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A Modal-Based Real-Time Piano Synthesizer
Balázs Bank, Stefano Zambon, and Federico Fontana, Member, IEEE

Abstract—This paper presents a real-time piano synthesizer
where both the transverse and longitudinal motion of the string
is modeled by modal synthesis, resulting in a coherent and highly
parallel model structure. The paper applies recent developments
in piano modeling and focuses on the issues related to practical
implementation (e.g., numerical stability, aliasing, and efficiency).
A strong emphasis is given to modeling nonlinear string vi-
brations, and a new variation of earlier synthesis techniques is
proposed which is particularly well suited for modal synthesis.
For soundboard modeling, the possibilities of using fast Fourier
transform-based fast convolution and parallel second-order filters
are discussed. Additionally, the paper describes the details of
the software implementation and discusses the computational
complexity of each model block. The piano model runs on current
computer hardware with full polyphony in real time.

Index Terms—Modal synthesis, physics-based sound synthesis,
piano.

I. INTRODUCTION

T HE piano is a particularly important instrument for sound
synthesis applications because of many reasons. First, the

piano has a large prominence in western music, while it is large,
heavy, and expensive. Thus, there is a great demand for an elec-
tronic substitute for home or stage use. Second, because the
piano is a keyboard instrument, its control interface is relatively
simple, unlike that of the guitar or the violin. That is, there is no
physical obstacle on the control side to fulfill this demand.

Most of the current digital pianos are based on sample play-
back. Because of the simple interface (the player controls the
key velocity only), a high level of realism can be achieved. The
variation of the sound as a function of key velocity can be taken
into account by linear filtering or by crossfading between sam-
ples recorded at different dynamic levels. However, the dynamic
interactions of the different parts of the piano, like the restrike
of the same string or the coupling between the strings, cannot
be faithfully reproduced.

The remedy of the problems of sampling synthesis is the use
of physical modeling, where, instead of reproducing the sound
of the instrument, the entire sound production mechanism is
modeled. That is, a complete virtual instrument is running on
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the computer or dedicated hardware. Because of the very nature
of physical modeling, the interaction of different parts (such as
the coupling of strings) is automatically modeled. Moreover, the
user (player or sound designer) controls a relatively small set
of meaningful parameters similar to those of real pianos, like
hammer hardness, string mistuning, etc.

The first step of physics-based sound synthesis is to under-
stand how the instrument works, that is, the equations describing
the main parts of the instrument have to be developed and the
interactions of the different parts have to be revealed. However,
the resulting computational complexity of numerically solving
an instrument model that incorporates all the details we know
about a specific instrument is usually too high for real-time im-
plementation. Therefore, some simplifications have to be made.
This is usually done by neglecting some perceptually less rele-
vant phenomena in such a way that this should not lead to sig-
nificant audible differences compared to the full model. Next,
efficient signal processing algorithms are developed for com-
puting the solution of this simplified physical model.

The first physics-based instrument model was presented as
early as 1971 by Hiller and Ruiz [1], [2]. Interestingly, the first
piano model has followed 16 years later, which was the dig-
ital waveguide-based piano of Garnett [3]. In 1995, Smith and
Van Duyne [4], [5] proposed a piano model based on commuted
synthesis. As part of a collaboration between the University of
Padova and Generalmusic S.p.A., Borin et al. [6] presented the
first complete real-time piano model in 1997. Bank [7] intro-
duced a similar physical model in 2000, with slightly different
implementation, and its real-time version was implemented in
2002. A concise overview of these two models and some ad-
ditional results have been presented in [8]. In the recent years,
several improvements were proposed by Bensa and coworkers,
concentrating on the modeling of coupled piano strings and on
a parametric excitation model [9]–[11]. Bank has examined the
generation of longitudinal motion in piano strings and proposed
various modeling methods [12], [13]. Rauhala and their col-
leagues have concentrated on improved parameter estimation
techniques and efficient, parametric implementations [14], [15].
We have started the implementation of our real-time modal-
based piano synthesizer in 2007 as a part of collaboration be-
tween Viscount International and Verona University, and this
forms the topic of the present paper.

Although physics-based piano synthesis has a more than two
decades tradition in academic research, it has been applied in
commercial products only very recently, due to its relatively
high computational cost. A software piano, Pianoteq, was in-
troduced by Modartt in 2006 [16], and the first digital piano
employing physical modeling was presented by Roland in 2009
[17]. It is expected that physical modeling will be the current
trend inigital pi



Fig. 1. General structures. (a) Schematic representation of the instrument with
the coordinate system for string modeling, (b) Basic model structure.

In this paper, we describe a complete piano synthesizer based
on modal synthesis. Concerning each model block, the chosen
approach is briefly compared to other possibilities, and its ad-
vantages are discussed. A strong emphasis is given to the con-
nection of the different blocks and on practical issues related
to numerical stability, aliasing, and efficient implementation.
For modeling longitudinal vibrations, a new variation of pre-
vious approaches is proposed which is particularly well suited
for modal synthesis. Finally, the real-time software implemen-
tation is discussed, and the computational complexity of the dif-
ferent blocks is estimated.

II. MODEL STRUCTURE

Since the physical modeling approach simulates the sound
production of the instrument, the blocks in the piano model re-
semble the parts of a real piano, as displayed in Fig. 1. The
first model block is the excitation, the hammer strike exciting
the string. The string determines the fundamental frequency of
the tone and its quasi-periodic output signal is filtered through
a postprocessing block, covering the radiation effects of the
soundboard. Fig. 1(b) shows that the hammer-string interaction
is bidirectional, since the hammer force depends on the string
displacement. The string–soundboard coupling is also bidirec-
tional in real instruments, because the soundboard, besides radi-
ating the sound, provides a terminating impedance to the string.
However, since the impedance of the soundboard is around a
thousand times larger than that of the string, the only signifi-
cant effect of the string–soundboard coupling is a change in the
modal frequencies and decay times of the string. Therefore, it is
customary to use a simplified modeling where the “impedance
effects” of the coupling, i.e., the variation in the modal frequen-
cies and decay times of the string, are taken into account by
changing the parameters of the string block, and only the “radi-
ation properties” are modeled in the radiator block.

