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1

Introduction

1.1 Quantum Computing

Quantum Computing is one of the most promising fields of Computer Science. It is de-
voted to developing an alternative computational model, based on quantum physics rather
than classical physics.
The original idea was by Richard Feynman, who put a simple but interesting questions: is
a classical computer able to simulate a generic physical system?
Given a physical system of N interacting particles, it can be fully described by a function
of the shape ψ(x1, . . . , xN , t) where t represents time. The answer to Feynman’s ques-
tion is that, if the system is classical, a classical computer can efficiently simulate the full
description with polynomial slowdown and, in the case of a quantum system, a classical
computer can efficiently simulate the full description with exponential slowdown.
The birth of quantum computing coincided therefore with the attempt to understand how
a computational device could be in order to emulate an arbitrary physical system. The
seminal ideas by Feynman was resumed by P. Benioff [20], but the first concrete proposal
for a quantum abstract computer is due to Deutsch, who introduced quantum Turing ma-
chines [35]. Deutsch started from the probabilistic version of the Church Turing Thesis,
attempting to understand which physical basis are required in order to define more and
more stronger versions of Church Turing Thesis. Deutsch introduced also the first quan-
tum algorithm (subsequently called Deutsch’s algorithm).
Starting from the Deutsch’s fundamental works, E. Bernstein and U. Vazirani defined
in [22] the Quantum Universal Turing Machine, and developed a complexity theory for
quantum computing, revisiting and extending the results from the classical and the prob-
abilistic cases.
Other quantum computational models have been subsequently defined: Quantum Circuits
Families, also by Deutsch in 1989 and subsequently developed by Yao [104], and the
Quantum Random Access Machines (QRAM), by Knill [61], a classically controlled
machine plus a quantum device. On the ground of a QRAM model, Peter Selinger, in [85]
defined the first functional language based on the so called quantum data-classical con-
trol paradigm, a functional, statically typed language, whose semantics, given in term of
superoperators, is fully abstract.
The quantum computing had a strong impact on the notion of problems “computational
tractability”. The most surprising result is due to Peter Shor [88,89], which prove that two
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classically intractable problems such as the factorization of integers and the discrete log-
arithm could be efficiently (namely polynomially) solved by a quantum computer. Shor’s
Algorithm on prime factorization catalyzed the interest of scientific community toward
the quantum computing research.

Nowadays, quantum computing foundation have no stabilized yet, and so there are
several foundational interesting problems to investigate. Focalizing on theoretical (non
necessary algorithmic) aspects, it is possible to state three main subjects strongly related
to the proposals of this thesis:

On quantum computability: quantum computability is quite underdeveloped compared
to its classical counterpart. One of the most important challenges in quantum comput-
ing, is the necessity of developing suitable calculi of quantum computable functions.
In particular, it is not clear how the idea of having functions as “first-class citizens”
can be captured in a quantum setting. Some quantum computational models, such as
the quantum Turing machine [22, 35] and the quantum circuit families [73, 74, 104]
have been defined, and nowadays they are universal accepted and used as reference
for theoretical studies. But they are essentially “first-order”, so it seem to be manda-
tory to give a contribution to the definition of a quantum computational model for
higher–order–functions.
So, as for the classical case, it seem to be interesting to study a primitive formal-
ism based on the concept of abstraction and application, i.e. a quantum version of
λ-calculus. The first seminal proposals of quantum lambda calculi were by A. Van
Tonder [97] and by P. Selinger and B. Valiron [87] (see Section 3.3) as a foundation
of higher order quantum functional programming languages. A related, interesting
problem is to study quantum λ-calculi from a computability point of view, focalizing
for example on aspects such as the expressive power with a comparison with quantum
computational models (quantum Turing machine and quantum circuit families).
Moreover, quantum computations have several interesting features and, as for the
classical case, standardization and confluence result are interesting subjects of the
research. This become more complex, but also more interesting, in presence of mea-
surements during the computation. Moreover, the computational behavior of infinite
quantum computations with measurement is yet relatively unexplored territory.

On quantum complexity: one of the main motivation for studying computational appli-
cations of quantum mechanics is the potentiality to exploit quantum parallelism in
order to reduce (as Shor did) the computational complexity of classical hard prob-
lems [76].
The crucial attention on complexity problems naturally involved the necessity of a
complexity theory ad hoc for quantum computing setting. Since seminal work by
Bernstein and Vazirani [22], new important quantum complexity classes have been
defined, with particular emphasis on the quantum polytime. As for the classical case,
complexity classes are generally defined on a quantum computational model such
as quantum Turing machine (as in Bernstein and Vazirani paper) or quantum circuit
families [73, 74, 104]. Important steps are moved toward the develop of a general
quantum complexity theory, but it is very far from the “completeness” reached in the
classical case. This is due also to the intrinsic difficulties related to foundational is-
sue of quantum computing. Let us consider the class of the quantum Turing machine
à la Bernstein and Vazirani [22]: each computation evolves as a superposition in a
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space of configuration (a suitable Hilbert space, as we will see), and each classical
computation in superposition can evolve independently. So, the result of a quantum
computation is obtained, at the end, with a measurement of the several superposi-
tional result, and so it is irremediably probabilistic. This induces the definition of
three distinct quantum polytime classes (EQP, BQP, ZQP), since different constraint
can be imposed on success or errors [22].

On logical systems for quantum computing: since the work of Birkhoff and von Neu-
mann in 1936 [23], various logics have been investigated as a means to formalize
reasoning about propositions taking into account the principles of quantum theory,
e.g. [4, 31, 32, 70]. In general, it is possible to view quantum logic as a logical ax-
iomatization of the mathematical structures associated to quantum mechanics (e.g.
orthomodular spaces).
In our opinion the definition of a logic for quantum computing appear to be a different
topic, that is nowadays quite unexplored (one of the few good paper in this direction
is [15] or [14]). But what does it mean “logical system for quantum computing”?
Such a system should be a formal system that is able to describe quantum computa-
tions, not a further axiomatization of quantum mechanics spaces.

1.2 Original contributions of this thesis

This thesis deal mainly with the development of new quantum λ-calculi. As a kind of
a variation on the theme, we propose also new deduction systems to deal with quantum
computations.

1.2.1 Quantum λ-calculi

Q calculus
We start our investigation by proposing a quantum, type-free λ–calculus with classi-
cal control and quantum data that we call Q. The syntax for terms and configurations
is inspired by the seminal work by Selinger and Valiron [87] and moreover, taking
into account linearity, we implicitly use linear logic in a way similar to Van Tonder’s
calculus [97].
Even if the proposed calculus is untyped, term formation is constrained by means
of well forming rules (the structure of terms is strongly based on the formulation of
Linear Logic as proposed by P. Wadler in [100]). In order to be correct w.r.t. term
reduction we have proved a suitable subject reduction theorem. The Q calculus
is not endowed with a reduction strategy (it is neither call–by–value nor call–by–
name), therefore we have studied the problem of confluence. Noticeably, confluence
holds in a strong way (weak normalization implies strong normalization). Another
remarkable feature of the calculus is given by the (quantum) standardization theo-
rem. Roughly speaking: for each terminating computation there is another standard,
equivalent, computational where computation steps are performed in the following
order:
1. first, classical reductions: in this phase the quantum register is empty and all the

computations steps are classical;
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2. secondly, reductions that build the quantum register;
3. and finally quantum reductions, namely controlled applications of unitary trans-

formations to the quantum register.
We think that standardization sheds some further light on the dynamics of quantum
computation.
Subsequently, we will go along our investigation by proposing an expressiveness
study of Q. We investigate the relationship between Q and one of the most important
quantum computing systems, such as quantum circuit families [73,74,104]: we prove
in a detailed and rigorous way the equivalence between our calculus and quantum
circuit families.
The Q calculus is measurement free, in fact the absence of measurement is a feature
of standard quantum computational models, such as quantum Turing machines and
quantum circuits families.
We assume to make an unique implicit measurement at the end of computation. Cause
the importance of measurement, we also investigate a measurement extension of
Q (see later the Q* calculus).
This part is based on the paper: On a Measurement-Free Quantum Lambda Calculus
with Classical Control, by Dal Lago, Masini, Zorzi, in Mathematical Structures in
Computer Science, Volume 19, Issue 02, Cambridge University Press, 2009 [30].

SQ calculus
Starting from the Q calculus, we give an implicit characterization of polytime quan-
tum complexity classes by means of a second λ-calculus, that we call SQ. SQ is an
untyped quantum lambda calculus where the well formation rules are strongly related
with Lafont’s Soft Linear Logic [63]. The language is not built on the basis of an
explicit notion of polynomial bounds, not even on any concrete polytime machine ,
in fact it is a machine independent and a resource free calculus; therefore it is com-
pletely in the spirit of the so called Implicit Computational Complexity approach.
The correspondence with quantum complexity classes is an extensional correspon-
dence, proved by showing that:
• on one side, any term in the language can be evaluated in polynomial time (where

the underlying polynomial depends on the box depth of the considered term);
• on the other side, any problem P decidable in polynomial time (in a quantum

sense) can be represented in the language, i.e., there exists a term M which de-
cides P .

SQ is sound and complete w.r.t. polynomial time quantum Turing machine [22, 73,
74] and so we will restrict our attention to the subclass of the so called computable
operators (see Definition 2.21 and [22, 73, 74]). Showing polytime completeness
requires a relatively non-standard technique based on the Yao’s encoding of QTM
into quantum circuit families [104]).
As a subsystem of Q (terms and configurations of SQ form subclasses of the ones of
Q), SQ follows the classical control-quantum data paradigm and, as s for Q , SQ is
a measurement free calculus.
This part is based on the paper Quantum Implicit Computational Complexity by Dal
Lago, Masini, Zorzi, accepted with minor revision revision in Theoretical Computer
Science [64].
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Q∗ calculus We propose an extension of Q , called Q*: in Q*, it is possible perform
measurements of the quantum data, obtaining as result classical data that can be used
in the subsequent steps of the computation. Then we provide a qualitative and quan-
titative study about computations with measurement.
As previously written, the possibility to perform a measurement during a computa-
tion is an useful feature for encoding quantum algorithms (such as Shor’s algorithm),
because measurement outputs are allowed to influence subsequently steps of the cal-
culus.
The implementation of algorithms is outside the scope of this thesis. Our concern is
on the theoretical study of computations with measurement. Measurement breaks the
deterministic evolution of the calculus, forcing a probabilistic nature into the compu-
tation.
What it happen to good properties such as confluence when we add the measurement
operator? Is it possible to combine a suitable notion of confluence with the proba-
bilistic behavior imported by the measurement into the computation?
We will investigate the problems by developing a technical framework in which we
give an innovative confluence proof where also the case of infinite computations is
tackled.
We introduce the notion of probabilistic computation, for which we provide a strong
confluence result, taking into account, in lieu of a single result, probability distribu-
tions of results called mixed states (an adaptation of the notion of mixed states of
quantum mechanics). Then, the notion of computation is extended to mixed states
too (we will call such a computations mixed), and also for mixed computations a con-
fluence theorem is proved.
This part is based on the paper Confluence Results for a Quantum Lambda Calculus,
by Dal Lago, Masini, Zorzi, in Proceeding of 6th QPL, Oxford, UK, 2009 (to appear
in Electronics Note in Theoretical Computer Science).

1.2.2 Modal Deduction Systems

In the last part of the present work, we will present new results about modal logics and
quantum computing. We call this last investigation a variation on the main theme, be-
cause we left higher-order characterization of computable functions, moving toward a
qualitative logical analysis of quantum states (or equivalently quantum registers) trans-
formations.

MSQS and MSpQS
We propose a modal labeled natural deduction system, called MSQS, which describe
how a quantum state is transformed into another one by means of the fundamental
operations as unitary transformations and total measurement.
We are not in interest in the internal structure of quantum state, but we represent it in
an abstract, qualitative, way.
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We propose a logical treatment of total measurement and unitary transformations by
means of suitable modal operators, and we propose also a Kripke style semantics for
the calculus.
The Kripke style semantics describes quantum states transformations in term of ac-
cessibility relations between worlds and then we prove that MSQS is sound and
complete with respect to this semantics.
We also prove a normalization result for MSQS proofs, and as a consequence of
normalization theorem, we prove that MSQS enjoys subformula property. By means
of subformula property, it is possible to give a purely syntactical proof of consistency
of the system.

We propose also a system called MSpQS, that is a variant of MSQS; it takes into
account general measurement, rather than the total one. All the good properties of
MSQS still hold. So, MSpQS is sound and complete with respect to the given
Kripke style semantics; MSpQS enjoys normalization, subformula property, and as
a consequence it is consistent.
This part is partially based on the paper A Qualitative Modal Representation of Quan-
tum Register Transformations, by Masini, Viganò, Zorzi, in Proceedings of the 38th
IEEE International Symposium on Multiple-Valued Logic (ISMVL 2008) [67].

Structure of the thesis

Part I - Background
In Chapter 2 we will recall some basic notion about Hilbert Spaces, Linear Logic (and
its ‘light’ versions), Lambda Calculus and Modal Deduction Systems.
We will largely use Hilbert Space in Chapter 3, where we will give technical instru-
ment about Quantum Computing, stressing on quantum computational models.

Part II - Main Theme: Quantum Lambda Calculi
In Chapter 4 we will develop the operational study of Q, carrying on in Chapter 5
with the expressiveness study.
In Chapter 6 we will propose the polytime system SQ .
In Chapter 7 we will study infinite quantum computation by Q∗, the quantum lambda
calculus with explicit measurement.

Part III - A Variation on the Theme: Modal Deduction Systems
In Chapter 8 we will propose the two modal labeled deduction system MSQS and
MSpQS.
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Mathematical Framework and Basic Logical Instruments

In this chapter we introduce some mathematical and logical notions. The aim of the fol-
lowing sections is to give a short account of the basic theoretical notions used in the
advanced part of the present work.
Since we are working in the foundational approach of quantum computation, we will use
several different technical framework. Firstly we will introduce the algebraic formulation
of quantum mechanics, in terms of Hilbert Space and unitary operators; it provides a com-
plete and precise mathematical description of quantum states, that will be largely used in
our computational study.
Secondly, we will summarize fundamental issue about Linear Logic, Lambda Calculus
and Modal Logic.

2.1 Spaces and Linear Operators

The results and the notions recalled in this section are mainly based on the follow-
ing references: S. Roman, Advanced in Linear Algebra [81], S. Mac Lane, G. Birkoff,
Algebra [65].

Inner Product Spaces

Definition 2.1 (Complex inner product space). A complex inner product space is a
vector space on the field C equipped with a function 〈·, ·〉 : V × V → C that satisfies the
following properties:
1. 〈φ, ψ〉 = 〈ψ, φ〉∗;
2. 〈ψ,ψ〉 is a non negative real number;
3. if 〈ψ,ψ〉 = 0 then ψ = 0
4. 〈c1φ1 + c2φ2, ψ〉 = c∗1〈φ1, ψ〉+ c∗2〈φ2, ψ〉;
5. 〈φ, c1ψ1 + c2ψ2〉 = c1〈φ, ψ1〉+ c2〈φ, ψ2〉.

In the sequel we will often call inner product space a complex inner product space. Let
V be an inner product space. Given u, v ∈ V , we say that u and v are orthogonal, written
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u⊥v, if 〈u, v〉 = 0; given X and Y subset of V , we say that X and Y are orthogonal if
for all x ∈ X and y ∈ Y , x⊥y.

Definition 2.2. Given an inner product space V , a nonempty set U of vector is said
orthogonal set if for all ui, uj ∈ U , if ui 6= uj then ui⊥uj .

If each ui is also a normalized vector (see Definition2.6), then U is an orthonormal
set.

We use the orthonormality in order to define the so called Hilbert Basis, that will be
used in the discussion on Hilbert Space.

The notion of Hilbert basis must not be confused with the usual notion of basis for
a vector space. The basis for a vector space is the Hamel basis, strongly related to the
notion of span.

Definition 2.3 (Span). Let P be an inner-product space and let be S ⊂ P , the span of S
is the inner product subspace of P defined by

span(S) =

{
n∑

i=1

cisi |n ∈ N, ci ∈ C, si ∈ S

}
.

If V = span(S) we say that S generate V , and the elements of S are called genera-
tors. Note that even if P is an Hilbert space (see Definition 2.14), span(S) is not necessary
an Hilbert Space.

We give now the formal definitions of Hamel basis:

Definition 2.4 (Hamel Basis). Let V be an inner product space and let S be a linearly
independent subset of V ; S is an Hamel basis if and only if V = span(S).

So, an Hamel basis is a maximal linearly independent set of generators, that can be
orthonormal or not at all.

Hilbert basis is defined in the following way:

Definition 2.5 (Hilbert basis).
Let V be an inner product space. A maximal orthonormal set in V is called a Hilbert

Basis for V .

By Zorn’s lemma, such maximal orthonormal set V always exists.
The Hamel basis and the Hilbert basis induce two different definition of dimension of

the space. The dimension induced by the Hamel basis is the cardinality of the Hamel basis
itself, whereas the Hilbert dimension is the cardinality of the Hilbert basis. In the finite
dimensional case, the two definitions coincide, but this is not the case of infinite dimen-
sional spaces. In Example 2.15 we will give an explanation of the differences between the
two concepts.

Definition 2.6 (Norm and unit vectors). Let V be a inner product space.
For v ∈ V , the non negative real number

||v|| = 〈v, v〉1/2

is called the norm of V.
A vector v ∈ V is a unit or normalized vector if its norm is equal to 1.



2.1 Spaces and Linear Operators 11

Proposition 2.7 (Basic properties of the norm).
The norm || · || for a inner product space V enjoys the following properties:

1. ||v|| ≥ 0;
2. ||v|| = 0 if and only if v = 0;
3. for all u, v ∈ V , |〈u, v〉| ≤ ||u||||v||;
4. for all u, v ∈ V , ||u+ v|| ≤ ||u||+ ||v||;
5. for all u, v, w ∈ V , ||u− v|| ≤ ||u− w||+ ||w − v||;
6. for all u, v ∈ V , | ||u|| − ||v|| | ≤ ||u− v||;
7. for all u, v ∈ V , ||u+ v||2 + ||u− v||2 = 2||u||2 + 2||v||2.

We use the norm in order to define the distance between two vectors in the inner
product space:

Definition 2.8 (Distance). Let V be a inner product space.
We call distance a binary relation on V with the following properties:
1. d(u, v) ≥ 0 and d(u, v) = 0 if and only if u = v;
2. d(u, v) = d(v, u);
3. d(u, v) ≤ d(u,w) + d(w, v).

Proposition 2.9. Let V be an inner product space. For any u, v ∈ V ,
the relation d defined by

d(u, v) ≡ ||u− v||

is a distance, called distance induced by the inner product.

The distance d as defined in 2.8, is also called metric.

Tensor product

Let U and V be two finite dimensional inner product spaces, with inner products 〈·, ·〉U
and 〈·, ·〉V respectively. Let FU×V be the inner product space freely generated by linear
combination of element in the basis U × V (U × V is exactly the cartesian product of
sets).
We consider now a subspace S of FU×V generated by all the vector in the form

α(u1, v) + β(u2, v)− (αu1 + βu2, v) and α(u, v1) + β(u, v2)− (u, αv1 + βv2)
where α, β ∈ C, u1, u2, u ∈ U and v, v1, v2 ∈ V .
We define the tensor product of the inner space U and V as

U ⊗ V = FU×V /S

i.e. as the quotient space respect to the cosets S + (u, v), with (u, v) ∈ U × V .
We denote the coset S + (u, v) by u⊗ v.
The inner product of U ⊗ V is defined by:

〈u1 ⊗ v1, u2 ⊗ v2〉U⊗V = 〈u1, u2〉U 〈v1, v2〉V
with the properties of linearity and antilinearity (in the second and in the first component
respectively) as in Definition 2.1.

Given a basis B for U and a basis C for V , the set {b ⊗ c|b ∈ B, c ∈ C } is a basis
for U ⊗ V .
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Proposition 2.10. The map ⊗ : FU×V → U ⊗ V defined by (u, v) 7→ S + (u, v) is a
bilinear map.

We have just give a so called coordinate free definition of tensor product.
In quantum computing is very common to define tensor product in a more intuitive but
mathematically less precise way. We recall it in the following proposition:

Proposition 2.11. Let U and V be two finite dimensional complex inner product spaces
and let B1 and B2 be basis for U and V respectively.
The tensor product space P = U ⊗ V is the space generated by
B = {e1i ⊗ e2j |e1i ∈ B, e2j ∈ B2} with inner product defined by
〈u1 ⊗ v1, u2 ⊗ v2〉U⊗V = 〈u1, u2〉U 〈v1, v2〉V .

The previous construction of tensor product is useful but it is less general respect to
the other one, because it is strongly related to the choice of the basis B1 and B2.

Hilbert Space

The mathematical framework of Quantum Mechanics involves particular inner product
spaces, called Hilbert spaces. Hilbert spaces enjoy the property of completeness, induced
by the distance defined in 2.8.

For this aim, we introduce the central notion of Cauchy sequence.

Definition 2.12 (Cauchy Sequence).
Let V be an inner product space with metric d. A sequence (φn)n<ω is a Cauchy

sequence if for all ε > 0, there exists N > 0 such that for all n,m < N we have
d(φn, φm) < ε.

It is easy to show that any convergent sequence is a Cauchy sequence. The converse,
if it holds, gives the following definition:

Definition 2.13 (Completeness).
Let V be an inner product space; V is said to be complete if any Cauchy sequence in

V converges in V .

Inner product spaces complete respect to the distance plays a central rôle and are
called Hilbert space.

Definition 2.14 (Hilbert Space). An Hilbert space H is a complex inner product space
that is complete respect to the distance induced by the inner product.

One of the most important example of Hilbert space is `2, the set of the sequence
x = (xn)n on C such that

∑∞
n=1 |xn|2 <∞.

We give an example on `2 in order to exploit the difference between Hamel and Hilbert
basis.

Example 2.15. Let M be the set of the vectors of `2 in the form
ei = (0 . . . 1 . . . 0 . . .) where ei has a 1 in the ith component and 0 elsewhere.
M is an orthonormal set and can be easily showed that it is maximal too, then it his an
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Hilbert basis of `2.
But it is not a Hamel basis for `2, in fact M is a minimal set of generators for
S = span(M) ( `2, the subspace of all sequence in `2 that have finite support, and
S 6= `2.

As a consequence of Zorn’s Lemma, every nontrivial Hilbert space has an Hilbert
basis, i.e a maximal orthonormal set.

Unitary operators

Very important class of operators in quantum theory is given by the so called unitary
operators. Quantum Computing is essentially based on the application of unitary opera-
tors to normalized vectors of the space `2(S) (see below Section 2.1.1), i.e. on quantum
registers.

Definition 2.16 (Unitary operators). Let H be an Hilbert space, and let U : H → H be
a linear transform. The adjoint of U is the unique linear transform U† : H → H such
that for all φ, ψ
〈Uφ, ψ〉 = 〈φ,U†ψ〉. If U†U is the identity, we say that U is a unitary operator.

The tensor product of unitary operators is defined as follows:

Definition 2.17. Let U : H1 → H1 and W : H2 → H2 be two unitary operators. The
linear unitary operator U⊗W : H1 ⊗H2 → H1 ⊗H2 is defined by

(U⊗W)(φ⊗ ψ) = (Uφ)⊗ (Wψ)

with φ ∈ H1 and ψ ∈ H2.

2.1.1 The fundamental Hilbert space `2(S)

We use now `2 to give the description of the Hilbert space `2(S), from which we can
extract several useful spaces as particular cases.

Let S be a set and let `2(S) be the set of square summable function{
φ | φ : S → C,

∑
s∈S

|φ(s)|2 <∞

}

equipped with:
(i) An inner sum + : `2(S)× `2(S) → `2(S)

defined by (φ+ ψ)(s) = φ(s) + ψ(s);
(ii) A multiplication by a scalar · : C× `2(S) → `2(S)

defined by (c · φ)(s) = c · (φ(s));
(iii) An inner product1 〈·, ·〉 : `2(S)× `2(S) → C

defined by 〈φ, ψ〉 =
∑

s∈S φ(s)∗ψ(s);

1 in order the inner product definition make sense we should prove that the sum
P

s∈S φ(s)∗ψ(s)
converges, see [81].
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It is quite easy to show that `2(S) is an Hilbert space.
In the thesis. we will call quantum state or quantum register any normalized vector in

`2(S).
The set B(S) = {|s〉 : s ∈ S}, where |s〉 : S → C is defined by:

|s〉(s′) =
{

1 if s = s′

0 if s 6= s′

is an Hilbert basis of `2(S), usually called the computational basis in the literature.
It is now interesting to distinguish two cases:

1. S is finite: in this case B(S) is also an orthonormal (Hamel) basis of `2(S) and con-
sequently span(B(S)) = `2(S). `2(S) is isomorphic to C|S|. With a little abuse of
language we say also that `2(S) is “generated” by S.

2. S is denumerable: in this case it is easy to show that B(S) is an Hilbert basis of `2(S),
but it is not an Hamel basis. In fact let us consider the subspace span(B(S)). We see
immediately that span(B(S)) ( `2(S) is an inner-product infinite dimensional space
with B(S) as Hamel basis 2, but span(B(S)) is not an Hilbert space because it is not
complete.
There is a strong relationship between span(B(S)) and `2(S), in fact it is possible to
show (this is a standard result [81]) that span(B(S)) is a dense subspace of `2(S),
and that `2(S) is the (unique!) completion of span(B(S)). This fact is important
because in the main literature on Quantum Turing Machines, unitary transforms are
usually defined on spaces like span(B(S)), but this could be problematic because
span(B(S)) is not a quantum space. This is not a concrete problem, in fact it is
possible to show that each unitary operator U in span(B(S)) has a standard extension
in `2(S).

2.1.2 Two important finite dimensional Hilbert Spaces

In the rest of the thesis, the following spaces are extensively used.

The space `2({0, 1}n)

Let be S = {0, 1}n, i.e. S is the set of the finite binary strings of length n. The Hilbert
space H(S) is the standard space used in the field of quantum computing. This kind
of space is useful to describe bits, qubits, and quantum registers.
For example, let us consider S = {0, 1}2. The computational basis of `2(S) is
{|00〉, |01〉, |10〉, |11〉}, and a generic quantum register may be expressed, in the com-
putational basis as α1|00〉+ α2|01〉+ α3|10〉+ α4|11〉, where

∑
i |αi|2 = 1.

The space H(V)

Let V be a set of names and let be S = {f |f : V → {0, 1}} (S is the set of classical
valuation into the set {0, 1}). `2(S) is an Hilbert space of dimension 2#V . In the fol-
lowing we will shorten `2({0, 1}V) with H(V).

2 span(B(S)) contains all the functions of `2(S) that are almost everywhere 0.
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As we will see, this space is useful to describe quantum registers when we want as-
signing names to qubits, when they are no referred by means of their ordinal position
(as it usually happens in literature).
The set of quantum registers are normalized vectors of H(V): by definition, a quan-
tum register will be a function φ : {0, 1}V → C such that

∑
f∈{0,1}V |φ(f)|2 = 1

(normalization condition).
The spaceH(V) is equipped with the orthonormal basis B(V) = {|f〉 : f ∈ {0, 1}V}
We call standard or computational such a basis. For example, the standard basis of
the space H({p, q}) is {|p 7→ 0, q 7→ 0〉, |p 7→ 0, q 7→ 1〉, |p 7→ 1, q 7→ 0〉,
|p 7→ 1, q 7→ 1〉}.
Let V ′ ∩ V ′′ = ∅. With H(V ′)⊗H(V ′′) we denote the tensor product (defined in the
usual way) of H(V ′) and H(V ′′). If B(V ′) = {|fi〉 : 0 ≤ i < 2n} and B(V ′′) =
{|gj〉 : 0 ≤ j < 2m} are the orthonormal bases respectively of H(V ′) and H(V ′′)
then H(V ′)⊗H(V ′′) is equipped with the orthonormal basis
{|fi〉 ⊗ |gj〉 : 0 ≤ i < 2n, 0 ≤ j < 2m}. We will abbreviate |f〉 ⊗ |g〉 with |f, g〉. If
V is a qvs, then IV is the identity onH(V), which is clearly unitary. It is easy to show
that if V ′ ∩ V ′′ = ∅ then there is a standard isomorphism is:

H(V ′)⊗H(V ′′) is' H(V ′ ∪ V ′′).

In the rest of the paper we will assume to work up-to such an isomorphism3.
In particular if Q′ ∈ H(V ′) and Q′′ ∈ H(V ′′) are two quantum registers, with a little
abuse of language (authorized by the isomorphism defined above) we will say that
Q′ ⊗Q′′ is a quantum register in H(V ′ ∪V ′′). In the rest of the paper we will denote
with the scalar 1 the empty quantum register (that belongs to H(∅)).
Let u ∈ H({0, 1}n) be the quantum register u = α1|0 . . . 0〉+ . . .+
α2n |1 . . . 1〉 and let 〈q1, . . . , qn〉 be a sequence of names. u〈q1,...,qn〉 is the quantum
register inH({q1, . . . , qn}) defined by u〈q1,...,qn〉 = α1|q1 7→ 0, . . . , qn 7→ 0〉+ . . .+
α2n |q1 7→ 1, . . . , qn 7→ 1〉 .
Let U : H(V) → H(V) be an elementary operator and let 〈q1, . . . , qn〉 be any se-
quence of distinguished names in V . Considering the bijection between {0, 1}n and
{0, 1}{q1,...,qn}, U and 〈q1, . . . , qn〉 induce an operator
U〈q1,...,qn〉 : H({q1, . . . , qn}) → H({q1, . . . , qn}) defined as follows: if
|f〉 = |qj1 7→ bj1 , . . . , qjn

7→ bjn
〉 is an element of the orthonormal basis of

H({q1, . . . , qn}), then

U〈q1,...,qn〉|f〉
def
= (U|b1, . . . , bn〉)〈q1,...,qn〉.

where qji
7→ bji

means that to the qubit named qji
we associate the element bji

of
the basis.
Let V ′ = {qj1 , . . . , qjk

} ⊆ V . We naturally extend (by suitable standard isomor-
phisms) the unitary operator U〈qj1 ,...,qjk

〉 : H(V ′) → H(V ′) to the unitary operator
U〈〈qj1 ,...,qjk

〉〉 : H(V) → H(V) that acts as the identity on variables not in V ′ and as
U〈qj1 ,...,qjk

〉 on variables in V ′.

3 in particular, if Q ∈ H(V), r 6∈ V and |r 7→ c〉 ∈ H({r}) then
Q⊗ |r 7→ c〉 will denote the element is(Q⊗ |r 7→ c〉) ∈ H(V ∪ {r})
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Example 2.18. Let us consider the standard operator cnot : `2({0, 1}2) → `2({0, 1}2),
defined by

cnot|00〉 = |00〉
cnot|01〉 = |01〉

cnot|10〉 = |11〉
cnot|11〉 = |10〉

The cnot operator is one of the most important quantum operator (see also Exam-
ple 3.4).
Intuitively, the cnot operator complements the target bit (the second one) if the con-
trol bit is 1, and otherwise does not perform any action. Let us fix the sequence 〈p, q〉
of variables, cnot induces the operator

cnot〈〈p,q〉〉 : H({p, q}) → H({p, q})

such that:

cnot〈〈p,q〉〉|q 7→ 0, p 7→ 0〉 = |q 7→ 0, p 7→ 0〉;
cnot〈〈p,q〉〉|q 7→ 0, p 7→ 1〉 = |q 7→ 1, p 7→ 1〉;
cnot〈〈p,q〉〉|q 7→ 1, p 7→ 0〉 = |q 7→ 1, p 7→ 0〉;
cnot〈〈p,q〉〉|q 7→ 1, p 7→ 1〉 = |q 7→ 0, p 7→ 1〉.

Please note that |q 7→ c1, p 7→ c2〉 = |p 7→ c2, q 7→ c1〉, since the two expres-
sions denote the same function. Consequently cnot〈〈p,q〉〉|q 7→ c1, p 7→ c2〉 =
cnot〈〈p,q〉〉|p 7→ c2, q 7→ c1〉. On the other hand, the operators cnot〈〈p,q〉〉 and
cnot〈〈q,p〉〉 are different: both act as controlled not, but cnot〈〈p,q〉〉 uses p as con-
trol qubit while cnot〈〈q,p〉〉 uses q. In general, when writing U〈〈p1,...,pn〉〉 the order
in which the variables appear in the subscript matters.

In this thesis, in order to prove an equivalence result between the one of the proposed
calculi and the formalism of quantum circuits families (see Chapter 3 for the definition
of quantum circuits families), we must restrict the class of possible unitary operators to
an effectively enumerable class (see, e.g., the paper of Nishimura and Ozawa [74] on the
perfect equivalence between quantum circuit families and Quantum Turing Machines).

A particular interesting effectively enumerable class of unitary operators is given by
the so called computable operators.

Some definition on computability are in order now.

Definition 2.19.
1. A real number x ∈ R is computable iff there is a Deterministic Turing Machine which

on input 1n computes a binary representation of an integer m ∈ Z such that |m/2n−
x| ≤ 1/2n. Let R̃ be the set of computable real numbers.

2. A real number x ∈ R is polynomial-time computable iff there is a Deterministic
Polytime Turing Machine which on input 1n computes a binary representation of an
integer m ∈ Z such that |m/2n − x| ≤ 1/2n. Let PR be the set of polynomial time
real numbers.

Definition 2.20.
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1. A complex number z = x + iy is computable iff x, y ∈ R̃. Let C̃ be the set of
computable complex numbers.

2. complex number z = x + iy is polynomial-time computable iff x, y ∈ PR. Let PC
be the set of polynomial time computable complex numbers.

3. a normalized vector φ in any Hilbert space `2(S) is computable (polynomial com-
putable) if the range of φ (a function from S to complex numbers) is C̃ (PC).

Now we can define the computable unitary operators:

Definition 2.21 (Computable Operators). A unitary operator U : `2(S) → `2(S) is
computable if for every computable normalized vector φ of `2(S), U(φ) is computable.

2.2 Logics and Lambda Calculi

2.2.1 Linear Logic

Linear logic (LL) [47] was introduced by Jean-Yves Girard in 1987: it allows to reason
about the use of resources, it was a fundamental starting point for new perspective in
Proof Theory studies and it has a lot of interesting applications in Computer Science.
Linear Logic is both a decomposition and a refinement of classical logic. Starting from
classical logic, the refinement procedure begins with the elimination of the structural rules
(weakening, contraction and exchange), then, we re-enter the original expressive power
by two modalities or exponential ‘!’ and ‘?’, which control the duplicability of resources
and express the iterability of an action: in other word Linear Logic allows structural rules
for a restricted class of exponential prefixed formulas.

Girard uses the modality ! to decompose intuitionistic implication in more primitive
elements: the implication A → B is decomposed as !(A) ( B where ( is the linear
implication.
In Linear Logic two different kinds of conjunctions, ⊗ and &, coexist; ⊗ and & corre-
spond to different meaning (multiplicative and additive) of the connective ‘and’. Dually,
the multiplicative disjunction O corresponds to the conjunction ⊗ and the additive dis-
junction⊕ corresponds to the conjunction &; moreover LL is equipped with an involutive
linear negation (·)⊥. In LL (A⊗B)⊥ = A⊥ OB⊥ and (AOB)⊥ = A⊥ ⊗B⊥ holds.

Now we briefly recall in Figure 2.1 the so called multiplicative-exponential fragment
based on ⊗, O, !, ?: it will be the basis for our quantum calculi proposed in Chapter 4, 5,
6, 7.

The symbols 1 and ⊥ are the neutral element of ⊗ and O respectively, and 1⊥ =
⊥, ⊥⊥ = 1 holds; moreover, by means of linear negation and disjunction, the linear
implication can be written as A( B = A⊥ OB.
A complete explanation of Linear Logic can be found in [47].

In this thesis we will not use Linear Logic directly: we will propose some untyped
calculi whose well formation rules are strongly based on a fragment of Linear Logic,
such as fragment formulation introduced by Wadler in [100] (see Section 2.2.2) and the
Soft Linear Logic introduced by Lafont [63] (see Section 2.2.3). Moreover, the implicit
complexity calculus proposed in Chapter 6 is inspire to the affine version of Linear Logic,
following the so called light logics implicitly complexity approach.
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id
` A,A⊥

` Γ,A ` A⊥,∆
cut

` Γ,∆

` Γ1, Γ2

ex
` Γ2, Γ1

one
` 1

` Γ
false

` Γ,⊥

Γ,A ` B,∆
times

` Γ,A⊗B,∆

` Γ,A,B
par

` Γ,AOB

`?Γ,A
ofcourse

`?Γ, !A

` Γ
weakening

` Γ, ?A

` Γ,A
dereliction

` Γ, ?A

` Γ, ?A, ?A
contraction

` Γ, ?A

Fig. 2.1. Linear Logic Rules

2.2.2 The Lambda Calculus

The λ-calculus, introduced by Alonzo Church in the 1930’s, is a formal system designed
to investigate computability from a pure functional perspective.
The λ-calculus was born as instrument for the foundational study of mathematics but
successively it had a great influence in theoretical Computer Science (see e.g. type theory
and the so called Curry-Howard isomorphism) [53]. It can be considered a paradigmatic
functional programming language.
The λ-calculus, in its pure formulation (the untyped one), is Turing-complete and its main
features is that it is higher-order; that is, it gives a systematic notation whose “input” and
“output” may be other functions.
We recall here the main notation, for an exhaustive treatment see e.g. [16].

Syntax

Given the alphabet {λ, (, ), x, y, z . . .}, where x, y, z . . . are variables in a given set V , the
set Λ of λ-terms is generated by the following grammar:

M := x|M1(M2)|λx.N

where x ∈ V , M1(M2) is the functional application and λx.N is the λ-abstraction.
The λ-abstraction construct puts in evidence the variable x, and says that the term M is
a function of x; x is a formal parameter that can be substituted with an argument that the
function M can takes in input.

Notation and basic definitions on λ-terms

We give in the following some standard syntactic notions and notation.
M,N,L, P,Q, . . . will denote arbitrary λ-terms. We will use the symbol ≡ to denote

syntactic equality.
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Moreover, to avoid ambiguity, we refer to the following notation:
λx1x2 . . . xn.N ≡ λx1(λx2(. . . ((λxn(N))) . . .)) (λ-abstraction associates on the right)
and N1N2 . . . Nn ≡ (. . . ((N1N2) . . . Nn) (application associate to the left).

Let M ∈ Λ. We say that a variable occurs free in M if it is not in the scope of a
λ-abstraction, and we say that it occurs bound otherwise.
We define the set of free variable of a term as following:

Definition 2.22. FV (M) is the set of the free variable in M , inductively defined as

FV (x) = {x}
FV (λx.N) = FV (N)− {x}
FV (N(L)) = FV (N) ∪ FV (L)

M is a closed term if FV (M) = ∅.
We write M{N/x} for the substitution with N for the variable x in the term M .
Substitution of bound occurrence of variables induce a convention on terms.

Definition 2.23. Let M ∈ Λ. A change of bound occurrences of a variable x in M is a
substitution of a subterm λx.L of M by λy.(L{y/x}), where y /∈ FV (L).

If M2 is obtained by M1 by one ore more changes of bound variables we say that M1

and M2 are α-congruent (M1 ≡M2). All α-congruent terms are considered syntactically
equivalent. In this thesis we will work modulo α-congruence.

The notion of substitution of free variable is central in order to define the reduction
relation.

Definition 2.24. Let x a variable that occurs free in a term M . We define the substitution
with the term N for free occurrences of x in M as

x{N/x} ≡ N
y{N/x} ≡ y if x 6= y
(λy.L){N/x} ≡ (λy.(L{N/x})) if x 6= y and y /∈ FV (N)
(M1M2{N/x} ≡ (M1{N/x})(M2{N/x})

In the present work we will assume the following variable convention (see [16], p. 26)

Barendregt’s Variable Convention
IfM1, . . . ,Mk occur in a certain mathematical context (such as definition, proof, ...), then
in this terms all bound variables are chosen to be different from the free variables.

See [16] for other standard results on substitution.

Reduction and strategies

The computational step of lambda calculus, i.e. the evaluation process, consists in the plug
of arguments into functions, and it is called β-reduction. β-reduction convert a λ-term in
the form (λx.M)(N) (called redex), into the term M{N/x} (called reduct); in this case
we will write (λx.M)(N) →β M{N/x}.
During the evaluation, we reduce lambda terms finding a redex and by replacing it with
its reduct. More formally, we define β-reduction as following:
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Definition 2.25 (One-step β-reduction). The one-step β-reduction is the smallest rela-
tion →β on term defined inductively by the following rules:

(λx.M)(N) →β M{N/x}
M →β M

′

λx.M →β λx.M
′

M →β M
′

MN →β M
′N

M →β M
′

NM →β NM
′

The reflexive-transitive closure of the previous relation is defined in the following
way:

Definition 2.26 (β-reduction).
The β-reduction is the smallest relation →β∗ on term defined inductively by the fol-

lowing rules:

M →∗
β M

M →β N

M →∗
β N

M →∗
β N N →∗

β L

M →∗
β L

A term is said to be in β-normal form (respect to the β-reduction) if no application of the
β rule is possible, i.e. the term does not contain any redex.
A term M has β-normal form if there exists N such that M →∗

β N and N a β-normal
form.

β-reduction enjoys some important properties, such as the Church-Rosser property
and the uniqueness of the normal form.
The first property says that the result of the computation is independent from the order in
which the redexes of the lambda term are contracted.

Theorem 2.27 (Church-Rosser Theorem). If M →∗
β N1 and M →∗

β N2, there exists a
term L such that N1 →∗

β L and N2 →∗
β L.

As a corollary of the previous statement, we have the following

Corollary 2.28. Each λ-term M has at most one β-normal form.

Therefore, if a term has the β-normal form, then it must be unique.
Not all terms has normal form. In fact, there are some term that cannot be reduced to

a normal form. For example, let be ω ≡ λx.xx and Ω ≡ ωω. Clearly, if Ω →β M , then
M ≡ Ω and consequently Ω has not β-nf.

Church-Rosser theorem and related results have some important consequences: (i) it
is possible to prove, in a pure syntactically way, the consistency of the Lambda Calculus;
(ii) in order to find the β-nf of a term M , if such β-nf exists, the various sub-expression
of M can be reduced in different order.

See [16] for an complete and good treatment of the previous topics.
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Lambda Calculus and Linearity

One of the main features of the calculi proposed in this thesis is linearity: this is not
surprising, if we consider that linearity is a fundamental ingredient of many quantum
computational models.
In the literature, several linear lambda calculi have been introduced, in order (via Curry-
Howard isomorphism) to give a suitable syntax for Linear Logic proofs and to define
an useful instrument ‘resource conscious’ inside the functional programming paradigm.
Particularly interesting is the formulation of Linear Logic proposed by P. Wadler [100].
Such a formulation, that we give in Figure 2.2, will be the basis of the quantum lambda
calculi proposed in this thesis.

Id
x : A ` x : A

Γ ` t : A x : A,∆ ` u : B
Cut

Γ,∆ ` u : {t/x} : B

Γ, p : A ` u : B
Let

Γ, x : A ` (let p = x in u) : B

Γ ` t : A ∆ ` u : B
⊗−R

Γ,∆ ` (t, u) : (A⊗B)

Γ, p : A, q : B ` t : C
⊗−L

Γ, (p, q) : (A⊗B) ` t : C

Γ, p : A ` t : B
(( −R)

Γ ` (λp.t) : (A ( B)

Γ ` t : A y : B,∆ ` u : C
( −L

Γ, f : (A ( B),∆ ` u : {(ft)/y} : C

!x1 :!A1, . . . , !xn :!An ` t : B
Promotion

!x1 :!A1, . . . , !xn :!An `!t :!B

Γ, z : A ` t : B
Dereliction

Γ, !z :!A ` t : B

Fig. 2.2. Wadler’s formulation

Note that Wadler use a let rule, that has no logical content, and can be derived by other
rules. An expression (let p = x in u) can be considered as an abbreviation for ((λp.u)x).
Wadler’s syntax is able to resolve some theoretical problem (the asymmetry of older for-
mulation respect to LL semantics), using pattern. For each type of the language, there is
a term to construct values of that type, and a pattern as a destructor of values of that type.
The patterns are generate by the grammar

p, q := x|(p, q)|!x

and in the new formulation they are paired with types (instead of in the usual formulation
types are paired with variables).
See the original paper [100] for a full discussion on the topic.

