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L’Imperatore
Non perderti! Non perderti, straniero!

La folla
È per la vita!

Timur (disperatamente)
È per la vita! Parla!

Giuseppe Adami and Renato Simoni, Turandot,
libretto for a music drama in three acts with a score by
Giacomo Puccini, premiered on April 25, 1926 at the
Teatro Alla Scala in Milan (Italy).



Summary. Software retains most of the know-how required fot its development. Because
nowadays software can be easily cloned and spread worldwide, the risk of intellectual
property infringement on a global scale is high. One of the most viable solutions to this
problem is to endow software with a watermark. Good watermarks are required not only
to state unambiguously the owner of software, but also to be resilient and pervasive.
In this thesis we base resiliency and pervasiveness on trace semantics. We point out
loops as pervasive programming constructs and we introduce loop transformations as the
basic block of pervasive watermarking schemes. We survey several loop transformations,
outlining their underlying principles. Then we exploit these principles to build some
pervasive watermarking techniques. Resiliency still remains a big and challenging open
issue.
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1

Introduction

Hide and seek are not just the basis of child play, but also serious aspects of
computer security and forensics. Making hard the access to information is a key
aspect of most methods for information hiding since the beginning of human history.
In a world where information is ubiquitous, there is an urgent need to prevent
undesired observers from taking advantage of confidential data, as well as to sight
malicious or even criminal data notwithstanding to which extent they are concealed.

Since the existence of information in the physical world involves a content, such
as a message or a signature, spread on a physical support acting as a container or
carrier [75], methods for information hiding accordingly group into two disciplines:
cryptography addresses the content, making it meaningless to any observer unpro-
vided of the suitable decipherment key; steganography addresses the observer’s
aptitude for the container, hiding the content inside the container in such a way
that the observer, without a clue, is not able to notice it.

Regardless of their targets, both strategies attempt to overcome the natural
skills of the observer, driving the complexity of the observation up so high that
its cost is too high to be worth performing, even though it could eventually be
successful. In the field of software protection, mainly in the early literature [15],
this principle has been named security through obscurity : the observer succeeds in
retrieving the concealed data only if it really knows, or it manages to guess by an
unsystematic kind of intuition, the key piece of information useful at improving its
observation ability or restricting the region it observes.

Almost surprisingly, in recent years the phrase itself has taken on a quite
different meaning, as now it mainly refers to the design of systems whose security
relies on secrecy of design details [116]. Here what is concealed is how contents and
containers are dealt with. Even though this practice may act as a temporary “speed
bump” for undesired spies, for instance while a resolution to a known security issue
is implemented, it is severely frowned up. Design details invariably become known,
especially in the case of commercially successful systems [44] or military systems.

Actually, this has been apparent since 1883, when Auguste Kerckhoffs [68]
devised the well known security principle stipulating that the security of a system
should not suffer if an adversary knows all the details of the system aside from
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the secret key/clue.1 Clearly security through obscurity, when intended in its
later meaning, violates Kerckhoffs’ principle. However, if stated in its original
definition, not only it complies with the principle, but also it provides a solid
foundation to cryptography, whose success is confirmed by its widespread use in
modern communications, and to steganography, whose capabilities deserve deeper
investigations.

1.1 Securing Software

High quality software is the result of an intellectual effort. Plenty of users can
benefit from the result, but only if some producers make the effort. Producers –
not users – are entitled to choose a business model for software. Unfortunately
software products, or programs for short, have some features that issue several
challenges to this assumption.

1. It is extremely easy to clone programs and make thousands of illegal copies
out of one legally purchased program.

2. Because of a more and more interconnected global network, it is easier and
easier to exchange copies of a program.

3. Programs – unlike manufactured goods – mostly retain in themselves the
know-how required for their development.

4. Inspecting the content of a program can be simple, especially if the program is
expressed in widespread programming languages, like Java or .net.

5. It is easy to transform a program and embed (part of) it into another program.

It is well understood that the interaction of these five points opens the door
to piracy and copyright infringement on a global scale. Yet it is not clear how
to tackle them. The first two points seem to be connected to the technological
infrastructure we exploit nowadays for storing and exchanging programs. The third
point is inherent to the very nature of software. The last point stems from the
fourth one, assuming that one cannot take advantage of what they cannot inspect.
Therefore, to thwart piracy, we must try to make inspection unfeasible.

Cryptography can be a powerful tool in the protection of software, as encrypted
programs are difficult, if not impossible, to inspect. But they can be executed only
in decrypted form. At runtime encryption thereby fails in protecting programs.
Steganography instead is not prone to this inconvenience. Consider for instance
obfuscation, which is a typical application of steganography to software: obfuscation
makes the control flow or the data structures of a program harder to analyze, but
it preserves both functionality and executability [23]. So far, however, very few
provable secure obfuscation schemes are known [120]. If a copyright infringement is
likely to take place, watermarking can be of help in its detection. A watermark
is additional information one embeds in a program to prove ownership [22]. A
comment with a copyright notice is a first example of watermark. Unfortunately
this kind of watermarks, being totally taken apart from functionality, are easy to
distort or remove. A strong connection should exist between a watermark and the

1 Originally from [68]: � Il mafaut qu’il [= le système] n’exige pas le secret, et qu’il puisse
sans inconvénient tomber entre les mains de l’ennemi. �
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functionality of a program, so that you cannot damage one while preserving the
other.

1.2 This Thesis

We use sets of traces to detail the functionality of a program [28]. A program P is
a set of statements which can either test or change the value of a set of variables.
Values are stored in environments and commands can be thought as transformers of
environments. A trace is just a sequence of environments punctuated by statements.
The functionality, or semantics, of P is the set SJPK of all traces whose statements
are the statements of P.

The fact that comments play no role in the determination of a trace accounts
for the weakness of comment-based watermarks. In order to contribute to the
definition and the implementation of good watermarks, let us make some claims.

1. Good watermarks should be pervasive: the more pervasive a watermark, the
higher the number of environments in the traces of SJPK that should be affected
by the embedding of the watermark.

2. Good watermarks should be resilient. In our view, resilience implies that you
cannot derive the original semantics of P from the watermarked program. We
believe that resilience requires the embedding of the watermark to entail a loss
of information. Such information is called the key. Because of the loss, when
you try to characterize the functionality of the watermarked program, you no
longer get its semantics, but an over-approximation describing behaviors and
properties that the watermarked program actually has not. This thwarts the
recognition of the original functionality and, consequently, the detection of the
watermark.

3. The key should carry the information that tells good traces from misleading
ones. Also, the key should enable the detection of the watermark within the
good traces. Of course, the key should be held only by the people who are
entitled to extract the watermark.

4. Resilience, in its full meaning, entails that if one tries to distort the watermark
or remove it without knowing the key, they should obtain a new program
whose functionality is radically different from the functionality of the original
program.

A good pervasive watermarking scheme is the dynamic path-based one [16],
which takes advantage of branching constructs. Branching not only is ubiquitous
in non-trivial programs, but it strongly affects evolution of traces. Also looping
constructs can be of interest. A widely held rule of thumb is that a program spends
90% of its execution time in only 10% of the code [60]. This critical 10% of the code
frequently consists of loops [41]. We thereby expect 90% of a trace to be determined
by commands involved in loops. Hence, we also expect loop transformations to be
the basic blocks for the design of pervasive watermarking schemes.

In this thesis, we first provide the preliminary details for the comprehension of
our work (Chapter 2). After introducing the mathematical background, we take a
long time (Section 2.14) describing the syntax and the formal trace-based semantics
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of an imperative programming language introduced by Cousot and Cousot [33].
As a novel contribution, we enrich such language with subroutines and for-loops;
we also introduce a semantics-based definition of iteration and several related
notions. Then we present the Cousots’ abstract interpretation theory (Section 2.15)
and the Cousots’ proposal for the systematic design of program transformation in
a framework based on abstract interpretation (Section 2.16). We derive a novel
variant to that framework (Section 2.17) which we exploit later to model loop
transformations.

Next, we survey obfuscation and watermarking concepts, techniques and termi-
nology (Chapter 3).

After that, we explore several loop transformations which are well known
from the literature. By recasting each transformation in our trace-based semantic
framework, we point out that they ultimately shift information from environments
to statements. Depending on the way they implement such shift, we partition them
into two classes. We call loop affine transformations the members of first class
(Chapter 4); we show that they are based on affinities; since affinities are reversible,
they can be easily undone by means of themselves. The members of the second
class (Chapter 5) are loop peeling, loop splitting and loop unrolling; we show that
peeling and splitting are instances of unrolling; we prove that unrolling provides
an effective way to make semantic information explicit (Section 5.8).

Finally, we take advantage of the latter class of transformations to introduce
(Chapter 6) our novel watermarking technique [38], which we presented at the 15th
Static Analysis Symposium (SAS), held in Valencia (Spain) on July 2009. Our
proposal is still at an embryonic stage and is meant to be a first attempt at the
instantiation of our claims. Unfortunately, resilience proved to be a very hard issue
to deal with; thus we failed in properly address our last claim. What we gained
however is a comprehension of loops as media which can hide and disclose semantic
information.



2

Preliminaries

This Chapter introduces the basics of logic, the notions of set theory and, more
in general, the formal concepts we take advantage later to express and clarify our
thesis. We just extend the natural language to deal with mathematical objects
without ambiguities. The survey we present here can be used for reference in the
following Chapters.

2.1 Primitive Objects

We assume the existence of primitive objects as elements and collections of elements.
Examples of elements are true, false, the natural numbers (0, 1, 2. . . ), the integer
numbers (0, 1, −1, 2, −2. . . ), the letters of the alphabet (a, b, c. . . ) and so on. If
a and b are the same element, we write a = b.

By the axiom of extensionality, a collection is determined only through its
elements and only after its elements have been determined.

Let a be an element and U be a collection. If a is an element collected in U we
write a ∈ U , otherwise we write a 6∈ U . If both a and b are elements of U , we can
write a, b ∈ U . If all the elements of U are at the same time elements of another
collection V , we write U ⊆ V . Obviously U ⊆ U . We have that U and V are the
same collection if U ⊆ V and V ⊆ U ; in such case we write U = V .

2.2 Logic

A logic formula is an assertion about elements or collections. A formula can be
either true or false. A formula A can include variables, which are placeholders for
elements. If A includes variable x, we can write A(x). Then A(x) is true or false
depending on the element which x is standing for.

If ϕ and ψ are logic formulas, then from ϕ and ψ we can derive other logic
formulas, namely: the negation of ϕ , noted ¬ϕ; the conjuction of ϕ and ψ , noted
ϕ ∧ ψ; the disjuction of ϕ and ψ , noted ϕ ∨ ψ; the logic implication between ϕ
and ψ , noted ϕ =⇒ ψ; the logic equivalence of ϕ and ψ , noted ϕ⇐⇒ ψ. Symbol
¬ has the highest priority, whereas ⇐⇒ has the lowest. We use parentheses to
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establish absolute priorities. We note the universal quantifier as ∀; if ∀x. ϕ(x)
is true, then ϕ(x) is true whichever is the element x stands for. The existential
quantifier is noted ∃; if ∃x. ϕ(x) is true, then ϕ(x) is true if and only if there is
some element c such that ϕ(c) is true.

2.3 Sets

We call set any collection that can be treated as an element. We assume that the
collection which does not include any element is a set, called the empty set and
noted ∅; moreover, any finite collection is a (finite) set. Notice that ∅ ⊆ U for all
collections U .

We write { a, b, c } to note a set with three elements a, b and c. When we use
the brace notation, we are not concerned with the ordering of the elements, nor
with the number of occurrences of an element within the braces. Thus, for instance,
{ a, b, c } or { b, c, a } or { a, b, c, a } denote the same set. If we want U to be the

set including just a, b and c, we write U
def
= { a, b, c }. An ordered pair with left

element a and right element b is noted (a, b)
def
= { { a } , { a, b } }. Pairs can be easily

generalized to so-called tuples, which have more than two elements.
Let A, B and C sets.

• Any collection U such that U ⊆ A is a set; in particular, U is termed as a
subset of A.

• If ϕ(x) a formula, the collection of all a ∈ A such that ϕ(a) is true is a set,
noted either { a | a ∈ A ∧ ϕ(a) } or { a ∈ A | ϕ(a) }.

• The collection including all the subsets ofA is a set, noted ℘(A)
def
= { U | U ⊆ A }.

• The collection including all the finite subsets of A is a set, noted ℘finite(A)
def
=

{ U | U ⊆ A }.
• If for each a ∈ A there is an element noted ba, then the collection of all such

elements is a set, noted { ba | a ∈ A }.
• The collection encompassing all the elements included in A but not in B is a

set, noted A \B def
= { a | a ∈ A ∧ a 6∈ B }.

• The collection encompassing all the elements included in A and in B is a set,

noted A ∩B def
= { a | a ∈ A ∧ a ∈ B }.

• The collection encompassing all the elements included in every set B ∈ A is a

set, noted
⋂
A

def
= { b | ∀B ∈ A. b ∈ B }; in case A = {Bc | c ∈ C }, then

⋂
A

is also noted
⋂
c∈C Bc.

• The collection encompassing all the elements included in A or in B is a set,

noted A ∪B def
= { a | a ∈ A ∨ a ∈ B }.

• The collection encompassing all the elements included in some set B ∈ A is a

set, noted
⋃
A

def
= { b | ∃B ∈ A. b ∈ B }; in case A = {Bc | c ∈ C }, then

⋃
A

is also noted
⋃
c∈C Bc.

• The collection including every ordered pair with left element a ∈ A and right

element b ∈ B is a set, noted A×B def
= { (a, b) | a ∈ A ∧ b ∈ B }.

• A set P ⊆ ℘(A) is a partition of A if and only if:
(i) ∅ 6∈ P ;

(ii)
⋃
P = A;
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(iii) ∀B ∈ P. ∀C ∈ P. B 6= C =⇒ B ∩ C 6= ∅.

2.4 Relations

An element R ∈ ℘(A×B) is a binary relation between A and B. Thus R ⊆ A×B.
We write a R b if and only if (a, b) ∈ R, otherwise we write either ¬(a R b) or
a 6R b. If R ∈ ℘(A×A) then we say R is a binary relation on A.

A relation R on A is:

• reflexive if and only if
∀a ∈ A. a R a ;

• symmetric if and only if

∀a ∈ A. ∀b ∈ A. a R b =⇒ b R a ;

• antisymmetric if and only if

∀a ∈ A. ∀b ∈ A. a R b ∧ b R a =⇒ a 6= b ;

• transitive if and only if

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. a R b ∧ b R c =⇒ a R c .

Equivalence Relations

A reflexive, symmetric and transitive relation is an equivalence relation, noted ≡
or ∼ or '. If ≡ is an equivalence relation on A, any set

[b]≡
def
= { a ∈ A | a ≡ b }

is an equivalence class of b with respect to ≡. It has been proved that

A/≡
def
= { [b]≡ | b ∈ A }

is a partition on A; on the other side, any partition P on A is related to an
equivalence relation whose classes are the elements of P .

Let ≡ and ≡′ be two equivalence relations on A. We say that ≡ is a refinement
of ≡′ if and only if every class in A/≡ is a subset of some class in A/≡′ .

Order Relations

A reflexive, antisymmetric and transitive relation is an order relation, noted ≤ or v
or �. An order relation ≤ on A establishes a partial ordering on A. Such ordering
is total if and only if ∀a ∈ A. ∀b ∈ A. a ≤ b ∨ b ≤ a.

Let a, b ∈ A. If a ≤ b and a 6= b, we can write a < b.
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2.5 Natural Numbers

The collection of all natural numbers is assumed to be a set, noted N. A natural

number is either the empty set ∅ or a set succ(A) such that A ∈ N and succ(A)
def
=

A ∪ {A }. Each element in N has its own notation. Here below we report some
elements of N and their correspondent notation:

∅ 0

{∅ } 1

{∅, {∅ } } 2

{∅, {∅ } , {∅, {∅ } } } 3

...
...

A generic element of N is usually noted n.
An order relation ≤ is defined on N such that, given n, n′ ∈ N, n ≤ n′ if and

only if n ⊆ n′. We introduce special notations for some subsets of N, namely:

(n, n′)
def
= { n′′ | n < n′′ < n′ }

[n, n′)
def
= (n, n′) ∪ { n }

(n, n′]
def
= (n, n′) ∪ { n′ }

[n, n′]
def
= (n, n′) ∪ { n, n′ } .

2.6 Integer Numbers

Let ∼ be a relation on N×N such that, given (a, b) ∈ N×N and (c, d) ∈ N×N, we
have that (a, b) ∼ (c, d) if and only if a+d = b+ c. It can be easily proved that ∼ is
an equivalence relation. An element in N×N/∼ is called an integer number. It can
be proved that N×N/∼ = { [(0, 0)]∼ } ∪ { [(0, n)]∼ | n ∈ N } ∪ { [(n, 0)]∼ | n ∈ N }.
We note [(0, 0)]∼ with 0 and, given n ∈ N, we note [(0, n)]∼ with −n and [(n, 0)]∼
with +n or n. We refer to N× N/∼ as the set of the integer numbers, noted Z. An
element in Z is noted z.

An order relation ≤ is defined on Z such that, given [(a, b)]∼ , [(a, b)]∼ ∈ Z,
[(a, b)]∼ ≤ [(a, b)]∼ ∈ Z if and only if a+ d ≤ b+ c, where ≤ in the latter assertion
is the order relation on N.

2.7 Posets

A set A endowed with a partial ordering ≤ is a partial ordered set, or poset for
short, and is noted 〈A,≤〉, or 〈A,≤A〉 to stress the fact that ≤ is an ordering on
A. An example of poset is the set of natural numbers endowed with its canonical
order, which in fact is a total order; such poset is noted 〈N,≤〉.

Let 〈A,v〉 be a poset and let B ⊆ A and a ∈ A.
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• a is an upper bound of B if and only if ∀b ∈ B. b v a;
• a is the maximum of B, noted >B or maxB, if and only if a is an upper bound

of B and a ∈ B;
• a is the least upper bound of B, noted

⊔
B (or b t b′ when B = { b, b′ }), if and

only if it is the minimum among the upper bounds of B;
• a is a lower bound of B if and only if ∀b ∈ B. a v b;
• a is the minimum of B, noted ⊥B or minB, if and only if a is a lower bound

of B and a ∈ B;
• a is the greatest lower bound of B, noted

d
B (or b u b′ when B = { b, b′ }), if

and only if it is the maximum among the lower bounds of B.

A function f : N→ A,n 7→ an is a ω-chain of A if and only if ∀n, n′ ∈ N. n ≤
n′ =⇒ an v an′ .

A poset 〈A,v〉 is:

• a lattice if and only if a t a′ ∈ A and a u a′ ∈ A for all a, a′ ∈ A;

Moreover it is:

• a complete partial order if and only if the range of each ω-chain in A has a
least upper bound, noted

⊔
n∈N an.

• a complete lattice if and only if ∀B ⊆ A.
⊔
B ∈ A if and only if ∀B ⊆ A.

d
B ∈

A.

It has been proved that a complete lattice has both minimum and maximum;
moreover, any complete lattice is a complete partial order, but not vice versa.
Given a set B, an example of complete lattice is 〈℘(B),⊆〉, whose minimum is⋂
℘(B) = ∅ and maximum is

⋃
℘(B) = B.

2.8 Functions

A relation f ⊆ A× B is a function from A to B, noted f :A → B, if and only if
a f b and a f b′ entail b = b′. We can note the function as λa ∈ A. f(a), when
B is clear from the context. If A is clear as well, we can even write λa. f(a). We
usually note a f b as either f : a 7→ b or b = f(a) and we say that f is defined in a.
If there is no b ∈ B such that f(a) = b, we say that f is undefined in a. Because
f is allowed to be undefined for some elements, it establishes a partial mapping
between A, its domain, and B, its range.

A function f :A→ B is:

• total if and only if
∀a ∈ A. ∃b ∈ B. f(a) = b ;

• surjective if and only if

∀b ∈ B. ∃a ∈ A. f(a) = b ;

• injective if and only if

∀a, a′ ∈ Af(a) = f(a′) =⇒ a = a′ ;
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• bijective if and only if it is surjective and injective.

An example of bijective function is the identity on A, noted idA:A → A, which
maps each a ∈ A to itself. If U is a collection and there exists a bijection between
U and N then U is a set.

If f :A→ B and g:B → C are functions, then their composition is a function
g ◦ f :A → C which maps a ∈ A to c ∈ C if and only if some b ∈ B exists such
that f(a) = b and g(b) = c. Then we can write either (g ◦ f)(a) = c or g(f(a)) = c.

If f :A→ B is total and bijective, then there exists a function g : B → A such
that g ◦ f = idA. Function g is the inverse of f and is noted f−1.

2.9 Operations

Let A be a nonempty set. A function f from A×A to A is an operation on A. An
operation on A mapping (a, a′) to a′′ is customarily written with infix notation
a f a′ = a′′ rather than prefix notation f(a, a′) = a′′. Moreover:

• f is associative if and only if (a f a′) a′′ = a f(a′ f a′′);
• f is commutative if and only if a f a′ = a′ f a;
• f has an identity element or neutral element e if and only if for all a ∈ A,
a f e = e f a = a.

If A is a set and f an associative operation on A, then A, f is a semigroup.

Arithmetic Operations

Let n, n′, n′′ ∈ N. We have two basic operations on N:

• sum or addition, noted +, is such that:

n+ 0
def
= n

n+ succ(n′)
def
= succ(n+ n′) ;

• product or multiplication, noted · or ×, is such that:

n · 0 def
= 0

n · succ(n′) def
= n+ (n · n′) .

Notice that · can be omitted if no ambiguities arise. It can be proved that n′ ≤ n
if and only if there exists an only natural number n′′ such that n′ + n′′ = n. Since
n′′ is unique, we can define

• subtraction or difference, noted −, which is such that:

n− n′ def
= n′′ if and only if n′ + n′′ = n .

Then we can note n′′ as n− n′. We also define:
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• corrected subtraction, noted 	, which is such that:

n	 n′ def
=

{
n− n′ if n′ ≤ n
0 otherwise.

(2.1)

It can be proved that if n, n′ ∈ N and n′ > 0, then there exists an only pair (q, r)
of natural numbers such that n = n′q+ r and 0 ≤ r < n′. Since (q, r) is unique, we
can define

• division or quotient, noted div, which is such that:

n div n′
def
= q ;

• modulo or remainder, noted mod, which is such that:

n mod n′
def
= r ;

• a special function, noted :·, which is such that:

n :· n′ def
= (n div n′) · n′ .

We can easily prove that

n :· n′ + n mod n′ = n . (2.2)

Integer Operations

Given [(a, b)]∼ , [(a, b)]∼ ∈ Z, we have two basic operations on Z:

• sum or addition, noted +, such that:

[(a, b)]∼ + [(c, d)]∼
def
= [(a+ c, b+ d)]∼ ,

where symbol + on the left hand side stands for the addition in Z, whereas
symbol + on the right hand side stands for the addition in N;
• product or multiplication, noted · or ×, such that:

[(a, b)]∼ · [(c, d)]∼
def
= [(ac+ bd, ad+ bc)]∼ .

We can omit · if no ambiguities arise. We can also define

• subtraction or difference, noted −, which is a function such that:

[(a, b)]∼ − [(c, d)]∼
def
= [(a, b)]∼ + [(d, c)]∼ .
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2.10 Strings

An alphabet is a set Σ whose elements are named symbols. A string or sequence σ
on Σ is a function λn ∈ [0, N). σn where N ∈ N and, for all n ∈ [0, N), σn ∈ Σ.
We usually consider σ just a train of symbols, rather than a function. For instance,
if a, b, c ∈ Σ, then abac is a string. If σ = cba, then σ0 = c, σ1 = b and σ2 = a. The

length of σ is |σ| def
= N . The empty string ε is such that |ε| = 0.

The set of all strings on Σ is

Σ∗
def
= { σ | ∀n ∈ [0, |σ|). σn ∈ Σ ∧ |σ| ∈ N } .

An operation is defined on Σ∗ that maps (σ, σ′) to σσ′ such that

σσ′
def
= λn ∈ [0, |σ|+ |σ′|).

{
σn if n ∈ [0, |σ|)
σ′n−|σ| if n ∈ [|σ|, |σ|+ |σ′|)

Such operation is named concatenation. If σ = aσ′ ∈ Σ∗, then its first symbol is a,
noted `σ. If σ = σ′b ∈ Σ∗, then its last symbol is b, noted aσ. More formally:

`:Σ∗ → Σ, aσ′ 7→ a (2.3)

a:Σ∗ → Σ, σ′b 7→ b . (2.4)

If σσ′ ∈ Σ∗, then σ is a prefix of σσ′, whereas σ′ is a suffix of σσ′. It is easy to
prove that the neutral element of concatenation is ε. Furthermore Σ∗ endowed
with concatenation is a semigroup.

Any L ⊆ Σ∗ is a formal language, or language for short.

2.11 Deterministic Automata

A deterministic finite state automaton is defined by a tuple M = (Q,Σ, δ, q0, F ),
where:

• Q is a finite set of states;
• Σ is an alphabet;
• δ:Q× Σ→ Q is the transition function;
• q0 is the initial state;
• F ⊆ Q is the set of final or accepting states.

We use graphs to represent automata. For instance, suppose Q
def
= { q0, q1, q2 },

Σ
def
= { a, b }, F def

= { q1 } and that δ is defined according to the following mapping:

(q0, a) 7→ q1

(q0, b) 7→ q2

(q1, a) 7→ q1

(q1, b) 7→ q0

(q2, a) 7→ q1

(q2, b) 7→ q0 .

If the initial state is q0, we can illustrate this automaton as
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q0

q1

q2

a

b

b

a

b

a

From δ we can derive a function δ̂:Q× Σ∗ → Q such that:

δ̂(q, ε)
def
= q

δ̂(q, σa)
def
= δ(δ̂(q, σ), a) .

A string σ is accepted by M if and only if δ̂(q0, σ) ∈ F . The language accepted by
M is thereby

L(M)
def
=
{
σ ∈ Σ∗

∣∣∣ δ̂(q0, σ) ∈ F
}

.

2.12 Fixpoints

A poset 〈A,≤〉 is sometimes thought as collecting data ordered by their degree
of informativeness. Thus a ≤ b implies an informational gap between a and b. In
some contexts it means that a is less informative than b, so ⊥A carries the smallest
amount of information. In other contexts it means that b is an approximation of a,
so ⊥A is the most informative element in A.

Functions between posets can be thought as information transformers. A func-
tion f : 〈A,≤〉 → 〈B,v〉 is:

• ⊥A-strict if and only if
f(⊥A) = ⊥B ;

• an order morphism or, in other words, monotonic if and only if

∀a, a′ ∈ A. a ≤ a′ =⇒ f(a) v f(a′) ;

• Scott-continuous if and only if it is monotonic and for all ω-chains λn ∈ N. an,

f

(∨
n∈N

an

)
=
∨
n∈N

f(an) ;

• additive if and only if it is monotonic and for all C ⊆ A,

f
(∨

C
)

=
⊔
{ f(c) | c ∈ C } .

Let 〈A,v〉 be a poset. If f is a function on A, it is also called an operator on A.
Suppose 〈A,v〉 is a complete partial order with minimum ⊥ and f a monotonic

operator on A. If b ∈ A is such that f(b) = b, then b is a fixpoint of f . The minimum
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among the fixpoints of f is called the least fixpoint of f and is noted lfpv⊥ f , or lfp f
for short. Given a ∈ A, the transfinite iterates of f from ⊥ are defined as:

f0(a)
def
= ⊥

fn+1(a)
def
= f(fn(a))

fω(a)
def
=
⊔
n∈N

fn(a) .

Through his famous fixpoint theorem (reported in [124]), Alfred Tarski proved that

lfpv⊥ f = fω(⊥), that is,

lfpv⊥ f =
⊔
n∈N

fn(⊥) .

2.13 Transition Systems

A transition system [58] is a triple 〈Σ, I,�〉, where:

• Σ is a set of states;
• I ⊆ Σ is a set of initial states;
• � ⊆ Σ × Σ is a transition relation, where s � s′ asserts that state s may

transition to state s′.

A finite transition sequence, or finite trace, is a sequence of states s0, s1, . . . ,
sn, such that s0 ∈ I and si � si+1 for every 0 ≤ i < n. The set of all finite traces
of a transition system is

Σ� def
= lfp⊆∅ F ,

where F is an operator on Σ∗ that make sequences grow one state longer. More
formally:

F(T)
def
= I ∪ { σss′ | σs ∈ T ∧ s � s′ } .

All finite traces in Σ� ⊆ Σ∗ are said to be partial. A finite trace is maximal if
and only if σn 6� s for all s ∈ Σ.

An infinite transition sequence, or infinite trace, is a sequence of states s0, s1,
s2. . . such that s0 ∈ I and for every i ∈ N there exists si+1 ∈ Σ such that si � si+1.

2.14 Programming Language

We consider a simple imperative language, whose syntax is presented in Table 2.1.
Such language is certainly not standard and may be not immediately intuitive. It has
been introduced by Cousot and Cousot [33] to outline in the abstract interpretation
theory (see Section 2.15) a framework for the systematic development of program
transformations (see Section 2.16). Since we derive a variant to that framework
(see Section 2.17) in order to model loop transformations in the next chapters,
Cousot’s language shows to us as the most natural choice.
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Integers z ∈ Z
Variables x ∈ X
Arithmetic Expressions A ∈ A, A ::= z | x | A · A
Boolean Expressions B ∈ B, B ::= true | A m A | ¬B | B ? B
Commands C ∈ C, C ::= B | x := A | x := ?

Labels ` ∈ L def
= { a, b, . . . , z, 0, 1, . . . , 9 }∗

Statements S ∈ S, S ::= `: C � `

Programs P ∈ P def
= ℘finite(S)

Table 2.1. Syntax.

Integer numbers, variables, and arithmetic1 and boolean expressions are defined
as it is customary for common programming languages. Notice the symbols we use
in compound expressions:

• symbol · stands for any binary arithmetic operation;
• symbol m stands for any binary relation between integers;
• symbol ¬ is the customary boolean negation;
• symbol ? stands for any binary boolean connective.

Operations, relations and connectives whatsoever follow the customary precedence
rules. Parentheses may be used to avoid confusion.

A command C ∈ C is a boolean test (B), a deterministic assignment (x := A) or
a random assignment (x := ?).

A label ` ∈ L is a string of symbols chosen from the English alphabet or the
Arabic numerals. The set L of all labels is closed by concatenation.

Commands are combined with labels to build up statements. In particular,
given a command C ∈ C and two labels `, `′ ∈ L, a statement is a transition from
` to `′ through C, noted `: C � `′. A statement can also be thought as a small
automaton

` `′
C

which transitions from initial state ` to state `′ by reading symbol C. Any command
C′ referenced by `′ is candidate for being read after C. In the automaton representa-
tion, this corresponds to let `′ be the initial state of a transition `′: C′ � `′′, where
`′′ ∈ L.

Programs are finite sets of statements. Any variable appearing in a program is
global. By kind of example, we consider a program P that sets an integer variable
x to an arbitrary value, and reduces it to zero in case it is positive. If we used
Java [54], we could write this program:

class P {

public static int x;

public static void main(String args []) {

1 With a slight abuse of language, we adopt the word arithmetic even if we deal with
integer numbers. In fact arithmetic is concerned with natural numbers.
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java.util.Random r = new java.util.Random ();

for (x = r.nextInt (); x > 0; x--) {}

}

}

In our imperative programming language, instead, we provide a set P of four
statements acting on (global) variable x:

a: x := ? � b

b: x > 0 � c

b: x ≤ 0 � d

c: x := x− 1 � b

Execution starts at initial label ‘a’. The initial labels of a program P are called
its entry points and are collected in a set LJPK; hence in our example we have
LJPK = { a }. Notice that we allow LJPK ∩ labJPK = ∅. Moreover, if P = ∅ then
LJPK = ∅.

If execution is at some label `, then one of the transitions `: C � `′ labelled
with ` is crossed; if C is not blocking, the execution can go on from `′. Programs
are possibly non-deterministic, since several commands can be referenced by the
same label. If the execution is at `: C � `′ and there is no command labelled with
`′, then the execution is blocked at `; in our example, the execution is blocked at
d, since in P there are no commands referenced by label d.

We can more easily deal with the chaining of statements by representing P as
an automaton with

• set of states LJPK ∪ labJPK ∪ sucJPK;
• set of initial states LJPK;
• set of accepting states equal to the set of states;
• alphabet { C | ∃`, `′. `: C � `′ ∈ P };
• transition function P.

For instance, if P is the example program introduced above, we get:

a b

c

d

x := ? x > 0

x ≤ 0

x := x− 1

Then all and only the correct chains of statements are captured by LJPK.
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Syntactic Abstractions

Sometimes we would like to refer to a selected component of a syntactic construct.
We thereby introduce some syntactic functions that take a construct and get rid of
any but the component of interest. We call these functions syntactic abstractions,
because they retain only what is relevant. Syntactic abstractions, presented in
Table 2.2, are given names that are suggestive of their targets.

varJzK def
= ∅

varJxK def
= { x }

varJA1 · A2K
def
= varJA1K ∪ varJA2K

varJtrueK def
= ∅

varJA1 m A2K
def
= varJA1K ∪ varJA2K

varJ¬BK def
= varJBK

varJB1 ? B2K
def
= varJB1K ∪ varJB2K

varJx := AK def
= { x } ∪ varJAK

varJx := ?K def
= { x }

varJ`: C � `′K def
= varJCK

varJPK def
= { varJSK | S ∈ P }

comJ`: C � `′K def
= C

labJ`: C � `′K def
= `

labJPK def
= { labJSK | S ∈ P }

sucJ`: C � `′K def
= `′

sucJPK def
= { sucJSK | S ∈ P }

Table 2.2. Syntactic abstractions.