Fig. 1 displays only the main parts of the instrument and the
corresponding synthesis model—the blocks for modeling sec-
ondary effects are omitted for clarity. The full piano model is
displayed in Fig. 2. The functions of the various blocks will be
explained later in the corresponding sections.

Fig. 2. Detailed model structure.

III. MAIN STRING MODEL

In reality, the string vibrates in two transverse and one lon-
gitudinal directions. First we consider the vibration of the main
transverse polarization . The stiff and lossy string equa-
tion is

(1)

which is the ideal wave equation extended by terms describing
the stiffness and losses of the string [18]. The tension of the
string is denoted , and is the mass per unit length. The
stiffness of the string is characterized by , where is the
Young’s modulus, is the cross-section area of the string, and

is the radius of gyration. The internal losses of the string and
the losses due to the impedance effect of the soundboard are
approximated by the frictional resistance . Note that in real
instruments, losses are frequency dependent. This effect will be
taken into account later in (3). External driving forces are in-
cluded in the excitation force density , which has the
dimension of force per unit length.

Equation (1) can be numerically solved in many ways; see
[19] for an overview of the methods used in sound synthesis
applications. We summarize only three commonly used ap-
proaches. The first is finite difference modeling, which is
based on approximating the derivatives of the wave equation
(1) by differences, leading to a difference equation that can
be easily solved numerically. Finite difference piano models
include [20]–[22]. Finite-difference modeling is especially
well suited for modeling complex structures (such as the piano
soundboard), where a closed-form solution cannot be derived.

However, for simple linear systems, such as the one-dimen-
sional wave equation (1), the closed-form solution is known, and
the computational complexity can be greatly reduced if the con-
tinuous-time solution is discretized instead of the wave equation
itself. Digital waveguide modeling, introduced by Smith [23],
[24], discretizes the traveling wave solution of the ideal wave
equation. The losses and dispersion of real strings are lumped
to one specific filter in the model. Thus, the full string model
reduces to a delay line and a relatively low-order IIR filter in
a feedback loop. Most of the piano models intended for sound
synthesis applications [3], [6], [7], [10], [15] are based on the
digital waveguide technique due to its efficiency.

In modal synthesis, the modal solution of the wave equation
is discretized [25], [26]. Thus, the string is modeled by a set
of second-order resonators, each implementing the response of
one particular mode. The modal approach has been already used



for the simulation of nonlinear vibrations in piano strings [12],
[13]. This paper presents a complete piano model that is based
on modal synthesis.

The choice of the modeling method for the string has been
made after carefully considering the advantages and drawbacks
of digital waveguides and modal synthesis. The main difference
of our piano model from the previous ones presented in the lit-
erature is the ability to model nonlinear string vibrations. Thus,
the usual choice of digital waveguide modeling had to be re-
vised. It has been shown in [13] that precise modeling is not
possible with digital waveguides in their efficient form, because
the modal shapes of the string model become non-orthogonal
due to the lumped dispersion filter. Either the dispersion filter
has to be distributed, increasing the model complexity signif-
icantly, or, some less physical “tricks” have to be used [13].
On the other hand, modeling the nonlinear vibrations in piano
strings is very straightforward with modal synthesis, as will be
shown in Section V.

While the computational complexity of our modal piano
model is probably higher compared to earlier, digital-waveguide
based piano models that neglect nonlinear string vibrations, it is
still efficient enough to consume only one third of the resources
of a today’s PC, which we find an acceptable compromise.
This efficiency can be achieved in spite of the relatively high
number of required arithmetic operations because modal syn-
thesis results in a fully parallel structure and simple code that is
easier to optimize (see Section VIII for details). An additional
advantage of modal synthesis is greater flexibility, since all
the parameters of the partials can be set independently. This
leads to simpler parameter estimation and the possibility of
modifying the parameters in real-time.

A. Continuous-Time Equations

The modal solution of the string equation can be found in
various acoustics textbooks. Nevertheless, summarizing it here
is still instructive and helps understanding the different parts of
the model. The following derivation is a slightly modified and
more concise version of [13, Ch. 2].

If the string is rigidly terminated at and with
hinged boundary conditions, as displayed in Fig. 1(a), the string
shape can be expressed by the Fourier-like series

(2)

where is the instantaneous amplitude of mode .
The solution of (1) can be separated for the different modes

if (2) is substituted into (1), then multiplied by the modal shape
and integrated over from 0 to . The resulting

second-order differential equation governing the behavior of
mode is

(3)

where

(4a)

(4b)

(4c)

(4d)

In (3), is the excitation force of mode , and it is com-
puted as the scalar product of the excitation force density and
the modal shape [see (4d)].

Once the partial differential equation (1) is decoupled to a set
of ordinary differential equations (3), it is possible to modify
each of the parameters of (3). We take advantage of this fact
by using instead of in (4a) in order to model frequency
dependent losses, since now can be different for the various
modes having different modal frequencies.

The solution of (3) for with zero initial con-
ditions is an exponentially decaying sine function given by

(5a)

(5b)

(5c)

(5d)

where is the initial amplitude, is the decay time, and
is the frequency of mode . In (5d), is the fundamental fre-
quency of the string and is the inharmonicity coefficient. They
are computed as

and (6)

where is the transverse propagation speed.
A practical choice for the loss term is the second-order

function

(7)

which implements the same type of frequency dependent losses
as the finite-difference model of [20] and [21], or the usual
one-pole loss filter in digital waveguide modeling (see [7, Ap-
pendix]). Example values for the and coefficients can be
found in [21]. Note that (7) is just the simplest choice, since

can be chosen arbitrarily for the various modes,
e.g., based on the analysis of real tones.

As (5) computes the impulse response of the system char-
acterized by (3), the response to the excitation force is
obtained by the time domain convolution

(8)

Now we can summarize the computation of the string shape
as a response to an external force.



1) Computation of the force acting on mode , which
is the scalar product of the excitation-force density
and the modal shape , as in (4d).