A type free linear λ-calculus

On the basis of the Wadler’s calculus, it is possible to design a type free formulation of
pure λ-calculus, where the notion of linearity is explicitly expressed in the syntax by using
the modality ‘!’.
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The syntax of terms is given by:

M := x|M(M)|λx.M |λ!x.M |!(M)

where λx.M and λ!x.M are the linear and the non linear lambda abstraction respectively.
The well formation rules for untyped linear calculus are given in Figure 2.3:

!∆,x ` x !∆, !x ` x
!∆ `M

!∆ `!M

Λ1, !∆ `M Λ2, !∆ ` N

Λ1, Λ2, !∆ `M(N)

Γ, x `M

Γ ` λx.M

Γ, !x `M

Γ ` λ!x.M

Fig. 2.3. Linear λ-calculus well formation rules

An environment Γ is a (possibly empty) finite set in the form Λ, !∆, where Λ is
a (possibly empty) set of variables, and !∆ denote a (possibly empty) set of patterns
!x1, . . . , !xn. We impose that in an environment, each classical variable x occurs at most
once (either as !x or as x). A judgement is an expression Γ `M , where Γ is an environ-
ment and M is a term. We say that a judgement is well-formed if it is derivable by means
of the well-forming rules in figure 2.3.
In the linear lambda calculus, as for Linear Logic, the bang (!) connective is used to con-
trol duplication and erasing of lambda terms, and we need to define beta-reduction and
strategies taking in account this features.

The definition of the β-reduction have to deal with to presence of two kind of redex:

(β() (λx.M)(N) →M{N/x}

(β!) (λ!x.M)(!N) →M{N/x}

with the following contextual closures:

M →M ′

MN →M ′N

N → N ′

MN →MN ′

M →M ′

λx.M → λx.M ′

M →M ′

λ!x.M → λ!x.M ′

The reduction described is the so called surface reduction (see [91]): the remarkable
point of such a kind of reduction is that no reduction occurs in the scope of a bang. We can
say that a term in the form !N represents a suspended computation: it will be eventually
reduced after an evaluation by means of a β! rule.

A term M is said to be in surface normal form if there is no surface reduction from
M . In this thesis we will use surface reduction to evaluate quantum lambda terms in order
to avoid violations of some important quantum computing principles (no cloning and no
erasing properties).
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2.2.3 Implicit Computational Complexity and Light Logics

The Computational Complexity is one of the fundamental topics of Computer Science:
it analyzes the computation in terms of computational resources (time and space), with
respect to well-know computational models such as Turing Machines, Circuits Families
and so on.
Computational problems are classified in complexity classes, depending on the amount of
computational resource required.

Many years ago, some researchers asked the following questions: is it possible to
face the problem of Computational Complexity in a new way? Namely, is it possible,
instead of to show that a problem or (more intensionally) an algorithm, belongs to a certain
complexity class C , to define calculi that guarantee the implicit belonging to C for the
algorithms defined in it? This question opened the Implicit Computational Complexity
approach (ICC) research area.
The main features of the ICC approach is that it is machine independent: there are no
references to any computational models such as Turing Machine or Circuits Families.
Another good property for an ICC system is the absence of any explicit reference to the
complexity bound. A system which satisfies this second property is said to be resource
free.

The seminal work of ICC approach (in the far 1965), was by A. Cobham [28], in the
field of Recursion Theory; starting from the definition of feasibility, Cohbam gave the
first recursion-theoretic characterization of FP (the class of polytime functions):

Theorem 2.29 (Cobham, 1964).
A function is in FP if and only if it is obtained by means of base function, composition

and limited iteration on notation.

Cobham’s computational formalism is the first machine-independent characterization
of polytime functions, but it is no resource-free: in fact, it needs an explicit polynomial
function (in order to bound the notation), in the syntax.
In 1992 Bellantoni and Cook [19], starting from Cobham’s idea, developed the basis of
ramified arithmetic with safe recursion, by defining a system that exactly capture the class
FP an that is moreover resource free.

Another way to deal with Implicit Computational Complexity is based on proof-
theoretic methods.
Jean-Yves Girard, in 1998 defined the Light Linear Logic [50], a subsystem of LL that
captures exactly polytime function. LLL has a precursor system in the Bounded Linear
Logic (1992) [52], developed by Girard himself; but if in Bound LL polynomials directly
appear in the syntax, Light LL is a truly resource free system, and it should be considered
the real founder of the (large) family of ICC logics.
Girard open his paper [50] with this claim: “We are seeking a 〈〈logic of polytime〉〉. Not
yet one more axiomatization, but an intrinsically polytime system.”, where the expressive
power of the system is given by the computational complexity of the cut elimination pro-
cedure. Girard’s main breakthrough was to understand that the problem of exponential
blowup (in time and space) of cut elimination is essentially caused by structural rules (in
particular contraction, responsible, during the cut elimination process, of duplications of
subproofs). In order to solve the problem, in the light version of Linear Logic, duplica-
tion is controlled by restricting exponential rules; consequently it is possible to master the
expressive power (in the Curry-Howard sense) of the logical system.
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Unfortunately, LLL has an heavy syntax and it is a quite complex system because it
need extra modalities (besides ! and ?).
Then, few yeas ago other “light systems” have been defined, for example the Light Affine
Logic by A. Asperti (with the unrestricted rule of weakening) [10], that is a suitable
simplification and extension of Light LL and the Soft Linear Logic by Y. Lafont [63]. We
focus our attention on the last one, because the intrinsically polytime quantum calculus
defined in Chapter 6 is explicitly inspired to Lafont’s work.

Soft LL has been developed on the basis of both Bound LL, and is given by the rules
in Figure 2.4:

Identity and Cut

Ax
A ` A

Γ ` A ∆,A ` C
Cut

Γ,∆ ` C

Logical Rules

Γ,A ` B
`(

Γ ` A ( B

Γ ` A ∆,B ` C
(`

Γ,∆,A ( B ` C ` 1

Γ ` A ∆ ` B
` ⊗

Γ.∆ ` A⊗B

Γ,A,B ` C
⊗ `

Γ,A⊗B ` C

Γ ` C

Γ, 1 ` C

Γ ` A
` ∀

Γ ` ∀α.A

Γ,A[B/α] ` C
∀ `

Γ,∀α.A ` C

Structural Rules

Γ,A,B,∆ ` C
exc `

Γ,A,B,∆ ` C

Exponential Rules

Γ ` A
!

!Γ `!A

Γ,A(n) ` C
mm

Γ, !A ` C

Fig. 2.4. Soft Linear Logic

The right logical rule for ∀ has the usual side condition, i.e. there must be no free
occurrences of α in Γ .

We write A(n) for the sequence A,A, . . . , A (n, possibly 0, times).
The key points of the syntax are the absence, with exception of exchange rule, of free

structural rules and the strong control of the modalities. In the mm rule, n ∈ N (note that
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we have weakening for n = 0 and dereliction for n = 1) and it corresponds to the axiom
!A( A⊗ . . .⊗A︸ ︷︷ ︸.

n
In the original work on SLL [63] , Lafont gives all the technical results with proof

nets formalism. Since a proof net [47] can be view as an equivalence class of proof, we
can identify the two concept 4. 5

A proof net u of a sequent Γ ` A is a set of cells connected through oriented wires.
There are atomic or compound cells, and the last type is also called boxed. We can emulate
the application of each rule with the composition and the plug-in of different cells, and
in [63] several rules are defined in order to built proof net. See the original paper for
technical details about proof net built rules.
The standard logical normalization procedure has a well defined counterpart in the proof
net setting: in fact cut elimination correspond to three different kind of reduction for proof
net: external, internal, and commutative.

The techniques used in order to prove the polytime soundness theorems are quite
standard.
Some ‘ranks’ are defined in order to control in a quantitative way the effectively weight
of the normalization procedure of the system.

It is possible to prove the following normalization property:

Theorem 2.30. A proof net u of rank n reduces to a unique normal form in at mostWu(n)
steps, where Wu is a polynomial.

The system is also complete for polynomial time computations.
Soft Linear Logic is able to encode standard data structures such as natural numbers, e.g.:

N = ∀α.!(α( α)( α( α

booleans,

B = ∀α.(α&α)( α

boolean lists

S = ∀α.!((α( α)&(α( α))( α( α

and then polynomial expressions.
It is very important to remark that in Soft LL natural numbers are non-duplicable resource.

Soft LL is able to encode in an efficiently way (finite tape) Turing Machines. In fact a
Turing Machines with k states and 3 symbols (including blank) is represented by:

M = ∀α.!((α( α)&(α( α))( Fk ⊗ F3 ⊗ (α( α)

where Fk represents the current states and F3 stands for the current symbols.
The following lemma holds:

4 In this thesis we do not use the proof-nets formalism, therefore we address the interested reader
to the literature on the subject, e.g. [47] [34] [11]

5 A proof of soundness and completeness of SLL on sequents formulation (and not on proof-nets,
as in Lafont’s paper) can be found in [43]
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Lemma 2.31. For each Turing Machine with three symbols and k states, there is a generic
proof of the sequent M ` M which correspond to the transition function of the Turing
Machine.

In a similar way we can build: (i) a proof net for a sequent N ` M which transform
a natural number into the description of a TM with n cells (initialized with 0) and the
head in the first cell; (ii) a proof net for a sequent M ` M which emulate the writing of
symbols on the tape and the moves of the head; (iii) a proof net for a sequent M ` B
which says if the machine is in a accepting or in a non-accepting state.

Finally it is possible to state the following theorem, stating that any polynomial time
algorithm is represented by a generic proof net:

Theorem 2.32. If a predicate of boolean strings is computable by a Turing Machine in
polynomial time P (n) and in polynomial space Q(n), there is a generic proof for the
sequent S(deg(p)+deg(Q)+1) ` B which corresponds to this predicate.

2.3 Modal Logics

This section is devoted to give the minimal background needed to understand our proposal
on a modal characterization of quantum state transformations (Chapter 8). The reader is
invited to refer to the main literature on modal logic [26] to have a better knowledge.

Modal logic is a framework of a large number of logical system based on the notion
of necessity and possibility. Roughly speaking the main idea of modal logic is to enrich
classical propositional logic with two modal operators: � and ♦. The intended meaning
of a formula of the kind �A is it is necessary that A is true, and of ♦A is it is possible
that A is true.

Even if modal logic has been for a lot of time studied only in the so called field of
“philosophical logic” now days (starting from the end of seventy-th) is one of the main
logical tools in computer science. In fact, it is possible to use modal operators to deal with
computational structures (in a broad sense). In this respect, it is possible to rephrase the
meaning of modal operators w.r.t. computational structures based on the notion of state:
�A is true w.r.t. the current state s iff A is true in each reachable state from s, and dually,
♦A is true in the current state s iff A is true in at least a reachable state from the state s.

Definition 2.33 (language). The alphabet of the modal language consists of: (i) a denu-
merable set P = {p0, p1, . . .} of propositional symbols; (ii) the standard propositional
connectives ⊥ and ⊃; and (iii) the unary modal operator �.
The set MF of modal formulas (or simply formulas) is the last set X s.t.: (a) ⊥ ∈ X; (b)
p ∈ X , for p ∈ P; (c) if A,B ∈ X then A ⊃ B,�A ∈ X .

The other modal and propositional connectives are defined in the standard way:
¬A ≡ A ⊃ ⊥,
A ∧B ≡ ¬(A ⊃ ¬B),
A↔ B ≡ (A ⊃ B) ∧ (B ⊃ A),
♦A ≡ ¬�¬A.
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Possible worlds semantics

A pair F = 〈W,R〉, with W a non empty set of worlds, R ⊆ W ×W an accessibility
relation, is called frame.
An interpretation (called also valuation) on a frame F is a function V : W → 2P .
A model M is a frame F plus an interpretation V , namely M = 〈F , V 〉.
Let ModK be the class of all the models.

It is possible to restrict the class of model by imposing particular conditions on the
accessibility relation. In particular we have the following subclasses of ModK :

ModT = {〈W,R, V 〉 : ∀u ∈W. uRu}
Mod4 = {〈W,R, V 〉 : ∀u, v, z ∈W. uRv & vRz ⇒ uRz}
ModB = {〈W,R, V 〉 : ∀u, v ∈W. uRv ⇒ vRu}
ModS4 = {〈W,R, V 〉 : ∀u, v, z ∈W. uRv & vRz ⇒ uRz,

∀u ∈W. uRu}
ModS5 = {〈W,R, V 〉 : ∀u, v, z ∈W. uRv & vRz ⇒ uRz,

∀u, v ∈W. uRv ⇒ vRu,∀u ∈W. uRu}

Definition 2.34 (Truth). The truth relations:
|=M ,w : A is true at the world w of M (M = 〈W,R, V 〉 and w ∈W );
|=M : A is true in M ;
|=µ : A is valid w.r.t. the class Modµ of models (µ is a name in {K,T, 4, B, S4, S5});

are defined in the following way:
6|=M ,w ⊥
|=M ,w p iff p ∈ V (w) (p ∈ P)
|=M ,w B ⊃ C iff |=M ,w B ⇒ |=M ,w C

|=M ,w �B iff ∀w′ ∈W. wRw′ ⇒ |=M ,w′ B
|=M A iff ∀w ∈W. |=M ,w A
|=µ A iff ∀M ∈ Modµ. |=M A

The main modal systems

Differently form the case of first/second order logic, there is not a unique modal logic,
and in fact it is possible to define infinite different modal logics.The following (model
theoretically defined) logics are considered basic.

Definition 2.35 (basic modal logics).
K = {A : |=K A};
KT = {A : |=T A};
K4 = {A : |=4 A}
KB = {A : |=B A}
S4 = {A : |=S4 A}
S5 = {A : |=S5 A}

Roughly speaking, K is the logic of all the models, KT is the logic of models with
reflexive accessibility relation, K4 is the logic of models with transitive accessibility re-
lation, KB is the logic of models with symmetric accessibility relation, S4 is the logic of
models with reflexive and transitive accessibility relation, S5 is the logic of models where
the accessibility relation is an equivalence relation.
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2.3.1 Labeled natural deduction systems for modal logics

In order to develop adequate proof theoretical foundations of modal logic some au-
thors [42,90] have developed the so called labeled deduction approach. In particular here
we will refer to the approach of Viganò [98].

The main idea of a labeled natural deduction system is to join the well founded
model theoretical approach of modal logic with the standard proof theory of classi-
cal/intuitionistic logic.

Let us consider the semantics of � w.r.t. a model M = 〈W,R, V 〉,

|=M ,w �A iff ∀w′ ∈W. wRw′ ⇒ |=M ,w′ A

It is evident that the intended meaning of �B is a that of a first order quantification
on possible worlds constrained by the accessibility relation R.

The labeled approach is a consequence of the above observation.
The main ingredients of the labeled calculi are:

labels: a set of names that correspond, syntactically, to possible worlds;
relational formulas: expressions of the kind xRy, formalizing, in the syntax, the accessi-

bility between worlds;
labeled formulas: expressions of the kind x : A, where x is a label and A is a modal

formulas. The intended meaning of x : A is A holds at world x.

The introduction/elimination rules for � are consequently the following:

[xRy]....
y : A
x : �A �I

x : �A xRy

y : A �E

(see [98] for the definition of semantics and the proof of soundness and completeness of
the labeled calculi).

It is intuitive to observe that the rules �I and �E “mimic” respectively the introduc-
tion and elimination rules of a first order quantifier with respect to the variable (label) y,
therefore it is not surprising the following constraint on the rule�I: the label y is different
from x and does not occur in any assumption on which y : A depends other than xRy.

Definition 2.36 (The labeled language). Given a denumerable set V ar = {x0, x1, . . .},
ranged by x, y, z, of labels and a binary symbol R, the set of relational formulas (r-
formulas) is given by expressions of the form xRy.

A labelled formula (l-formula) is an expression x : A, where x is a label and A is a
modal formula. A formula is either an r-formula or an l-formula (formulas are ranged by
α, β).

Definition 2.37 (Natural deduction systems, derivations and proofs). Let us call min-
imal modal rules the rules ⊃ I,⊃ E,RAA,�I,�E of figure 2.5.
We define the following natural deduction systems with rules in figure 2.5.
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[x : A]....
x : B

x : A ⊃ B
⊃ I

x : A ⊃ B x : A
x : B

⊃ E

[x : ¬A]....
y : ⊥
x : A

RAA

[xRy]....
y : A

x : �A
�I

x : �A xRy

y : A
�E

xRx
T

xRy yRz

xRz
4

yRx

xRy
B

In RAA, A 6= ⊥. In �I , y is fresh: it is different from x and does not occur in any assumption on
which y : A depends other than xRy.

Fig. 2.5. The modal rules

system name rules
NK minimal modal rules
NT minimal modal rules + rule T
N4 minimal modal rules + rule 4
NB minimal modal rules + rule B
NS4 minimal modal rules + rules T, 4
NS5 minimal modal rules + rules T,B, 4

Let µ be a name in {K,T, 4, S4, S5}, a derivation in Nµ of a formula α from a set of
formulas Γ is a tree formed using the rules in Nµ, ending with α and depending only on
a finite subset of Γ .
We write Γ `Nµ

α to denote that there exists an Nµ-derivation of α from Γ .
A derivation in Nµ of α depending on the empty set is called a proof of α and we then
write `Nµ α as an abbreviation of ∅ `Nµ α and say that α is a theorem of Nµ.

We need to enrich the notion of model in order to deal with labeled and relational
formulas.

Definition 2.38. A structure S is a model plus a valuation of labels, namely S =
〈W,R, V,I : V ar →W 〉. The notion of truth defined for modal formulas is extended to
the case of labeled and relational formulas w.r.t. structures.

|=M ,I xRy iff I (x) R I (y)
|=M ,I x : A iff |=M ,I (x) A
|=M ,I Γ iff ∀α ∈ Γ. |=M ,I α

Let µ be a name in {K,T, 4, B, S4, S5},

Γ |=lµ α iff ∀M ∈ Modµ,∀I . Γ |=M ,I α
iff ∀M ∈ Modµ,∀I . |=M ,I Γ =⇒ |=M ,I α
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Theorem 2.39 (soundness and completeness). For each (finite or denumerable) set Γ of
formulas and for each formula α,

Γ `NK
α ⇔ Γ |=lK α

Γ `NT
α ⇔ Γ |=lT α

Γ `N4 α ⇔ Γ |=l4 α
Γ `NB

α ⇔ Γ |=lB α
Γ `NS4 α ⇔ Γ |=lS4 α
Γ `NS5 α ⇔ Γ |=lS5 α

A direct consequence of the theorem is the following:

Corollary 2.40 (equivalence of modal systems). The following equivalences hold:

`NK
x : A ⇔ A ∈ K

`NT
x : A ⇔ A ∈ KT

`N4 x : A ⇔ A ∈ K4
`NB

x : A ⇔ A ∈ KB
`NS4 x : A ⇔ A ∈ S4
`NS5 x : A ⇔ A ∈ S5
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Basic Concepts of Quantum Computing

In this Chapter we introduce some basic and universally accepted concepts of Quantum
Computation, with emphasis on quantum computational models. We will give a descrip-
tion of Quantum Turing Machine [22, 73, 74] and Quantum Circuit Families [73, 74, 104]
[58, 72], and we will give the basic definitions of the most useful quantum complexity
classes (i.e. the quantum polytime classes); we will also recall the Yao’s encoding of
QTM with QCF [104].

3.1 Quantum Computing

The results and the notions recalled in this section are mainly based on the following
references: C. Isham, Lectures on quantum theory [57], P. Kaye, R. Laflamme and M.
Mosca An introduction to quantum computing [58], M. Nielsen and I, Chuang, Quantum
computation and quantum information [72], M. Hirvensalo, Quantum computing [55], J.
von Neumann, Mathematical foundations of quantum mechanics [99].

3.1.1 Quantum Bits, Quantum States and the Framework of Quantum Mechanics

Quantum Mechanics was born at the beginning of the 20th Century, when it was clear
that the classical theories (such as Newton’s and Maxwell’s theories), had great problem
in order to explain and understand the unexpected results of several physical experiments.
Quantum Mechanics is the mathematical framework in which is possible to develop new
physical theories as Quantum Physics, taking into account several surprising rules and
postulates.
Paul Dirac wrote 〈〈Quantum Mechanics is more suitable in order to understand atomic
phenomena, and from several point of view, it appear a more elegant theory with respect
to the classical one〉〉 [38]. Nowadays, we can still say that we are able to understand
some aspect of the world and the universe only accepting the unusual point of view of
Quantum Mechanics.
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We will recall the main ideas of Quantum Mechanics in a standard, intuitive way: we
introduce the basic notion through four postulate, which capture the fundamental con-
nections between the physical world and the mathematical formalism; the postulate give
furthermore the basis of Quantum Computing . Then, we refers to standard, fundamen-
tal basic concept of Quantum Computing such as quantum bits, quantum states, quantum
gates, in order to give some numerical examples.

Remark 3.1. In the following we will use the so called Bra/Ket-notation, introduced by
Paul Dirac (we tacitly used the same notation in the previous chapter, giving some basic
notions).
Given an Hilbert Space H, a ket |ψ〉 indicate a generic elements (column vectors) of H.
Kets like |ψ〉 are typically use to describe quantum state.
The matching 〈ψ| is called bra, and denotes the conjugate transpose of |ψ〉.

Postulates of Quantum Mechanics

Quantum Mechanics framework is able to interpret the structure, the evolution and the
interaction of quantum systems, by means of suitable mathematical descriptions.

The first postulate of Quantum Mechanics assigns to quantum systems a mathematical
representation in terms of Hilbert Spaces.

Postulate I

The state of a system is described by a unit vector in an Hilbert Space H

The Hilbert Space H of a quantum system is called the state space, and the unit
vector represents a state vector, which completely describes the system.
Let consider the Hilbert Space `2(S) as defined in 2.1.1, and take S = {0, 1}n, the set of
the finite binary strings of length n.
The Hilbert space `2(S) is the standard space used in quantum computing and it is useful
to describe quantum state in a simple, intuitive but rigorous way.

The most simple quantum system is a two-dimensional state space which elements
are called quantum bit or qubit for short.
The more direct way to represent a quantum bit is a unitary vector in the 2-dimensional
Hilbert space `2({0, 1}). We will denote with |0〉 and |1〉 the elements of the computa-
tional basis of `2({0, 1}) (see Chapter 2).

The states |0〉 and |1〉 of a qubit correspond to the boolean constants 0 and 1, which
are the only possible values of a classical bit. A qubit, however, can assume other values,
different from |0〉 and |1〉. In fact, every linear combination |ψ〉 = α|0〉 + β|1〉 where
α, β ∈ C, and |α|2 + |β|2 = 1, can be a possible qubit state. These states are said to be
superposed, and the two values α and β are called amplitudes.
The amplitudes α e β univocally represent the qubit with respect to the computational
basis.

While we can determine the state of a classical bit, for a qubit we can not establish
with the same precision its quantum state, namely the values of α and β: quantum me-
chanics says that a measurement of a qubit with state α|0〉+β|1〉 has the effect of changing
the state to |0〉 with probability |α|2 and to |1〉 with probability |β|2. We will discuss this
when we will introduce the measurement postulates.
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When defining quantum computational models, we need a generalization of the notion of
a qubit, called a quantum register or, more commonly, quantum state. [73, 85, 87, 97]. A
quantum register can be view as a system of n qubits and mathematically it is a normal-
ized vector in the Hilbert space `2({0, 1}n).
The standard orthonormal basis for `2({0, 1}n) isB = {|i〉 | i is a binary stringof length n}
(see Section 2.1.1), called computational basis. In literature, often it is written that
`2({0, 1}n) is the Hilbert Space C2n

. This is not completely correct, in fact we should
say that `2({0, 1}n) is isomorphic to C2n

, and in fact it is possible to prove the following
proposition:

Proposition 3.2. The map ν : `2({0, 1}n) → C2n

, such that for each element |i〉 ∈ B,
ν(|i〉) = (0 . . . 1 . . . 0)T (with 1 only in the (i − 1)-th position) is an isomorphism of
Hilbert Space.

Note that ν maps the computational basis of `2({0, 1}n) into the standard basis of
C2n

.

In the following, in order to not make heavy the treatment, we will work up to the
above defined isomorphism ν; namely, we will treat `2({0, 1}n) and C2n

as they was the
same space.

The Hilbert Space `2({0, 1}n) has dimension 2n and consequently its Hilbert and its
Hamel dimension coincide.
Note also that `2({0, 1}n)⊗ `2({0, 1}m) is (up to isomorphism) `2({0, 1}n+m); the iso-
morphism is given by the map |i〉 ⊗ |j〉 7→ |ij〉 (see also Postulate III).

Example 3.3. Let consider a 2-level quantum system, i.e. a system of two qubits. Each 2-
qubit quantum register is a normalized vector in `2({0, 1}2) and the computational basis
is {|00〉, |01〉, |10〉, |11〉} (see Postulate III for details about compose quantum system).
For example 1/

√
2|01〉+ 1/

√
2|00〉 ∈ `2({0, 1}n) is a quantum register of two qubits.

As normalized vectors represent physical systems, the (discrete) evolution of systems
can be viewed as suitable transformation on Hilbert Spaces. The following postulate en-
sures that the evolution is linear and unitary1:

Postulate II

The time evolution of the state of a closed quantum system is described by an unitary
operator. Giving an initial state |ψ1〉 for the closed system, for each evolution to a state
|ψ2〉, there exists an unitary operator U such that |ψ2〉 = U |ψ1〉.

In quantum computing we refer to an unitary operator U acting on on a n qubits-
quantum register as a n-qubit quantum gate. Via the isomorphism ν of Proposition 3.2

1 Note that we refer to a closed system, i.e. to a system that non interacts in any way with other
systems and with the rest of the world .
This is obviously an approximation of the reality, but it is a very common approximation in phys-
ical theories. We accept this terminology in order to distinguish unitary evolution from quantum
measurement, which implies an explicit interaction of the system with the ambient.
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we can represent operators on the 2n-dimensional Hilbert Space `2({0, 1}n) with respect
to the standard basis of C2n

as 2n × 2n matrices, and it is possible to prove that to each
unitary operator on Hilbert Space it is possible to associate univocally an algebraic repre-
sentation.

The application of quantum gates to quantum registers represents the quantum com-
putational step and captures the internal evolution of quantum systems.

The most simple quantum gates act on a single qubit: they are operators on the space
`2({0, 1}) of a single qubit, representable in the space C2 by 2× 2 complex matrices.

For example, the quantum gate X is the unitary operator which maps |0〉 to |1〉 and |1〉
to |0〉 and it is represented by the matrix(

0 1
1 0

)
Being a linear operator, it maps a linear combination of inputs to the corresponding

linear combination of outputs, and so X maps the general qubit state α|0〉+ β|1〉 into the
state α|1〉+ β|0〉 i.e (

0 1
1 0

)(
α
β

)
=
(
β
α

)
Other important 1-qubit quantum gates are

Y ≡
(

0 −i
i 0

)
Z ≡

(
1 0
0 −1

)
The quantum gates X, Y, Z are the so called Pauli Gates.
Another interesting unitary gate is the Hadamard gate denoted by H which acts on the

computational basis in the following way :

|0〉 7→ 1/
√

2(|0〉+ |1〉) |1〉 7→ 1/
√

2(|0〉 − |1〉)

The Hadamard gate is very useful when we want create a superposition starting from a
classical state.

1-qubit quantum gate can be used in order to built gate acting on n-qubit quantum
state.

A n-qubit quantum register with n ≥ 2 can be view as a composite system. It is
possible to combine two (or more) distinct physical systems into a composite one. In
Chapter 2 we have introduced the tensor product ⊗. Third Postulate tell us how tensor
product of Hilbert Space can describes the state space of a composite system.

Postulate III

When two physical systems are treated as one combined system, the state space of the
two combined physical system is the tensor product spacesH1⊗H2 of the state space
H1 andH2 of the component subsystems. If the first system is in the state |φ1〉 and the
second system is in the state |φ2〉, then the state of the combined system is |φ1〉⊗|φ2〉.
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We will often omit the ‘⊗’ symbol, and write the joint state |ψ1〉|ψ2〉 or |ψ1ψ2〉.
If we have a 2-qubit quantum system, we can apply a 1-qubits quantum gate only

to one component of the system, and we implicitly apply the identity operator to the
other one. For example suppose we want to apply X to the first qubit. The 2-qubits input
|ψ1 ⊗ ψ2〉 gets mapped to X|ψ1〉 ⊗ I|ψ2〉 = (X ⊗ I)|ψ1〉 ⊗ |ψ2〉.
The linear operator X ⊗ I has the matrix representation

(
0 1
1 0

)
⊗
(

1 0
0 1

)
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


An important 2-qubits quantum gate is the controlled-not, or CNOT, having the following
matrix representation in C22


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


In term of its action on the computational basis {|00〉, |01〉, |10〉, |11〉}, the CNOT gate
behaves as follow: |00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉, |11〉 7→ |10〉 The
CNOT gate flips the state of the second qubit (target qubit) if the first qubit (control
qubit) is in the state |1〉, and nothing otherwise.

Entanglement

Not all quantum states can be viewed as composite systems. In other word, if |ψ〉 is a
state of a tensor product spaceH1⊗H2 it is not generally true that there exist |ψ1〉 ∈ H1

and |ψ2〉 ∈ H2 such that |ψ〉 = |ψ1〉 ⊗ |ψ2〉.
In fact a key property of quantum registers is the following: it is not always possible to
decompose an n-qubit register as the tensorial product of n qubits.
These non-decomposable registers are called entangled and enjoy properties that we can-
not find in any object of classical physics. If (the state of) n qubits are entangled, they
behave as connected, independently of the real physical distance. The strength of quan-
tum computation is essentially based on the existence of entangled states (see, for example
the teleportation protocol [72]) .

Example 3.4. The 2-qubit state |ψ〉 = 1/
√

2|00〉+ 1/
√

2|11〉 is entangled.

Measurement

Describing unitary evolution of a quantum system, Postulate II assumes that the system is
closed, i.e. that it is not allowed to interact with its environment. This is a good assumption
in order to describe several properties, but a real system can not be longer closed, so
Postulate II does not suffice.
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In a realistic perspective, a quantum system interacts with other one, and also with a
measurement apparatus

The evolution of the state during a measurement is not unitary, so we need a new
postulate in order to describe measurement.

Postulate IV

Let A be a physical system, and let be B = {|φi〉} an orthonormal basis of a state
space HA for A. It is possible to perform a measurement on HA w.r.t. B that given a
state |ψ〉 =

∑
i αi|φi〉 leaves the system in the state φi with probability |αi|2.

The described measurement is called von Neumann measurement, and it is a special
kind of projective measurement (see e.g. [57, 58, 72]).

Projective measurement is very intuitive and it is commonly used to explain measure-
ment Postulate.

In Chapter 7 we will use another type of measurement, the so called general measure-
ment.

No-Cloning Theorem

No-Cloning Theorem states that Quantum Mechanics does not allow to make a copy of
an unknown quantum states. It was discovered in the early 1980’s [103] and it captures
one of the fundamental property of quantum systems and of quantum information.
One of the primitive operation in information theory is the copy of a datum but when we
deal with quantum data as qubits (quantum states), quantum information suffers lack of
accessibility in comparison to classical one.

But, why cannot a qubit be duplicated? Let |ψ〉 = α|0〉 + β|1〉 be a 1-qubit quantum
state. We should try to make a copy using a CNOT gate, as for the classical case2. The
CNOT gate takes the state |ψ〉 as the control input, and a state initialized to |0〉 as the
target input. The input state is therefore α|00〉 + β|01〉. As output, could the CNOT gate
give the tensor state |ψ〉 ⊗ |ψ〉?
The function of CNOT is to complement the second qubit only if the first is 1, and thus
the output state will be α|00| + β|11〉. This is equal to the state |ψ〉 ⊗ |ψ〉 = α2|00| +
αβ|01|+ αβ|10〉+ β2|11〉 if and only if αβ = 0.

In general, we can prove the following:

Theorem 3.5 (No-Cloning Theorem). There not exists an unitary transformation U such
that, given a quantum state |φ〉 and a quantum state3 |s〉

U(|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉

Proof. Suppose there exist the cloning operator U and suppose this copying procedure
works for two particular state |ψ1〉 and |ψ2〉. We have

2 If we take as control input a bit i and as target input a bit 0, the CNOT result is obviously i⊗ i
3 The state |s〉 is assumed to be pure, i.e. a quantum state which is not a probabilistic distribution

of other quantum states. In quantum mechanics, the notion of pure state is opposed to the notion
of mixed state, see [58, 59] for detailed discussions.
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U(|ψ1〉 ⊗ |s〉) = |ψ1〉 ⊗ |ψ1〉
U(|ψ2〉 ⊗ |s〉) = |ψ2〉 ⊗ |ψ2〉

If we take the inner product of the two equations we obtain

〈ψ1|ψ2〉 = (〈ψ1|ψ2〉)2

which has only the solutions 0 and 1. So, either |ψ1〉 = |ψ2〉 or the two states are
orthogonal. Thus a cloning device can only clone the states of the computational basis (or
classical states), but it is not possible to make a copy of a general quantum state.

3.2 Quantum Computational Models

3.2.1 Quantum Turing Machine

Let Σ be is a finite alphabet with a blank symbols � and let Q be a finite set of states,
with distinguished initial state q0 and final state qf (q0 6= qf ). As for the classical case,
the quantum Turing machine is based on the reading/writing of the tape by an head.

Let us start with the definition of tape configuration:

Definition 3.6. The set of tape configurations is the set of the functions
Σ# = {t : Z → Σ|t(m) 6= � only for a finite m ∈ Z}.

Given t ∈ Σ#, a symbol σ ∈ Σ and an integer k ∈ Z, a new tape configuration tσk
will be

tσk(m) =
{
σ if m = k
t(m) if m 6= k

We will call a frame the pair (Q,Σ).
To each frame, we can associate the configuration space C (Q,Σ) = Q×Σ#×Z, where
k ∈ Σ is the head position.
Each element C = (q, t, k) ∈ C (Q,Σ) is called configuration.

It is possible to construct an Hilbert Space generated by the configuration space: the
quantum state space is `2(C (Q,Σ)) (see Chapter 2, Section 2.1.1), that we denote with
H(Q,Σ):

H(Q,Σ) = {ϕ : C (Q,Σ) → C |
∑

C∈C (Q,Σ)

|ϕ(C)|2 <∞}

Now, we can define the prequantum, the Quantum Turing Machine and the related
properties. In the following we will use the notation [a, b]Z (a, b ∈ Z) in order to represent
the integers between a and b (with a and b included).

Definition 3.7 (Prequantum Turing Machine).
A prequantum Turing machine is a triple (Q,Σ, δ) where (Q,Σ) is a frame and δ is

the quantum transition function δ : Q×Σ ×Q×Σ × [−1, 1]Z → C̃
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We limit the transition amplitudes to the polynomial computable complex numbers
PC. This does not reduce the computational power of the Quantum Turing Machine [22,
73, 74].
The transition function δ induces the so called time evolution operator
Uδ

M : H(Q,Σ) → H(Q,Σ), a linear operator defined as

Uδ
M |C〉 = Uδ

M |q, t, k〉 =
∑

(p,σ,d)∈Q×Σ×[−1,1]Z)

δ(q, t(k), p, σ, d) · |p, tσk , k + d〉

Definition 3.8 (Quantum Turing Machine). A quantum Turing machine (QTM) is a pre-
quantum Turing machine M = (Q,Σ, δ) such that the time evolution operator Uδ

M is
unitary (i.e. Uδ

M
†
Uδ

M = I = Uδ
MUδ

M
†
) and range(δ) ⊆ C̃.

Ozawa and Nishimura gave in [73] the following result on the unitarity of time evolu-
tion operator:

Theorem 3.9. Given a prequantum Turing machine, M = (Q,Σ, δ), the time evolution
operator Uδ

M is unitary if and only if the function δ satisfies the following conditions:

• for each (q, τ) ∈ Q×Σ, ∑
(p,σ,d)∈Q×Σ×[−1,1]Z)

|δ(q, τ, p, σ, d)|2 = 1

• for each (q, τ), (q′, τ ′) ∈ Q×Σ with (q, τ) 6= (q′, τ ′)∑
(p,σ,d)∈Q×Σ×[−1,1]Z

δ(q′, τ ′, p, σ, d)∗δ(q, τ, p, σ, d) = 0

• for each (q, τ, σ), (q′, τ ′, σ′) ∈ Q×Σ ×Σ∑
(p,d)∈Q×[−1,1]Z)

δ(q′, τ ′, p, σ′, d− 1)∗δ(q, τ, p, σ, d) = 0

• for each (q, τ, σ), (q′, τ ′, σ′) ∈ Q×Σ ×Σ∑
p∈Q

δ(q′, τ ′, p, σ′,−1)∗δ(q, τ, p, σ, 1) = 0

Note that other than the unitarity property, we also require that the time evolution op-
eratorUδ

M must be (efficiently), computable; i.e.Uδ
M belongs to the computable operators

defined in 2.21.
We say that a QTM M is in PC if the range of the function δ is included in PC.
Quantum Turing machines need some input/output conventions (see [22]).
We consider final configuration any configuration in a QTM M in the final state qf .
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Definition 3.10 (Polynomial-Time QTM).
We say that a QTM M halts with running time T on input x if when M is run with

input x, at time T the superposition contains only final configurations, and at any times
Ti < T the superposition contains no final configurations.

A polynomial time QTM M is a QTM which on every input x halts in time T with T
polynomial in the length of x.

Berstein and Vazirani in [22] give also careful definitions on the output of a QTM
which halts as a superposition of the tape contents of the configurations in the machines’s
final position (see the definition of stationariety, normal-form... [22]).
In the present thesis we do not need to enter in the details of this important discussion
which can be found in [22].

How we can verify that the QTM M effectively halts? Berstein and Vazirani in [22]
write:“This can be accomplished by performing a measurement to check whether the ma-
chine is in the final state qf . Making this partial measurement does not have any other
effect on the computation”.

Languages recognized by a QTM and quantum complexity classes

The computational power of quantum computing models has been studied from a com-
plexity theoretic point of view and, as for the classical case, several quantum complexity
classes have been defined.
Note that, in this thesis, we refer to the complexity of the so called decision problems. A
decision problem is a function Q : {0, 1}∗ → {0, 1} and, very informally, it performs a
question on which the QTM has to give an answer of kind yes/no.

We focus now our attention on the quantum analogue of P, BPP and ZPP.

Definition 3.11. We say that a QTM M accepts a language L with probability p, if M
accepts with probability at least p every string x ∈ L, and rejects with probability at least
p every string x /∈ L.

Definition 3.12. The class EQP is the set of the languages L accepted by polynomial
QTM M with probability 1.

EQP is the error-free (or exact) quantum polynomial-time complexity classes.

Definition 3.13. The class BQP is the set of the languages L accepted by polynomial
QTM M with probability 2/3.

Definition 3.14. The class ZQP is the set of the languages L accepted by polynomial
QTM M such that, for every string x:

• if x ∈ L, then M accepts x with probability p > 2/3 and rejects with probability
p = 0;

• if x /∈ L, then M rejects x with probability p > 2/3 and accepts with probability
p = 0.

The class ZQP is the zero-error extension of the class BQP . In fact the QTM never
gives a wrong answer, but in each case with probability 1/3 gives a “don’t-know” answer
(clearly, in this case we need to have three answers).

The inclusions EQP ⊆ ZQP ⊆ BQP obviously hold.
The relationship with classical complexity classes is the following: P ⊆ BPP ⊆

BQP ⊆ PSPACE.
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3.2.2 Quantum Circuits

We now need to introduce the notion of a (finitely generated) quantum circuit family. This
is the computational model which will prove equivalent to Q in Chapter 5. We will use
it in Chapter 6 too, when we will simulate the Yao’s encoding of the Quantum Turing
Machine with the calculus SQ.

Elementary classes of operators

We assume here, and for the rest of the thesis, that each considered class of unitary oper-
ators are the elementary operators.

We say that a class {Ui}i∈I of unitary operators is elementary, whether for each j ∈ I ,
the unitary operatorUj is realizable, either physically (i.e. by a laser or by other apparatus)
or by means of a computable devices, such as a Turing Machine.

Remarkable classes of elementary operator are the class of computable operators (see
Definition 2.21).

Note 3.15. We adopt the definitions given by Nishimura and Ozawa in [73] and [74].
In [74] Nishimura and Ozawa prove the perfect computational equivalence between

the polynomial-time quantum Turing machine and the finitely generated uniform quantum
circuit families.

In order to show this result, the authors make some restrictions. The amplitudes of the
polynomial time quantum Turing machines has to be in the set PC, and, by definition, the
finitely generated quantum circuit family has to be based on a finite subset of the set of
quantum gates Gu = {Λ1(N), R(θ), P (θ′)|θ, θ′ ∈ PC ∩ [0, 2π]}4.

See [74] and the following section for the details.
It is important to remark that the restriction to a smaller class of quantum gates is

also forced by calcolability problems, as remarked by Kitaev, Shen and Vyalyi in [59]
The author say (remark 9.2, p. 90): “the use of an arbitrary complete basis could lead to
pathologies”. In fact they prove that the gate

X ≡
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
where θ is a noncomputable number, “ enables us to solve the halting problem!”.

Our definition of elementary gates is consistent with the approach of Ozawa and
Nishimura.

3.2.3 Quantum Circuit Families (QCF)

An n-qubit quantum gate is a unitary operator U : `2({0, 1}n) → `2({0, 1}n). Formally,
for any n ∈ N, a {0, 1}n quantum gate is an unitary operator on the corresponding Hilbert
Space `2({0, 1}n).
Given two unit vectors |φ〉, |ψ〉 ∈ `2({0, 1}n), if U |φ〉 = |ψ〉, we call |ψ〉 the output state
for the input state |φ〉.

4 where Λ1(N) is a controlled-not gate, R(θ) is a rotation gate by angle θ and P (θ′) is a phase
shift gate by angle θ′
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A V-qubit gate (where V is a set of name) is a unitary operator G : H(V) → H(V)
(see Section 2.1.1, for the definition of Hilbert Space H(V)).

If G is a set of qubit gates, a V-circuit K based on G is a sequence

U1, r
1
1, . . . , r

1
n1
, . . . ,Um, r

m
1 , . . . , r

m
nm

where, for every 1 ≤ i ≤ m:
• Ui is an ni-qubit gate in G;
• ri

1, . . . , r
i
ni

are distinct quantum variables in V .
The V-gate determined by a V-circuit

K = U1, r
1
1, . . . , r

1
n1
, . . . ,Um, r

m
1 , . . . , r

m
nm

is the unitary operator

UK = (Um)〈〈rm
1 ,...,rm

nm
〉〉 ◦ . . . ◦ (U1)〈〈r1

1 ,...,r1
n1
〉〉.

Once we have fixed an elementary class of operators, it is possible to have an effective
encodings of circuits as natural numbers and, as a consequence, an effective enumerations
of quantum circuits.

Definition 3.16 (Quantum Circuit Family).
Let G be a denumerable set of elementary gates and let {Ki}i∈N be an effective enu-

meration of quantum circuits. A family of circuits generated by G is a triple (f, g, h)
where:
• f : N → N;
• g : N× N → N is such that 0 ≤ g(n,m) ≤ n+ 1 whenever 1 ≤ m ≤ f(n);
• h : N → N is such that for every n ∈ N, Kh(n) is a {r1, . . . , rf(n)}-circuit based on
G.

Any family of circuits (f, g, h) induces a functionΦf,g,h (the function induced by (f, g, h))
which, given any finite sequence c1, . . . , cn in {0, 1}∗, returns an element ofH({r1, . . . , rf(n)}):

Φf,g,h(c1, . . . , cn) = UKh(n)(|r1 7→ cg(n,1), . . . , rf(n) 7→ cg(n,f(n))〉).

where c0, cn+1 are assumed to be 0 and 1, respectively.

Definition 3.17 (Uniformity for Quantum Circuit Families).

Uniform QCF
Given a quantum circuit family K = (f, g, h), we say that K is uniform if the func-
tions f, g, h are computable.