Freshness

We take advantage of syntactic abstractions to introduce the notion of freshness.
In particular:

• a variable x is fresh with respect to P if and only if x 6∈ varJPK;
• a label ` is fresh with respect to P if and only if ` 6∈ labJPK ∪ sucJPK.

Replacing Variables

A variable y that is found inside a syntactic construct acts as placeholder for integer
values. Sometimes we would like to replace y with some arithmetic expression A.
In Table 2.3 a replacement function is defined. Rather than a formal name, this
function is given peculiar notation. Double brackets around each of its three
syntactic arguments have been dropped for the sake of simplicity.

Replacing Commands

A function we introduce that replaces whichever command with true:

trueJPK def
= { trueJSK | S ∈ P }

trueJ`: C � `′K def
= `: trueJCK � `′

trueJCK def
= true
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z [A/y]
def
= z

x [A/y]
def
=

{
A if y = x

x otherwise

(A1 · A2) [A/y]
def
= A1 [A/y] · A2 [A/y]

true [A/y]
def
= true

(A1 m A2) [A/y]
def
= A1 [A/y] m A2 [A/y]

¬B [A/y]
def
= B [A/y]

(B1 ? B2) [A/y]
def
= B1 [A/y] ? B2 [A/y]

(x := A) [A/y]
def
= x := A [A/y]

(x := ?) [A/y]
def
= x := ?

(`: C � `′) [A/y]
def
= C [A/y]

P [A/y]
def
= { S [A/y] | S ∈ P }

Table 2.3. Replacement function.

Subroutines

In programming languages, a subroutine is customarily a small program which is
used as one step in a larger program. It is accessed (called) by the program through
a unique entry point, it performs some task and, upon completion, it branches
back (returns) to the program. Subroutines are often collected into libraries, to
enhance reusability. In this thesis, we expand the Cousot’s language [33] to include
subroutines. If P and H are programs and H can be used as a subroutine of P, we
write H ∈ rouJPK. Thus rouJPK is the library of the programs that may act as a
subroutine for P.

Whenever we enrich a program P with a statement S that calls a subroutine
H ∈ rouJPK, we are just considering a new program P′ = P∪{ S }∪H. Not every H ∈ P
can be a subroutine of P; for instance, P 6∈ rouJPK. In fact, H can be a subroutine of
P if and only if there are two labels ` and `′ such that:

(a) the only entry point of H is `;
(b) P can call H only through `;
(c) H and P do not share labels, except for `;
(d) H is allowed to return to P only through `′.

Properties (a), (b) and (d) describe how subroutine H is expected to interface with
program P; we name ` and `′ respectively the entry point and the exit point of H;
sometimes, to stress this fact, we abuse notation and we designate H with `: H � `′.
Property (c) says that H and P have no statements in common; we allow ` to be
shared so that P may non-deterministically call H and, at the same time, perform
any statement S′ ∈ P such that labJS′K = `.

Formally, given `, `′ ∈ L, we say that H ∈ P is can be used subroutine of P with
entry point ` and exit point `′ and we write `: H � `′ ∈ rouJPK if and only if:
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labJHK ∩ (LJPK ∪ sucJPK) ⊆ LJHK (2.5)

labJHK ∩ (LJPK ∪ sucJPK) ⊆ { ` } (2.6)

labJHK ∩ labJPK ⊆ { ` } (2.7)

sucJHK ∩ labJPK ⊆ { `′ } (2.8)

sucJHK ∩ sucJPK ⊆ { `′ } . (2.9)

Notice that these constraints precisely captures the four properties enumerated
above. Furthermore, they only concerns labels and not variables, which by definition
are global; therefore P can fully access the variables of H and vice versa.

We can recast the definition of subroutine in an equivalent form.

Theorem 2.1. H is a subroutine of P with entry point ` and exit point `′ if and
only if:

(i) `′′ = ` ∈ LJHK for all `′′ ∈ labJHK ∩ (LJPK ∪ sucJPK);
(ii) if ` 6= `′ and ` is not fresh with respect to P, then ` 6∈ sucJHK;

(iii) if ` 6= `′ and `′ is not fresh with respect to P, then `′ 6∈ labJHK;
(iv) any `′′ ∈ labJHK ∪ sucJHK such that `′′ 6= ` and `′′ 6= `′ is fresh with respect to P.

Proof. It is trivial to show that (2.5) ∧ (2.6)⇐⇒ (i).
Let us deal with what else must be proven.
(⇒)
Suppose ` is not fresh with respect to P, that is ` ∈ labJPK ∪ sucJPK. Moreover

let ` 6= `′. From respectively (2.8) and (2.9), we get:

` 6∈ sucJHK ∩ labJPK (2.10)

` 6∈ sucJHK ∩ sucJPK . (2.11)

From our initial assumption ` ∈ labJPK ∪ sucJPK, we get ` ∈ labJPK or ` ∈ sucJPK.
Then by (2.10) and (2.11), we have that ` 6∈ sucJHK. Thus we proved (ii).

Suppose `′ is not fresh with respect to P, that is `′ ∈ labJPK ∪ sucJPK. Moreover
let ` 6= `′. Then by (2.5) we have `′ 6∈ LJPK. From respectively (2.6) and (2.7) we
get:

`′ 6∈ labJHK ∩ sucJPK (2.12)

`′ 6∈ labJHK ∩ labJPK . (2.13)

From our initial assumption `′ ∈ labJPK ∪ sucJPK, we get `′ ∈ labJPK or `′ ∈ sucJPK.
Then by (2.12) and (2.13) we have that `′ 6∈ labJHK. Thus we proved (iii).

Finally, suppose `′′ ∈ labJHK∪ sucJHK, `′′ 6= ` and `′′ 6= `′. Then by (2.5) we have
`′′ 6∈ LJPK. Moreover, from respectively (2.6), (2.7), (2.8) and (2.9), we get:

`′′ 6∈ labJHK ∩ sucJPK (2.14)

`′′ 6∈ labJHK ∩ labJPK (2.15)

`′′ 6∈ sucJHK ∩ labJPK (2.16)

`′′ 6∈ sucJHK ∩ sucJPK . (2.17)

From our initial assumption `′′ ∈ labJHK∪ sucJHK, we get `′′ ∈ labJHK or `′′ ∈ sucJHK.
In the former case, by (2.14) and (2.15), we have that `′′ 6∈ labJPK ∪ sucJPK, that is,
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`′′ is fresh with respect to P. In the latter case, we derive the same result by (2.16)
and (2.17). Thus we proved (iv).

(⇐)
Let ` 6= `′. Then by (i), `′ 6∈ LJPK. We have the following points.

• If ` is fresh with respect to P, then ` 6∈ labJPK ∪ sucJPK; if ` is not fresh with
respect to P, then by (ii) we have ` 6∈ sucJHK.

• If `′ is fresh with respect to P, then `′ 6∈ labJPK ∪ sucJPK; if `′ is not fresh with
respect to P, then by (iii) we have `′ 6∈ labJHK.

Consequently we obtain:

`′ 6∈ labJHK ∩ (LJPK ∪ sucJPK) (2.18)

`′ 6∈ labJHK ∩ labJPK (2.19)

` 6∈ sucJHK ∩ labJPK (2.20)

` 6∈ sucJHK ∩ sucJPK . (2.21)

Moreover, let `′′ 6= ` and `′′ 6= `′. We consider two alternatives:

• `′′ 6∈ labJHK ∪ sucJHK, whence we have `′′ 6∈ labJHK ∧ `′′ 6∈ sucJHK;
• `′′ ∈ labJHK ∪ sucJHK whence, by (iv), we have `′′ 6∈ labJPK ∧ `′′ 6∈ sucJPK.

Regardless of alternatives, we obtain:

`′′ 6∈ labJHK ∩ (LJPK ∪ sucJPK) (2.22)

`′′ 6∈ labJHK ∩ labJPK (2.23)

`′′ 6∈ sucJHK ∩ labJPK (2.24)

`′′ 6∈ sucJHK ∩ sucJPK . (2.25)

We now gather the results we obtained. In particular:

• (2.18) and (2.22) yield (2.6);
• (2.19) and (2.23) yield (2.7);
• (2.20) and (2.24) yield (2.8);
• (2.21) and (2.25) yield (2.9).
ut

Corollary 2.2. For any program P and any statement `: C � `′, { `: C � `′ } is a
subroutine of P with entry point ` and exit point `′.

Proof. Trivial by Theorem 2.1. ut

With a slight abuse of notation, instead of `: { `: C � `′ } � `′ ∈ rouJPK, we just
write `: C � `′ ∈ rouJPK.

A program P′ = P ∪ H is usually easier to be analyzed and maintained if
H ∈ rouJPK is a large subroutine. Indeed H narrows the range of possible interactions
within the elements of P′ by allowing very few of its own statements to be shared
with P. We prove this fact in the following Proposition, but only for a restricted class
of programs, namely the subroutines of H; thus, instead of P ∈ P and H ∈ rouJPK,
we are going to consider H′ ∈ rouJHK and H ∈ rouJH′K. In particular, H and H′ can
share a statement S only if they have the same entry point ` and exit point `′; in
such case labJSK = ` and sucJSK = `′.
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Proposition 2.3. Let `, `′, `′′ and `′′′ be labels. Let H and H′ be programs. Let
`: H � `′ ∈ rouJH′K and `′′: H′ � `′′′ ∈ rouJHK. Then, for any statement S ∈ H ∩ H′,
labJSK = ` = `′′ and sucJSK = `′ = `′′′.

Proof. Let S = `: C � `′ and S ∈ H ∩ H′. The latter assumption entails S ∈ H and
S ∈ H′, whence:

` ∈ labJHK (2.26)

`′ ∈ sucJHK (2.27)

` ∈ labJH′K (2.28)

`′ ∈ sucJH′K . (2.29)

From (2.26) and (2.27) we get

`, `′ ∈ labJHK ∪ sucJHK , (2.30)

whereas from (2.28) and (2.29) we get

`, `′ ∈ labJH′K ∪ sucJH′K . (2.31)

As `: H � `′ is a subroutine of H′, it enjoys Theorem 2.1.

• First, we consider property (ii)

` 6= `′ ∧ ` ∈ labJH′K ∪ sucJH′K =⇒ ` 6∈ sucJHK ,

whose contrapositive form is

` ∈ sucJHK =⇒ ` = `′ ∨ ` 6∈ labJH′K ∪ sucJH′K . (2.32)

• We now consider property (iii)

` 6= `′ ∧ `′ ∈ labJH′K ∪ sucJH′K =⇒ `′ 6∈ labJHK ,

whose contrapositive form is

`′ ∈ labJHK =⇒ ` = `′ ∨ `′ 6∈ labJH′K ∪ sucJH′K . (2.33)

• Finally, let us consider property (iv):

` ∈ labJHK ∪ sucJHK ∧ ` 6= ` ∧ ` 6= `′ =⇒ ` 6∈ labJH′K ∪ sucJH′K .

The contrapositive form of this property is

` ∈ labJH′K ∪ sucJH′K =⇒ ` 6∈ labJHK ∪ sucJHK ∨ ` = ` ∨ ` = `′ ,

which, by (2.30) and (2.31), is equivalent to:

` = ` ∨ ` = `′ . (2.34)

We can make the same argument for `′; hence we obtain:

`′ = ` ∨ `′ = `′ . (2.35)
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Let us summarize the results we obtained just now:

` ∈ sucJHK =⇒ ` = `′ ∨ ` 6∈ labJH′K ∪ sucJH′K (2.32)

`′ ∈ labJHK =⇒ `′ = ` ∨ `′ 6∈ labJH′K ∪ sucJH′K (2.33)

` = ` ∨ ` = `′ (2.34)

`′ = ` ∨ `′ = `′ . (2.35)

Consider now that `′′: H′ � `′′′ is a subroutine of H and enjoys Theorem 2.1 as well.
By the same arguments above, we derive:

`′′ ∈ sucJH′K =⇒ `′′ = `′′′ ∨ `′′ 6∈ labJHK ∪ sucJHK (2.36)

`′′′ ∈ labJH′K =⇒ `′′′ = `′′ ∨ `′′′ 6∈ labJHK ∪ sucJHK (2.37)

` = `′′ ∨ ` = `′′′ (2.38)

`′ = `′′ ∨ `′ = `′′′ . (2.39)

We now explicit the properties of ` and `′.

• By combining (2.34) and (2.38), we get:

` = ` = `′′

∨ ` = ` = `′′′

∨ ` = `′ = `′′

∨ ` = `′ = `′′′ .

(2.40)

Because by (2.26) we have ` ∈ labJHK and by (2.31) we have ` ∈ labJH′K∪sucJH′K,
whenever ` = `′ from (2.33) we obtain ` = `.
Likewise, because by (2.28) we have ` ∈ labJH′K and by (2.30) we have ` ∈
labJHK ∪ sucJHK, whenever ` = `′′′ from (2.37) we obtain ` = `′′.
Thus we can extend (2.40) as follows:

` = ` = `′′

∨ ` = ` = `′′′ = `′′

∨ ` = `′ = `′′ = `

∨ ` = `′ = `′′′ = ` = `′′ .

(2.41)

• By combining (2.35) and (2.39), we get:

`′ = ` = `′′

∨ `′ = ` = `′′′

∨ `′ = `′ = `′′

∨ `′ = `′ = `′′′ .

(2.42)

Because by (2.27) we have `′ ∈ sucJHK and by (2.31) we have `′ ∈ labJH′K ∪
sucJH′K, whenever `′ = ` from (2.32) we obtain ` = `′.
Likewise, because by (2.29) we have `′ ∈ sucJH′K and by (2.30) we have `′ ∈
labJHK ∪ sucJHK, whenever `′ = `′′ from (2.36) we obtain ` = `′′′.
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Thus we can extend (2.42) as follows:

`′ = ` = `′′ = `′ = `′′′

∨ `′ = ` = `′′′ = `′

∨ `′ = `′ = `′′ = `′′′

∨ `′ = `′ = `′′′ .

(2.43)

From (2.41) and (2.43) we conclude that ` = ` = `′′ and `′ = `′ = `′′′. ut

Both Lemma 2.2 and this Proposition tell us that statements are ultimate sub-
routines, that is, subroutines with respect to any program. We observe that there
exists only one other program with this property: it is the empty program ∅. It is
easy indeed to prove that `: ∅ � `′ ∈ rouJPK for all `, `′ ∈ L and for all P ∈ P.

Conversely, if a program H is neither the empty set nor a singleton, it cannot
be said to be a subroutine unconditionally, but only with respect to some program
P′. This compels us to always introduce such P′ even if we are only interested in H.
Notice that P′ collects commands that supposedly capture the context in which
the subroutine is to be introduced. If we have no context, we can let P′ = ∅. Then
it is trivial to verify that `: H � `′ ∈ rouJ∅K holds for any H and for all `, `′ ∈ L.
Thus, when the context is empty, `: H � `′ is always recognized as a subroutine. In
the following, whenever we introduce a subroutine `: H � `′ without specifying its
context P′, we implicitly assume that P′ = ∅.

Environments

Program variables take their values in the domain of integer numbers, enriched
with a special value 0, called the undefined value, with its obvious meaning. An
environment ρ is a partial mapping from variables to the domain of values:

ρ:X→ Z ∪ { 0 } .

The set of all environments is E. Given a program P, we define its related set of
environments as

EJPK def
= { ρ ∈ E | dom[ρ] = X ∧ ∀x 6∈ varJPK. ρ(x) = 0 } ,

in which we assume that all the variables that are not found in P denote the
undefined value. We can obtain new environments out of old ones. Let n, n′ ∈ N,
ρ ∈ E, z1, . . . , zn, z

′
1, . . . , z

′
n′ ∈ Z, x, x1, . . . , xn, x

′
1, . . . , x

′
n′ ∈ X and X ⊆ X. Then:

• ρ


x1 := z1

...

xn := zn

 maps xi to zi, and any other x′ 6= xi to ρ(x′), for all 1 ≤ i ≤ n;

• ρ


x1 := z1

...

xn := zn




x′1 := z′1
...

x′n′ := z′n′

 is a shorthand for

ρ

x1 := z1

...

xn := zn





x′1 := z′1
...

x′n′ := z′n′

,

where n, n′ ∈ N;
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• ρ|X is a shorthand for λx ∈ dom[ρ] ∩ X. ρ(x);

• ρ \ X is a shorthand for λx ∈ dom[ρ] \ X. ρ(x);
• ρ \ x is a shorthand for ρ \ { x }.

AJzK ρ def
= z

AJxK ρ def
= ρ(x)

AJA1 · A2K ρ
def
= AJA1K ρ · AJA2K ρ

BJtrueK ρ def
= true

BJA1 m A2K ρ
def
= AJA1K ρ m AJA2K ρ

BJ¬BK ρ def
= ¬BJBK ρ

BJB1 ? B2K ρ
def
= BJB1K ρ ? BJB2K ρ

CJBK ρ def
= { ρ′ | BJBK ρ′ = true ∧ ρ′ = ρ }

CJx := AK ρ def
=

{
ρ
[
x := AJAK ρ

] }
CJx := ?K ρ def

=
{
ρ
[
x := z

] ∣∣ z ∈ Z
}

Table 2.4. Semantics.

The Semantics of Expressions

The semantics of arithmetic and boolean expressions is specified through a couple
of mappings

A:A→ (EJPK→ Z ∪ { 0 })
B:B→ (EJPK→ { true, false,0 }) .

The inductive definition of both A and B is illustrated by Table 2.4. For the sake
of simplicity, we make the following assumptions:

• we fail in telling syntactic representations of integer numbers, unary operators
and binary operators from their semantic denotations;

• we implicitly assume that 0 propagates from subexpressions to super-expressions,
that is:

if BJBK ρ = 0 then ¬BJBK ρ = 0;

if AJA1K ρ = 0 or AJA2K ρ = 0 then

{
AJA1K ρ · AJA2K ρ = 0
AJA1K ρ m AJA2K ρ = 0;

if BJB1K ρ = 0 or BJB2K ρ = 0 then BJB1K ρ ? BJB2K ρ = 0.

Once we have given these premises, we can easily acknowledge that:

• AJAK ρ is well defined for A ∈ A and ρ ∈ E if and only if varJAK ⊆ dom[ρ];
• BJBK ρ is well defined for B ∈ B and ρ ∈ E if and only if varJBK ⊆ dom[ρ].



2.14 Programming Language 25

The Semantics of Commands

The semantics of commands is specified through a mapping

C:C→ (E→ ℘(E)) ,

meaning that the execution of C ∈ C in ρ ∈ E results in a set of environments. This
is typical in imperative languages, whose commands are expected to make new
environments out of the current one.

The inductive definition of C is found in Table 2.4. In particular:

• a boolean test B yields at most one environment – indeed, by definition, we
have CJBK ρ = { ρ } if and only if BJBK ρ = true, otherwise CJBK ρ = ∅;
• a deterministic assignment yields just one environment, obtained from the

original environment by updating the assigned variable;
• a random assignment yields an infinite number of environments, as defined by

the correspondent entry of Table 2.4.

We know that if we replace a variable y ∈ varJCK with A ∈ A in a command C,
we obtain a new command C [A/y]. The following result relates the semantic of C to
the semantics of C [A/y] in case A denotes a total bijective function ϕ on Z.

Lemma 2.4. Let y, y′ be integer numbers, ρ, ρ′ be environments and y be a variable
such that AJyK ρ = y and AJyK ρ′ = y′. Let C be a command such that C is not an
assignment on y. Let ϕ denote a total bijective function on Z. Then:

• ρ′ ∈ CJC [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
if and only if ρ′

[
y := ϕ(y′)

]
∈ CJCK ρ;

• ρ′ ∈ CJCK ρ
[
y := ϕ−1(y)

]
if and only if ρ′

[
y := ϕ(y′)

]
∈ CJC [ϕ(y)/y]K ρ.

Proof. We prove only the first point (the second one being similar) by in-
duction on C. We first show that, for any arithmetic expression A, we have
AJA [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= AJAK ρ.

• AJz [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJzK ρ

[
y := ϕ−1(y)

]
= z

= AJzK ρ .

• Let y = x. Then AJx [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJϕ(y)K ρ

[
y := ϕ−1(y)

]
= ϕ

(
AJyK ρ

[
y := ϕ−1(y)

])
= ϕ

(
ϕ−1(y)

)
= y

= AJyK ρ .

• Let y 6= x. Then AJx [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJxK ρ

[
y := ϕ−1(y)

]
= ρ(x)

= AJxK ρ .

• By inductive hypothesis we have AJA1 [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJA1K ρ and

AJA2 [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJA2K ρ.
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AJ(A1 · A2) [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJA1 [ϕ(y)/y] · A2 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= AJA1 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
· AJA2 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= AJA1K ρ · AJA2K ρ
= AJA1 · A2K ρ .

Next we show that, for any boolean expression B, we have BJB [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
=

BJBK ρ.

• BJtrue [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= BJtrueK ρ

[
y := ϕ−1(y)

]
= true

= BJtrueK ρ .

• We already know that AJA1 [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJA1K ρ and, on the other

side, that AJA2 [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJA2K ρ.

BJ(A1 m A2) [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJA1 [ϕ(y)/y] m A2 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= AJA1 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
m AJA2 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= AJA1K ρ m AJA2K ρ
= BJA1 m A2K ρ .

• By inductive hypothesis we have that BJB [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= BJBK ρ.

BJ(¬B) [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= BJ¬B [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= ¬BJB [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= ¬BJBK ρ
= BJ¬BK ρ .

• By inductive hypothesis we have that BJB1 [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= BJB1K ρ

and BJB2 [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= BJB2K ρ.

BJ(B1 ? B2) [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= BJB1 [ϕ(y)/y] ? B2 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= BJB1 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
? BJB2 [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= BJB1K ρ ? BJB2K ρ
= BJB1 ? B2K ρ .

Finally, we prove our thesis.

• We already know that BJB [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= BJBK ρ.
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ρ′ ∈ CJB [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
⇐⇒ ρ′ ∈

{
ρ′
∣∣ BJB [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
= true ∧ ρ′ = ρ

[
y := ϕ−1(y)

] }
⇐⇒ ρ′ ∈

{
ρ′
∣∣ BJBK ρ = true ∧ ρ′ = ρ

[
y := ϕ−1(y)

] }
⇐⇒ ρ′

[
y := ϕ(y′)

]
∈ {ρ′

[
y := ϕ(y′)

]
‖ BJBK ρ = true

∧ ρ′
[
y := ϕ(y′)

]
= ρ
[
y := ϕ−1(y)

][
y := ϕ(y′)

]
}

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈ {ρ′

[
y := ϕ(y′)

]
‖ BJBK ρ = true

∧ ρ′
[
y := ϕ(y′)

]
= ρ
[
y := ϕ

(
ϕ−1(y)

)]
}

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈ {ρ′

[
y := ϕ(y′)

]
‖ BJBK ρ = true

∧ ρ′
[
y := ϕ(y′)

]
= ρ
[
y := y

]
}

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈
{
ρ′
[
y := ϕ(y′)

] ∣∣ BJBK ρ = true ∧ ρ′
[
y := ϕ(y′)

]
= ρ

}
⇐⇒ ρ′

[
y := ϕ(y′)

]
∈ CJBK ρ .

• We already know that AJA [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
= AJAK ρ.

ρ′ ∈ CJ(x := A) [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
⇐⇒ ρ′ ∈ CJx := A [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]
⇐⇒ ρ′ ∈

{
ρ
[
y := ϕ−1(y)

][
x := AJA [ϕ(y)/y]K ρ

[
y := ϕ−1(y)

]] }
⇐⇒ ρ′ ∈

{
ρ
[
y := ϕ−1(y)

][
x := AJAK ρ

] }
⇐⇒ ρ′ ∈

{
ρ

[
y := ϕ−1(y)

x := AJAK ρ

] }

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈

{
ρ

[
y := ϕ−1(y)

x := AJAK ρ

][
y := ϕ

(
AJyK ρ

[
y := ϕ−1(y)

x := AJAK ρ

])] }

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈

{
ρ

[
y := ϕ−1(y)

x := AJAK ρ

][
y := ϕ

(
ϕ−1(y)

)] }

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈

{
ρ

[
y := ϕ−1(y)

x := AJAK ρ

][
y := y

] }
⇐⇒ ρ′

[
y := ϕ(y′)

]
∈
{
ρ
[
x := AJAK ρ

] }
⇐⇒ ρ′

[
y := ϕ(y′)

]
∈ CJx := AK ρ .
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• ρ′ ∈ CJ(x := ?) [ϕ(y)/y]K ρ
[
y := ϕ−1(y)

]
⇐⇒ ρ′ ∈ CJx := ?K ρ

[
y := ϕ−1(y)

]
⇐⇒ ρ′ ∈

{
ρ
[
y := ϕ−1(y)

][
x := z

] ∣∣ z ∈ Z
}

⇐⇒ ρ′ ∈

{
ρ

[
y := ϕ−1(y)

x := z

] ∣∣∣∣∣ z ∈ Z

}

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈

{
ρ

[
y := ϕ−1(y)

x := z

][
y := ϕ

(
AJyK ρ

[
y := ϕ−1(y)

x := z

])] ∣∣∣∣∣ z ∈ Z

}

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈

{
ρ

[
y := ϕ−1(y)

x := z

][
y := ϕ

(
ϕ−1(y)

)] ∣∣∣∣∣ z ∈ Z

}

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈

{
ρ

[
y := ϕ−1(y)

x := z

][
y := y

] ∣∣∣∣∣ z ∈ Z

}
⇐⇒ ρ′

[
y := ϕ(y′)

]
∈
{
ρ
[
x := z

] ∣∣ z ∈ Z
}

⇐⇒ ρ′
[
y := ϕ(y′)

]
∈ CJx := ?K ρ .

ut

The Semantics of Statements

The semantics of a statement is specified through a transition system (see Sec-
tion 2.13).

In our framework, a state s is a pair 〈ρ, S〉, where environment ρ ∈ E records
the value of variables and S ∈ S is the next statement to be executed. The set of
all states is noted Σ, where

Σ
def
= E× S .

All the states in Σ can be initial states; therefore we let

I
def
= Σ .

Finally, instead of a transition relation, we provide a function S: Σ→ ℘(Σ) which
takes a state s and returns the set of all its possible successors:

S 〈ρ, S〉 def
= { 〈ρ′, S′〉 ∈ Σ | ρ′ ∈ CJcomJSKK ρ ∧ sucJSK = labJS′K } . (2.44)

The set of all finite partial traces is Σ� ⊆ Σ∗, where

Σ� def
= lfp⊆∅ F .

The fixpoint operator F: Σ∗ → Σ∗, used to make traces grow one state longer, is

F(T)
def
= I ∪ { σss′ | σs ∈ T ∧ s′ ∈ S(s) } .

We take advantage of this transition system to expand the semantic description
of our language. In particular, the semantics of a statement S executed in an
environment ρ is S〈ρ, S〉. Therefore we can say that the execution of a statement
in an environment yields a set of states.
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The Semantics of Programs

In the transition system defined above, states are made out of all possible environ-
ments and statements. In order however to define the semantics of a program P,
we need a transition system whose states involve only environments in EJPK and
statements in P. The set that collects all such states is

ΣJPK def
= EJPK× P .

The elements of ΣJPK are called the states of P. The function used to specify the
transition relation is SJPK : Σ→ ℘(ΣJPK), where

SJPK 〈ρ, S〉 def
= S 〈ρ, S〉 ∩ ΣJPK .

A state 〈ρ, S〉 ∈ ΣJPK is initial as long as labJSK is an entry point of P. Thus we let
the set of the initial states of P be

IJPK def
= { 〈ρ, S〉 ∈ ΣJPK | labJSK ∈ LJPK } , (2.45)

where LJPK ⊆ labJPK is the set of the entry points of P. This completes the definition
of a transition system restricted to the states of P.

To compute the finite partial traces of this new system, we introduce a fixpoint
operator FJPK: Σ∗ → Σ∗ which makes traces grow longer by appending to them
only states that are in ΣJPK:

FJPKT def
= IJPK ∪ { σss′ | σs ∈ T ∧ s′ ∈ SJPK s } . (2.46)

Accordingly, the set of finite partial traces, defined in the customary least fixpoint
form, is

SJPK def
= lfp⊆∅ FJPK . (2.47)

It is easy to verify that SJPK ⊆ Σ� for any program P ∈ P. Moreover, if σ ∈ SJPK
and σ = λi. 〈ρi, Si〉, where ρi ∈ EJPK and Si ∈ P, then (λi. Si) ∈ LJPK. This means
that each trace in SJPK is finite and captures a partial execution of P.

We let the semantics of P be SJPK. Notice that SJPK = lfp⊆∅ FJPK is undefined
in case P denotes an infinite trace. Indeed, since FJPK makes traces grow only one
state longer, it would require an infinite number of applications to build up an
infinite trace, whereas well-defined least fix points are expected to be reached in
an unbound, but finite, number of steps.

In this thesis we consider only programs that denote finite traces. S then can
be seen as a mapping from programs to sets of finite traces. Programs are collected
by P. Sets of finite traces are collected by ℘(Σ�). So we can say that the semantics
of programs is specified through a mapping

S:P→ ℘(Σ�) .

Deriving Programs from Sequences of States

A set T ∈ ℘(Σ∗) of sequences can be mapped to a program by collecting the
statements executed along the sequences:
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p(T)
def
= { S | ∃σ ∈ T. ∃j ∈ [0, |σ|). ∃ρ ∈ E. σj = 〈ρ, S〉 } .

So we can say that p is a mapping

p:℘(Σ∗)→ P .

Syntactic Equivalence

Let A1, A2 ∈ A be two arithmetic expressions. We say that A1 is syntactically
equivalent to A2, noted A1 ≡ A2, if and only if AJA1K = AJA2K.

A1 ≡ A2 if and only if AJA1K = AJA2K
B1 ≡ B2 if and only if BJB1K = BJB2K
C1 ≡ C2 if and only if CJC1K = CJC2K
S ≡ S′ if and only if SJcomJSKK = SJcomJS′KK

Table 2.5. Syntactic equivalence.

In general, given two constructs from the same syntactic class, we have syntactic
equivalence whenever both constructs have the same denotation. This principle
instantiates to the entries of Table 2.5. In each entry we exploited the same symbol
≡, relating upon the context for disambiguation. The fact that ≡ is an equivalence
relation follows from the use of = in the definition of each relation.

Equivalence between Programs

In order to define a notion of syntactic equivalence between programs, let us first
introduce equivalence relations between states, sequences and set of sequences.
Again, in each entry of Table 2.6 we use the same symbol ≡, relating upon the

〈ρ, S〉 ≡ 〈ρ′, S′〉 if and only if ρ = ρ′ and S ≡ S′

σ ≡ σ′ if and only if |σ| = |σ′| and ∀i. 0 ≤ i < |σ| =⇒ σi ≡ σ′i
T ≡ T′ if and only if ∀σ ∈ T. ∃σ′ ∈ T′. σ ≡ σ′ and ∀σ′ ∈ T′. ∃σ ∈ T. σ′ ≡ σ

Table 2.6. Equivalence relations.

context for disambiguation.
A program P is equivalent to another program P′ if and only if they have

equivalent set of traces:

P ≡ P′ if and only if SJPK ≡ SJP′K .

Dependence Relations

A dependence is a binary relation on P that constraints the execution order of
statements [80].
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Let S, S′ ∈ P be two statements. Assume there exists ρ, ρ′ ∈ EJPK and σ, σ′ and
σ′′ such that σ 〈ρ, S〉σ′ 〈ρ′, S′〉σ′′ ∈ SJPK. Thus we are supposing that S comes
before S′ in the execution of P tracked by σ. Statement S′ depends on statement S
if and only if we cannot swap them without affecting σ′′.

In particular:

• if S is a boolean expression, we have a control dependence;

Furthermore, we have four kinds of data dependences:

• if S′ reads from a variable S assigns, we have a flow or true dependence;
• if S′ assigns a variable that S reads from, we have an anti-dependence;
• if both S and S′ assigns the same variable, we have an output dependence;
• if both S and S′ reads from the same variable, we have an input dependence.

Actually, the last dependence does not constraint the execution order, but it can
be useful all the same.

For-loops

Programming languages usually provide two kinds of programming constructs:
basic and additional. Basic constructs outline the computational power of a lan-
guage, that is, the range of operations that the language can perform. Additional
constructs identify recurrent programming patterns obtained by specializing or
assembling basic constructs. Thus, rather than contributing to the computational
power of the language, they mark the use of well-behaved elaborated operations,
helping software developers make program that are more comprehensible, reli-
able and maintainable. This methodology is extensively applied, for instance, in
object-oriented programming, whose novel constructs (classes, objects, methods,
interfaces. . . ) do not extend the computational power already achieved through
imperative programming, but provide an innovative way for managing it [6].

In our language, commands are the basic constructs, whereas subroutines are a
first example of additional construct. We take advantage of both commands and
subroutines to expand the Cousots’ language with for-loops, an additional construct
we will use throughout this thesis. A for-loop is a program which maintains a
variable x, called the index variable, that is initialized to a fixed amount a1, and
increases periodically by a fixed amount a3. Every increment is preceded by the
execution of a subroutine H. The for-loop stops as soon as x goes beyond a fixed
boundary a2. We now translate this specification in our language.

• First, let ‘f’, ‘g’, ‘h’, ‘i’ and ‘j’ be distinct labels. Let x be a variable, and A1, A2

and A3 be arithmetic expressions. Let P′ be a program such that LJP′K def
= { f }

and P′
def
= { f: F � g, g: G � h, i: I � g, g: Ḡ � j }. We let

F
def
= x := A1

and we define G, Ḡ and I according one of the following sets of definitions:
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G
def
= x ≤ A2

Ḡ
def
= x > A2 (2.48)

I
def
= x := x + A3

or

G
def
= x ≥ A2

Ḡ
def
= x < A2 (2.49)

I
def
= x := x− A3 .