2) Computation of the instantaneous amplitude of mode
by the convolution of the mode excitation force

and the mode impulse response , as in (8).
3) Computation of the string shape by summing the modal

shapes multiplied by their instantaneous am-
plitudes , as in (2).

Besides the string shape, we are also interested in the force
acting at the termination, because that will form the input of
the soundboard modeling block. The bridge force at the
termination is computed as follows:

(9)

which is a weighted sum of instantaneous modal amplitudes
.

B. Discretization

We have seen that either we are interested in the string
deflection or the force at the bridge, the computation has the
same structure: first projecting the external force to the input
forces of the modes, then filtering with the impulse responses
of the modes, and finally projecting back to the variable of
interest (force or displacement). Since these projections do not
depend on the time variable, they are implemented in discrete
time without any modifications from the continuous-time case.
The only task left is to discretize the impulse response of the
modes (5).

The discretization with respect to time can be done by various
methods. We have chosen the impulse invariant transform [27],
because in this case the discrete-time impulse response of each
mode will have a leading zero which results in a one-sample
delay. Therefore, we will avoid the problem of delay free loops
in excitation modeling that can arise in other discretizations,
such as the bilinear transform (see Section IV for details). This
useful initial zero in each modal impulse response occurs be-
cause we are modeling string displacement in response to a
force excitation. With the impulse invariant transform, the dis-
crete-time impulse response is obtained by simply sampling the
continuous-time impulse response (5a), yielding

(10)

where being the sampling interval. Equa-
tion (10) differs from (5a) by a scaling factor of . This
scaling is required because the discrete-time unit pulse has an
area of , while the continuous-time Dirac impulse has unity
area.

Taking the transform of , after some algebra, gives

(11a)

(11b)

(11c)

(11d)

Fig. 3. String and hammer models, and their interconnection.

(11e)

That is, each mode is implemented by a two-pole filter and a
delay in series, as displayed in the top of Fig. 3 (the detailed
description of the figure is left for Section IV).

IV. HAMMER MODELING

Generally, two distinct approaches are used for modeling the
excitation of piano strings. One commonly employed approach
is to model the excitation using a signal model [11], [15], where
the perceptual parameters of the resulting tone (loudness of the
partials) can be directly controlled. Another common approach
is physical modeling [20], [21], [6], [7], [22]. We follow the
physics-based approach in our work because we believe that a
fully physical excitation model is necessary to provide the re-
quired responsiveness to the player. In addition, its parameters,
like hammer mass and hardness, are close to those of a real
piano, leading to an intuitive control for the user.

Accordingly, the piano hammer is modeled by a small mass
connected to a nonlinear spring that contacts the string at a math-
ematical point [28]. The equations describing the interaction
are as follows:

(12a)

(12b)

where is the interaction force, is
the compression of the hammer felt, is the position of the



hammer, and is the position of the string at the excitation
point (i.e., ). The hammer mass is denoted

is the hammer stiffness coefficient, and is the stiff-
ness exponent. Example values for hammer parameters can be
found in [21].

These equations can be easily discretized with respect to time.
Equation (12a) is a static nonlinearity so it is implemented as is.
Equation (12b) can be converted to a discrete-time system by
the impulse invariant transform. Thus, the discrete-time version
of (12) is the following:

(13a)

(13b)

which is displayed in the bottom of Fig. 3. The extra delay term
is inserted in (13b) to avoid the delay-free loop that would

arise because there is a mutual dependence between and
. That is, for the calculation of one of these variables, the

other should be known. Inserting the delay comes from the as-
sumption that the hammer position changes a little during one
time step , which is generally true because

is computed as the double integration of .
It is a bigger problem in general that there is no delay

between the input (the string position ) and output (the
hammer force ) of the hammer block. This means that
for computing the hammer force, the string displacement
should be known, which, in return, depends on the hammer
force. This again leads to a delay-free loop which is usually
resolved by assuming , implemented by using

instead of in (13a). However, this can lead to
numerical instabilities at high impact velocities [8], because
the string signal can have large jumps violating the assumption

.
Nevertheless, in our special case, because of the right choice

of discretization of the string model in Section III-B, the delay-
free loop does not arise because the string model contains a
delay element in the signal flow (see (11a) and Fig. 3). Note that
in the case of different discretizations leading to a delay-free
loop, special measures are needed to maintain numerical sta-
bility [29], [8].

The only parameters in Fig. 3 that have not been described so
far are the input and output weights of the string model. If we
assume that the hammer contacts the string at an infinitely small
area at position , the excitation density for the string becomes

. Computing the scalar product of
the Dirac function and the modal shape according to (4d) leads
to the following input weights of the resonators:

(14)

Not so surprisingly, computing the string displacement
at the hammer position by (2) leads to the same

weights as for

(15)

The third set of weights are used to compute the bridge
force which is the input of the soundboard model. From
(9), these weights become

(16)

Fig. 3 shows the hammer-string model in a form that corre-
sponds to the above derivations, but some simplifications are
possible to decrease computational complexity. Because of lin-
earity, we may lump the effects of coefficients

, and of Fig. 3, so finally only two of them have to be
implemented. It is beneficial to lump the coefficients in such
a way that meaning that the bridge force is com-
puted as a simple summation. The hammer model runs during
the hammer–string contact only (first few ms); therefore, the re-
maining two scalings have to be computed for a limited amount
of time. Additionally, the terms coming after the coef-
ficient in Fig. 3 can be also lumped; therefore, only one delay
element has to be implemented for each string model.

We note that piano hammers are not fully characterized by
the model of (12), as the felt has a hysteretic behavior [28],
[30], and the vibration of the hammer shank can also have some
influence on the hammer force [31]. We neglect these secondary
phenomena in our hammer model.