Polynomial-size Uniform QCF
Given a quantum circuit family K = (f, g, h), we say that K is polynomial-size
uniform if the functions f, g, h are polytime.

Finitely Generated QCF
Given a set G of quantum gate, we say that a family of circuits (f, g, h) generated by
G is finitely generated if G is a finite set.
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3.2.4 Encoding Polytime Quantum Turing Machine with Quantum Circuits
Families

In [104], Yao has proposed an encoding of quantum Turing machines into quantum circuit
families. We will use this result in Chapter 6 and now we recall its principal features.

From now on, we suppose to work with finite alphabets including a special symbol,
called blank and denoted with �. Moreover, each alphabet comes equipped with a func-
tion σ : Σ → {0, 1}dlg2(|Σ|)e. Σω is the set of infinite strings on the alphabet Σ, i.e.,
elements of Σω are functions from Z to Σ. Σ# is a subset of Σω containing string which
are different from � in finitely many positions.

Consider a polytime Quantum Turing Machine M = (Q,Σ, δ) working in time
bounded by a polynomial t : N → N. The computation of M on input of length n
can be simulated by a quantum circuit Lt(n) built as follows:
• for each m, Lm has η + k(λ + 2) inputs (and outputs), where η = dlog2 |Q|e, k =

2m + 1 and λ = dlog2 |Σ|e. The first η qubits correspond to a binary encoding q
of a state in Q. The other inputs correspond to a sequence σ1s1, . . . , σksk of binary
strings, where each σi (with |σi| = λ) corresponds to the value of a cell of M, while
each si (with |si| = 2) encodes a value from {0, 1, 2, 3} controlling the simulation.

• Lm is built up by composingm copies of a circuitKm, which is depicted in Figure ??
and has η + k(λ+ 2) inputs (and outputs) itself.

... ...
...

...
...

...
...

...
...· · ·

· · ·

Gm

H

H

H

H

Jm

Km

q σ1s1 σ2s2 σk−1sk−1 σksk

Fig. 3.1. The quantum circuit computing one step of the simulation.

• Km is built up by composing Gm with Jm. Gm does nothing but switching the inputs
corresponding to each si from 1 to 2 and vice-versa.

• Jm can be itself decomposed into k−3 instances of a single circuitH with η+3(λ+2)
inputs, acting on different qubits as shown in Figure 3.1. Notice thatH can be assumed
to be computable (in the sense of Definition 2.19), becauseM can be assumed to have
amplitudes in PC [73].

Theorem 3.18 (Yao [104]). The circuit family {Lm}m∈N simulates the Quantum Turing
Machine M.

See the original articles by Yao [104] and by Nishimura and Ozawa [73, 74] for a full
explanation of the result.



3.3 Quantum Higher Order Languages 43

3.3 Quantum Higher Order Languages

One of the main topic in quantum computing is the investigation of the effective contri-
bution that the new perspective can gives in the develop of efficient algorithm.
Nowadays, some ingenious computational model have been defined, and several re-
searchers developed (the basis of) recursive and complexity theories for the quantum case,
as done in the classical one.
In the quantum computing setting the situation is not easy as for the classical case. There
are several technical problems related to the complexity of quantum computational model
(and the quantum calculus is often very anti-intuitive), but in particular, it seem to be quite
complicate move away from the first order models (such as QTM and QCF) toward higher
order one. Then, there is the theoretical necessity of developing calculi for quantum com-
putable functions, and specifically computational languages for higher order functions.

The first attempt to define a quantum higher–order language has been done in two
unpublished papers by Maymin [68, 69]. Selinger in [85] rigorously defined a first-order
quantum functional language. Another interesting proposal in the framework of first-order
quantum functional languages is the language QML [7] by T. Altenchirk et all. Arrighi
and Dowek have recently proposed an interesting extension of λ–calculus with potential
applications in the field of quantum computing [9].

We restrict our attention to some distinct foundational proposals have already ap-
peared in the literature: first of all the quantum lambda calculus with classical control by
Selinger and Valiron [87] (see also an interesting extension proposed by Perdrix [77]).
This work was very important for our research, because the notion of configuration of our
quantum lambda calculi is strongly based on Selinger and Valiron concept of program
state, and we follow exactly Selinger’s paradigm called quantum data + classical control.

Subsequently we recall also other approach, such as the quantum lambda calculus by
Van Tonder [97] (the first quantum lambda calculus) and other.

Selinger and Valiron’s Approach.

The main goal of the work of Selinger and Valiron is to give the basis of a typed quantum
functional language. The idea of Selinger and Valiron is to define a language where only
data are superposed, and where programs live in a standard classical world. In particular, it
is not necessary to have “exotic” objects such as λ–terms in superposition. The approach
is well condensed by the slogan: “classical control + quantum data”. The proposed cal-
culus, here dubbed λsv , is based on a call-by-value λ–calculus enriched with constants
for unitary transformations and an explicit measurement operator allowing the program
to observe the value of one of the quantum data.

Reductions are defined between program state: a program state is a triple [Q,L,M ],
where Q is a normalized vector of an Hilbert Space which represent a quantum state, M
is a λ-term and L is the linking function, which assign a quantum bit to free variables in
M .
Cause the presence of measurement, the authors provide the operational semantics intro-
ducing a suitable probabilistic reduction system, in order to define a probabilistic call by
value procedure for the evaluation.
λsv is a typed lambda calculus, and its type system is based on affine intuitionistic Linear
Logic: the type system noticeably avoids run time errors and allows to control the linearity
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of the system (linearity is extended to higher types), by distinguishing between duplicable
and not duplicable resource. Selinger and Valiron develop the following type syntax:

A,B ::= α|X|!A|A( B|>|A⊗B

where α ranges over a set of type constants, X ranges over a countable set of type vari-
ables and > is the linear unit type.
The type system is also equipped with subtyping rules, which provide a more refined con-
trol of the resources. The calculus enjoys some good properties such as Subject Reduction
and Progress, and a very strong notion of safety. Note that in the quantum setting one of
the principal feature of typed calculi, i.e. the principal type property fails, for the presence
of exponential “!”. So the authors develop also a new interesting quantum type inference
algorithm, based on the idea that a linear (quantum) type can be viewed as a decoration
of an intuitionistic one.

Other Approach.

The calculus introduced by Van Tonder [97], called λq, has the same motivation and a
number of immediate similarities with λsv .

But there is a couple of glaring differences between λq and λsv . In fact, at a first
glance, it seems that λq allows by design arbitrary superpositions of λ-terms. In our
opinion the essence of the approach of Van Tonder is in Lemma 5.1 of [97], where it is
stated that “two termsM andN in superposition differ only for qubits values”. Moreover,
if M reduces to M ′ and N reduces to N ′, the reduced redex in M is (up to quantum bits)
the same redex reduced in N . This means λq has an implicit classical control: it is not
possible to superimpose terms differing in a remarkable way, i.e. terms with a different
computational evolution. Moreover, in λq measurement is not internalized, i.e. there is
not any measurement operator as in λsv .

The weak point of Van Tonder’s paper, is that some results and proofs are given too
informally. In particular, the paper argues that the proposed calculus is computationally
equivalent to quantum Turing machines without giving a detailed proof and, more im-
portantly, without specifying which class of quantum Turing machines is considered. But
clearly, such a criticism does not invalidate the foundational importance of the approach.

We conclude recalling some important works about quantum higher order languages
developed by T. Altenkirch et all. In [8], QML, a quantum languages for quantum compu-
tations in a typed setting is proposed, and its operational and denotational semantics are
developed using quantum circuits and superoperators. An interesting complete equational
theory for QML is successively developed in [7], and the authors proved soundness and
completeness results with respect to the defined semantics.
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Q: a quantum lambda calculus with classical control

In this chapter we introduce the Q calculus and we propose a detailed operational study.
The calculus is untyped, but the term formation is constrained by means of well forming
rules. In order to be correct w.r.t. term reduction we will proved a suitable version of the
subject reduction theorem.
We will proved a strong confluence result too, and a (quantum) standardization theorem
for computations.

4.1 A note on the Unitary operators

In the syntax of Q we have constants that explicitly represent unitary operators.
But which unitary operators are available in Q? We here assume that unitary operators
can be chosen from U , an arbitrary but denumerable fixed set of unitary operators, called
elementary operators (see Section 3.2.2). Clearly, the expressive power of Q depends on
this choice. If one want, for example, to capture quantum Turing machines in the style
of Bernstein and Vazirani [22], one could fix U to be the set of so-called computable
operators. On the other hand, the expressivity results in this chapter relates Q and quantum
circuit families; clearly, those that can be captured by Q terms with elementary operators
in U are precisely those (finitely) generated by U .

4.2 The Syntax of Q

This calculus is based on the “quantum data and classical control” paradigm, as devel-
oped by Selinger and Valiron [87] (see also Chapter 3).

The proposed quantum λ–calculus is based on the notion of configuration (a reformu-
lation of the concept of program state [87]).

A configuration is a triple [Q,QV,M ] that gives a full instantaneous description of
the state of a quantum program, where M is a term from a suitable grammar, Q is a
quantum register, QV is a set of quantum variables (a superset of those appearing in M ).
Configurations can evolve in two different ways:
• First of all, configurations can evolve classically: the term M changes, butQ andQV

will not be modified. In other words, reduction will have the following shape:
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[Q,QV,M ] → [Q,QV, N ]

where the only relevant component of the step is the λ–term M . This class of reduc-
tions includes all the standard λ–reductions (e.g. β–reduction).

• Configurations, however, can evolve non-classically: the term M and the quantum
register interact. There are two ways to modify the underlying quantum register:
1. The creation of a new quantum bit, by reducing a term new(c) (where c is a classi-

cal bit). Such a reduction creates a new quantum variable name in the underlying
term and a new qubit in the underlying quantum register. The new quantum vari-
able name is a kind of pointer to the newly created qubit. A new reduction has the
shape:

[Q,QV,M ] →new [Q′,QV ′, N ]

where N is obtained by replacing the redex new(c) with a (fresh) variable name r
in M , Q′ is the new quantum register with a new qubit referenced by r and QV ′
is simply QV ∪ {r}.

2. The application of a unitary transformation to the quantum register. This compu-
tation step consists in reducing a term U〈r1, . . . , rn〉, where U is the name of a
unitary operator and r1, . . . , rn are quantum variables. A unitary reduction has the
shape:

[Q,QV,M ] →Uq [Q′,QV, N ]

whereQ′ isU〈〈r1,...,rn〉〉Q andN is obtained by replacing the redexU〈r1, . . . , rn〉
with 〈r1, . . . , rn〉 in M .

4.2.1 On Linearity

One of the main features of our calculus (and of many other quantum computational
models) is linearity, where by linearity we mean that a term is neither duplicable nor
erasable. In the proposed system, linearity corresponds to the constraint that in every term
λx.M there is exactly one free occurrence of the variable x in M . This way we are able
to guarantee that the “no cloning and no erasing” property is satisfied. Indeed, whenever
(λx.M)N and x occurs (freely) exactly once in M , the quantum variables in (λx.M)N
are exactly the ones in M{N/x} and if any quantum variable occurs once in the redex, it
will occur once in the reduct, too.

But even if we cannot duplicate terms with references to quantum data, we need to
duplicate and erase classical terms, i.e., terms which do not contain any quantum vari-
able. To this purpose, the syntax of terms includes a modal operator ! (called the “bang”
operator). The bang operator has been introduced in term calculi for linear logic (see
for example Wadler’s syntax [100] and Section 2.2.2) and allows to distinguish between
those syntactical objects (λ–terms) that can be duplicated or erased and those that cannot.
Roughly speaking, a term is duplicable and erasable if and only if it is of the form !M and,
moreover, M does not contain quantum variables. This constraint is ensured “statically”
by the well–forming rules below.

This is not the only possible way to enforce the no cloning and no erasing proper-
ties. Other solutions have been proposed in literature, see e.g. [9] where it is possible to
duplicate base vectors, and [7] where duplication is modelled by means of sharing.
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4.2.2 The Language of Terms

Let U be an elementary set (see Chapter 3, Section 3.2.2) of unitary operators. Let us
associate to each elementary operator U ∈ U a symbol U . The set of term expressions, or
terms for short, is defined by the grammar in Figure 4.1:

x ::= x0, x1, . . . classical variables
r ::= r0, r1, . . . quantum variables
π ::= x | 〈x1, . . . , xn〉 linear patterns (where n ≥ 2)
ψ ::= π | !x patterns
B ::= 0 | 1 boolean constants
U ::= U0, U1, . . . unitary operators
C ::= B | U constants
M ::= x | r | !M | C | new(M) |M1M2 |

〈M1, . . . ,Mn〉 | λψ.M terms (where n ≥ 2)

Fig. 4.1. Syntax

We assume to work modulo variable renaming, i.e. terms are equivalence classes
modulo α-conversion. For the linear patterns, we extend the definition by the follow-
ing scheme: λ〈x1, . . . , xn〉.M ≡α λ〈y1, . . . yn〉.M{y1/x1, . . . yn/xn}, where y1, . . . , yn

does not occur at all in M , and for all i, j, xi 6= yj .
Substitution up to α-equivalence is defined in the usual way.
Let us denote by Q(M1, . . . ,Mk) the set of quantum variables occurring in

M1, . . . ,Mk. Notice that:
• Variables are either classical or quantum: the first ones are the usual variables of

lambda calculus (and can be bound by abstractions), while each quantum variable
refers to a qubit in the underlying quantum register (to be defined shortly).

• There are two sorts of constants as well, namely boolean constants (0 and 1) and
unitary operators: the first ones are useful for generating qubits and play no role in
classical computations, while unitary operators are applied to (tuples of) quantum
variables when performing quantum computation.

• The term constructor new(·) creates a new qubit when applied to a boolean constant.
• The syntax allows the so called pattern abstraction. A pattern is either a classical

variable, a tuple of classical variables, or a “banged” variable (namely an expression of
the kind !x, where x is a name of a classical variable). In order to allow an abstraction
of the kind λ!x.M , the environment (see below) must be enriched with !–patterns,
denoting duplicable or erasable variable.

The rest of the calculus is a standard linear lambda calculus, similar to the one introduced
in [100]. Patterns (and, consequently, lambda abstractions) can only refer to classical
variables.

There is not any measurement operator in the language. We will comment on that in
Section 4.6.

In the rest of the thesis, a finite subset of quantum variables will be called quantum
variable set (qvs).
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4.2.3 Judgements and Well–Formed Terms

Judgements are defined from various notions of environments, that take into account the
way the variables are used. Following common notations in type theory and proof theory,
a set of variables {x1, . . . , xn} is often written simply as x1, . . . , xn, with x1, . . . , xn

distinct. Analogously, the union of two sets of variables X and Y is denoted simply as
X,Y .
• A classical environment is a (possibly empty) set of classical variables. Classical

environments are denoted by ∆ (possibly with indexes). Examples of classical en-
vironments are x1, x2 or x, y, z or the empty set ∅. Given a classic environment
∆ = x1, . . . , xn, !∆ denotes the set of patterns !x1, . . . , !xn.

• A quantum environment is a (possibly empty) set (denoted by Θ, possibly indexed) of
quantum variables. Examples of quantum environments are r1, r2, r3 and the empty
set ∅.

• A linear environment is (possibly empty) set (denoted by Λ, possibly indexed) in the
form ∆,Θ Where ∆ is a classical environment and Θ is a quantum environment. The
set x1, x2, r1 is an example of a linear environment.

• An environment (denoted by Γ , possibly indexed) is a (possibly empty) set in the form
Λ, !∆ where each classical variable x occurs at most once (either as !x or as x) in Γ .
For example, x1, r1, !x2 is an environment, while x1, !x1 is not an environment.

• A judgement is an expression Γ `M , where Γ is an environment and M is a term.

const
!∆ ` C

q–var
!∆, r ` r

classic-var
!∆,x ` x

der
!∆, !x ` x

!∆ `M
prom

!∆ `!M

Λ1, !∆ `M Λ2, !∆ ` N
app

Λ1, Λ2, !∆ `MN

Λ1, !∆ `M1 · · ·Λk, !∆ `Mk

tens
Λ1, . . . , Λk, !∆ ` 〈M1, . . . ,Mk〉

Γ `M
new

Γ ` new(M)

Γ, x1, . . . , xn `M
lam1

Γ ` λ〈x1, . . . , xn〉.M

Γ, x `M
lam2

Γ ` λx.M

Γ, !x `M
lam3

Γ ` λ!x.M

Fig. 4.2. Well–Forming Rules

Since we are working in an untyped setting, term formation is constrained by means
of well forming rules. The structure of our terms is strongly based on the formulation
of Linear Logic proposed by P. Wadler in [100]. We say that a judgement Γ ` M is
well–formed (notation: .Γ ` M ) if it is derivable by means of the well–forming rules
in Figure 4.2. The rules app and tens are subject to the constraint that for each i 6= j
Λi ∩ Λj = ∅ (notice that Λi and Λj are sets of linear and quantum variables, being
linear environments). With d . Γ `M we mean that d is a derivation of the well–formed
judgement Γ `M . If Γ `M is well–formed, we say also that the termM is well–formed
with respect to the environment Γ . We say that a term M is well–formed if the judgement
Q(M) `M is well–formed.

Proposition 4.1. If a term M is well–formed then all the classical variables in it are
bound.
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More generally, if Λ, !∆ `M is well-formed, then Λ ⊆ FV (M) ⊆ Λ,∆.

4.3 Computations

As previously written, the computations are defined by means of configurations. A pre-
configuration is a triple [Q,QV,M ] where:
• M is a term;
• QV is a finite quantum variable set such that Q(M) ⊆ QV;
• Q ∈ H(QV).

Let θ : QV → QV ′ be a bijective function from a (nonempty) finite set of quantum
variables QV to another set of quantum variables QV ′. Then we can extend θ to any term
whose quantum variables are included in QV: θ(M) will be identical to M , except on
quantum variables, which are changed according to θ itself. Observe that Q(θ(M)) ⊆
QV ′. Similarly, θ can be extended to a function from H(QV) to H(QV ′) in the obvious
way.

Definition 4.2 (Configurations). Two preconfigurations [Q,QV,M ] and [Q′,QV ′,M ′]
are equivalent iff there is a bijection θ : QV → QV ′ such that Q′ = θ(Q) and
M ′ = θ(M). If a preconfiguration C is equivalent to D, then we will write C ≡ D.
The relation ≡ is an equivalence relation. A configuration is an equivalence class of
preconfigurations modulo the relation ≡. Let C be the set of configurations.

Remark 4.3. The way configurations have been defined, namely quotienting preconfigu-
rations over ≡, is very reminiscent of usual α-conversion in lambda-terms.

Let L = {Uq, new, l.β, q.β, c.β, l.cm, r.cm}. The set L will be ranged over by α, β, γ.
For each α ∈ L , we can define a reduction relation →α⊆ C × C by means of the rules in
Figure 4.3. Please notice the presence of two commutative reduction rules (namely l.cm
and r.cm). Since Q is untyped, the rôle of commutative reductions is not guaranteeing that
normal forms have certain properties, but rather preventing quantum reductions to block
classical ones (see Section 4.5).

For any subset S of L , we can construct a relation→S by just taking the union over
α ∈ S of→α. In particular,→ will denote→L . The usual notation for the transitive and
reflexive closures will be used. In particular, ∗→ will denote the transitive and reflexive
closure of →.

Notice that → is not a strategy, (the only limitation is that we forbid reductions under
the scope of a “!”), nevertheless, confluence holds.

4.3.1 Subject Reduction

In this section we give a subject reduction theorem and some related results.
First of all we stress that, even though Q is type-free, a set of admissible terms is

isolated by way of well–forming rules. It is therefore necessary to prove that the class of
well–formed terms is closed under reduction.

Quantum variables can be created dynamically in Q. Consider, for example, the re-
duction

[1, ∅, new(0)] →new [|p 7→ 0〉, {p}, p].
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β–reductions

[Q,QV, (λx.M)N ] →l.β [Q,QV,M{N/x}] l.β

[Q,QV, (λ〈x1, . . . , xn〉.M)〈r1, . . . , rn〉] →q.β [Q,QV,M{r1/x1, . . . , rn/xn}] q.β

[Q,QV, (λ!x.M)!N ] →c.β [Q,QV,M{N/x}] c.β

Unitary transform of quantum register

[Q,QV, U〈ri1 , ..., rin〉] →Uq [U〈〈ri1 ,...,rin 〉〉Q,QV, 〈ri1 , ..., rin〉] Uq

Creation of a new qubit and quantum variable

[Q,QV, new(c)] →new [Q⊗ |r 7→ c〉,QV ∪ {r}, r] new
(r is fresh)

Commutative reductions

[Q,QV, L((λπ.M)N)] →l.cm [Q,QV, (λπ.LM)N ] l.cm

[Q,QV, ((λπ.M)N)L] →r.cm [Q,QV, (λπ.ML)N ] r.cm

Context closure

[Q,QV,Mi] →α [Q′,QV ′,M ′
i ]

ti

[Q,QV, , 〈M1, . . . ,Mi, . . . ,Mk〉] →α [Q′,QV ′, 〈M1, . . . ,M
′
i , . . . ,Mk〉]

[Q,QV, N ] →α [Q′,QV ′, N ′]
r.a

[Q,QV,MN ] →α [Q′,QV ′,MN ′]

[Q,QV,M ] →α [Q′,QV ′,M ′]
l.a

[Q,QV,MN ] →α [Q′,QV ′,M ′N ]

[Q,QV,M ] →α [Q′,QV ′,M ′]
in.new

[Q,QV, new(M)] →α [Q′,QV ′, new(M ′)]

[Q,QV,M ] →α [Q′,QV ′,M ′]
in.λ1

[Q,QV, (λ!x.M)] →α [Q′,QV ′, (λ!x.M ′)]

[Q,QV,M ] →α [Q′,QV ′,M ′]
in.λ2

[Q,QV, (λπ.M)] →α [Q′,QV ′, (λπ.M ′)]

Fig. 4.3. Reduction rules.

The term new(0) does not contain any variable, while p is indeed a (quantum) variable. In
general, notice that the new reduction rule

[Q,QV, new(c)] →new [Q⊗ |r 7→ c〉,QV ∪ {r}, r]

generates not only a new qubit, but also the new quantum variable r.
The Subject Reduction theorem must be given in the following form, in order to

take into account the introduction of quantum variables during reduction: if d . Γ `
M and [Q,QV,M ] → [Q′,QV ′,M ′] then . Γ,QV ′ −QV ` M ′ where QV ′ −QV is
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the (possibly empty) set of quantum variables generated along the reduction. In our ex-
ample, we have . ` new(0) and, indeed, p ` p is well–formed. In other words, we must
guarantee that terms appearing during reduction are well-formed, taking into account the
set of quantum variables created in the reduction itself.

Proposition 4.4 (Weakening). For each derivation d, if d. Γ `M and x does not occur
in Γ then .Γ, !x `M .

Proof. The proof is by induction on the derivation d. If d is an axiom, trivial. If the last
rule r of d has d1, . . . , dk as premise(s), apply the IH to each di obtaining d′i, apply the
rule r and conclude.

In order to prove the Subject Reduction Theorem, we need to establish three sub-
stitution lemmas (classical, linear and quantum) in order to take into account the three
different kind of β reductions.

Lemma 4.5 (Substitution Lemma (linear case)). For all derivation d1, d2, if d1 .
Λ1, !∆,x `M and d2 . Λ2, !∆ ` N , with Λ1 ∩ Λ2 = ∅, then .Λ1, Λ2, !∆ `M{N/x}.

Proof. The proof is by induction on the height of d1 and by cases on the last rule. Let r
be the last rule of d1.
• Let Λ1, !∆ ` M the conclusion of d1, if x 6∈ Λ1 or Λ1 ∩ Λ2 6= ∅ the statement is

trivially true.

• if d1 is the axiom !∆,x ` x , take d2 and conclude;
• r is

Λ11, !∆,x ` P1 Λ12, !∆ ` P2
app

Λ11, Λ12, !∆,x ` P1P2

.

By IH we have: .Λ11, Λ2, !∆ ` P1{N/x}, and by means of app:
.Λ11, Λ12, Λ2, !∆ ` P1{N/x}P2(≡ P1P2{N/x}).

• r is
Λ11, !∆ ` P1 Λ12, !∆,x ` P2

app
Λ11, Λ12, !∆,x ` P1P2

.

As in the previous case.
• r is

Λ11, !∆ ` P1 · · · Λ1i, !∆,x ` Pi · · · Λ1k, !∆ ` Pk
tens

Λ11, · · · , Λ1k, !∆,x ` 〈P1, · · · , Pk〉
.

By IH we have:
.Λ1i, Λ2, !∆ ` Pi{N/x}, and by means of tens:
.Λ11, . . . , Λ1k, Λ2, !∆ ` 〈P1, . . . , Pi{N/x}, . . . , Pk〉(≡ 〈P1, . . . , Pk〉{N/x}).

• r is
Λ1, !∆,x ` P

new
Λ1, !∆,x ` new(P )

.

By IH we have: .Λ1, Λ2, !∆ ` P{N/x} and by means of new:
.Λ1, Λ2, !∆ ` new(P{N/x})(≡ new(P ){N/x}).
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• r is
Λ1, !∆,x1, . . . , xn, x ` P

lam1
Λ1, !∆,x ` λ〈x1, . . . , xn〉.P

.

By IH we have: .Λ1, Λ2, !∆,x1, . . . , xn ` P{N/x} and by means of lam1:
.Λ1, Λ2, !∆ ` λ〈x1, . . . , xn〉.P{N/x}(≡ (λ〈x1, . . . , xn〉.P ){N/x}).

• r is
Λ1, !∆,x, y ` P

lam2
Λ1, !∆,x ` λy.P

.

By IH we have: .Λ1, Λ2, !∆, y ` P{N/x}, and by means of lam2:
.Λ1, Λ2, !∆ ` λy.P{N/x}(≡ (λy.P ){N/x}).

• r is
Λ1, !∆,x, !y ` P

lam3
Λ1, !∆,x ` λ!y.P

.

By proposition 4.4 we have d′2 . Λ2, !∆, !y ` N , by IH we have: .Λ1, Λ2, !∆, !y `
P{N/x}, and by means of lam3:
.Λ1, Λ2!∆ ` λ!y.P{N/x}(≡ (λ!y.P ){N/x}).

This concludes the proof.

Lemma 4.6 (Substitution (non linear case)). For all derivation d1, d2, if d1.Λ1, !∆, !x `
M and d2. !∆ `!N , then .Λ1, !∆ `M{N/x}.

Proof. The proof is by induction on the height of d1 and by cases on the last rule. Let r
be the last rule of d1.
• Let Λ1, !∆ `M be the conclusion of d1, if !x 6∈!∆ the statement is trivially true.
• Let r be

der
!∆, !x ` y .

where y 6= x, the statement is trivially true: the result is given by

der
!∆ ` y .

• r is
der

!∆, !x ` x .

We easily obtain a suitable derivation d of !∆ ` N by means of the immediate sub-
derivation of d2.

• r is
Λ11, !∆, !x ` P1 Λ12, !∆, !x ` P2

app
Λ11, Λ12, !∆, !x ` P1P2

.

By IH we have: .Λ11, !∆ ` P1{N/x} and .Λ12, !∆ ` P2{N/x}, and by means of
app: .Λ11, Λ12, !∆ ` P1{N/x}P2{N/x}(≡ (P1P2){N/x}).

• r is
Λ11, !∆, !x ` P1 · · · Λ1k, !∆, !x ` Pk

tens
Λ11, . . . , Λ1k, !∆, !x ` 〈P1, . . . , Pk〉

.

By IH we have:
.Λ1i, !∆ ` Pi{N/x} for i ∈ [1, k], and by means of tens:
.Λ11, . . . , Λ1k, !∆ ` 〈P1{N/x}, . . . , Pk{N/x}〉(≡ 〈P1, . . . , Pk〉{N/x}).
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• r is
Λ1, !∆, !x ` P

new
Λ1, !∆, !x ` new(P )

.

By IH we have: .Λ1, !∆ ` P{N/x} and by means of new:
.Λ1, !∆ ` new(P{N/x})(≡ new(P ){N/x}).

• r is
Λ1, !∆,x1, . . . , xn, !x,` P

lam1
Λ1, !∆, !x ` λ〈x1, . . . , xn〉.P

.

By IH we have: .Λ1, !∆,x1, . . . , xn ` P{N/x} and by means of lam1:
.Λ1, !∆ ` λ〈x1, . . . , xn〉.P{N/x}(≡ (λ〈x1, . . . , xn〉.P ){N/x}).

• r is
Λ1, !∆, !x, y ` P

lam2
Λ1, !∆, !x ` λy.P

.

By IH we have: .Λ1, !∆, y ` P{N/x}, and by means of lam2:
.Λ1, !∆ ` λy.P{N/x}(≡ (λy.P ){N/x}).

• r is
Λ1, !∆, !x, !y ` P

lam3
Λ1, !∆, !x ` λ!y.P

.

By proposition 4.4 we have d′2. !∆, !y ` N , by IH we have: .Λ1, !∆, !y ` P{N/x},
and by means of lam3:
.Λ1, !∆ ` λ!y.P{N/x}(≡ (λ!y.P ){N/x}).

• r is prom. In order to apply the promotion rule, Λ1 must be empty. Therefore r is

!∆, !x ` P
prom

!∆, !x `!P
.

By IH we have . !∆ ` P{N/x} and by means of prom . !∆ `!P{N/x}.
This concludes the proof.

Lemma 4.7 (Substitution (quantum case)). For each derivation d, for every non empty
sequence x1, . . . , xn if d . Λ, !∆,x1, . . . , xn `M and r1, . . . , rn /∈ Λ, then
.Λ, !∆, r1, . . . , rn `M{r1/x1, . . . , rn/xn}

Proof. By Lemma 4.5 applied to d . Λ, !∆,x1, . . . , xn ` M and the axiom !∆, r1 ` r1
we obtain .Λ, !∆, , r1, x2, . . . , xn ` M [r1/x1], and by means of repeated applica-
tions of Lemma 4.5 with respect to axioms !∆, r2 ` r2, . . . , !∆, rn ` rn we obtain
.Λ, !∆, , r1, . . . , rn `M [r1/x1, . . . , rn/xn].

The previously stated substitution lemmas are the main technical tool in order to prove
the subject reduction theorem:

Theorem 4.8 (Subject Reduction). If d . Γ ` M and [Q,QV,M ] → [Q′,QV ′,M ′]
then . Γ,QV ′ −QV `M ′.

Proof. The proof is by induction on the height of d and by cases on the last rule r of d.
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• r is app and the reduction rule is

[Q,QV, P1] →α [Q′,QV ′, P ′1]
l.a

[Q,QV, P1P2] →α [Q′,QV ′, P ′1P2]

we have
Λ1, !∆ ` P1 Λ2, !∆ ` P2

app
Λ1, Λ2, !∆ ` P1P2

.

So by IH we have . Λ1,QV ′ −QV, !∆ ` P ′1, and by means of app we obtain
. Λ1, Λ2,QV ′ −QV, !∆ ` P ′1P2.

• r is app and the reduction rule is

[Q,QV, P2] →α [Q′,QV ′, P ′2]
r.a

[Q,QV, P1P2] →α [Q′,QV ′, P1P
′
2]

.

Symmetric to previous case.
• r is app and the reduction rule is

[Q,QV, (λx.P )N ] →l.β [Q,QV, P{N/x}] l.β

(application generates a redex). Suppose we have the following derivation d:

d1···
Λ1, !∆,x ` P

lam2
Λ1, !∆ ` λx.P

d2···
Λ2, !∆ ` N

app
Λ1, Λ2, !∆ ` (λx.P )N

Let d1 . Λ1, !∆,x ` P and d2 . Λ2, !∆ ` N .
Let us consider the reduction [Q,QV, (λx.P )N ] →l.β [Q,QV, P{N/x}]. We note
that the reduction does not modify the QV set, so we have just to apply Lemma 4.5 to
d1 and d2: .Λ1, Λ2, !∆ ` P{N/x}.

• r is app and the reduction rule is q.β or c.β. Similar to previous case. If r is q.β, apply
Lemma 4.7, if r is c.β, apply Lemma 4.6.

• r is app and the reduction rule is

[Q,QV, L((λ〈x1, . . . , xn〉.P )N)] →l.cm [Q,QV, (λ〈x1, . . . , xn〉.LP )N ] l.cm

Note that the reduction rule does not modify Q and QV . So, from derivation:

d1···
Λ1, !∆ ` L

d2···
Λ′2, !∆,x1, . . . , xn ` P

lam1
Λ′2, !∆ ` λ〈x1, . . . , xn〉.P

d3···
Λ′′2 , !∆ ` N

app
Λ2, !∆ ` (λ〈x1, . . . , xn〉.P )N

app
Λ1, Λ2, !∆ ` L((λ〈x1, . . . , xn〉.P )N)
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we exhibit a derivation of Λ1, Λ2, !∆ ` (λ〈x1, . . . , xn〉.LP )N :

d1···
Λ1, !∆ ` L

d2···
Λ′2, !∆,x1, . . . , xn ` P

app
Λ1, Λ

′
2, !∆,x1, . . . , xn ` LP

lam1
Λ1, Λ

′
2, !∆ ` λ〈x1, . . . , xn〉.LP

d3···
Λ′′2 , !∆ ` N

app
Λ1, Λ2, !∆ ` (λ〈x1, . . . , xn〉.LP )N

• r is app and the reduction rule is

[Q,QV, ((λ〈x1, . . . , xn〉.P )N)L] →r.cm [Q,QV, (λ〈x1, . . . , xn〉.PL)N ] r.cm.

As in the previous case,

d1···
Λ′1, !∆,x1, . . . , xn ` P

lam1
Λ′1, !∆ ` λ〈x1, . . . , xn〉.P

d2···
Λ′′1 , !∆ ` N

app
Λ1, !∆ ` (λ〈x1, . . . , xn〉.P )N

d3···
Λ2, !∆ ` L

app
Λ1, Λ2, !∆ ` ((λ〈x1, . . . , xn〉.P )N)L

then
d1···

Λ′1, !∆,x1, . . . , xn ` P

d3···
Λ2, !∆ ` L

app
Λ′1, Λ2, !∆,x1, . . . , xn ` PL

lam1
Λ′1, Λ2, !∆ ` λ〈x1, . . . , xn〉.PL

d2···
Λ′′1 , !∆ ` N

app
Λ1, Λ2, !∆ ` (λ〈x1, . . . , xn〉.PL)N

• r is lam1:
d1···

Γ, x1, . . . , xn ` P
lam1

Γ ` λ〈x1, . . . , xn〉.P
If we have

[Q,QV, P ] → [Q′,QV ′, P ′]

[Q,QV, λ〈x1, . . . , xn〉.P ] → [Q′,QV ′, λ〈x1, . . . , xn〉.P ′]

by IH on d1

. Γ,QV ′ −QV, x1, . . . , xn ` P ′

and we conclude
. Γ,QV ′ −QV ` λ〈x1, . . . , xn〉.P ′
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• r is lam2:
d1···

Γ, x ` P
lam1

Γ ` λx.P
If we have

[Q,QV, P ] → [Q′,QV ′, P ′]

[Q,QV, λx.P ] → [Q′,QV ′, λx.P ′]
by IH on d1

. Γ,QV ′ −QV, x ` P ′

and we conclude
. Γ,QV ′ −QV ` λx.P ′

• r is lam3:
d1···

Γ, !x ` P
lam3

Γ ` λ!x.P
If we have

[Q,QV, P ] → [Q′,QV ′, P ′]

[Q,QV, λ!x.P ] → [Q′,QV ′, λ!x.P ′]

by IH on d1

. Γ,QV ′ −QV, !x ` P ′

and we conclude
. Γ,QV ′ −QV ` λ!x.P ′

• r is new
!∆ ` c

new
!∆ ` new(c)

We have the following reduction rule:

[Q,QV, new(c)] → [Q⊗ |p 7→ c〉,QV ∪ {p}, p]

By means of
q− var

!∆, p ` p
we obtain the result;

• r is new
Γ ` N

new
Γ ` new(N)

and the reduction rule is

[Q,QV, N ] →α [Q′,QV ′, N ′]

[Q,QV, new(N)] →α [Q′,QV ′, new(N ′)]

In this case the proof is identical to the case of application.
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• r is
Λ1, !∆ ` P1 · · · Λk, !∆ ` Pk

tens
Λ1, . . . , Λk, !∆ ` 〈P1, . . . , Pk〉

and the reduction rule is:

[Q,QV, Pi] →α [Q′,QV ′, P ′i ]

[Q,QV, 〈P1, . . . , Pi, . . . , Pk〉] →α [Q′,QV ′, 〈P1, . . . , P
′
i , . . . , Pk〉]

For each j ∈ {1, . . . , k}−{i} dj . Λj , !∆ ` Pj , moreover by IH we have . Λi,QV ′−
QV, !∆,` Pi therefore by means of tens we obtain .Λ1, . . . Λk, !∆,QV ′ − QV `
〈P1, . . . , P

′
i , . . . , Pk〉

This concludes the proof.

An immediate corollary (provable by induction) is:

Corollary 4.9. If .Γ `M and [Q,QV,M ] ∗→ [Q′,QV ′,M ′] then . Γ,QV ′−QV `M .

The notion of well–formed judgement can be extended to configurations:

Definition 4.10. A configuration [Q,QV,M ] is said to be well–formed iff there is a con-
text Γ such that Γ `M is well-formed.

As a consequence of Subject Reduction, the set of well–formed configurations is closed
under reduction:

Corollary 4.11. IfM is well–formed and [Q,QV,M ] ∗→ [Q′,QV ′,M ′] thenM ′ is well–
formed.

In the following, with configuration we mean well–formed configuration. Now, let us
define normal forms and computations.

Definition 4.12. A configuration C ≡ [Q,QV,M ] is said to be in normal form iff there
is no D such that C → D. Let us denote by NF the set of configurations in normal form.

We define a computation as a suitable sequence of configurations:

Definition 4.13. If C0 is a configuration, a computation of length ϕ ≤ ω starting with C0

is a sequence of configurations {Ci}i<ϕ such that for all 0 < i < ϕ, Ci−1 → Ci and
either ϕ = ω or Cϕ−1 ∈ NF.

If a computation starts with a configuration [Q0,QV0,M0] such that QV0 is empty (and,
therefore, Q(M0) is empty itself), then at each step i the set QVi coincides with the set
Q(Mi):

Proposition 4.14. Let {[Qi,QVi,Mi]}i<ϕ be a computation, such that Q(M0) = ∅.
Then for every i < ϕ we have QVi = Q(Mi).

Proof. Observe that if [Q,Q(M),M ] → [Q′,QV ′,M ′] then by induction on reduction
rules we immediately have that QV ′ = Q(M ′) whenever QV = Q(M), and conclude.

In the rest of the paper, [Q,M ] denotes the configuration [Q,Q(M),M ].
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4.3.2 On the Linearity of the Calculus: Dynamics

As previously seen, the well–forming rules ensure that any term in the form !M cannot
contain quantum variables. In order to preserve this property under reduction,

reductions cannot be performed under the scope of a bang.

Let us consider the following well–formed configuration: [1, ∅, (λ!x.cnot〈x, x〉)!(new(1))].
It is immediate to observe that !(new(1)) is a duplicable term because it does not contain
references to quantum data and in fact the following is a correct computation:

[1, ∅, (λ!x.cnot〈x, x〉)!(new(1))] →c.β [1, ∅, cnot〈new(1), new(1)〉]
2→new [|p 7→ 1〉 ⊗ |q 7→ 1〉, {p, q}, cnot〈p, q〉)]
→Uq [|p 7→ 1〉 ⊗ |q 7→ 0〉, {p, q}, 〈p, q〉].

However, what happens if we permit to reduce under the scope of the bang (namely re-
ducing new(1) before executing the c.β–reduction)? We would obtain the computation:

[1, ∅, (λ!x.cnot〈x, x〉)!(new(1))] →new [|p 7→ 1〉, {p}, (λ!x.cnot〈x, x〉)!(p)]
→q.β [|p 7→ 1〉, {p}, cnot〈p, p〉)].

Notice we have duplicated the quantum variable p, creating a double reference to the
same qubit. As a consequence we could apply a binary unitary transform (cnot) to a
single qubit (the one referenced by p). This is not compatible with the basic principles of
quantum computing.

4.3.3 Confluence

Commutative reduction steps behave very differently from other reduction steps when
considering confluence. As a consequence, it is useful to define two subsets of L as
follows:

Definition 4.15. We distinguish two particular subsets of L , namely K = {r.cm, l.cm}
and N = L −K .

In the following, we write M →α N meaning that there are Q, QV , Q′ and QV ′ such
that [Q,QV,M ] →α [Q′,QV ′, N ]. Similarly for the notation M →S N where S is a
subset of L .

First of all, we need to show that wheneverM →α N , the underlying quantum register
evolves in a uniform way:

Lemma 4.16 (Uniformity). For every M,M ′ such that M →α M ′, exactly one of the
following conditions holds:
1. α 6= new and there is a unitary transformation UM,M ′ : H(Q(M)) → H(Q(M))

such that [Q,QV,M ] →α [Q′,QV ′,M ′] iff [Q,QV,M ] ∈ C, QV ′ = QV and Q′ =
(UM,M ′ ⊗ IQV−Q(M))Q.

2. α = new and there are a constant c and a quantum variable r such that [Q,QV,M ] →new

[Q′,QV ′,M ′] iff [Q,QV,M ] ∈ C, QV ′ = QV ∪ {r} and Q′ = Q⊗ |r 7→ c〉.
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Proof. We go by induction on M . M cannot be a variable nor a constant nor a unitary
operator nor a term !N . If M is an abstraction λψ.N , then M ′ ≡ λψ.N ′, N →α N ′

and the thesis follows from the inductive hypothesis. If M ≡ NL, then we distinguish a
number of cases:
• M ′ ≡ N ′L and N →α N

′. The thesis follows from the inductive hypothesis.
• M ′ ≡ NL′ and L→α L

′. The thesis follows from the inductive hypothesis.
• N ≡ U , L ≡ 〈ri1 , ..., rin

〉 and M ′ ≡ 〈ri1 , ..., rin
〉. Then case 1 holds. In particular,

Q(M) = {ri1 , ..., rin
} and UM,M ′ = U〈〈ri1 ,...,rin 〉〉.

• N ≡ λx.P and M ′ = P{L/x}. Then case 1 holds. In particular UM,M ′ = IQ(M).
• N ≡ λ〈x1, . . . , xn〉.P , L = 〈r1, . . . , rn〉 and M ′ ≡ P{r1/x1, . . . , rn/xn}. Then

case 1 holds and UM,M ′ = IQ(M).
• N ≡ λ!x.P , L =!Q and M ′ ≡ P{Q/x}. Then case 1 holds and UM,M ′ = IQ(M).
• L ≡ (λπ.P )Q and M ′ ≡ (λπ.NP )Q. Then case 1 holds and UM,M ′ = IQ(M).
• N ≡ (λπ.P )Q and M ′ ≡ (λπ.PL)Q. Then case 1 holds and UM,M ′ = IQ(M).

If M ≡ new(c) then M ′ is a quantum variable r and case 2 holds. This concludes the
proof.

Note that UM,M ′ is always the identity function when performing classical reduction.
The following technical lemma will be useful when proving confluence:

Lemma 4.17. Suppose [Q,QV,M ] →α [Q′,QV ′,M ′].
1. If [Q,QV,M{N/x}] ∈ C, then

[Q,QV,M{N/x}] →α [Q′,QV ′,M ′{N/x}].

2. If [Q,QV,M{r1/x1, . . . , rn/xn}] ∈ C, then

[Q,QV,M{r1/x1, . . . , rn/xn}] →α [Q′,QV ′,M ′{r1/x1, . . . , rn/xn}].

3. If .x, Γ ` N and [Q,QV, N{M/x}] ∈ C, then

[Q,QV, N{M/x}] →α [Q′,QV ′, N{M ′/x}].

Proof. Claims 1 and 2 can be proved by induction on the proof of
[Q,QV,M ] →α [Q′,QV ′,M ′]. Claim 3 can be proved by induction on N .

A property similar to one-step confluence holds in Q. This is a consequence of having
adopted the so-called surface reduction: it is not possible to reduce inside a subterm in
the form !M and, as a consequence, it is not possible to erase a diverging term. This has
been already pointed out in the literature [91].

