ATPtot total ATP variation rate (this is the sum of all production and consumption 

rates) 
ATPp ATP pool (total mass of ATP inside cell) 
ATPmin minimum tolerable ATPp level (it depends on the size of cell: larger cells have 

a larger ATPmin level) 
ATPstart this variable stores the initial value of ATPp in the newly born cell 
ATPprod ATP produced in cell during the last simulation step 
ATPcons ATP consumed in cell during the last simulation step 

 
variables that characterize the extracellular space around a cell 
pH pH in extracellular space 
G_extra mass of glucose in extracellular space 
A_extra mass of glutamine in extracellular space 
AcL_extra mass of lactic acid in extracellular space 

 
other variables 
SensO2 fraction of oxygen available with respect to request 
ConsO oxygen consumption rate 

 
proteins and DNA 
DNA_spread individual variation of DNA production rate (this is a quite rough modeling of 

variable DNA synthesis because of individual DNA damages) 
M_T average duration of M-phase 
pRb total pRb mass inside cell 
ConcS molar concentration of substrate needed for thresholds 
cyclinD total cyclin D mass inside cell 
cyclinE total cyclin E mass inside cell 
cyclinX total mass of A and B cyclins inside cell 
NpRbk total number of active pRb molecules 

 

Table S2 : list of the biophysical constants that are hard-coded in the program 
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Name of constant Value Description 

NAV 6.022e23 Avogadro constant 

Faraday 96485.34 Coulomb Faraday constant 

   

PMG 0.18 kg Molecular weight of glucose 

PMATP 0.507 kg Molecular weight of ATP 

PMO2  0.032 kg Molecular weight of O2 

PMAcL 0.090 kg Molecular weight of lactate 

PMG6P 0.270 kg Molecular weight of G6P 

PMpRb 110. kg Molecular weight of pRb 

PMA 0.146 kg Molecular weight of glutamine  

PMprot 66.476 kg Average molecular weight of proteins 

PMcyclinD  33.729 kg Molecular weight of cycline D  

PMcyclinE 47.077 kg Molecular weight of cycline E  

PMcyclinX 52. kg Molecular weight of cycline A+B  

   

GibbsATP 3.1#104 J/mol Gibbs free energy from ATP hydrolysis 

   

 

 

The following tables list the parameters that represent the the environment and 

the cell phenotype, and that the program reads from external files, and the 

diffusion and viscosity constants, that are still hard-coded in the simulation 

program:  

 

 

Table S3: Starting values for the environmental concentrations (standard 
atmospheric pressure and culture medium) 

 

Substance Environmental  
concentration 

O2 0.007 kg/m3  

glucose 0.9 kg/m3  
glutamine 0.4 kg/m3  
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Table S4: Phenotype (cell parameters) 

Parameter name Value Notes and references 
VMAX1 2#10

-9
 kg#s

-1
#m

-2
  [60]. 

VMAX2 1.2#10
-19

 kg#s
-1
  [61]. 

VMAX22 1.2#10
-18

 kg#s
-1
   [61]. 

VMAXA 1#10
-9
 kg#s

-1
#m

-2
 [62]. 

VMAXP 3#10
-19

 kg#s
-1
 Estimated in this work by considering that the average protein 

content of a cell is approx. 2.6#10
-14

 kg 
VMAXPA 1.018#10

-20
 kg#s

-1
 Estimated in this work by considering that glutamine mass is 

approx. 5%  of the total protein mass in the cell. See also [63]. 
VMAXPATP 1.81#10

-18
 kg#s

-1
 Estimated in this work by considering albumin (585 

aminoacids, 584 aminoacid bonds) as the “average protein” and 
that 2 molecules of ATP are required for each bond. 