In either case, command F is executed first; it takes care of initializing x. Then
G and Ḡ are evaluated, which test the index variable against the boundary. Such
commands are called the guard. It is easy to verify that BJGK = ¬BJḠK. Thus
the guard implements a conditioned branching. Lastly, we have a command
I that provides x with its periodical increment. As we expect A2 and A3 to
evaluate to fixed amounts, we require that x 6∈ varJA2K and x 6∈ varJA3K.
In the rest of this thesis, unless otherwise specified, we deal with for-loops
defined out of (2.48).

• Next, let us introduce a program H such that h: H � i ∈ rouJP′K. We expect no
statements in H to assign x or any variable in A2 or in A3; this ensures that H

does not affect the value of x, A2 or A3.

• Finally, let us collect all the commands of H and P′ into a new program P
def
= P′∪H,

with LJPK def
= { f }.

Now let P′′ be a program. We say that P is a for-loop of P′′ if and only if
`: P � `′ ∈ rouJP′′K, where ` and `′ are labels. Whenever we say that P is a for-loop
and we do not specify P′′, we implicitly assume that P′′ = ∅.

In this thesis we provide various representations of P. By definition we have:

P = { f: F � g, g: G � h, i: I � g, g: Ḡ � j } ∪ H .

To improve readability, however, we often get rid of labels, we drop Ḡ and we
re-arrange F, G, H and I to fit the customary Java notation of for-loops:

for (F; G; I) {

H

}

With reference to this notation, F, G and I are said to form the header of P,
whereas H is called its body. Since H is a subroutine, it consists of several commands
enjoying several properties. For convenience, however, we can abstract from such
internal details and think to H as a whole. In our language, this is the same as
letting H be merely a command, and h: H � i a statement defining a transition
from h to i through H. Thanks to this assumption, we can here introduce a simpler
representation of P as an automaton:
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f g

h i

jF

G

Ḡ

H

I

Notice that GHI identifies a loop that both starts and ends in g. Each time the
automaton runs across such loop, we say P performs an iteration. Thus we can
say that iterations always start with a successful evaluation of G and end with the
increment performed by I.

Formally, given ρ, ρ′ ∈ EJPK, we define an iteration of P to be any sequence

〈ρ, g: G � h〉 〈ρ, h: H � i〉 〈ρ′, i: I � g〉 (2.50)

such that there exists σ and σ′ with σ 〈ρ, G〉 〈ρ, H〉 〈ρ′, I〉σ′ ∈ SJPK. If we drop
the assumption that H is a command, we obtain a broader definition of iteration.
Namely, given η ∈ SJHK, an iteration of P is any sequence

〈ρ, G〉 η 〈ρ′, I〉

such that there exists σ and σ′ with σ 〈ρ, G〉 η 〈ρ′, I〉σ′ ∈ SJPK. We define the set

collecting all the iterations of P to be e(SJPK) def
= eg(SJPK), where:

e`(T)
def
=
⋃
{ e`(σ) | σ ∈ T } (2.51)

e`(σ)
def
= {〈ρ, S〉 η 〈ρ′, S′〉 | ∃σ′. ∃σ′′. σ′ 〈ρ, S〉 η 〈ρ′, S′〉σ′′ = σ

∧ labJSK = ` ∧ ` 6∈ labJp(η 〈ρ′, S′〉)K
∧ sucJS′K = ` ∧ ` 6∈ sucJp(〈ρ, S〉 η)K} .

(2.52)

For the sake of simplicity, in the rest of this thesis we assume that iterations have
the form shown by (2.50), where H is considered a command.

Along a trace σ ∈ SJPK, an iteration 〈ρ, g: G � h〉 〈ρ, h: H � i〉 〈ρ′, i: I � g〉 is
unambiguously identified by a specific value assumed by x. Such value is ρ(x) = ρ′(x).
Indeed, x remains constant within each iteration, since neither G nor H assign x,
but changes from one iteration to another one, because of I. The set I of all the
values assumed by x is called iteration space and can be naturally represented on a
directed line with origin O.

Sometimes, during the execution of P, we need to assess how many iterations
are still to be completed, that is, the number of residual iterations . We thereby
introduce a function Rx,A2,A3 : ΣJPK→ N such that:

Rx,A2,A3 〈ρ, S〉 =


AJ(A2 + A3 − x) div A3K ρ− 1 if S = I ∧ BJx < A2K ρ
AJ(A2 + A3 − x) div A3K ρ if S 6= I ∧ BJx < A2K ρ
0 otherwise.

(2.53)

We should note this function as RJxK,JA2K,JA3K(ρ); we however drop double brackets
for the sake of simplicity.
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In determining residual iterations, we are concerned only with traces whose

first statement is a guard statement. We collect such traces in d(SJPK) def
= dg(SJPK),

where:

d`(T)
def
=
⋃
{ d`(σ) | σ ∈ T } (2.54)

d`(σ)
def
= { ε } ∪ { 〈ρ, S〉σ′′ | ∃σ′. ∃σ′′′. σ′ 〈ρ, S〉σ′′σ′′′ = σ ∧ labJSK = ` } . (2.55)

Then, given σ ∈ d(SJPK), we let the number of residual iterations at σ be:

Rx,A2,A3(σ)
def
= Rx,A2,A3(`σ) . (2.56)

If |σ| > 0 and 0 ≤ j < |σ|, we define the number of actual iterations of σ at σj to
be:

#x,A2,A3(σ, σj)
def
= Rx,A2,A3(σ)−Rx,A2,A3(σj) . (2.57)

Consequently, we can define the number of actual iterations of σ to be:

#x,A2,A3(ε)
def
= 0 (2.58)

#x,A2,A3(σ)
def
= #x,A2,A3(σ,aσ) . (2.59)

Notice that by definition #x,A2,A3(σ) is nonnegative, and #x,A2,A3(σ) = Rx,A2,A3(σ)
if and only if σ is a maximal trace of P. All in all we have:

0 ≤ #x,A2,A3(σ) ≤ Rx,A2,A3(σ) . (2.60)

Moreover, we obtain a compositionality property of #x,A2,A3 through the following

Proposition 2.5. Let P be a for-loop with guard label g. Let σ ∈ d(SJPK). Assume
there exist σ′, σ′′ ∈ d(SJPK) such that σ = σ′σ′′. Then #x,A2,A3(σ) = #x,A2,A3(σ′) +
#x,A2,A3(σ′′).

Proof. We consider three cases. For the sake of simplicity, we write # for #x,A2,A3 ,
and R for Rx,A2,A3 , and so on.

• If σ′ = ε, then #σ′ = 0 by (2.58). Furthermore, we have σ = σ′σ′′ = εσ′′ = σ′′,
whence #σ = #σ′′ = 0 + #σ′′ = #σ′ + #σ′′.
• If σ′′ = ε, then #σ′′ = 0 by (2.58). Furthermore, we have σ = σ′σ′′ = σ′ε = σ′,

whence #σ = #σ′ = #σ′ + 0 = #σ′ + #σ′′.
• Let σ′ 6= ε and σ′′ 6= ε. Then we have σ′′ = σ′′′ 〈ρ, i: x := x + A3 � g〉 and
σ′′ =

〈
ρ
[
x := x+ a3

]
, S
〉
σ′′′′, where S 6= i: x := x + A3 � g. Moreover, let

x = ρ(x), a2 = AJA2K ρ and a3 = AJA3K ρ.
We have

R(σ) = R(σ′)

and

R(aσ) = R(aσ′′)
and



2.14 Programming Language 35

R(aσ′) = R(aσ′′′ 〈ρ, i: x := x + A3 � g〉)
= R 〈ρ, i: x := x + A3 � g〉 by (2.4)

= AJ(A2 + A3 − x) div A3K ρ− 1 by (2.53)

= (a2 + a3 − x) div a3 − 1

= (a2 + a3 − x− a3) div a3

= AJ(A2 + A3 − x− A3) div A3K ρ

= AJ(A2 + A3 − x) div A3K ρ
[
x := x+ a3

]
= R

〈
ρ
[
x := x+ a3

]
, S
〉

by (2.53)

= R(
〈
ρ
[
x := x+ a3

]
, S
〉
σ′′′′) by (2.56)

= R(σ′′) .

Thus:

#σ = #(σ,aσ) by (2.59)

= R(σ)−R(aσ) by (2.57)

= R(σ′)−R(aσ)

= R(σ′)−R(aσ) + 0

= R(σ′)−R(aσ) + (R(aσ′)−R(aσ′))
= (R(σ′)−R(aσ′) + (R(aσ′)−R(aσ))

= #(σ′,aσ′) + (R(aσ′)−R(aσ)) by (2.57)

= #σ′ + (R(aσ′)−R(aσ)) by (2.59)

= #σ′ + (R(σ′′)−R(aσ))

= #σ′ + (R(σ′′)−R(aσ′′))
= #σ′ + #(σ′′,aσ′′) by (2.57)

= #σ′ + #σ′′ by (2.59)
ut

As a first example of for-loop, let us consider the following program P:

for (x := 1; x ≤ 6; x := x + 1) {

true

}

We notice that P is in normal form. A for-loop with index variable x is in normal
form if and only if F = x := 1 and I = x := x + 1. The iteration space of P is
I = { 1, 2, 3, 4, 5, 6 } and can naturally be represented as:

O x
1 2 3 4 5 6

There is a gray dot for each possible value of x. Each one stands for a different
iteration. Black arrows capture the order in which iterations are performed.

We have a loop nest if the body of a for-loop is itself a for-loop. The loop nest
is in normal form if and only if both the outer and the inner loop are in normal
form. A very general nest involving only two for-loops is the following:
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for (x := A11; x ≤ A12; x := x + A13) {

for (y := A21; y ≤ A22; y := y + A23) {

H

}

}

If A21, A23 or A22 depend on x, then the iteration space of the inner loop is itself
dependent on x. Hence we say that the inner loop is parametrized by the index of
the outer loop. Let us consider a more instantiated version of our loop nest:

for (x := 1; x ≤ 6; x := x + 1) {

for (y := 1; y ≤ 3; y := y + 1) {

H

}

}

Since two loops are involved, we have two index variables (x and y). We thereby
identify iterations by using two values, collected in two-dimensional index vectors.
We define the iteration space I to be the set of all its index vectors and we
graphically represent it as a gray dotted two-dimensional polyhedron:

O x

y

In I an ordering is established that reflects the order in which the iterations of the
loop nest take place. It is the lexicographical order � which, given (x, y), (x′, y′) ∈ I,
is defined as:

(x, y) � (x′, y′) if and only if x < x′ ∨ (x = x′ ∧ y ≤ y′) . (2.61)

We say that such ordering describes a column-wise traversal of I and we represent
it through black arrows.

Both the iteration space traversal and the automaton representation suggest
that a for-loop P:

1) starts with command F, which initializes x;
2) performs a number of iterations (possibly none);
3) ends with Ḡ.

Sometimes however P is unable to get to the end for several reasons:

• the execution of P gets stuck inside H;
• the execution of P keeps on looping within H;
• H is the empty set.
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The last reason may be quite unexpected, as almost all programming languages
simply ignore empty bodies and jump at once from G to I; this can be achieved in

our language by letting H
def
= { h: true � i }. At any rate, as the non-termination

of H is irrelevant to this thesis, we are not concerned with it.
According to our definition of for-loop, H is called only by G through h. None of

the commands in H is allowed to transition back to h. In case we need to simulate
this behavior, we can let h′ be a fresh label with respect to P, and turn P into a
new for-loop

f g

hh′ i

jF

G

Ḡ

true H

I

where g: G � h has been replaced by g: G � h′, and h: H � i is replaced by
h′:
{

h′: true � h
}
∪ H � i.

2.15 Abstract Interpretation

Sometimes we want to check a program against a property. For instance, given a
program P, we may ask: does P terminate? Termination is generally understood as
a binary property, since a program is expected to either terminate or not. Thus
the set C of the possible answers has only two elements:

C = { yes,no } .

A set of answers can include more than two elements. It can even be infinite. In
case we have a property whose set of answers is a singleton, the property is trivial
because there is no actual choice for the answer. Properties with an empty set of
answers seem to be of no use.

Not all the answers are supposed to carry the same amount of information. Back
to our example, it may well happen that our termination analysis ends without
any positive answer about termination. In such case, it is unknown to us if P will
ever terminate; we thereby should answer: “unknown”. Notice that this answer
is vaguer than “yes” or “no”. The is vaguer predicate is naturally realized by an
order relation ≤C on a set

C = { yes,no,unknown } ,

such that

yes ≤C unknown

no ≤C unknown .

We expect our termination analysis to be correct, that is:
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• if it returns “yes”, then P actually terminates;
• if it returns “no”, then P actually does not terminate.

Though correct, our termination analysis might however be ill-conceived, meaning
that an error might occur before completion, or the analysis might keep on running
without delivering a result. In either case, we should answer “error” and urge a
revision of our termination analysis. It seems appropriate to include “error” in our
set C. Hence we have:

C = { yes,no,unknown, error }

and

error ≤C yes

error ≤C no .

〈C,≤C〉 is a poset (it is in fact a complete lattice) and can be graphically represented
as

unknown

yes no

error

where c ≤C c′ if and only if a line segment exists with c as lower end point and c′

as upper end point.
Suppose now we need to check our program P against the following property:

is it okay to run our termination analysis on P, or does it raise an error? The
correspondent poset of answers is

A = { error, okay }

with
error ≤A okay .

The graphical representation for this poset is:

okay

error

To answer our new property, we can take advantage of the answer we found for the
previous property. In particular, we can:

• return “okay” if and only if the answer to the first property is “yes”, “no” or
“unknown”;
• return “error” if and only if the answer to the first property is “error”.
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We can model this conduct by introducing a function α:C → A such that:

α(unknown)
def
= okay

α(yes)
def
= okay

α(no)
def
= okay

α(error)
def
= error .

Thus, once we know the answer to the first property, we can immediately derive
the answer to the second one.

Notice however this does not work the other way round. Suppose we have found
an answer to the second property. If the answer is “error”, we can return “error”
for the first property too. In case the answer is “okay”, however, we cannot say if
the first property evaluates to “yes”, “no” or “unknown”. A safe strategy is to opt
for the vaguest answer: “unknown”. Again we can model this process through a
function γ:A→ C such that:

γ(okay)
def
= unknown

γ(error)
def
= error .

Because for the sake of safety we choose the vaguest answer, the composition of
γ after α usually results in a loss of information:

γ(α(unknown)) = γ(okay) = unknown (2.62)

γ(α(yes)) = γ(okay) = unknown (2.63)

γ(α(no)) = γ(okay) = unknown (2.64)

γ(α(error)) = γ(error) = error . (2.65)

In (2.63) “yes” is mapped to “unknown”. Likewise, in (2.64) “no” is mapped to
“unknown”. There is a loss of information because “unknown” is vaguer than “yes”
or “no”. The loss is caused by α, which makes “yes”, “no” and “unknown” collapse
to “okay”. Once the loss has occurred, γ is not able to recover it any longer.

In (2.62), on the other side, there is no loss of information. This means that
“unknown” is just an alias for “okay”. A similar arguments holds for (2.65). Every
answer in A is thereby included in C, possibly with a different name. Since C is
actually larger than A, we say that:

• 〈C,≤C〉 is a refinement of 〈A,≤A〉;
• 〈A,≤A〉 is an approximation of 〈C,≤C〉.

Designing, refining and approximating posets of answers for program properties
is the purpose of abstract interpretation, which was first introduced in 1979 by
Patrick and Radhia Cousot [27], [29], [30], [31], [32].

In abstract interpretation, 〈C,≤C〉 is called the concrete domain. It is supposed
to collect the answers to a property which tries to describe all the information
known about programs, that is, their formal semantics. For instance, we may let
〈C,≤C〉 = 〈℘(Σ�),⊆〉, thus letting the concrete domain capture trace semantics;
then, given a program P, the correct answer is SJPK.
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Poset 〈A,≤A〉 is the abstract domain. It is supposed to approximate 〈C,≤C〉.
Continuing our example, we may let 〈A,≤A〉 model the denotational semantics
of programs. Such semantics is vaguer than trace semantics as, for each trace, it
retains only the environments of the first and the last state. So we expect A to
collect pairs of environments: 〈A,≤A〉 = 〈E× E,⊆〉. Given program P, if we know
its trace semantics SJPK, then we can easily determine its denotational semantics
by computing the following approximation:

{ (ρ, ρ′) | ∃S. ∃S′. `σ = 〈ρ, S〉 ∧ aσ = 〈ρ′, S′〉 ∧ σ ∈ SJPK } .

The order relations on C and A qualitatively model relative precision between
elements.

Function α and γ are the abstraction map and concretization map respectively.
They are required to form an adjunction, that is,

∀c ∈ C, a ∈ A. α(c) ≤A a⇐⇒ c ≤C γ(a) .

If this is the case, then we have a Galois connection, noted

C −−−→←−−−α
γ

A .

In particular, if α is surjective, we have a Galois insertion, noted

C −−−→−→←−−−−
α

γ
A .

Thus, in a Galois insertion, each element in the abstract domain is useful at
expressing the property of at least one program specification.

It can be proved that we always have a Galois insertion whenever α, γ are
monotonic, c ≤C γ ◦ α(c) and α ◦ γ(a) = a. Monotonicity ensures that α and γ
preserves the relative ordering between elements. The second condition expresses
the intuitive fact that what is loosed by α cannot be recovered by γ any longer.
The last condition ensures that the information carried by abstract elements can
always be recovered entirely.

The interest in considering approximations is based upon the Rice theorem [56],
stating that several program properties, like e.g. trace semantics, are not decidable.
Approximations help at attaining decidability by narrowing the set of answers. A
drawback is that they entail a loss of information: in our example above, we obtain
(ρ, ρ′) from σ by discarding all statements, and all environments but the first and
the last one. We can tolerate some loss of information in order to attain decidability.
However, if we discard too much information, we are likely to get correct answers to
properties which are not significant at all. The challenge of abstract interpretation
is to improve the trade-off between decidability and informativeness of properties.

2.16 A Framework for Program Transformations

Programs can be obtained out of other programs. A syntactic transformer is an
operator t:P→ P which takes as input a subject program P and, upon termination,
produces as output a transformed program P′. In symbols:
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t: P 7→ P′ .

Although syntactic, many a transformer is defined in terms of semantic criteria.
This means that t is usually understood as making use of the program semantics
SJPK ∈ ℘(Σ�). In fact, we can say that t induces a corresponding semantic
transformer modeled by an operator t:℘(Σ�)→ ℘(Σ�) such that

t: SJPK 7→ SJP′K .

Cousot and Cousot [33] propose to interrelate t and t by means of abstract
interpretation. Their approach is novel as they consider a program to be an
approximation of its semantics. Indeed, the statements of a program record the
existence of the variables, but not the sequence of their successive values along
traces, or they usually record the chaining of commands, but not their exact
sequences of execution [33]. The proposed abstract domain is 〈P/≡,v〉, where P/≡
collects classes of equivalent programs. We let the order relation v on P/≡ be such
that, given two programs P and P′:

P v P′ if and only if ∃P′′. ∃P′′′.


P′′ ≡ P

P′′′ ≡ P′

SJP′′K ⊆ SJP′′′K .

The Galois insertion between the concrete domain and our new abstract domain is:

〈℘(Σ�),⊆〉 −−−→−→←−−−−
p∗

S∗ 〈P/≡,v〉 , (2.66)

where

p∗(T)
def
= [p(T)]≡

S∗([P]≡)
def
=

⋃
P′∈[P]≡

SJP′K .

Cousot and Cousot also observe [33] that t acts as an abstraction map on ℘(Σ�),
because it causes a loss of information about the subject program and its semantics.
Thus they outline the following Galois connection

〈℘(Σ�),⊆〉 −−−→←−−−
t

γt 〈℘(Σ�),⊆〉 , (2.67)

where γt is supposed to be the correspondent concretization map. It is known that
(2.67) holds if t is ∅-strict and additive [30]. We can attain both requirements by
enforcing the following constraints to t:

t(T)
def
= { t(σ) ∈ T | σ ∈ T } (2.68)

t(σ)
def
= λi. t(σi) . (2.69)

We prove our claim by stating the following

Proposition 2.6. The semantic transformer t is ∅-strict. Formally:

t(∅) = ∅ .



42 2 Preliminaries

Proof. Immediate from (2.68). ut

Proposition 2.7. The semantic transformer t is additive in 〈℘(Σ�),⊆〉. Formally:

t
(⋃

FnJPK∅
)

=
⋃

t(FnJPK∅) .

Proof. We have:

t
(⋃

FnJPK∅
)

= t
{
σ
∣∣∣ σ ∈⋃FnJPK∅

}
=
{
t(σ)

∣∣∣ σ ∈⋃FnJPK∅
}

by (2.68)

= { t(σ) | ∃n ∈ N. σ ∈ FnJPK∅ }

=
⋃
{ t(σ) | σ ∈ FnJPK∅ }

=
⋃

t({ σ | σ ∈ FnJPK∅ }) by (2.68)

=
⋃

t(FnJPK∅) .

ut

By composing (2.66) and (2.67), Cousot and Cousot obtain the following
framework:

℘(Σ�)℘(Σ�)

P/≡P/≡

t

S∗ p∗

Then they derive t as an approximation of the program transformer t∗ they obtain
from p∗ ◦ t ◦ S∗ [33]:

T′T

[P′]≡[P]≡
t∗

t

S∗ p∗

They also formalize the correctness of t∗ through an observational abstraction αO,
which is a mapping from the concrete domain to some abstract domain O. In
particular, t∗ is correct if and only if αO(T) = αO(t(T)) = αO(T′). The fact that
observer αO is not able to distinguish between αO(T) and αO(t(T)) has a twofold
significance:

• it can mean that t keeps intact the content that αO still wants to observe in
the transformed program;

• it can also mean that t acts just where the inspection ability of αO lacks.

The latter point is especially interesting for the sake of obfuscation. We discuss it
at length in Section 3.5.
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2.17 Deriving Semantic Transformers

In the previous Section we presented the Cousots’ framework as a tool for deriving
syntactic transformers from semantic ones. In this Section we outline the inverse
approach by revising notions from the literature [28], [33]. In particular, we suppose
we are given a syntactic transformer t and look for a semantic transformer t such
that the following diagram commutes:

℘(Σ�)℘(Σ�)

PP
t

t

S S

If we redraw this diagram in terms of a program P ∈ P, we obtain the following
commutation of mappings:

t(SJPK) = SJtJPKKSJPK

tJPKP
t

t

S S

The equality on the right bottom

t(SJPK) = SJtJPKK (2.70)

demands that the semantic transformation t of the semantics S of the subject
program P is just the semantics S of the syntactically transformed program tJPK.
In order to successfully prove the equality, we take advantage of the fixpoint form
of S as defined by (2.47). Hence we have:

t
(
lfp⊆∅ FJPK

)
= lfp⊆∅ FJtJPKK . (2.71)

We can restate this equality in an equivalent form:

t

(⋃
n∈N

FnJPK∅

)
=
⋃
n∈N

FnJtJPKK∅ . (2.72)

In the rest of this Section we drop the pedix of
⋃

for the sake of simplicity. We
observe that only the right hand side is a pure fixpoint construction, whereas the
left hand side is not, because of the semantic transformer t.

To make a pure fixpoint construction out of the left hand side, we need to
introduce a fixpoint operator FtJPK: Σ∗ → Σ∗ which is required to satisfy the
following condition:

FtJPK(t(T)) = t(FJPKT) . (2.73)

This equality is known as local commutation condition [33]. We now expand it in
order to derive a good definition for FtJPK:
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FtJPK(t(T)) = t(FJPKT)

= t(IJPK ∪ { σss′ | σs ∈ T ∧ s′ ∈ SJPK s }) by (2.46)

= t(IJPK) ∪ t({ σss′ | σs ∈ T ∧ s′ ∈ SJPK s }) by (2.68).

We obtained a union of two terms. We consider them separately. For the first term
we have:

t(IJPK) = t({ 〈ρ, S〉 ∈ ΣJPK | labJSK ∈ LJPK }) by (2.45)

= t({ 〈ρ, S〉 | 〈ρ, S〉 ∈ ΣJPK ∧ labJSK ∈ LJPK })
= { t〈ρ, S〉 | 〈ρ, S〉 ∈ ΣJPK ∧ labJSK ∈ LJPK } by (2.68).

For the second term we have:

t({ σss′ | σs ∈ T ∧ s′ ∈ SJPK s })
= t{ σss′ | σs ∈ T ∧ s′ ∈ SJPK s ∧ s = aσs } by (2.4)

= { t(σss′) | σs ∈ T ∧ s′ ∈ SJPK s ∧ s = aσs } by (2.68)

= { t(σs) t(s′) | σs ∈ T ∧ s′ ∈ SJPK s ∧ s = aσs } by (2.69)

= { t(σs) t(s′) | t(σs) ∈ t(T) ∧ s′ ∈ SJPK s ∧ s = t′(t(σs)) } by (2.68)

= { ηt(s′) | η ∈ t(T) ∧ s′ ∈ SJPK s ∧ s = t′(η) } .

Notice that we introduced an auxiliary function t′: Σ∗ → Σ. This function is broadly
meant to take a trace η = t(σs), undo t to obtain σs, and return the last state s.
In fact, we do not expect t′ to yield s, but any state s′ such that SJPK s′ = SJPK s.
We thereby require t′ to only satisfy the following constraint:

SJPK (t′(t(σs))) = SJPK s . (2.74)

By grouping the two terms together, we can restate condition (2.73) as follows:

FtJPK(t(T)) = { t〈ρ, S〉 | 〈ρ, S〉 ∈ ΣJPK ∧ labJSK ∈ LJPK }
∪ { ηt(s′) | η ∈ t(T) ∧ s′ ∈ SJPK s ∧ s = t′(η) } . (2.75)

We use this result to derive the definition of FtJPK. Given T ⊆ Σ∗, we let:

FtJPKT
def
= { t〈ρ, S〉 | 〈ρ, S〉 ∈ ΣJPK ∧ labJSK ∈ LJPK }

∪ { ηt(s′) | η ∈ T ∧ s′ ∈ SJPK s ∧ s = t′(η) } . (2.76)

It is immediate to verify that this definition of FtJPK complies with the local
commutation condition (2.73).

We are now ready to turn the left hand side of (2.72) into a pure fixpoint
construction. The procedure we carry out is a mere application of the fixpoint
transfer theorem proved by Kleene and reported by Cousot & Cousot [28]:

t
(⋃

FnJPK∅
)

=
⋃

t(FnJPK∅) by Proposition 2.7

=
⋃

Fnt JPK(t(∅)) by (2.73)

=
⋃

Fnt JPK∅ by Proposition 2.6.
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By transitivity and commutativity of =, we can rewrite this chain of equations
simply as: ⋃

Fnt JPK∅ = t
(⋃

FnJPK∅
)
. (2.77)

Moreover, by transitivity of =, from (2.77) and (2.72) we get⋃
Fnt JPK∅ =

⋃
FnJtJPKK∅ , (2.78)

that is, we get an equality whose both sides are pure fixpoint constructions. By
definition of

⋃
, this equality holds if the following sufficient condition is true:

∀n ∈ N. Fnt JPK∅ = FnJtJPKK∅ . (2.79)

Indeed, such condition is stronger than (2.78) but, unlike (2.78), it is amenable to
be proved by induction on n ∈ N.

In the next chapters, we present some known syntactic transformers and process
them in our framework. In particular, for each syntactic transformer t:

(i) we define a semantic transformer t and an auxiliary function t′;
(ii) we show the commutation equality

t(SJPK) = SJtJPKK (2.70)

restated in equivalent form⋃
Fnt JPK∅ =

⋃
FnJtJPKK∅ (2.78)

by proving its sufficient condition

∀n ∈ N. Fnt JPK∅ = FnJtJPKK∅ (2.79)

by induction on n ∈ N.

It is trivial to notice that F0
t JPK∅ = ∅ = F0JtJPKK∅. Thus the base of the

induction is always true.
To show Fn+1

t JPK∅ = Fn+1JtJPKK∅, assume by inductive hypothesis that
Fnt JPK∅ = T = FnJtJPKK∅. By (2.76) we have that σ ∈ Fn+1

t JPK∅ if and only
if

σ ∈ t(IJPK) ∨ σ ∈ { ηt(s) | η ∈ T ∧ s ∈ SJPK s′ ∧ s′ = t′(η) } .

On the other side, by (2.46), we have that σ ∈ Fn+1JtJPKK∅ if and only if

σ ∈ IJtJPKK ∨ σ ∈ { σ′r′r | σ′r′ ∈ T ∧ r ∈ SJtJPKK r′ } ,

which is equivalent to

σ ∈ IJtJPKK ∨ σ ∈ { ηr | η ∈ T ∧ r ∈ SJtJPKK r′ ∧ r′ = a η } .

Hence a sufficient condition to our thesis is provided by the following couple of
equalities:
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t(IJPK) = IJtJPKK
{ ηt(s) | η ∈ T ∧ s ∈ SJPK s′ ∧ s′ = t′(η) } = { ηr | η ∈ T ∧ r ∈ SJtJPKK r′ ∧ r′ = a η } .

We now turn latter equality into a simpler form. Let

Rt(η)
def
= { r | r ∈ SJtJPKK r′ ∧ r′ = a η } . (2.80)

Then a sufficient condition to the latter equality is

∀η ∈ T. { t(s) | s ∈ SJPK s′ ∧ s′ = t′(η) } = Rt(η) .

All in all, we are able to prove ∀n ∈ N. Fnt JPK∅ = FnJtJPKK∅ by showing that:

t(IJPK) = IJtJPKK (2.81)

∀η ∈ T. Rt(η) = { t(s) | s ∈ SJPK s′ ∧ s′ = t′(η) } . (2.82)

Assignment Insertion

Let us define, in the framework described above, the transformation of assignment-
insertion that we exploit later for embedding watermarks.

Suppose we wish to insert an assignment w := A in a program P, at entrypoint
w ∈ labJPK. Then:

• we replace any `: C � w in P with `: C � w0, where w0 is a fresh label with
respect to P;

• we insert w0: w := A � w in P.

We call the resulting program P′. The algorithm that turns P into P′ is i such that:

LJiJPKK def
= LJPK (2.83)

iJPK def
=
⋃
{ iJSK | S ∈ P } (2.84)

iJw: C � `′K def
= { w: w := A � w0,w0: C � `′ } (2.85)

iJ`: C � `′K def
= { `: C � `′ } where ` 6= w . (2.86)

If there is a dependency between w: w := A � w0 and a command that comes
later, then SJP′K is likely to differ a lot from SJPK. To ensure that P′ behaves just
like P, we should:

• save the original value of w in a temporary variable;
• perform the new assignment;
• restore the original value before w is used again.

This however requires the insertion of three assignments – one for each of the
previous points.

Alternatively, we can choose w among the variables of X that are fresh in P.
Indeed, if w is fresh then no dependencies exist between w: w := A � w0 and
the commands that come later in the flow. Hence the new assignment does not
noticeably perturb the semantics of P. Let us see this in detail. Suppose we have
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two commands `: C � w and w: C′ � `′, and two environments ρ and ρ′ ∈ CJCK ρ,
such that dom[ρ] = dom[ρ′] = varJPK. Then

〈ρ, `: C � w〉 〈ρ′, w: C′ � `′〉

is a trace. After the insertion of the new assignment, we have

〈ρ, `: C � w〉 〈ρ′, w: w := A � w0〉
〈
ρ′
[
w := AJAK ρ′

]
, w0: C′ � `′

〉
.

We know that w 6∈ varJC′K, because w is fresh in P. Thus w does not interfere with C′.
The trace transformation we described just now is implemented by a function i

on states, which is defined as follows:

i 〈ρ, `: C � `′〉 =

if ` 6= w then

〈ρ, `: C � `′〉 (2.87)

i 〈ρ, w: C � `′〉 =

if ` = w ∧ ρ(∆) = 0 then

〈ρ, w: w := A � w0〉 (2.88)

if ` = w ∧ ρ(∆) = 1 then〈
ρ
[

∆ := 0
]
, w0: C � `′

〉
. (2.89)

A state 〈ρ, S〉 is left unchanged (by (2.87)), unless labJSK = w. In such case the
value of variable ∆ determines how 〈ρ, S〉 is to be transformed. In particular, if
∆ denotes the undefined value, the insertion has not been performed yet, and it
is thereby performed presently through (2.88). Conversely, if ∆ is 1, the insertion
has already been carried out and the state requires only minor changes, performed
by (2.89). Variable ∆, which we call the discriminant, is meant to be used only for
the sake of transforming states. Therefore we expect it to be fresh in P.

Notice that i sets ∆ to the undefined value through (2.89), but it never sets
it to 1. This is in fact accomplished by the auxiliary function i′ for assignment
insertion:

i′ 〈ρ′, w: w := A � w0〉 =

if true then〈
ρ′
[

∆ := 1
]
, z: w := A � w

〉
(2.90)

i′ 〈ρ′, `: C � `′〉 = where ` 6= w

if true then

〈ρ′, `: C � `′〉 . (2.91)

Only in case the input state includes w := A, (2.90) sets ∆ to 1. Such value is
naturally propagated to any state s in the semantics of (2.90) and is taken into
account when s is transformed by i. As the novel value of w is expected to propagate
to subsequent states as well, command w := A was included in (2.90).

In order to show that i is the semantic counterpart of i, we prove the following
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Theorem 2.8. Let P be a program. Then ∀n ∈ N. Fni JPK∅ = FnJiJPKK∅.

Proof. We let t = i, t = i and t′ = i′, and just prove (2.81) and (2.82).
First we prove (2.81) by showing that 〈ρ, S〉 ∈ IJiJPKK if and only if 〈ρ, S〉 ∈

i(IJPK).
We have 〈ρ, S〉 ∈ IJiJPKK if and only if there exists `: C � `′ ∈ P such that

S ∈ iJ`: C � `′K and labJSK ∈ LJiJPKK.