V. LONGITUDINAL STRING VIBRATIONS

In the piano string at fortissimo levels, because of the rela-
tively large amplitude of transverse vibration, the tension is not
anymore constant, resulting in a nonlinear excitation of longi-
tudinal modes. The perceptual effect is most important in the
low note range where it greatly contributes to the metallic char-
acter of the tone (the interested reader may listen to the examples
at the companion page of [12]). The importance of these spec-
tral components has been recognized long ago by piano builders
[32]. In addition to the longitudinal modal frequencies, a second
series of partials with lower inharmonicity coefficient has also
been found in piano tones [33], which was named “phantom
partials” later [34]. It has turned out that phantom partials are
also generated by the longitudinal motion of the string, as a
response to the tension variation coming from the transverse
string motion [12]. In other words, longitudinal modal peaks
and phantom partials are the free and the forced response of the
same system, respectively. Therefore, a single model can de-
scribe both phenomena, which will be outlined in this section.
The related theory has been developed in [12] and in [35] inde-
pendently.

A very efficient way of modeling the perceptual effect of
phantom partials has been presented in [36], but it has a loose
connection to physical reality. In [12] and [13, Ch. 6] various,
more physically meaningful techniques were presented. We pro-
pose a new variation of these physics-based techniques, which
provides greater accuracy at a negligible increase in computa-
tional complexity.



A. Continuous-Time Equations

The wave equation for the longitudinal motion takes the fol-
lowing form [13]:

(17)

where is the frictional resistance of the longitudinal polar-
ization (frequency dependency will be introduced later in (21)
by using different for the various modes). Equation (17) is
a linear wave equation with a nonlinear forcing term depending
on the transverse slope. By comparing (17) with (1) it can be
noticed that the two equations are of the same form, and they
differ only in their parameters: is substituted by , and the
dispersion term (fourth-order spatial derivative) is missing. The
external force density is replaced by

(18)

which represents the excitation from the transverse polarization.
1) Longitudinal Motion: The formal similarity to (1) means

that the results of Section III can be directly used. By assuming
infinitely rigid terminations, the longitudinal displacement can
be written in its modal form

(19)

Accordingly, the instantaneous amplitude of the longitu-
dinal mode is obtained as

(20a)

(20b)

(20c)

where is the excitation force acting on the longitudinal
mode . The time-domain impulse response of longitudinal
mode is denoted by .

For small frictional resistance, the longitudinal modal fre-
quencies and decay times are

and (21)

where is the fundamental frequency of the longi-
tudinal vibration. In practice, the fundamental frequency of the
longitudinal vibration in piano strings is around 16 to 20 times
higher than that of the transverse vibration [32].

The first step in calculating the longitudinal motion is the
computation of the excitation force by (20b), which is
the scalar product of the excitation-force density and
the longitudinal modal shape. If the transverse vibration is ex-
pressed in the modal form of (2), from (18) and (20b) it turns
out that a longitudinal mode with mode number is excited by
such transverse mode pairs and only, for which either the

sum or the difference of their mode numbers
equal to [12].

The two cases can be computed separately by defining
as a sum of two components, i.e.,

. The component originating from the
transverse modes that satisfy is

(22a)

The component coming from becomes

(22b)

That is, the various terms of the longitudinal excitation force are
the products of the instantaneous amplitudes of two transverse
modes, and , meaning that the longitudinal modes
will be excited at the sum and difference frequencies of trans-
verse modes.

The force exciting the first longitudinal mode is dis-
played in Fig. 4(a) by a solid line, computed by the discrete-time
implementation of the modal model described by (22) and (20).
The simulation example is a piano string. Note that the ex-
citation force has an odd-like partial series and a lower inhar-
monicity compared to the spectrum of the transverse bridge
force [12], which is displayed by dots to show the transverse
modal frequencies as a reference. The dashed line indicates the
Fourier transform of the impulse response of the first longitu-
dinal mode , amplifying the frequencies around 690 Hz.
Fig. 4(b) shows the excitation-force spectrum of the second lon-
gitudinal mode for the same example. It can be seen that here
the excitation spectrum contains even partials only and that the
peak of the longitudinal mode (dashed line) is located at a higher
frequency (1380 Hz in this case). It is also true for all other lon-
gitudinal modes that odd modes are excited by an odd-like spec-
trum and even longitudinal modes by an even-like. However, the
frequencies of the excitation components will be slightly dif-
ferent even within the odd and even modes, because of the in-
harmonicity of the transverse vibration [12].

The longitudinal motion is the sum of the motion of different
modes. This means that spectra similar to Figs. 4(a) and (b)
should be superimposed with only slightly shifted excitation fre-
quencies and very different longitudinal modal frequencies. The
result is similar to formants on a quasi-harmonic spectrum but
here the peaks are somewhat smeared as they are made up of
many close frequencies [12].

2) Bridge Force: If the instantaneous amplitudes of the
transverse modes are known, the longitudinal displacement can
be directly computed by the use of (22), (20) and (19). However,
we still need to compute the force acting on the bridge
in the longitudinal direction, since that is led to the input of the
soundboard model. The bridge force equals the tension
at the termination [12]

(23)



Fig. 4. Force spectrum exciting the first (a) and the second (b) longitudinal
modes (� ��� and � ���) of a simulated � piano string (solid line). The
transverse bridge force (dotted line) is displayed to show the transverse modal
frequencies. The dashed lines show the frequency response of the first (a) and
the second (b) longitudinal modes. The horizontal dash-dotted lines are the low
frequency approximations of the corresponding frequency responses. The rela-
tive levels of the signals are arbitrary.

Equation (23) shows that the force depends not only on
the longitudinal motion but on the transverse vibration as well.
Due to the second-order nonlinearity, the component coming
from the transverse motion has the same sum- and difference
frequency terms as the component arising from the longitudinal
motion, but their amplitudes and phases are different.