Strictly speaking, one-step confluence does not hold in Q. For example, if
[Q,QV, (λπ.M)((λx.N)L)] ∈ C, then both

[Q,QV, (λπ.M)((λx.N)L)] →N [Q,QV, (λπ.M)(N{L/x})]

and
[Q,QV, (λπ.M)((λx.N)L)] →K [Q,QV, (λx.(λπ.M)N)L]

→N [Q,QV, (λπ.M)(N{L/x})]

However, this phenomenon is only due to the presence of commutative rules:
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Proposition 4.18 (One-step Confluence). Let C,D,E be configurations with C →α D,
C →β E. Then:
1. If α ∈ K and β ∈ K , then either D = E or there is F with D →K F and
E →K F .

2. If α ∈ N and β ∈ N , then either D = E or there is F with D →N F and
E →N F .

3. If α ∈ K and β ∈ N , then either D →N E or there is F with D →N F and
E →K F .

Proof. Let C ≡ [Q,QV,M ]. We go by induction on M . M cannot be a variable nor a
constant nor a unitary operator. If M is an abstraction λπ.N , then D ≡ [R,RV, λπ.P ],
E ≡ [S,SV, λπ.Q] and

[Q,QV, N ] →α [R,RV, P ]
[Q,QV, N ] →β [S,SV, Q]

The IH easily leads to the thesis. Similarly when M = λ!x.N . If M = NL, we can
distinguish a number of cases depending on the last rule used to prove C →α D, C →β

E:
• D ≡ [R,RV, PL] and E ≡ [S,SV, NR] where [Q,QV, N ] →α [R,RV, P ] and

[Q,QV, L] →β [S,SV, R]. We need to distinguish four sub-cases:
• If α, β = new, then, by Lemma 7.13, there exist two quantum variables s, q /∈ QV

and two constants d, e such thatRV = QV∪{s}, SV = QV∪{q},R = Q⊗|s 7→
d〉 and S = Q⊗ |q 7→ e〉. Applying 7.13 again, we obtain

D →new [Q⊗ |s 7→ d〉 ⊗ |v 7→ e〉,QV ∪ {s, v}, PR{v/q}] ≡ F

E →new [Q⊗ |q 7→ e〉 ⊗ |u 7→ d〉,QV ∪ {q, u}, P{u/s}R] ≡ G

As can be easily checked, F ≡ G.
• If α = new and β 6= new, then, by Lemma 7.13 there exists a quantum variable r

and a constant c such that RV = QV ∪ {r}, R = Q ⊗ |r 7→ c〉, SV = QV and
S = (UL,R ⊗ IQV−Q(L))Q. As a consequence, applying Lemma 7.13 again, we
obtain

D →β [(UL,R ⊗ IQV∪{r}−Q(L))(Q⊗ |r 7→ c〉),QV ∪ {r}, PR] ≡ F

E →new [((UL,R ⊗ IQV−Q(L))Q)⊗ |r 7→ c〉,QV ∪ {r}, PR] ≡ G

As can be easily checked, F ≡ G.
• If α 6= new and β = new, then we can proceed as in the previous case.
• If α, β 6= new, then by Lemma 7.13, there exist SV = RV = QV ,R = (UN,P ⊗

IQV−Q(N))Q and S = (UL,R ⊗ IQV−Q(L))Q. Applying 7.13 again, we obtain

D →β [(UL,R ⊗ IQV−Q(L))((UN,P ⊗ IQV−Q(N))Q),QV, PR] ≡ F

E →α [(UN,P ⊗ IQV−Q(L))((UL,R ⊗ IQV−Q(L))Q),QV, PR] ≡ G

As can be easily checked, F ≡ G.
• D ≡ [R,RV, PL] and E ≡ [S,SV, QL], where [Q,QV, N ] → [R,RV, P ] and

[Q,QV, N ] → [S,SV, Q]. Here we can apply the inductive hypothesis.
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• D ≡ [R,RV, NR] and E ≡ [S,SV, NS], where [Q, QV, L] → [R,RV, R] and
[Q,QV, L] → [S,SV, S]. Here we can apply the inductive hypothesis as well.

• N = (λx.T ), D ≡ [Q,QV, T{L/x}], E ≡ [R,RV, NR], where [Q,QV, L] →β

[R,RV, R]. Clearly [Q,QV, T{L/x}] ∈ C and, by Lemma 7.14, [Q,QV, T{L/x}] →
[R,RV, T{R/x}]. Moreover, [R,RV, NR] ≡ [R,RV, (λx.T )R] → [R,RV, T{R/x}]

• N = (λx.T ),D ≡ [Q,QV, T{L/x}],E ≡ [R,RV, (λx.V )L], where [Q,QV, T ] →β

[R,RV, V ]. Clearly [Q,QV, T{L/x}] ∈ C and, by Lemma 7.14, [Q,QV, T{L/x}] →β

[R,RV, V {L/x}]. Moreover, [R,RV, (λx.V )L] →β [R,RV, V {L/x}]
• N = (λ!x.T ), L =!Z, D ≡ [Q,QV, T{Z/x}], E ≡ [R,RV, (λ!x.V )L], where

[Q,QV, T ] →β [R,RV, V ]. Clearly [Q,QV, T{Z/x}] ∈ C and, by Lemma 7.14,
[Q,QV, T{Z/x}] →β [R,RV, V {Z/x}]. Moreover, [R,RV, (λx.V )!Z] →β [R,RV, V {Z/x}]

• N = (λ〈x1, . . . , xn〉.T ), L = 〈r1, . . . , rn〉, D ≡ [Q,QV, T{r1/x1, . . . , rn/xn}],
E ≡ [R,RV, (λ〈x1, . . . , xn〉.V )L], where [Q,QV, T ] →β [R,RV, V ]. Clearly
[Q,QV, T{r1/x1, . . . , rn/xn}] ∈ C and, by Lemma 7.14, [Q,QV, T{r1/x1, . . . , rn/xn}] →β

[R,RV, V {r1/x1, . . . , rn/xn}]. Moreover, [R,RV, (λ〈x1, . . . , xn〉.V )L] →β [R,RV, V {r1/x1, . . . , rn/xn}].
• N = (λx.T )Z, D ≡ [Q,QV, (λx.TL)Z], E ≡ [Q,QV, (T{Z/x})L], α = r.cm,
β = l.β. Clearly, [Q,QV, (λx.TL)Z] →l.β [Q,QV, (T{Z/x})L].

• N = (λπ.T )Z, D ≡ [Q,QV, (λπ.TL)Z], E ≡ [R,RV, ((λπ.V )Z)L], α = r.cm,
where [Q,QV, T ] →β [R,RV, V ]. Clearly, [Q,QV, (λx.TL)Z] →r.cm [R,RV, (λx.V L)Z]
and [R,RV, ((λπ.V )Z)L] →β [R,RV, (λπ.V L)Z].

• N = (λπ.T )Z, D ≡ [Q,QV, (λx.TL)Z], E ≡ [R,RV, ((λπ.T )X)L], α = r.cm,
where [Q,QV, Z] →β [R,RV, X]. Clearly, [Q,QV, (λx.TL)Z] →r.cm [R,RV, (λx.TL)X]
and [R,RV, ((λπ.T )X)L] →β [R,RV, (λπ.TL)X].

• N = (λπ.T )Z, D ≡ [Q,QV, (λx.TL)Z], E ≡ [R,RV, ((λπ.T )Z)R], α = r.cm,
where [Q,QV, L] →β [R,RV, R]. Clearly, [Q,QV, (λx.TL)Z] →r.cm [R,RV, (λx.TR)Z]
and [R,RV, ((λπ.T )Z)R] →β [R,RV, (λπ.TR)Z].

• N = (λπ.T ),L = (λx.Z)Y ,D ≡ [Q,QV, (λx.NZ)Y ],E ≡ [Q,QV, N(Z{Y/x})],
α = l.cm, β = l.β. Clearly, [Q,QV, (λx.NZ)Y ] → l.β[Q,QV, N(Z{Y/x})].

M cannot be in the form new(c), because in that case D ≡ E.

The following definition is useful when talking about reduction lengths, and takes into
account both commuting and non-commuting reductions:

Definition 4.19. Let C1, . . . , Cn be a sequence of configurations such that C1 → . . . →
Cn. The sequence is called an m-sequence of length n from C1 to Cn iff m is a natural
number and there is A ⊆ {2, . . . , n} with |A| = m and Ci−1 →N Ci iff i ∈ A. If there
is a m-sequence of length n from C to D, we will write C

m,n−→ D or simply C m−→ D.

This way we can generalize Proposition 4.18 to another one talking about reduction se-
quences of arbitrary length:

Theorem 4.20 (Confluence). Let C,D1, D2 be configurations with C
m1−→ D1 and

C
m2−→ D2. Then, there is a configuration E with D1

n1−→ E and D2
n2−→ E with

n1 ≤ m2, n2 ≤ m1 and n1 +m1 = n2 +m2.

Proof. We prove the following, stronger statement: suppose there are C,D1, D2, a m1-
sequence of length l1 from C to D1 and an m2-sequence of length l2 from C to D2.
Then, there are a configuration E, a n1-sequence of length k1 from D1 to E and n2-
sequence of length k2 from D2 to E with n1 ≤ m2, n2 ≤ m1, k1 ≤ l2, k2 ≤ l1 and
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n1 +m1 = n2 +m2. We go by induction on l1 + l2. If l1 + l2 = 0, then C ≡ D1 ≡ D2,
E ≡ D1 ≡ D2 and all the involved natural numbers are 0. If l1 = 0, then D1 ≡ C and
E ≡ D2. Similarly when l2 = 0. So, we can assume l1, l2 > 0. There are G1, G2, two
integers h1, h2 ≤ 1 with C →α G2 and C →β G2, an (m1 − h1)-sequence of length
l1 − 1 from G1 to D1 and an (m2 − h2)-sequence of length l2 − 1 from G2 to D2. We
can distinguish four cases, depending on the outcome of Proposition 4.18:
• α ∈ K , β ∈ K with G1 = G2, or α ∈ N , β ∈ N with G1 = G2. By applying one

time the the induction hypothesis we have the following diagram:

C
h1,1

����
��

��
�

h1,1

��:
::

::
::

G1

m1−h1,l1−1

����
��

��
�

= G2

m2−h1,l2−1

��;
;;

;;
;;

D1

n1,s1

&&LLLLLLLLLLLL D2

n2,s2

xxrrrrrrrrrrrr

E
with the equations:

n1 ≤ m2 − h1

n2 ≤ m1 − h1

s1 ≤ l2 − 1
s2 ≤ l1 − 1

n1 + (m1 − h1) = n2 + (m2 − h1)

from which n1 ≤ m2, n2 ≤ m1, and n1 +m1 = n2 +m2.
• α ∈ K , β ∈ K with G1 6= G2, or α ∈ N , β ∈ N with G1 6= G2 and there is H

with G1 →β H and G2 →α H . By applying several times the induction hypothesis,
we end up with the following diagram

C
h1,1

����
��

��
�

h2,1

��:
::

::
::

G1

m1−h1,l1−1

����
��

��
�

h2,1
��:

::
::

::
G2

h1,1
����

��
��

�
m2−h2,l2−1

��;
;;

;;
;;

D1

q1,t1 ��<
<<

<<
<<

H
u1,v1

����
��

��
�

u2,v2

��:
::

::
::

D2

q2,t2����
��

��
�

J

w1,z1
��;

;;
;;

;;
K

w2,z2
����

��
��

�

E

together with the equations:
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q1 ≤ h2 q2 ≤ h1 w1 ≤ u2

t1 ≤ 1 t2 ≤ 1 z1 ≤ v2
u1 ≤m1 − h1 u2 ≤m2 − h2 w2 ≤ u1

v1 ≤ l1 − 1 v2 ≤ l2 − 1 z2 ≤ v1

and

m1 − h1 + q1 = u1 + h2 h1 + u2 = m2 − h2 + q2 w1 + u1 = w2 + u2

from which

q1 + w1 ≤ h2 + u2 ≤ h2 +m2 − h2 = m2

t1 + z1 ≤ 1 + v2 ≤ 1 + l2 − 1 = l2

q2 + w2 ≤ h1 + u1 ≤ h1 +m1 − h1 = m1

t2 + z2 ≤ 1 + v1 ≤ 1 + l1 − 1 = l1

q1 + w1 +m1 = h1 + h2 + u1 + w1 = h1 + h2 + u2 + w2 = m2 + w2 + q2

So we can just put n1 = q1 + w1, n2 = q2 + w2, k1 = t1 + z1, k2 = t2 + z2.
• α ∈ K , β ∈ N and there is H with G1 ≡ H and G2 →β H . By applying several

times the induction hypothesis, we end up with the following diagram:

C
h1,1

����
��

��
�

0,1

��:
::

::
::

G1

m1−h1,l1−1

����
��

��
�

G2
h1,1

oo

m2,l2−1

��;
;;

;;
;;

D1

n1,k1
&&LLLLLLLLLLLL D2

n2,k2
xxrrrrrrrrrrrr

E
together with the equations:

n1 ≤ m2

k1 ≤ l2 − 1
n2 ≤ m1

k2 ≤ l1

and
m1 + n1 = m2 + n2

from which the desired equations can be easily obtained.
• The last case is similar to the previous one.

This concludes the proof.

Even in absence of types, we cannot build an infinite sequence of commuting reduc-
tions:

Lemma 4.21. The relation →K is strongly normalizing. In other words, there cannot be
any infinite sequence C1 →K C2 →K C3 →K . . ..
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Proof. Define the size |M | of a term M as the number of symbols in it. Moreover, define
the abstraction size |M |λ of M as the sum over all subterms of M in the form λπ.N , of
|N |. Clearly |M |λ ≤ |M |2. Moreover, if [Q,QV,M ] →K [Q,QV, N ], then |N | = |M |
but |N |λ > |M |λ. This concludes the proof.

Finally, we can prove the main results of this section:

Theorem 4.22 ( Uniqueness of Normal Forms). Any configuration C has at most one
normal form.

Proof. If C is a configuration and D and E are distinct normal forms for C, we can
iteratively apply Proposition 4.18 obtaining a configuration F such that both D ∗→ F and
E

∗→ F . This however, is a contradiction.

Since a very strong notion of confluence holds here, strong normalization and weak nor-
malization are equivalent properties of configurations:

Theorem 4.23. A configuration C is strongly normalizing iff C is weakly normalizing.

Proof. Strong normalization implies weak normalization. Suppose, by way of contradic-
tion, that C is weakly normalizing but not strongly normalizing. This implies there is a
configuration D in normal form and an m-sequence from C to D. Since C is not strongly
normalizing, there is an infinite sequence C ≡ C1, C2, C3, . . . with C1 → C2 → C3 →
. . . From this infinite sequence, we can extract an m + 1-sequence, due to Lemma 7.17.
Applying Proposition 4.20, we get a configuration F and a 1-sequence from D to F .
However, such a 1-sequence cannot exist, because D is normal.

4.4 Examples

We give now some simple examples showing how to compute with Q when the length
of the input is fixed. In Section 5.2 we will show in detail how to code (infinite) circuit
families.

EPR States

We define a lambda term representing a quantum circuit that generates an EPR state. EPR
states are entangled quantum states used by Einstein, Podolsky and Rosen in a famous
thought experiment on Quantum Mechanics (1935) [18].

EPR states can be easily obtained by means of cnot and Hadamard’s unitary operator
H. The general schema of the term is

M ≡ λ〈x, y〉.(cnot〈Hx, y〉)).

the term M takes two qubits in input and then gives as output an EPR (entangled) state.
We give an example of computation, with [1,M 〈new(0), new(1)〉] as initial configu-

ration, where 〈new(0), new(1)〉 is the input:
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[1, M 〈new(0), new(1)〉] 2→new [|p 7→ 0〉 ⊗ |q 7→ 1〉, (λ〈x, y〉.(cnot〈Hx, y〉))〈p, q〉]
→q.β [|p 7→ 0〉 ⊗ |q 7→ 1〉, (cnot〈Hp, q〉)]

→Uq [
|p 7→ 0〉+ |p 7→ 1〉

√
2

⊗ |q 7→ 1〉, (cnot〈p, q〉)]

→Uq [
|p 7→ 0, q 7→ 0〉+ |p 7→ 1, q 7→ 1〉

√
2

, 〈p, q〉].

After some reduction steps, two quantum variables p and q appear in the term and
the quantum register is modified accordingly. Finally, unitary operators corresponding
to cnot and H are applied to the quantum register. The quantum register

|p 7→ 0, q 7→ 0〉+ |p 7→ 1, q 7→ 1〉√
2

is the so called β00 EPR state.

Deutsch’s Algorithm

Deutsch’s algorithm is the first quantum algorithm that has been defined. It has inter-
esting applications: for example it allows to compute a global property of a function by
combining results from two components of a superposition. We refer here to the Deutsch’s
Algorithm as presented in [72], pages 32 and 33 (a detailed explanation of the algorithm
is outside the scope of this paper).

Let Wf be the unitary transform s.t. Wf |c1c2〉 = |c1, c2 ⊕ f(c1)〉 (for any given
boolean function f ), and let H be the Hadamard transform.

The general quantum circuit that implements Deutsch’s algorithm is represented by
the following lambda term:

D ≡ λ〈x, y〉.((λ〈w, z〉.〈Hw, z〉)(Wf 〈Hx,H y〉)).

Deutsch’s algorithm makes use of quantum parallelism and interference in order to
determine whether f is a constant function by means of a single evaluation of f(x).

In order to perform such a task, we first evaluate the normal form of:

[1,D〈new(0), new(1)〉]
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[1, D〈new(0), new(1)〉]
2→new [|p 7→ 0〉 ⊗ |q 7→ 1〉, (λ〈x, y〉(λ〈w, z〉.〈Hw, z〉)(Wf 〈Hx, Hy〉))〈p, q〉]

→q.β [|p 7→ 0〉 ⊗ |q 7→ 1〉, (λ〈w, z〉.〈Hw, z〉)(Wf 〈Hp, Hq〉)]

→Uq [
|p 7→ 0〉+ |p 7→ 1〉

√
2

⊗ |q 7→ 1〉, (λ〈w, z〉.〈Hw, z〉)(Wf 〈p, Hq〉)]

→Uq [
|p 7→ 0〉+ |p 7→ 1〉

√
2

⊗
|q 7→ 0〉 − |q 7→ 1〉

√
2

, (λ〈w, z〉.〈Hw, z〉)(Wf 〈p, q〉)]

= [
|p 7→ 0, q 7→ 0〉

2
−
|p 7→ 0, q 7→ 1〉

2
+
|p 7→ 1, q 7→ 0〉

2
+
|p 7→ 1, q 7→ 1〉

2
, (λ〈w, z〉.〈Hw, z〉)(Wf 〈p, q〉)]

→Uq [
|p 7→ 0, q 7→ 0⊕ f(0)〉

2
−
|p 7→ 0, q 7→ 1⊕ f(0)〉

2
+
|p 7→ 1, q 7→ 0⊕ f(1)〉

2
+
|p 7→ 1, q 7→ 1⊕ f(1)〉

2
,

(λ〈w, z〉.〈Hw, z〉)〈p, q〉)]

→q.β [
|p 7→ 0, q 7→ 0⊕ f(0)〉

2
−
|p 7→ 0, q 7→ 1⊕ f(0)〉

2
+
|p 7→ 1, q 7→ 0⊕ f(1)〉

2
+
|p 7→ 1, q 7→ 1⊕ f(1)〉

2
,

〈Hp, q〉]

→Uq [
|p 7→ 0〉+ |p 7→ 1〉

√
2

⊗
|q 7→ 0⊕ f(0)〉

2
−
|p 7→ 0〉+ |p 7→ 1〉

√
2

⊗
|q 7→ 1⊕ f(0)〉

2
+

|p 7→ 0〉 − |p 7→ 1〉
√

2
⊗
|q 7→ 0⊕ f(1)〉

2
+
|p 7→ 0〉 − |p 7→ 1〉

√
2

⊗
|q 7→ 1⊕ f(1)〉

2
, 〈p, q〉]

We have two cases:

• f is a constant function; i.e. f(0)⊕ f(1) = 0.
In this case the normal form may be rewritten as (by means of simple algebraic ma-
nipulations):

[(−1)f(0)|p 7→ 0〉 ⊗ |q 7→ 0〉 − |q 7→ 1〉√
2

, 〈p, q〉]

• f is not a constant function; i.e. f(0)⊕ f(1) = 1.
In this case the normal form may be rewritten as:

[(−1)f(0)|p 7→ 1〉 ⊗ |q 7→ 0〉 − |q 7→ 1〉√
2

, 〈p, q〉]

If we measure (by means of a final external apparatus) the first qubit p of the term 〈p, q〉
in the normal form configuration, we obtain 0 if f is constant and 1 otherwise.

Exchange

Consider the following lambda term, written in Q’s syntax:

L ≡ λ〈x, y〉.(λ〈a, b〉.cnot〈b, a〉)((λ〈w, z〉.cnot〈z, w〉)(cnot〈x, y〉))

L is a quantum circuit that performs the exchange of a pair of qubits.

[1, L 〈new(1), new(0)〉]
2→ [|p 7→ 1〉 ⊗ |q 7→ 0〉, (λ〈x, y〉.(λ〈a, b〉.cnot〈b, a〉)((λ〈w, z〉.cnot〈z, w〉)(cnot〈x, y〉))〈p, q〉] (4.1)

→q.β [|p 7→ 1〉 ⊗ |q 7→ 0〉, (λ〈a, b〉.cnot〈b, a〉)((λ〈w, z〉.cnot〈z, w〉)cnot〈p, q〉])
→Uq [|p 7→ 1〉 ⊗ |q 7→ 1〉, (λ〈a, b〉.cnot〈b, a〉)((λ〈w, z〉.cnot〈z, w〉)〈p, q〉)]
→q.β [|p 7→ 1〉 ⊗ |q 7→ 1〉, (λ〈a, b〉.cnot〈b, a〉)cnot〈q, p〉]
→Uq [|p 7→ 0〉 ⊗ |q 7→ 1〉, (λ〈a, b〉.cnot〈b, a〉)〈q, p〉]
→q.β [|p 7→ 0〉 ⊗ |q 7→ 1〉, (cnot〈p, q〉)]
→Uq [|p 7→ 0〉 ⊗ |q 7→ 1〉, 〈p, q〉] (4.2)
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Please notice that the values attributed to p and q in the underlying quantum register are
exchanged between configurations (4.1) and (4.2).

4.5 Standardizing Computations

One of the most interesting properties of Q is the capability of performing computational
steps in the following order:
• First perform classical reductions;
• Secondly, perform reductions that build the underlying quantum register;
• Finally, perform quantum reductions.

In this section, we provide a standardization theorem, that strengthens the common idea
that a universal quantum computer should consists of a classical device “setting up” a
quantum circuit that is then fed with an input.

We distinguish three particular subsets of L , namely Q = {Uq, q.β}, nC = Q ∪
{new}, and C = L − nC . Let C →α D and let M be the relevant redex in C; if α ∈ Q
the redex M is called quantum, if α ∈ C the redex M is called classical.

Definition 4.24. A configuration C is called non classical if α ∈ nC whenever C →α D.
Let NCL be the set of non classical configurations. A configuration C is called essentially
quantum if α ∈ Q whenever C →α D. Let EQT be the set of essentially quantum
configurations.

Before claiming the standardization theorem, we need the following definition:

Definition 4.25. A CNQ computation starting with a configuration C is a computation
{Ci}i<ϕ such that C0 ≡ C, ϕ ≤ ω and:
1. for every 1 < i+ 1 < ϕ, if Ci−1 →nC Ci then Ci →nC Ci+1;
2. for every 1 < i+ 1 < ϕ, if Ci−1 →Q Ci then Ci →Q Ci+1.

More informally, a CNQ computation is a computation such that any new reduction is
always performed after any classical reduction and any quantum reduction is always per-
formed after any new reduction.

NCL is closed under new reduction, while EQT is closed under quantum reduction:

Lemma 4.26. If C ∈ NCL and C →new D then D ∈ NCL.

Proof. Let C be [Q,QV,M ] and D be [Q′,QV ′,M ′]. The expression C[·] will denote a
term context 1. Let new(c) be the reduced redex in M . Clearly, there is a context C[·] such
that M ≡ C[new(c)] and M ′ ≡ C[r]. The proof proceeds by induction on the structure of
C[·]:
• If C[·] ≡ [·], then M ′ ≡ r does not contain any redex.
• Clearly, C[·] 6≡!D[·], because reduction cannot take place under the scope of the oper-

ator !.
• If C[·] ≡ new(D[·]) then by IH D[r] cannot contain any classical redex and, hence C[r]

cannot contain any classical redex.

1 a term context is a term with one hole
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• If C[·] ≡ D[·]N , then by IH D[r] cannot contain any classical redex. Moreover, N
itself cannot contain any classical redex. So, if M ′ ≡ D[r]N contain any classical
redex, the redex should be M ′ itself. But it is immediate to check that in any of these
cases, M ≡ D[new(c)]N is a redex too (which goes against the hypothesis). For
example, if D[·] ≡ λx.E[·], then M ≡ (λx.E[new(c)])N contains a classical redex
(M itself).

• If C[·] ≡ ND[·], we can proceed exactly as in the previous case.
• If

C[·] ≡ 〈N1, . . . , Nk−1,D[·], Nk+1, . . . , Nn〉

then, by inductive hypothesis, D[r] cannot contain any classical redex. Moreover,
N1, . . . , Nk−1, Nk+1, . . . , Nn cannot contain any classical redex themselves. But this
implies M ′ cannot contain any classical redex.

• The same argument can be applied to the cases C[·] ≡ λπ.D[·] and C[·] ≡ λ!x.D[·].
This concludes the proof.

Lemma 4.27. If C ∈ EQT and C →Q D then D ∈ EQT.

Proof. Let C be [Q,QV,M ] and D be [Q′,QV ′,M ′]. Let N be the reduced redex in M .
Clearly, there is a context C[·] such that M ≡ C[N ] and M ′ ≡ C[N ′]. Observe that N can
be either in the form

(λ〈x1, . . . , xn〉.L)〈r1, . . . , rn〉

or in the form
U〈r1, . . . , rn〉.

In the first case, we say that N is a variable passing redex, while in the second case,
we say that N is a unitary transformation redex. The proof proceeds by induction on the
structure of C[·]:
• If C[·] ≡ [·], then:

• If N is a unitary transformation redex, then M ′ ≡ 〈r1, . . . , rn〉 does not contain
any redex.

• If N is a variable passing redex, then M ′ ≡ L{r1/x1, . . . , rn/xn}. But the fol-
lowing lemma can be easily proved by induction on P : for any term P , if P only
contains quantum redexes, then P{r1/x1, . . . , rn/xn} only contains quantum re-
dexes, too.

• Clearly, C[·] 6≡!D[·], because reduction cannot take place under the scope of the oper-
ator !.

• If C[·] ≡ new(D[·]) then by IH D[N ′] only contains quantum redexes. Now, observe
that D[N ′] cannot be a boolean constant. Indeed, if N is a unitary transformation
redex, then N ′ contains, at least, the term 〈r1, . . . , rn〉. If N is a variable passing
redex, on the other hand, N ′ contains the quantum variables r1, . . . , rn because the
variables x1, . . . , xn appears exactly once in L. Hence C[N ′] only contains quantum
redexes.

• If C[·] ≡ D[·]P , then by IH D[N ′] only contains quantum redexes. Moreover, P itself
only contains quantum redexes. So if M ′ ≡ D[N ′]P contain any non-quantum redex,
the redex must be M ′ itself. Let us check that in any of these cases, M ≡ D[N ]P is a
non-quantum redex too:
• If M ′ is a l.β redex, then D[·] ≡ λx.E[·], and M ≡ (λx.E[N ])P contains a

classical redex (M itself).
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• If M ′ is a c.β redex, then D[·] ≡ λ!x.E[·], P ≡!Q and and M ≡ (λ!x.E[N ])!Q
contains a classical redex.

• If M ′ is a l.cm redex, then P ≡ (λπ.Q)R and M ≡ D[N ]P ≡ D[N ](λπ.Q)R is
a l.cm redex, too.

• If M ′ is a r.cm redex, then D[N ′] ≡ (λπ.Q)R. We have to distinguish four sub-
cases:
• If D[·] ≡ [·], then N must be a variable passing redex and, as a consequence,
M ≡ NP is a r.cm redex.

• If D[·] ≡ [·]R, then N must be a variable passing redex and, as a consequence,
NR is a r.cm redex.

• If D[·] ≡ (λπ.E[·])R, then M is ((λπ.E[N ])R)P , which is a r.cm redex.
• If D[·] ≡ (λπ.Q)E[·], then M is ((λπ.Q)E[N ])P , which is a r.cm redex.

• If C[·] ≡ ND[·], we can proceed as in the previous case.
• If

C[·] ≡ 〈N1, . . . , Nk−1,D[·], Nk+1, . . . , Nn〉
then, by inductive hypothesis, D[N ′] cannot contain any classical redex. Moreover,
N1, . . . , Nk−1, Nk+1, . . . , Nn cannot contain any classical redex themselves. But this
implies M ′ cannot contain any classical redex.

• The same argument can be applied to the cases C[·] ≡ λπ.D[·] and C[·] ≡ λ!x.D[·].
This concludes the proof.

This way we are able to state and prove the Standardization Theorem.

Theorem 4.28 (Standardization). For every computation {Ci}i<ϕ such thatϕ ∈ N there
is a CNQ computation {Di}i<ξ such that C0 ≡ D0 and Cϕ−1 ≡ Dξ−1.

Proof. We build a CNQ computation in three steps:
1. Let us start to reduce D0 ≡ C0 by using C reductions as much as possible. By Theo-

rem 4.23 we must obtain a finite reduction sequence D0 →C . . . →C Dk s.t. 0 ≤ k
and no C reductions are applicable to Dk

2. Reduce Dk by using new reductions as much as possible. By Theorem 4.23 we must
obtain a finite reduction sequence Dk →new . . . →new Dj s.t. k ≤ j and no new
reductions are applicable toDj . Note that by Lemma 4.26 such reduction steps cannot
generate classical redexes and in particular no classical redex can appear in Dj .

3. Reduce Dj by using Q reductions as much as possible. By Theorem 4.23 we must
obtain a finite reduction sequence Dj →Q . . . →Q Dm such that j ≤ m and no
Q reductions are applicable to Dm. Note that by Lemma 4.27 such reduction steps
cannot generate neither C redexes nor new redexes and in particular neither C nor
new reductions are applicable to Dm. Therefore Dm is in normal form.

The reduction sequence {Di}i<m+1 is such that D0 →C . . . →C Dk →new . . . →new

Dj →Q . . .→Q Dm is a CNQ computation. By Theorem 4.22 we observe that Cϕ−1 ≡
Dm, which implies the thesis.

The intuition behind a CNQ computation is the following: the first phase of the compu-
tation is responsible for the construction of a λ–term (abstractly) representing a quantum
circuit and does not touch the underlying quantum register. The second phase builds the
quantum register without introducing any superposition. The third phase corresponds to
proper quantum computation (unitary operators are applied to the quantum register, pos-
sibly introducing superposition). This intuition will become a technical recipe in order to
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prove a side of the equivalence between Q and quantum circuit families formalism (see
Section 5.2.1).

We conclude by examining the case of non terminating computations. From a quan-
tum point of view, non terminating computations are not particularly interesting, because
there is no final measurable quantum state, and consequently the transformations of the
quantum register are inaccessible (see also Section 4.6 for a discussion on the absence of
measurements in Q).

The extension of standardization to the infinite case makes this observation explicit.
First of all, observe that we cannot have an infinite sequence of nC reductions.

Lemma 4.29. The relation →nC is strongly normalizing (i.e. there cannot be any infinite
sequence C1 →nC C2 →nC C3 →nC . . .).

Proof. Define the size |M | of a term M as the number of symbols in it, observe that if
[Q,QV,M ] →nC [Q,QV, N ] then |N | < |M | and conclude.

As a consequence of the Lemma we have that

Proposition 4.30. Any infinite CNQ computation only includes classical reduction steps.

Example 4.31. An example of non-normalizing term in Q (and then of an infinite reduc-
tion), is the following: given M = λ!x.(x!x), clearly M(!M) →M(!M)

Finally we can state the theorem:

Theorem 4.32 (Standardization for infinite computations). For every non terminating
computation {Ci}i<ω there is a CNQ computation {Di}i<ω such that C0 ≡ D0.

Proof. We build the CNQ computation in the following way: start to reduce D0 ≡ C0 by
using C reductions as much as possible. This procedure cannot end, otherwise we would
contradict Lemma 4.29 and Theorem 4.23.

4.6 On the Measurement Operator

In Q it is not possible to classically observe the content of the quantum register. More
specifically, the language of terms does not include any measurement operator which,
applied to a quantum variable, has the effect of observing the value of the related qubit.
This in contrast with Selinger and Valiron’s λsv (where such a measurement operator is
indeed part of the language of terms) and with other calculi for quantum computation like
the so-called measurement calculus [33], where the possibility of observing is even more
central.

Extending Q with a measurement operator meas(·) (in the style of λsv) would not be
particularly problematic. However, some of the properties we proved here would not be
true anymore. In particular:
• The reduction relation would be probabilistic, since observing a qubit can have differ-

ent outcomes. As a consequence, confluence would not be true anymore.
• The standardization theorem would not hold in the form it has here. In particular, the

application of unitary transformations to the underlying quantum register could not
necessarily be postponed until the end of a computation.
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The main reason why we have restricted our attention to a calculus without any explicit
measurement operator is that the (extensional) expressive power of the obtained calculus
(i.e. the extensional class of quantum computable functions) would presumably be the
same.

As a consequence, we assume to perform a unique implicit measurement at the end of
computation.

Please notice that the possibility of measuring qubits internally (e.g. by a construct
like meas(·) could allow to solve certain problems more efficiently, by exploiting the
inherent nondeterminism involved in measurements. Indeed, it is not known whether
measurement-based quantum computation can be efficiently (with a polynomial overhead)
simulated by measurement-free quantum computation. This interesting question goes well
beyond the scope of this paper.

It would be straightforward to add an explicit, final and full measurement on the quan-
tum register, without any consequence on the previously stated results. Simply add to the
calculus the following rule:

[
n∑

i=1

ai|fi〉,QV,M ] ∈ NF

measurement

[
n∑

i=1

ai|fi〉,QV,M ] →|ai|2 fi

where [
∑n

i=1 ai|fi〉,QV,M ] →|ai|2 fi means that the measurement of the quantum
register gives the value fi with probability |ai|2.

Because the importance of measurement, in Chapter 7 we will propose an extension
of Q with a measurement operator.
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Q: expressive power

In this section we study the expressive power of Q, showing that it is equivalent to
finitely generated quantum circuit families, and consequently (via the result of Ozawa
and Nishimura [73]) we have the equivalence with quantum Turing machines as defined
by Bernstein and Vazirani [22]. The fact that the considered class of circuit families only
contains finitely generated ones is not an accident: our idea is in fact to represent an entire
family by one single lambda term (which is, by definition, a finite object), and conse-
quently we must restrict to families which are generated by a finite set of gates.

Before going into the details, an informal description of how our encoding works is
in order. Data will be encoded using some variations on Scott’s numerals [101]. These
can be used both for classical and quantum data. In the latter case, a more strictly linear
discipline (quantum bits cannot be erased, in general) is enforced through a slightly differ-
ent encoding. Our analysis will concentrate on terms in Q satisfying a simple constraint:
when applied to a list of classical bits, they produce a list of quantum variables. These
are the quantum relevant terms. What is crucial from a computational point of view is the
way a quantum relevant term can possibly modify the underlying quantum register.

5.1 Q and the Lambda Calculus

The careful reader might be tempted to believe that since the usual pure, untyped lambda
calculus can be embedded in Q, the encoding of circuit families into Q should be very
easy. The situation, however, is slightly more complicated.

It’s true that Girard’s encodings of intuitionistic logic into linear logic can be some-
how generalized to translations from pure, untyped, lambda calculus to untyped linear
lambda terms, like the ones of Q (see, for example, [100]). Beta reduction in the lambda
calculus, however, does not correspond to surface reduction in Q. Take, for example, the
classical lambda term M ≡ x((λy.yy)(λy.yy)): it is not normalizable, but its (call-by-
name) translation M ≡ x!((λ!y.y!y)!(λ!y.y!y)) is clearly a normal form in Q. There are
some connections between weak head reduction in the lambda calculus and surface reduc-
tion in Q: if M rewrites to N by weak head reduction, then M rewrites to N in Q. The
converse is not true: M = λx.((λy.yy)(λy.yy)) is a weak head normal form, but M is
not normalizable in Q. Similar considerations hold for weak call-by-value reduction when
the translation function (·) is the one induced by the embedding A → B ≡!(A ( B).
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On the other hand, lambda calculus is Turing complete for any decent encoding of natural
numbers into it. This holds for Scott numerals, for example. But does this correspondence
scale down to more restricted notions of reduction, like weak head reduction?

Even if the above question has a positive answer, that would not settle the issue. If Q
is proved to have the classical expressive power of Turing machines, this simply implies
that it is possible to compute the code Dn of the n-th circuit Cn of any quantum circuit
family from input n. But Dn is nothing but a natural number, the “Gödel’s number” of
Cn. Since we want to evaluate Cn inside Q, we need to prove that the correspondence
Dn 7→ Cn is itself representable in Q and since the way quantum circuits are represented
and evaluated in Q has nothing to do with Scott numerals, this is not a consequence of the
alleged (classical) Turing completeness of Q.

For these reasons, we have decided to show the encoding of quantum circuit families
into Q in full detail. This is the subject of Section 5.2.

5.2 Encoding Quantum Circuit Families

In this Section we will show that each (finitely generated) quantum circuit family can be
captured by a quantum relevant term.

On the Classical Strength of the Q.

Natural numbers are encoded as Q terms as follows:

d0e = !λ!x.λ!y.y
∀n dn+ 1e = !λ!x.λ!y.xdne

This way, we can compute the successor and the predecessor of a natural number as
follows:

succ = λz.!λ!x.λ!y.xz
pred = λ!z.z!(λx.x)!d0e

Indeed:

succ dne →C !λ!x.λ!y.xdne ≡ dn+ 1e;
pred d0e →C (λ!x.λ!y.y)!(λx.x)!d0e ∗→C d0e;

pred dn+ 1e →C (λ!x.λ!y.xdne)!(λx.x)!d0e →C (λx.x)dne
→C dne

The following terms are very useful when writing definitions by cases:

casenat
0 ≡ λ!x.λ!y0.λ!z.x!(λ!w.z)!y0

casenat
n+1 ≡ λ!x.λ!y0. . . . .λ!yn+1.λ!z.x!(λ!w.casenat

n w!y1 . . .!yn+1!z)!y0

They behave as follows:
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∀m ≤ n casenat
n dme!M0 . . .!Mn!N ∗→C Mm

∀m > n casenat
n dme!M0 . . .!Mn!N ∗→C N

casenat
0 d0e!M0!N

∗→C (λ!x.λ!y.y)!(λ!w.N)!M0

∗→C M0

casenat
0 dm+ 1e!M0!N

∗→C (λ!x.λ!y.xdme)!(λ!w.N)!M0

→C (λ!w.N)dme →C N

casenat
n+1 d0e!M0 . . .!Mn+1!N

∗→C (λ!x.λ!y.y)!(λw.casenat
n w!M1 . . .!Mn+1!N)!M0

∗→C M0

casenat
n+1 dm+ 1e!M0 . . .!Mn+1!N

∗→C (λ!x.λ!y.xdme)!(λw.casenat
n w!M1 . . .!Mn+1!N)!M0

∗→C (λw.casenat
n w!M1 . . .!Mn+1!N)dme

→C casenat
n dme!M1 . . .!Mn+1!N

We can capture linear lists, too: given any sequence M1, . . . ,Mn of terms (where
n ≥ 0), we can build a term [M1, . . . ,Mn] encoding the sequence as follows, by induction
on n:

[] = λ!x.λ!y.y;
[M,M1 . . . ,Mn] = λ!x.λ!y.xM [M1, . . . ,Mn].

This way we can construct and destruct lists in a principled way: terms cons and sel can
be built as follows:

cons = λz.λw.λ!x.λ!y.xzw;
sel = λx.λy.λz.xyz.

They behave as follows on lists:

cons M [M1, . . . ,Mn] ∗→C [M,M1, . . . ,Mn]

sel []!N !L ∗→C L

sel [M,M1, . . . ,Mn]!N !L ∗→C NM [M1, . . . ,Mn]

By exploiting cons and sel, we can build more advanced constructors and destructors: for
every natural number n there are terms appendn and extractn behaving as follows:

appendn[N1, . . . , Nm]M1 . . .Mn
∗→C [M1, . . . ,Mn, N1, . . . , Nm]

∀m ≤ n extractnM [N1, . . . , Nm] ∗→C M []NmNm−1 . . . N1

∀m > n extractnM [N1, . . . Nm] ∗→C M [Nn+1 . . . Nm]NnNn−1 . . . N1

Terms appendn can be built by induction on n:

append0 = λx.x

appendn+1 = λx.λy1. . . . .λyn+1.cons y1(appendnxy2 . . . yn+1)



78 5 Q: expressive power

Similarly, terms extractn can be built inductively:

extract0 = λx.λy.xy

extractn+1 = λx.λy.(sel y!(λz.λw.λv.extractnvwz)!(λz.z[]))x

Indeed:

extract0M [N1, . . . Nm] ∗→C M [N1, . . . , Nm]

extractn+1M [] ∗→C M []

∀m ≤ n extractn+1M [N,N1 . . . Nm] ∗→C extractnM [N1, . . . , Nm]N
∗→C M []Nm . . . N1N

∀m > n extractn+1M [N,N1 . . . Nm] ∗→C extractnM [N1, . . . , Nm]N
∗→C M [Nn+1 . . . Nm]Nn . . . N1N

The encodings of natural numbers and lists are similar and are both in the style of the
so-called Scott’s numerals [101]. However, there is an essential difference between the
two:
• Natural numbers are encoded non-linearly: any natural number is duplicable by con-

struction, since it has the shape !M for some M .
• Lists are encoded linearly: the occurrences of M and [M1, . . . ,Mn] which are part of

[M,M1, . . . ,Mn] do not lie in the scope of any bang operator.
We need recursion and iteration, in order to be able to build-up terms in a functional-

programming style. The term rec is defined as recaux!recaux, where

recaux ≡ λ!x.λ!y.y!((x!x)!y).

For each term M ,

rec!M ≡ (recaux!recaux)!M →M (λ!y.y!((recaux!recaux)!y))!M
→M M !((recaux!recaux)!M)) ≡M !(rec!M)

This will help us in encoding algorithms via recursion. Structural recursion over nat-
ural numbers is available through recnat ≡ rec!recnat

aux, where

recnat
aux ≡ λ!x.λy.λ!w.λ!z.y!(λ!v.w!(x!v!w!z)!v)!z

Indeed:

recnat d0e!M !N ∗→C recnat
aux !(recnat)d0e!M !N

∗→C (λ!x.λ!y.y)!(λ!v.M !(recnat !v!M !N)!v)!N
∗→C N

recnat dn+ 1e!M !N ∗→C (λ!x.λ!y.xdne)!(λ!v.M !(recnat !v!M !N)!v)!N
∗→C (λ!v.M !(recnat !v!M !N)!v)!dne
∗→C M !(recnat dne!M !N)!dne

Iteration is available on lists, too. Let iterlist ≡ rec!iterlistaux, where
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iterlistaux ≡ λ!x.λy.λ!w.λ!z.y!(λv.λu.w(xu!w!z)v)!z

Indeed:

iterlist []!M !N ∗→C iterlistaux !(iterlist)[]!M !N
∗→C []!(λv.λu.M(iterlist u!M !N)v)!N
∗→C N

iterlist [L,L1, . . . , Ln]!M !N ∗→C [L,L1, . . . , Ln]!(λv.λu.M(iterlist u!M !N)v)!N
∗→C (λv.λu.M(iterlist u!M !N)v)L[L1, . . . , Ln]
∗→C M(iterlist[L1, . . . , Ln]!M !N)L

Definition 5.1. A (partial) function f : Nn → N is representable iff there is a term Mf

such that:
• Whenever Mfdm1e . . . dmne has a normal form N (with respect to ∗→C ), then N ≡
dme for some natural number m.