VMAXDNA 5#10
-5
 molecules/s  Estimated in this work taking 3#10

9
 base pairs/cell and 

assuming that on average the S-phase lasts 25000 s 
VMAXDNAA 5.847#10

-20
 kg#s

-1
 Estimated in this work by considering that the entire 

duplication of the DNA requires 6#10
9
 glutamine molecules. See 

also [64]. 
VMAXDNAATP 9.01#10

-20
 kg#s

-1
 Estimated in this work by considering that, on average, the free 

energy of each phosphodiester bond in DNA is 5.3 kcal/mole. 
See, e.g., [65]. 

VMAXM 2#10
-3
 

mitochondria/s  
Estimated in this work, assuming an average number of 150 
mitochondria per cell. See, e.g., [66,67]. 

VMAXMA 7.3#10
-23

 kg#s
-1
 Estimated in this work by considering that, on average, there 

are 1000 molecules of mitochondrial DNA/cell and that each 
molecule is 16000 bp. See, e.g., [66]. 

VMAXMATP 1.125#10
-22

 kg#s
-1
 Estimated in this work as for VMAXDNAATP. See above. 

K1 0.27024 kg#m
-3
  [60]. 

K2 1.80 kg#m
-3
 [61]. 

K22 1.80#10
-2
 kg#m

-3
 [61]. 

KmA 0.023798 kg#m
-3
 [68]. 

Ka 0.054 kg#m
-3
 Derived from fitting the model to data in [69]. See also [1]. 

Kmc 0.096 kg#m
-3
 Derived from fitting the model to data in [69]. See also [1]. 

Kmd 1.8#10
-2
 kg#m

-3
 Derived from fitting the model to data in [69]. See also [1]. 

KmO2 7#10
-4
 kg#m

-3
 Derived from fitting the model to data in [69]. See also [1]. 

Kmp 6.7#10
-3
 kg#m

-3
 See ref. 2. In the present case, however, the value is expressed 

in concentration units. 
KmDNA 4.5#10

-4
 (kg#m

-3
)
2
 See [2]. In the present case, however, the value is expressed in 

concentration units. 
KmM 1.46#10

-2
 (kg#m

-3
)
2
 Estimated in this work as for VMAXMA (see above). This value 

is calculated at equilibrium for standard concentrations. 
coeffg1 7.5#10

-3
 s

-1
  Derived from fitting the model to data in [69]. See also [1]. 

coeffg2 1.08#10
-3
 s

-1
 Derived from fitting the model to data in [69]. See also [1]. 

coeffg3 6.7#10
-4
 s-1 Derived from fitting the model to data in [69]. See also [1]. 

coeffr1 3#10
-20

 kg#s-1 Derived from fitting the model to data in [69]. See also [1]. 
ATPSt 2.3#10

-18
 kg#s-1 Derived from fitting the model to data in [69]. See also [1]. 

Vmin 0.9#10
-16

 m
3
  Derived from data in [70] considering that the cell nucleus 

occupies between 4% and 14% of cell volume. See also [1]. 
DVap 3#10

-6
 s

-1
 Estimated in this work. See also [11]. 

VMAXAcL 9.58#10
-8
 kg#s

-1
#m

-2
 [71-73]. 

KmAcL 0.40536 kg#m
-3
 [71-73]. 

M_T_MEAN 1800. s [1]. 
vwork 1.5#10

-2
 kg# s

-1
#m

-3
 Estimated in this work by fitting of tumor cell growth data 

 

 

Table S4: Phenotype (cell parameters). (ctd.) 

Parameter name Value Notes and references 
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k_pRb 10  [17]. 
N_pRb 16  [17]. 
pRb_ONOFFratio 1#10

-6
  [74]. 

pRb_fraction 1.5#10
-2
  This paper by data fitting. See also [2]. 

cyclinD_fraction 1#10
-2
  This paper by data fitting. See also [2]. 

cyclinE_fraction 3#10
-3
  This paper by data fitting. See also [2]. 

cyclinX_fraction 1.4#10
-2
  This paper by data fitting. See also [2]. 

ConcS_0 1#10
-3
 mol/l [19,20]. 