• Suppose ` = w.
By (2.85), S ∈ iJw: C � `′K if and only if S ∈ { w: w := A � w0,w0: C � `′ },
where w0 6∈ LJPK is not fresh with respect to P. Notice moreover that by (2.83)
w0 6∈ LJiJPKK = LJPK.
This is equivalent to S = w: w := A � w0, which in turn is equivalent to 〈ρ, S〉 =
〈ρ′, w: w := A � w0〉, with ρ′ = ρ, and ultimately to 〈ρ, S〉 ∈ i 〈ρ′, w: C � `′〉.

• Suppose ` 6= w.
By (2.86), S ∈ iJ`: C � `′K if and only if S ∈ { `: C � `′ } if and only if S =
`: C � `′ if and only if 〈ρ, S〉 = 〈ρ′, `: C � `′〉 with ρ′ = ρ if and only if
〈ρ, S〉 ∈ i 〈ρ′, `: C � `′〉.

Thus in both cases we have 〈ρ, S〉 ∈ i 〈ρ′, `: C � `′〉, ρ = ρ′ and ` ∈ LJiJPKK;
by (2.83), the latter assertion can be restated as ` ∈ LJPK.

This is equivalent to state that there exists 〈ρ′, `: C � `′〉 ∈ IJPK such that
〈ρ, S〉 ∈ i 〈ρ′, `: C � `′〉 or, ultimately, that 〈ρ, S〉 ∈ i(IJPK).

We now prove (2.82).

• Let η be such that a η = 〈ρ′, w: w := A � w0〉.
On the one hand,
let ρ′′ = ρ′

[
w := AJAK ρ′

]
.

Then Ri(η) = { 〈ρ′′, w0: C � `′〉 | w0: C � `′ ∈ P }
On the other hand,

we have i′(a η) = (2.90). Let ρ = ρ′

[
w := AJAK ρ′

∆ := 1

]
.

Then
i(s) = i 〈ρ, w: C � `′〉where w: C � `′ ∈ P

=
〈
ρ
[

∆ := 0
]
, w0: C � `′

〉
=

〈
ρ′

[
w := AJAK ρ′

∆ := 1

][
∆ := 0

]
, w0: C � `′

〉
=
〈
ρ′
[
w := AJAK ρ′

]
, w0: C � `′

〉
= 〈ρ′′, w0: C � `′〉 .

• Let η be such that a η = 〈ρ′, `: C � `′〉 where ` 6= w.
On the one hand,
let ρ′′ ∈ CJCK ρ′.
If `′ = w then Ri(η) = { 〈ρ′′, w: w := A � w0〉 }.
If `′ 6= w then Ri(η) = { 〈ρ′′, `′: C � `′′〉 | ∃C′. ∃`′′. `′: C′ � `′′ ∈ P }.
On the other hand,
we have i′(a η) = (2.91). Let ρ ∈ CJCK ρ′.
If `′ = w then
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i(s) = i 〈ρ, w: C � `′′〉where w: C � `′′ ∈ P

= (2.88)

= 〈ρ, w: w := A � w0〉
= 〈ρ′′, w: w := A � w0〉 .

If `′ 6= w then
i(s) = i 〈ρ, `′: C′ � `′′〉where `′: C′ � `′′ ∈ P

= (2.87)

= 〈ρ, `′: C′ � `′′〉
= 〈ρ′′, `′: C′ � `′′〉 .

ut





3

Software Steganography

The security through obscurity principle we presented in Chapter 1 has at least three
applications: isolationism, cryptography and steganography. As the last one seems
to suit software best, we discuss at length two instances of its: code obfuscation
and software watermarking. In the last Section, we deal with obfuscation and
watermarking based on abstract interpretation, a methodology which might be key
in providing a unifying framework for the steganography of software.

3.1 A Grab of Software

Due to its highly informational nature, software is a resource that one would
like, according to their needs and aims, to protect from or subject to a thorough
inspection. Apart from its many possible instantiations, software can be defined as
something turning a multi-purpose machine into a machine with a more specific
purpose [62]. In particular, software enjoys the following three properties:

1. it carries a meaning, e.g. the details of a machine functionality, mathematically
modeled by formal semantics;

2. it consists in code, written according to the syntax of a programming language;
3. it is transmitted through physical supports, e.g. magnetic and optical devices,

generically referred to as hardware.

Being opposed to hardware, software only concerns the code and the meaning it
denotes.

Hardware

Code

Meaning

In the three-layered architecture provided by software properties, code plays a
twofold role: it acts as a content wrt. hardware and, at the same time, as a carrier
wrt. the meaning. Hence, to put into practice software protection, first we must
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choose whether we intend to deal with code as a content or as a carrier: in the
former case we apply cryptography, in the latter steganography. An example of
software concealment through cryptography is offered by encrypted, oligomorphic
and polymorphic viruses [100], whose code starts with a constant decryptor followed
by the encrypted virus body [107]. Here encryption was introduced in an attempt
to protect the code of these kinds of malicious software from syntactic recognition
by anti-virus scanners. The reasons why this protection scheme was easily broken
reside not in encryption itself, but in the presence of quite the same decryptor in
the header section of the different encrypted variants of the virus [107]. As regards
software concealment through steganography, a general and well-founded theory
about the provable secure concealment of the information conveyed by software
still lacks.

3.2 Protection of Software

The widespread physical distribution of computing power and the dramatic increase
in the networking of computers make information likely to disseminate without any
control. It is worth noting that a provably safe policy to preserve information from
being inspected is isolationism: if there is no sharing, there can be no undesired
observers. Current military protection systems, for instance, traditionally depend
to large degree on isolationism and it is still a challenge for them to integrate with
networking systems [91]. However, isolationism is unacceptable in scientific and
development environments, and in general whenever we wish to benefit from the
work of others. This especially applies in the field of software: except for personal
entertainment, there is usually no point in writing, for example, a device driver (a
software that interact with a commercial computer hardware device) or a worm
(a malicious software consuming the bandwidth of the network) but not releasing
them in the wild.

Whenever isolationism is unavailable, one of the most promising ways to achieve
a provably secure software concealment is the exploitation of computational advan-
tage provided by security through obscurity [15]. Computational advantage shows
up historically in cryptography, where performing the decryption without knowing
the suitable key is computationally unfeasible [102]. However, as a tool for the
protection of software, cryptography is of little use: on the one hand, encrypted
software falls short because it can be neither compiled nor interpreted; on the other
hand, the assumption that decryption keys will remain unknown to unauthorized
users is broken down by the about 47 millions of entries yielded by querying
Google about keygens, that is, illegal application-specific key generator tools. With
steganography these difficulties do not occur: one can keep the key secret and still
distribute the concealed version of its software, because steganography is not going
to compromise software executability.

From the steganographer perspective, code is the carrier of a meaning. Even
though the inherent meaning of code is its semantics, that is, the specialized
machine functionality it describes, actually code may denote a different meaning for
every different observer. For an anti-virus scanner, the meaning of code is whether
it includes or not any virus signature, that is, a fixed sequence of bytes from a
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sample of a virus [71]. For an analyzer looking for similarities between two software
applications, the meaning of code is its birthmark, that is, a sequence of unique
characteristics used to identify the code [108]: if two applications have the same
birthmark, they are likely to derive from the same source. For a verification tool
aimed at checking safety-critical software for embedded systems, the meaning of
code may be whether it terminates or not when executed. Furthermore, imaginative
observers may devise unconventional ways of interpreting code, so that e.g. code
structure and semantics may become themselves covert channels for information
exchange. To evade meaning disclosure without interfering with software purpose,
the steganographer alters the code retaining its expected functionality, but at the
same preventing undesired observers from getting the meaning they are interested
in. In such a case software is concealed via code obfuscation.

Sometimes one may also wish to expand the inherent meaning of code with
additional information. Again, this can be achieved by modifying the code so that
it encodes the new information but it keeps its own expected functionality. The
provided information takes part into the code as a mark. The practice of marking
dates back early in the human history, encompassing for instance brand marks
burnt in the skin of the cattle and watermarks embossed in banknotes, the former
ones being visible and robust, that is, difficult to be removed, whereas the latter
ones being (semi)invisible and fragile, that is, intended to not survive any kind of
copying [76]. Aiming at hiding information within software, the steganographer
resorts to marks which are (semi)invisible, that is, visible only to qualified ob-
servers, and usually (but not necessarily) robust. Hence, the field of techniques
and algorithms for embedding and detecting additional information in software
is known as software watermarking [21] and the marks carrying the additional
information are named watermarks.

3.3 Code Obfuscation

To the best of our knowledge, the basic ideas about code obfuscation were first
introduced in 1993 by Frederick B. Cohen [15], who suggested to provide operating
systems protection through program evolution. In Cohen’s view, a program (that
is, the code of a software application) evolves if it undergoes a code transformation
which preserves its input-output behavior. Typical examples of evolutionary trans-
formations are instruction reordering, variable substitution and garbage insertion.
With more evolution, the program should denote higher cost of analysis, even if
it may have a worse performance. Cohen notices that although an exhaustive set
of equivalent programs is easily described mathematically, the equivalence of two
programs is undecidable [14]. According to him, this result seems to indicate that
evolution has the potential for increasing complexity of analysis [15]. However, since
evolution is as general as Turing machine computation [115], the determination
of whether one program can evolve from another is undecidable, too [14]. Cohen
notes that, as a consequence, this is not particularly helpful in terms of designing
practical evolutionary schemes [15]. Furthermore, he states that one cannot blindly
trust protection through evolution, because any protection scheme other than
physical one depends, in the case of real-life computers, on the operations of a
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finite state machine and, ultimately, any finite state machine can be examined
and modified at will, given enough time and effort [15]. Nevertheless, evolutionary
transformations can be useful, since they can help in delaying program analyses.

About five years later, Christian Collberg and Clark Thomborson recovered
the main concepts of program evolution to describe a methodology for thwarting
reverse engineering of software applications [22, 23], calling it code obfuscation.
Reverse engineering is a typical first step for an observer to take advantage of the
software: having gained physical access to the application, the reverse engineer can
decompile it (using disassemblers of decompilers [13]) and then analyze its data
structure and control flow, possibly with the aid of reverse engineering tools such
as program slicers [111]. This kind of inspection is easier in programming languages
like Java, whose hardware-independent virtual machine bytecode retains virtually
all the information of the original Java source, and whose programs often make use
of well-known Java standard libraries. Thus, concerned with the relative ease of
extracting proprietary algorithms and data structures from applications, Collberg
and Thomborson propose code obfuscation as a tool for protecting intellectual
property.

Meanwhile, because of a lack of stealth in pre-existing viruses, the concepts
of program evolution proved to appetize also malware writers, who refer to pro-
gram evolution as metamorphism [107]. Metamorphic viruses are self-propagating
malicious programs consisting of self-mutating code [66]. The idea is that each
successive generation of a metamorphic virus modifies the code while leaving the
malicious semantics unchanged. This especially applies on cisc architectures, such
as the Intel ia-32 [26], whose instruction set is rich and where a lot of instructions
denote overlapping semantics. Here, replacement of instructions with semantically
equivalent ones, together with insertion of junk code, proves to be an easy device to
escape common anti-virus scanners, which usually detect viruses by identifying in
the subject code virus signatures, that is, virus-specific patterns such as known se-
quences or statistic distribution of virus instructions [25]. To detect a metamorphic
virus, common scanners should keep a database of all the signatures it may assume.
This is not an easy task since, in principle, a metamorphic virus can perform an
unlimited number of mutations.

Notions of Code Obfuscation

As code obfuscation (in the rest of this thesis the phrase “code obfuscation” sub-
sumes both program evolution and metamorphism) appears to be a multi-purpose
tool which still keeps to draw the attention of many people, it becomes opportune
to understand its true potentialities and limits. The first attempt to theoretically
establish code obfuscation is due to Collberg and Thomborson [23], who provide
an engineering approach to the issue. They consider any program transformation
preserving software behavior as experienced by the user, and they measure its
potential effectiveness as a program obfuscator in terms of potency, resilience, cost
and stealth. A program transformation has a non-trivial potency if the transformed
(obfuscated) program is more difficult to understand than the original one; the
comprehension difficulty is modeled through ordinary software engineering metrics,
such as the number of instructions and arguments [57], the number of nested
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conditions [59] or the number of references to local variables [89]. The resilience of
a transformation measures the hardness of undoing it with an automatic deobfus-
cator, taking into account both the amount of time required by the obfuscator to
be built and the execution time and space it consumes; one-way transformations,
such as program comments removal, are highly resilient because they can never be
undone. The cost of an obfuscating transformation measures the computational
overhead added to the subject program by obfuscation; there is usually a trade-off
between potency and resilience on the one hand and cost on the other hand, because
non-trivial obfuscation intuitively entails non-trivial costs. Finally, the stealth of an
obfuscating transformation ensures that the statistical properties of the obfuscated
program do not significantly differ from those of the subject program; hence, stealth
is a context-sensitive notion, since what is stealthy in one program may not be
stealthy in another one.

Collberg and Thomborson also classify obfuscating transformation according to
the kind of information they target [23]. Layout obfuscators, such as Java-obfuscator
Crema [117], act on code information that is useless at execution time, reducing
the amount of information available to a human reader; they are typically trivial
and they include for instance the removal of program comments and the scramble
of identifiers. Data obfuscators act on program data structures, affecting the
procedures for storing, reading and interpreting data, and the logic aggregation and
ordering of information within data structures [23], [127], for instance by turning a
two-dimensional array into a one-dimensional array and vice versa. Control code
obfuscators operate on the control flow of programs and possibly perform: splitting
and merging of code fragments in new program procedures [43]; altering iteration
order and scope in program loops [2]; randomizing, when possible, the placement
of any item in the subject program; inserting irrelevant instructions (referred above
as garbage or junk code) or bogus dead code, that is, misleading instructions which
are never executed.

Opaque Predicates

In particular, bogus dead code insertion often relies upon the existence of opaque
predicates [24], that is, predicates whose value is known at obfuscation time, but it is
difficult for a deobfuscator to deduce: the idea is to use, for example, an always-true
opaque predicate as the boolean condition of a selection construct and attach the
bogus dead code to the false branch. This is not apparent to the deobfuscator
which has to take into account both branches while performing a static program
analysis, and cannot be sure that the false branch is never executed even though
dynamic program analysis suggests this conjecture. Stealthy and resilient opaque
predicates, together with stealthy bogus dead code, are the major building blocks
in the design of transformations that obfuscate the control flow [23], [24], [74], [90].

The design of resilient opaque predicates is an instance of the exploitation
of the security through obscurity principle in code obfuscation. The first opaque
predicates [23], [24] were derived from the number theory, such as

(x(x+ 1))2 mod 4 = 0

or
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x2 = (7y2 − 1) ,

which are respectively always true and always false whatever x and y are evaluated
to. The drawback of this kind of opaque predicates is that their obscurity do not
reside in their design: a deobfuscator might merely collect them in a database and
identify them easily.

Since a deobfuscator usually employs various static and dynamic analysis
techniques, it seems natural and more effective to construct opaque predicates
on problems that are hard to handle by such analyses. Unlike those derived from
the number theory, these opaque predicates are trustful for obfuscation purposes,
because they are provably resilient wrt. well defined program analyses. Alias analysis
of complex dynamic structures is known to be a difficult problem [64], [101]; thus,
predicates describing invariants preserved by the set of pointers of the structure are
both opaque and provably resilient. Among the other problems whose invariants are
difficult to determine at deobfuscation time, there are parallel program analysis [24]
and distributed systems analysis; in the latter, the value of the opaque predicate
depends on predetermined embedded message communication patterns between
different processes that maintain the predicate [74]. The notion of opacity entailing
provable resilience has been generalized to program properties and also extended
to security issues like non-interference and anonymity [8], [9], [70].

Positive Results

Upon computational advantage, which is distinctive of the security through ob-
scurity approach, not only opaque predicates, but also others provably potent
obfuscating schemes have been designed. Wang et al., for instance, transform
the original control flow of the subject program into a flattened one, where each
basic block of instructions can be the successor or predecessor of any other basic
block, and where the actual control flow is determined dynamically by a dispatcher
controlled by a variable, whose value is established at the end of each basic block
through pointer manipulations complicated by the introduction of aliasing; the au-
thors prove that determining precise indirect branch target addresses of dispatchers
in presence of aliased pointers is a np-hard problem [120]; this technique, originally
restricted to intra-procedural analyses, has been extended to inter-procedural anal-
yses, too [86]. Another interesting proposal is the semantics preserving insertion
of hard combinatorial problems inside programs, explored by Chow et al., which
makes the deobfuscation process pspace-complete [11].

However, these results, although successful, should in practice be evaluated with
caution. While np-complete and pspace-complete problems are generally considered
intractable [45], this intractability is based on the difficulty of the hardest problem
instances. However, some np-complete problems are easy in the average case. Thus
for use in security, of greater interest than worst-case is average-case complexity
analysis [121] and the ability to prove that the probability of easy instances arising
is very low. It is worth mentioning that there are many cryptographic examples
where difficult problems have been used to justify the security of proposals, which
were later proven to be easily broken due to the fact that the particular problem
instances built into actual instantiations turned out, for various reasons, to be far
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weaker than the hardest, or average, problem instances [116]. This suggests care of
use, but does not disqualify the results.

Negative Results

By contrast, there are the impossibility claims of Barak et al., who prove that
the following device does not exist: a software virtual black box obfuscator which
can protect every program code from revealing more than program input-output
behavior [3]. More recently, an even stronger theoretical result has been proven [49].
While on the surface these assertions are rather negative for practitioners interested
in software obfuscation, upon deeper examination (and despite the rather suggestive
title of the papers1), the results simply arise from the choice of definitions, models
and question posed.

Actually, the non-existence of such a virtual black box generator would appear
to be of little concern after having discussed to what proportion of programs
of practical interest these results apply, whether there exist obfuscators able to
obfuscate program of practical interest, whether a more practical model can be
defined, allowing some level of non-critical information to leak from the execution of
a program, provided that it is not useful to the external observer [116]. By relaxing
the constraints of Barak’s model, it is reasonable and of practical interest to study
the possibility of obfuscating programs. Some of the authors of the impossibility
results have later achieved some positive results on code obfuscation [73] that,
together with other works [10], [122], show, under certain assumptions, how to
obfuscate classes of real-life programs.

Besides, many researchers are interested in transformations that raise the
difficulty of inspecting, e.g. by reverse engineering, a program, even if they cannot
make it impossible as requested by Barak’s definition. In fact, an obfuscating
transformation that requires a very expensive analysis, in terms of resources and
time, to be undone, protects a software by making its inspection uneconomical [63].
This approach is very appropriate where software protection is required for a limited
time period, e.g. in case of forced aging and renewal of software [65], which is
performed in order to make software cycle at a rate faster than an observer can
break it [52]. In Appendix A we provide a list of software products for obfuscating
code.

However, inspection infeasibility can be critical in malware detection. A de-
tection scheme going beyond purely syntactic nature of virus signatures exploits
templates [12], trying to express malicious intent while abstracting from syntactic
details which differ in the obfuscated variants of a metamorphic virus; this approach,
using symbolic variables to handle variable renaming and generalized control flow
graphs to deal with instruction reordering, is able to withstand a limited set of
obfuscations commonly used by malware writers. In the field of static analysis there
exist a malware detection scheme based on suspicious system call sequences [4]
and another one where the subject program and the malware are modeled through
automatons and detection consists in finding a non-empty intersection between
the languages they denote. Model checking techniques have recently been used

1 “On the (Im)possibility of Obfuscating Programs” [3] and “On the Impossibility of
Obfuscation with Auxiliary Input” [49].
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to specify malicious behavior through a linear temporal logic [105], or other tem-
poral logic [69]. Program slicing [123] and flow analysis are exploited in a static
analysis tool [72] which detects malware relying upon peculiar program properties,
named tell-tale signs, that characterize the maliciousness of a program. However,
all these approaches are still of limited application and it is not clear the interaction
occurring among them.

3.4 Software Watermarking

The basic definitions of software watermarking concepts appeared in the early papers
by Collberg and Thomborson [20], [21], who mainly focus on expected properties of
watermarks in view of their integrity and reliability. The items involved in software
watermarking are the following.

Embedding Extraction

stego-object
carrying a
watermark

cover-object

payload

key

cover-object

payload

• Watermark, or embedded-object, or package, or stegomark2 [34]: something to
hide in something else [92].
• Payload : the information conveyed by the embedded object.
• Cover-object [92] or program or carrier : the innocuous object where you embed

something [92].
• Stego-key [92] or key : additional secret data that may be needed in the hiding

process; in particular, the same key (or a related one) is usually needed to
extract the embedded object again [92].
• Stego-object [34, 92] or marked object [92]: the output of the hiding process;

something that has the embedded object hidden in it [92].

Once embedded in a program, a watermark should be such that:

• it denotes a high data-rate, where the data-rate is intended as the number of
message text bits which are encoded per bit added to the subject program [18],
or as the ratio of size of the watermark that can be embedded to the size of
the subject program [17];
• it is cheap (also, it denotes high fidelity [1]), that is, it does not adversely affect

the performance of the program;

2 “Stego” (Greek στεγω, literally roof, cover) means “to keep by covering”.
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Embedding
information
in software

For the
producer’s sake

Authorship marks

Fingerprint marks

Licensing marks

For the
consumer’s sake

Validation marks

Filtering marks

Meta-data marks

For the sake of
steganography

Secret marks

must be
resilient

must be
visible

must be
invisible

• it is stealthy, meaning that it preserves any statistical property of the program.

Watermarks can be either resilient or fragile. A resilient or robust [92] watermark
is able to survive distorsions [84] based on automatic program analyses. A fragile
watermark does not survive any kind of copying [84] or is destroyed as soon as the
object is modified too much [92].

In principle, watermarks can be either visible or invisible. A watermark is said
to be visible or perceptible if it can be extracted without knowing secrets. It can
be used as a deterrent against misuse or to embed carry meta-information [19]
or, in case of fingerprints or filtering marks, to make the limited rights of the
purchaser immediately apparent [84]. On the other side, a watermark is invisible,
or imperceptible or transparent [92], if it cannot be grasped by human or machine
analysis [67]. Sometimes this means that the watermark is hard to discover without
a suitable exposition tool [84] or even it can only be extracted using a secret not
available to the unqualified end user [19]. In our steganographic approach to the
protection of software, watermarks can be only invisible. In the rest of this thesis
we are not concerned with visible watermarks.

Watermarks can be classified according to their payload [84]:

• Authorship marks [84], which are the watermarks [92] by antonomasia and are
sometimes called signatures [34], convey information identifying the author [84]
or the tool [67] that developed the software.
• Fingerprint marks [84] or labels [92] convey information identifying the serial

number or the purchaser of the software [84].
• Licensing marks [19,84] convey information controlling how the cover object

can be used [84].
• Validation marks [19, 84] convey information used by the end user to verifiy

that the marked object is still essentially the same as when it was authored [84].
• Filtering marks [19] or classification marks [19] convey the parental rating

about the content of the cover object [19].
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• Meta-data marks [19] convey information that the end user might find use-
ful [19].

• Secret marks [19] convey information used for unnoticed communication between
two parties (steganography) [19].

Authorship marks are required to be reliable, that is, they must denote a distinctive
feature that allows everybody to argue that their presence in a program is the
result of deliberate actions [21]. Two strategies are known to achieve this:

• we can embed in our program a natural number that is too great to be
feasibly factorized and claim it as our authorship mark by producing its
factorization [34];

• we can encode a personal string, e.g. our name, through a standard one-way
hash function like MD5 and embed the result in our program, then claim it
as our authorship mark by producing our personal string and comparing its
encoded version with the authorship mark [87,113].

Stegoanalysis

The payload of a watermark is valuable information which one may want to either
expose or destroy, according to one’s purposes. We distinguish three classes of
users:

• final [92] or end users [19] check (if ever) that the stego-object is/behaves as
they expect;

• passive observers try to get the watermark without disrupting the stego-
object [94];

• active offenders try to remove the watermark, either retaining (a similarity to)
the (supposed) cover-object (as in the case of an illegal redistributor or a silent
censor) or not [94].

Passive observers typically perform collusive attacks, trying to localize finger-
prints by comparing copies of the same program marked with different fingerprints.
This sort of attacks is usually exploited as a preliminary step to distortive or
subtractive attacks. As a countermeasure, distinct obfuscations for distinct copies
could make the copies so different that their comparison become useless [34].

Active offenders are likely to perform distortive attacks, which aim at modifying
the watermarked program in order to prevent the correct extraction of watermarks
while preserving program semantics and, possibly, without degrading program
performance. These attacks often take the form of obfuscating transformations [22].
Offenders also can perform subtractive attacks, which use public knowledge about
watermarking techniques to localize and delete watermarks. For example, if a
technique is known to conceal watermarks in the dead code of program, then dead
code elimination is an elegant and effective attack to sweep them away.

A special category is the one of additive attacks, which affect a program with
watermark W by embedding a foreign watermark W ′ 6= W . Unfortunately, the
program cannot furnish evidence that W was inserted before W ′ even if W ′ does
not override W . This is a serious problem whenever W and W ′ are authorship
marks or fingerprints because, as far as we are concerned, there do not exist any
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software watermarking methods which have been proposed so far that can thwart
this sort of attacks [16,21]. So, if the watermarking technique is to be made public,
as required by a sound interpretation of the security through obscurity principle,
one can only rely to trustworthy authorities at embedding time to certify the
temporal precedence of their watermark.

It is generally agreed that any existing technique for software watermarking
and code obfuscation is not able to withstand manual attacks supported by enough
manpower, time and human motivation [23, 34]. In other words, a sufficiently
determined attacker will eventually be able to defeat any watermark. The goal, then,
is to design watermarking techniques that are expensive enough to break, that for
most attackers breaking them is not worth the trouble [16]. Both evaluation metrics
for and attacks against software watermarking techniques have been addressed in
a more formal framework [18].

Embedding and Extraction Routines

The act of watermarking a program is expressed in the literature through numerous
verbs: to embed [67, 92], to inlay [34], to store, to encode [42, 67], to implant [113],
to synthesize [113], to generate [42,113] and to hide [99]. There are two kinds of
embedding:

• in active embedding the embedded object is integrated as part of the design
process [113], by augmenting fully specified designs or by patching incomplete
designs, in either case without disrupting the original specifications [112,113];
• in passive embedding the embedded object is added to a design by making use

of existing structures, thus requiring no redesign but allowing limited tracking
flexibility [112].

It has been shown that some ill-conceived watermarking techniques can embed
only a very limited set of payloads [125].

The crucial point of watermarking, however, is the ability to soundly recover
invisible watermarks while both minimizing the number of false positives and
negatives. Especially false negatives may be a reason of concern:

“The real problem is not so much inserting the marks as recognising
them afterwards. Thus progress may come not just from devising new
marking schemes, but in developing ways to recognise marks that have
been embedded [. . . ] and thereafter subjected to distortion” [93].

Several verbs are used to designate this second routine: to extract [34, 125], to
expose [18], to recognize [126], to audit [42], to detect [113], to recover [99]. Nonethe-
less, Zhu and Thomborson [125,126] make a clear distinction between extraction
and recognition.

An extraction routine takes in input the watermarked program and returns the
payload carried by the watermark. In general, this routines induces a partition on
the set of the payloads and is able to extract only the representatives of each class.
This means that if watermark W belongs to a class whose representative is [W ],
the extraction algorithm yields [W ] even though W is embedded in the subject
program [125]; hence, the reliable extractor is the one that induces the partition
with only singleton-classes.
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Positive and negative recognition or detection algorithms judge, respectively,
the presence and the absence of watermarks in the subject program [126]. Their
precision is related to the number of, respectively, false positives and false negatives
they denote. Recognizers may play a valuable role in the problem of retrieving
watermarks from distorted programs [126]. It is worth noting that distortion,
obtained by e.g. code obfuscation, may also be used to protect watermarks from
undesired recognition [3].

Both kinds of retrieval can be either blind and informed, the latter being
performed with the knowledge of the original cover-object.
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visible marks asymmetric marking X X
blind retrieval

invisible marks

public marking X X X
semi-private marking X X X

informed retrievalprivate marking I X X X X
private marking II X X X X

The different characteristics of the extraction routine combine variously in the
following schemes.

• Private marking I (also, either informed extraction [125] or informed recogni-
tion [126]) performs extraction/recognition using the cover-object as a hint to
find where the embedded watermark could be [92].

• Private marking II performs recognition using both the cover-object and the
embedded object [92].

• Semi-private marking performs recognition using just the embedded object [92].
• Public marking (also blind marking [92], blind extraction [125], blind recog-

nition [126]) requires neither the cover-object nor the embedded object at
extraction/recognition time [92]. It may require the key.

• Asymmetric marking performs extraction/recognition without using keys; it
expects the watermark to be resilient enough an offender is not able to removed
it [92].

Lastly, watermarking techniques can be divided into two categories, regarding
if at extraction time the watermarked program is executed or not.

In static watermarking, watermarks are stored in the program source either
as data, e.g. an image or a string, or code, e.g. in the code control structure. So,
the watermark can be extracted from the text of the program or the program
syntax without any need of execution. Unfortunately, all static watermarks are
susceptible to simple distortive or subtractive attacks. For example, Moskowitz [79]
describes a static data watermarking method in which the watermark is embedded
in an image using one of the many media watermarking algorithm; this image is
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then stored in the static data section of the program; however, the presence of an
image at the top of a program is highly unusual. Davidson [42] describes a static
code watermark in which a fingerprint is encoded in the basic block sequence of a
program’s control flow graph; this scheme is easily subverted by permuting the order
of the blocks [16]. Qu and Potkonjak embed the watermark in register interference
graphs [98]; here not only the data-rate is minimal, but also the watermark can
be distorted simply by register renumbering transformations [81]. Venkatesan et
al. embed the watermark in an extra control flow graph with marked basic blocks
that is added to the program [118]; here the data-rate is high, but the scheme is
vulnerable to transformations such as block splitting and instruction reordering [17].
Stern et al. embed the watermark in the relative frequencies of instructions using
a spread spectrum technique [106]: the data-rate is low and the scheme is easily
subverted by inserting redundant instructions and applying code optimization [16].

In dynamic watermarking, watermarks are stored in program execution states
and so program execution is required in order to extract the watermark. Dynamic
watermarking was first proposed by Collberg and Thomborson [21]; their scheme
embeds the watermark in the topology of a data structure that is built on the heap
at runtime given some secret input sequence to the program; unfortunately, this
particular scheme is vulnerable to any attack that is able to modify the pointer
topology of the program’s fundamental data types [16]. The proposed scheme
is an instance of the class of dynamic data structure watermarking techniques,
which store watermarks in the program data if and when executed with particular
inputs; generally, the watermark is exhibited by a watermark extraction routine
examining these marked program data [22]. Instead, in dynamic execution trace
watermarking, watermarks are stored within the trace of the program as it is
being run with a special input; the watermark is extracted by monitoring some
(possibly statistical) properties of the trace. An instance of this class of schemes
is the path-based watermarking technique relying upon the dynamic branching
behavior of programs [16], which proves to be resilient to a wide variety of attacks.
There is also a third, and usually trivial, class of dynamic watermarking techniques,
embedding Easter Egg watermarks, whose defining characteristic is that, when a
predefined input is entered in the program, the program performs some action that
is immediately perceptible by the user, such as displaying a copyright message or
image [22]. One difficulty with Easter Eggs, and dynamic watermarking in general,
is that the special input revealing the watermark can be localized by monitoring
program execution, using standard instrumentation techniques, and removed by
debugging techniques, in which case it must be considered ineffective [34].

A recent survey of software watermarking is in [128]. Watermarking techniques
also abound in [55], [77], [78], [81], [82], [83], [90], [95], [106].

3.5 Software Steganography by Abstract Interpretation

Software is a very malleable engineering product, especially if expressed in a high-
level or in a semi-compiled programming language, such as the Java bytecode [53].
On the one hand, it easily takes the shape of the content it carries, so it is
hard to dissimulate specific information within it: this is what makes difficult, for
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instance, to embed perfectly stealthy watermarks, to perfectly prevent information
leakage [103] or to perfectly obstruct reverse engineering for code reuse. On the
other hand, software quickly lends itself to any kind of transformations, so it is
easy to deform it in order to thwart accurate information retrieval: this makes
problematic, for instance, to design effectively resilient watermarks, to safely detect
metamorphic malware and to dam up malware infection.

The main point is the lack of a solid foundation of accuracy in software analysis
and observation. Abstract interpretation may provide a suitable framework for
reasoning about the information that software applications can carry and disclose.

The inability of an observer αO (see Section 2.16) to notice that a program trans-
formation t changes some program property δ is the basis of the more generalized
notion of obfuscation potency t stated in 2005 by Dalla Preda and Giacobazzi [37].
Given set ∆ of all the program properties derived as abstractions of concrete
domain D, each potent transformation t partitions ∆ into the class of preserved
properties and the class of the masked, that is, not preserved, properties. The
obfuscation potency stems from the non-emptiness of the latter class. On the
other side, the most concrete preserved property δt, whose existence proof and
constructive characterization have been provided [37], fully describes the content
that t keeps intact. Given an observer αO ∈ ∆, that is, an observer obtained as
an abstraction of D where D is of course the most clever observer, if αO belongs
to the class of the properties preserved by t and t is potent, then t is considered
to act as an obfuscator wrt. αO. If αO is not preserved, then it is sensible to the
changes performed by t, so t cannot evade its inspection ability. The degree of
abstraction of δt ∈ ∆ is related to the aptitude of t for obfuscation wrt. all the
observers in ∆; hence, if δt1 w δt2 , then t1 has a better aptitude than t2 [37].