• Mfdm1e . . . dmne
∗→C dme iff f(m1, . . . ,mn) is defined and equal to m.

As we have already mentioned at the beginning of this Section, the following result is part
of the folklore, but it deserves an explicit proof since the reduction relation considered
here is not the standard one:

Proposition 5.2. The class of representable functions coincides with the class of partial
recursive functions (on natural numbers).

Proof. Kleene’s partial recursive functions can be embedded into Q:
• Constant functions, the successor and projections can be easily encoded.
• The composition f : Nm → N of h : Nn → N and g1, . . . , gn : Nm → N can be

represented as follows:

Mf ≡ λ!x1. . . . .λ!xm.Mh(Mg1 !x1 . . .!xm) . . . (Mgn !x1 . . .!xm).

• The function f : Nn+1 → N obtained from h : Nn+2 → N and g : Nn → N by
primitive recursion can be represented as follows:

Mf ≡ λy.λ!x1. . . . .λ!xn.rec
naty!(λz.λw.Mhwz!x1 . . .!xn)!(Mg!x1 . . .!xn).

• The function f : Nn → N obtained from g : Nn+1 → N and by minimization can be
represented as follows:

Mf ≡ λx1. . . . .λxn.rec!(Ng)d0ex1 . . . xn

where

Ng ≡ λ!x.λ!y.λ!x1. . . . .λ!xn.(Mg!y!x1 . . .!xn)!(λ!z.x(succ!y)!x1 . . .!xn)!y.

On the other hand, any representable function is trivially partially recursive.
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Quantum Relevant Terms.

In this section, we will introduce the class of quantum relevant terms. In the next sec-
tions, we will prove that the class of functions which are captured by quantum relevant
terms coincides with the class of functions which can be computed by finitely generated
quantum circuit families.

Definition 5.3. Let S be any subset of L . The expressionC ⇓S D means thatC ∗→S D
and D is in normal form with respect to the relation →S . C ⇓ D stands for C ⇓L D.

Confluence and the equivalence between weakly normalizing and strongly normalizing
configurations authorize the following definition:

Definition 5.4. A term M is called quantum relevant (shortly, qrel) if it is well–formed
and for each list ![!c1, ..., !cn] there are a quantum register Q and a natural number m
such that [1, ∅,M ![!c1, ..., !cn]] ⇓ [Q, {r1, . . . , rm}, [r1, . . . , rm]].

In other words, a quantum relevant term is the analogue of a pure λ-term representing a
function on natural numbers. It is immediate to observe that the class of qrel terms is not
recursively enumerable.

Circuits.

In this section, we will show that Q is at least as computationally strong as finitely gen-
erated uniform quantum circuit families (see Definition 3.17). Our task will not be too
difficult, since we already know from Proposition 5.2 that any recursive function can be
represented in Q. As a consequence, we can assume that f , g and h are representable
whenever (f, g, h) is a uniform family of circuits.

The n-th elementary permutation of m elements (where 1 ≤ n < m) is the function
which maps n to n + 1, n + 1 to n and any other elements in the interval 1, . . . ,m to
itself.

Lemma 5.5. Any (finite) permutation can be effectively decomposed into a product of
elementary permutations.

A termM computes the n-th elementary permutation on lists iff for every list [N1, . . . , Nm]
with m > n, M [N1, . . . , Nm] ∗→C [N1, . . . , Nn−1, Nn+1, Nn, Nn+2, . . . , Nm].

Lemma 5.6. There is a termMel such that, for every natural number n,Meldne computes
the n+ 1-st elementary permutation on lists.

Proof. For every n < m, let ρn
m be the n-th elementary permutation of m elements.

Observe that ρn+1
m (1) = 1 (whenever n + 1 < m) and that ρn+1

m (i + 1) = ρn
m−1(i) + 1

(whenever i < m). Mel is the term

λx.recnat x!N !L

where

N ≡ λ!y.λ!z.λw.extract1(λq.λs.append1(yq)s)w
L ≡ λy.extract2(λz.λw.λq.append2zwq)y.
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Indeed:

Meld0e →C recnat d0e!N !L→C L

L[M1, . . . ,Mm] →C extract2(λz.λw.λq.append2zwq)[M1, . . . ,Mm]
∗→C (λz.λw.λq.append2zwq)[M3, . . . ,Mm]M2M1

∗→C append2[M3, . . . ,Mm]M2M1

∗→C [M2,M1,M3, . . . ,Mm] ≡ [Mρ1
m(1), . . . ,Mρ1

m(m)]
Meldn+ 1e →C recnat dn+ 1e!N !L→C L

∗→C N !(recnat dne!N !L)dne
→C λw.extract1(λq.λs.append1((rec

nat dne!N !L)q)s)w
→C λw.extract1(λq.λs.append1(Pq)s)w ≡ Q

Q[M1, . . . ,Mn] →C extract1(λq.λs.append1(Pq)s)[M1, . . . ,Mn]
∗→C (λq.λs.append1(Pq)s)[M2, . . . ,Mm]M1

∗→C append1(P [M2, . . . ,Mm])M1

∗→C append1([Mρn
m−1(1)+1, . . . ,Mρn

m−1(m−1)+1])M1

∗→C [M1,Mρn
m−1(1)+1, . . . ,Mρn

m−1(m−1)+1] ≡ [Mρn+1
m (1), . . . ,Mρn+1

m (m)]

This completes the proof.

Lemma 5.7. There is a termMlength such that, for every list [!N1, . . . , !Nn],Mlength [!N1, . . . , !Nn] ∗→C

dne.

Proof. Mlength is the term

λx.iterlistx!(λy.λ!z.succ y)!d0e.

Indeed:

Mlength [] →C iterlist[]!(λy.λ!z.succ y)!d0e
∗→C d0e;

Mlength [!N, !N1, . . . , !Nn] →C iterlist[!N, !N1, . . . , !Nn]!(λy.λ!z.succ y)!d0e
∗→C (λy.λ!z.succ y)(iterlist[!N1, . . . , !Nn]!(λy.λ!z.succ y)!d0e)!N
∗→C (λy.λ!z.succ y)dne!N
∗→C dn+ 1e.

This completes the proof.

Lemma 5.8. There is a term Mchoose such that for every list [!N1, . . . , !Nm]:

Mchoosed0e[!N1, . . . , !Nm] ∗→C !d0e
∀1 ≤ n ≤ m Mchoosedne[!N1, . . . , !Nm] ∗→C !Nn

Mchoosedm+ 1e[!N1, . . . , !Nm] ∗→C !d1e
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Proof. Mchoose is the term
λx.λy.(iterlisty!L!P )x

where

L ≡ λz.λ!w.λ!q.q!(λs.λr.(s!L≥2!L=1)r)!(L=0)z
L=0 ≡ λt.td0e
L=1 ≡ λt.(λ!u.!w)(td0e)
L≥2 ≡ λu.λt.t(succ u)
P ≡ λ!z.z!(λ!w.!d1e)!d0e

Indeed:

Mchoosed0e[]
∗→C (iterlist[]!L!P )d0e
∗→C P d0e
∗→C (λ!x.λ!y.y)!(λ!w.!d1e)!d0e ∗→C !d0e

Mchoosed1e[]
∗→C P d1e
∗→C (λ!x.λ!y.xd0e)!(λ!w.!d1e)!d0e ∗→C !d1e

Mchoosedne[!N, !N1, . . . , !Nm] ∗→C (iterlist[!N, !N1, . . . , !Nm]!L!P )dne
∗→C L(iterlist[!N1, . . . , !Nm]!L!P )!Ndne
∗→C dne!(λ!s.λr.(s!L≥2!(L=1{N/w}))r)!(L=0)

(iterlist[!N1, . . . , !Nm]!L!P )
≡ dne!Q!(L=0)S

where

Q ≡ λ!s.λr.(s!L≥2!(L=1{N/w}))r
S ≡ iterlist[!N1, . . . , !Nm]!L!P

Now:

d0e!Q!(L=0)S
∗→C L=0S

∗→C Sd0e ∗→C !d0e
d1e!Q!(L=0)S

∗→C (λ!s.λr.(s!L≥2!L=1{N/w})r)d0eS
∗→C (λ!x.λ!y.y)!L≥2!(L=1{N/w})S
∗→C L=1{N/w}S
∗→C (λ!u.!N)(S!d0e)
∗→C (λ!u.!N)!d0e ∗→C !N

dn+ 2e!Q!(L=0)S
∗→C (λ!s.λr.(s!L≥2!L=1{N/w})r)dn+ 1eS
∗→C (λ!x.λ!y.xdne)!L≥2!(L=1{N/w})S
∗→C L≥2dneS
∗→C Sdn+ 1e

This completes the proof.
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Now, we prove that any finitely generated family of circuits can be represented in Q.
From Chapter 3, Section 3.2.2, recall that {Ki}i∈N is an effective enumeration of

quantum circuits and we assume it is based on an elementary set of unitary operators.
It is possible to prove the following theorem:

Theorem 5.9. For every finitely generated family of circuits (f, g, h) there is a quan-
tum relevant term Mf,g,h such that for each c1, . . . , cn, the following two conditions are
equivalent
• [1, ∅,Mf,g,h![!c1, ..., !cn]] ⇓ [Q, {r1, . . . , rm}, [r1, . . . , rm]]
• m = f(n) and Q = Φf,g,h(c1, . . . , cn).

Proof. Suppose that for every i ∈ N, the circuit Ki is

Ui
1, r

i,1
1 , . . . , r

i,p(i,1)
1 , . . . ,Ui

k(i), r
i,1
k(i), . . . , r

i,p(i,k(i))
k(i)

where p : N×N → N and k : N → N are computable functions. Since (f, g, h) is finitely
generated, there is a finite family of gates G = {U1, . . . ,Ub} such that for every i ∈ N
the gates Uh(i)

1 , . . . ,Uh(i)
k(i) are all from G. Let ar(1), . . . , ar(b) the arities of U1, . . . ,Ub.

Since the enumeration {Ki}i∈N is effective, we can assume the existence of a recursive
function u : N × N → N such that u(i, j) = x iff Uh(i)

j is Ux. Moreover, we know that
for every i ∈ N and for every 1 ≤ j ≤ k(h(i)), the variables

r
h(i),1
j , . . . , r

h(i),p(h(i),k(h(i)))
j

are distinct and in {r1, . . . , rf(h(i))}. So, there are permutations πi
j of {1, . . . , f(h(i))}

such that πi
j(x) = y iff rh(i),x

j = ry for every 1 ≤ x ≤ p(h(i), k(h(i))). Let ρi
j be the

inverse of πi
j . Clearly, both πi

j and ρi
j can be effectively computed from i and j. As a

consequence, the following functions are partial recursive (in the “classical” sense):
• A function r : N × N → N which, given (i, j) returns the number of elementary

permutations of {1, . . . , f(h(i))} in which πi
j can be decomposed (via Lemma 5.5).

• A function q : N × N × N → N such that q(i, j, x) = y iff the x-th elementary per-
mutation of {1, . . . , f(h(i))} in which πi

j can be decomposed is the y-th elementary
permutation.

• A function s : N × N → N which, given (i, j) returns the number of elementary
permutations of {1, . . . , f(h(i))} in which ρi

j can be decomposed (via Lemma 5.5).
• A function t : N × N × N → N such that t(i, j, x) = y iff the x-th elementary per-

mutation of {1, . . . , f(h(i))} in which ρi
j can be decomposed is the y-th elementary

permutation.
Now, let us build up a term Minit that, given a list L of boolean constants and a natural
number dne, computes the input list for Kh(n) from L.

Minit ≡ λ!x.λ!y.recnat(Mf !y)!N !([])

where
N ≡ λw.λz.cons((λ!q.new(q))(Mchoose(Mg!y(z))x)w.

Moreover, we need another term Mcirc , that, given a natural number dne computes a
term computing the unitary transformations involved in Kh(n) acting on lists of quantum
variables with length f(n). The term is:
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Mcirc ≡ λ!w.recnat(Mk(Mh!w))!(λy.λ!z.λq.Mρ(Munit(Mπ(yq))))!(λy.y)

where

Mπ ≡ recnat(Mr!w!z)!(λy.λ!x.λt.(Mel(Mq!w!z!x))(yt))!(λy.y)
Munit ≡ λy.(casenat

b (Mu!x!w)!N0 . . .!Nb!(λz.z))y
Ni ≡ λy.extractar(i)(λz.λxar(i). . . . .λx1.Mar(i)(Ui〈x1, . . . , xar(i)〉))y

Mar(i) ≡ λ〈x1, . . . , xar(i)〉.appendar(i)zx1 . . . xar(i)

Mρ ≡ recnat(Ms!w!z)!(λy.λ!x.λt.(Mel(Mt!w!z!x))(yt))!(λy.y)

Now, the term Mf,g,h is just:

λ!x.(Mcirc(Mlengthx))(Minit !x(Mlengthx))

This concludes the proof.

5.2.1 From Q to Circuits

We prove here the converse of Theorem 5.9. This way we will complete the proof of the
equivalence with quantum circuit families. We will stay more informal here: the argu-
ments are rather intuitive.

LetM be a qrel term, let ![!c1, ..., !cn], ![!d1, ..., !dn] be two lists of bits (with the same
length) and suppose that [1,M ![!c1, ..., !cn]] ⇓nQ [Q, N ], where nQ = L −Q. Clearly,
N cannot contain any boolean constant, since M is assumed to be qrel. By applying ex-
actly the same computation steps that lead from [1,M ![!c1, ..., !cn]] to [Q, N ], we can
prove that [1,M ![!d1, ..., !dn]] ⇓nQ [Q′, N ], where Q and Q′ live in the same Hilbert
Space H(Q(N)) and are both elements of the computational basis. Moreover, any com-
putation step leading from [1,M ![!c1, ..., !cn]] to [Q, N ] is effective, i.e. it is intuitively
computable (in the classical sense). Therefore, by Church-Turing’s Thesis we obtain the
following:

Proposition 5.10. For each qrel M there exist a term N and two total computable func-
tions f : N → N and g : N× N → N such that for every n ∈ N and for every c1, . . . , cn,
[1,M ![!c1, ..., !cn] ⇓nQ [|r1 7→ cg(n,1), . . . , rf(n) 7→ cg(n,f(n))〉, N ], where we conven-
tionally set c0 ≡ 0 and cn+1 ≡ 1.

Let us consider [Q,M ] ∈ EQT and let us suppose that [Q,M ] ⇓Q [Q′, [r1, . . . , rm]].
Then Q and Q′ live in the same Hilbert space

H(Q(M)) = H(Q([r1, . . . , rm])) = H({r1, . . . , rm}).

The sequence of reductions in this computation allows to build in an effective way a
unitary transformation U such that Q′ = U〈r1,...,rm〉(Q). Summarizing, we have the
following:

Proposition 5.11. LetM be a term only containing quantum redexes. Then, there is a cir-
cuit K such that Q′ = UK(Q) whenever [Q,M ] ⇓Q [Q′,M ′]. Moreover, K is generated
by gates appearing in M . Furthermore K can be effectively computed from M .

As a direct consequence of propositions 5.10 and 5.11 we obtain the following:
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Theorem 5.12. For each qrel M there is a quantum circuit family (f, g, h) such that for
each list c1, ..., cn the following two conditions are equivalent:
• [1,M ![!c1, ..., !cn]] ⇓ [Q, [r1, . . . , rm]]
• m = f(n) and Q = Φf,g,h(c1, . . . , cn).

Notice that the standardization theorem helps very much here. Without it, we would not
be able to assume that all non-quantum reduction steps can be done before any quantum
reduction step.
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A Poly Time Quantum Lambda Calculus

In this Chapter, following the ICC (Implicit Computational Complexity) paradigm, we
give a characterization of polytime quantum complexity classes by way of a new calculus
that we call SQ, based on Lafont’s Soft Linear Logic [63].

Terms and configurations of SQ form subclasses of the ones of Q, the untyped lambda
calculus with classical control and quantum data previously introduced.

The correspondence with quantum complexity classes is an extensional correspon-
dence. We proved that any term in the language can be evaluated in polynomial time
(where the underlying polynomial depends on the box depth of the considered term); and
that any problem P decidable in polynomial time (in a quantum sense) can be represented
in the language (i.e., there exists a term M which decides P ).

6.1 On the class of unitary operators

In this paper we will show that SQ is sound and complete with respect to polynomial time
quantum Turing machines as defined by Bernstein and Vazirani [22] (see also Chapter 3).
In particular, in order to show the “perfect” equivalence of SQ with polynomial quantum
Turing machines, we need to restrict our attention to the so-called computable operators
(see, e.g., the paper of Nishimura and Ozawa [74] on the perfect equivalence between
quantum circuit families and quantum Turing machines).

Recall that “perfect equivalence” between a subclass quantum circuit families and
polytime quantum turing machine (see, e.g., the paper of Nishimura and Ozawa [74]
means a correspondence between all the three polytime quantum complexity classes BQP,
EQP, ZQP and their counterpart defined on quantum circuit families.

In the first proposal by Nishimura and Ozawa [73], the equivalence holds, but it not
perfect: in fact, EQP and ZQP are not equivalent to their counterpart. This is due to the
different choice of quantum gates set: Nishimura and Ozawa defined the so called (polyno-
mial size) uniform quantum circuit families, a subclass of QCF with polytime description
function, but based on a (possibly) infinite set of quantum gates.

Subsequently, the two authors developed the so called finitely generated QCF (a sub-
set of uniform QCF): quantum gates of each quantum circuit are based on a finite set of
elementary gates (elementary operators) and moreover the definition of the finitely gen-
erated QCF is independent w.r.t. the choice of the universal set of quantum gates.
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In order to obtain a perfect correspondence between the formalisms of QTM and QCF,
both must be based on the notions of computable numbers and computable operators (see
Definitions 2.19, 2.20 and 2.21).

6.2 Syntax

The syntax of terms of SQ is equal to the syntax of Q, introduced in Chapters 4 and 5.
The set of well-forming rules is different from the one of Q, since we want to control the
duplication of resources.

6.2.1 The Language of Terms

Let U be the class of computable operators on `2{0, 1}n. Let us associate to each com-
putable unitary operator U ∈ U on the Hilbert space H({0, 1}n), a symbol U . The set of
the term expressions, or terms for short, is defined by the grammar in Figure 4.1:

All the assumptions adopted for Q still hold.
For every term M and for every classical variable x the number of free occurrences

NFO(x,M) of x in M is defined as follows, by induction on M :

NFO(x, x) = 1
NFO(x, y) = NFO(x, r) = NFO(x,C) = 0

NFO(x, !M) = NFO(x, new(M)) = NFO(x,M)
NFO(x, λy.M) = NFO(x, λ!y.M) = NFO(x,M) if x 6= y

NFO(x, λ〈x1, . . . , xn〉.M) = NFO(x,M) if x /∈ {x1, . . . , xn}
NFO(x,MN) = NFO(x,M) + NFO(x,N)

NFO(x, 〈M1, . . . ,Mn〉) =
n∑
1

NFO(x,Mi)

6.2.2 Judgements and Well–Formed Terms

SQ is a “refinement” of Q. In particular, we have to control the use of resources, in
order to manipulate the intrinsic complexity of the system. Well forming rules of SQ are
different w.r.t. the Q formulation, and in particular Weakening and Contraction rules are
distinct, and Contraction is more restrictive with respect to the Turing complete case.
SQ is directly inspired to the Soft Linear Logic presented in Chapter 2, Section 2.2.3
(see in particular the similar control of structural rules): the classical fragment of SQ is
very similar (essentially equivalent) to the language of terms of Baillot and Mogbil’s soft
lambda calculus [12], where the authors show how soft lambda terms can be typed with
formulas of soft linear logic 1.

Judgements are defined from various notions of environments, taking into account the
way the variables are used:
1 many interesting properties hold for soft lambda terms even in the absence of types, i.e., the

structure of untyped terms is itself sufficient to enforce those properties. This includes soundness
and completeness wrt polynomial time. This is the main reason why we decided to present SQ
as an untyped language.
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• A classical environment is a (possibly empty) set (denoted by ∆, possibly indexed) of
classical variables. With !∆ we denote the set !x1, . . . , !xn whenever ∆ is x1, . . . , xn.
Analogously, with #∆, we denote the environment #x1, . . . ,#xn whenever ∆ is
x1, . . . , xn. If ∆ is empty, then !∆ and #∆ are empty. Notice that if ∆ is a non-
empty classical environment, both #∆ and !∆ are not classical environments.

• A quantum environment is a (possibly empty) set (denoted by Θ, possibly indexed) of
quantum variables.

• A linear environment is a (possibly empty) set (denoted by Λ, possibly indexed) ∆,Θ
of classic and quantum variables.

• A non contractible environment is a (possibly empty) set (denoted by Ψ , possibly
indexed) Λ, !∆ where each variable name occurs at most once.

• An environment (denoted by Γ , eventually indexed) is a (possibly empty) set Ψ,#∆
where each variable name occurs at most once.

• A judgment is an expression Γ `M , where Γ is an environment and M is a term.
• If Γ1, . . . , Γn are (not necessarily pairwise distinct) environments, Γ1 ∪ . . . ∪ Γn de-

notes the environment obtained by means of the standard set-union of Γ1, . . . , Γn.
In all the above definitions, we are implicitly assuming that the same (quantum or clas-
sical) variable name cannot appear more than once in an environment, e.g. x, !y,#z is a
correct environment, while x, !x is not. Given an environment Γ , var(Γ ) denotes the set
of variable names in Γ .

const
!∆ ` C

q–var
!∆, r ` r

classic-var
!∆,x ` x

der1
!∆,#x ` x

der2
!∆, !x ` x

Ψ1,#∆1 `M1 Ψ2,#∆2 `M2

app
Ψ1, Ψ2,#∆1 ∪#∆2 `M1M2

Ψ1,#∆1 `M1 · · ·Ψk,#∆k `Mk

tens
Ψ1, . . . , Ψk,#∆1 ∪#∆2 ∪ · · · ∪#∆k ` 〈M1, . . . ,Mk〉

∆1 `M
prom

!∆2, !∆1 `!M

Γ `M
new

Γ ` new(M)

Γ, x1, . . . , xn `M
(1

Γ ` λ〈x1, . . . , xn〉.M

Γ, x `M
(2

Γ ` λx.M

Γ,#x `M
→#

Γ ` λ!x.M

Γ, !x `M
→!

Γ ` λ!x.M

Fig. 6.1. Well Forming Rules

We say that a judgement Γ `M is well formed (notation: .Γ `M ) if it is derivable
by means of the well forming rules in Figure 6.1. With d . Γ ` M we denote that d is a
derivation of the well formed judgement Γ ` M . If Γ ` M is well formed we say also
that the term M is well formed with respect to the environment Γ , or, simply, that M is
well formed.
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The rôle of the underlying context in well formed judgements can be explained as
follows. If Γ, x `M is well formed, then x appears free exactly once inM and, moreover,
the only free occurrence of x does not lie in the scope of any ! construct. On the other
hand, if Γ,#x `M is well formed, then x appears free at least once in M and every free
occurrence of x does not lie in the scope of any ! construct. Finally, if Γ, !x ` M is well
formed, then x appears at most once in M .

Proposition 6.1. If .Q(M) `M then all the classical variables in M are bound.

Proof. The following, stronger, statement can be proved by structural induction on d: if
d . Γ `M then all the free variables of M appear in Γ .

6.3 Computations

The notion of configuration and of reduction are exactly the same of Q.
Even if the well-forming rules of SQ are different from those of Q, the well formed

terms of SQ are also well formed with respect to Q.
Therefore it is natural to adopt for SQ the same reduction rules of Q, that we gave in
Figure 4.3.

6.3.1 Subject Reduction

Even if SQ is not typed, we have a strong notion of well formation for terms, as for Q. As
we will see, the well forming rules are strong enough to guarantee polystep termination
of computations (see section 6.7).

It is necessary to introduce a suitable notion of well formed configuration and, more-
over, to show that well formed configurations are closed under reduction.

Definition 6.2. A configuration [Q,QV,M ] is said to be well–formed iff there is a context
Γ such that Γ `M is well-formed.

Theorem 6.3 (Well Formation Closure). If C is a well–formed configuration and C ∗→
D then D is well formed.

The proof of the theorem is a consequence (provable by induction) of the follow-
ing stronger result that, with a little abuse of language (the calculus is untyped), we call
subject–reduction theorem.

Theorem 6.4 (Subject Reduction). If .Λ, !∆1,#∆2 ` M1 and [Q1,QV1,M1] →
[Q2,QV2,M2] then there are environments∆3,∆4 such that∆1 = ∆3,∆4 and .Λ, !∆3,#∆4∪
#∆2,QV2 −QV1 `M2. Moreover, QV2 −QV1 = Q(M2)−Q(M1).

In order to prove the theorem we need a number of intermediate results.
Firstly, we need three technical lemmas:

Lemma 6.5 (Weakening).
If d . Γ `M and x is a fresh variable, then .Γ, !x `M

Proof. By induction on the height of d and by case on the last rule r.



6.3 Computations 91

• d is an axiom: trivial;

• r is app

d1···
Γ1,#∆ `M1

d2···
Γ2,#∆ `M2

app
Γ1, Γ2,#∆ `M1(M2)

By induction hypothesis we can derive

H.I.(d1)···
Γ1,#∆, !x `M1

d2···
Γ2,#∆ `M2

app
Γ1, Γ2,#∆, !x `M1(M2)

• r is tens

d1···
Ψ1,#∆1 `M1 . . .

dk···
Ψk,#∆k `Mk

tens
Ψ1, . . . , Ψk,#∆1 ∪ . . . ∪#∆k ` 〈M1, . . . ,Mk〉

We applying the induction hypothesis on the first subderivation, obtaining

I.H.(d1)···
Ψ1,#∆1, !x `M1 . . .

dk···
Ψk,#∆k `Mk

tens
Ψ1, . . . , Ψk,#∆1 ∪ . . . ∪#∆k!x ` 〈M1, . . . ,Mk〉

• r is new:

d···
Γ `M

new
Γ ` new(M)

and by I.H. we have
I.H.(d)

···
Γ, !x `M

new
Γ, !x ` new(M)

• r is(1
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d···
Γ, y1, . . . , yn `M

(1
Γ ` λ〈y1, . . . , yn〉.M

By I.H. we can conclude

I.H.(d)
···

Γ, !x, y1, . . . , yn `M
(1

Γ, !x ` λ〈y1, . . . , yn〉.M

• r is(2: as for the previous case;

• r is →#. We have

d···
Γ,#y `M

→#
Γ ` λ!y.M

and by I.H.
H.I.(d)

···
Γ, !x,#y `M

→#
Γ, !x ` λ!y.M

• r is →!. We have

d···
Γ, !y `M

→!
Γ ` λ!y.M

and by I.H.
H.I.(d)

···
Γ, !x, !y `M

→!
Γ, !x ` λ!y.M

• r is prom

d···
∆1 `M

prom
!∆2, !∆1 `!M

By means of promotion rule, we can conclude
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d···
∆1 `M

prom
!∆2, !∆1, !x `!M

.

Lemma 6.6 (# `).
If d . Γ, x `M , then .Γ,#x ` N .

Proof. By induction on the eight of derivation, and by case on the last rule r.

• r is the axiom classic-var: der1
∆,#x ` x holds too, by means of der1 axiom;

• r is app: we must distinguish between two cases.
1. We have

d1···
Γ1,#∆,x `M1

d2···
Γ2,#∆ `M2

app
Γ1, Γ2,#∆,x `M1(M2)

(where Γ = Γ1, Γ2) and by induction hypothesis we can conclude

I.H.(d1)···
Γ1,#∆,#x `M1

d2···
Γ2,#∆ `M2

app
Γ1, Γ2,#∆,#x `M1(M2)

2. symmetrically to the previous case, with induction hypothesis applied on d2;
• r is tens:

d1···
Ψ1,#∆1 `M1 . . .

dj
···

Ψj ,#∆j , x `Mj . . .

dk···
Ψk,#∆k `Mk

tens
Ψ1, . . . , Ψk,#∆1 ∪ . . . ∪#∆j ∪ . . . ∪#∆k, x ` 〈M1, . . . ,Mk〉

We apply the induction hypothesis on derivation dj and we conclude:

d1···
Ψ1,#∆1 `M1 . . .

I.H.(dj)
···

Ψj ,#∆j ,#x `Mj . . .

dk···
Ψk,#∆k `Mk

tens
Ψ1, . . . , Ψk,#∆1 ∪ . . . ∪#∆j ∪ . . . ∪#∆k,#x ` 〈M1, . . . ,Mk〉

• r is new:

d···
Γ, x `M

new
Γ, x ` new(M)
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and by I.H.
I.H.(d)

···
Γ,#x `M

new
Γ,#x ` new(M)

• r is(1:

d···
Γ, x, x1, . . . , xn `M

(1
Γ, x ` λ〈x1, . . . , xn〉M

Applying the induction hypothesis to d we obtain

I.H.(d)
···

Γ,#x, x1, . . . , xn `M
(1

Γ,#x ` λ〈x1, . . . , xn〉M

• r is(2: very similar to the previous case;
• r is →#:

d···
Γ, x,#y `M

→#
Γ, x ` λ!yM

and applying the induction hypothesis to d we have

I.H.(d)
···

Γ,#x,#y `M
→#

Γ,#x ` λ!yM

• r is →!: very similar to the previous case.

Lemma 6.7 (!x `).
If d . Γ, x `M then .Γ, !x ` N .

Proof. By induction on the height of the derivation and by case on the last rule r. Note
that r can not be prom

• r is

!∆,x ` x
We conclude taking

der2
!∆, !x ` x

• r is app: we distinguish two cases.
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1. We have
d1···

Γ1,#∆,x `M1

d2···
Γ2,#∆ `M2

app
Γ1, Γ2,#∆,x `M1(M2)

(where Γ = Γ1, Γ2) and by induction hypothesis we can conclude

I.H.(d1)···
Γ1,#∆, !x `M1

d2···
Γ2,#∆ `M2

app
Γ1, Γ2,#∆, !x `M1(M2)

2. symmetrically to the previous case, with induction hypothesis applied on d2;
• r is tens:

d1···
Ψ1,#∆1 `M1 . . .

dj
···

Ψj ,#∆j , x `Mj . . .

dk···
Ψk,#∆k `Mk

tens
Ψ1, . . . , Ψk,#∆1 ∪ . . . ∪#∆j ∪ . . . ∪#∆k, x ` 〈M1, . . . ,Mk〉

We apply the induction hypothesis on derivation dj and we conclude:

d1···
Ψ1,#∆1 `M1 . . .

I.H.(dj)
···

Ψj ,#∆j , !x `Mj . . .

dk···
Ψk,#∆k `Mk

tens
Ψ1, . . . , Ψk,#∆1 ∪ . . . ∪#∆j ∪ . . . ∪#∆k, !x ` 〈M1, . . . ,Mk〉

• r is new:

d···
Γ, x `M

new
Γ, x ` new(M)

and by I.H.
I.H.(d)

···
Γ, !x `M

new
Γ, !x ` new(M)

• r is(1:

d···
Γ, x, x1, . . . , xn `M

(1
Γ, x ` λ〈x1, . . . , xn〉M

Applying the induction hypothesis to d we obtain
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I.H.(d)
···

Γ, !x, x1, . . . , xn `M
(1

Γ, !x ` λ〈x1, . . . , xn〉M

• r is(2: as for previous case;
• r is →#:

d···
Γ, x,#y `M

→#
Γ, x ` λ!yM

and applying the induction hypothesis to d we have

I.H.(d)
···

Γ, !x,#y `M
→#

Γ, !x ` λ!yM

• r is →!: as for previous case.

As a consequence of the proved lemmata, the following rules are admissible:

Γ `M
w

Γ, !∆ `M

Γ,∆ `M
L!

Γ, !∆ `M

Γ,∆ `M
L#

Γ,#∆ `M

with the proviso that in rule w, each x in ∆ is a fresh variable.
As always, proving subject reduction requires some substitution lemmata too. In this

case, we need four distinct substitution lemmata:

Lemma 6.8 (Substitution lemma).
Actually we have four distinct cases:

Linear Case. If d1. Ψ1,#∆1, x ` P and d2. Ψ2,#∆2 ` N , with var(Ψ1)∩var(Ψ2) = ∅,
then . Ψ1, Ψ2,#∆1 ∪#∆2 ` P{N/x}.

Contraction Case. If d1 . Γ,#x ` P and d2 . ∆ ` N and var(Γ ) ∩ var(∆) = ∅ then
.Γ,#∆ ` P{N/x}.

Bang Case. If d1 . Γ, !x ` P and d2 . ∆ ` N and var(Γ ) ∩ var(∆) = ∅ then
.Γ, !∆ ` P{N/x}.

Quantum Case. If d1 . Γ, x1, . . . , xn ` P , d2. !∆, r1, . . . , rn ` 〈r1, . . . , rn〉 and
r1, . . . , rn 6∈ var(Γ ) then .Γ, !∆, r1, . . . , rn ` P{r1/x1, . . . , rn/xn}

Proof. Each case is proved by induction on the height of the derivation and by cases on
the last rule.

Linear case

• r is the axiom
d1

!∆1, x ` x
: we use the weakening rule and from d2 we obtain
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d2···
Ψ2,#∆2 ` N

w
!∆1, Ψ2,#∆2 ` N

• r is app

1.
d′1···

Ψ ′1,#∆
′
1, x `M1

d′′1···
Ψ ′′1 ,#∆

′′
1 `M2

Ψ ′1, Ψ
′′
1 ,#∆

′
1 ∪#∆′′1 , x `M1(M2)

We apply the induction hypothesis on the derivation d′1 and d2, obtaining:

I.H.(d′1, d2)···
Ψ ′1, Ψ2,#∆′1 ∪#∆2,`M1{N/x}

d′′1···
Ψ ′′1 ,#∆

′′
1 `M2

Ψ ′1, Ψ2, Ψ
′′
1 ,#∆

′
1 ∪#∆2 ∪#∆′′1 , x `M1{N/x}(M2)

2. x occurs in the right branch of the rule: symmetrically to the first case;

• r is tens:

d1
1···

Φ1
1,#∆

1
1 `M1 · · ·

dj
1···

Φj
1,#∆

j
1, x `Mj · · ·

dk
1···

Φk
1 ,#∆

1
1 `Mk

tens
Ψ1

1 , . . . , Ψ
j
1 , . . . , Ψ

k
1 ,#∆

1
1 ∪ . . . ∪#∆j

1 ∪ . . . ∪#∆k
1 , x ` 〈M1, . . . ,Mj , . . . ,Mk〉

We apply the induction hypothesis to dj
1 and d2 and we conclude

d1
1···

Φ1
1,#∆

1
1 `M1 · · ·

I.H.(dj
1, d2)
···

Φj
1, Ψ2,#∆

j
1 ∪#∆2 `Mj{N/x} · · ·

dk
1···

Φk
1 ,#∆

1
1 `Mk

tens
Ψ1

1 , . . . , Ψ
j
1 , . . . , Ψ

k
1 , Ψ2,#∆1

1 ∪ . . . ∪#∆j
1 ∪ . . . ∪#∆k

1 ∪#∆2,` 〈M1, . . . ,Mj{N/x}, . . . ,Mk〉

• r is new:

d′1···
Ψ1,#∆1, x `M

new
Ψ1,#∆1, x ` new(M)
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By induction hypothesis: new:

I.H.(d′1, d2)···
Ψ1, Ψ2#∆1 ∪#∆2 `M{N/x}

new
Ψ1, Ψ2,#∆1 ∪#∆2,` new(M{N/x})

• r is(1:

d′1···
Ψ1,#∆1, x, y1, . . . , yn `M

(1
Ψ1,#∆1, x ` λ〈y1, . . . , yn〉.M

and by induction hypothesis we have

I.H.(d′1, d2)···
Ψ1, Ψ2#∆1 ∪#∆2, y1, . . . , yn `M{N/x}

(1
Ψ1, Ψ2,#∆1 ∪#∆2,` λ〈y1, . . . , yn〉.M{N/x}

• r is(2: as for the previous case.

• r is →#:

d′1···
Ψ1,#∆1, x,#y `M

(1
Ψ1,#∆1, x ` λ!y.M

We obtain the result applying the induction hypothesis on d′1 and d2:

H.I.(d′1, d2)···
Ψ1, Ψ2,#∆1 ∪#∆2,#y `M{N/x}

(1
Ψ1, Ψ2,#∆1 ∪#∆2 ` λ!y.M

Note that if #y belongs to Ψ2 we have to use the α-renaming procedure.

• r is →!: very similar to the previous case.

Contraction Case

r is der1:
d1

!∆,#x ` x
. We use auxiliary rules L# and w:
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d2···
∆ ` N

L#
#∆ ` N

w
!∆1,#∆ ` N

•• r is app: we have to distinguish between three different case:
1. #x belongs to both the contexts: we have

d′1···
Ψ1,#∆11,#x `M1

d′′1···
Ψ2,#∆12,#x `M2

app
Ψ1, Ψ2,#∆11 ∪#∆12,#x `M1(M2)

and by induction hypothesis

I.H.(d′1, d2)···
Ψ1,#∆11 ∪#∆ `M1{N/x}

I.H.(d′′1 , d2)···
Ψ2,#∆12 ∪#∆ `M2{N/x}

app
Ψ1, Ψ2,#∆11 ∪#∆12 ∪#∆ ` (M1(M2)){N/x}

2. #x belongs to the context of the conclusions of d′1: we have

d′1···
Ψ1,#∆11,#x `M1

d′′1···
Ψ2,#∆12,`M2

app
Ψ1, Ψ2,#∆11 ∪#∆12,#x `M1(M2)

and by induction hypothesis

I.H.(d′1, d2)···
Ψ1,#∆11 ∪#∆ `M1{N/x} Ψ2,#∆12 `M2

app
Ψ1, Ψ2,#∆11 ∪#∆12 ∪#∆ ` (M1(M2)){N/x}

3. #x belongs to the context of the conclusions of d′′1 : as for the previous one;

• r is tens:

d′1···
Ψ ′1,#∆

′
1 `M1 · · ·

dk
1···

Ψk
1 ,#∆

k
1 `Mk

tens
Ψ1

1 , . . . .Ψ
k
1 ,#∆

k
1 ∪ . . . ∪#∆k

1 ` 〈M1, . . . ,Mk〉

where x ∈ #∆k
1 ∪ . . . ∪#∆k

1 .
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We apply the induction hypothesis to dj
1 and d2 for all j and we obtain

· · ·

I.H.(dj
1, d2)
···

Ψ j
1 ,#∆̃

j
1 `Mj{n/x} · · ·

tens
Ψ1

1 , . . . .Ψ
k
1 ,#∆̃

k
1 ∪ . . . ∪#∆̃k

1 ` 〈M1, . . . ,Mj{N/x} . . . ,Mk〉

where for all j = 1 . . . k, #∆̃j
1 = #∆j

1 if #x /∈ #∆j
1 and #∆̃j

1 = (#∆j
1 −

{#x}) ∪#∆ otherwise;

• r is prom: in this case #x does not belong to the context and so the premise is
non satisfied;

• r is new and we have
d′1···

Γ,#x `M
new

Γ,#x ` new(M)

we apply the induction hypothesis on d1 and d2:

I.H.(d′1, d2)···
Γ,#∆ `M{N/x}

new
Γ,#∆ ` (new(M)){N/x}

• r is(1: we have
d′1···

Γ,#x, x1, . . . , xn `M
(1

Γ,#x,` λ〈x1, . . . , xn〉.M
and by I.H.

I.H.(d′1, d2)···
Γ,#∆,x1, . . . , xn `M{N/x}

(1
Γ,#∆ ` (λ〈x1, . . . , xn〉.M){N/x}

• r is(2: as for the previous case;

• r is →#: we have
d′1···

Γ,#x,#y `M
→#

Γ,#x,` λ!y.M
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and by I.H.

d′1···
Γ,#∆,#y `M{N/x}

→#
Γ,#∆ ` (λ!y.M){N/x}

• r is →!: as for previous case.

Bang Case
• r is der1, there are two cases:

1. if d1 is
d1

!Γ, !x,Fz ` z
whereFz is either !z or #z with z 6= x, we have

!Γ, !∆,Fz ` z
2. if d1 is

d1

!∆, !x ` x
we use auxiliary rules L! and w `:

d2···
∆ ` N

L!
!∆ ` N

w
!∆1, !∆ ` N

• r is app: we have to distinguish between two different case:
1. #x belongs to the context of the conclusions of d′1: we have

d′1···
Ψ1,#∆11, !x `M1

d′′1···
Ψ2,#∆12,`M2

app
Ψ1, Ψ2,#∆11 ∪#∆12, !x `M1(M2)

and by induction hypothesis

I.H.(d′1, d2)···
Ψ1,#∆11, !∆ `M1{N/x} Ψ2,#∆12 `M2

app
Ψ1, Ψ2,#∆11 ∪#∆12, !∆ ` (M1(M2)){N/x}
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2. #x belongs to the context of the conclusions of d′′1 : as for previous one;

• r is tens:

d1
1···

Ψ1
1 ,#∆

1
1 `M1 · · ·

dj
1···

Ψ j
1 ,#∆

j
1, !x `Mj · · ·

dk
1···

Ψk
1 ,#∆

1
1 `Mk

tens
Ψ1

1 , . . . , Ψ
k
1 ,#∆

1
1 ∪ . . . ∪#∆k

1 , !x ` 〈M1, . . . ,Mj , . . . ,Mk〉

We apply the induction hypothesis to dj
1 and d2 and we conclude

d1
1···

Ψ1
1 ,#∆

1
1 `M1 · · ·

I.H.(dj
1, d2)
···

Ψ j
1 , Ψ2,#∆

j
1, !∆ `Mj{N/x} · · ·

dk
1···

Ψk
1 ,#∆

1
1 `Mk

tens
Ψ1

1 , . . . , Ψ
k
1 , Ψ2,#∆1

1 ∪ . . . ∪#∆k
1 , !∆ ` 〈M1, . . . ,Mj{N/x}, . . . ,Mk〉

• r is prom: we have two cases
1. x is introduced by weakening:

d′1···
∆′1 ` P

!∆′′1 , !∆
′
1, !x `!P

then x does not occurs in P and so

d′1···
∆′1 ` P

!∆′1, !∆ `!P

2. x belongs to the context:

d′1···
∆′1, x ` P

!∆′′1 , !∆
′
1, !x `!P

We apply the linear case of the lemma on subderivations d′1 and d2

∆′1,∆ ` P{N/x}

!∆′′1 , !∆
′
1, !∆ `!P{N/x}
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• r is new and we have

d′1···
Γ, !x `M

new
Γ, !x ` new(M)

we apply the induction hypothesis on d1 and d2:

I.H.(d′1, d2)···
Γ, !∆ `M{N/x}

new
Γ, !∆ ` new((M)){N/x}

• r is(1: we have
d′1···

Γ, !x, x1, . . . , xn `M
(1

Γ, !x,` λ〈x1, . . . , xn〉.M
and by I.H.

I.H.(d′1, d2)···
Γ, !∆,x1, . . . , xn `M{N/x}

(1
Γ, !∆ ` (λ〈x1, . . . , xn〉.M){N/x}

• r is(2: as for the previous case;

• r is →#: we have
d′1···

Γ, !x,#y `M
→#

Γ, !x,` λ!y.M

and by I.H.

d′1···
Γ, !∆,#y `M{N/x}

→#
Γ, !∆ ` (λ!y.M){N/x}

• r is →: very similar to the previous case.
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Quantum Case We use the linear case of the lemma and weakening rule in order to prove
the quantum case:

Γ, x1, . . . , xn `M r1 ` r1
Linear Case

Γ, r1, x2, . . . , xn `M{r1/x1}···
Γ, r1, . . . , rn−1, xn `M{r1/x1, . . . , rn−1/xn−1} rn ` rn

Linear Case
Γ, r1, . . . , rn `M{r1/x1, . . . , rn/xn}

weak
Γ, !∆, r1, . . . , rn `M{r1/x1, . . . , rn/xn}

Finally, we are able to prove the Subject Reduction Theorem:

Proof of the Theorem 6.4
The proof of the Theorem it is not completely standard. The main difficulty is the

presence of the patterns !x and #x. They both are ”mapping” into λ!x by means of the
→! and →# rules.
Therefore, we need the following partial function.