It can be seen in Fig. 4 (dashed lines) that the longitudinal
modes have a constant gain under their resonance frequency.
Therefore, let us assume for the moment that all the longitudinal
modes are excited below their resonance. The transfer function
of longitudinal mode is the Laplace transform of (20c)

(24)

from which the low frequency response of the resonator
can be approximated as a constant gain by assuming and

(25)

The transfer function corresponding to (25) (which is a constant
gain) is displayed for longitudinal mode 1 and 2 in Fig. 4. If
(25) holds for all the longitudinal modes, that is, all the longi-
tudinal modes are excited significantly below their resonance
frequency, most of the transverse and longitudinal terms cancel
out in (23) and only the double frequency terms remain [12],
[13]. This means that the tension is spatially uniform along the
string, and the bridge force becomes

(26)

which is a simple squared sum of the instantaneous modal am-
plitudes of the transverse polarization. Note that this cor-
responds to the case when the first and second time derivatives in

(17) are zero (inertial and viscosity effects are negligible); thus,
the dynamics of the longitudinal modes play no role [12]. As
a result, the longitudinal motion simply follows the transverse
one due to the fact that tension along the string tries to reach an
equilibrium state. We may call this as a “static motion” of lon-
gitudinal modes.

Equation (25) holds for most of the longitudinal modes. Nev-
ertheless, it does not hold for the lowest modes, which are
also excited around or above their resonant frequency. For these
modes a correction is made by subtracting their static dc re-
sponse [which is already included in the tension computed by
(26)] and adding their real, frequency-dependent response

(27)

where is the “dynamic response” of mode , i.e., that por-
tion of the motion which is in addition to the static stretching. It
is computed as

(28)

Note that the terms correspond to a
resonant second-order high-pass filter, since they are the differ-
ence of a low-pass and a constant response.

Despite the quite complicated math we had to go through, we
end up with a relatively simple series of steps for computing the
longitudinal bridge force as a function of transverse motion.

1) Computation of the excitation force acting on lon-
gitudinal mode as pairwise products of transverse mode
amplitudes and by (22).

2) Computation of the spatially uniform part of the tension
by the squared sum of by (26).

3) Computation of the dynamic responses for the first
longitudinal modes according to (28).

4) Correcting the spatially uniform tension by the
weighted sum of the dynamic responses of the first

longitudinal modes by (27).
This tension correction has to be done only for those longitu-
dinal modes, which are excited above and under resonance. That
is, the resonance frequency of each longitudinal mode should
be compared with the bandwidth of , which is the double
of that of the transverse vibration due to the second-order non-
linearity. This leads to taking on values between 2 to 10 in
practice.

B. Discretization

1) Precise Model: The above steps can be easily discretized
with respect to time. Again, the only part that needs consider-
ation is the dynamics of the longitudinal modes. The impulse
response of mode is discretized exactly in the same
way as that of the transverse modes, resulting in a filter of
the form (11). Then, the dynamic response of the longitudinal
modes is calculated by subtracting the static response of
the modes, which is computed by multiplying with the dc
gain of the longitudinal resonators.

However, because the excitation signal of longitudinal
modes is obtained by multiplying the instantaneous amplitudes
of transverse modes according to (22), aliasing should be



considered. It turns out that because modal synthesis is used,
aliasing can be easily avoided (in contrast to, e.g., finite-differ-
ence string models). We just have to take care not to implement
any of the products in (22) and (26), where the sum frequency
would go beyond the Nyquist limit . This way we also
throw away some difference-frequency terms from (22) that
would not be aliased, but this is of no concern because these
low-frequency terms would be attenuated by the high-pass
filters implementing the dynamic response of the longitudinal
modes anyway. Since the transverse modal frequencies are
known, it is easy to decide which terms should be discarded
from (22) and (26). However, it is a reasonable simplification
to limit the computation of (22) and (26) for such transverse
modes whose frequencies are below the half of the Nyquist
rate, that is, to compute (22) and (26) up to transverse mode
for which .

2) Efficient Modeling: Since typically only lon-
gitudinal resonances are within the audible range, the filtering
needed to compute the dynamic response of the longitudinal
modes is negligible compared to that of transverse vibra-
tion, where hundreds of modes are computed. The computa-
tional complexity lies in (22), where hundreds of pairwise prod-
ucts of transverse amplitudes has to be calculated. As an
example, for longitudinal and transverse
partials, this leads to 1000 multiplications and additions, so we
may seek at some more efficient implementations.

As noted earlier, odd longitudinal modes are excited by an
odd-like spectrum, while even ones with an even-like, and
the odd and even spectra are similar (the frequencies are only
slightly shifted due to the inharmonicity). Example spectra can
be found in [13 Ch. 6]. Therefore, similarly to the synthesis
models of [12], we compute a single excitation force for the
odd longitudinal modes and another one for the even ones. For
example, all the longitudinal modes with odd mode number

are excited by the same force as computed for mode 3
( for odd ), and all the longitudinal modes
with even mode number are excited by the same force as mode
4 ( for even ). Naturally, other excitation
force pairs (such as and ) can also be chosen.
Additionally, only the part of (22) is computed, since
the part contains low frequency components that are
out of the passband of the high-pass filter implementing the
dynamic response of the longitudinal mode .

It is worth noting that both in (26) and in (22b) the trans-
verse terms appearing are always of the form , which
is the instantaneous amplitude of the transverse mode multi-
plied by its mode number. The same multiplication is needed
in (9), therefore, no additional multiplications are needed here.
For computing (22b) the transverse mode outputs are simply
tapped before the bridge summation point and those outputs are
pairwise multiplied which has a mode number difference of ,
and the products are summed. From a computational viewpoint,
since the transverse modal amplitudes are stored in a vector, this
means correlating the vector and its shifted version. For (26) the
squared sum of the same vector is computed.

Note that in the sound synthesis model of [12] the transverse
contribution (last term of (23)) was simply neglected, which
has led to the appearance of some unwanted low-frequency

components that should otherwise cancel out, as described in
Section V-A2. This is avoided in the proposed model, since now
the effect of the transverse vibration on the longitudinal bridge
force is also included. This is accomplished by the additional
computation of the string tension (26), and by filtering the
longitudinal excitation force by the dynamic part of the longi-
tudinal response (resonant high-pass filter) instead of
the full response (resonant low-pass filter). As a result,
the new model is more precise, while the computational cost is
increased only slightly by the additional tension computation
of (26).

VI. STRING COUPLING

Coupling effects in transverse string vibrations occur at two
different levels: first of all, even a single string vibrates both in
the horizontal and vertical plane, and these vibrations are cou-
pled through the bridge. The situation gets even more complex
for the piano because for most of the keys three slightly mis-
tuned strings are sounded together. This results in beating and
two-stage decay [37], where the first is a low-frequency ampli-
tude modulation of partial envelopes, and the second means that
the partial decay is faster in the early part than in the latter.