Another abstract interpretation based comparison between observers was in-
troduced later [36] in the context of opaque predicate insertion for control code
obfuscation. Here a simple algorithm top for putting in the subject code a given
set of opaque predicates is attained by abstraction of the semantic specification of
the transformation via the Cousot’s framework [33]. Due to the scanty aptitude
of top for obfuscation in the sense specified above [36], the authors focus on the
resilience of the inserted opaque predicates wrt. to agnostic observers which have
not been derived as abstractions from D; in fact, an observer αO derived from
D is expected to be quite clever, since D retains full knowledge about the real
behavior of opaque predicates. Agnostic observers can improve their inspection
ability, providing that they are made complete wrt. the opaque predicate they wish
to observe [36]. Completeness is a significant concept in the abstract interpretation
theory, because it captures the precision of an abstraction wrt. a property of interest.
By taking advantage of a systematic way for minimally transforming abstractions
in order to make them complete [47,48], the authors measure the magnitude of the
inspection inability of αO through the amount of information required to make αO

complete [36]. Moreover, if that amount is greater for an opaque predicate P1 than
for another opaque predicate P2, then P1 can be said to be more resilient wrt. αO

than P2 [36].
Complete observers are formidable because they own the knowledge they need

to perform an intelligent tamper attack to software. In the case of opaque pred-
icates, this was investigated by Dalla Preda et al. [39], which show how easily
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observers can be made complete wrt. common numeric opaque predicates and also
compare their theoretical outcomes to some experimental results. In the case of
malware detection, Dalla Preda et al. [35] provide a characterization of malware
behavior using abstractions of the trace semantics aimed at hiding those irrelevant
aspects of the malicious behavior that are commonly targeted for mutation in
metamorphic malware; then they provide a notion of relative completeness of
malware detectors/eradicators, relating it to the completeness of the trace-based
detector [35].

The recognition of software content via abstract interpretation is also the base
of a novel watermarking scheme proposed by Cousot and Cousot in 2004 [34]. Their
watermark consists of a numeric payload and a stegomark. The stegomark consists
in a couple of assignments to a program variable x. These instructions are arranged
so that x appears to be assigned stochastically during standard execution, while
it constantly evaluates to the stegosignature if interpreted in an abstract domain
parametrized by a numeric stegokey. At extraction time, the watermarked program
is entered as the input of an abstract interpreter parametrized by the stegokey, and
the stegosignature is easily retrieved among the set of program variables which
prove to be constant [34].

A first attempt at unifying obfuscation and watermarking in unique framework
based on abstract interpretation has been carried out by Giacobazzi [46].





4

Loop Affine Transformations

For-loops, which we introduced near the end of Chapter 2, can undergo a deal
of loop transformations. In this Chapter we show that three of them, namely
loop bumping, loop reversal and loop skewing, are instances of a more general
transformation we call loop affine transformation, which can be used to move
information from environments to statements and back.

4.1 Loop Bumping

One of the simplest loop transformation is perhaps loop bumping, which translates
the iteration space of a for-loop by a fixed amount r. Consider for instance the
following for-loop:

for (y := 1; y ≤ 6; y := y + 1) {

w := A + y

}

Its iteration space traversal can be represented as:

O y
1 2 3 4 5 6

After a bumping by r, we obtain:

for (y := 1 + r; y ≤ 6 + r; y := y + 1) {

w := A + (y− r)
}

Notice that bumping redefines the header of the loop, enforcing a translation of
the iteration space. At the same time, it undoes the translation in the body to
preserve the value of all variables other than y. By kind of example, let r = −1.
Then our bumped loop instantiates to:
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for (y := 1 + (−1); y ≤ 6 + (−1); y := y + 1) {

w := A + (y− (−1))
}

We can rewrite this program in an equivalent and shorter form:

for (y := 0; y ≤ 5; y := y + 1) {

w := A + (y + 1)
}

The corresponding iteration space traversal is

O
y

r = −1

4.2 Loop Reversal

Another simple transformation is loop reversal, that inverts the order in which the
iterations of a for-loop are performed. Back to our example, if we apply reversal
instead of bumping we obtain:

for (y := 6; y ≥ 1; y := y− 1) {

w := A + y

}

Its related iteration space traversal is:

O y

It can be easily obtained from the original one by applying a reflection with respect

to y =
7

2
, which is the axis of the segment with end points a1 = 1 and a2 = 6. In

general we have

y = a1 +
a2 − a1

2
. (4.1)

Then the algebraic relation implementing the reflection with respect to (4.1) is

y′ = −y + 2

(
a1 +

a2 − a1

2

)
,

where y and y′ are the old and the new value of y respectively. As it is customary in
geometry, we implement the transformation by expressing the old values in terms
of the new ones:

y = −y′ + (a1 + a2) .

Reversal thereby can be performed by replacing y with −y+ (A1 +A2) in the header
of:
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for (y := A1; y ≤ A2; y := y + A3) {

w := A + y

}

This results in the following object

for (−y + (A1 + A2) = A1;

−y + (A1 + A2) ≤ A2;

−y + (A1 + A2) = −y + (A1 + A2) + A3) {

w := A + y

}

which ultimately yields the reversed for-loop:

for (y := A2; y ≥ A1; y := y− A3) {

w := A + y

}

The transformation is legal as long as there are no dependencies among itera-
tions [80].

Another way to perform reversal is to leave the iteration space unchanged and
perform the reflection in the body:

for (y := A1; y ≤ A2; y := y + A3) {

w := A + (−y + (A1 + A2))
}

By combining together both strategies, we obtain a fake reversal:

for (y := A2; y ≥ A1; y := y− A3) {

w := A + (−y + (A1 + A2))
}

Here the value of the index variable, although coming from a reversed iteration
space, is reversed again in the body. Thus there is no reversal at all: the transfor-
mation always preserves the semantics and, as a consequence, it can be performed
unconditionally.

4.3 Principle of Loop Affine Transformations

Fake reversal and bumping have a common pattern: not only they perform a
transformation of the iteration space just to undo it when the index variable is used,
but they both are affine transformations of the iteration space. Thus they can be
unified in a more general transformation, which we call loop affine transformation.

In order to provide a broader definition of loop affine transformations, let us
consider a loop nest involving two for-loops:
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for (x := A11; x ≤ A12; x := x + A13) {

for (y := A21; y ≤ A22; y := y + A23) {

H

}

}

If we target the inner loop, we must take into account the existence of two index
variables, x and y. Accordingly, the most general affine transformation of the value
of y is

y′ = px+ qy + r , (4.2)

where p, q, r ∈ Z and q 6= 0. Because we target the inner loop only, we leave x

unchanged:

x′ = x . (4.3)

Let us express these affine transformations through a function αp,q,r : Z2 → Z
such that αp,q,r : (x, y) 7→ px+ qy + r. Some properties of this function are proved
by the following

Proposition 4.1. Let αp,q,r be defined as above. Then for all x, y ∈ Z:

(i) α− p
q ,

1
q ,−

r
q
(x, αp,q,r(x, y)) = y;

(ii) αp,q,r(x, y) + k = αp,q,r

(
x, y +

k

q

)
, where k ∈ Z.

Proof. We prove both properties separately.

Property (i): αp,q,r

(
x, α− p

q ,
1
q ,−

r
q
(x, y)

)
= px+ qα− p

q ,
1
q ,−

r
q
(x, y) + r

= px+ q

(
−p
q
x+

1

q
y − r

q

)
+ r

= px+ (−px+ y − r) + r

= y .

Property (ii): αp,q,r(x, y) + k = (px+ qy + r) + k

= px+ (qy + k) + r

= px+ q

(
y +

1

q
k

)
+ r

= αp,q,r

(
x, y +

1

q
k

)
.

We thereby proved the whole statement. ut

By using α to restate both (4.2) and (4.3), we obtain the following map:

x′ = α1,0,0(x, y) (4.4)

y′ = αp,q,r(x, y) . (4.5)

By expressing the old values of x and y in terms of their new values, we get the
inverse map:
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x = α1,0,0(x′, y′) = x′ (4.6)

y = α− p
q ,+

1
q ,−

r
q
(x′, y′) . (4.7)

We have (4.6) because of (4.4) and α1,0,0(x, y) = x. We obtain (4.7) from property
(i) in Proposition 4.1 by replacing αp,q,r(x, y) with y′, and then x with x′; these
replacements are justified by (4.5) and (4.6) respectively. As an overall consequence,
we have that (4.6) and (4.7) undo (4.4) and (4.5) respectively, and vice versa.

To apply loop affine transformation to our loop nest, we take advantage of (4.6)
and (4.7). In particular, we replace any occurrence of x with x, and any occurrence
of y with α− p

q ,
1
q ,−

r
q
(x, y). We get

for (x := A11; x ≤ A12; x := x + A13) {

for (α− p
q ,

1
q ,−

r
q
(x, y) = A21;

α− p
q ,

1
q ,−

r
q
(x, y) ≤ A22;

α− p
q ,

1
q ,−

r
q
(x, y) = α− p

q ,
1
q ,−

r
q
(x, y) + A23) {

H [x/x]
[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
}

}

This of course is not a loop nest. In fact, the equations in the header of the inner
loop cannot be meant as assignments on y, because their left hand side is different
from y. We can remove this inconvenience by applying αp,q,r(x, y) to both sides of
each (in)equality. Consider for instance

α− p
q ,

1
q ,−

r
q
(x, y) = A21 ;

by applying αp,q,r(x, y) to both its sides, we obtain

αp,q,r

(
x, α− p

q ,
1
q ,−

r
q
(x, y)

)
= αp,q,r(x, A21) ;

then, by Proposition 4.1, we finally get

y = αp,q,r(x, A21) ,

which can be easily meant as y := αp,q,r(x, A21). We apply this procedure to
α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 and α− p

q ,
1
q ,−

r
q
(x, y) = α− p

q ,
1
q ,−

r
q
(x, y) + A23 as well.

If q > 0, we have:

for (x := A11; x ≤ A12; x := x + A13) {

for (y := αp,q,r(x, A21);
y ≤ αp,q,r(x, A22);
y := y + |q|A23) {

H [x/x]
[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
}

}
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If q < 0, we have:

for (x := A11; x ≤ A12; x := x + A13) {

for (y := αp,q,r(x, A21);
y ≥ αp,q,r(x, A22);
y := y− |q|A23) {

H [x/x]
[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
}

}

In either case, y is remapped according to (4.5); conversely, the values of the
variables other than y are preserved, since (4.5) is undone in the body by (4.7).
For this reason, we can perform loop affine transformation unconditionally.

Above we were concerned with two cases, where either q > 0 or q < 0. We made
this distinction because the guard is reversed when q < 0, whereas it is not when
q > 0. Likewise, the increment changes its sign when q < 0, whereas it does not
when q > 0. We can however unify both cases by taking advantage of the following
syntactic equivalences between commands:

α− p
q ,

1
q ,−

r
q
(x, y) ≤ A2 ≡

{
y ≤ αp,q,r(x, A2) if q > 0

y ≥ αp,q,r(x, A2) if q < 0

α− p
q ,

1
q ,−

r
q
(x, y) > A2 ≡

{
y > αp,q,r(x, A2) if q > 0

y < αp,q,r(x, A2) if q < 0

y := y + qA3 ≡

{
y := y + |q|A3 if q > 0

y := y− |q|A3 if q < 0 .

Then, notwithstanding if either q > 0 or q < 0, the for-loop resulting from loop
affine transformation is:

for (x := A11; x ≤ A12; x := x + A13) {

for (y := αp,q,r(x, A21);
α− p

q ,
1
q ,−

r
q
(x, y) ≤ A2;

y := y + qA3) {

H [x/x]
[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
}

}

4.4 Loop Skewing

Table 4.1 shows that some known loop transformations reduce to loop affine trans-
formation by suitable choice of p, q and r. Because the inner loop is parametrized
by x, we allow x to parametrize p, q and r as well. This is apparent in loop skewing,
which turns rectangular iteration spaces into non-rectangular parallelograms. For
instance, it turns
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Expected for-
loop’s form

p q r

Normalization any 0
1

A23

A23 − A21

A23

Bumping normal 0 1 any
Fake reversal normal 0 −1 A22 + 1
Skewing normal 1 1 0

Table 4.1. Coefficients for some loop affine transformations.

for (x := 1; x ≤ 6; x := x + 1) {

for (y := 1; y ≤ 3; y := y + 1) {

H

}

}

into a new loop

for (x := 1; x ≤ A12; x := x + 1) {

for (y := 1 + x;

y ≤ A22 + x;

y := y + 1) {

H [y−x/y]
}

}

whose iteration space traversal is represented by

O x

y

Skewing, being a loop affine transformation, can be performed unconditionally.
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4.5 Normalization

The first and foremost important loop affine transformation is normalization, which
converts for-loops in normal form. Given again our general loop nest

for (x := A11; x ≤ A12; x := x + A13) {

for (y := A21; y ≤ A22; y := y + A23) {

H

}

}

after the normalization of the inner loop we get

for (x := A11; x ≤ A12; x := x + A13) {

for (y := 1;

y ≤ α
0, 1

A23
,
A23−A21

A23

(x, A22);

y := y + 1) {

H [α0,A23,A23−A21
(x,y)/y]

}

}

The values for p, q and r exploited in normalization are those specified by [80] and
are possibly parametrized by x.

Assuming that the target for-loop is in normal form, Table 4.1 describes how
to choose p, q and r to mimic bumping, fake reversal and skewing.

4.6 Syntactic Transformer

The algorithm that implements loop affine transformation takes p, q and r as
parameters and a for-loop as argument. Such for-loop can be defined out of either
(2.48) or (2.49). Assume we are in the former case; then our for-loop is supposed
to be:

f g

h i

j
y := A21

y ≤ A22

y > A22

H

y := y + A23

According to our previous discussion, loop affine transformation turns this loop
into:
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f g

h i

j
y := αp,q,r(x, A21)

α− p
q ,

1
q ,−

r
q
(x, y) ≤ A22

α− p
q ,

1
q ,−

r
q
(x, y) > A22

H
[
α− p

q
, 1
q
,− r

q
(x,y)/y

]

y := y + qA23

The syntactic algorithm that formally performs the transformation is defined as
follows:

LJaJPKK def
= LJPK (4.8)

aJPK def
=
⋃
{ aJSK | S ∈ P } (4.9)

aJf: y := A21 � gK def
= { f: y := αp,q,r(x, A21) � g } (4.10)

aJg: y > A22 � jK def
=
{

g: α− p
q ,

1
q ,−

r
q
(x, y) > A22 � j

}
(4.11)

aJg: y ≤ A22 � hK def
=
{

g: α− p
q ,

1
q ,−

r
q
(x, y) ≤ A22 � h

}
(4.12)

aJh: H � iK def
=
{

h: H
[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� i
}

(4.13)

aJi: y := y + A23 � gK def
= { i: y := y + qA23 � g } (4.14)

Notice that to transform a for-loop defined out of (2.49), we should have three
additional definitions, obtained from (4.12), (4.11) and (4.14) by replacing ≤, >
and + with ≥, < and − respectively. Without loss of generality, in the following
we are not concerned with such additional definitions.

4.7 Semantic Transformer

The syntactic transformer a includes five statement transformer, one for each
statement found in a for-loop. Likewise, in the semantic transformer we have five
state transformers. To improve readability, given a couple of environments ρ and
ρ′, we let

x
def
= AJxK ρ x′

def
= AJxK ρ′

y
def
= AJyK ρ y′

def
= AJyK ρ′ .

Then we define the semantic transformer a as follows:
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a 〈ρ, f: y := A21 � g〉 =

if true then

〈ρ, f: y := αp,q,r(x, y) � g〉 (4.15)

a 〈ρ, g: y > A22 � j〉 =

if true then〈
ρ
[
y := αp,q,r(x, y)

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) > A22 � j

〉
(4.16)

a 〈ρ, g: y ≤ A22 � h〉 =

if true then〈
ρ
[
y := αp,q,r(x, y)

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
(4.17)

a 〈ρ, h: H � i〉 =

if true then〈
ρ
[
y := αp,q,r(x, y)

]
, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� i
〉

(4.18)

a 〈ρ, i: y := y + A23 � g〉 =

if true then〈
ρ
[
y := αp,q,r(x, y)

]
, i: y := y + qA23 � g

〉
(4.19)

There is a natural correspondence between (4.10) and (4.15), because they both
work on the same statement and they transform it in the same way. A similar
argument holds for (4.11) and (4.16), for (4.12) and (4.17), and so on. Additionally,
state transformers work on environments. In (4.10) the initial environment ρ is
preserved. In the following definitions, ρ is turned to ρ

[
y := αp,q,r(x, y)

]
to account

for the transformed initialization and the transformed increment that are found in
the transformed loop.

4.8 Local Commutation Condition

Each state transformer in the auxiliary function a′ is meant to perfectly undo its
correspondent state transformer in a:

a′ 〈ρ′, f: y := A � g〉 =〈
ρ′, f: y := α− p

q ,
1
q ,−

r
q
(x, A) � g

〉
(4.20)

a′ 〈ρ′, g: A ≤ A22 � h〉 =〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, g: αp,q,r(x, A) ≤ A22 � h

〉
(4.21)

a′ 〈ρ′, h: H′ � i〉 =〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, h: H′ [αp,q,r(x,y)/y] � i

〉
(4.22)

a′ 〈ρ′, i: y := y + A23 � g〉 =〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, i: y := y +

A23

q
� g

〉
(4.23)
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In particular, (4.20) undoes the transformation of (4.15), whereas (4.21) undoes
the transformation of (4.17) and so on. We did not introduce state transformers in
a′ that undoes (4.16). In fact if such state appears in some trace in the semantics
of the transformed for-loop, it is the last state in that trace. In such case there is
no need to define a′, since no state is supposed to come after.

We can now formally prove that a and a are respectively the syntactic and the
semantic counterpart of any loop affine transformation.

Theorem 4.2. Let P be a for-loop. Then ∀n ∈ N. Fna JPK∅ = FnJaJPKK∅.

Proof. We let t = a, t = a and t′ = a′, and just prove (2.81) and (2.82).
First we prove (2.81).

a(IJPK) = a({ 〈ρ, S〉 | ρ ∈ EJPK ∧ S ∈ P ∧ labJSK ∈ LJPK }) by (2.45)

= { a 〈ρ, S〉 | ρ ∈ EJPK ∧ S ∈ P ∧ labJSK ∈ LJPK } by (2.68)

= { a 〈ρ, f: y := A21 � g〉 | ρ ∈ EJPK }
= { 〈ρ, f: y := αp,q,r(x, A21) � g〉 | ρ ∈ EJPK } by (4.15)

= { 〈ρ, f: y := αp,q,r(x, A21) � g〉 | ρ ∈ EJaJPKK } by definition of a

= { 〈ρ, S〉 | ρ ∈ EJPK ∧ S ∈ aJPK ∧ labJSK ∈ LJaJPKK }
= IJaJPKK by (2.45)

We now prove (2.82).

• Let η be such that a η = 〈ρ′, f: y := αp,q,r(x, A21) � g〉.
On the one hand,
let ρ′′ = ρ′

[
y := AJαp,q,r(x, A21)K ρ′

]
.

Then Ra(η) =
{〈
ρ′′, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
,〈

ρ′′, g: α− p
q ,

1
q ,−

r
q
(x, y) > A22 � j

〉}
.

On the other hand,
we have a′(a η) = (4.20)

=
〈
ρ′, f: y := α− p

q ,
1
q ,−

r
q
(x, αp,q,r(x, y)) � g

〉
= 〈ρ′, f: y := A21 � g〉 by Proposition 4.1.

Let ρ = ρ′
[
y := AJαp,q,r(x, A21)K ρ′

]
.

If BJy ≤ A22K ρ then
a(s) = a 〈ρ, g: y ≤ A22 � h〉

= (4.17)

=
〈
ρ
[
y := αp,q,r(x, y)

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
=
〈
ρ′
[
y := AJA21K ρ′

][
y := αp,q,r(x, y)

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
=
〈
ρ′
[
y := AJαp,q,r(x, A21)K ρ′

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
=
〈
ρ′′, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
.



78 4 Loop Affine Transformations

If BJy > A22K ρ then
a(s) = a 〈ρ, g: y > A22 � j〉

= (4.16)

=
〈
ρ
[
y := αp,q,r(x, y)

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) > A22 � j

〉
=
〈
ρ′
[
y := AJA21K ρ′

][
y := αp,q,r(x, y)

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) > A22 � j

〉
=
〈
ρ′
[
y := AJαp,q,r(x, A21)K ρ′

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) > A22 � j

〉
=
〈
ρ′′, g: α− p

q ,
1
q ,−

r
q
(x, y) > A22 � j

〉
.

• Let η be such that a η =
〈
ρ′, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
.

On the one hand,
let ρ′′ = ρ′.

Then Ra(η) =
{ 〈

ρ′′, h: H
[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� i
〉 }

.

On the other hand,
we have
a′(a η) = (4.21)

=
〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, g: αp,q,r

(
x, α− p

q ,
1
q ,−

r
q
(x, y)

)
≤ A22 � h

〉
=
〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, g: y ≤ A22 � h

〉
by Proposition 4.1.

Let ρ = ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
.

Then
a(s) = (4.22)

=
〈
ρ
[
y := αp,q,r(x, y)

]
, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� g
〉

=
〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

][
y := αp,q,r(x, y)

]
, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� g
〉

=
〈
ρ′
[
y := A

r
αp,q,r

(
x, α− p

q ,
1
q ,−

r
q
(x′, y′)

)z
ρ′
]
, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� g
〉

=
〈
ρ′
[
y := AJyK ρ′

]
, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� g
〉

by Proposition 4.1

=
〈
ρ′, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� g
〉

=
〈
ρ′′, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� g
〉
.

• Let η be such that a η =
〈
ρ′, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
� i
〉

.

On the one hand,

we haveRa(η) =
{
〈ρ′′, i: y := y + qA23 � g〉

∣∣∣ ρ′′ ∈ C
r
H
[
α− p

q
, 1
q
,− r

q
(x′,y′)/y

]z
ρ′
}

.

On the other hand,
we have
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a′(a η) = (4.22)

=
〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, h: H

[
α− p

q
, 1
q
,− r

q
(x,y)/y

]
[αp,q,r(x,y)/y] � i

〉
=
〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, h: H

[
αp,q,r

(
x,α− p

q
, 1
q
,− r

q
(x,y)

)
/y
]
� i
〉

=
〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, h: H � i

〉
by Proposition 4.1.

Let ρ ∈ CJHK ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
.

Then a(s) = (4.19)

=
〈
ρ
[
y := αp,q,r(x, y)

]
, i: y := y + qA23 � g

〉
,

where ρ
[
y := αp,q,r(x, y)

]
∈ C

r
H
[
α− p

q
, 1
q
,− r

q
(x′,y′)/y

]z
ρ′ by Lemma 2.4.

• Let η be such that a η = 〈ρ′, i: y := y + qA23 � g〉.
On the one hand,
let ρ′′ = ρ′

[
y := AJy + qA23K ρ′

]
.

Then Ra(η) =
{〈
ρ′′, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
,〈

ρ′′, g: α− p
q ,

1
q ,−

r
q
(x, y) > A22 � j

〉}
.

On the other hand,
we have a′(a η) = (4.23)

=

〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, i: y := y +

qA23

q
� g

〉
=
〈
ρ′
[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]
, i: y := y + A23 � g

〉
Let ρ = ρ′

[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

][
y := AJy + A23K ρ′

]
= ρ′

[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

][
y := AJy + A23K ρ′

[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]]
= ρ′

[
y := AJy + A23K ρ′

[
y := α− p

q ,
1
q ,−

r
q
(x′, y′)

]]
= ρ′

[
y := A

r
α− p

q ,
1
q ,−

r
q
(x, y) + A23

z
ρ′
]
.

If BJy ≤ A22K ρ then
a(s) = a 〈ρ, g: y ≤ A22 � h〉

= (4.17)

=
〈
ρ
[
y := αp,q,r(x, y)

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) ≤ A22 � h

〉
and
ρ
[
y := αp,q,r(x, y)

]
= ρ′

[
y := A

r
α− p

q ,
1
q ,−

r
q
(x, y) + A23

z
ρ′
][

y := αp,q,r(x, y)
]

= ρ′
[
y := A

r
αp,q,r

(
x, α− p

q ,
1
q ,−

r
q
(x, y) + A23

)z
ρ′
]

= ρ′
[
y := A

r
αp,q,r

(
x, α− p

q ,
1
q ,−

r
q
(x, y)

)
+ qA23

z
ρ′
]

by Proposition 4.1

= ρ′
[
y := y + qA23

]
ρ′by Proposition 4.1

= ρ′′ .
If BJy > A22K ρ then
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a(s) = a 〈ρ, g: y > A22 � j〉
= (4.16)

=
〈
ρ
[
y := αp,q,r(x, y)

]
, g: α− p

q ,
1
q ,−

r
q
(x, y) > A22 � j

〉
and ρ

[
y := αp,q,r(x, y)

]
= ρ′′ by the same argument above.

ut



5

Loop Unrolling

Any for-loop subsumes a number of iterations. The execution of such iterations
entails an overhead, due to the evaluation of the guard and of the increment. To
reduce overhead, program compilers usually let for-loops undergo transformations
aimed at lowering their number of iterations [2]. In this Chapter we introduce some
of these transformations, namely loop peeling, loop splitting and loop unrolling, and
we show that they all reduce to loop unrolling, which is recast as a transformation
that shifts information only from environments to statements – not the other way
round.

For the sake of simplicity, throughout this Chapter we consider a for-loop P

defined out of (2.48):

for (x := A1; x ≤ A2; x := x + A3) {

H

}

5.1 Loop Peeling

The simplest way to reduce the number of iterations of P is to get rid of its first
iteration. This is carried out by loop peeling [2]. Consider for instance the following
for-loop:

f g

h i

jx := 1

x ≤ 11

x > 11

w := x

x := x + 1

After peeling off its first iteration, we obtain:



82 5 Loop Unrolling

f g

h i

jh0f0
x := 1 w := x x := 2

x ≤ 11

x > 11

w := x

x := x + 1

It is easy to verify both the original and the transformed program carry out the
same task. In the former program, however, all assignments on w are performed
after the guard has been checked. In the latter one, on the other side, the first
assignment on w is performed unconditionally. This can be harmful in case the
guard branches to j without entering the loop. Let us consider a slight modification
of our example loop, where we raised the initial value of x to 95:

f g

h i

jx := 95

x ≤ 11

x > 11

w := x

x := x + 1

This loop does not perform any iterations. However, after the peeling takes place,
one assignment on w occurs nonetheless:

f g

h i

jh0f0
x := 95 w := x x := 96

x ≤ 11

x > 11

w := x

x := x + 1

To ensure correctness, we need to check the guard before w is assigned. A straight-
forward solution is to wrap the assignment we peeled off in a new for-loop and let
such loop come just before the old for-loop:

f g

h i

jg0f0

h0 i0

x := 95

x ≤ 1

x > 1

w := x

x := x + 1

x := 96

x ≤ 11

x > 11

w := x

x := x + 1

We have therefore a sequence of two for-loops, which we note as:



5.2 Loop Splitting 83

for (x := 95; x ≤ 1; x := x + 1) {

w := x

}

for (x := 96; x ≤ 11; x := x + 1) {

w := x

}

Since we have two loops instead of one, we have come up with a double overhead,
indeed. This is the price we had to pay to properly peel out the first iteration.
Notice that the two loops differs not only in the initial value they provide to x,
but also in the value which they test x against. This modification accounts for the
way we accomplish peeling: not by detecting the first iteration (if any) in order
to close it off in the first for-loop, but rather by specifying how many iterations
we want the second for-loop to subsume. To make this point more clear, let us
consider again our first example; if we let it undergo peeling correctly, we obtain:

for (x := 1; x ≤ 1; x := x + 1) {

w := x

}

for (x := 2; x ≤ 11; x := x + 1) {

w := x

}

Observe that the bound of the first loop was set to 1. If we expected the second loop
to perform no iterations, we would have set that bound to 11. However, because
we wanted the second loop to subsume ten iterations, we reduced it from 11 to 1.
As a side-effect, we closed off the first iteration in its own for-loop. Thus we just
accomplished loop peeling.

5.2 Loop Splitting

Consider again our original for-loop:

for (x := 1; x ≤ 11; x := x + 1) {

w := x

}

It is easy to verify that its iteration space is I = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }.
Suppose we want to apply loop peeling, yet requiring the second loop to subsume
only l = 5 iterations instead of ten. Then we have:

for (x := 1; x ≤ 6; x := x + 1) {

w := x

}

for (x := 7; x ≤ 11; x := x + 1) {

w := x

}
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The original iteration space was split into two iteration spaces:

• { 7, 8, 9, 10, 11 }, which is traversed last and includes the last l = 5 iterations
of the original for-loop;

• { 1, 2, 3, 4, 5, 6 }, which is traversed first and collects all the remaining iterations.

We refer to l ∈ N as the splitting term. In general, given our generic for-loop P

defined as

for (x := A1; x ≤ A2; x := x + A3) {

H

}

and given a splitting term l, we can replace P with the following sequence of
for-loops:

for (x := A1; x ≤ A2 − l; x := x + A3) {

H

}

for (; x ≤ A2; x := x + A3) {

H

}

Such transformation is called loop splitting [80]. Notice the deficiencies that are
found in the header of the second loop; indeed, x needs not to be initialized, since
its value is provided by the first loop. Loop splitting partitions the iterations of P
between the two for-loops. In particular, the second loop subsumes:

• all the iterations of P, if l is greater than the total number of iterations;
• only the last l iterations of P, otherwise.

A formal argument for this behavior is provided later by Proposition 5.2. The first
loop subsumes all the iterations that are not subsumed by the second one. Since
the two loops are executed sequentially, the order of execution of the iterations of
P is preserved.

Loop splitting is trivial if l = 0. Loop peeling is just an instance of loop splitting.
Notice that, while splitting can be performed unconditionally, peeling must comply
with the following enabling condition:

∃l ∈ N. ∀ρ ∈ EJPK. AJA1K ρ+ l = AJA2K ρ .

5.3 Loop Unrolling

Loop splitting provides for-loops with a lowered number of iterations. In our
example above, from a for-loop with eleven iterations

for (x := 1; x ≤ 11; x := x + 1) {

w := x

}
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we obtained two for-loops with six and five iterations:

for (x := 1; x ≤ 6; x := x + 1) {

w := x

}

for (; x ≤ 11; x := x + 1) {

w := x

}

However, splitting does not reduce the overall number of iterations, which in our
example amounts to eleven before as well as after splitting is performed. To actually
lower that amount, we need a different strategy.

The first loop performs six iterations, resulting in the following sequence of
commands:

x := 1,
x ≤ 6, w := x, x := x + 1,
x ≤ 6, w := x, x := x + 1,
x ≤ 6, w := x, x := x + 1,
x ≤ 6, w := x, x := x + 1,
x ≤ 6, w := x, x := x + 1,
x ≤ 6, w := x, x := x + 1,
x > 6.

Notice that each iteration performs an assignment on w. If an iteration performed
u = 3 assignments, only two iterations would be needed:

x := 1,
x ≤ 6, w := x,

w := x,
w := x, x := x + 1,

x ≤ 6, w := x,
w := x,
w := x, x := x + 1,

x > 6.

To ensure that w is assigned correctly, we also need to replace every x occurring
in an arithmetic expression with x + m, where m accounts for the suppressed
increments:

x := 1,
x ≤ 4, w := x + 0,

w := x + 1,
w := x + 2, x := (x + 2) + 1,

x ≤ 4, w := x + 0,
w := x + 1,
w := x + 2, x := (x + 2) + 1,

x > 4.

Notice that the new bound 4, which x is tested against, is obtained as a difference
between the previous bound, 6, and u − 1 = 3 − 1 = 2. Recall that 6, in turn,
was obtained as a difference between the original bound 11 and l = 5. All in all,
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the new bound is obtained as 11− (l + u− 1) = 11− (5 + 3− 1) = 4. A formal
argument for this choice is provided later by Proposition 5.3.

The sequence of commands displayed above is just the one resulting from the
execution of the following for-loop:

for (x := 1; x ≤ 4; x := x + 3) {

w := x

w := x + 1

w := x + 2

}

In the field of program compilers, the transformation that yields such loop is called
loop unrolling and u = 3 is called the unrolling factor [2]. We require u ∈ N and
u > 0.

If we consider again the two for-loops we got from splitting and we unroll the
first one by u = 3, we obtain:

for (x := 1; x ≤ 4; x := x + 3) {

w := x

w := x + 1

w := x + 2

}

for (; x ≤ 11; x := x + 1) {

w := x

}

Now, as these for-loops perform two and five iterations respectively, the overall
number of iterations is seven. Since the original for-loop subsumed eleven iterations,
we achieved an actual reduction in the overall number of iterations.

In our examples above we used x := x + 1 as increment. We now deal with the
case when the increment amount is greater than one. Consider for instance the
following for-loop:

for (x := 1; x ≤ 18; x := x + 5) {

w := x

}

Such loop performs four iterations, each time incrementing x by 5. The correspon-
dent sequence of commands is:

x := 1,
x ≤ 18, w := x, x := x + 5,
x ≤ 18, w := x, x := x + 5,
x ≤ 18, w := x, x := x + 5,
x ≤ 18, w := x, x := x + 5,
x > 18.

Suppose we want to perform loop unrolling by l = 0 and u = 4. Then we have:
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x := 1,
x ≤ 3, w := x + 0,

w := x + 5,
w := x + 10,
w := x + 15, x := (x + 15) + 5,

x > 3.