Let Γ be an environment. A partial function mΓ with domain Γ is called an m–fun
(for Γ ) if:

1. if α occurring in Γ is either a classical variable, or a quantum variable, or has the
shape #x then mΓ (α) = α;

2. if !x occurs in Γ then mΓ (!x) is either !x or #x.

It is immediate to observe that:

1. if Γ = α1, . . . , αn is an environment and mΓ is an m–fun, then
mΓ [Γ ] = mΓ (α1), . . . ,mΓ (αn) is an environment;

2. if Γ1, Γ2 are environments and mΓ1 ,mΓ2 are m–funs, then the union mΓ1 ∪mΓ2 is
an m–fun for Γ1 ∪ Γ2.

We are now in a position to prove Theorem 6.4. We prove it in the following equivalent
formulation:
if d . Γ `M and [Q1,QV1,M1] → [Q2,QV2,M2] then there is an m–fun mΓ such that
.mΓ [Γ ],QV2 −QV1 `M2.
The proof is by induction on the height of d and by cases on the last rule r of d. There are
several cases.

• r is app:
d1···

Ψ1,#∆1 ` P1

d2···
Ψ2,#∆2 ` P2

app
Ψ1, Ψ2,#∆1 ∪#∆2 ` P1P2

.

and the reduction rule is



6.3 Computations 105

[Q,QV, P1] →α [Q′,QV ′, P ′1]
l.a

[Q,QV, P1P2] →α [Q′,QV ′, P ′1P2]

Applying the induction hypothesis to d1 there are an m–fun m and a derivation d3

such that:

d3···
m[Ψ1],#∆1,QV ′ −QV ` P1

d2···
Ψ2,#∆2 ` P2

app
m[Ψ1], Ψ2,QV ′ −QV,#∆1 ∪#∆2 ` P1P2

.

Please note that if !y occur in Ψ1 then #y cannot occur neither in #∆1 nor in #∆2,
therefore also if m(!y) = #y, the rule app is applied correctly.

• r is app:

d1···
Γ,#x ` P

→#
Γ ` λ!x.P

d2···
∆2 ` N

prom
!∆3, !∆2 `!N

app
Γ, !∆3, !∆2 ` (λ!x.P )(!N)

and the reduction rule is:

[Q,QV, (λ!x.P )!N ] →c.β [Q,QV, P{N/x}]

we have the thesis by means of one of the lemmas above:

d3···
Γ,#∆2 ` P{N/x}

w
Γ, !∆3,#∆2 ` P{N/x}

where d3 is the derivation obtained applying the contraction case of Lemma 6.8 above
to d1 and d2.

• r is app:

d1···
Γ, !x ` P

→!
Γ ` λ!x.P

d2···
∆2 ` N

prom
!∆3, !∆2 `!N

app
Γ, !∆3, !∆2 ` (λ!x.P )(!N)

and the reduction rule is:

[Q,QV, (λ!x.P )!N ] →c.β [Q,QV, P{N/x}].

Very similar to the previous case, but rather than the contraction case, we must apply
the bang case of the Lemma 6.8.
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• r is app:
d1···

Ψ1,#∆1, x ` P1

Ψ1,#∆1 ` λx.P1

d2···
Ψ2,#∆2 ` P2

app
Ψ1, Ψ2,#∆1 ∪#∆2 ` λx.P1(P2)

.

and and the reduction rule is:

[Q,QV, (λx.P )N ] →l.β [Q,QV, P{N/x}]

we have the thesis by means of the linear case of Lemma 6.8 (we apply the lemma to
the judgements obtained from derivations d1 and d2):

Ψ1, Ψ2,#∆1 ∪#∆2 ` P{N/x}.
• r is app:

d1···
Γ, x1, . . . , xn ` P

(1
Γ ` λ〈x1, . . . , xn〉.P

d2···
!∆, r1, . . . , rn ` 〈r1, . . . , rn〉

app
Γ, !∆ ` λ〈x1, . . . , xn〉.P (〈r1, . . . , rn〉)

and the reduction rule is:

[Q,QV, (λ〈x1, . . . , xn〉.P )〈r1, . . . , rn〉] →q.β [Q,QV, P{r1/x1, . . . , rn/xn}].

We obtain the statement Γ, !∆, r1, . . . , rn ` P{r1/x1, . . . , rn/xn} by means of the
quantum case of Lemma 6.8 to the the judgements obtained from derivations d1 and
d2.

• r is app:

d1···
!∆1 ` U

d2···
!∆2, r1, . . . , rn ` 〈r1, . . . , rn〉

app
!∆1, !∆2, r1, . . . , rn ` U(〈r1, . . . , rn〉)

and the reduction rule is:

[Q,QV, U(〈r1, . . . , rn〉)] →Uq [U〈〈r1,...,rn〉〉Q,QV, 〈r1, . . . , rn〉].

We obtain the result from derivation d2, by several application of weakening rule:

d2···
!∆2, r1, . . . , rn ` 〈r1, . . . , rn〉

w
!∆1, !∆2, r1, . . . , rn ` 〈r1, . . . , rn〉
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• r is app:

d1···
Γ1,#∆ ` L

d2···
Γ ′2,#∆,x1, . . . , xn ` P

(1
Γ ′2,#∆ ` (λ〈x1, . . . , xn〉.P )

d3···
Γ ′′2 ,#∆ ` N

app
Γ2,#∆ ` (λ〈x1, . . . , xn〉.P )(N)

app
Γ1, Γ2,#∆ ` L((λ〈x1, . . . , xn〉.P )(N))

(where Γ2 ≡ Γ ′2, Γ
′′
2 ), and the reduction rule is:

[Q,QV, L((λ〈x1, . . . , xn〉.P )(N))] →l.cm [Q,QV, (λ〈x1, . . . , xn〉.(LP ))(N)]

.
We have:

d1···
Γ1,#∆ ` L

d2···
Γ ′2,#∆,x1, . . . , xn ` P

app
Γ1, Γ

′
2,#∆,x1, . . . , xn ` (LP )

(1
Γ1, Γ

′
2,#∆ ` λ〈x1, . . . , xn〉.(LP )

d3···
Γ ′′2 ,#∆ ` N

app
Γ1, Γ2,#∆ ` (λ〈x1, . . . , xn〉.(LP ))(N)

• r is app:

d1···
Γ ′1,#∆,x1, . . . , xn ` P

(1
Γ ′1,#∆ ` (λ〈x1, . . . , xn〉.P )

d2···
Γ ′′1 ,#∆ ` N

app
Γ1,#∆ ` (λ〈x1, . . . , xn〉.P )(N)

d3···
Γ2,#∆ ` L

app
Γ1, Γ2,#∆ ` ((λ〈x1, . . . , xn〉.P )(N))L

(where Γ1 ≡ Γ ′1, Γ
′′
1 ), and and the reduction rule is:

[Q,QV, ((λ〈x1, . . . , xn〉.P )(N))L] →r.cm [Q,QV, (λ〈x1, . . . , xn〉.(PL))(N)]

We have:
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d1···
Γ ′1,#∆,x1, . . . , xn ` P

d3···
Γ2,#∆ ` L

app
Γ ′1, Γ2,#∆,x1, . . . , xn ` (PL)

(1
Γ ′1, Γ3,#∆ ` λ〈x1, . . . , xn〉.(PL)

d2···
Γ ′′1 ,#∆ ` N

app
Γ1, Γ2,#∆ ` (λ〈x1, . . . , xn〉.(LP ))(N)

.

• r is(1:

d···
Γ, x1, . . . , xn ` P

(1
Γ ` λ〈x1, . . . , xn〉.P

and the reduction rule is:

[Q,QV, P ] →α [Q′,QV ′, P ′]
in.λ2

[Q,QV, λ〈x1, . . . , xn〉.P ] →α [Q′,QV ′, λ〈x1, . . . , xn〉.P ′]
Applying the induction hypothesis to d, there are an m–fun m and a derivation d′ such
that:

d′···
m[Γ ],QV ′ −QV, x1, . . . , xn ` P ′

(1
m[Γ ],QV ′ −QV ` λ〈x1, . . . , xn〉.P

• r is(2:

d···
Γ, x ` P

(2
Γ ` λx.P

and the reduction rule is:

[Q,QV, P ] →α [Q′,QV ′, P ′]
in.λ2

[Q,QV, λx.P ] →α [Q′,QV ′, λx.P ′]
Applying the induction hypothesis to d, there are an m–fun m and a derivation d′ such
that:

d′···
m[Γ ],QV ′ −QV, x ` P ′

(2
m[Γ ],QV ′ −QV ` λx.P
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• r is →#:

d···
Γ,#x ` P

→#
Γ ` λ!x.P

and the reduction rule is:

[Q,QV, P ] →α [Q′,QV ′, P ′]
in.λ1

[Q,QV, λ!x.P ] →α [Q′,QV ′, λ!x.P ′]

Applying the induction hypothesis to d, there are an m–fun m and a derivation d′ such
that:

d′···
m[Γ ],QV ′ −QV,#x ` P ′

→#
m[Γ ],QV ′ −QV ` λ!x.P

.

• r is →!:

d···
Γ, !x ` P

→!
Γ ` λ!x.P

and the reduction rule is:

[Q,QV, P ] →α [Q′,QV ′, P ′]
in.λ1

[Q,QV, λ!x.P ] →α [Q′,QV ′, λ!x.P ′]

Applying the H.I. to d there are an m–fun m and a derivation d′; we have two cases.

1.
d′···

m[Γ ],QV ′ −QV, !x ` P ′
→!

m[Γ ],QV ′ −QV ` λ!x.P

2.
d′···

m[Γ ],QV ′ −QV,#x ` P ′
→#

m[Γ ],QV ′ −QV ` λ!x.P
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• r is tens:

d1···
Ψ1,#∆1 ` P1

di···
Ψi,#∆i ` Pi

dn···
Ψn,#∆n ` Pn

Ψ1, . . . , Ψn,#∆1 ∪#∆2 ∪ . . . ∪#∆k ` 〈P1, . . . , Pn〉
and the reduction rule is

[Q,QV, Pi] →α [Q′,QV ′, P ′i ]

[Q,QV, 〈P1, . . . , Pi, . . . , Pn〉] →α [Q′,QV ′, 〈P1, . . . , P
′
i , . . . , Pn〉]

.

Applying the induction hypothesis to di, there are an m–fun m and a derivation d′i
such that

d1···
Ψ1,#∆1 ` P1

d′i···
m[Ψi],#∆i,QV ′ −QV ` P ′i

dn···
Ψn,#∆n ` Pn

Ψ1, . . . , Ψi−1, Ψi+1, . . . , Ψn,m[Ψi],#∆1 ∪#∆2 ∪ . . . ∪#∆k ` 〈P1, . . . , P
′
i , . . . , Pn〉

.

Note that the derivation is correct. In fact if !x ∈ Ψi, then by means of well forming
of d #x can not belongs to any #∆j . So, a possible modification of !x into #x does
not cause any new contraction.

• r is new. We have two case:

1.
!∆ ` c

new
!∆ ` new(c)

and the reduction rule is:

[Q,QV, new(c)] →new [Q⊗ |p 7→ c〉,QV ∪ {p}, p]

The thesis is obtained by means of q–var:

q− var
!∆, p ` p

.
(Observe that QV ′ −QV = {p}).

2.
!∆ ` P

new
!∆ ` new((P ))

and the reduction rule is:

[Q,QV, P ] →α [Q′,QV ′, P ′]
in.new

[Q,QV, new(P )] →α [Q′,QV ′, new(P ′)]
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Applying the induction hypothesis to d, there are an m–fun m and a derivation d′

such that:

d′···
m[Γ ],QV ′ −QV ` P ′

new
m[Γ ],QV ′ −QV ` new(P ′)

.

In the rest of the paper we will restrict our attention to well–formed configurations,
that (in order to simplify the writing) we continue to call simply configurations. We con-
clude this section with the notion of computation and normal form.

Definition 6.9 (Normal forms). A configuration C ≡ [Q,QV,M ] is said to be in normal
form iff there is no D such that C → D. Let us denote with NF the set of configurations
in normal form.

We define a computation as a suitable finite sequence of configurations:

Definition 6.10 (Computations). IfC1 is any configuration, a computation of lengthm ∈
N starting with C1 is a sequence of configurations {Ci}1≤i≤m such that for all 1 ≤ i <
m, Ci → Ci+1 and Cm ∈ NF.

As we will see, the limitation to finite sequences of computation is perfectly reasonable.
Indeed, we will prove (as a byproduct of polytime soundness, Section 6.7) that SQ is
strongly normalizing.

In the concrete realization of quantum algorithms, the initial quantum register is empty
(it will be created during the computation). With this hypothesis, configurations in a com-
putation can be proved to have a certain regular shape:

Proposition 6.11. Let {[Qi,QVi,Mi]}1≤i≤m be a computation, such that Q(M1) = ∅.
Then for every i ≤ m we have QVi = Q(Mi).

Proof. The results holds for any sequence {[Qi,QVi,Mi]}1≤i≤m of configurations
whenever Q(M1) = ∅. This stronger statement can be proved by induction on m by
making use of Theorem 6.4. Indeed, if m > 1 (the base case is trivial):

QVm = (QVm −QVm−1) ∪QVm−1 = (Q(Mm)−Q(Mm−1)) ∪QVm−1

= (Q(Mm)−Q(Mm−1)) ∪Q(Mm−1) = Q(Mm)

This concludes the proof.

In the rest of the paper, [Q,M ] denotes the configuration [Q,Q(M),M ].

6.4 Confluence and standardization

SQ enjoys the confluence exactly as Q, and in fact the proof given for Q in Section 4.3.3
is also a proof of confluence for SQ. It is possible to obtain confluence of SQ also as a
corollary of Q confluence (as for simply typed λ–calculus, where confluence is a direct
consequence of confluence of pure λ–calculus).
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Lemma 6.12. If C is a configuration of SQ , then C is also a configuration of Q.

Proof. By induction on well forming rules.

Theorem 6.13 (confluence). LetC,D,E be configurations withC ∗−→ D andC ∗−→ E.
Then, there is a configuration F with D ∗−→ F and E ∗−→ F .

Proof. If C →∗ D and C →∗ E in SQ, then C →∗ D and C →∗ E in Q. By Subject
Reduction,D andE are configuration of SQ and moreover, by Theorem 4.20 (confluence
theorem for Q) there exists a configuration F in Q such that D →∗ F and E →∗ F . By
Subject Reduction, F is also a configuration of SQ.

Moreover, as a consequence of having adopted the so-called surface reduction, (i.e.
it is not possible to reduce inside a subterm in the form !M ) it is not possible to erase
a diverging term (see also [91]). Therefore, exactly as for Q (see Theorem 4.23), it is
possible to show that:

Theorem 6.14. A configuration C is strongly normalizing iff C is weakly normalizing.

The theorem is a trivial consequence of the corresponding property of Q, Lemma 6.12,
and Subject Reduction. In any case such a result will be superseded by Theorem 6.32: in
Section 6.7, we prove that any configuration is in fact strongly normalizing.

Another interesting property, that SQ inherits from Q is quantum standardization.
The definitions of classes NCL, EQT and the notion of standard computation CNQ are
the same of Section 4.5.

Here we will recall only the main theorem:

Theorem 6.15 (Quantum Standardization). For every computation {Ci}1≤i≤m there is
a CNQ computation {Di}1≤i≤n such that C1 ≡ D1 and Cm ≡ Dn.

The proof of Theorem 6.15 proceeds by first showing that NCL is closed under →Q

and that EQT is closed under →new, as for Q.

6.5 Encoding Classical Data Structures

It is not possible to use the encoding given in Section 5.2 for Q. Classically, SQ has
the expressive power of soft linear logic and we need to control the duplication of re-
sources. In this section we will illustrate some encodings of usual data structures such as
natural numbers, binary strings and lists. Notice that some of the encodings we are go-
ing to present are non-standard: they are not the usual Church-style encodings, which are
not necessarily available in a restricted setting like the one we are considering here. The
results in this Section will be essential in Section 6.8.

6.5.1 Natural Numbers

We need to stay as abstract as possible here: there will be many distinct terms representing
the same natural number. Given a natural number n ∈ N and a term M , the class of n-
banged forms of M is defined by induction on n:
• The only 0-banged form of M is M itself;
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• If N is a n-banged form of M , any term !L where L ∗→N N is an n+1-banged form
of M .

Please notice that !nM is an n-banged form of M for every n ∈ N and for every term M .
Given natural numbers n,m ∈ N, a term M is said to n-represent the natural number

m iff for every n-banged form L of N

ML→N λz.N(N(N(. . . (N︸ ︷︷ ︸
m times

z) . . .))).

A term M is said to (n, k)-represent a function f : N → N iff for every natural number
m ∈ N, for every term N which 1-represents m, and for every n-banged form L of N

ML
∗→N P

where P k-represents f(m).
For every natural number m ∈ N, let dme be the term

λ!x.λy. x(x(x(. . . (x︸ ︷︷ ︸
m times

y) . . .))).

For every m, dme 1-represents the natural number m.
For every natural number m ∈ N and every positive natural number n ∈ N, let dmen

be the term defined by induction on n:

dme0 = dme
dmen+1 = λ!x.dmenx

For every n,m, dmen can be proved to n+ 1-represent the natural number m.

Lemma 6.16. Let id : N → N be the identity function. For every natural number n, there
is a term Mn

id which (n, 1)-represents id . Moreover, for every m ∈ N and for every term
N , Mn

id !n+mN
∗→N !mN

Proof. By induction on n:
• M0

id = λx.x. Indeed, for everyN 1-representingm ∈ N and for every 0-banged form
L of N :

M0
idL = M0

idN = (λx.x)N →N N.

• Mn+1
id = λ!x.Mn

idx. Indeed, for every N 1-representing m ∈ N and for every n+ 1-
banged form L of N :

Mn+1
id L = Mn+1

id !P = (λ!x.Mn
idx)!P →N Mn

idP
∗→N Mn

idQ
∗→N L

where Q is an n-banged form of N and L 1-represents m.
This concludes the proof.

SQ can compute any polynomial, in a strong sense:

Proposition 6.17. For any polynomial with natural coefficients p : N → N of degree n,
there is a term Mp that (2n+ 1, 2n+ 1)-represents p.
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Proof. Any polynomial can be written as an Horner polynomial, which is either
• The constant polynomial x 7→ k, where k ∈ N does not depend on x.
• Or the polynomial x 7→ k+x·p(x), where k ∈ N does not depend on x and p : N → N

is itself an Horner’s polynomial.
So, proving that the thesis holds for Horner’s polynomials suffices. We go by induction,
following the above recursion schema:
• Any constant polynomial p : N → N in the form x 7→ k is (1, 1)-representable. Just

take Mp = λ!x.dke. Indeed:
Mp!N → dke.

• Suppose r : N → N is a polynomial of degree n which can be (2n + 1, 2n + 1)-
represented by Mr. Suppose k ∈ N and let p : N → N be the polynomial x 7→
k + x · r(x). Consider the term

Mp = λ!x.λ!y.λz.(dke2n+2y)((M2n+2
id x)((λ!w.λ!u.!(Mrwu))xy)z)

Let now N be a term 1-representing a natural number i, L be any term, !P be any
(2n+ 3)-banged form of N and !Q be any (2n+ 3)-banged form of L. Then

Mp!P !Q ∗→N λz.(dke2n+2Q)((M2n+2
id P )((λ!w.λ!u.!(Mrwu))PQ)z)

∗→N λz.(dke2n+2Q)((M2n+2
id P )((λ!w.λ!u.!(Mrwu))!R!S)z)

∗→N λz.(dke2n+2!S)((M2n+2
id !R)!(MrRS)z)

∗→N λz.(λz. L(L(L(. . . (L︸ ︷︷ ︸
k times

z) . . .)))

(V !(MrRS)z)
∗→N λz.(λz. L(L(L(. . . (L︸ ︷︷ ︸

k times

z) . . .)))

(V !(MrTU)z)
∗→N λz.(λz. L(L(L(. . . (L︸ ︷︷ ︸

k times

z) . . .)))

(λz. (MrTU)(. . . ((MrTU)︸ ︷︷ ︸
i times

z) . . .)))

∗→N λz.(λz. L(L(L(. . . (L︸ ︷︷ ︸
k + ir(i) times

z) . . .)))z

→N (λz. L(L(L(. . . (L︸ ︷︷ ︸
k + ir(i) times

z) . . .)))

where V 1-represents i, !R is a (2n+2)-banged form of N , !S is a (2n+2)-banged form
of L, T is a (2n + 1)-banged form of N and U is a (2n + 1)-banged form of L. This
concludes the proof.
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6.5.2 Strings

Other than natural numbers, we are interested in representing strings in an arbitrary (finite)
alphabet. Given any string s = b1 . . . bn ∈ Σ∗ (where Σ is a finite alphabet), the term
dseΣ is the following:

λ!xa1 . . . . .λ!xam
.λ!y.λz.yxb1(yxb2(yxb3(. . . (yxbn

z) . . .))).

where Σ = {a1, . . . , am}. Consider the term

strtonatΣ = λx.λ!y.λz.x !!(λw.w) . . .!!(λw.w)︸ ︷︷ ︸
m times

!(λ!w.λr.yr)z.

As can be easily shown, strtonatΣdb1 . . . bneΣ rewrites to a term N 1-representing n:

strtonatΣdb1 . . . bneΣ
!L

∗→N λz.db1 . . . bneΣ
!!(λw.w) . . .!!(λw.w)| {z }

m times

!(λ!w.λr.Lr)z

∗→N λz.(λ!w.λr.Lr)!(λw.w)((λ!w.λr.Lr)!(λw.w)((λ!w.λr.Lr)!(λw.w)(. . . ((λ!w.λr.Lr)!(λw.w)z) . . .)))

∗→N (λz. L(L(L(. . . (L| {z }
n times

z) . . .)))

6.5.3 Lists

Lists are the obvious generalization of strings where an infinite amount of constructors
are needed. Given a sequence M1, . . . ,Mn of terms (with no free variable in common),
we can build a term [M1, . . . ,Mn] encoding the sequence as follows, by induction on n:

[] = λ!x.λ!y.y
[M,M1 . . . ,Mn] = λ!x.λ!y.xM [M1, . . . ,Mn]

This way we can construct and destruct lists in a principled way: terms cons and sel can
be built as follows:

cons = λz.λw.λ!x.λ!y.xzw
sel = λx.λy.λz.xyz

They behave as follows on lists:

consM [M1, . . . ,Mn] →2
N [M,M1, . . . ,Mn]

sel[]!N !L→3
N L

sel[M,M1, . . . ,Mn]!N !L→3
N NM [M1, . . . ,Mn]

By exploiting cons and sel, we can build more advanced constructors and destructors: for
every natural number n there are terms appendn and extractn behaving as follows:

appendn[N1, . . . , Nm]M1, . . . ,Mn →∗
N [M1, . . . ,Mn, N1, . . . , Nm]

∀m ≤ n.extractnM [N1, . . . , Nm] →∗
N M []NmNm−1 . . . N1

∀m ≥ n.extractnM [N1, . . . Nm] →∗
N M [Nn+1 . . . Nm]NnNn−1 . . . N1
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Terms appendn can be built by induction on n:

append0 = λx.x

appendn+1 = λx.λy1. . . . .λyn+1.consyn+1(appendnxy1 . . . yn)

Similarly, terms extractn can be built inductively:

extract0 = λx.λy.xy

extractn+1 = λx.λy.(sely!(λz.λw.λv.extractnvwz)!(λz.z[]))x

Indeed:

∀m.extract0M [N1, . . . Nm] →2
N M [N1, . . . , Nm]

∀n.extractn+1M [] →5
N M []

∀m < n.extractn+1M [N,N1 . . . Nm] →7
N extractnM [N1, . . . , Nm]N

→∗
N M []Nm . . . N1N

∀m ≥ n.extractn+1M [N,N1 . . . Nm] →7
N extractnM [N1, . . . , Nm]N

→∗
N M [Nn+1 . . . Nm]Nn . . . N1N

6.6 Representing Decision Problems

We now need to understand how to represent subsets of {0, 1}∗ in SQ. Some preliminary
definitions are needed.

A termM outputs the binary string s ∈ {0, 1}∗ with probability p on inputN iff there
is m ≥ |s| such that

[1, ∅,MN ] ∗→ [Q, {q1, . . . , qm}, [q1, . . . , qm]].

and the probability of observing s when projecting Q into the subspace
H({q|s|+1, . . . , qm}) is precisely p.

Given n ∈ N, two binary strings s, r ∈ {0, 1}k and a probability p ∈ [0, 1], a term
M is said to (n, s, r, p)-decide a language L ⊆ {0, 1}∗ iff the following two conditions
hold:
• M outputs the binary string s with probability at least p on input !ndte{0,1} whenever
t ∈ L;

• M outputs the binary string r with probability at least p on input !ndte{0,1} whenever
t /∈ L.

With the same hypothesis,M is said to be error-free (with respect to (n, s, r)) iff for every
binary string t, the following two conditions hold:
• If M outputs s with positive probability on input !ndte{0,1}, then M outputs r with

null probability on the same input;
• Dually, if M outputs r with positive probability on input !ndte{0,1}, then M outputs
s with null probability on the same input.

Definition 6.18. Three classes of languages in the alphabet {0, 1} are defined below:
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1. ESQ is the class of languages which can be (n, s, r, 1)-decided by a term M of SQ;
2. BSQ is the class of languages which can be (n, s, r, p)-decided by a term M of SQ,

where p > 1
2 ;

3. ZSQ is the the class of languages which can be (n, s, r, p)-decided by an error-free
(wrt (n, s, r)) term M of SQ, where p > 1

2 ;

The purpose of the following two sections is precisely proving that ESQ, BSQ and ZSQ
coincide with the quantum complexity classes EQP, BQP ad ZQP, respectively.

6.7 Polytime Soundness

Following the approach proposed by Girard in [50] and subsequently developed in [10,
12, 63] we show that SQ is intrinsically a poly time calculus. This allows to show that
decision problems which can be represented in SQ lie in certain polytime (quantum)
complexity classes.

In order to simplify the treatment we will consider reduction between terms rather
than between configurations. If [Q,QV,M ] L→K [Q′,QV ′,M ′], then we will simply

write M L→K M ′. This is a good definition, since M ′ only depends on M (and does not
depend on Q nor on QV).

In this section we assume that all the involved terms are well formed.
We start with some definitions. The size of a term is defined in a standard way as:

|x| = |r| = |C| = 1
|!N | = |N |+ 1

|new(P )| = |P |+ 1
|PQ| = |P |+ |Q|+ 1

|〈M1, . . . ,Mk〉| = |M1|+ . . .+ |Mk|+ 1
|λx.N | = |λ!x.N | = |λ〈x1, . . . , xk〉.N | = |N |+ 1

Lemma 6.19. For every term M and for every variable x, NFO(x,M) ≤ |M |

Proof. By induction on M .

We remember to the reader the definition of two subsets of L , namely
K = {r.cm, l.cm} and N = L −K (defined in Section 4.3.3).

Lemma 6.20. If M n→K N , then (i) |M | = |N |; (ii) n ≤ |M |2.

Proof. (i) By induction on the derivation of M →K N .
Observe that |L((λπ.M1)M2)| = |(λπ.LM1)M2| and |((λπ.M1)M2)L| = |(λπ.M1L)M2|;
these are base cases in whichL((λπ.M1)M2 →l.cm (λπ.LM1)M2 or ((λπ.M1)M2)L→r.cm

(λπ.M1L)M2. We have context closures as inductive steps. For example, let M be
LP and let be

P →K Q
l.a

LP →K LQ
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the last rule in the derivation. By induction hypothesis we have |P | = |Q|, and |M | =
|LP | = |L| + |P | + 1 = |L| + |Q| + 1 = |LQ|. The other cases are very similar to
the previous one.

(ii) Define the abstraction size |M |λ of M as the sum over all subterms of M in the form
λπ.L, of |L|. Clearly |M |λ ≤ |M |2. Moreover, n ≤ |M |λ because

|L((λπ.M1)M2)|λ < |(λπ.LM1)M2|λ
|((λπ.M1)M2)L|λ < |(λπ.M1L)M2|λ

In other words, |M |λ always increases along commuting reduction.
This concludes the proof.

In order to prove polytime soundness of the calculus we need to assign to each term M
the following degrees:

Definition 6.21 (Box-depth, Duplicability-Factor, Weights).
1. the box-depth B(M) of M (the maximum number of nested !–terms in M ) is defined

as

B(x) = B(r) = B(C) = 0
B(!N) = B(N) + 1

B(new(N)) = B(N)
B(PQ) = max{B(P ),B(Q)}

B(〈M1, . . . ,Mk〉) = max{B(M1), . . . ,B(Mk)}
B(λx.N) = B(λ!x.N) = B(λ〈x1, . . . , xk〉.N) = B(N);

2. the duplicability-factor D(M) of M (an upper bound on number of occurrences of
any one variable bound by a λ) is defined as

D(x) = D(r) = D(C) = 1
D(!N) = D(N)

D(newN) = D(N)
D(PQ) = max{D(P ),D(Q)}

D(〈M1, . . . ,Mk〉) = max{D(M1), . . . ,D(Mk)}
D(λx.N) = D(λ!x.N) = max{D(N),NFO(x,N)}

D(λ〈x1, . . . , xk〉.N) = max{D(N),NFO(x1, N), . . . ,NFO(xk, N)}

3. the n-weight Wn(M) of M (the weight of a term with respect to n) is defined as

Wn(x) = Wn(r) = Wn(C) = 1
Wn(!N) = n ·Wn(N) + 1

Wn(newN) = Wn(N) + 1
Wn(PQ) = Wn(P ) + Wn(Q) + 1

Wn(〈M1, . . . ,Mk〉) = Wn(M1) + . . .+ Wn(Mk) + 1
Wn(λx.N) = Wn(λ!x.N) = Wn(λ〈x1, . . . , xk〉.N) = Wn(N) + 1
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4. the weight of a term M is defined as W(M) = WD(M)(M).

We need some lemmas in order to relate duplicability factor, size and weights.

Lemma 6.22. For every term M , D(M) ≤ |M |.

Proof. By induction on M :
• M is a variable or a constant or a quantum variable; then D(M) = 1 = |M |.
• M is of the form λx.N . Then, by Lemma 6.19:

D(λx.N) = max{D(N),NFO(x,N)}
IH
≤ max{|N |,NFO(x,N)}
≤ max{|N |, |N |}
= |N | ≤ |N |+ 1 = |M |.

• M is of the form λ!x.N or λπ.N : very similar to the previous case.
• M is PQ. Then:

D(PQ) = max{D(P ),D(Q)}
IH
≤ max{|P |, |Q|}

≤ max{|P |+ |Q|+ 1, |P |+ |Q|+ 1}
= |P |+ |Q|+ 1 = |PQ|.

• M is new(N):

D(new(N)) = D(N)
IH
≤ |N | < |N |+ 1 = |M |.

• M is !N , then

D(!N) = D(N)
IH
≤ |N | < |N |+ 1 = |M |.

• M is 〈N1, . . . , Nk〉 and for all Ni, i = 1 . . . k, we have D(Ni) ≤ |Ni| by induction
hypothesis; then

D(M) = max{D(N1), . . . ,D(Nk)}
IH
≤ max{|N1|, . . . , |Nk|}

< |N1|+ . . .+ |Nk|+ 1 = |M |.

This concludes the proof.

The number of free occurrences of a variable cannot increase too much during reduc-
tion:

Lemma 6.23. If P →L Q then max{NFO(x, P ),dP} ≥ NFO(x,Q).

Proof. The proof proceeds by proving the following facts:
1. if .Γ, x ` P and P →L Q then NFO(x, P ) ≥ NFO(x,Q);
2. if .Γ,#x ` P and P →L Q then NFO(x, P ) ≥ NFO(x,Q);
3. if .Γ, !x ` P and P →L Q then max{NFO(x, P ),dP} ≥ NFO(x,Q).

The Lemma is therefore a trivial consequence of the above facts. The proofs of 1., 2. and
3. are simple inductions on the derivation of P →L Q. We will show here only some
interesting cases.
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1. We distinguish two cases:
• If the last rule is a base rule, we have several sub-cases. If the reduction rule is

(λ!y.L)!M →c.β L{M/y}, please observe that NFO(x, !M) = 0 and conclude.
If the reduction rule is (λy.L)M →l.β L{M/y}, we have only two possibilities:
either NFO(x,M) = 0 and NFO(x, L) = 1 or NFO(x,M) = 1 and NFO(x, L) =
0; in both cases the conclusion is immediate. The other sub-cases are easier.

• If the last reduction rule is a context closure rules, the result follows easily by
applying the induction hypothesis. For example, if the closure rule is

M → N

ML→ NL

we have two sub-cases: either NFO(x, P1) = 0 and NFO(x, P2) = 1 or NFO(x, P1) =
1 and NFO(x, P2) = 0. In the first sub-case the thesis follow immediately.
In the second sub-case the result follows by applying the induction hypothesis
NFO(x,M) ≥ NFO(x, L).

2. We distinguish two cases:
• If the last rule is a base rule, we have several sub-cases If the reduction rule

is (λ!y.L)!M →c.β L{M/y}, please observe that NFO(x, !M) = 0 and con-
clude. If the reduction rule is (λy.L)M →l.β L{M/y}, simply observe that y
must occur exactly once in L and therefore NFO(x, (λy.L)M) = NFO(x,M) +
NFO(x, L) = NFO(x, L{M/y}). All the other base cases can be easily proved.

• If the last reduction rule is a context closure rule, the result follows easily by
applying the induction hypothesis. For example if the reduction rule is

M → N

ML→ NL

we have two sub-cases: (i) NFO(x,M) = 0; in this case the thesis follow immedi-
ately; (ii) NFO(x,M) 6= 0; the result follows by applying the induction hypothesis
NFO(x,M) ≥ NFO(x, L).

3. The proof remains simple but it slightly more delicate, because we must consider the
phenomenon of duplication.
• If the last rule is a base rule: we have several cases. If the reduction rule is

(λ!y.L)!M →c.β L{M/y}, please observe that differently from the previous
facts, we have two possibilities: if NFO(x, !M) = 0 we conclude; otherwise,
if NFO(x, !M) 6= 0 we must have that NFO(x, !M) = 1 and NFO(x, L) = 0.
Consequently

max{NFO(x, P ),dP} = dP = max{dλ!y.L),d!M}
≥ dλ!y.L ≥ max{D(L),NFO(y, L)}
≥ NFO(y, L)
= NFO(x, L) + NFO(y, L) · NFO(x,M)
= NFO(x, L{M/y}).

If the reduction rule is (λy.L)M →l.β L{M/y}, simply observe that y must occur
exactly once in L and therefore

NFO(x, (λy.L)M) = NFO(x,M) + NFO(x, L) = NFO(x, L{M/y}).
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All the other base case are easily proved.
• if the last reduction rule is a context closure rules, the result follows easily by

applying the induction hypothesis. For example if the reduction rule is

M → N

ML→ NL

we have two cases: (i) NFO(x,M) = 0; in this case the thesis follows immedi-
ately; (ii) NFO(x,M) = 1 and NFO(x, L) = 0 the result follows by applying the
induction hypothesis max{NFO(x,M),dM} ≥ NFO(x,N):

max{NFO(x,ML),dML} = max{NFO(x,M) + NFO(x, L),dM,dL}
= max{NFO(x,M),dM,dL}
≥ max{NFO(x,M),dM}
≥ NFO(x,N) = NFO(x,NL).

This concludes the proof.

Lemma 6.24. For all terms P and Q, D(P{Q/x}) ≤ max{D(P ),D(Q)}.

Proof. By induction on the term P .

Thanks to the well forming rules it is possible to show that D(·) is non-increasing wrt
reduction:

Lemma 6.25. (i) If M →K N then D(M) = D(N);
(ii) If M →N N then D(M) ≥ D(N).

Proof. (i) By induction on the derivation of →K . For the base cases, if M →l.cm N , M
is of the form L((λπ.M1)M2) and N is (λπ.LM1)M2. Observe that l.cm has a side
condition on variables, and so NFO(xi, LM1) = NFO(xi,M1) for every i. We have:

D(M) = max{D(L),D((λπ.M1)M2)}
= max{D(L),D(λπ.M1),D(N)}
= max{D(L),D(M1),NFO(x1,M1), . . . ,NFO(xn,M1),D(M2)}
= max{D(L),D(M1),NFO(xi, LM1), . . . ,NFO(xn, LM1),D(M2)}
= max{D(LM1),NFO(xi, LM1), . . . ,NFO(xn, LM1),D(M2)}
= max{D(λπ.LM1),D(M2)}
= D((λπ.LM1)M2).

We have context closures as inductive steps. For example, let M be M1M2 and let

M1 →K M ′
1 l.a

M1M2 →K M ′
1M2

be the last rule instance in the derivation. Then:

D(M) = max{D(M1),D(M2)}
IH= max{D(M ′

1),D(M2)}
= D(M ′

1M2)

The other cases are very similar to the previous one.
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(ii) By induction on the derivation of →N . We prove some cases depending on the last
rule in the derivation.
• the reduction rule is

P1 → P ′1

P1P2 → P ′1P2

Then:

D(M) = max{D(P1),D(P2)}
IH
≥ max{D(P ′1),D(P2)} = max{D(P ′1P2)}

• the reduction rule is
P2 → P ′2

P1P2 → P1P
′
2

The argument is symmetric to the previous one.
• the reduction rule is (λ!x.P )!Q→c.β P{Q/x}. Then:

D((λ!x.P )!Q) = max{D(P ),NFO(x, P ),D(Q)}
≥ max{D(P ),D(Q)} ≥ D(P{Q/x})

where the last step is justified by Lemma 6.24.
• the reduction rule is (λx.P )Q→l.β P{Q/x}. Similar to the previous case.
• the reduction rule is (λ〈x1, . . . , xk〉.P )〈r1, . . . , rk〉 →q.β P{r1/x1, . . . , rk/xk}.

Again similar to the previous case.
• the reduction rule is U〈r1, . . . , rk〉 →Uq 〈r1, . . . , rk〉; the result follows by defi-

nitions.
• the reduction rule is

Mi →α M
′
i

〈M1, . . . ,Mi, . . . ,Mk〉 →α 〈M1, . . . ,M
′
i , . . . ,Mk〉

.

By induction hypothesis we have

D(〈M1, . . . ,Mi, . . . ,Mk〉) = max{D(M1), . . . ,D(Mi), . . . ,D(Mk)}
IH
≥ max{D(M1), . . . ,D(M ′

i), . . . ,D(Mk)}
= D(〈M1, . . . ,M

′
i , . . . ,Mk〉)

• the reduction rule is
P →α Q

in.new
new(P ) →α new(Q)

Then:

D(new(P )) = D(P )
IH
≥ D((Q)) = D(new(Q)).

• the reduction rule is
P →α Q

in.λ1
λ!x.P →α λ!x.Q

Then, by Lemma 6.23
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D(λ!x.P ) = max{D(P ),NFO(x, P )} ≥ NFO(x,Q)

moreover by induction hypothesis

D(λ!x.P ) = max{D(P ),NFO(x, P )} ≥ D(P ) ≥ D(Q)

and therefore

D(λ!x.P ) = max{D(P ),NFO(x, P )} ≥ max{D(Q),NFO(x,Q)} = D(λ!x,Q)

• the reduction rule is
P →α Q

in.λ2
λπ.P →α λπ.Q

Observe that D(λπ.P ) = D(P ). The result follows by induction hypothesis.
This concludes the proof.

It is important to remark that such a property does not hold for non well formed terms.
For example let us take M = λ!x.((λ!z.zz)!(xxx)), we have M → N where N =
λ!x.((xxx)(xxx)), but D(M) = 3 and D(N) = 6. By the way, M is well-formed in Q.

Lemma 6.26. For every term M , |M | ≤ W(M).

Proof. By induction on the term M . In some cases, we will use the following fact: for all
terms M , for all n,m ∈ N, if 1 ≤ m ≤ n, then Wm(M) ≤ Wn(M).
• M is a variable, a constant or a quantum variable. Then, |M | = 1 = W0(M) =

WD(M)(M) = W(M).
• M is !N . We can proceed as follows:

|M | = |N |+ 1 ≤ W(N) + 1
= WD(N)(N) + 1 = WD(N)(!N)
= WD(!N)(!N) = WD(M)(M) = W(M)

• M is new(N); then

|new(N)| = |N |+ 1
IH
≤ WD(N)(N) + 1

= WD(N)(new(N)) = WD(newN)(newN) = W(new(N)).

• M is PQ; then

|M | = |P |+ |Q|+ 1 ≤ W(P ) + W(Q) + 1
= WD(P )(P ) + WD(Q)(Q) + 1
≤ Wmax{D(P ),D(Q)}(P ) + Wmax{D(P ),D(Q)}(Q) + 1
= WD(PQ)(P ) + WD(PQ)(Q) + 1
= WD(PQ)(PQ) = W(PQ) = W(M).
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• M is 〈N1, . . . , Nk〉; then

|〈N1, . . . , Nk〉| = |N1|+ . . .+ |Nk|+ 1
IH
≤ WD(N1)(N1) + . . .+ WD(Nk)(Nk) + 1
≤ WD(M)(N1) + . . .+ WD(M)(Nk) + 1
= WD(M)(M) = W(M).

• M is λx.N ; then

|M | = |N |+ 1
IH
≤ WD(N)(N) + 1 ≤ WD(M)(N) + 1 = W(M)

where the last inequality holds observing that D(M) = max{D(N),NFO(x,N)}, so
D(N) ≤ D(M).

• M is λπ.N or M is λ!x.N : as in the previous case.
This concludes the proof.

We now need to revisit the substitution lemma:

Lemma 6.27 (Substitution Lemma, Revisited).
• Linear case. If . Ψ1,#∆1, x ` M and . Ψ2,#∆2 ` N , with var(Ψ1) ∩ var(Ψ2) = ∅,

then for all m,n ∈ N, n ≥ m ≥ 1, Wm(M{N/x}) ≤ Wn(M) + Wn(N);
• Contraction case. If .Γ,#x ` M and .∆ ` N , var(Γ ) ∩ var(∆) = ∅, then for all
m,n ∈ N, n ≥ m ≥ 1, Wm(M{N/x}) ≤ Wn(M) + NFO(x,M) ·Wn(N);

• Bang case. If .Γ, !x `M and .∆ ` N , var(Γ )∩ var(∆) = ∅, then for all m,n ∈ N,
n ≥ m ≥ 1, Wm(M{N/x}) ≤ Wn(M) + n ·Wn(N);

• Quantum case. If .Γ, x1, . . . , xk ` M and . !∆, r1, . . . , rk ` 〈r1, . . . , rk〉, var(Γ ) ∩
var(!∆) = ∅, then for all m,n ∈ N, n ≥ m ≥ 1,
Wm(M{r1/x1, . . . , rk/xk}) ≤ Wn(M);

Proof. The four statements can be proved by induction on the structure of the derivation
for M . We give here only some cases as examples.

• Linear case. For example, if M is x, with !∆,x ` x . We have Wm(x{N/x}) =

Wm(N) ≤ Wn(x) + Wn(N)
• Contraction case. For example, suppose M is PQ. The last rule in the derivation for
.Γ,#x `M must have the following shape:

Ψ1,#∆1 ` P Ψ2,#∆2 ` Q
app

Ψ1, Ψ2,#∆1 ∪#∆2 ` PQ

Suppose that #x is both in #∆1 and in #∆2. By induction hypothesis we have
Wm(P{N/x}) ≤ Wn(P ) + NFO(x, P ) ·Wn(N), and Wm(Q{N/x}) ≤ Wn(Q) +
NFO(x,Q) ·Wn(N). Now:
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Wm(P (Q){N/x}) = Wm(P{N/x}Q{N/x})
= Wm(P{N/x}) + Wm(Q{N/x}) + 1
IH
≤ Wn(P ) + NFO(x, P ) ·Wn(N)

+Wn(Q) + NFO(x,Q) ·Wn(N) + 1
= Wn(P ) + Wn(Q) + 1

+(NFO(x, P ) + NFO(x,Q)) ·Wn(N)
= Wn(P (Q)) + NFO(x, P (Q)) ·Wn(N).

• Bang case. For Example: M is !P . P may have two possible derivations, by means of
prom rule: either

∆ ` P
prom

!∆, !∆1, !x `!P
or

∆,x ` P
prom

!∆, !∆1, !x `!P
.