At a second level, and with lower efficiency, coupling be-
tween strings occurs not only for the two or three different
strings belonging to the same key, but also between the strings
of various keys. This effect (sometimes referred to as sympa-
thetic resonances) is most prominent when the dampers of the
strings are raised by the sustain pedal, leading to the coupling
of all the strings of the piano. In fact, the bridge–soundboard
system connects the strings together and acts as a distributed
driving-point impedance for string terminations.

Both of these two phenomena are modeled by the “Secondary
resonators” in Fig. 2.

A. Beating and Two-Stage Decay

The simplest way to model beating and two-stage decay is to
use two string models in parallel for a single note. Varying by
the type of coupling used, many different solutions have been
presented in the literature [38], [39], [10].

A computationally more efficient, perception-based approach
is to model the beating and two-stage decay for those partials
only where the phenomenon is audibly prominent. One way of
achieving this is to implement a few (5–10) resonators in par-
allel, driven by the excitation signal [7], [8]. Another option is
the beating equalizer [15], where the partial envelope is modu-
lated by a peak EQ tuned to the frequency of the partial.

In this paper, we are modeling beating and two-stage decay by
adding a set of secondary resonators to the string model, driven
by the hammer force. This is displayed in Fig. 2. Depending on
the parameterization of the resonators, they can be seen as addi-
tional string models, or, they can be used for a perception-based
efficient modeling, where only a few additional resonators are
implemented. We have chosen to implement them as additional
string models with a full set of modes (albeit with less modes
than the main string), because the same structure will be used
to model the sustain pedal effect (see Section VI-B). The res-
onators are implemented by second-order infinite-impulse re-
sponse (IIR) filters, exactly as described in Section III-B, re-



sulting in a coherent model structure. The only difference from
the resonators of the main string models that the string displace-
ment does not have to be computed; thus, coefficients
in Fig. 3 are missing, and only the bridge force is computed
by . Accordingly, the effect of , and can be
lumped to a single coefficient.

B. Sympathetic Resonances

It is relatively straightforward to model sympathetic reso-
nances in digital waveguides with bidirectional coupling be-
tween the strings, when all the strings are connected to the same
termination [3], [6]. Implementing numerically stable bidirec-
tional coupling is more complicated in modal synthesis; there-
fore, we are applying a simplification where the coupling of the
strings is unidirectional. This leads to a “structurally stable” so-
lution, meaning that the coupled model is stable for any choice
of the coupling parameters. For this, several different variations
have been presented in the literature [38], [15].

Our choice is similar to [38], where the outputs of the main
string models are summed and feed to the secondary resonators
of all string models, as shown in Fig. 2. This way, energy is
flowing from the main string models to the secondary ones, but
not vice-versa. The simplest way of implementing this is to sum
the outputs of all string models, multiply them with a constant
coefficient, and then distribute this signal to all secondary res-
onator banks. However, it is also possible to control the strength
of coupling between the strings, resulting in a more realistic be-
havior. This can be achieved by subdividing the strings into
different regions [40], where the cumulated string outputs are

and the inputs of the secondary resonator
groups are . The coupling is controlled
by a gain matrix

(29)

In our implementation, we have chosen a subdivision in
keyboard regions, requiring an additional 64 multiplications and
additions.

VII. SOUNDBOARD MODELING

As already mentioned in Section II, only the radiation effects
of the soundboard are implemented here, while the impedance
effects are taken into account in the string model.

The computationally most efficient way of implementing the
effect of the soundboard filtering is commuted synthesis [4], [5],
where the order of the model blocks (hammer–string–sound-
board) is commuted: the impulse response of the soundboard
excites the strings and the effect of the hammer is taken into ac-
count as a filtering operation. Thus, the soundboard response
is implemented as a wavetable, resulting in a low computa-
tional complexity. However, the method assumes linearity and
time-invariance; therefore, some important effects, such as the
restrike of the same string or the nonlinear vibration of strings,
cannot be precisely modeled.

Another efficient way of implementing the effect of the
soundboard is to apply a reverberation-like algorithm. Ex-
amples include the coupled digital waveguides in [3], and
feedback delay networks in [6], [7]. A difficulty of these rever-
berator-based approaches is that only the statistical distribution

and the overall damping of the body modes can be set by the
available parameter estimation techniques.

In filter-based techniques, the measured force-pressure
transfer function of a real piano soundboard is used as a
target specification for filter design. The most straightforward
approach is the use of a finite impulse response (FIR) filter
obtained by windowing of the measured impulse response. The
drawback is that long filters are required: for a good tonality,
1000–2000 tap FIR filters are needed at kHz, and for
reproducing the characteristic knock sound of the middle and
high notes, ten thousands of taps are needed. Therefore, a direct
FIR implementation is not advantageous. Either a multi-rate
approach can be used [8], [13], or the FIR filter should be
implemented as a fast convolution algorithm. The latter has
been implemented in our real-time piano model and will be
outlined in Section VII-B.

Another option is the use of a specially designed infinite im-
pulse response (IIR) filter, where a quasi-logarithmic frequency
resolution can lead to large computational savings compared
to traditional FIR and IIR filter designs. The most commonly
used technique is frequency warping, where the elements
of traditional filters are replaced by first-order allpass filters
[41]. Kautz filters [42] can be seen as the generalization of
warped FIR filters with more flexibility in determining the fre-
quency resolution. Fixed-pole parallel filters [43] produce the
same results as the Kautz filters but lead to a simpler filter struc-
ture. Soundboard modeling with parallel filters is summarized
in Section VII-A.

The impulse response of the soundboards varies as a function
of bridge excitation point. This can be simulated by having dif-
ferent soundboard filters for the different regions of the bridge.
In addition, for each region, two filter outputs are needed for
stereo effect. This complexity can be reduced by implementing
only one high-order soundboard filter (or a filter pair for stereo
output) and additional low-order shaping filters for the different
regions of the bridge, to account for the tonal differences be-
tween them [7].