Here, recalling that the original increment amount is 5, we replaced every x

occurring in an arithmetic expression with x+m ·5, where m counts the number of
suppressed increments. Furthermore we obtained the new bound 3 as a difference
between the original bound 18 and (l + u− 1) · 5 = (0 + 4− 1) · 5 = 15. As before,
the sequence of commands displayed above is just the one resulting from:

for (x := 1; x ≤ 3; x := x + 20) {

w := x

w := x + 5

w := x + 10

w := x + 15

}

So far we have unrolled for-loops denoting a number of iterations that is a
multiple of u. We can also unroll for-loops which do not comply with this assumption.
Suppose we unroll the previous for-loop by l = 0 and by u′ = 3 instead of u = 4.
In such case unrolling encompasses only three of the four iterations subsumed by
the loop. Hence we have

x := 1,
x ≤ 8, w := x + 0,

w := x + 5,
w := x + 10, x := (x + 10) + 5,

x > 8,
x ≤ 18, w := x, x := x + 5

x > 18.

This sequence of commands is also obtained by the following for-loops:

for (x := 1; x ≤ 8; x := x + 15) {

w := x

w := x + 5

w := x + 10

}

for (; x ≤ 18; x := x + 5) {

w := x

}

The iteration that could not take part in the unrolling is performed by the second
loop. A for-loop that subsumes iterations left over by an unrolled loop is called the
epilogue of the unrolled loop [2]. In our example the second loop is thereby the
epilogue of the first loop.
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We now gather all the points we have made about loop unrolling. Let us consider
our generic for-loop P which is defined as

for (x := A1; x ≤ A2; x := x + A3) {

H

}

If we let P undergo loop unrolling with splitting term l ∈ N and unrolling factor
u ∈ N, u > 0, we get:

for (x := A1; x ≤ A2 − (l + u− 1)A3; x := x + uA3) {

H

H [x+A3/x]
H [x+2A3/x]
...

H [x+mA3/x]
...

H [x+(u−1)A3/x]
}

for (; x ≤ A2; x := x + A3) {

H

}

Notice that the second for-loop is P without the initialization of x.
It is easy to verify that loop splitting is just an instance of loop unrolling where

u = 1.

5.4 Principle of Loop Unrolling

In the previous Section we introduced loop unrolling by reasoning not on iterations,
which are semantic notions, but on sequences of commands, which were chosen
as an informal yet convenient abstraction. This allowed us to make several points
about unrolling without getting immediately lost in a mass of details. In the present
Section we take a more formal approach, based on iterations.

Let P be our generic for-loop and let

σ ∈ dg(SJPK) . (5.1)

The number of residual iterations of such trace is Rx,A2,A3(σ). For the sake of
simplicity, we shorten Rx,A2,A3 to R. So σ has R(σ) residual iterations.

Let us define:

• a sequence λj ∈ N. lj of splitting terms, such that l0 = 0;
• a sequence λj ∈ N. uj of unrolling factors, such that u0 = 1.
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Whenever we are to perform loop unrolling, we specify an index i ∈ N and obtain
a splitting term li and an unrolling factor ui.

Suppose we want to unroll P by splitting term li and unrolling factor ui. In the
first place, this entails that σ is partitioned in two subtraces σ′ and σ′′ such that:

σ′, σ′′ ∈ dg(SJPK) , (5.2)

σ′σ′′ = σ (5.3)

and

#σ′
def
= min(#σ, (R(σ)	 li) :· ui) . (5.4)

We know from the previous Section that unrolling makes two for-loops out of P.
Subtrace σ′ just accounts for the first for-loop, whereas σ′′ accounts for the second
one. We also know that the second for-loop is just P; hence we expect unrolling to
act on σ′′ as the identical transformation. The first for-loop retains the initialization
of P, but must be provided with novel guard, novel increment and novel body; thus
we expect unrolling to deeply affect σ′.

The number of iterations subsumed by σ′ is predicted by (5.4). As regards σ′′,
by (5.3), (5.2) and Proposition 2.5, we have:

#σ′′ = #σ −#σ′ . (5.5)

Then by (5.4) and (5.5) we obtain:

#σ′′ =

{
#σ − (R(σ)	 li) :· ui if #σ > (R(σ)	 li) :· ui
0 otherwise .

(5.6)

Equations (5.4) and (5.6) imply that the second for-loop subsumes all the iterations
of σ whenever li or ui are great enough, namely if li > R(σ) or (R(σ)	 li)divui = 0;
this ultimately means σ′′ = σ. Otherwise, the first for-loop is given as many
iterations of σ as possible, not more than (R(σ)	 li) :· ui anyhow, while the second
for-loop is given the remaining iterations of σ, if any.

We now devise a guard for the first for-loop. First, we provide an upper bound
to the number of the residual iterations at σ′′.

Proposition 5.1. If σ′′ 6= ε then R(σ′′) ≤ li + ui − 1.

Proof. Let σ′′ 6= ε.

#σ′′ = #σ − (R(σ)	 li) :· ui by (5.6)

#(σ′′,aσ′′) = #(σ,aσ)− (R(σ)	 li) :· ui by (2.59)

R(σ′′)−R(aσ′′) = (R(σ)−R(aσ))− (R(σ)	 li) :· ui by (2.57)

R(σ′′)−R(aσ) = (R(σ)−R(aσ))− (R(σ)	 li) :· ui by (5.3),

whence:

R(σ′′) = R(σ)− (R(σ)	 li) :· ui .

We provide an upper bound to the rightmost term as follows:
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R(σ)− (R(σ)	 li) :· ui
≤ (li + (R(σ)	 li) :· ui + (R(σ)	 li) mod ui)− (R(σ)	 li) :· ui
= li + (R(σ)	 li) mod ui

≤ li + ui − 1 .

Then, by transitivity, we have R(σ′′) ≤ li + ui − 1. ut
We are concerned with the last li + ui − 1 residual iterations of σ.

• If σ′ = ε then σ′′ = σ by (5.3); furthermore, R(σ) = R(σ′′) ≤ li + ui − 1.
• If σ′ 6= ε then R(σ) = R(σ′) > R(σ′′). Moreover:

– if R(σ′′) = li + ui − 1 then the last li + ui − 1 residual iterations at σ
perfectly coincide with the residual iterations at σ′′;

– if R(σ′′) < li + ui − 1 then the last li + ui − 1 residual iterations at σ not
only encompass every residual iteration at σ′′, but also include all but the
first R(σ′)− (li + ui − 1) residual iterations at σ′.

Next we provide a lower and an upper bound to R(σ′)− (li + ui − 1).

Proposition 5.2. If σ′ 6= ε then (R(σ′) 	 li) :· ui − ui < R(σ′) − (li + ui − 1) ≤
(R(σ′)	 li) :· ui.
Proof. Let σ′ 6= ε. Then by (5.2) and by (5.4) we have:

(R(σ′)	 li) :· ui > 0

(R(σ′)	 li) div ui > 0 because ui > 0

(R(σ′)	 li) ≥ ui > 0

R(σ′)− li > 0 because R(σ′)	 li > 0 .

So R(σ′)− li = R(σ′)	 li. Then we have:

(R(σ′)− li) mod ui ≤ ui − 1

−ui + 1 + (R(σ′)− li) mod ui ≤ 0

(R(σ′)− li)− ui + 1 + (R(σ′)− li) mod ui ≤ R(σ′)− li
(R(σ′)− li)− ui + 1 + (R(σ′)− li) mod ui ≤ (R(σ′)− li) :· ui + (R(σ′)− li) mod ui

(R(σ′)− li)− ui + 1 ≤ (R(σ′)− li) :· ui
(R(σ′)− li)− ui + 1 ≤ (R(σ′)	 li) :· ui
R(σ′)− (li + ui − 1) ≤ (R(σ′)	 li) :· ui .

Furthermore we have:

0 < 1 + (R(σ′)− li) mod ui

R(σ′)− li − ui < (R(σ′)− li − ui) + 1

+ (R(σ′)− li) mod ui

(R(σ′)− li) :· ui + (R(σ′)− li) mod ui)− ui < (R(σ′)− li − ui) + 1

+ (R(σ′)− li) mod ui

(R(σ′)− li) :· ui − ui < (R(σ′)− li − ui) + 1

(R(σ′)	 li) :· ui − ui < (R(σ′)− li − ui) + 1

(R(σ′)	 li) :· ui − ui < R(σ′)− (li + ui)− 1) .
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ut

By (5.4), there are just (R(σ)	 li) :· ui residual iterations at σ′ which are not at
the same time residual iterations at σ′′. Proposition 5.2 appoints the last ui of
them as the interval which R(σ′)− (li + ui − 1) ranges over.

As a candidate guard for the first for-loop, we introduce a boolean expression
B such that BJBK ρ = true if there are more than li + ui − 1 residual iterations at
ρ, and BJBK ρ = false otherwise. The following Proposition suggests we could let

B
def
= x ≤ A2 − (li + ui − 1)A3.

Proposition 5.3. Let 〈ρ, S〉 be a state in σ′σ′′. Then BJx ≤ A2 − (li + ui − 1)A3K ρ =
false if and only if 0 ≤ Rx,A2,A3 〈ρ, S〉 ≤ li + ui − 1.

Proof. Let x
def
= AJxK ρ, a2

def
= AJA2K ρ and a3

def
= AJA3K ρ. We have:

BJx ≤ A2 − (li + ui − 1)A3K ρ = false⇐⇒ x > a2 − (li + ui − 1)a3

⇐⇒ x− a2 > −(li + ui − 1)a3

⇐⇒ a2 − x < (li + ui − 1)a3 .

In case a2 ≤ x, then we have a2 − x ≤ 0. Because li ≥ 0 and ui > 0, we have
li + ui − 1 ≥ 0. Hence:

a2 − x < (li + ui − 1)a3

⇐⇒ a2 − x ≤ 0 < (li + ui − 1)a3 ∨ a2 − x < 0 ≤ (li + ui − 1)a3

⇐⇒ 0 ≤ (li + ui − 1)a3

⇐⇒ 0 ≤ li + ui − 1 since a3 > 0 by hypothesis

⇐⇒ 0 ≤ 0 ≤ li + ui − 1 by (2.53)

⇐⇒ 0 ≤ R 〈ρ, S〉 ≤ li + ui − 1 .

In case a2 > x then, by (2.53), R 〈ρ, S〉 = (a2 + a3 − 1 − x) div a3. Then we
have:

a2 − x < (li + ui − 1)a3

⇐⇒ 0 ≤ a2 − x < (li + ui − 1)a3

⇐⇒ 0 ≤ a2 − x+ (a3 − 1) < (li + ui − 1)a3 + (a3 − 1)

⇐⇒ 0 ≤ a2 + a3 − x− 1 < (li + ui − 1)a3 + a3 − 1

⇐⇒ 0 ≤ (a2 + a3 − x− 1) div a3 < ((li + ui − 1)a3 + a3 − 1) div a3

⇐⇒ 0 ≤ (a2 + a3 − x− 1) div a3 ≤ ((li + ui − 1)a3 + a3 − 1) div a3

⇐⇒ 0 ≤ R 〈ρ, S〉 ≤ ((li + ui − 1)a3 + a3 − 1) div a3

⇐⇒ 0 ≤ R 〈ρ, S〉 ≤ li + ui − 1 .

ut

Let us gather the results we have proved in this Section.

• If σ′ = ε, then x ≤ A2 − (li + ui − 1)A3 is false throughout σ = σ′′.
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• If σ′ 6= ε, then x ≤ A2 − (li + ui − 1)A3 is true at the beginning of σ′ and
gets forever false at the end of one residual iteration at σ′ not at σ′′. By (5.4),
the number of such iterations is (R(σ)	 li) :· ui. The one at the end of which
x ≤ A2 − (li + ui − 1)A3 gets false is to be found, according to Proposition 5.2,
within the last ui.

Unrolling is supposed to make an iteration of the first for-loop out of the
ui leftmost untransformed iterations of σ′. Notice that the number of residual
iterations at σ′ not at σ′′ is a perfect multiple of ui. So x ≤ A2 − (li + ui − 1)A3

is going to get forever false within the last iteration of the first for-loop. We can
thereby elect x ≤ A2 − (li + ui − 1)A3 as the guard of the first for-loop.

If s is a state in an actual iteration of σ′, then unrolling transforms it especially
relying upon #(σ′, s) and upon the statement included in s. By (2.50), s can be
instantiated to

〈ρ, g: G � h〉 = 〈ρ, g: x ≤ A2 � h〉 ,
〈ρ′, h: H � i〉 = 〈ρ′, h: H � i〉

or

〈ρ′′, i: I � g〉 = 〈ρ′′, i: x := x + A3 � g〉 ,

where ρ, ρ′, ρ′′ ∈ EJPK. We suppose ρ′ = ρ and ρ′′ ∈ CJHK ρ′, so that the concatena-
tion of these states is an iteration of σ′. We call it our current iteration. By (2.53),
our current iteration is preceded in σ′ by a number of actual iterations amounting
to:

#(σ′, 〈ρ, g: G � h〉) = #(σ′, 〈ρ′, h: H � i〉) = #(σ′, 〈ρ′′, i: I � g〉)− 1 .

Since unrolling takes the ui leftmost untransformed iterations of σ′ and turn them
into an iteration of the first for-loop, we have that the iterations of the first for-loop
currently amount to:

#(σ′, 〈ρ, g: G � h〉) div ui .

Our current iteration just makes for the next iteration of the first for-loop, which
is under construction. So far, the number of actual iterations involved in this
construction, including the current one, is:

#(σ′, 〈ρ, g: G � h〉) mod ui .

We can generalize such amount in function of the state s we are actually considering:

m(s)
def
=

{
#(σ′, s) mod ui if s = 〈ρ, g: G � h〉 ∨ s = 〈ρ′, h: H � i〉
(#(σ′, s)− 1) mod ui if s = 〈ρ′′, i: I � g〉 .

To transform s, unrolling acts separately on its statement and its environment. We
write m instead of m(s) whenever s is clear from the context.

If m 〈ρ, g: G � h〉 = 0, the current iteration is the first one to take part to the
construction. Only in such case, the guard of P is replaced with the guard of the
first for-loop:
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g: x ≤ A2 � h 7→

{
gmi: x ≤ A2 − (li + ui − 1)A3 � hmi if m = 0

gmi: true � hmi if 0 < m ≤ ui − 1 .

If m 〈ρ′′, i: I � g〉 = ui − 1, the current iteration is the last one to take part
to the construction. Only in such case, the increment of P is replaced with the
increment of the first for-loop:

i: x := x + A3 � g 7→

{
imi: true � g(m+ 1)i if 0 ≤ m < ui − 1

imi: x := x + uiA3 � g0i if m = ui − 1 .

Regarding h: H � i, and supposing that m = m 〈ρ′, h: H � i〉, we have:

h: H � i 7→ hmi: H [x+mA3/x] � imi where 0 ≤ m ≤ ui − 1 .

To account for the m suppressed increments and to counterbalance the modifi-
cation of H, we update the environments as follows:

ρ 7→ ρ
[
x := x−mAJA3K ρ

]
ρ′ 7→ ρ′

[
x := x−mAJA3K ρ′

]
ρ′′ 7→ ρ′′

[
x := x−mAJA3K ρ′′

]
.

By transforming the states of σ′ one by one, unrolling turns the first (Rσ′(	)li):·
ui iterations of P into the (Rσ′(	)li) div ui iterations of the first for-loop.

To appreciate the transformation, let us consider the for-loop P we introduced
at the beginning of the previous Section, which was unrolled by splitting term 5
and unrolling factor 3, thus resulting in a new program P′:

// Before unrolling: P

for (x := 1; x ≤ 11; x := x + 1) {

w := x

}

// After unrolling: P′

for (x := 1; x ≤ 4; x := x + 3) {

w := x

w := x + 1

w := x + 2

}

for (; x ≤ 11; x := x + 1) {

w := x

}

Assume the sequence of splitting terms and unrolling factors is modeled after the
following table:

i 0 1 2 3 4 5 6 . . .

l 0 3 0 . . . . . . . . . 5 . . .
u 1 7 5 . . . . . . . . . 3 . . .

To attain unrolling as in the example, we let i
def
= 6, thus obtaining li = 5 and

ui = 3.
We now consider a maximal trace σ ∈ SJPK and review its transformation

state by state. We list the states of σ in a column and we apply the unrolling
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transformation to each state. If s is turned into s′, then we write s′ just on the
right of s. Thus the right column records the states of σ after the transformation.

The first state in our trace σ is:

〈 0, 0, f: x := 1 � g〉 〈 0, 0, f: x := 1 � g06〉

Since in P there are only two variables, x and w, any state noted 〈ρ, S〉 is here
written down as 〈ρ(x), ρ(w), S〉. Label g in the original state claims for the guard
of P to be checked next. In the transformed state we find G06 instead of g. Thus in
the next state we expect the guard of the first for-loop to checked.

The guard for the first for-loop is x ≤ 11− (l6 +u6− 1) · 1, that is, x ≤ 4. Index
variable x is to be given 1 as initial value and is to be incremented by (u6 − 1) + 1,
that is, by 3. Since u6 = 3 and

#σ′ = min(#σ, (R(σ)	 l6) :· u6) by (5.4)

= min(11, (11− 5) :· 3)

= min(11, 6) = 6 ,

the first for-loop is going to perform two iterations. The first of such iterations is
made out of the first u6 = 3 actual iterations of P:

〈 1, 0, g: x ≤ 11 � h〉 〈 1, 0, g06: x ≤ 4 � h06〉
〈 1, 0, h: w := x � i〉 〈 1, 0, h06: w := x � i06〉
〈 1, 1, i: x := x + 1 � g〉 〈 1, 1, i06: true � g16〉
〈 2, 1, g: x ≤ 11 � h〉 〈 1, 1, g16: true � h16〉
〈 2, 1, h: w := x � i〉 〈 1, 1, h16: w := x + 1 � i16〉
〈 2, 2, i: x := x + 1 � g〉 〈 1, 2, i16: true � g26〉
〈 3, 2, g: x ≤ 11 � h〉 〈 1, 2, g26: true � h26〉
〈 3, 2, h: w := x � i〉 〈 1, 2, h26: w := x + 2 � i26〉
〈 3, 3, i: x := x + 1 � g〉 〈 1, 3, i26: x := x + 3 � g06〉

Notice that, after the transformation, x evaluates to 1 throughout the iteration.
Still, the values assumed by w are left unchanged. The index i = 6 was appended to
every label in order to tell the statements of the first for-loop from the statements
of the second for-loop (namely, the statements of P). Amount m ∈ [0, u6 − 1] was
included, too, for two reasons:

• to provide statements with distinguishing labels, and
• to make each statement transition only to the the statement included in the

next state.

As a main consequence, a nonempty path was established from g06 to itself that
transitions through all statements just once. Along this path x is never assigned
but in the last statement, whose command is the increment of the first for-loop.
The increment updates the value of x and ask for the guard to be checked again,
thus introducing the second iteration:
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〈 4, 3, g: x ≤ 11 � h〉 〈 4, 3, g06: x ≤ 4 � h06〉
〈 4, 3, h: w := x � i〉 〈 4, 3, h06: w := x � i06〉
〈 4, 4, i: x := x + 1 � g〉 〈 4, 4, i06: true � g16〉
〈 5, 4, g: x ≤ 11 � h〉 〈 4, 4, g16: true � h16〉
〈 5, 4, h: w := x � i〉 〈 4, 4, h16: w := x + 1 � i16〉
〈 5, 5, i: x := x + 1 � g〉 〈 4, 5, i16: true � g26〉
〈 6, 5, g: x ≤ 11 � h〉 〈 4, 5, g26: true � h26〉
〈 6, 5, h: w := x � i〉 〈 4, 5, h26: w := x + 2 � i26〉
〈 6, 6, i: x := x + 1 � g〉 〈 4, 6, i26: x := x + 3 � g06〉

The increment of the second iteration updates x to 7 and again requires the guard
of the first for-loop to be checked again. While acknowledging x > 4, a transition
is needed from g06 to g, in order to enter the second for-loop. The following state
just accomplishes this task:

〈 7, 6, g06: x > 4 � g〉

The remaining #σ′′ = 5 iterations are left unchanged:

〈 7, 6, g: x ≤ 11 � h〉 〈 7, 6, g: x ≤ 11 � h〉
〈 7, 6, h: w := x � i〉 〈 7, 6, h: w := x � i〉
〈 7, 7, i: x := x + 1 � g〉 〈 7, 7, i: x := x + 1 � g〉

〈 8, 7, g: x ≤ 11 � h〉 〈 8, 7, g: x ≤ 11 � h〉
〈 8, 7, h: w := x � i〉 〈 8, 7, h: w := x � i〉
〈 8, 8, i: x := x + 1 � g〉 〈 8, 8, i: x := x + 1 � g〉

〈 9, 8, g: x ≤ 11 � h〉 〈 9, 8, g: x ≤ 11 � h〉
〈 9, 8, h: w := x � i〉 〈 9, 8, h: w := x � i〉
〈 9, 9, i: x := x + 1 � g〉 〈 9, 9, i: x := x + 1 � g〉

〈 10, 9, g: x ≤ 11 � h〉 〈 10, 9, g: x ≤ 11 � h〉
〈 10, 9, h: w := x � i〉 〈 10, 9, h: w := x � i〉
〈 10, 10, i: x := x + 1 � g〉 〈 10, 10, i: x := x + 1 � g〉

〈 11, 10, g: x ≤ 11 � h〉 〈 11, 10, g: x ≤ 11 � h〉
〈 11, 10, h: w := x � i〉 〈 11, 10, h: w := x � i〉
〈 11, 11, i: x := x + 1 � g〉 〈 11, 11, i: x := x + 1 � g〉

The final state is left unchanged, too:

〈 12, 11, g: x > 11 � j〉 〈 12, 11, g: x > 11 � j〉
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It is easy to verify that the sequence of states in the right column is a trace; let us
call it µ. By collecting all the statements along the states of µ, we obtain a new
program P′′:

// After unrolling: P′′

for (x := 1; x ≤ 4; x := x + 3) {

w := x

true

true

w := x + 1

true

true

w := x + 2

}

for (; x ≤ 11; x := x + 1) {

w := x

}

Therefore µ ∈ SJP′′K. Notice that P′′ just reduces to P′ after we get rid of the true

statements.
Although σ ∈ SJPK and µ ∈ SJP′′K are about the same length and they agree

on the values they provide to w, program P′′ is much longer than P. In order not
to be deceived by the loop headers and true statements, let us consider only the
assignments on w. Then we find only one of such assignments in P,

h: w := x � i ,

whereas we find four of them in P′′:

h05: w := x � i05

h15: w := x + 1 � i15

h25: w := x + 2 � i25

h: w := x � i .

Yet, the semantics of w is preserved because each assignment in P′′ carries out just
a fraction of the task performed by the only assignment of P.

Indeed, h: w := x � i ∈ P implements the body in all the eleven iterations of σ,
thus covering the entire iteration space I,

I = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 } . (5.7)

In particular, it can be thought as trivially partitioning I into

{ { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 } } , (5.8)

where the existence of a unique class entails that, as far as we are not concerned
with environments, all iterations become indistinguishable, thereby collapsing or
folding to the same set of statements.
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On the other side, h05: w := x � i05 ∈ P′′ implements in µ the body of only the
first and the fourth iteration of σ, thus covering { 1, 4 }. Through similar arguments,
we eventually obtain the results we report here below:

h05: w := x � i05 { 1, 4 }
h15: w := x + 1 � i15 { 2, 5 }
h25: w := x + 2 � i25 { 3, 6 }
h: w := x � i { 7, 8, 9, 10, 11 } .

If we collect the four sets on the right, we get again a partition of I:

{ { 1, 4 } , { 2, 5 } , { 3, 6 } , { 7, 8, 9, 10, 11 } } . (5.9)

Since (5.9) is a refinement of (5.8), it provides a less radical folding scheme where
iterations, rather than eventually collapsing all together once environments are
discarded, collapse if and only if they are in the same class.

The class an iteration is ascribed to originates from the sort of transformation
unrolling let such iteration undergo. Our example above broadly suggests that
unrolling transforms a state 〈ρ, S〉 by shifting some information from ρ to S. In the
first place, this implies that information is dragged out from environments; consider
for instance how the value of x evolves throughout the first three iterations: while in
σ it marks the progress of the for-loop, in µ it becomes insensitive to the progress
and remains constant. In the second place, the informational shift is directed to
statements, thus implying that labels or commands are modified to record the
incoming information. As the recording is not required to be complete, in general
the informational shift is lossy. This explains why iterations, and in particular their
statements, usually do not differentiate perfectly, that is, why each iteration does
not form its own class in the partitioning of I.

In our example, for any state 〈ρ, S〉 in σ′, unrolling shifts

(ρ(x)− 1) mod ui (5.10)

from ρ to S. Because (5.10) is modeled after the modulo function λn. n mod ui,
because ui = 3 and because #σ′ = 6, in (5.9) we have { 1, 4 }, { 2, 5 } and { 3, 6 },
instead of { 1 }, { 2 }, . . . { 6 }. As regards the states of σ′′, unrolling performs a
void shift, thus leaving these states unchanged. Unrolling thereby attempts nothing
to prevent the last #σ′ = 5 iterations from collapsing all together. As a result,
in (5.9) we also have the last class { 7, 8, 9, 10, 11 }. All in all, in (5.9) there are
u6 + 1 = 3 + 1 = 4 iterations.

In general, an iteration space I is partitioned into ui+1 classes if (R(σ)	 li) :·ui
and i > 0; otherwise it is partitioned into one class only. Later, in Section 5.8, we
take a more formal approach to the partitions induced by loop unrolling.

Regardless of the approach, the more the classes in the partition, the larger
the amount of information that has been shifted from environments to statements.
Hence loop unrolling can be seen as a natural incomplete information extractor,
which syntactically exhibits iterations by displaying them as a sequence of programs.
We take advantage of loop unrolling in the next Chapter to design a watermarking
technique for embedding an authorship mark or a fingerprint within a for-loop.
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5.5 Syntactic Transformer

The algorithm uthat implements loop unrolling takes i, l and u as parameters and
a for-loop P as argument. If i = 0, it returns P, that is, it performs neither unrolling
nor splitting. If i > 0 then P is split by li in two for-loops: the first one is unrolled
by ui, whereas the second one is unrolled by the trivial unrolling factor u0 = 1.

LJuJPKK def
= LJPK (5.11)

uJPK def
=
⋃
{ uJSK | S ∈ P } (5.12)

uJ`: C � gK def
= { `: C � g | i = 0 } where ` 6= i

∪{ `: C � g0i′ | i′ > 0 ∧ i′ = i }
(5.13)

uJg: x > A2 � jK def
= { g: x > A2 � j }
∪ { g0i′: x > A2 − (li′ + ui′ − 1)A3 � g | i′ > 0 ∧ i′ = i }

(5.14)

uJg: x ≤ A2 � hK def
= { g: x ≤ A2 � h }
∪ { g0i′: x ≤ A2 − (li′ + ui′ − 1)A3 � h0i′ | i′ > 0 ∧ i′ = i }
∪ { gmi: true � hmi | m ∈ (0, ui − 1] }

(5.15)

uJh: H � iK def
= { h: H � i }
∪ { h0i′: H � i0i′ | i′ > 0 ∧ i′ = i }
∪ { hmi: H [x+mA3/x] � imi | m ∈ (0, ui − 1] }

(5.16)

uJi: x := x + A3 � gK def
= { i: x := x + A3 � g }
∪ { i(ui′ − 1)i′: x := x + ui′A3 � g0i′ | i′ > 0 ∧ i′ = i }
∪ { imi: true � g(m+ 1)i | m ∈ [0, ui − 1) }

(5.17)

Notice that, instead of an explicit definition for transforming f: x := A1 � g, we
have introduced (5.13). This more general definition allows us to unroll for-loops
which lack a statement for the initialization of x, as in the case of the second
for-loop resulting from the unrolling of P.

5.6 Semantic Transformer

The semantic transformer u for loop unrolling is recursively defined through state
transformers. Each state transformer takes in input a state s and two values m and
i, assuming that m = m(s) and that i points to the splitting term and unrolling
factor that are intended for s.

For the state 〈ρ, `: C � g〉 that comes before the iterations of P we have:
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u(〈ρ, `: C � g〉 ,m, i) = where ` 6= i

if i = 0 then

〈ρ, `: C � g〉 (5.18)

if i > 0 then

〈ρ, `: C � g0i〉 (5.19)

The transformation of 〈ρ, g: x ≤ A2 � h〉 relies on m. In case m = 0, boolean
expression x ≤ A2 − (li + ui − 1)A3 is checked to determine whether the current
iteration of P makes for the next iteration of the first for-loop. If not, the additional
state transitioning from the first to the second for-loop is inserted:

u(〈ρ, g: x ≤ A2 � h〉 ,m, i) =

if (i = 0 ∧m = 0) ∨ (i > 0 ∧ BJx > A2 − (li + ui − 1)A3K ρ ∧ ρ(∆) = 1) then〈
ρ
[

∆ := 0
]
, g: x ≤ A2 � h

〉
(5.20)

if i > 0 ∧m = 0 ∧ BJx ≤ A2 − (li + ui − 1)A3K ρ then

〈ρ, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉 (5.21)

if i > 0 ∧m = 0 ∧ BJx > A2 − (li + ui − 1)A3K ρ ∧ ρ(∆) = 0 then

〈ρ, g0i: x > A2 − (li + ui − 1)A3 � g〉 (5.22)

if 0 < m ≤ ui − 1 then〈
ρ
[
x := AJx−mA3K ρ

]
, gmi: true � hmi

〉
(5.23)

Whenever 〈ρ, g: x > A2 � h〉 is met, surely there are no actual iterations of P left
over. If the transition from the first to the second for-loop has not occurred yet,
the additional state is inserted. In any case, 〈ρ, g: x > A2 � h〉 is appended last.

u(〈ρ, g: x > A2 � h〉 , 0, i) =

if i = 0 ∨ (i > 0 ∧ ρ(∆) = 1) then〈
ρ
[

∆ := 0
]
, g: x > A2 � j

〉
(5.24)

if i > 0 ∧ ρ(∆) = 0 then

〈ρ, g0i: x > A2 − (li + ui − 1)A3 � g〉 (5.25)

States 〈ρ, h: H � i〉 and 〈ρ, i: x := x + A3 � g〉 are transformed according to the
principles discussed in Section 5.4:

u(〈ρ, h: H � i〉 ,m, i) =

if i = 0 then

〈ρ, h: H � i〉 (5.26)

if i > 0 then

〈ρ, hmi: H [x+mA3/x] � imi〉 (5.27)

u(〈ρ, i: x := x + A3 � g〉 ,m, i) =

if i = 0 then

〈ρ, i: x := x + A3 � g〉 (5.28)
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if i > 0 ∧m = ui − 1 then〈
ρ
[
x := AJx− (ui − 1)A3K ρ

]
, i(ui − 1)i: x := x + uiA3 � g0i

〉
(5.29)

if i > 0 ∧ 0 ≤ m < ui − 1 then〈
ρ
[
x := AJx−mA3K ρ

]
, imi: true � g(m+ 1)i

〉
(5.30)

5.7 Local Commutation Condition

The auxiliary function u′ includes the following state transformers, each one meant
to perfectly undo a state transformer in u:

u′ 〈ρ′, `: C � g0i〉 = where ` 6= i

(〈ρ′, `: C � g〉 , 0, i) (5.31)

u′ 〈ρ′, `: C � g〉 = where ` 6= i

(〈ρ′, `: C � g〉 , 0, 0) (5.32)

u′ 〈ρ′, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉 =

(〈ρ′, g: x ≤ A2 � h〉 , 0, i) (5.33)

u′ 〈ρ′, gmi: true � hmi〉 =(〈
ρ′
[
x := AJx +mA3K ρ′

]
, g: x ≤ A2 � h

〉
,m, i

)
(5.34)

u′ 〈ρ′, g: x ≤ A2 � h〉 =

(〈ρ′, g: x ≤ A2 � h〉 , 0, 0) (5.35)

u′ 〈ρ′, hmi: H � imi〉 =(〈
ρ′
[
x := AJx +mA3K ρ′

]
, h: H [x−mA3/x] � i

〉
,m, i

)
(5.36)

u′ 〈ρ′, h: H � i〉 =

(〈ρ′, h: H � i〉 , 0, 0) (5.37)

u′ 〈ρ′, imi: true � g(m+ 1)i〉 =(〈
ρ′
[
x := AJx +mA3K ρ′

]
, i: x := x + A3 � g

〉
,m+ 1, i

)
(5.38)

u′ 〈ρ′, imi: x := x + uiA3 � gmi〉 =(〈
ρ′
[
x := AJx + (ui − 1)A3K ρ′

]
, i: x := x + A3 � g

〉
,m, i

)
(5.39)

u′ 〈ρ′, i: x := x + A3 � g〉 =

(〈ρ′, i: x := x + A3 � g〉 , 0, 0) (5.40)

Notice that each transformer takes a state s = 〈ρ, S〉 and returns a state s′ and
two values m and i. Such values are just those found in sucJSK and they are meant
to be used to transform any state possibly coming after s′.

The auxiliary function also includes a special state transformer for undoing the
additional state providing the transition from the first to the second for-loop:

u′ 〈ρ′, g0i: x > A2 − (li + ui − 1)A3 � g〉 =(〈
ρ′
[

∆ := 1
]
, i: true � g

〉
, 0, 0

)
(5.41)

Observe that, whichever is the value of i > 0, this state transformer set i to 0, thus
enforcing trivial unrolling on the second for-loop.
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We can now formally prove that u and u are respectively the syntactic and the
semantic counterpart of loop unrolling.

Theorem 5.4. Let P be a for-loop. Then ∀n ∈ N. Fnu JPK∅ = FnJuJPKK∅.