The only interesting case is the second. Using the linear case, we obtain

Wm((!P ){N/x}) = Wm(!(P{N/x}))
= m ·Wm(P{N/x}) + 1
≤ m · (Wn(P ) + Wn(N)) + 1 ≤ n ·Wn(P ) + 1 + n ·Wn(N)
= Wn(!P ) + n ·Wn(N).

• Quantum case. For example: M is PQ and for simplicity, suppose that x1, . . . , xk

occur in P . Then

Wm(M{r1/x1, . . . , rk/xk}) = Wm(P (Q){r1/x1, . . . , rk/xk})
= Wm(P{r1/x1, . . . , rk/xk}(Q))
= Wm(P{r1/x1, . . . , rk/xk}) + Wm(Q) + 1
IH
≤ Wn(P ) + Wm(Q) + 1 ≤ Wn(P ) + Wn(Q) + 1
= Wn(PQ)

This concludes the proof.

The following lemma tell us that weight W(·), as for D(·), is monotone:

Lemma 6.28. (i) If M →K N , then W(M) ≥ W(N);
(ii) if M →N N , then W(M) > W(N).

Proof. By means of the previous substitution lemmas it is possible to prove that for all
terms M,N and for all n,m ∈ N, n ≥ m ≥ 1 and n ≥ D(M), (i) if M →K N then
Wn(M) ≥ Wm(N), and (ii) if M →N N then Wn(M) > Wm(N). The proof is by
induction on the derivation of →L . We cite only the most interesting cases.
(i) Notice that, by previous lemma, if M →K N , then D(M) = D(N). The result

follows by definitions. Inductive steps are performed by means of context closures.
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(ii) Let r be the last rule of the derivation.
• M is (λ!x.P )!Q and the reduction rule is (λ!x.P )!Q →c.β P{Q/x}. We have to

distinguish two sub-cases
• if the derivation for M is

Ψ,#∆1,#x ` P

Ψ,#∆1 ` λ!x.P

∆2 ` Q
prom

!∆2, !∆3 `!Q
app

Ψ,#∆1, !∆2, !∆3 ` (λ!x.P )!Q

then we can exploit the contraction case of Lemma 6.27 as follows:

Wn((λ!x.P )!Q) = Wn(λ!x.P ) + Wn(!Q) + 1
= Wn(λ!x.P ) + n ·Wn(Q) + 2
= Wn(P ) + n ·Wn(Q) + 3
> Wn(P ) + n ·Wn(Q)
≥ Wn(P ) + NFO(x, P ) ·Wn(Q)
≥ Wm(P{Q/x}).

• if the derivation for M is

Ψ,#∆1, !x ` P

Ψ,#∆1 ` λ!x.P

∆2 ` Q
prom

!∆2, !∆3 `!Q
app

Ψ,#∆1, !∆2, !∆3 ` (λ!x.P )!Q

then we can exploit the bang case of Lemma 6.27 as follows:

Wn((λ!x.P )!Q) = Wn(λ!x.P ) + Wn(!Q) + 1
= Wn(λ!x.P ) + n ·Wn(Q) + 2
= Wn(P ) + n ·Wn(Q) + 3
> Wn(P ) + n ·Wn(Q)
≥ Wm(P{Q/x}).

and we obtain the result by Lemma 6.25.
This concludes the proof.

The weight W(·) and the box-depth B(·) are related by the following properties:

Lemma 6.29. For every term M , for all positive n ∈ N, Wn(M) ≤ |M | · nB(M)

Proof. By induction on M :
• M is a variable, a constant or a quantum variable. We have

Wn(M) = 1 ≤ 1 · n0 = |M | · nB(M).

• M is new(N):

Wn(new(N)) = Wn(N) + 1
IH
≤ |N | · nB(N) + 1

≤ |N | · nB(N) + nB(N) = (|N |+ 1) · nB(N)

= |M | · nB(N) = |M | · nB(M).
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• M is !N :

Wn(!N) = n ·Wn(N) + 1
IH
≤ n · |N | · nB(N) + 1

= |N | · nB(N)+1 + 1 ≤ |N | · nB(N)+1 + nB(N)+1

= (|N |+ 1) · nB(N)+1 = |M | · nB(M).

• M is PQ:

Wn(P (Q)) = Wn(P ) + Wn(Q) + 1
IH
≤ |P | · nB(P ) + |Q| · nB(Q) + 1

≤ |P | · nB(P (Q)) + |Q| · nB(P (Q)) + 1
≤ |P | · nB(P (Q)) + |Q| · nB(P (Q)) + nB(P (Q))

= (|P |+ |Q|+ 1) · nB(P (Q)) = |M | · nB(M).

• M is 〈N1, . . . , Nk〉:

Wn(〈N1, . . . , Nk〉) = Wn(N1) + . . .+ Wn(Nk) + 1
IH
≤ |N1| · nB(N1) + . . .+ |Nk| · nB(Nk) + 1
≤ |N1| · nB(M) + . . .+ |Nk| · nB(M) + 1
≤ |N1| · nB(M) + . . .+ |Nk| · nB(M) + nB(M) = |M | · nB(M).

• M is λx.N or λ!x.N or λ〈x1, . . . , xk〉.N :

Wn(M) = Wn(N) + 1
IH
≤ |N | · nB(N) + 1

≤ |N | · nB(N) + nB(N) = (|N |+ 1) · nB(N) = |M | · nB(M).

This concludes the proof.

Lemma 6.30. For every term M , W(M) ≤ |M |B(M)+1.

Proof. By means of Lemma 6.29 and Lemma 6.22: W(M) = WD(M)(M) ≤ |M | ·
D(M)B(M) ≤ |M | · |M |B(M) = |M |B(M)+1.

We have all the technical tools to prove another crucial lemma:

Lemma 6.31. If M ∗→ N , then |N | ≤ |M |B(M)+1

Proof. By means of Lemma 6.26, Lemma 6.28 and Lemma 6.30: |N | ≤ W(N) ≤
W(M) ≤ |M |B(M)+1.

With all the intermediate lemmas we have just presented, proving that SQ is polystep is
relatively easy:

Theorem 6.32 (Bounds). There is a family of unary polynomials {pn}n∈N such that for
any term M , for any m ∈ N, if M m→ N (M reduces to N in m steps) then m ≤
pB(M)(|M |) and |N | ≤ pB(M)(|M |).
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Proof. We show now that the suitable polynomials are pn(x) = x3(n+1) + 2x2(n+1).
We need some definitions. Let K be a finite sequence M0, . . . ,Mν such that ∀i ∈ [1, ν].
Mi−1 →c Mi. f(K) = M0, l(K) = Mν and #K denote respectively the first element,
the last element and the length of the reduction sequence K. Let us define the weight
of a sequence K as W(K) = W(f(K)). We write a computation C in the form M =
M0, . . . ,Mm = N as a sequence of blocks of commutative steps: C = K0, . . . ,Kα

where M0 = f(K0) and l(Ki−1) →N f(Ki) for every 1 ≤ i ≤ α. Note that α ≤
|M |B(M)+1; indeed, W(K0) > . . . > W(Kα) and

W(K0) = W(f(K0)) = W(M0) ≤ |M |B(M)+1.

For every i ∈ [0, ν]

#Ki ≤ |f(Ki)|2 ≤ (W(f(Ki)))2 ≤ (W(M0))2 ≤ |M |2(B(M)+1).

Finally:

m ≤ #K0 + . . .+ #Kα + α

≤ |M |2(B(M)+1) + . . .+ |M |2(B(M)+1)︸ ︷︷ ︸
α+1

+|M |B(M)+1

≤ (|M |2(B(M)+1) + . . . . . .+ |M |2(B(M)+1))︸ ︷︷ ︸
|M |B(M)+1+2

= |M |2(B(M)+1) · (|M |B(M)+1 + 2) = |M |3(B(M)+1) + 2|M |2(B(M)+1)

= pB(M)(|M |).

Moreover,

|N | = |f(Kα)| ≤ W(f(Kα)) ≤ W(M0) ≤ |M |B(M)+1

≤ pB(M)(|M |).

This concludes the proof.

Here is the main result of this section:

Theorem 6.33 (Polytime Soundness). The following inclusions hold: ESQ ⊆ EQP,
BSQ ⊆ BQP and ZSQ ⊆ ZQP.

Proof. Let us consider the first inclusion. Suppose a language L is in ESQ. This implies
that L can be (n, s, r, 1)-decided by a termM . By the Standardization Theorem, for every
t ∈ {0, 1}∗, there is a CNQ computation {Ct

i}1≤i≤nt
starting at [1, ∅,M !ndte{0,1}]. By

Theorem 6.32, nt is bounded by a polynomial on the length |t| of t. Moreover, the size of
any Ct

i (that is to say, the sum of the term in Ct
i and the number of quantum variables in

the second component of Ct
i ) is itself bounded by a polynomial on |t|. Since {Ct

i}1≤i≤nt

is CNQ, any classical reduction step comes before any new-reduction step, which itself
comes before any quantum reduction step. As a consequence, there is a polynomial time
deterministic Turing machine which, for every t, computes one configuration in {Ct

i}i≤nt

which only contains non-classical redexes (if any). But notice that a configuration only
containing non-classical redexes is nothing but a concise abstract representation of a quan-
tum circuit, fed with boolean inputs. Moreover, all the quantum circuits produced in this



6.8 Polytime Completeness 129

way are finitely generated, i.e., they can only contain the quantum gates (i.e. unitary op-
erators) which appears in M , since !ndte{0,1} does not contain any unitary operator and
reduction does not introduce new unitary operators in the underlying term. Summing up,
the first component Q of Ct

nt
is simply an element of an Hilbert Space H({q1, . . . , qm})

(where [q1, . . . , qm] is the third component of Ct
nt

) obtained by evaluating a finitely gen-
erated quantum circuit whose size is polynomially bounded on |t| and whose code can be
effectively computed from t in polynomial time. By the results in [74], L ∈ EQP. The
other two inclusions can be handled in the same way.

6.8 Polytime Completeness

In Section 3.2.4 we recalled Yao’s encoding of Quantum Turing machines into quantum
circuit families [104]. In this Section we use the resut in order to prove SQ polytime
completeness.

6.8.1 Encoding Polytime Quantum Turing Machines

We now need to show that SQ is able to simulate Yao’s construction. Moreover, the
simulation must be uniform, i.e. there must be a single termM generating all the possible
Lm where m varies over the natural numbers.

Proposition 6.34. For every n, there is a term Mn
G which uniformly generates Gm, i.e.

such that whenever L n-encodes the natural number m, Mn
GL →c R

m
G where Rm

G en-
codes Gm.

Proof. Consider the following terms:

Mn
G = λx.λy.extractη(λz.λw1. . . . .λwη.appendηw1 . . . wη(Nn

Gxz))y
Nn

G = λx.x!n(λy.λz.extractλ+2((LGy)z))(λy.y)
LG = λx.λy.λz1. . . . .λzλ+2.(λ〈w, q〉.appendλ+2(xy)z1 . . . zλwq)(cnot〈zλ+1, zλ+2〉)

For the purpose of proving the correctness of the encoding, let us define Pn,m
G for every

n,m ∈ N by induction on m as follows:

P 0
G = λx.x

Pm+1
G = (λy.λz.(extractλ+2((LGy)z)))Pm

G

First of all, observe that ifL n-encodes the natural numberm, thenNn
GL→c P

m
G . Indeed,

if L n-encodes m, then

Nn
GL→c L!n(λy.λz.extractλ+2((LGy)z))(λy.y)

→c P (P (P (. . . (P︸ ︷︷ ︸
m times

(λx.x)) . . .))) = Pm
G .

where P = (λy.λz.(extractλ+2((LGy)z))). Now, we can prove that for every m ∈ N:

[Q,QV, Pm
G [q1, . . . , qm(λ+2), . . . , qh]] ∗→ [R,QV, [q1, . . . , qm(λ+2), . . . , qh]]
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where

R = cnot〈〈qλ+1,qλ+2〉〉(cnot〈〈q2λ+3,q2λ+4〉〉(. . . (cnot〈〈qm(λ+2)−1,qm(λ+2)〉〉(Q)) . . .))

By induction on m:
• If m = 0, then

[Q,QV, P 0
G[q1, . . . , qh]] ∗→ [Q,QV, [q1, . . . , qh]]

• Now, suppose the thesis holds for m. Then:

[Q,QV, Pm+1
G [q1, . . . , q(m+1)(λ+2), ldots, qh]]

∗→ [Q,QV, extractλ+2(L
n
GP

m
G )[q1, . . . , qh]]

∗→ [Q,QV, (LGP
m
G )[qλ+3, . . . , qh]q1 . . . qλ+2]

∗→ [Q,QV, appendλ+2(P
m
G [qλ+3, . . . , qh])q1 . . . qλ+2]

∗→ [R,QV, appendλ+2[qλ+3, . . . , qh]q1 . . . qλ+2]
∗→ [S,QV, [q1, . . . , qh]]

where

R = cnot〈〈q2λ+3,qλ+4〉〉(cnot〈〈q3λ+5,q3λ+6〉〉(. . . (cnot〈〈qm(λ+2)−1,qm(λ+2)〉〉(Q)) . . .))
S = cnot〈〈qλ+1,qλ+2〉〉(cnot〈〈q2λ+3,q2λ+4〉〉(. . . (cnot〈〈qm(λ+2)−1,qm(λ+2)〉〉(Q)) . . .))

Now, if L n-encodes the natural number m, then

Mn
GL→c λy.extractη(λz.λw1. . . . .λwη.appendηw1 . . . wη(Nn

GLz))y
→c λy.extractη(λz.λw1. . . . .λwη.appendηw1 . . . wη(Pm

G z))y

which has all the properties we require for Rm
G . This concludes the proof.

Proposition 6.35. For every n, there is a term Mn
J which uniformly generates Jm, i.e.

such that Mn
J L→c R

m
J where Rm

J encodes Jm whenever L n-encodes the natural num-
ber m.

Proof. Consider the following terms:

Mn
J = λx.x!n(NJ)(λy.y)

NJ = λx.λy.extractη+λ+2(LJx)y
LJ = λx.λy.λz1. . . . .λzη.λw1. . . . .λwλ+2.

extractη+2(λ+2)(PJw1 . . . wλ+2)(x(appendηyz1 . . . zη))
PJ = λx1. . . . λxλ+2.λw.λy1. . . . .λyη.λz1. . . . λz2(λ+2).(λ〈q1. . . . .λqη+3(λ+2)〉.

appendη+3(λ+2)wq1 . . . qη+3(λ+2))(H〈y1, . . . , yη, x1, . . . , xλ+2, z1, . . . z2(λ+2)〉)

For the purpose of proving the correctness of the encoding, let us define Rn,m
J for every

n,m ∈ N by induction on m as follows:

R0
J = λx.x

Rm+1
J = λz.(extractη+λ+2(LJR

m
J ))z
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First of all, observe that if L n-encodes the natural number m, then Mn
J L →c Rm

G .
Indeed, if L n-encodes m, then

Mn
J L→c L!n(NJ)(λy.y)

→c NJ(NJ(NJ(. . . (NJ︸ ︷︷ ︸
m times

(λx.x)) . . .))) = Rm
J .

Now, we can prove that for every m ∈ N:

[Q,QV, Rm
J [q1, . . . , qη+(2m+1)(λ+2)]]

∗→ [R,QV, [q1, . . . , qη+(2m+1)(λ+2)]]

where
R = Jm(Q)

by induction on m:
• If m = 0, then

[Q,QV, R0
J [q1, . . . , qh]] ∗→ [Q,QV, [q1, . . . , qh]]

• Now, suppose the thesis holds for m. Then:

[Q,QV, Rm+1
J [q1, . . . , q(2m+3)(λ+2)]]

∗→ [Q,QV, extractη+λ+2(LJR
m
J )[q1, . . . , q(2m+3)(λ+2)]]

∗→ [Q,QV, extractη+2(λ+2)(PJqη+1 . . . qη+λ+2)

(Rm
J (appendη[qη+(λ+2)+1, . . . , q(2m+3)(λ+2)]q1 . . . qη))]

∗→ [R,QV, extractη+2(λ+2)(P
n
J qη+1 . . . qη+λ+2)

([q1, . . . , qη, qη+(λ+2)+1, . . . , q(2m+3)(λ+2)]]
∗→ [R,QV, PJqη+1 . . . qη+λ+2[qη+3(λ+2)+1, . . . , q(2m+3)(λ+2)]q1 . . . qηqη+λ+3 . . . qη+3(λ+2)]
∗→ [R,QV, (λ〈q1. . . . .λqη+3(λ+2)〉.

(appendη+3(λ+2)[qη+3(λ+1)+1, . . . , q(2m+3)(λ+2)]q1 . . . qη+3(λ+2))(H〈q1, . . . , qη+3(λ+2)〉)]
∗→ [S,QV, (appendη+3(λ+2)[qη+3(λ+1)+1, . . . , q(2m+3)(λ+2)]q1 . . . qη+3(λ+2)]

∗→ [S,QV, [q1, . . . , q(2m+3)(λ+2)]]

where

R = (I〈qη+1,...,qη+λ+2〉 ⊗ (Jm)〈q1,...,qη,qη+λ+3,...,q(2m+3)(λ+2)〉)(Q)
S = (I〈qη+3(λ+2)+1,...,q(2m+3)(λ+2)〉 ⊗H〈q1,...,qη+3(λ+2)〉)(R)

which implies
S = ((Jm+1)〈q1,...,q(2m+3)(λ+2)〉)(Q).

This concludes the proof.

Given an Hilbert’s spaceH, an elementQ ofH and a conditionE defining a subspace
of Q, the probability of observing E when globally measuring Q is denoted as PQ(E).
For example, if H = H(Q × Σ# × Z) is the configuration space of a quantum Turing
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machine, E could be state = q, which means that the current state is q ∈ Q. As another
example, if H is H(QV), E could be

q1, . . . , qn = s,

which means that the value of the variables q1, . . . , qn is s ∈ {0, 1}n.
Given a quantum Turing machine M = (Q,Σ, δ), we say that a term M simulates

the machine M iff there is a bijection ρ : Q → {0, 1}dlog2 |Q|e such that for every string
s ∈ Σ∗ it holds that if C is the final configuration of M on input s, then

[1, ∅,M !ndseΣ ] ∗→ [Q, {q1, . . . , qm}, [q1, . . . , qm]].

where for every q ∈ Q

PC(state = q) = PQ(q1, . . . , qnk
= ρ(q)).

Theorem 6.36. For every polynomial time quantum Turing machine M = (Q,Σ, δ)
there is a term MM such that MM simulates the machine M.

Proof. The Theorem follows from Proposition 6.34, Proposition 6.35 and Proposition 6.17.
More precisely, the term MM has the form λ!x.(Mcirc

M x)(M init
M x) where

• Mcirc
M builds the Yao’s circuit, given a string representing the input;

• M init
M builds a list of quantum variables to be fed to the Yao’s circuit, given a string

representing the input.
Now, suppose M works in time p : N → N, where p is a polynomial of degree k. For
every term M and for every natural number n ∈ N, we define {M}n by induction on n:

{M}0 = M

{M}n+1 = λ!x.!({M}nx)

It is easy to prove that for every M , for every N , for every n ∈ N and for every n-banged
form L of N , {M}nL

∗→N P where P is an n-banged form of MN . Now, Mcirc
M has

the following form
λ!x.(Ncirc

M x)(Lcirc
M x)

where

N
circ
M = λx.M2p+1({strtonatΣ}2k+1(M

2k+2
id x))

L
circ
M = λx.({P circ

M }2k+1x)

P
circ
M = λ!z.λy.(M

2k+1
J (M2p+1({strtonatΣ}2k+1z)))(M

2k+1
G (M2p+1({strtonatΣ}2k+1z)))y

M2k+1
G comes from Proposition 6.34, M2k+1

J comes from Proposition 6.35 and M2p+1

comes from Proposition 6.17. Now, consider any string s = b1 . . . bn ∈ Σ∗. First of all:

Ncirc
M !4k+3dseΣ ∗→N M2p+1({strtonatΣ}2k+1(M2k+2

id !4k+3dseΣ))
∗→N M2p+1({strtonatΣ}2k+1!2k+1dseΣ)
∗→N M2p+1N
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where N is a 2k + 1-banged form of strtonatΣdseΣ , itself a term which 1-represents the
natural number n. As a consequence:

M2p+1N
∗→N L

where L 2k + 1-represents the natural number 2p(n) + 1. Now:

Lcirc
M !4k+2dseΣ ∗→N {P circ

M }2k+1!4k+3dseΣ
∗→N P

whereP is a 2k+1-banged form ofP circ
M !2k+2dseΣ . So, we can conclude thatMcirc

M !4k+4dseΣ
rewrites to a term representing the circuit Ln. M init

M can be built with similar techniques.

Corollary 6.37 (Polytime Completeness). The following inclusions hold: EQP ⊆ ESQ,
BQP ⊆ BSQ and ZQP ⊆ ZSQ.

From Theorem 6.33 and Corollary 6.37, EQP = ESQ, BQP = BSQ and ZQP = ZSQ.
In other words, there is a perfect correspondence between (polynomial time) quantum
complexity classes and classes of languages decidable by SQ terms.
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Adding A Measurement Operator to Q

In Chapter 4 we have introduced the measurement–free, untyped quantum λ–calculus,
Q. Now, we study an extension of Q obtained by endowing the language of terms with
a suitable measurement operator and coherently extending the reduction relation. We in-
vestigate the resulting calculus, called Q*, focusing on confluence.

An explicit measurement operator in the syntax allows an observation at an interme-
diate step of the computation: this feature is needed if we want, for example, to write
algorithms such as Shor’s factorization. In quantum calculi the intended meaning of a
measurement is to observe the status of a possibly superimposed quantum bit, giving
as output a classical bit; the two possible outcomes (i.e., the two possible values of the
obtained classical bit) can be observed with two probabilities summing to 1. Since mea-
surement forces a probabilistic evolution in the computation, it is not surprising that we
need probabilistic instruments in order to investigate the main features of the language.

But, is it possible to preserve confluence in the probabilistic setting induced by mea-
surements? Apparently, the questions above cannot receive a positive answer: as we will
see in Section 7.3, it is possible to exhibit a configuration C such that there are two dif-
ferent reductions starting at C and ending in two essentially different normal forms con-
figurations [1, ∅, 0] and [1, ∅, 1]. In other words, confluence fails in its usual form. But the
question now becomes: are the usual notions of computations and confluence adequate in
this setting?

In Q* there are two sources of divergence, which should not be confused:
• on the one hand, a redex involving the measurement operator can be reduced in two

different ways, i.e., divergence can come from a single redex;
• on the other hand, a term can contain more than one redex and the calculus is not

endowed with a reduction strategy. As a consequence, some configurations can be
reduced in two distinct ways due to the presence of different redexes.

We cannot hope to be confluent with respect to the first source of divergence, but we
can anyway ask ourselves whether all reduction strategies are somehow equivalent. More
precisely, we say that Q* is confluent if for every configuration C and for every con-
figuration in normal form D, there is a fixed real number p such that the probability of
observing D when reducing C is always p, independently of the reduction strategy.

This notion of confluence can be captured by analyzing rewriting on mixed states
rather than rewriting on configurations. A mixed state is a probabilistic distribution on
configurations whose support is finite. Rewriting on configurations naturally extend to
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rewriting on mixed states. Rewriting on mixed states is not a probabilistic relation, and
the notion of confluence is the standard one from rewriting theory.

We prove that Q* is indeed confluent in this sense, by means of non standard tech-
niques. The key point is that we need a new definition of computation. The usual notion
of computation as a sequence of reductions is not adequate here. A notion of probabilistic
computation replaces it, essentially as something more general than a sequence of reduc-
tion but less general than the reduction tree: a probabilistic computation is a (possibly)
infinite tree, in which the binary choice (a node can have at most two children) corre-
sponds to the two different outcomes of a measurement. The set of leaves of a probabilis-
tic computation is consequently a probabilistic distribution of configurations.The notion
of reduction is then extended to mixed states defining the so called mixed computations.

Another important property of any quantum lambda calculus with measurement is the
importance of infinite computations. As we will see in Section 7.3, it is possible and neces-
sary to deal with infinite computations in order to properly deal with finite final outcomes
(finite probability distribution of finite normal form configurations). This phenomenon
forced us to extend the study of confluence also to the case of infinite probabilistic com-
putations.

7.1 The Q* calculus: Syntax and Computations

In Q* there are three kinds of operations on quantum registers: (i) the new opera-
tion, responsible for the creation of qubits; (ii) unitary operators: each unitary opera-
tor U〈〈q1,...,qn

〉〉 corresponds to a pure quantum operation acting on qubits with names
q1, . . . , qn (iii) one qubit measurement operations Mr,0,Mr,1 responsible of the proba-
bilistic reduction of the quantum state plus the destruction of the measured qubit refer-
enced by r: given a quantum registerQ ∈ H(QV), and a quantum variable name r ∈ QV ,
we allow the measurement of the qubit with name r.

7.1.1 Terms, Judgements and Well-Formed-Terms

Let U be an elementary set (see Chapter 3, Section 3.2.2) of unitary operators. Let us
associate to each elementary operator U ∈ U a symbol U . The set of term expressions, or
terms for short, is defined by the following grammar:

x ::= x0, x1, . . . classical variables
r ::= r0, r1, . . . quantum variables
π ::= x | 〈x1, . . . , xn〉 linear patterns
ψ ::= π | !x patterns
B ::= 0 | 1 boolean constants
U ::= U0, U1, . . . unitary operators
C ::= B | U constants
M ::= x | r | !M | C | new(M) |M1M2 |

meas(M) | if N thenM1 elseM2 |
〈M1, . . . ,Mn〉 | λψ.M terms (where n ≥ 2)
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The syntax is clearly the extension of the syntax of Q ; we adopt the same assumptions
on variables and on α–conversion.
Notice that the term constructor meas(·) perform a single qubit measurement when ap-
plied to a quantum variable.

For each qvs QV and for each quantum variable r ∈ QV , we assume to have two,
measurement based, linear transformation of quantum registers:Mr,0,Mr,1 : H(QV) →
H(QV − {r}) (see Section 7.2 for more details).

Enviroments and judgements are defined exactly as for Q (see Section 4.2.3).
We say that a judgement Γ `M is well–formed (notation: .Γ `M ) if it is derivable

from the well–forming rules in Figure 7.1. The well-forming rules of Q* extend the well–
forming rules of Q (Figure 4.2) with the two new rules meas and if.

const
!∆ ` C

q–var
!∆, r ` r

classic-var
!∆,x ` x

der
!∆, !x ` x

!∆ `M
prom

!∆ `!M

Λ1, !∆ `M Λ2, !∆ ` N
app

Λ1, Λ2, !∆ `MN

Λ1, !∆ `M1 · · ·Λk, !∆ `Mk

tens
Λ1, . . . , Λk, !∆ ` 〈M1, . . . ,Mk〉

Γ `M
new

Γ ` new(M)

Γ, x1, . . . , xn `M
lam1

Γ ` λ〈x1, . . . , xn〉.M

Γ, x `M
lam2

Γ ` λx.M

Γ, !x `M
lam3

Γ ` λ!x.M

Γ `M
meas

Γ ` meas(M)

Λ ` N !∆ `M1 !∆ `M2

if
Λ, !∆ ` if N thenM1 elseM2

Fig. 7.1. Well–Forming Rules

Remark 7.1. Q* comes equipped with two constants 0 and 1 (as for Q), and an if (·) then (·) else (·)
constructor. However, these constructors can be thought of as syntactic sugar. Indeed, 0
and 1 can be encoded as pure terms: 0 = λ!x.λ!y.y and 1 = λ!x.λ!y.x. In doing so,
if M thenN else L becomes M !N !L. The well–forming rule if (see Figure 7.1) of Q*
fully agrees with the above encodings.

7.2 Quantum Registers and Measurements

Before giving the definition of destructive measurement used in this thesis we must clarify
something about quantum spaces.

The smallest quantum space is H(∅), which is (isomorphic to) the field C. The so
called empty quantum register is nothing more than a unitary element of C (i.e., a complex
number c such that |c| = 1). We have chosen the scalar number 1 as the canonical empty
quantum register. In particular the number 1 represents also the computational basis of
H(∅).

It is easy to show that if QV ∩RV = ∅ then there is a standard isomorphism

H(QV)⊗H(RV)
is' H(QV ∪RV).
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In the rest of this thesis we will assume to work up-to such an isomorphism1. Note that
the previous isomorphism holds even if either QV or RV is empty.

Since a quantum space H(QV) is an Hilbert space, H(QV) has a zero element 0QV
(we will omit the subscript, when this does not cause ambiguity). In particular, if QV ∩
RV = ∅, Q ∈ H(QV) and R ∈ H(RV), then Q ⊗ 0RV = 0QV ⊗ R = 0QV∪RV ∈
H(QV ∪RV).

Definition 7.2 (Quantum registers). Given a quantum spaceH(QV), a quantum register
is any Q ∈ H(QV) such that either Q = 0QV or Q is a normalised vector.

LetQV be a qvs with cardinality n ≥ 1. Moreover, letQ ∈ H(QV) and let r ∈ QV .+
Each state Q may be represented as follows:

Q =
2n−1∑
i=1

αi|r 7→ 0〉 ⊗ bi +
2n−1∑
i=1

βi|r 7→ 1〉 ⊗ bi

where {bi}i∈[1,2n−1] is the computational basis2 of H(QV − {r}). Please note that if
QV = {r}, then Q = α|r 7→ 0〉 ⊗ 1 + β|r 7→ 1〉 ⊗ 1, that is, via the previously stated
isomorphism, α|r 7→ 0〉+ β|r 7→ 1〉.

Definition 7.3 (Destructive measurements). Let QV be a qvs with cardinality n =
|QV| ≥ 1, r ∈ QV , {bi}i∈[1,2n−1] be the computational basis of H(QV − {r}) and Q be∑2n−1

i=1 αi|r 7→ 0〉 ⊗ bi +
∑2n−1

i=1 βi|r 7→ 1〉 ⊗ bi ∈ H(QV). The two linear functions

mr,0,mr,1 : H(QV) → H(QV − {r})

such that

mr,0(Q) =
2n−1∑
i=1

αibi mr,1(Q) =
2n−1∑
i=1

βibi

are called destructive measurements. If Q is a quantum register, the probability pc of
observing c ∈ {0, 1} when observing r in Q is defined as 〈Q|mr,c

†mr,c|Q〉.

The just defined measurement operators are general measurements [58, 72]:

Proposition 7.4 (Completeness Condition). Let r ∈ QV and Q ∈ H(QV). Then
m†

r,0mr,0 + m†
r,1mr,1 = IdH(QV).

Proof. In order to prove the proposition we will use the following general property of
inner product spaces: letH be an inner product space and letA : H → H be a linear map.
If for each x, y ∈ H, 〈Ax, y〉 = 〈x, y〉 then A is the identity map3. Let Q,R ∈ H(QV).
If {bi}i∈[1,2n] is the computational basis of H(QV − {r}), then:

1 in particular, if Q ∈ H(QV), r 6∈ QV and |r 7→ c〉 ∈ H({r}) then Q ⊗ |r 7→ c〉 will denote
the element is(Q⊗ |r 7→ c〉) ∈ H(QV ∪ {r})

2 in the mathematical literature, computational basis are usually called standard basis; see [30],
for the definition of computational/standard basis of H(QV).

3 such a property is an immediate consequence of the Riesz representation theorem, see e.g. [81]
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Q =
2n∑
i=1

αi|r 7→ 0〉 ⊗ bi +
2n∑
i=1

βi|r 7→ 1〉 ⊗ bi

R =
2n∑
i=1

γi|r 7→ 0〉 ⊗ bi +
2n∑
i=1

δi|r 7→ 1〉 ⊗ bi.

We have:

〈(m†
r,0mr,0 + m†

r,1mr,1)(Q),R〉 = 〈m†
r,0mr,0(Q),R〉+ 〈m†

r,1mr,1(Q),R〉
= 〈mr,0(Q),mr,0(R)〉+ 〈mr,1(Q),mr,1(R)〉

= 〈
2n∑
i=1

αibi,
2n∑
i=1

γibi〉+ 〈
2n∑
i=1

βibi,
2n∑
i=1

δibi〉

=
2n∑
i=0

αiγi +
2n∑
i=0

βiδi

= 〈Q,R〉.

This concludes the proof.

For c ∈ {0, 1}, the measurement operators mr,c enjoys the following properties:

Proposition 7.5. Let Q ∈ H(QV). Then:
1. mr,c(Q⊗ |q 7→ d〉) = (mr,c(Q))⊗ |q 7→ d〉 if r ∈ QV and q /∈ QV;
2. 〈Q ⊗ |s 7→ d〉|m†

r,cmr,c|Q ⊗ |s 7→ d〉〉 = 〈Q,m†
r,cmr,c|Q〉; if r ∈ QV and r 6= s;

3. mq,e(mr,d(Q)) = mr,d(mq,e(Q)); if r, q ∈ QV .

Proof. 1. Given the computational basis {bi}i∈[1,2n] of H(QV − {r}), we have that:

Q⊗ |q 7→ d〉 =
2n∑
i=1

αi|r 7→ 0〉 ⊗ bi ⊗ |q 7→ d〉+
2n∑
i=1

βi|r 7→ 1〉 ⊗ bi|r 7→ d〉

and therefore

mr,0(Q⊗ |q 7→ d〉) =
2n∑
i=1

αi(bi ⊗ |r 7→ d〉)

=

(
2n∑
i=1

αibi

)
⊗ |q 7→ d〉

= (mr,c(Q))⊗ |q 7→ d〉.

In the same way we prove the equality for mr,1.
2. Just observe that:

〈Q ⊗ |s 7→ d〉|m†
r,cmr,c|Q ⊗ |s 7→ d〉〉 = 〈Q ⊗ |s 7→ d〉,m†

r,c(mr,c(Q⊗ |s 7→ d〉))〉
= 〈mr,c(Q⊗ |s 7→ d〉),mr,c(Q⊗ |s 7→ d〉)〉
= 〈mr,c(Q),mr,c(Q)〉
= 〈Q,m†

r,cmr,cQ〉 = 〈Q|m†
r,cmr,c|Q〉.
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3. Given the computational basis {bi}i∈[1,2n] of H(QV − {r, q}), we have that:

Q =
2n∑
i=1

αi|r 7→ 0〉 ⊗ |q 7→ 0〉 ⊗ bi +
2n∑
i=1

βi|r 7→ 0〉 ⊗ |q 7→ 1〉 ⊗ bi+

2n∑
i=1

γi|r 7→ 1〉 ⊗ |q 7→ 0〉 ⊗ bi +
2n∑
i=1

δi|r 7→ 1〉 ⊗ |q 7→ 1〉 ⊗ bi.

Let us show that mq,0(mr,0(Q)) = mr,0(mq,0(Q)), the proof of other cases follow
the same pattern.

mr,0(mq,0(Q)) = mr,0

(
2n∑
i=1

αi|r 7→ 0〉 ⊗ bi +
2n∑
i=1

γi|r 7→ 1〉 ⊗ bi

)

=
2n∑
i=1

αibi = mq,0

(
2n∑
i=1

αi|q 7→ 0〉 ⊗ bi +
2n∑
i=1

βi|q 7→ 1〉 ⊗ bi

)
= mq,0(mr,0(Q)).

This concludes the proof.

Given a qvs QV and a variable r ∈ QV , we can define two linear maps:

Mr,0,Mr,1 : H(QV) → H(QV − {r})

which are “normalized” versions of mr,0 and mr,1 as follows:
1. if 〈Q|m†

r,cmr,c|Q〉 = 0 then Mr,c(Q) = mr,c(Q);
2. if 〈Q|m†

r,cmr,c|Q〉 6= 0 then Mr,c(Q) = mr,c(Q)√
〈Q|m†r,cmr,c|Q〉

.

Proposition 7.6. Let Q ∈ H(QV) be a quantum register. Then:
1. Mr,c(Q) is a quantum register;
2. Mq,e(Q⊗ |r 7→ d〉) = (Mq,e(Q))⊗ |r 7→ d〉, with q ∈ QV and q 6= r;
3. Mq,e(Mr,d(Q)) = Mr,d(Mq,e(Q)), with q, r ∈ QV;
4. if q, r ∈ QV , pr,c = 〈Q|m†

r,cmr,c|Q〉, pq,d = 〈Q|m†
q,dmq,d|Q〉, Qr,c = Mr,c(Q),

Qq,d = Mq,d(Q), sr,c = 〈Qq,d|m†
r,cmr,c|Qq,d〉, sq,d = 〈Qr,c|m†

q,dmq,d|Qr,c〉 then
pr,c · sq,d = pq,d · sr,c;

5. (U〈q1,...,qk〉⊗IQV−{q1,...,qk})(Mr,c(Q)) = Mr,c((U〈q1,...,qk〉⊗IQV−{q1,...,qk})(Q))
with {q1, . . . , qk} ⊆ QV and r 6= qj for all j = 1, . . . , k.

Proof. The proofs of 1, 2 and 5 are immediate consequences of Proposition 7.5 and of
general basic properties of Hilbert spaces. About 3 and 4: if Q = 0QV then the proof
is trivial; if either pr,c = 0 or pq,d = 0 (possibly both), observe that sr,c = sq,d = 0
and Mq,e(Mr,d(Q)) = Mr,d(Mq,e(Q)) = 0QV−{q,r} and conclude. Suppose now
that Q 6= 0QV , pr,c 6= 0 and pq,d 6= 0. Given the computational basis {bi}i∈[1,2n] of
H(QV − {r, q}), we have that:

Q =
2n∑
i=1

αi|r 7→ 0〉 ⊗ |q 7→ 0〉 ⊗ bi +
2n∑
i=1

βi|r 7→ 0〉 ⊗ |q 7→ 1〉 ⊗ bi+

2n∑
i=1

γi|r 7→ 1〉 ⊗ |q 7→ 0〉 ⊗ bi +
2n∑
i=1

δi|r 7→ 1〉 ⊗ |q 7→ 1〉 ⊗ bi



7.2 Quantum Registers and Measurements 141

Let us examine the case c = 0 and d = 0 (the other cases can be handled in the same
way).

pr,0 =
2n∑
i=1

|αi|2 +
2n∑
i=1

|βi|2; pq,0 =
2n∑
i=1

|αi|2 +
2n∑
i=1

|γi|2;

Qr,0 = Mr,0(Q) =
∑2n

i=1 αi|q 7→ 0〉 ⊗ bi +
∑2n

i=1 βi|q 7→ 1〉 ⊗ bi√
pr,0

Qq,0 = Mq,0(Q) =
∑2n

i=1 αi|r 7→ 0〉 ⊗ bi +
∑2n

i=1 γi|r 7→ 1〉 ⊗ bi√
pq,0

Now let us consider the two states:

Qq,0
r,0 = mq,0(Qr,0) =

∑2n

i=1 αibi√
pr,0

Qr,0
q,0 = mr,0(Qq,0) =

∑2n

i=1 αibi√
pq,0

By definition:

sq,0 =
∑2n

i=1 |αi|2

pr,0
sr,0 =

∑2n

i=1 |αi|2

pq,0

and therefore pr,0 · sq,d = pq,0 · sr,0. Moreover, if QV = ∅ then Mq,0(Qr,0) =
Mr,0(Qq,0) = 1, otherwise:

Mq,0(Qr,0) =
Qq,0

r,0√
p̄q,0

=
∑2n

i=1 αibi√
pr,0 ·

√
p̄q,0

=
∑2n

i=1 αibi

√
pr,0 ·

√P2n

i=1 |αi|2
pr,0

=
∑2n

i=1 αibi√∑2n

i=1 |αi|2

Mr,0(Qs,0) =
Qr,0

q,0√
p̄r,0

=
∑2n

i=1 αibi√
pq,0 ·

√
p̄r,0

=
∑2n

i=1 αibi

√
pq,0 ·

√P2n

i=1 |αi|2
pq,0

=
∑2n

i=1 αibi√∑2n

i=1 |αi|2

and therefore Mq,0(Qr,0) = Mr,0(Qs,0).

7.2.1 Computations

The notion of configurations is exactly the same of Q and SQ.
Let L = {Uq, new, l.β, q.β, c.β, l.cm, r.cm, if1, if2,measr}. For every α ∈ L and

for every p ∈ R[0,1], we define a relation →p
α⊆ C × C by the set of contractions in Figure

7.2. The notation C →α D stands for C →1
α D.

We adopt surface reduction [30,91] as for Q and SQ, and furthermore, we also forbid
reduction in N and P in the term if M thenN else P .

We distinguish three particular subsets of L , namely K = {l.cm, r.cm}, N = L −
(K ∪{measr}) and nM = L −{measr}. In the following, we writeM →α N meaning
that there are Q, QV , R and RV such that [Q,QV,M ] →α [R,RV, N ]. Similarly for
the notation M →S N where S is a subset of L .
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[Q,QV, (λx.M)N ] →1
l.β [Q,QV,M{N/x}] [Q,QV, (λ!x.M)!N ] →c.β 1[Q,QV,M{N/x}]

[Q,QV, (λ〈x1, . . . , xn〉.M)〈r1, . . . , rn〉] →1
q.β [Q,QV,M{r1/x1, . . . , rn/xn}]

[Q,QV, if 1 thenM elseN ] →1
if1

[Q,QV,M ]

[Q,QV, if 0 thenM elseN ] →1
if2

[Q,QV, N ]

[Q,QV, U〈ri1 , ..., rin〉] →1
Uq [U〈〈ri1 ,...,rin 〉〉Q,QV, 〈ri1 , ..., rin〉]

[Q,QV, meas(r)] →pc
measr [Mr,c(Q),QV − {r}, !c] (c ∈ {0, 1} and pc = 〈Q|mr,c

†mr,c|Q〉 ∈ R[0,1])

[Q,QV, new(c)] →1
new [Q⊗ |r 7→ c〉,QV ∪ {r}, r] (r is fresh)

[Q,QV, L((λπ.M)N)] →1
l.cm [Q,QV, (λπ.LM)N ]

[Q,QV, ((λπ.M)N)L] →1
r.cm [Q,QV, (λπ.ML)N ]

[Q,QV,M ] →p
α [R,RV, N ]

ti

[Q,QV, , 〈M1, . . . ,M, . . . ,Mk〉] →p
α [R,RV, 〈M1, . . . , N, . . . ,Mk〉]

[Q,QV, N ] →p
α [R,RV, P ]

r.a
[Q,QV,MN ] →p

α [R,RV,MP ]

[Q,QV,M ] →p
α [R,RV, P ]

l.a
[Q,QV,MN ] →p

α [R,RV, PN ]

[Q,QV,M ] →p
α [R,RV, N ]

in.new
[Q,QV, new(M)] →p

α [R,RV, new(N)]

[Q,QV,M ] →p
α [R,RV, N ]

in.meas
[Q,QV, meas(M)] →p

α [R,RV, meas(N)]

[Q,QV,M ] →p
α [R,RV, N ]

in.if
[Q,QV, if M then L else P ] →p

α [R,RV, if N then L else P ]

[Q,QV,M ] →p
α [R,RV, N ]

in.λ1

[Q,QV, (λ!x.M)] →p
α [R,RV, (λ!x.N)]

[Q,QV,M ] →p
α [R,RV, N ]

in.λ2

[Q,QV, (λπ.M)] →p
α [R,RV, (λπ.N)]

Fig. 7.2. Contractions.

7.3 The Confluence Problem, an informal introduction

It is well known that the measurement-free evolution of a quantum system is determinis-
tic. As a consequence it is to be expected that a good measurement-free quantum lambda
calculus enjoys confluence. This is the case of Qand of the lambda calculus recently in-
troduced by Arrighi and Dowek [9] (an algebraic lambda calculus inspired to quantum
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computing). The situation becomes more complicated if we introduce a measurement op-
erator. In fact measurements break the deterministic evolution of a quantum system: in
presence of measurements the behaviour becomes irremediably probabilistic. The conflu-
ence problem is central for any quantum λ-calculus with measurements, as stressed in the
introduction.

Let us consider the following configuration:

C = [1, ∅, (λ!x.(if x then 0 else 1))(meas(H(new(0))))].