Thresh_S_start 0.8  [2]. 
Thresh_S_stop 0.05  [2]. 
k3MM 1#10

4
 s

-1
 [19,20]. 

KmMM 1#10
-3
 mol/l [19,20]. 

NUCLEAR_OBJ 46  Estimated in this work by fitting of tumor cell growth data 
ClusteringFactor 15  Estimated in this work by fitting of tumor cell growth data 
CycXThr 0.8#10

-16
 kg [2]. 

C1 0.074 m
3
 kg

-1
 Inverse of standard ATP concentration (see above) 

C2 2#10
-19

 m
-3
 Average volume of mitochondria. See [75]. 

aR 1.2#10
-5
 m

3
#kg

-1
#s

-1
  Estimated in this work by fitting of tumor cell growth data 

YoungMod 1000. Pa  Young’s modulus. The elastic properties of cells are quite 
variable: according to [38], Young’s modulus of living cells 
spans a very large range (1-100 kPa). Here we choose a value 
which is at lowest extreme of this range, and agrees with 
measurements in ref. [41,42,44,45]. 

PoissonRatio 0.5  Poisson’s ratio. This number relates axial and transverse 
strain and lies in the range (-1,0.5) [76]. Here we choose the 
highest possible value, 0.5, which corresponds to 
incompressible cells (as in [44]). 

density 1070. kg#m
-3
 [77,78]. 

viscosity 200. Pa#s  Cytoplasmatic viscosity, see [34,79]. 
adhesion_range -0.5#(cell radius) This work, by fitting of tumor cell growth data. 
adhesion_decay 2.  This work, by fitting of tumor cell growth data. 
packing_factor 0.9047  Adimensional correction that takes into account the 

interstitial volume (linear packing factor for an arrangement 
of spheres [80,81]) 

extension_coeff 1.1  Correction factor that makes cells a little softer (shall be 
removed in a future version of the program with a better 
definition of the Poisson’s ratio). This work by fitting of 
tumor cell growth data. 

extvolume_thickness 1.0#10
-7
 m Thickness of extracellular space surrounding each cell. Direct 

measurements from micrographs of tumor spheroids. 
extvolume_fraction 0.3  This is the fraction of external volume that is actually 

accessible to diffusing molecules [82-84]. 
tph_slope 2.73  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
tph_thr 6.55  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
tp11_slope 10.91  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
tp11_thr 6.9625 This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
a2c_slope 2.42  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
a2c_thr 6.92  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
c2a_slope 2.42  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
c2a_thr 6.92  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
a2cA_slope 2.42  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
a2cA_thr 6.92  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
c2aA_slope 2.42  This work, by fitting of tumor cell growth data. See also [2, 
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13-16]. 
c2aA_thr 6.92  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
]a2cAcL_slope 1.5  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
a2cAcL_thr 7.  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
c2aAcL_slope 1.5  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 
c2aAcL_thr 7.  This work, by fitting of tumor cell growth data. See also [2, 

13-16]. 

 

 

Table S5: Other parameters that at present are hard-coded in the program. 

Name Value Notes and references 

Diff_W_G 7#10
-10

 m
2
/s glucose in water [82]. 

Diff_ES_G 2#10
-10

 m
2
/s glucose in the extracellular spaces [82,85]. 

Diff_W_A 3#10
-10

 m
2
/s glutamine in water [82]. 

Diff_ES_A 7#10
-11

 m
2
/s glutamine in the extracellular spaces [86]. 

Diff_W_AcL 3#10
-10

 m
2
/s lactate in water [82]. 

Diff_ES_AcL 1.4#10
-11

 m
2
/s lactate in the extracellular spaces [87]. 

Diff_W_O2 3.2#10
-9
 m

2
/s oxygen in water [48]. 

Diff_ES_O2 7#10
-11

 m
2
/s oxygen in the extracellular spaces. This work, by 

fitting of tumor cell growth data. 
VISCOSITY_ENV 1. Pa#s viscosity of the extracellular space [58]. 