A. Partitioned Convolution by FFT

A very efficient way to implement the convolution required
by soundboard filtering is adopting a partitioned fast Fourier
transform (FFT)-based convolution, like the overlap-and-add
(OLA) method, which is well documented in standard digital
signal processing textbooks [44].

Both the input signal (i.e., the total force at the bridge) and the
soundboard impulse response are partitioned in blocks which
are samples long. In a typical software implementation,
can be taken equal to the internal buffer size of the soundcard,
thus avoiding any additional latency in the computation. For
each output buffer, we need to take a point FFT of the
input buffer, then multiply the result with every block of the
transfer function and finally compute the result by taking a
point inverse FFT (IFFT). If we denote with the length of
the impulse response, the total cost per buffer is
for the Fourier transforms and for
the multiplication in the frequency domain. Therefore, the cost
per input sample is , which is typically dom-
inated by the complex multiplication when is small, as it is



Fig. 5. Structure of the parallel second-order filter.

the case when low-latency processing is needed. As an example,
with a typical soundboard length of 20 000 taps and block size

, the multiplication in the frequency domain requires
633 floating point operations at each time sample. This com-
putational complexity could be decreased if necessary by com-
bining the FFT-based convolution with multi-rate filtering, such
as [8] and [13], at the expense of somewhat more complicated
model structure and parameter estimation.

It is possible to avoid the tradeoff between computational
load and processing delay by using a nonuniform partitioning
scheme [45], [46]. With these algorithms, the principal issue
is finding an optimal scheduling of the different computational
tasks in order to get a constant load suitable for real-time imple-
mentations.

B. Fixed-Pole Parallel Second-Order Filters

Another option is to model the soundboard as a set of second-
order parallel filters [43]. Implementing IIR filters in the form
of parallel second-order sections has been used traditionally be-
cause it has good quantization noise performance and the pos-
sibility of code parallelization. The parameters of the second-
order sections are usually determined from direct form IIR fil-
ters by partial fraction expansion [27]. Here the poles are set to
a predetermined (e.g., logarithmic) frequency scale, leaving the
zeros as free parameters for optimization. In the case of mod-
eling a desired impulse response, the parallel filter uses the out-
puts of the second-order sections (exponentially decaying si-
nusoidal functions) as basis functions of a linear-in-parameter
model. In addition to the second-order sections, it is beneficial
to include a parallel FIR path for the modeling of non-mini-
mumphase responses. Thus, the transfer function becomes

(30)

where is the number of second-order sections. The filter
structure is depicted in Fig. 5

Since we are aiming at a logarithmic frequency resolution,
the poles are set to a logarithmic scale

(31)

(32)

Fig. 6. (a) Frequency and (b) time-domain responses of a 200th-order parallel
second-order filter design with logarithmic pole positioning. In (a) and (b), the
top curve is the filter response, while the bottom is the target (the time- and
frequency-domain filter responses are shifted for clarity).

where are the pole frequencies in radians determined by the
logarithmic frequency series and the sampling frequency .
The pole radii form an exponentially damped sequence approx-
imating constant resolution. The pole radius at is set by
the damping parameter , similarly as proposed for Kautz fil-
ters in [47].

It can be seen in (30) and in Fig. 5 that since the poles deter-
mine the coefficients of the denominators and , (30) be-
comes linear in its free parameters , and , which can
be calculated in a closed form by standard least-squares equa-
tions from the measured soundboard response [43].

Fig. 6(a) shows the frequency response of a parallel second-
order design with 100 logarithmically spaced poles with

, giving a filter order of 200. The order of the FIR part
was set to zero, resulting in a canonical structure containing
second-order IIR sections only. The time-domain response of
Fig. 6 shows that the parallel filter can follow the long-ringing
modes due to its logarithmic frequency resolution.

A benefit of using the parallel filter instead of the FFT-based
convolution is that this results in a coherent model structure,
a “fully modal” piano, since the structure of the soundboard
model is essentially the same as that of the string model, the
only difference is that now each second-order filter has a zero
as well. Although the pole frequencies of the soundboard filter
differ from the actual modal frequencies of the measured sound-
board [the poles of the filter are set to a logarithmic scale by (31)
and (32)], we may consider each second-order section as im-
plementing one normal mode of the soundboard vibration. This
analogy leads to interesting parameter modifications. The reso-
nance frequencies of the second-order filters (pole angles) can
be changed to simulate a bigger or smaller instrument body, and
the decay times of the body modes can be influenced by varying
the pole radii. Changing the overall magnitude response can be
accomplished by scaling the feedforward coefficients and

of Fig. 5, without an additional filter. These modifications
can be carried out even in run-time for special effects. Multiple



outputs (e.g., for stereo effects) can be efficiently achieved by
using the same set of poles for the different channels; thus, only
the output coefficients of Fig. 5 have to be implemented for the
channels separately [43].

According to preliminary comparisons, the computational
complexity seems to be larger compared to the partitioned
convolution for the same sound quality. On the other hand, the
parallel filter requires significantly smaller amount of memory,
has zero latency and results in a simpler code, which may be
beneficial in some DSP implementations. Although it is not yet
part of the current real-time piano implementation, we have
good experience with offline simulations.

VIII. SOFTWARE IMPLEMENTATION

We have implemented our model in the form of a real-time
software, written in C++ using the RtAudio and RtMidi classes
from the Synthesis Tool Kit (STK) [48]. The design of the soft-
ware architecture was driven by the requirements of flexibility
in the control and efficiency for real-time use.

Flexible control is achieved by imposing a strong modularity
on the system. The different tasks are separated into three
categories, depending on the rate at which they are executed
at run-time. Obviously, the arithmetic-intensive operations
required for the synthesis are performed for each audio sample,
i.e., at the audio rate (sampling rate ). Polyphony manage-
ment, hammer initialization and all the other operations that
depend directly on player interaction are performed at MIDI
rate , where is the audio buffer size. Finally,
run-time modifications of the synthesis parameters are handled
at a calibration rate, which is the slowest one, usually between
20 and 50 Hz. Calibration parameters are received from an
external program running a graphical user interface, or alter-
natively with MIDI control change messages. The processing
of these parameters may be computationally expensive, but
it is performed asynchronously at a low rate, so real-time
performance is not affected.