Proof. We let t = u, t = u and t′ = u′, and just prove (2.81) and (2.82).
First we prove (2.81). Let i = 0.

u(IJPK) = u({ 〈ρ, S〉 | ρ ∈ EJPK ∧ S ∈ P ∧ labJSK ∈ LJPK }) by (2.45)

= { u(〈ρ, S〉 , 0, 0) | ρ ∈ EJPK ∧ S ∈ P ∧ labJSK ∈ LJPK } by (2.68)

= { u(〈ρ, f: y := A1 � g〉 , 0, 0) | ρ ∈ EJPK }
= { 〈ρ, f: x := A1 � g〉 | ρ ∈ EJPK } by (5.18)

= { 〈ρ, f: x := A1 � g〉 | ρ ∈ EJuJPKK } by definition of u

= { 〈ρ, S〉 | ρ ∈ EJPK ∧ S ∈ uJPK ∧ labJSK ∈ LJuJPKK }
= IJuJPKK by (2.45)

Let i > 0.

u(IJPK) = u({ 〈ρ, S〉 | ρ ∈ EJPK ∧ S ∈ P ∧ labJSK ∈ LJPK }) by (2.45)

= { u(〈ρ, S〉 , 0, i) | ρ ∈ EJPK ∧ S ∈ P ∧ labJSK ∈ LJPK } by (2.68)

= { u(〈ρ, f: y := A1 � g〉 , 0, i) | ρ ∈ EJPK }
= { 〈ρ, f: x := A1 � g0i〉 | ρ ∈ EJPK } by (5.19)

= { 〈ρ, f: x := A1 � g0i〉 | ρ ∈ EJuJPKK } by definition of u

= { 〈ρ, S〉 | ρ ∈ EJPK ∧ S ∈ uJPK ∧ labJSK ∈ LJuJPKK }
= IJuJPKK by (2.45)

We now prove (2.82). Let i = 0.

• Let η be such that a η = 〈ρ′, f: x := A1 � g〉.
On the one hand,
let ρ′′ = ρ′

[
x := AJA1K ρ′

]
.

Then Ru(η) = { 〈ρ′′, g: x ≤ A2 � h〉 , 〈ρ′′, g: x > A2 � j〉 }.
On the other hand,
we have u′(a η) = (5.32)

=(〈ρ′, f: x := A1 � g〉 , 0, 0)

Let ρ = ρ′
[
x := AJA1K ρ′

]
.

If BJx > A2K ρ then
u(s, 0, 0) = u(〈ρ, g: x > A2 � j〉 , 0, 0)

= (5.24)

= 〈ρ, g: x > A2 � j〉
=
〈
ρ′
[
x := AJA1K ρ′

]
, g: x > A2 � j

〉
= 〈ρ′′, g: x > A2 � j〉 .
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If BJx ≤ A2K ρ then
u(s, 0, 0) = u(〈ρ, g: x ≤ A2 � h〉 , 0, 0)

= (5.20)

= 〈ρ, g: x ≤ A2 � h〉
=
〈
ρ′
[
x := AJA1K ρ′

]
, g: x ≤ A2 � h

〉
= 〈ρ′′, g: x ≤ A2 � h〉 .

• Let η be such that a η = 〈ρ′, g: x ≤ A2 � h〉.
On the one hand,
let ρ′′ = ρ′.
Then Ru(η) = { 〈ρ′′, h: H � i〉 }.
On the other hand,
we have u′(a η) = (5.35)
Let ρ = ρ′.
Then
u(s, 0, 0) = u(〈ρ, h: H � i〉 , 0, 0)

= (5.26)

= 〈ρ′, h: H � i〉
= 〈ρ′′, h: H � i〉 .

• Let η be such that a η = 〈ρ′, h: H � i〉.
On the one hand,
let ρ′′ ∈ CJHK ρ′.
Then Ru(η) = { 〈ρ′′, i: x := x + A3 � g〉 }.
On the other hand,
we have u′(a η) = (5.37)
Let ρ ∈ CJHK ρ′.
Then
u(s, 0, 0) = u(〈ρ, i: x := x + A3 � g〉 , 0, 0)

= (5.28)

= 〈ρ, i: x := x + A3 � g〉
= 〈ρ′′, i: x := x + A3 � g〉 .

• Let η be such that a η = 〈ρ′, i: x := x + A3 � g〉.
On the one hand,
let ρ′′ = ρ′

[
x := AJx + A3K ρ′

]
.

Then Ru(η) = { 〈ρ′′, g: x ≤ A2 � h〉 , 〈ρ′′, g: x > A2 � j〉 }.
On the other hand,
we have u′(a η) = (5.40)

Let ρ = ρ′
[
x := AJx + A3K ρ′

]
.

If BJx > A2K ρ then
u(s, 0, 0) = u(〈ρ, g: x > A2 � j〉 , 0, 0)

= (5.24)

= 〈ρ, g: x > A2 � j〉
=
〈
ρ′
[
x := AJx + A3K ρ′

]
, g: x > A2 � j

〉
= 〈ρ′′, g: x > A2 � j〉 .
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If BJx ≤ A2K ρ then
u(s, 0, 0) = u(〈ρ, g: x ≤ A2 � h〉 , 0, 0)

= (5.20)

= 〈ρ, g: x ≤ A2 � h〉
=
〈
ρ′
[
x := AJx + A3K ρ′

]
, g: x ≤ A2 � h

〉
= 〈ρ′′, g: x ≤ A2 � h〉

Let i > 0.

• Let η be such that a η = 〈ρ′, f: x := A1 � g〉.
On the one hand,
let ρ′′ = ρ′

[
x := AJA1K ρ′

]
.

Then Ru(η) = {〈ρ′′, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉 ,
〈ρ′′, g0i: x > A2 − (li + ui − 1)A3 � g〉}.

On the other hand,
we have u′(a η) = (5.31)

Let ρ = ρ′
[
x := AJA1K ρ′

]
.

If BJx > A2K ρ then
u(s, 0, i) = u(〈ρ, g: x > A2 � j〉 , 0, i)

= (5.25)

= 〈ρ, g0i: x > A2 − (li + ui − 1)A3 � g〉
=
〈
ρ′
[
x := AJA1K ρ′

]
, g0i: x > A2 − (li + ui − 1)A3 � g

〉
= 〈ρ′′, g0i: x > A2 − (li + ui − 1)A3 � g〉 .

If BJx ≤ A2K ρ ∧ BJx > A2 − (li + ui − 1)A3K ρ then
u(s, 0, i) = u(〈ρ, g: x ≤ A2 � h〉 , 0, i)

= (5.22)

= 〈ρ, g0i: x > A2 − (li + ui − 1)A3 � g〉
=
〈
ρ′
[
x := AJA1K ρ′

]
, g0i: x > A2 − (li + ui − 1)A3 � g

〉
= 〈ρ′′, g0i: x > A2 − (li + ui − 1)A3 � g〉 .

If BJx ≤ A2K ρ ∧ BJx ≤ A2 − (li + ui − 1)A3K ρ then
u(s, 0, i) = u(〈ρ, g: x ≤ A2 � h〉 , 0, i)

= (5.21)

= 〈ρ, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉
=
〈
ρ′
[
x := AJA1K ρ′

]
, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i

〉
= 〈ρ′′, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉

.

• Let η be such that a η = 〈ρ′, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉.
On the one hand,
let ρ′′ = ρ′.
Then Ru(η) = { 〈ρ′′, h0i: H � i0i〉 }.
On the other hand,
we have u′(a η) = (5.33)
Let ρ = ρ′.
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Then
u(s, 0, i) = u(〈ρ, h: H � i〉 , 0, i)

= (5.27)

= 〈ρ, h0i: H � i0i〉
= 〈ρ′, h0i: H � i0i〉
= 〈ρ′′, h0i: H � i0i〉 .

• Let 0 ≤ m ≤ ui − 1. Let η be such that a η = 〈ρ′, hmi: H � imi〉.
– Let 0 ≤ m < ui − 1.

On the one hand,
let ρ′′ ∈ CJHK ρ′.
Then Ru(η) = { 〈ρ′′, imi: true � g(m+ 1)i〉 }.
On the other hand,
we have u′(a η) = (5.36)

=
(〈
ρ′
[
x := AJx +mA3K ρ′

]
, h: H [x−mA3/x] � i

〉
,m, i

)
.

Let ρ ∈ CJH [x−mA3/x]K ρ′
[
x := AJx +mA3K ρ′

]
.

Then
u(s,m, i) = u(〈ρ, i: x := x−mA3 � g〉 ,m, i)

= (5.30)

=
〈
ρ
[
x := AJx−mA3K ρ′

]
, imi: true � g(m+ 1)i

〉
.

By Lemma 2.4, we have ρ
[
x := AJx−mA3K ρ′

]
∈ CJHK ρ′.

So we can identify ρ
[
x := AJx−mA3K ρ′

]
with ρ′′.

– Let m = ui − 1.
On the one hand,
let ρ′′ ∈ CJHK ρ′.
Then Ru(η) = { 〈ρ′′, i(ui − 1)i: x := x + uiA3 � g0i〉 }.
On the other hand,
we have u′(a η) = (5.36)

=
(〈
ρ′
[
x := AJx +mA3K ρ′

]
, h: H [x−mA3/x] � i

〉
,m, i

)
.

Let ρ ∈ CJH [x−mA3/x]K ρ′
[
x := AJx +mA3K ρ′

]
.

Then
u(s,m, i) = u(〈ρ, i: x := x−mA3 � g〉 ,m, i)

= (5.29)

=
〈
ρ
[
x := AJx−mA3K ρ′

]
, i(ui − 1)i: x := x + uiA3 � g0i

〉
.

By Lemma 2.4, we have ρ
[
x := AJx−mA3K ρ′

]
∈ CJHK ρ′.

So we can identify ρ
[
x := AJx−mA3K ρ′

]
with ρ′′.

• Let 0 ≤ m < ui − 1. Let η be such that a η = 〈ρ′, imi: true � g(m+ 1)i〉.
On the one hand,
let ρ′′ = ρ′.
Then Ru(η) = { 〈ρ′′, g(m+ 1)i: true � h(m+ 1)i〉 }.
On the other hand,
we have u′(a η) = (5.38)
Let ρ = ρ′.
Then
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s=
〈
ρ′
[
x := AJx +mA3K ρ

][
x := AJx + A3K ρ′

[
x := AJx +mA3K ρ′

]]
, g: x ≤ A2 � h

〉
=
〈
ρ′
[
x := AJx + (m+ 1)A3K ρ′

]
, g: x ≤ A2 � h

〉
and
u(s,m, i) = u(

〈
ρ′
[
x := AJx + (m+ 1)A3K ρ′

]
, g: x ≤ A2 � h

〉
,m, i)

= (5.23)

= 〈ρ′′, g(m+ 1)i: true � h(m+ 1)i〉 .
• Let η be such that a η = 〈ρ′, g(m+ 1)i: true � h(m+ 1)i〉.

On the one hand,
let ρ′′ = ρ′.
Then Ru(η) = { 〈ρ′′, h(m+ 1)i: H [x+(m+1)A3/x] � i(m+ 1)i〉 }.
On the other hand,
we have u′(a η) = (5.34)
Let ρ = ρ′.
Then
u(s,m+ 1, i) = u(

〈
ρ′
[
x := AJx + (m+ 1)A3K ρ′

]
, h: H � i

〉
,m+ 1, i)

= (5.27)

= 〈ρ, h(m+ 1)i: H [x+(m+1)A3/x] � i(m+ 1)i〉
= 〈ρ′, h(m+ 1)i: H [x+(m+1)A3/x] � i(m+ 1)i〉
= 〈ρ′′, h(m+ 1)i: H [x+(m+1)A3/x] � i(m+ 1)i〉 .

• Let m = ui − 1. Let η be such that a η = 〈ρ′, i(ui − 1)i: x := x + uiA3 � g0i〉.
On the one hand,
let ρ′′ = ρ′

[
x := AJx + uiA3K ρ′

]
.

Then Ru(η) = {〈ρ′′, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉 ,
〈ρ′′, g0i: x > A2 − (li + ui − 1)A3 � g〉} .

On the other hand,
we have u′(a η) = (5.31)

Let ρ = ρ′
[
x := AJx + uiA3K ρ′

]
.

If BJx > A2K ρ then
u(s, 0, i) = u(〈ρ, g: x > A2 � j〉 , 0, i)

= (5.25)

= 〈ρ, g0i: x > A2 − (li + ui − 1)A3 � g〉
=
〈
ρ′
[
x := AJx + uiA3K ρ′

]
, g0i: x > A2 − (li + ui − 1)A3 � g

〉
= 〈ρ′′, g0i: x > A2 − (li + ui − 1)A3 � g〉 .

If BJx ≤ A2K ρ ∧ BJx > A2 − (li + ui − 1)A3K ρ then
u(s, 0, i) = u(〈ρ, g: x ≤ A2 � h〉 , 0, i)

= (5.22)

= 〈ρ, g0i: x > A2 − (li + ui − 1)A3 � g〉
=
〈
ρ′
[
x := AJx + uiA3K ρ′

]
, g0i: x > A2 − (li + ui − 1)A3 � g

〉
= 〈ρ′′, g0i: x > A2 − (li + ui − 1)A3 � g〉 .
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If BJx ≤ A2K ρ ∧ BJx ≤ A2 − (li + ui − 1)A3K ρ then
u(s, 0, i) = u(〈ρ, g: x ≤ A2 � h〉 , 0, i)

= (5.21)

= 〈ρ, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉
=
〈
ρ′
[
x := AJx + uiA3K ρ′

]
, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i

〉
= 〈ρ′′, g0i: x ≤ A2 − (li + ui − 1)A3 � h0i〉 .

• Let m = 0.
Let η be such that a η = 〈ρ′, g0i: x > A2 − (li + ui − 1)A3 � g〉.
On the one hand,
let ρ′′ = ρ′.
Then Ru(η) = { 〈ρ′′, g: x > A2 � j〉 , 〈ρ′′, g: x ≤ A2 � h〉 }.
On the other hand,
we have u′(a η) = (5.41)
Let ρ = ρ′.
If BJx > A2K ρ then
u(s, 0, i) = u(〈ρ, h: x > A2 � j〉 , 0, 0)

= (5.24)

= 〈ρ, h: x > A2 � j〉
= 〈ρ′, h: x > A2 � j〉
= 〈ρ′′, h: x > A2 � j〉 .

If BJx ≤ A2K ρ then
u(s, 0, i) = u(〈ρ, h: x ≤ A2 � h〉 , 0, 0)

= (5.20)

= 〈ρ, h: x ≤ A2 � h〉
= 〈ρ′, h: x ≤ A2 � h〉
= 〈ρ′′, h: x ≤ A2 � h〉 .

ut

5.8 Folding

By the end of Section 5.4 we observed that, by shifting some information from
environments to statements, loop unrolling induces a partition on the set of
iterations: the more refined is the partition, the larger is the amount of information
shifted. In that Section we reasoned informally on an example, abstracting iterations
to index vectors and considering partitions on the iteration space. In the present
Section we take advantage of the semantic transformer u to recast our observations
in a more formal framework. In particular, we consider the set of actual iterations
and investigate how the choice of i affects the partitioning of that set.

Let σ ∈ dg(SJPK). Then the set of all the iterations that are found in σ is
eg(σ). We define on eg(σ) an equivalence relation ∼i such that, given two iterations
θ, θ′ ∈ eg(σ),

θ ∼i θ′ if and only if p(u(θ)) = p(u(θ′)) . (5.42)
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Thus θ and θ′ are in relation if and only if, after having been transformed by
splitting term li and unrolling factor ui, they still have the same statements. Since
the definition of ∼i is modeled after an equality, it is easy to prove that ∼i is an
equivalence relation.

The partition induced by u on eg(σ) is eg(σ)/∼i . We claim that every class of
iterations in eg(σ)/∼i ultimately reduces to one of the following sets:

eg,≤,i(σ)
def
= { θ ∈ eg(σ) | R(θ) ≤ R(σ)− (R(σ)	 li) :· ui } (5.43)

eg,m,i(σ)
def
= { θ ∈ eg(σ) | R(θ) > R(σ)− (R(σ)	 li) :· ui

∧#(σ,` θ) mod ui = m}
(5.44)

Recall that, by (5.2), (5.3) and (5.4), unrolling divides σ into σ′, σ′′ ∈ dg(SJPK)
such that σ′σ′′ = σ and #σ′ = min(#σ, (R(σ) 	 li) :· ui), and transform σ′ by
splitting term li and unrolling factor ui, whereas it leaves σ′′ unchanged. Then:

• (5.43) collects the iterations of σ′′;
• (5.44) collects every iteration θ of σ′ such that #(σ,` θ) mod ui = m, where
m is a parameter supposedly ranging from 0 to ui − 1.

This is proved in the following

Theorem 5.5. eg(σ)/∼i
= { eg,≤,i(σ) } ∪ { eg,m,i(σ) | 0 ≤ m ≤ ui − 1 }.

Proof. Let θ ∈ eg(σ). Then, of course, [θ]∼i
∈ eg(σ)/∼i

. Moreover, by definition of
quotient set, for all θ′ ∈ eg(σ) we have that θ′ ∈ [θ]∼i

if and only if θ′ ∼i θ′.
Let us focus on the latter statement. By (5.42), θ′ ∼i θ if and only if p(u(θ)) =

p(u(θ′)). By definition of u and p, this equality holds if and only if θ is transformed
by splitting term m′ and unrolling factor i′, and θ is transformed by splitting term
m′′ and unrolling factor i′′, and m′ = m′′ and i′ = i′′ and p(θ) = p(θ′). We now
consider two cases.

Suppose R(θ′) ≤ R(σ) − (R(σ) 	 li) :· ui. At the same time, this entails i′ =
i′′ = i = 0. Ultimately, it is equivalent to θ′ ∈ eg,≤,i(σ). Thus we have θ′ ∈ [θ]∼i

if
and only if θ′ ∈ eg,≤,i(σ), whence [θ]∼i

= eg,≤,i(σ).
Suppose R(θ′) > R(σ) − (R(σ) 	 li) :· ui. At the same time, this entails i′ =

i′′ = i ≥ 0 and m′ = #(σ,` θ) mod ui′ = #(σ,` θ′) mod ui′′ = m′′. This in
turn is equivalent to θ′ ∈ eg,#(σ,` θ) mod ui′ ,i

′′(σ). Because i′ = i′′ = i ≥ 0 and
0 ≤ #(σ,` θ) mod ui′ ≤ ui′ −1, it is ultimately equivalent to θ′ ∈ eg,m,i′′(σ), where
0 ≤ m ≤ ui − 1. Thus we have θ′ ∈ [θ]∼i

if and only if θ′ ∈ eg,m,i′′(σ), whence
[θ]∼i

= eg,m,i′′(σ). ut

We now discuss the special case when i = 0. There is no unrolling at all when
i = 0, as in such case every state transformer in u acts as the identical function.
Moreover we have:

#σ ≤ (R(σ)	 l0) :· u0

= (R(σ)	 0) :· 1
= R(σ) .

As a consequence, #σ′ = #σ by (5.4) and #σ′′ = 0 by (5.5). We thereby expect
eg,≤,0(σ) to be the empty set and eg,0,0(σ) to just be eg(σ).
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Proposition 5.6. eg,≤,0(σ) = ∅.

Proof. We have:

eg,≤,0(σ) = { θ ∈ eg(σ) | R(θ) ≤ R(σ)− (R(σ)	 l0) :· u0 } by (5.43)

= { θ ∈ eg(σ) | R(θ) ≤ R(σ)− (R(σ)	 0) :· 1 }
= { θ ∈ eg(σ) | R(θ) ≤ R(σ)−R(σ) }
= { θ ∈ eg(σ) | R(θ) ≤ 0 }
= ∅ .

ut

Proposition 5.7. eg,0,0(σ) = eg(σ).

Proof. We have:

eg,0,0(σ) = { θ ∈ eg(σ) | R(θ) > R(σ)− (R(σ)	 l0) :· u0

∧#(σ,` θ) mod u0 = 0}
by (5.44)

= { θ ∈ eg(σ) | R(θ) > R(σ)− (R(σ)	 0) :· 1
∧#(σ,` θ) mod 1 = 0}

= { θ ∈ eg(σ) | R(θ) > R(σ)−R(σ) ∧ true }
= { θ ∈ eg(σ) | R(θ) > 0 }
= eg(σ) .

ut

Thus, whenever i = 0, we expect eg(σ)/∼i
to have only one class.

Theorem 5.8. eg(σ)/∼0 = { eg(σ) }.

Proof. We have:

eg(σ)/∼0 = { eg,≤,i(σ) } ∪ { eg,m,0(σ) | 0 ≤ m ≤ u0 − 1 } by Theorem 5.5

= { eg,≤,i(σ) } ∪ { eg,m,0(σ) | 0 ≤ m ≤ 1− 1 }
= { eg,≤,i(σ) } ∪ { eg,0,0(σ) }
= { eg,≤,i(σ) } ∪ { eg(σ) } by Proposition 5.7

= ∅ ∪ { eg(σ) } by Proposition 5.6

= { eg(σ) } .

ut

As a main consequence of Theorem 5.8, ∼i is always a refinement of ∼0. This
implies that in eg(σ)/∼i

there are as many classes as in eg(σ)/∼0
, or even more.

This in turn entails that whenever unrolling is not trivial, it is effective in making
iterations differentiate, even if only partially. Hence the formal argument provided
by Theorem 5.8 allows us to consider loop unrolling an information extractor. We
take advantage of loop unrolling in the next Chapter to design a watermarking
technique for embedding an authorship mark or a fingerprint within a for-loop.



6

Hiding Software Watermarks in Looping
Constructs

We take advantage of loop unrolling, which in the previous Chapter was shown to
be a sort of information extractor, to introduce a novel watermarking technique.
Such proposal is a joint work [38] with Mila Dalla Preda and Roberto Giacobazzi.
We provide a public marking scheme with the passive embedding of an invisible
authorship mark, which we call the signature for short. We exploit unrolling as the
engine of both the embedding and the extraction algorithm. Our watermarking
scheme qualitatively complies with all the claims we made in Chapter 1 but the
last one.

6.1 Steganographic Approach to Software Watermarking

Most of the existing watermarking techniques target a program feature which can
assume many configurations, but hide the watermark in just one of them. Consider,
for example, the watermarking technique [98] that modifies the register allocation:
although there are many allocations that suit the program data flow, only one
is designated to be the signature and thereby used in the marked program. The
same idea applies in [42], where a distinctive permutation of basic blocks is selected
among the many possible ones. Both [42] and [98] are static techniques, because
they affect only the layout of programs. Notice that a statically watermarked
program exhibits only the watermark configuration and rules out all the other ones:
this may help, rather than hinder, attackers, not to mention the ease of subverting
layout while preserving functionality.

Dynamic watermarking techniques exploit configurations that programs assume
at runtime, thus allowing many candidate configurations to coexist in the same
program. For instance, the path-based technique [16] targets the runtime branching
behavior of programs: a program executes different paths on different inputs, but
only the special input provides the path that outlines the signature. Likewise, the
threading technique [85] yields multi-thread programs in which different configura-
tions arise from how race conditions between threads are resolved; once again, a
special input provides the configuration associated to the signature. Such dynamic
techniques are not trivial to thwart: both branching and threading behaviors are
tied to functionality, hence their distortion may result in a distortion of functionality.
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The coexistence of watermarked and unwatermarked configurations within the
same program also characterizes the abstract watermarking technique [34]. Here a
configuration is a parametric abstract domain saying whether a watermark variable
w, which is assigned twice and computed through the Horner scheme, is constant or
not. Observe that the main point is not the use of the Horner scheme but the fact
that w is constant only in the domain parametrized by a key, while other domains
consider w to have stochastic behavior [34].

Contrary to [34], loops are the basic block of the dynamic watermarking
technique we propose here. We know from the previous Chapters that a loop P is a
programming construct in which a program H, called the loop body, is executed
repeatedly, thus giving rise to sequences of iterations. In the proposed technique,
any subsequence of such sequences is a candidate watermarking configuration. We
consider loop-based watermarks, that is, watermarks that are computed by means
of a looping construct Q. Our aim is to turn Q into a new set of statements Q′, called
the stegomark [34], such that there is only one subsequence of P in which Q′ yields
the signature – otherwise it does not produce significant results. Once we have Q′,
we watermark P by replacing H with H ∪ Q′.

For the sake of example, consider the following program P

y := 0

for (x := z; x ≤ 50; x := x + 1) {

y := y + x

}

which performs 50 iterations if z evaluates to 1. Let the Beast Software Corporation
have signature 666, computed in two iterations by the following program Q:

w := 53

for (x := 17; x ≤ 18; x := x + 1) {

w := w + x · x
}

To watermark P, Beast moves both w := 53 and w := w + x · x in the body H of the
original loop, thus obtaining program

y := 0

for (x := z; x ≤ 50; x := x + 1) {

y := y + x

w := 53

w := w + x · x
}

Notice that w is initialized to 53 at each iteration. To implement our watermarking
technique, we want w to receive the correct initialization only at a specific iteration,
which we call the promoter. We thereby look for some arithmetic expression that
has value 53 only at the promoter. We notice that, when z evaluates to 1 and x

evaluates to 17, then y evaluates to 136. In such case, consequently, arithmetic
expression y− 83 evaluates to 53. So, once we replace w := 53 with w := y− 83, the
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iteration represented by index vector 17 becomes the promoter of our watermark,
provided that z evaluates to 1. Obviously, the replacement yields:

y := 0

for (x := z; x ≤ 50; x := x + 1) {

y := y + x

w := y− 83

w := w + x · x
}

At extraction time, we first need to expose the promoter and, as the watermark
loop subsumes two iterations, the iterations that comes after the promoter. We
apply loop unrolling to split the previous for-loop into two loops, so that the first
one collects the first sixteen iterations:

y := 0

for (x := z; x ≤ 16; x := x + 1) {

y := y + x

w := y− 83

w := w + x · x
}

for (; x ≤ 50; x := x + 1) {

y := y + x

w := y− 83

w := w + x · x
}

Hence the promoter is the first iteration of the second for-loop. We apply unrolling
to such loop in order to expose the promoter and the following iteration. We obtain:
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y := 0

for (x := z; x ≤ 16; x := x + 1) {

y := y + x

w := y− 83

w := w + x · x
}

for (; x ≤ 18; x := x + 2) {

y := y + x

w := y− 83

w := w + x · x
true

true

y := y + (x + 1)
w := y− 83

w := w + (x + 1) · (x + 1)
}

for (; x ≤ 50; x := x + 1) {

y := y + x

w := y− 83

w := w + x · x
}

Because we are interested in the second for-loop, we can get rid of the third for-loop
for sure. In the second for-loop there are two statements w := y− 83 that initialize
w. The correct initialization is provided only by the statement in the promoter, that
is, the first one. Thus we must expunge the other. As a consequence, statement
y := y + (x + 1) becomes useless, and can be removed as well. We also wipe out
the true statements. In the first for-loop, both the assignments on w are useless,
because w is reinitialized within the second for-loop. Thus we get rid of them, too.
Notice that the statements we threw away are the same that are discarded by a
backward slicing [123] with criterion w := w + (x + 1) · (x + 1). We thereby get the
following program:

y := 0

for (x := z; x ≤ 16; x := x + 1) {

y := y + x

}

for (; x ≤ 18; x := x + 2) {

y := y + x

w := y− 83

w := w + x · x
w := w + (x + 1) · (x + 1)

}

It is easy to verify that, given a maximal trace 〈ρ, S〉σ 〈ρ′, S′〉 in the semantics of
this program, if ρ(z) = 1 then ρ′(w) = 666, that is, w evaluates to the signature of
the Beast Software Corporation.
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6.2 Exposing Iterations for the sake of Watermarking

In the watermarking technique we exemplified above, we took advantage of loop
unrolling both at embedding and extraction time to expose the iterations of the
target for-loop. This is made apparent in the following diagram, which graphically
sketches both the embedding and the extraction phase:

Let the longer spring stand for an original loop P performing N > 0 iterations
on input ρ. Let the starred spring stand for a loop Q that performs n ≤ N iterations
to compute a loop-based watermark.

At embedding time, we must derive from Q a new program Q′ that gets the
correct initialization only in the promoter of P, provided that P is run on input ρ.
First, we unroll P entirely to syntactically expose its iterations. Among the first
N − n iterations, we designate a promoter. Then we establish a dependence that
binds Q to the promoter, thus obtaining Q′. Finally, we insert Q′ in the body of P,
thus obtaining P′. Unrolling P′ is no longer of help for an attacker to determine the
promoter, because Q′ appears in every iteration.

At extraction time we use loop unrolling to expose in P′ only the subsequence of
n iterations which starts from the promoter. Next, we apply backward slicing using
as criterion the last statement of Q′ included in the last iteration of the subsequence.
After that, we get the semantics of the slice assuming ρ as initial environment.
We collect the final values of the variables of Q′ in a set S of candidate signatures.
Finally, we identify the signature among the elements of S.

Analogy between Watermark Extraction and DNA Transcription

The extraction phase, as depicted in the lower part of our Figure above, might
remind several researchers of DNA stretches that unwind during the transcription
step in protein biosynthesis within cell nuclei [5]. Transcription is the process
through which the information coded in a small DNA stretch is extracted and
recoded in a complementary RNA molecule. In particular:

1. DNA unwinds and produces a small stretch containing an entry point for
transcription, called the promoter;

2. the complementary RNA molecule gets all the information coded between the
promoter and the closest standard termination point;

3. splicing is applied to the RNA molecule to discard some stretches of its that
carry irrelevant information.
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We can draw an analogy that liken the DNA molecule to the watermarked
loop P′. In particular:

• the stretch produced by the unwound DNA molecule corresponds to the se-
quence of iterations exposed by the unrolled loop;

• the promoter of the transcription corresponds to the promoter of the watermark;
• the termination point of transcription corresponds to feeding a splitting term

to the unrolling transformation;
• the splicing of the RNA molecule corresponds to the backward slicing of the

unrolled loop.

The possibility of inserting proprietary information in the DNA molecule has
been initially explored in [104]. Although our watermarking scheme cannot be
applied to DNA, it could provide intriguing insights for further research.

6.3 Encoding the Signature

While commenting our Figure above, we provided a general watermarking scheme
that is suitable for the embedding of any kind of loop-based watermark Q. In the
specific watermarking technique we describe in the present and in the following
Sections, we consider loop-based watermarks in which the signature stems from the
evaluation of a polynomial through an Horner scheme. We got the idea of using
polynomials and Horner schemes from a paper by Cousot and Cousot [34].

Suppose n, a, b ∈ Z and n > 0. Let Pn be a n-degree polynomial such that:

Pn(x)
def
= axn + b

n−1∑
j=0

xj (6.1)

We assume that a signature is a natural number s such that, given ξ ∈ Z, we have:

s = Pn(ξ) . (6.2)

The program Q that implements the evaluation of Pn(x) at x = ξ through the
Horner scheme is:

w := a

for (x := 0; x ≤ n− 1; x := x + 1) {
w := ξ · w + b

}

(6.3)

Since this program computes the signature through a for-loop, we are dealing with
a loop-based watermark. By (6.2) and (6.1) we get

s = aξn + b

n−1∑
j=0

ξj ,

whence we can easily derive a:



6.5 Embedding 115

a
def
=

s

ξn
− b

ξn

n−1∑
j=0

ξj . (6.4)

In order to ensure that a ∈ Z, we require:

• ξn to be a divisor of s;
• b to be a nonzero multiple of ξn, namely:

b 6= 0, b = ξn+n′z where n′ ∈ N and z ∈ Z . (6.5)

Let us consider an example. We assume the signature is s = 120 736 = 25 ·73 ·11. We

choose ξ
def
= 2 · 7 = 14. We let n′

def
= 11 and z

def
= 15. Then b = 143+11 · 15 = 245 760.

By (6.4), we also get:

a
def
=

120 736

143
− 245 760

143

2∑
j=0

14j = 199 948 .

All in all, we derived the following polynomial:

P3(x) = −199 948x3 + 245 760x2 + 245 760x+ 245 760 .

The program Q that computes this polynomial at x = ξ = 14 is:

w := −199 948
for (x := 0; x ≤ 2; x := x + 1) {

w := 14 · w + 245 760

}

Notice that the number of iterations of the loop is just the degree n = 3 of the
polynomial. We do not use this snippet entirely. In fact, the watermark consists
only of the two assignments on w.

6.4 Tracing Appropriate Locations for the Watermark

To watermark a program, we first detect all for-loops therein with integer index
variable. Any of such loops is appropriate for the embedding of the watermark, so
we can feel free to choose randomly.

6.5 Embedding

Consider, without loss of generality, the following minimal for-loop P:

for (x := A1; x ≤ A2; x := x + A3) {

y := A

}
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The algorithm (see Figure 6.1) for embedding our loop-based watermark in P

is a program transformer that takes in input P and outputs a new program P′

which includes both the watermark and the functionality of P. The algorithm is
parametrized by the parameters of the watermark, namely w, n, ξ, a and b. We
expect w to be a fresh variable in P. There is also an additional parameter, namely
the initial environment ρ on which we base the promoter.

Embedw,n,ξ,a,b,ρJPK
Check whether there are at least n iterations in P.
1. Let N = min {R(σ) | ∃S. 〈ρ, S〉σ ∈ SJPK }.
2. If N < n then give up!

Designate the promoter.
3. Let i = rnd(N \ { 0 }).
4. Let li = 0.
5. Let ui = max {R(σ) | ∃S. 〈ρ, S〉σ ∈ SJPK }.
6. Unroll P by splitting term li and unrolling factor ui; get P′ and P′′.
7. Let m = rnd([0, N − n]).

Check whether y denotes a unique value in the promoter.
8. Slice P′ backward by criterion hmi: y := A � imi; get P′′′.
9. Let Y = { ρ′(y) | ∃σ. ∃S. σ ∈ S

q
P
′′′y ∧ `σ = 〈ρ, S〉

∧aσ =
〈
ρ′, hmi: y := A � imi

〉
}.