 

 

E. Some considerations on the computational complexity of the 
program 

 

This kind of simulation is a real computational challenge. Although the present 

version of the program is not completely optimized, it has been designed with 

computational complexity in mind. On average, the time complexity of each 

individual time step is ! " N( ) , where N is the number of cells, and this is 

determined by the Delaunay triangulation [88-91].  

However the number of cells grows exponentially, at least in the initial phase of 

spheroid growth, and thus the computational complexity of each simulation step 

is proportional to exp
t

T
ln2

!
"#

$
%&

, where t is the simulated time and T is the average 

duplication time of cells. The CPU time !t
CPU

 required to simulate the time 

span !t
SIM

 is modeled by the expression 
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!t
CPU

= "
1
·N lnN + "

0
N         (S.69) 

 
where !

0
 and !

1
 are experimental parameters that we determine from actual 

simulation runs, and where we introduce a slightly superlinear term – suggested 

by the maximum complexity of Delaunay triangulations in the plane – to account 

for a superlinear growth term with respect to N. Mature spheroids slow down 

their growth rate and we find that at this later stage !t
CPU

 is roughly 

proportional to the number of cells:  

 
!t

CPU
" #

2
N + !t

0
         (S.70) 

 

where !
2
 and !t

0
 are yet other parameters that we determine from actual runs. 

This also means that on the whole the total computing time is roughly 

proportional to N 2 .  

 

The actual values of !
0
,!

1
 ,!

2
, and !t

0
 depend on the simulation parameters: 

figure S6 shows the CPU time t
CPU

(s) it takes for one hour of simulated time vs. 

N, in a run where the precision of the global solution of the problem of 

diffusion, transport and metabolism is fixed at 1%, and the simulation time step 

is !t
SIM

 = 50 s. This run has been carried out on a MacPro computer (with an Intel 

Xeon 3500/W3520 quad processor at 2.66 GHz – and where a single core has been 

used, the program is not yet multithreaded). Figure S7 shows the total CPU time 

vs. N: fitting this curve we can estimate the total CPU time needed to simulate 

larger spheroids. 

 

 

F. Snapshots from a simulation with the parameters of section E. 

 

The final supplementary figures are higher-resolution pictures of central slices 

from a simulation with the parameters listed in the previous section. The figures 

correspond to different simulated times. 
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• figures S8-10: oxygen concentration (color mapping, blue=low 

concentration, red=high concentration) and flow (yellow arrows, arrow 

length proportional to flow intensity). Each figure shows a steady inward 

flow of oxygen. 

• figures S11-14: extracellular glucose concentration (color mapping, 

blue=low concentration, red=high concentration) and flow (yellow arrows, 

arrow length proportional to flow intensity). Initially the flow of 

extracellular glucose points only inward, but glucose diffusion is slow, and 

as the spheroid grows and dead cells in the core contract, an internal 

region with an outward flow of extracellular glucose slowly develops.  

• figures S15-17: extracellular glutamine concentration (color mapping, 

blue=low concentration, red=high concentration) and flow (yellow arrows, 

arrow length proportional to flow intensity). Glutamine behaves much like 

glucose, and these snapshots show the glutamine flow before and after the 

development of the split flow. 

• figure S18: lactate concentration (color mapping, blue=low concentration, 

red=high concentration) and flow (yellow arrows, arrow length proportional 

to flow intensity). Lactate always flows outward in the simulation: this is 

a single snapshot taken after both glucose and glutamine have developed 

their split flow regime. 

• figures S19-21: velocity in the plane of the slice (yellow arrows, arrow 

length proportional to flow intensity). Cells in the core perform complex 

looping motions, while cells in the viable rim always push outward. 

 

Short movies showing features of the same central slice are also available as 

additional supplementary information:  

• S1: development of the necrotic core (red = live cells, black = dead cells).  

• S2: flow of extracellular glucose (same coding as figures S11-14); 

• S3: map of projected cell velocities (same coding as figures S19-21). 
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