In order to plan efficient optimizations on the structure, it
is important to estimate the computational cost of each note,
which can vary significantly from the bass to the treble range.
The cost of each synthesis block is summarized in Table I in
terms of the number of the primary resonators , secondary
resonators , longitudinal resonators and the number
of transverse modes used for computing the excitation force for
the longitudinal vibration. Fig. 7 shows typical values for the
number of resonators in a practical calibration of the model. The
number of resonators is derived by imposing an upper limit on
their frequency and an additional absolute limit on the number
of resonators.

Basically, we need to perform three MPOS (multiplications
per output sample) per resonating filter if there is a nonzero
input signal, and only two for the free evolution of the filter.
Moreover, if the hammer is exciting the string, we also need
to consider the cost for updating the string position at contact
point ( MPOS), plus the cost of updating (13). Finally, lon-
gitudinal excitation force computation requires three MPOS for
every transverse partial involved, one for the spatially constant
tension term of (26), and two for the products of (22b) since the

Fig. 7. Number of resonators for each note.� refers to primary resonators,�
to the secondary ones,� to the longitudinal modes and� is the number of
transversal partials used for longitudinal excitation force computation.

TABLE I
COMPUTATIONAL COST OF STRING AND HAMMER MODELING

excitation force is computed for one odd and one even longi-
tudinal mode. The estimated relative overall cost when all the
notes are sounding is indicated in the third column of Table I.
The computation assumes that the hammer is active only for a
limited amount of time, as in normal playing conditions. Note
that the number of multiplications do not precisely represent the
resulting computational load in modern processors, since that
will highly depend on the efficiency of memory access (cache),
pipeline stalls, code and data parallelization, etc. However, they
can still give an idea about the relative computational load of
the various parts of the model.

One nice feature of the modal based approach is that paral-
lelization is very straightforward for most of the components. In
our particular implementation, we have taken advantage of the
parallel capabilities of current x86 PCs, but similar approaches
are applicable to most of shared-memory parallel architectures,
which also include custom DSP boards. The parallel bank of
filters of Fig. 3 can be easily implemented in a single instruc-
tion multiple data (SIMD) fashion. We used Intel’s streaming
SIMD extension (SSE) instructions [49], which can produce
a speed-up factor of almost four times with single precision
floating point data.

Soundboard filtering is implemented by a fast convolution
engine with uniform partition size, using the efficient Fastest
Fourier Transform in the West (FFTW) library [50]. By looking
at the general diagram of Fig. 2, it is easy to notice that the
soundboard radiation filter can be run in parallel with the rest
of the model. In our implementation, we exploit the multicore
capabilities of current processors by performing soundboard
filtering in a separate thread, which communicates with the
main synthesis thread through a ring buffer. The drawback



is that some additional latency is introduced, which can be
avoided in hardware with finer synchronization capabilities of
DSP boards. The computational load of soundboard filtering
varies depending on the number of convolutions, the length of
each filter and the implementation used. In our case, running
four 20 000 tap convolutions requires around one fourth of
the resources used by string and hammer modeling at full
polyphony.

Our software is able to run at full polyphony, with a total
number of 10 000 second-order resonators and four 20 000 tap
convolutions, at an approximate load of 30% on a Intel’s Core
2 Duo@2.4-GHz laptop. The computational cost can be fur-
ther reduced by applying some sort of polyphony management.
By knowing the approximate cost of each note, we have imple-
mented a polyphony queue where the limit is imposed on the
total computational cost and not on the number of the notes. It
is possible to further extend this approach in many ways, for
example by selectively deactivating the partials of a single note
when they are not audible anymore. The only limit coming from
the architecture of the model is that the secondary bank of res-
onators cannot be deactivated, since they are also used for sim-
ulating sympathetic resonances.

The interested reader may listen to the sound examples at
http://www.mit.bme.hu/~bank/publist/taslp-piano.

IX. CONCLUSION AND FUTURE RESEARCH

This paper has presented a real-time piano model based on
recent developments in string modeling. The main string model
is based on the discretization of the modal solution of the wave
equation, and it is connected to a nonlinear hammer model. The
problem of delay-free loops is avoided by the appropriate choice
of discretization. The effects of beating and two-stage decay are
modeled by a secondary bank of resonators, driven by the exci-
tation force of the main string model. Sympathetic resonances
are synthesized by redistributing some parts of the outputs of
the main string models to the secondary resonators. The bridge
force arising due to nonlinearly excited longitudinal vibrations
is computed by first assuming spatially uniform tension, then
correcting this with the dynamics of longitudinal modes. The
proposed method provides greater accuracy compared to ear-
lier techniques, while does not increase the computational com-
plexity significantly. For soundboard modeling, the FFT-based
partitioned convolution and a filter structure similar to that of
the string model was considered. The computational cost of the
string parts was estimated based on the number of resonators,
and the details of the software implementations were also given.

In the current piano model, dampers are implemented by
simply decreasing the decay times of the resonators. For fu-
ture work, a physics-based damper model would increase the
realism of the note off sounds significantly and would allow
the simulation of part pedaling. The soundboard models based
on fast convolution and parallel second-order filters should be
evaluated from a perceptual point of view. That is, the com-
putational complexity of the two methods that is required for
reaching the same subjective quality should be determined by
listening tests. Finally, the combination of the two approaches
could possibly lead to an even higher efficiency.

In our piano model, all the parts are real physical models ex-
cept the soundboard, which is implemented as a digital filter and
parameterized from measured transfer functions. In the far fu-
ture, it might be possible to incorporate a physics-based sound-
board model based on finite-difference or finite-element mod-
eling. Alternatively, the soundboard impulse response could be
computed at calibration rate by finite-difference or finite-ele-
ment modeling, and implemented as a filtering algorithm, al-
lowing the modification of the geometrical and material proper-
ties of the soundboard in run time.
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