10. If ¬(∃y. Y = { y }), then give up!
Perform embedding.
11. Let r = rnd(Z \ { 0 }).
12. Insert w := ξ · w + b at label ‘i’ in P; get P′′′′.
13. Insert w := r · y + (a− ry) at label ‘i0’ in P′′′′; get P′′′′′.
14. Return P′′′′′ as the watermarked program and (ρ,m, n) as the key.

Fig. 6.1. Embedding algorithm

The algorithm checks that every trace in SJPK with initial environment ρ denotes
at least n residual iterations. This is a critical step, because some ill-conceived
programs have infinite traces that must be checked one by one. If the check is
passed successfully, N records the minimum amount of residual iterations.

Next, an index value i is chosen randomly among the nonzero natural numbers.
Splitting factor li is assigned 0, whereas unrolling factor ui is assigned the maximal
amount of residual iterations. This of course is another critical step in the algorithm.

The unrolling of P by li and ui results in two for-loops P′ and P′′. The body
of P′ syntactically exhibits the longest sequence of iterations P can perform. The
promoter is designated among the first N − n iterations, by choosing randomly
a value m ∈ [0, N − n]. Because by design N ≥ n > 0, this choice ensures that
the m-th iteration, that is, the promoter, is always followed by at least n − 1
iterations. Hence, at extraction time, we can successfully display n iterations from
the promoter on, thus retrieving the signature without fail.

The dependence between the watermark and the promoter is established in
terms of a flow dependence between w and y. In particular, the initial value that w
gets in Q is made dependent on the value assumed by y in the promoter. For the
sake of reliability, once ρ is fixed, the value of y in the promoter must be unique.
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The body of the promoter consists in statement hmi: y := A [x+mA3/x] � imi. The
algorithm uses this statement as a criterion to slice P′ backward, thus getting P′′′.
Then it collects in set Y the values that y assumes at the end of each maximal
trace of P′′′ with initial environment ρ. We have that y assumes a unique value y
if and only if Y is a singleton { y }. As the computation of Y involves traces, it
represents another critical step in the algorithm. If this check is passed successfully,
too, the algorithm builds stegomark Q′ and inlays it in original for-loop P.

We build the stegomark from the two assignments appearing in Q:

w := a

w := ξ · w + b

We just replace a with a+ (y− y)r, where r
def
= rnd(Z \ { 0 }) is randomly chosen

among the nonzero integer numbers. While a always evaluate to a, the evaluation
of a+ (y−y)r depends on y, and reduces to a if and only if y evaluates to y. This is
guaranteed to happen only in the promoter. If y denotes stochastic behavior, that
is, it changes its value from one iteration to another, the knowledge of m becomes
essential at extraction time to detect the promoter and get the correct initialization
of w. This improves both the reliability and the stealth of the watermark. To not
let a be explicitly recorded in the syntax of the watermarked program, we can use
r · y + (a− ry) instead of a+ (y− y)r. Hence stegomark Q′ can be defined as:

w := r · y + (a− ry)

w := ξ · w + b
(6.6)

Notice ξ and b are not obfuscated and, by (6.5), b is known to be a multiple of

ξn. If n′ was fixed in (6.5), e.g. n′
def
= 0, then n could be easily retrieved – since ξ

divides b precisely n+ n′ times. This would be unpleasant because n is going to be
part of the secret watermarking key. By letting n′ be selected randomly in (6.5),
what it is known is that 0 < n ≤ n+ n′: the greater is n′, the larger is the margin
of uncertainty of n.

If Q′ is the stegomark, then the algorithm inserts the second assignment at ‘i’
in P and then the first assignment at ‘i0’. The resulting watermarked loop is:

for (x := A1; x ≤ A2; x := x + A3) {

y := A

w := r · y + (a− ry)
w := ξ · w + b

}

Because w is fresh in P, the inserted assignments do not perturb the semantics
noticeably.

Along with the watermarked for-loop, the embedding algorithm returns a tuple
including ρ, m and n. Such tuple is a secret key that we exploit at extraction time
to correctly parametrize the extraction algorithm.
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6.6 Locating the Watermark

The key does not mention the for-loop that hosts the watermark. As a consequence,
whenever we try to extract our signature from a program, we must run the extraction
algorithm on every for-loop of that program.

6.7 Extracting and Decoding the Watermark

Suppose that, in the overall process of extracting our signature s from a program,
we are processing a for-loop P. The key instruments the extraction algorithm to get
from P a set S of presumed signatures, which we are expected to retrieve s among.
Notice that we are not assuming that P is watermarked. So S might results in the
empty set.

Extractρ,m,nJPK
Check whether there are at least n iterations in P.
1. Let N = min {R(σ) | ∃S. 〈ρ, S〉σ ∈ SJPK }.
2. If N < n, then give up!

Display the m-th iteration of P and the following n− 1 iterations.
3. Let l1 = N −m.
4. Let u1 = 1.
5. Unroll P by splitting term l1 and unrolling factor u1; get P′ and P′′.
6. Let l2 = N −m− n.
7. Let u2 = n.
8. Unroll P′′ by splitting term l2 and unrolling factor u2; get P′′′ and P′′′′.

Retrieve candidate stegomarks and obtain candidate signatures.
9. Let S = ∅.

10. For each `02: z := A1 � `′02 ∈ P′′′:
11. Let R = { `m′2: z := A1 � `′m′2 ∈ P′′′ | 1 ≤ m′ ≤ n− 1 }.
12. Let P′′′′′ = ((P′ ∪ P′′′) \ R) ∪ trueJRK.
13. For each `′′(n− 1)2: z := A2 � `′′′(n− 1)2 ∈ P′′′′′ with ` 6= `′′:
14. Slice P′′′′′ backward by criterion `′′(n− 1)2: z := A2 � `′′′(n− 1)2; get P′′′′′′.
15. Let Z = {AJA2K ρ′ | ∃σ. ∃S. σ ∈ S

q
P
′′′′′′y ∧ `σ = 〈ρ, S〉

∧aσ =
〈
ρ′, `′′(n− 1)2: z := A2 � `′′′(n− 1)2

〉
}.

16. Let S = S ∪ Z.
17. Return S.

Fig. 6.2. Extraction algorithm

Extraction

We know, from the previous Section, that loop-based watermarks requiring n
iterations are embedded only in for-loops performing, on input ρ, at least n
iterations. The extraction algorithm (see Figure 6.2) checks this condition on the
for-loop P it is given in input. This is the first critical step.
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By applying loop unrolling twice, the algorithm then makes a sequence of three
for-loops P′, P′′′ and P′′′′ out of P. For-loop P′′′ syntactically exhibits n iterations of
P, from the m-th on. Previous and following iterations are left unexposed in P′ and
P′′′′ respectively.

The algorithm assumes that the first exposed iteration is the promoter of a
loop-based watermark. By definition of loop unrolling, its statements has form
`02: C � `′02. Likewise, the (m + 1)-th exposed iteration has statements of the
form `m2: C � `′m2, where 0 < m < n.

If a statement S
def
= `02: z := A1 � `′02 exists in the promoter that assigns a

variable z 6= x and a statement S′
def
= `′′(n− 1)2: z := A2 [x+(n−1)A3/x] � `′′′(n− 1)2

with `′′ 6= ` exists in the last exposed iteration that assigns the same variable, then
both statements might be a stegomark modeled after (6.6). The algorithm then
tries to derive from S and S′ a program denoting the same functionality of (6.3).

Because P′′′ was obtained by loop unrolling, we have:

P′′′ = { . . . `02: z := A1 � `′02, . . .

. . . `′′02: z := A2 � `′′′02, . . .

. . . `12: z := A1 [x+A3/x] � `′12, . . .

. . . `′′12: z := A2 [x+·A3/x] � `′′′12, . . .

. . . `22: z := A1 [x+2·A3/x] � `′22, . . .

. . . `′′22: z := A2 [x+2·A3/x] � `′′′22, . . .

. . . `32: z := A1 [x+3·A3/x] � `′32, . . .

. . . `′′32: z := A2 [x+3·A3/x] � `′′′32, . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . `(n− 1)2: z := A1 [x+(n−1)A3/x] � `′(n− 1)2, . . .

. . . `′′(n− 1)2: z := A2 [x+(n−1)A3/x] � `′′′(n− 1)2, . . . }

In case the stegomark actually consists in S and S′, then z is the watermark
variable, named w at embedding time. We expect there exists y ∈ varJP′′′K such
that varJA1K = { y } and y 6= x. Moreover we expect varJA2K = { z }, with z 6= y. As
a consequence x appear neither in A1 nor in A2, so we expect P′′′ to reduce to:

P′′′ = { . . . `02: z := A1 � `′02, . . .

. . . `′′02: z := A2 � `′′′02, . . .

. . . `12: z := A1 � `′12, . . .

. . . `′′12: z := A2 � `′′′12, . . .

. . . `22: z := A1 � `′22, . . .

. . . `′′22: z := A2 � `′′′22, . . .

. . . `32: z := A1 � `′32, . . .

. . . `′′32: z := A2 � `′′′32, . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . `(n− 1)2: z := A1 � `′(n− 1)2, . . .

. . . `′′(n− 1)2: z := A2 � `′′′(n− 1)2, . . . }
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We also expect these statements to be the only statements that assign z within
P′′′. Furthermore, we expect a subset of these statements to implement an Horner
scheme. In particular:

• we expect the first statement with command z := A1, that is, S, to provide z

with the correct initialization;
• we expect the n statements with command z := A2 to provide z with the n

updates required by the Horner scheme.

Finally, we expect the remaining n− 1 statements with command z := A1 to be
irrelevant to the Horner scheme. So the next step is to get rid of such statements.

The algorithm collects them in a set R. By computing P′′′′′ = ((P′ ∪ P′′′) \ R) ∪
trueJRK, it obtains:

P′′′′′ = { . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . `02: z := A1 � `′02, . . .

. . . `′′02: z := A2 � `′′′02, . . .

. . . `12: true � `′12, . . .

. . . `′′12: z := A2 � `′′′12, . . .

. . . `22: true � `′22, . . .

. . . `′′22: z := A2 � `′′′22, . . .

. . . `32: true � `′32, . . .

. . . `′′32: z := A2 � `′′′32, . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . `(n− 1)2: true � `′(n− 1)2, . . .

. . . `′′(n− 1)2: z := A2 � `′′′(n− 1)2, . . . }

In order to get the value of z, the algorithm slices P′′′′′ backward by criterion
`′′(n− 1)2: z := A2 � `′′′(n− 1)2, thus obtaining P′′′′′′. Such program is expected to
implement (6.2) and to be equivalent to (6.3). Therefore, whenever P′′′′′′ is executed
on input ρ, variable z is expected to eventually evaluate to signature s.

Decoding

To get the final value of z, the algorithm considers every maximal trace σ ∈ SJP′′′′′′K
with initial environment ρ, and evaluates A2 in the last environment of the trace.
Of course, this is another critical step in the algorithm. All the values obtained are
collected in a set Z.

The algorithm recovers the values for every pair of statements in the body of
P′′′ that are candidate stegomarks. All the candidate signatures are collected in S,
which is returned by the algorithm upon termination. We only need to retrieve our
signature s among the candidate signature collected in S.

6.8 Determining the Signature

Signature s must reliably identify the author of the watermarked program. To this
end, the author can let s be the product of a set of prime numbers. If some factors
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of s are large enough, its factorization is computationally unfeasible, yet the author
is able to produce it.

In principle any natural number, regardless of its magnitude, can be a signature.
Yet, real computers can solely deal with finite and discrete data. Thus s, as well
as any program number, cannot exceed a prefixed maximum M . A solution has
however been suggested [34] to turn a large signature into a set of smaller numbers.
Suppose k > 0. Let n1, n2, . . . , nk be natural numbers which are pairwise coprime,
and let p be their product. The Chinese remainder theorem [7] establishes an
isomorphism between [0, p − 1] and [0, n1 − 1] × . . . × [0, nk − 1]. Thus, we can
represent 0 ≤ s < p in terms of k smaller numbers 0 ≤ sj < nj , where 1 ≤ j ≤ k.
If we constraint nj ≤M , the k smaller numbers do not exceed M , so we can safely
embed them in as many for-loops.

At extraction time, we run the extraction algorithm on every for-loop of the
watermarked program. We then retrieve our signature in the union of all the sets
of candidate signatures, possibly assembling several numbers through the Chinese
remainder theorem. False positives may be obtained at extraction time, both in the
case of watermarked and unwatermarked loops. However, it is unlikely that their
factorization is computationally unfeasible and yet known by a malicious claimer.

6.9 Quantitative Evaluation

We can embed a watermark in a program as long as the program has at least one
for-loop. We know from the previous Section that the signature can be of any size.
So the data-rate is theoretically infinite. If we apply the Chinese remainder theorem,
we can have several watermarks to embed. Actually, there are no limits to the
number of watermarks we can inlay in a for-loop P, because each watermark exploits
a variable which is fresh in P. To improve stealth, however, it is recommendable to
restrict the number of watermarks per loop.

Suppose in each for-loop we implant not more than one watermark. Then the
data-rate is practically limited by the number of for-loops in the subject program.
To estimate such number, we downloaded some open-source Java libraries from the
World Wide Web. We fed each library to CLOC [40], a Perl [119] script for counting
the line of codes. We determined the number of for-loops through a Bash [109]
script based on grep and considering only for-loop with integer index value. We
obtained the figures reported in Table 6.1.

The Table is divided into two groups. The first group reports the results of four
libraries we came across by randomly surfing the Web. They are representative of
generic Java source code. The ratio of the number of for-loops to the number of
lines of code is rather low in every entry but the first one. The minimum, 0.77%, is
denoted by JDOM [110], a library for the Java representation of XML documents. If
we consider the four libraries all together and divide the overall number of for-loops
by the overall number of lines of codes, we obtain 1.34%. The average ratio is a
bit higher, 2.46%, meaning that in a generic Java library about 4 for-loops are
expected to be found for every 200 lines of code.

We believe there are two reasons for the especially high ratio of the first entry,
that is, the Fhourstone Benchmark [114]. First, this library is small; hence the
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Lines of code For-loops Ratio

Randomly chosen Java libraries
[114] The Fhourstone Benchmark 3.1 476 30 6.30%
[110] JDOM 1.1.1 10 084 78 0.77%
[50] Google Collections Library 1.0 16 333 187 1.14%
[97] Byte Code Engineering Library (BCEL) 23 631 383 1.62%

Total 50 524 678 1.34%
Average ratio 2.46%

Java libraries for numerical computing
[96] SciMark 2.0 1 786 132 7.39%
[61] Java Matrix Package (Jama) 1.0.2 2 843 275 9.67%
[51] Matrix-Toolkits-Java (MTJ) 0.9.12 15 872 719 4.53%
[88] Open source Java Algorithms (ojAlgo) 33 666 1 056 3.14%

Total 54 167 2 182 4.03%
Average ratio 6.18%

Table 6.1. Ratio of the number of for-loop constructs to the number of lines of codes of
some open-source Java libraries. The first and the second column respectively provide
references and names of the libraries. Lines of code does not include blank lines and
comment lines. For-loops records the number of for-loops with integer index variable.

correspondent ratio is very sensitive to the number of for-loops. Second, the library
implements Connect Four,1 a board game which is amenable to a programming
style based on arrays and matrices. Muchnich [80] argues that for-loops occur very
often whenever there are arrays and matrices to deal with. In particular, the author
points out numerical computing as a field where for-loops are massively used.

The last four entries in Table 6.1 describe the results of four numerical libraries
for Java. Again, the highest ratios, 7.39% and 9.67%, are denoted by the entries
with a lower number of lines of code, that is, SciMark [96] and Jama [61]. Notice
however that ojAlgo [88], the entry with the largest size in the whole Table, has
ratio 3.14%, which is better than the average ratio of the first group. The overall
and average ratios of the second group, 4.03% and 6.18% respectively, are about
three times as great as the correspondent ratios in the first group. So, whenever
we are given a numerical Java library, we expect to find more than 12 for-loops for
every 200 lines of code.

All in all, our watermarking technique seems to be especially suitable for
programs whose data structures are implemented through array and matrices, as
in the case of numerical computing. Anyway, it seems that a not nearly negligible
amount of for-loops can be found in randomly chosen programs. Therefore we
assume that a program that is complex enough to be worth protecting has also
enough for-loops for the embedding of a signature.

1 The Italian for this game is Forza quattro.
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6.10 Attacks and Countermeasures

We assumed at embedding time that watermark variable w is fresh in the for-loop P

to be watermarked. If P is actually a subroutine of a program P′, we also require that
w is fresh in P′, too. Therefore w is always an additional variable in P′, consuming
additional memory. If P′ has plenty of variables and the memory is expensive, we
can alternatively embed a stegomark in P by assigning variables of P′ that are
dead at P, that is, that are not exploited any longer when P is executed. At any
rate, an attacker could realize, for instance by slicing P′ backward from the output,
that the watermark variable does not affect the value of the output and therefore
eliminate the stegomark. To avoid this inconvenience, we must introduce fake
dependencies between the output and the watermark variable, for example by using
opaque predicates which require hard program analyses to be removed [24]. Still,
the watermark might be easily discovered by an attacker because, as our example
in Section 6.3 shows, parameters a, b, . . . tend to be much bigger than the numeric
values which customarily are found inside arithmetic expressions. To overcome this
problem we can compute the parameters using functions fed with small numbers.

Watermarked programs can include more than one signature. However, they
do not record which signature was inserted first, and which one was inserted later.
Thus an attacker can embed its own signature in a watermarked program and
claim authorship, thereby accomplishing an additive attack. To the best of our
knowledge, vulnerability to additive attacks is a common drawback to all the
exiting watermarking techniques [16,21]. Hence one must rely upon trustworthy
authorities at the embedding time to certify the temporal precedence of his/her
signature. This could be avoided if the insertion of the signature coincided with a
not reversible semantics-preserving program evolution [15]: in such a case the order
of insertion of signatures would become relevant, especially if later evolutions were
strictly dependent on earlier ones.

We can embed different signatures in copies of the same program. In this
scenario, signatures are called fingerprints and are meant to identify the purchasers
of each copy, rather than the author of the program. Licensing numbers are typical
examples of fingerprints. An attacker may localize fingerprints by looking for
discrepancies among several purchased copies. To face these collusive attacks we
could, in principle, let each copy undergo a different obfuscating transformation,
thereby making copies so different that their comparison for the sake of fingerprint
detection becomes unfruitful.

By now it should be clear that our watermarking technique is quite far from
being inherently resilient. Not only it does not withstand manual attacks supported
by enough manpower, time and human motivation, as it is assumed for any
watermarking technique proposed so far [23, 34], but it is especially vulnerable
because, contrary to e.g. the threading watermarking technique [85], it fails to
bind the watermark to the semantics of the watermarked program. Indeed, all the
countermeasures we discussed in the present and in the previous Section just try
to cope with this deficiency.

The main point of our technique is the way programs are addressed. Rather than
engineering products to be protected against intellectual property infringement,
they are foremost considered carriers of information. The steganographic approach
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to software watermarking is thereby recast as the science of moving such information
from manifest to latent at embedding time, and the other way round at extraction
time. In our technique, we take advantage of loop unrolling as the engine of both
embedding and extraction algorithm, thus relying upon for-loops. We think that our
approach may be extended to other programming constructs which, like for-loops,
provide code reuse, such as recursive functions in the functional paradigm and
objects in the object-oriented paradigm.



A

Tools

In this Appendix, we survey 56 tools for software protection, almost all of them
performing code obfuscation. For each tool we provide the name, the developer and
the programming language the tools targets; we also specify the kind of performed
obfuscation, the price and the operating systems or platforms the tool needs to run;
we conclude possibly reporting some features and giving a pointer to the website
where the tool can be purchased or downloaded.

We specify the kind of performed obfuscation through the ◦–◦–◦ symbol. In
particular:

•–◦–◦ indicates that the tool perform layout obfuscation;
◦–•–◦ indicates that the tool perform control obfuscation;
◦–◦–• indicates that the tool perform data obfuscation.

Every combination of the three is allowed. Our survey dates to November 22, 2007.

Ada Obfuscator by Semantic Designs. Target: Ada.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http:

//www.semdesigns.com/Products/Obfuscators/AdaObfuscator.html

Allatori by Smardec. Target: Java.
Obfuscation type: •–•–• Price: $ 300. Platform: any.
Identifier renaming (trying to give the same name to as many identifiers as
possible), use of goto, obfuscation of debug information, string encryption,
watermarking.
http://www.allatori.com

CafeBabe by Alexander. Target: Java.
Obfuscation type: •–◦–◦ Price: $ 0. Platform: any.
http://www.geocities.com/CapeCanaveral/Hall/2334/Programs/

cafebabe.html

Clisecure by SecureTeam. Target: .NET.
Obfuscation type: •–◦–• Price: $ 1200. Platform: Windows.
http://www.secureteam.net
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Cloakware Security Suite by Cloakware. Target: Java, C, C++.
Obfuscation type: •–•–• Price: unknown. Platform: any.
http://www.cloakware.com

C Obfuscator by Semantic Designs. Target: C, Visual C 6.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming.
http://www.semdesigns.com/Products/Obfuscators/CObfuscator.html

CodeVeil by Xheo. Target: .NET.
Obfuscation type: •–◦–• Price: $ 900. Platform: Windows.
http://www.xheo.com/products/codeveil/default.aspx

C++ Obfuscator by Semantic Designs. Target: C++, Visual C++ 6.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming.
http:

//www.semdesigns.com/Products/Obfuscators/CppObfuscator.html

C# Obfuscator by Semantic Designs. Target: C#.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http:

//www.semdesigns.com/Products/Obfuscators/CSharpObfuscator.html

DashO by PreEmptive Solutions. Target: Java.
Obfuscation type: •–•–• Price: $ 1900. Platform: Windows.
Identifier renaming possibly exploiting methods overloading, use of goto in the
control flow, string encryption, watermarking.
http://www.preemptive.com/products/dasho/

Decompiler.NET by Jungle Creatures. Target: .NET.
Obfuscation type: •–•–• Price: $ . Platform: Windows.
Identifier renaming, string encryption, dead code elimination, if-merging. . . .
http://www.junglecreatures.com/Jungle_Portal/docs/Decompiler_

NET/Try.aspx

Demeanor by Wise Owl. Target: .NET.
Obfuscation type: •–•–◦ Price: $ 800. Platform: Windows.
http://www.wiseowl.com/purchase/purchase.aspx

.NET Obfuscator by Dynu. Target: .NET.
Obfuscation type: •–•–◦ Price: $ 50. Platform: Windows.
http://www.dynu.com/dynuobfuscator.asp

.NET Reactor by Eziriz. Target: .NET, C#.
Obfuscation type: •–•–• Price: $ 180-280. Platform: Windows, Mac OS, Linux,
Solaris, BSD.
http://www.eziriz.com/products.htm

.Obfuscator by Aspose. Target: .NET.
Obfuscation type: •–◦–◦ Price: $ 0. Platform: Windows.
Identifier renaming.
http://www.aspose.com/Products/Aspose.Obfuscator/
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dotfuscator by PreEmptive Solutions. Target: .NET.
Obfuscation type: •–•–• Price: $ 1900. Platform: Windows.
Identifier renaming possibly exploiting methods overloading, use of goto in the
control flow, string encryption, watermarking.
http://www.preemptive.com/products/dotfuscator/

dotNet Protector by PV Logiciels. Target: .NET.
Obfuscation type: •–◦–◦ Price: $ 400. Platform: Windows.
http://dotnetprotector.pvlog.com/Home.aspx

Goliath .NET Obfuscator by Cantelmo Software. Target: Java.
Obfuscation type: •–◦–• Price: $ 370. Platform: Windows.
http://www.cantelmosoftware.com/eng/obfuscator.html

IL-Obfuscator by Lesser-Software. Target: .NET.
Obfuscation type: •–•–• Price: $ 30. Platform: Windows.
http://www.lesser-software.com/en/content/products/LSW%

20DotNet-Tools/LSW_DotNet_IL-Obfuscator.htm

Jarg by Hidetoshi Ohuchi. Target: Java.
Obfuscation type: •–•–◦ Price: $ 0. Platform: any.
Identifier renaming, dead code removal, NOP removal.
http://jarg.sourceforge.net

Jasob by Jasob. Target: Javascript, CSS.
Obfuscation type: •–◦–◦ Price: $ 200-600. Platform: Windows.
Identifier renaming, comments and white spaces removal, use of escape
sequences.
http://www.jasob.com

JavaGuard by glurk. Target: Java.
Obfuscation type: ◦–◦–◦ Price: $ 0. Platform: any.
http://sourceforge.net/projects/javaguard/

Java Obfuscator by Semantic Designs. Target: Java.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http:

//www.semdesigns.com/Products/Obfuscators/JavaObfuscator.html

JAX by IBM. Target: Java.
Obfuscation type: •–•–◦ Price: unknown. Platform: any.
dead code removal, debugging information removal, method inling, class
hierarchy transformation, identifier renaming.
http://researchweb.watson.ibm.com/jax/

JBCO by Sable. Target: Java.
Obfuscation type: •–•–• Price: $ 0. Platform: any.
Identifier renaming, embedding constant values as fields, some data
obfuscation, use of goto, if replaced with try/catch, instruction reordering. . . .
http://www.sable.mcgill.ca/JBCO/

JCipher by Kindisoft. Target: JavaScript.
Obfuscation type: •–•–◦ Price: $ 420. Platform: any.
http://www.kindisoft.com/products/
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JCloak by Force5. Target: Java.
Obfuscation type: •–◦–◦ Price: $ 600. Platform: Windows, Solaris.
Identifier renaming.
http://www.force5.com/JCloak/ProductJCloak.html

Jet by Excelsior. Target: Java.
Obfuscation type: ◦–◦–◦ Price: $ 1200-4500. Platform: Windows, Linux.
This is a Java2IA32 compiler.
http://www.excelsior-usa.com/landing/jet-obfuscator.html

Jobfuscate by Duckware. Target: Java.
Obfuscation type: •–◦–◦ Price: $ 100. Platform: Windows.
Identifier renaming.
http://www.duckware.com/jobfuscate/

JODE by Jochen Hoenicke. Target: Java.
Obfuscation type: •–◦–◦ Price: $ 0. Platform: any.
Identifier renaming, debugging information removal, dead code removal.
http://jode.sourceforge.net

Jshrink by Eastridge Technology. Target: Java.
Obfuscation type: •–◦–• Price: $ 100. Platform: any.
Identifier renaming, string encryption.
http://www.e-t.com/jshrink.html

KlassMasterTM by Zelix. Target: Java.
Obfuscation type: •–•–• Price: $ 200-400. Platform: any.
Identifier renaming, use of goto, string encryption.
http://www.zelix.com/klassmaster/

Loco by Universiteit Gent (NL). Target: C, C++.
Obfuscation type: ◦–•–◦ Price: $ 0. Platform: any.
Control flow flattening.
http://diablo.elis.ugent.be/obfuscation

Marvin by Dr. Java. Target: Java.
Obfuscation type: •–•–• Price: unknown. Platform: any.
http://www.drjava.de/obfuscator

Obfuscator .NET by Macrobject. Target: .NET.
Obfuscation type: •–•–◦ Price: $ 100. Platform: Windows.
http://www.macrobject.com/en/obfuscator/

PCGuard by sofpro. Target: .NET.
Obfuscation type: •–◦–◦ Price: $ 370-600. Platform: Windows.
Very extended watermarking, fingerprinting.
http://www.sofpro.com/pcgw32.htm

Phoenix Protector by NTCore. Target: .NET.
Obfuscation type: •–•–• Price: $ 250. Platform: Windows.
http://ntcore.com/phoenix.php

PL/SQL Obfuscator by Semantic Designs. Target: PLSQL.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http:

//www.semdesigns.com/Products/Obfuscators/PLSQLObfuscator.html
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Postbuild by Xenocode. Target: .NET.
Obfuscation type: •–•–• Price: $ 500. Platform: Windows.
http://www.xenocode.com/Products/Postbuild/

proGuard by Eric Lafortune. Target: Java.
Obfuscation type: •–•–◦ Price: $ 0. Platform: any.
Identifier renaming, debugging information removal, some instruction
restructuration.
http://proguard.sourceforge.net

QND-Obfuscator by Desaware. Target: .NET.
Obfuscation type: •–◦–◦ Price: $ 40. Platform: Windows.
http:

//www.desaware.com/products/books/net/obfuscating/index.aspx

RetroGuard by RetroLogic. Target: Java.
Obfuscation type: •–◦–◦ Price: $ 139. Platform: any.
http://www.retrologic.com

Salamander .NET Obfuscator by Remotesoft. Target: .NET, C#.
Obfuscation type: •–◦–◦ Price: $ 800. Platform: Windows.
http://www.remotesoft.com/salamander/obfuscator.html

Sandmark by the University of Arizona (US). Target: Java.
Obfuscation type: •–•–• Price: $ 0. Platform: any.
Algorithms for both obfuscation and watermarking.
http://sandmark.cs.arizona.edu

secureSWF professional by Kindisoft. Target: Adobe’s Flash SWF and SWC
files.
Obfuscation type: •–•–• Price: $ 420. Platform: Windows.
http://www.kindisoft.com/products/

Skater .NET Obfuscator by Rustemsoft. Target: .NET.
Obfuscation type: •–•–• Price: $ 100-570. Platform: Windows.
http://www.rustemsoft.com/Skater.htm

{smartassembly} by Cachupa. Target: .NET.
Obfuscation type: •–•–• Price: $ 400-800. Platform: Windows.
http://www.smartassembly.com

Smokescreen by Robert Lee. Target: Java.
Obfuscation type: •–•–• Price: $ 550. Platform: any.
Identifier renaming, string encryption, instruction reordering, fake exceptions.
http://www.leesw.com/smokescreen/

Spices .Obfuscator by 9rays.net. Target: .NET.
Obfuscation type: •–•–• Price: $ 400. Platform: Windows.
Includes watermarking.
http://www.9rays.net/Products/Spices.Obfuscator/

SystemC Obfuscator by Semantic Designs. Target: SystemC.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http:

//www.semdesigns.com/Products/Obfuscators/SystemCObfuscator.html
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http://proguard.sourceforge.net
http://proguard.sourceforge.net
http://www.desaware.com/products/books/net/obfuscating/index.aspx
http://www.desaware.com/products/books/net/obfuscating/index.aspx
http://www.desaware.com/products/books/net/obfuscating/index.aspx
http://www.desaware.com/products/books/net/obfuscating/index.aspx
http://www.retrologic.com
http://www.retrologic.com
http://www.remotesoft.com/salamander/obfuscator.html
http://www.remotesoft.com/salamander/obfuscator.html
http://sandmark.cs.arizona.edu
http://sandmark.cs.arizona.edu
http://www.kindisoft.com/products/
http://www.kindisoft.com/products/
http://www.rustemsoft.com/Skater.htm
http://www.rustemsoft.com/Skater.htm
http://www.smartassembly.com
http://www.smartassembly.com
http://www.leesw.com/smokescreen/
http://www.leesw.com/smokescreen/
http://www.9rays.net/Products/Spices.Obfuscator/
http://www.9rays.net/Products/Spices.Obfuscator/
http://www.semdesigns.com/Products/Obfuscators/SystemCObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/SystemCObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/SystemCObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/SystemCObfuscator.html
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SystemVerilog Obfuscator by Semantic Designs. Target: SystemVerilog.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http://www.semdesigns.com/Products/Obfuscators/

SystemVerilogObfuscator.html

ThicketTM Obfuscator by Semantic Designs. Target: PHP.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http:

//www.semdesigns.com/Products/Obfuscators/PHPObfuscator.html

VBScript Obfuscator by Semantic Designs. Target: VBScript.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming.
http://www.semdesigns.com/Products/Obfuscators/

VBScriptObfuscator.html

Verilog Obfuscator by Semantic Designs. Target: Verilog.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http:

//www.semdesigns.com/Products/Obfuscators/VerilogObfuscator.html

VHDL Obfuscator by Semantic Designs. Target: VHDL.
Obfuscation type: •–◦–◦ Price: unknown. Platform: Windows.
Identifier renaming, comments and white spaces removal.
http:

//www.semdesigns.com/Products/Obfuscators/VHDLObfuscator.html

yGuard by yWorks. Target: Java.
Obfuscation type: •–◦–◦ Price: $ 0. Platform: any.
Identifier renaming.
http://www.yworks.com/en/products_yguard_about.htm

http://www.semdesigns.com/Products/Obfuscators/SystemVerilogObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/SystemVerilogObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/SystemVerilogObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/SystemVerilogObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/PHPObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/PHPObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/PHPObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/PHPObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VBScriptObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VBScriptObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VBScriptObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VBScriptObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VerilogObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VerilogObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VerilogObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VerilogObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VHDLObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VHDLObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VHDLObfuscator.html
http://www.semdesigns.com/Products/Obfuscators/VHDLObfuscator.html
http://www.yworks.com/en/products_yguard_about.htm
http://www.yworks.com/en/products_yguard_about.htm
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Sommario Il software conserva la maggior parte del know-how che occorre per svilupparlo.
Poiché oggigiorno il software può essere facilmente duplicato e ridistribuito ovunque, il
rischio che la proprietà intellettuale venga violata su scala globale è elevato. Una delle
più interessanti soluzioni a questo problema è dotare il software di un watermark. Ai
watermark si richiede non solo di certificare in modo univoco il proprietario del software,
ma anche di essere resistenti e pervasivi. In questa tesi riformuliamo i concetti di robustezza
e pervasività a partire dalla semantica delle tracce. Evidenziamo i cicli quali costrutti
di programmazione pervasivi e introduciamo le trasformazioni di ciclo come mattone
di costruzione per schemi di watermarking pervasivo. Passiamo in rassegna alcune fra
tali trasformazioni, studiando i loro principi di base. Infine, sfruttiamo tali principi per
costruire una tecnica di watermarking pervasivo. La robustezza rimane una difficile, quanto
affascinante, questione ancora da risolvere.