If we focus on reduction sequences, it is easy to check that there are two different reduc-
tion sequences starting with C, the first ending in the normal form [1, ∅, 0] (with proba-
bility 1/2) and the second in the normal form [1, ∅, 1] (with probability 1/2). But if we
reason with mixed states, the situation changes: the mixed state {1 : C} (i.e., the mixed
state assigning probability 1 to C and 0 to any other configuration) rewrites deterministi-
cally to {1/2 : [1, ∅, 0], 1/2 : [1, ∅, 1]} (where both [1, ∅, 0] and [1, ∅, 1] have probability
1/2). So, confluence seems to hold.

Confluence in Other Quantum Calculi.

Contrarily to the measurement-free case, the above notion of confluence is not an expected
result for a quantum lambda calculus. Indeed, it does not hold in the quantum lambda
calculus λsv proposed by Selinger and Valiron [87]4. In λsv , it is possible to exhibit a
configuration C that gives as outcome the distribution {1 : [1, ∅, 0]} when reduced call-
by-value and the distribution {1/2 : [1, ∅, 0], 1/2 : [1, ∅, 1]} if reduced call-by-name. This
is a real failure of confluence, which is there even if one uses probability distributions in
place of configurations. The same phenomenon cannot happen in Q* (as we will show
in Section 7.5): this fundamental difference can be traced back to another one: the linear
lambda calculus with surface reduction (on which Q* is based) enjoys (a slight variation
on) the so-called diamond property [91], while in usual, pure, lambda calculus (on which
λsv is based) confluence only holds in a weaker sense.

Finite or infinite rewriting?

In Q*, an infinite computation can tend to a configuration which is essentially dif-
ferent from the configurations in the computation itself. For example, a configuration
C = [1, ∅,M ] can be built5 such that:
• after a finite number of reduction steps C rewrites to a distribution in the form
{
∑

1<i≤n
1
2i : [1, ∅, 0], 1−

∑
1<i≤n

1
2i : D}

• only after infinitely many reduction steps the distribution {1 : [1, ∅, 0]} is reached.
Therefore finite probability distributions of finite configurations could be obtained by
means of infinite rewriting. We believe that the study of confluence for infinite computa-
tions is important.

4 As written in Chapter 3, the interest of Selinger and Valiron is for a quantum programming
language. They are not interest in the confluence problem, but rather in the definition of the right
reduction strategy

5 M ≡ (Y!(λ!f.λ!xif x then 0 else f(meas(H(new(0))))))(meas(H(new(0)))), where Y is a
fix point operator.
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Related Work.

In the literature, probabilistic rewriting systems have been already analyzed. For example,
Bournez and Kirchner [24] have introduced the notion of a probabilistic abstract rewriting
system as a structure A = (|A|, [·  ·]) where |A| is a set and [·  ·] is a function from
|A| to R such that for every a ∈ |A|,

∑
b∈|A|[a  b] is either 0 or 1. Then, they define a

notion of probabilistic confluence for a PARS: such a structure is probabilistically locally
confluent iff the probability to be locally confluent, in a classical sense, is different from
0. Unfortunately, Bournez and Kirchner’s analysis does not apply to Q*, since Q* is not a
PARS. Indeed, the quantity

∑
b∈|A|[a b] can in general be any natural number. Similar

considerations hold for the probabilistic lambda calculus introduced by Di Pierro, Hankin
and Wiklicky in [37].

7.4 A Probabilistic Notion of Computation

We represent computations as (possibly) infinite trees. In the following, a (possibly) infi-
nite tree T will be an (n+ 1)-tuple [R, T1, . . . , Tn], where n ≥ 0, R is the root of T and
T1, . . . , Tn are its immediate subtrees.

Definition 7.7. A set of (possibly) infinite trees S is said to be a set of probabilistic
computations if P ∈ S iff (exactly) one of the following three conditions holds:
1. P = [C] and C ∈ C (,.)
2. P = [C,R], where C ∈ C (,,) R ∈ S has root D and C →nM D
3. P = [(p, q, C), R,Q], where C ∈ C (,,) R,Q ∈ S have roots D and E, C →p

measr

D, C →q
measr

E and p, q ∈ R[0,1];
The set of all (respectively, the set of finite) probabilistic computations is the largest set
P (respectively, the smallest set F ) of probabilistic computations with respect to set
inclusion. P and F exist because of the Knapster-Tarski Theorem.

We will often say that the root of P = [(p, q, C), R,Q] is simply C, slightly diverging
from the above definition without any danger of ambiguity.

Definition 7.8. A probabilistic computation P is maximal if for every leaf C in P , C ∈
NF. More formally, (sets of) maximal probabilistic computations can be defined as in
Definition 7.7, where clause 1 must be restricted to C ∈ NF.

We can give definitions and proofs over finite probabilistic computations (i.e., over
F ) by ordinary induction. An example is the following definition. Notice that the same is
not true for arbitrary probabilistic definitions, since P is not a well-founded set.

Definition 7.9. Let P ∈ P be a probabilistic computation. A finite probabilistic com-
putation R ∈ F is a sub-computation of P , written R v P iff one of the following
conditions is satisfied:
• R = [C] and the root of P is C.
• R = [C,Q], P = [C,S], and Q v S.
• R = [(p, q, C), Q, S], P = [(p, q, C), U, V ], Q v U and S v V .

Let δ : C → {0, 1} be a function defined as follows: δ(C) = 0 if the quantum register
of C is 0, otherwise, δ(C) = 1.
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Quantitative Properties of Computations.

The outcomes of a probabilistic computation P are given by the configurations which
appear as leaves of P . Starting from this observation, the following definitions formalize
some quantitative properties of probabilistic computations. For every finite probabilistic
computation P and every C ∈ NF we define P(P,C) ∈ R[0,1] by induction on the
structure of P :
• P([C], C) = δ(C);
• P([C], D) = 0 whenever C 6= D;
• P([C,P ], D) = P(P,D);
• P([(p, q, C), P,R], D) = pP(P,D) + qP(R,D);

Similarly for N (P,C) ≤ ℵ0:
• N ([C], C) = 1;
• N ([C], D) = 0 whenever C 6= D;
• N ([C,P ], D) = N (P,D);.
• N ([(p, q, C), P,R], D) = N (P,D) +N (R,D).

Informally, P(P,C) is the probability of observing C as a leaf in P , and N (P,C) is the
number of times C appears as a leaf in P .

The definitions above can be easily modified to get the probability of observing any
configuration (in normal form) as a leaf in P , P(P ), or the number of times any configu-
ration appears as a leaf in P ,N (P ). Since R[0,1] and N∪{ℵ0} are complete lattices (with
respect to standard orderings), we extend the above notions to the case of arbitrary prob-
abilistic computations, by taking the least upper bound over all finite sub-computations.
If P ∈ P and C ∈ NF, then:
• P(P,C) = supRvP P(R,C);
• N (P,C) = supRvP N (R,C);
• P(P ) = supRvP P(R);
• N (P ) = supRvP N (R).

For every finite probabilistic computation P and every C ∈ NF we define P(P,C) ∈
R[0,1] and N (P,C) ≤ ℵ0 by induction on the structure of P :
• P([C], C) = N ([C], C) = 1 and P([C], D) = N ([C], D) = 0 whenever C 6= D.
• P([C,P ], D) = P(P,D) and N ([C,P ], D) = N (P,D).
• P([(p, C), P,R], D) = pP(P,D)+qP(R,D) andN ([(p, C), P,R], D) = N (P,D)+
N (R,D).

More informally, P(P,C) is the probability of observing C as a leaf in P . On the other
hand, N (P,C) is the number of times C appears as a leaf in P . The definitions above
can be easily modified to get the probability of observing any configuration as a leaf in
P , P(P ), or the number of times any configuration appears as a leaf in P , N (P ).

In turn, the functions P and N on finite probabilistic computations above can be
generalized to functions on arbitrary probabilistic computations by taking the least upper
bound over all finite sub-computations. For example, if P ∈ P and C ∈ NF, then

P(P,C) = sup
RvP

P(R,C).

Analogously,
N (P ) = sup

RvP
N (R).
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Both quantities above exists because R[0,1] and N ∪ {ℵ0} are complete lattices. The
following lemmas involve finite computations and can be prove by induction.

Lemma 7.10. If P v R, then P(P ) ≤ P(R) andN (P ) ≤ N (R). Moreover, P(P,C) ≤
P(R,C) and N (P,C) ≤ N (R,C) for every C ∈ NF.

Proof. A trivial induction on P .

Lemma 7.11. If P v R and P is maximal, then R is maximal and P = R.

Proof. A trivial induction on P .

7.5 A Strong Confluence Result

In this Section, we will prove a strong confluence result in the following form: any two
maximal probabilistic computations P and R with the same root have exactly the same
quantitative and qualitative behaviour, that is to say, the following equations hold for
every C ∈ NF:

P(P,C) = P(R,C);
N (P,C) = N (R,C);
P(P ) = P(R);
N (P ) = N (R).

Remark 7.12. Please notice that equalities like the ones above do not even hold for the
ordinary lambda calculus. For example, the lambda term (λx.λy.y)Ω is the root of two
(linear) computations, the first having one leaf λy.y and the second having no leaves. This
is the reason why the confluence result we prove here is dubbed as strong.

Before embarking in the proof of the equalities above, let us spend a few words to explain
their consequences. The fact P(P,C) = P(R,C) whenever P and R have the same
root can be read as a confluence result: the probability of observing C is independent
from the adopted strategy. On the other hand, P(P ) = P(R) means that the probability
of converging is not affected by the underlying strategy. The corresponding results on
N (·, ·) andN (·) can be read as saying that the number of (not necessarily distinct) leaves
in any probabilistic computation with root C does not depend on the strategy.

Lemma 7.13 (Uniformity). For every M,N such that M →α N , exactly one of the
following conditions holds:
1. α 6= new and α 6= measr and there is a unitary transformation UM,N : H(Q(M)) →
H(Q(M)) such that [Q,QV,M ] →α [R,RV, N ] iff [Q,QV,M ] ∈ C, RV = QV
and R = (UM,N ⊗ IQV−Q(M))Q.

2. α = new and there are a constant c and a quantum variable r such that [Q,QV,M ] →new

[R,RV, N ] iff [Q,QV,M ] ∈ C, RV = QV ∪ {r} and R = Q⊗ |r 7→ c〉.
3. α = measr and there are a constant c and a probability pc ∈ R[0,1] such that

[Q,QV,M ] →pc
measr

[R,RV, N ] iff [Q,QV,M ] ∈ C, R = Mr,c(Q) and RV =
QV − {r}.
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Proof. We go by induction onM .M cannot be a variable nor a constant nor a unitary op-
erator nor a term !L. IfM is an abstraction λψ.L, thenN ≡ λψ.P ,L→α P and the thesis
follows from the inductive hypothesis. If M is meas(L) and N is meas(P ) then L→α P
and the thesis follows from the inductive hypothesis. Similarly if M is new(L) and N
is new(P ). And again if M is 〈M1, . . . , L, . . . ,Mn〉 and N is 〈M1, . . . , P, . . . ,Mn〉. If
M ≡ LQ, then we distinguish a number of cases:
• N ≡ PQ and L→α P . The thesis follows from the inductive hypothesis.
• N ≡ LS and Q→α S. The thesis follows from the inductive hypothesis.
• L ≡ U , Q ≡ 〈r1, ..., rn〉 and N ≡ 〈r1, ..., rn〉. Then case 1 holds. In particular,

Q(M) = {r1, ..., rn} and UM,N = U〈〈r1,...,rn〉〉.
• L ≡ λx.R and N = R{Q/x}. Then case 1 holds. In particular UM,N = IQ(M).
• L ≡ λ〈x1, . . . , xn〉.R, Q = 〈r1, . . . , rn〉 and N ≡ R{r1/x1, . . . , rn/xn}. Then

case 1 holds and UM,N = IQ(M).
• L ≡ λ!x.R, Q =!T and N ≡ R{T/x}. Then case 1 holds and UM,N = IQ(M).
• Q ≡ (λπ.R)T and N ≡ (λπ.LR)T . Then case 1 holds and UM,N = IQ(M).
• L ≡ (λπ.R)T and N ≡ (λπ.RQ)T . Then case 1 holds and UM,N = IQ(M).

If M ≡ new(c) then N is a quantum variable r and case 2 holds. If M ≡ meas(r) then
there are a constant c and a probability pc such that N is a term !c and case 3 holds. This
concludes the proof.

Notice that UM,N is always the identity function when performing classical reduction.
The following technical lemma will be useful when proving confluence:

Lemma 7.14. Suppose [Q,QV,M ] →α [R,RV, N ].
1. If [Q,QV,M{L/x}] ∈ C, then

[Q,QV,M{L/x}] →α [R,RV, N{L/x}].

2. If [Q,QV,M{r1/x1, . . . , rn/xn}] ∈ C, then

[Q,QV,M{r1/x1, . . . , rn/xn}] →α [R,RV, N{r1/x1, . . . , rn/xn}].

3. If x, Γ ` L and [Q,QV, L{M/x}] ∈ C, then

[Q,QV, L{M/x}] →α [R,RV, L{N/x}].

Proof. Claims 1 and 2 can be proved by induction on the proof of [Q,QV,M ] →α

[R,RV, N ]. Claim 3 can be proved by induction on N .

We prove now that Q∗ enjoys a slight variation of the so-called diamond property, whose
proof is fully standard (it is a slight extension of the analogous proof given in [30] for Q).
As for Q, Q∗ does not enjoy the diamond property in a strict sense, due to the presence of
commutative reduction rules (see, e.g., case 2 of the following Proposition). But thanks to
Lemma 7.17 below, this does not have harmful consequences.

Proposition 7.15 (Quasi-One-step Confluence). Let C,D,E be configurations with
C →p

α D, C →s
β E. Then:

1. If α ∈ K and β ∈ K , then either D = E or there is F with D →K F and
E →K F .
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2. If α ∈ K and β ∈ N , then either D →N E or there is F with D →N F and
E →K F .

3. If α ∈ K and β = measr, then there is F with D →s
measr

F and E →K F .
4. If α ∈ N and β ∈ N , then either D = E or there is F with D →N F and
E →N F .

5. If α ∈ N and β = measr, then there is F with D →s
measr

F and E →K F .
6. If α = measr and β = measq (r 6= q), then there are t, u ∈ R[0,1] and a F such that
pt = su, D →t

measq
F and E →u

measr
F .

Proof. Let C ≡ [Q, QV,M ]. We go by induction on M . M cannot be a variable nor a
constant nor a unitary operator. If M is an abstraction λπ.N , then D ≡ [R,RV, λπ.S],
E ≡ [S,SV, λπ.T ] and

[Q,QV, N ] →α [R,RV, S]
[Q,QV, N ] →β [S,SV, T ]

The IH easily leads to the thesis. Similarly when M ≡ λ!x.N , and when M ≡ meas(N)
or M ≡ if N then P elseQ with N 6= 0, 1. If M ≡ NL, we can distinguish a number of
cases depending on the last rule used to prove C →p

α D, C →β sE:
• D ≡ [R,RV, SL] and E ≡ [S,SV, NR] where [Q,QV, N ] →p

α [R,RV, S] and
[Q,QV, L] →s

β [S,SV, R]. We need to distinguish several sub-cases:
• If α, β = new, then, by Lemma 7.13, there exist two quantum variables s, t /∈ QV

and two constants d, e such thatRV = QV∪{s}, SV = QV∪{t},R = Q⊗|s 7→
d〉 and S = Q⊗ |t 7→ e〉. Applying 7.13 again, we obtain

D →new [Q⊗ |s 7→ d〉 ⊗ |u 7→ e〉,QV ∪ {s, u}, SR{u/t}] ≡ F ;
E →new [Q⊗ |t 7→ e〉 ⊗ |v 7→ d〉,QV ∪ {t, v}, S{u/s}R] ≡ G.

As can be easily checked, F ≡ G.
• If α = new and β 6= new,measr, then, by Lemma 7.13 there exist a quantum

variable r and a constant c such that RV = QV ∪ {r}, R = Q⊗ |r 7→ c〉, SV =
QV and S = (UL,R ⊗ IQV−Q(L))Q. As a consequence, applying Lemma 7.13
again, we obtain

D →β [(UL,R ⊗ IQV∪{r}−Q(L))(Q⊗ |r 7→ c〉),QV ∪ {r}, SR] ≡ F ;
E →new [((UL,R ⊗ IQV−Q(L))Q)⊗ |r 7→ c〉,QV ∪ {r}, SR] ≡ G.

As can be easily checked, F ≡ G.
• If α 6= new,measr and β = new, then we can proceed as in the previous case.
• If α, β 6= new, α 6= measr, β 6= measq (r, q not necessarily distinct) , then by

Lemma 7.13, there exist SV = RV = QV , R = (UN,S ⊗ IQV−Q(N))Q and
S = (UL,R ⊗ IQV−Q(L))Q. Applying 7.13 again, we obtain

D →β [(UL,R ⊗ IQV−Q(L))((UN,S ⊗ IQV−Q(N))Q),QV, SR] ≡ F ;
E →α [(UN,S ⊗ IQV−Q(L))((UL,R ⊗ IQV−Q(L))Q),QV, SR] ≡ G.

As can be easily checked, F ≡ G.
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• If α = measr, β = measq (r 6= q) then, by Lemma 7.13, there exist two constants
d, e and two probabilities t, u such that RV = QV − {r}, SV = QV − {q},
R = Mr,d(Q) and S = Mq,e(Q). Remember that the quantum variable q occurs
in the subterm N and the quantum variable r occurs in the subterm L. Starting
from D ≡ [Mr,d(Q),QV − {r}, SL] and E ≡ [Mq,e(Q),QV − {q}, NR],
applying 7.13 again, we obtain

D →s̄
measq

[Mq,e(Mr,d(Q)),QV − {r} − {q}, SR]
≡ [Mq,e(R),RV − {q}, SR] ≡ F ;

E →p̄
measr

[Mr,d(Mq,e(Q)),QV − {q} − {r}, SR]
≡ [Mr,d(S),SV − {r}, SR] ≡ G.

Clearly, QV − {r} − {q} ≡ QV − {q} − {r} and by Proposition 7.6, case 4,
Mq,e(Mr,d(Q)) ≡ Mr,d(Mq,e(Q)). Then F ≡ G. Moreover by Proposi-
tion 7.6, case 3, pt = su.

• If α = new, β = measr, then, by Lemma 7.13 there exists a quantum variable q
(q 6= r) two constants d and e and a probability pe such that RV = QV ∪ {q},
R = Q⊗|q 7→ d〉, SV = QV−{r} and S = Mr,e(Q). As a consequence, starting
from D ≡ [QV ∪ {q},Q ⊗ |q 7→ d〉, SL] and E ≡ [Mr,e(Q),QV − {r}, NR]
applying Lemma 7.13 again, we obtain

D →pe
measr

[Mr,e(Q⊗ |q 7→ d〉),QV ∪ {q} − {r}, SR]
≡ [Mr,e(R),QV ∪ {q} − {r}, SR] ≡ F ;

E →new [(Mr,e(Q))⊗ |q 7→ d〉,QV − {r} ∪ {q}, SR]
≡ [(S)⊗ |q 7→ d〉,SV ∪ {q}, SR] ≡ G.

Clearly,QV∪{q}−{r} ≡ QV−{r}∪{q}. By Proposition 7.6, case 2, it is possible
to commute the measurement of the quantum variable r with the creation of the
quantum variable q, in fact they are distinct quantum variable. Then Mr,e(Q ⊗
|q 7→ d〉) and (Mr,e(Q)) ⊗ |q 7→ d〉 give the same quantum register. We can
conclude that F ≡ G.

• If α = measr, β = new, the case is symmetric to the previous one.
• If α = measr, β 6= new,measq, then by Lemma 7.13 there exist a constant c and

a probability pc such that R = Mr,c(Q), RV = QV − {r}, SV = QV and S =
(UL,R ⊗ IQV−Q(L))Q. As a consequence, starting from D ≡ [Mr,c(Q),QV −
{r}, SL] andE ≡ [(UL,R⊗IQV−Q(L))Q,QV, NR], applying Lemma 7.13 again,
we obtain

D →β [(UL,R ⊗ IQV−{r}−Q(L))(Mr,c(Q)),QV − {r}, SR]
≡ [(UL,R ⊗ IQV−{r}−Q(L))(R),RV, SR] ≡ F

E →pc
measr

[Mr,c((UL,R ⊗ IQV−Q(L))Q),QV − {r}, SR]
≡ [Mr,c(S),QV − {r}, SR] ≡ G

Note that the operators (UL,R ⊗ IQV−{r}−Q(L)) ◦ Mr,c and Mr,c ◦ (UL,R ⊗
IQV−Q(L)) act on Q in the same way, by means of Proposition 7.6, case 5. We
can conclude that F ≡ G.

• If α 6= new,measq, β = measr, the case is symmetric to the previous one.
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• D ≡ [R,RV, SL] and E ≡ [S,SV, TL], where [Q, QV,N ] → [R,RV, S] and
[Q,QV, N ] → [S,SV, T ]. Here we can apply the inductive hypothesis.

• D ≡ [R,RV, NR] and E ≡ [S,SV, NU ], where [Q, QV, L] → [R,RV, R] and
[Q,QV, L] → [S,SV, U ]. Here we can apply the inductive hypothesis as well.

• N ≡ (λx.P ), D ≡ [Q,QV, P{L/x}], E ≡ [R,RV, NR], where [Q,QV, L] →β

[R,RV, R]. Clearly [Q,QV, P{L/x}] ∈ C and, by Lemma 7.14, [Q,QV, P{L/x}] →
[R,RV, P{R/x}]. Moreover, [R,RV, NR] ≡ [R,RV, (λx.P )R] → [R,RV, P{R/x}].

• N ≡ (λx.P ),D ≡ [Q,QV, P{L/x}],E ≡ [R,RV, (λx.V )L], where [Q,QV, P ] →β

[R,RV, V ]. Clearly [Q,QV, P{L/x}] ∈ C and, by Lemma 7.14, [Q,QV, P{L/x}] →β

[R,RV, V {L/x}]. Moreover, [R,RV, (λx.V )L] →β [R,RV, V {L/x}].
• N ≡ (λ!x.P ), L ≡!Q, D ≡ [Q,QV, P{Q/x}], E ≡ [R,RV, (λ!x.V )L], where

[Q,QV, P ] →β [R,RV, V ]. Clearly [Q,QV, P{Q/x}] ∈ C and, by Lemma 7.14,
[Q,QV, P{Q/x}] →β [R,RV, V {Q/x}]. Moreover, [R,RV, (λx.V )!Q] →β

[R,RV, V {Q/x}].
• N ≡ (λ〈x1, . . . , xn〉.P ), L ≡ 〈r1, . . . , rn〉, D ≡ [Q,QV, P{r1/x1, . . . , rn/xn}],
E ≡ [R,RV, (λ〈x1, . . . , xn〉.V )L], where [Q,QV, P ] →β [R,RV, V ].
Clearly [Q,QV, P{r1/x1, . . . , rn/xn}] ∈ C and, by Lemma 7.14,
[Q,QV, P{r1/x1, . . . , rn/xn}] →β [R,RV, V {r1/x1, . . . , rn/xn}]. Moreover,
[R,RV, (λ〈x1, . . . , xn〉.V )L] →β [R,RV, V {r1/x1, . . . , rn/xn}].

• N ≡ (λx.P )Q, D ≡ [Q,QV, (λx.PL)Q], E ≡ [Q,QV, (P{Q/x})L], α = r.cm,
β = l.β. Clearly, [Q,QV, (λx.PL)Q] →l.β [Q,QV, (P{Q/x})L].

• N ≡ (λπ.P )Q, D ≡ [Q,QV, (λπ.PL)Q], E ≡ [R,RV, ((λπ.V )Q)L], α =
r.cm, where [Q,QV, P ] →β [R,RV, V ]. Clearly, [Q,QV, (λx.PL)Q] →r.cm

[R,RV, (λx.V L)Q] and [R,RV, ((λπ.V )Q)L] →β [R,RV, (λπ.V L)Q].
• N ≡ (λπ.P )Q, D ≡ [Q,QV, (λx.PL)Q], E ≡ [R,RV, ((λπ.P )W )L], α =

r.cm, where [Q,QV, Q] →β [R,RV,W ]. Clearly, [Q,QV, (λx.PL)Q] →r.cm

[R,RV, (λx.PL)W ] and [R,RV, ((λπ.P )W )L] →β [R,RV, (λπ.PL)W ].
• N ≡ (λπ.P )Q, D ≡ [Q,QV, (λx.PL)Q], E ≡ [R,RV, ((λπ.P )Q)R], α =

r.cm, where [Q,QV, L] →β [R,RV, R]. Clearly, [Q,QV, (λx.PL)Q] →r.cm

[R,RV, (λx.PR)Q] and [R,RV, ((λπ.P )Q)R] →β [R,RV, (λπ.PR)Q].
• N ≡ (λπ.P ),L ≡ (λx.Q)R,D ≡ [Q,QV, (λx.NQ)R],E ≡ [Q,QV, N(Q{R/x})],
α = l.cm, β = l.β. Clearly, [Q,QV, (λx.NQ)R] → l.β[Q,QV, N(Q{R/x})].

If M is in the form new(c), then D ≡ E.

Remark 7.16. Unfortunately, Proposition 7.15 does not translate into an equivalent result
on mixed states, because of commutative reduction rules. As a consequence, it is more
convenient to first study confluence at the level of probabilistic computations.

Note that, even if the calculus is untyped, we cannot build an infinite sequence of com-
muting reductions:

Lemma 7.17. The relation →K is strongly normalizing. In other words, there cannot be
any infinite sequence C1 →K C2 →K C3 →K . . ..

Proof. Define the size |M | of a term M as the number of symbols in it. Moreover, define
the abstraction size |M |λ of M as the sum over all subterms of M in the form λπ.N , of
|N |. Clearly |M |λ ≤ |M |2. Moreover, if [Q,QV,M ] →K [Q,QV, N ], then |N | = |M |
but |N |λ > |M |λ. This concludes the proof.
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We define the branch degree B(P ) of every finite probabilistic computation P by
induction on the structure of P :
• B([C]) = 1.
• B([C,P ]) = B(P ).
• B([(p, C), P,R]) = B(P ) + B(R).

Please observe that B(P ) ≥ 1 for every P .
We also define the weight W(P ) of every finite probabilistic computation P by induc-

tion on the structure of P :
• W([C]) = 0.
• Let D be the root of P . If C →K D, then W([C,P ]) = W(P ), otherwise

W([C,P ]) = B(P ) + W(P ).
• W([(p, C), P,R]) = B(P ) + B(R) + W(P ) + W(R).

Now we propose a probabilistic variation on the classical strip lemma of the λ-
calculus. It will have a crucial rôle in the proof of strong confluence (Theorem 7.20).

Lemma 7.18 (Probabilistic Strip Lemma). Let P be a finite probabilistic computation
with root C and positive weight W(P ).
• If C →N D, then there is R with root D such that W(R) < W(P ), B(R) ≤ B(P )

and for every E ∈ NF, it holds that P(R,E) ≥ P(P,E), N (R,E) ≥ N (P,E),
P(R) ≥ P(P ) and N (R) ≥ N (P ).

• If C →K D, then there is R with root D such that W(R) ≤ W(P ), B(R) ≤ B(P )
and for every E ∈ NF, it holds that P(R,E) ≥ P(P,E), N (R,E) ≥ N (P,E),
P(R) ≥ P(P ) and N (R) ≥ N (P ).

• If C →q
measr

D and C →p
measr

E, then there are R and Q with roots D and E such
that W(R) < W(P ), W(Q) < W(P ), B(R) ≤ B(P ), B(Q) ≤ B(P ) and for every
E ∈ NF, it holds that qP(R,E) + pP(Q,E) ≥ P(P,E), N (R,E) + N (Q,E) ≥
N (P,E), qP(R) + pP(Q) ≥ P(P ) and N (R) +N (Q) ≥ N (P ).

Proof. By induction on the structure of P :
• P cannot simply be [C], because W(P ) ≥ 1.
• If P = [C,S], where S has root F and C →N F , then:

• Suppose C →N D. If D = F , then the required R is simply S. Otherwise,
by Proposition 7.15, there is G such that D →N G and F →N G. Now, if S
is simply [F ], then the required probabilistic computation is simply [D], because
neither F nor D are in normal form and, moreover, W([D]) = 0 < 1 = W(P ).
If, on the other hand, S has positive weight we can apply the IH to it, obtaining a
probabilistic computation T with rootG such that W(T ) < W(S), B(T ) ≤ B(S),
P(T,H) ≥ P(S,H) and N (T,H) ≥ N (S,H) for every H ∈ NF. Then, the
required probabilistic computation is [D,T ], since

W([D,T ]) = B(T ) + W(T ) < B(T ) + W(S)
≤ B(S) + W(S) = W(P );

P([D,T ],H) = P(T,H) ≥ P(S,H)
= P(P,H);

N ([D,T ],H) = N (T,H) ≥ N (S,H)
= N (P,H).
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• Suppose C →K D. By Proposition 7.15 one of the following two cases ap-
plies:
• There isG such thatD →N G andF →K GNow, if S is simply [F ], then the

required probabilistic computation is simply [D, [G]], because W([D, [G]]) =
1 = W(P ). If, on the other hand, S has positive weight we can apply the IH
to it, obtaining a probabilistic computation T with root G such that W(T ) ≤
W(S), B(T ) ≤ B(S) and P(T,H) ≥ P(T,H) for every H ∈ NF. Then, the
required probabilistic computation is [D,T ], since

W([D,T ]) = B(T ) + W(T ) ≤ B(T ) + W(S)
≤ B(S) + W(S) = W(P )

P([D,T ],H) = P(T,H) ≥ P(S,H)
= P(P,H);

N ([D,T ],H) = N (T,H) ≥ N (S,H)
= N (P,H).

• D →N F . The required probabilistic computation is simply [D,S]. Indeed:

W([D,S]) = B(S) + W(S) = W([C,S]) = W([P ]).

• Suppose C →q
measr

D and C →p
measr

E. By Proposition 7.15, there are G and
H such that D →N G, E →N H , F →q

measr
G, F →p

measr
H . Now, if S is

simply F , then the required probabilistic computations are simply [D] and [E],
because neither F nor D nor E are in normal form and, moreover, W([D]) =
W([E]) = 0 < 1 = W(P ). If, on the other hand, S has positive weight we can
apply the IH to it, obtaining probabilistic computations T and U with roots G and
H such that W(T ) < W(S), W(U) < W(S), B(T ) ≤ B(S), B(U) ≤ B(S),
qP(T,H) + (p)P(U,H) ≥ P(S,H) and N (T,H) + N (U,H) ≥ N (S,H)
for every H ∈ NF. Then, the required probabilistic computations are [D,T ] and
[E,U ], since

W([D,T ]) = B(T ) + W(T ) < B(T ) + W(S)
≤ B(S) + W(S) = W(P );

W([E,U ]) = B(U) + W(U) < B(U) + W(S)
≤ B(S) + W(S) = W(P ).

Moreover, for every H ∈ NF

qP([D,T ],H) + pP([E,U ],H) = qP(T,H) + pP(U,H)
≥ P(S,H) = P(P,H)

N ([D,T ],H) +N ([E,U ],H) = N (T,H) +N (U,H)
≥ N (S,H) = N (P,H)

• The other cases are similar.

The following Proposition follows from the probabilistic strip lemma. It can be read as a
simulation result: if P and R are maximal and have the same root, then P can simulate R
(and viceversa).
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Proposition 7.19. For every maximal probabilistic computations P and for every finite
probabilistic computation R such that P and R have the same root, there is a finite sub-
computation Q of P such that for every C ∈ NF, P(Q,C) ≥ P(R,C) and N (Q,C) ≥
N (R,C). Moreover, P(Q) ≥ P(R) and N (Q) ≥ N (R).

Proof. Given any probabilistic computation S, its K -degree nS is the number of consec-
utive commutative rules you find descending S, starting at the root. By Lemma 7.17, this
is a good definition. The proof goes by induction on (W(R), nR), ordered lexicographi-
cally:
• If W(R) = 0, then R is just [D] for some configuration D. Then, Q = R and all the

required conditions hold.
• If W(R) > 0, then we distinguish three cases, depending on the shape of P :

• If P = [D,S], E is the root of S and D →N E, then, by Proposition 7.18,
there is a probabilistic computation T with root E such that W(T ) < W(R)
and P(T,C) ≥ P(R,C) for every C ∈ NF. By the inductive hypothesis ap-
plied to S and T , there is a sub-probabilistic computation U of S such that
P(U,C) ≥ P(T,C) and N (U,C) ≥ N (T,C) for every C ∈ NF. Now, consider
the probabilistic computation [D,U ]. This is clearly a sub-probabilistic computa-
tion of P . Moreover, for every C ∈ NF:

P([D,U ], C) = P(U,C)
≥ P(T,C) ≥ P(R,C)

N ([D,U ], C) = N (U,C)
≥ N (T,C) ≥ N (R,C).

• If P = [D,S], E is the root of S and D →K E, then, by Proposition 7.18,
there is a probabilistic computation T with root E such that W(T ) ≤ W(R) and
P(T,C) ≥ P(R,C) for every C ∈ NF. Now, observe we can apply the inductive
hypothesis to S and T , because W(T ) ≤ W(R) and nS < nP . So, there is a sub-
probabilistic computation U of S such that P(U,C) ≥ P(T,C) and N (U,C) ≥
N (T,C) for every C ∈ NF. Now, consider the probabilistic computation [D,U ].
This is clearly a sub-probabilistic computation of P . Moreover, for everyC ∈ NF:

P([D,U ], C) = P(U,C)
≥ P(T,C) ≥ P(R,C)

N ([D,U ], C) = N (U,C)
≥ N (T,C) ≥ N (R,C).

• P = [(p, q,D), S1, S2], E1 is the root of S1 and E2 is the root of S2, then, by
Proposition 7.18, there are probabilistic computations T1 and T2 with root E1 and
E2 such that W(T1),W(T2) < W(R) and pP(T1, C)+qP(T2, C) ≥ P(R,C) for
every C ∈ NF. By the inductive hypothesis applied to S1 and T1 (to S2 and T2, re-
spectively), there is a sub-probabilistic computation U1 of S1 (a sub-probabilistic
computation U2 of S2, respectively) such that P(U1, C) ≥ P(T1, C) for every
C ∈ NF (P(U2, C) ≥ P(T2, C) for every C ∈ NF, respectively). Now, consider
the probabilistic computation [(p, q,D), U1, U2]. This is clearly a sub-probabilistic
computation of P . Moreover, for every C ∈ NF:
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P([(p, q,D,U1, U2], C) = pP(U1, C) + qP(U2, C)
≥ pP(T1, C) + qP(T2, C) ≥ P(R,C).

This concludes the proof.

The main theorem is the following:

Theorem 7.20 (Strong Confluence). For every maximal probabilistic computation P ,
for every maximal probabilistic computation R such that P and R have the same root,
and for every C ∈ NF, P(P,C) = P(R,C) and N (P,C) = N (R,C). Moreover,
P(P ) = P(R) and N (P ) = N (R).

Proof. Let C ∈ NF be any configuration in normal form. Clearly:

P(P,C) = supQvP {P(Q,C)} P(R,C) = supSvR{P(S,C)}

Now, consider the two sets A = {P(Q,C)}QvP and B = {P(S,C)}SvR. We claim the
two sets have the same upper bounds. Indeed, if x ∈ R is an upper bound onA and S v R,
by Proposition 7.19 there is Q v P such that P(Q,C) ≥ P(S,C), and so x ≥ P(S,C).
As a consequence, x is an upper bound on B. Symmetrically, if x is an upper bound on
B, it is an upper bound on A. Since A and B have the same upper bounds, they have
the same least upper bound, and P(P,C) = P(R,C). The other claims can be proved
exactly in the same way. This concludes the proof.

7.6 Computing with Mixed States

Definition 7.21 (Mixed State). A mixed state is a function M : C → R[0,1] such that
there is a finite set S ⊆ C (,w)ith M (C) = 0 except when C ∈ S and, moreover,∑

C∈S M (C) = 1. Mix is the set of mixed states.

In this thesis, a mixed state M will be denoted with the linear notation {p1 : C1, . . . , pk :
Ck} or as {pi : Ci}1≤i≤k, where pi is the probability M (Ci) associated to the configu-
ration Ci.

Definition 7.22 (Reduction). The reduction relation Z=⇒ between mixed states is defined
in the following way: {p1 : C1, . . . , pm : Cm} Z=⇒ M iff there exist m mixed states
M1 = {qi

1 : Di
1}1≤i∈n1 , . . . ,Mm = {qi

m : Di
m}1≤i≤nm

such that:
1. For every i ∈ [1,m], it holds that 1 ≤ ni ≤ 2;
2. If ni = 1, then either Ci is in normal form and Ci = D1

i or Ci →nM D1
i ;

3. If ni = 2, then Ci →p
measr

D1
i , Ci →q

measr
D2

i , p ∈ R[0,1], and q1i = p, q2k = q;
4. ∀D ∈ C (., )M (D) =

∑m
i=1 pi ·Mi(D).

Given the reduction relation Z=⇒, the corresponding notion of computation (that we call
mixed computation, in order to emphasize that mixed states play the role of configura-
tions) is completely standard.

Given a mixed state M and a configuration C ∈ NF, the probability of observing C
in M is defined as M (C) and is denoted as P(M , C). Observe that if M Z=⇒ M ′ and
C ∈ NF, then P(M , C) ≤ P(M ′, C). If {Mi}i<ϕ is a mixed computation, then
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sup
i<ϕ

P(Mi, C)

always exists, and is denoted as P({Mi}i<ϕ, C).
Please notice that a maximal mixed computation is always infinite. Indeed, if M =

{pi : Ci}1≤i≤n and for every i ∈ [1, n], Ci ∈ NF, then M Z=⇒ M .

Proposition 7.23. Let {Mi}i<ω be a maximal mixed computation and let C1, . . . , Cn be
the configurations on which M0 evaluates to a positive real. Then there are maximal prob-
abilistic computations P1, . . . , Pn with roots C1, . . . , Cn such that supj<ϕ Mj(D) =∑n

i=1 (M0(Ci)P(Pi, D)) for every D.

Proof. Let {Mi}i<ω be a maximal mixed computation. Observe that M0 Z=⇒m Mm for
every m ∈ N. For every m ∈ N let Mm be

{pm
1 : Cm

1 , . . . , p
m
nm

: Cm
nm
}

For every m, we can build maximal probabilistic computations Pm
1 , . . . , Pm

nm
, gener-

atively: assuming Pm+1
1 , . . . , Pm+1

nm+1
are the probabilistic computations corresponding

to {Mi}m+1≤i<ω, they can be extended (and possibly merged) into some maximal
probabilistic computations Pm

1 , . . . , Pm
nm

corresponding to {Mi}m≤i<ω. But we can
even define for every m, k ∈ N with m ≤ k, some finite probabilistic computations
Qm,k

1 , . . . , Qm,k
nm

with root C1, . . . , Cnm and such that, for every m, k,

Qm,k
i v Pm

i

Mk(D) =
nm∑
i=1

(
Mm(Ci)P(Qm,k

i , D)
)
.

This proceeds by induction on k − m. We can easily prove that for every S v Pm
i

there is k such that S v Qm,k
i : this is an induction on S (which is a finite probabilistic

computation). But now, for every D ∈ NF,

sup
j<ω

Mj(D) = sup
j<ω

n0∑
i=1

(
M0(Ci)P(Q0,j

i , D)
)

=
n0∑
i=1

(
M0(Ci) sup

j<ω
P(Q0,j

i , D)
)

=
n0∑
i=1

(
M0(Ci)P(P 0

i , D)
)

This concludes the proof.

Theorem 7.24. For any two maximal mixed computations {Mi}i<ω and {M ′
i }i<ω such

that M0 = M ′
0, the following condition holds: for every C ∈ NF, P({Mi}i<ω, C) =

P({M ′
i }i<ω, C)

Proof. A trivial consequence of Proposition 7.23.
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A Variation on the Theme
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Modal Labeled Deduction Systems for Quantum State
Transformations

In this chapter we propose the formalization of a modal natural deduction system [79,95]
called MSQS, in order to represent (in an abstract, qualitative, way) the fundamental
operations on quantum states: unitary transformations and total measurements. Unitary
transformations model the internal evolution of a quantum system, whereas measurements
correspond to the results of the interaction between a quantum system and an observer.
The outcome of an observation can be either the reduction to some quantum state or the
reduction to a classical state, where we say that a state w is classical iff w is invariant
with respect to measurement, i.e. each measurement of w has w as outcome. We call a
measurement total when the outcome of the measurement is a classical state. Note that
we are not interested in the structure of quantum states, but rather in the way quantum
states are transformed. Hence, we will abstract away from the internals of quantum states
and we represent them in a generic way in order to describe how operations transform a
state into another one. We propose to model measurement and unitary transformations by
means of suitable modal operators, we give a suitable Kripke style semantics and we prove
that MSQS is sound and complete with respect to it. Then we also study normalization
properties, a subformula property, and as a consequence we show that is possible to give
a purely syntactical proof of consistency for the system.

A variant of MSQS, called MSpQS, is also defined: in MSpQS we represent the
case of generic, not necessary total measurements, and we prove the same result as for
MSQS.

8.1 Modal Logic, Quantum Logic and Quantum Computing

Modal logic, as a logic of possible worlds, is a natural way to represent descriptions of a
quantum system: the worlds model the quantum states and the relations of accessibility
between worlds model the dynamical behavior of the system, as a consequence of the
application of measurements and unitary transformations. To emphasize this semantic
view of modal logic, we give our deduction system in the style of labeled deduction [42,
90, 98], a framework for giving uniform presentations of different non-classical logics
(see also Section 2.3.1).

It is important to observe that our logical systems are not a quantum logic. Since the
work of Birkhoff and von Neumann in 1936 [23], various logics have been investigated
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as a means to formalize reasoning about propositions taking into account the principles of
quantum theory, e.g. [31, 32]. In general, it is possible to view quantum logic as a logical
axiomatization of quantum theory [4, 14, 15, 70].

Our proposal moves from quite a different point of view: we do not aim to present
a general logical formalization of quantum theory, rather we describe how it is possible
to use modal logic to reason in a simple way about quantum state transformations. Infor-
mally, in our proposal, a modal world represents (an abstraction of) a quantum state. The
discrete temporal evolution of a quantum state is controlled and determined by a sequence
of unitary transformations and measurements that can change the description of a quan-
tum state into other descriptions. So, the evolution of a quantum state can be viewed as a
graph, where the nodes are the (abstract) quantum states and the arrows represent quantum
transformations. The arrows give us the so-called accessibility relations of Kripke models
and two nodes linked by an arrow represent two related quantum states: the target node
is obtained from the source node by means of the operation specified in the decoration of
the arrow.

8.2 The deduction system MSQS

8.2.1 The language of MSQS

Our labeled modal natural deduction system MSQS, which formally represents unitary
transformations and total measurements of quantum states, consists of rules that derive
formulas of two kinds: modal formulas and relational formulas. We thus define a modal
language and a relational language.

The alphabet of the relational language consists of:

• the binary symbols U and M,
• a denumerable set x0, x1, . . . of labels.

Metavariables x, y, z, possibly annotated with subscripts and superscripts, range over the
set of labels. For brevity, we will sometimes speak of a “world” x meaning that the label
x stands for a world I (x), where I is an interpretation function mapping labels into
worlds as formalized in Definition 8.2 below.

The set of relational formulas (r-formulas) is given by expressions of the form xUy
and xMy. We write xRy to denote a generic r-formula, with R ∈ {U,M}.

The alphabet of the modal language consists of:

• a denumerable set r, r0, r1, . . . of propositional symbols,
• the standard propositional connectives ⊥ and ⊃,
• the unary modal operators � and �.

The set of modal formulas (m-formulas) is the least set that contains ⊥ and the propo-
sitional symbols, and is closed under ⊃ and the modal operators. Metavariables A, B,
C, possibly indexed, range over modal formulas. Other connectives can be defined in the
usual manner, e.g. ¬A ≡ A ⊃ ⊥,A∧B ≡ ¬(A ⊃ ¬B),A↔ B ≡ (A ⊃ B)∧(B ⊃ A),
♦A ≡ ¬�¬A, �A ≡ ¬�¬A, etc.

Let us give, in a rather informal way, the intuitive meaning of the modal operators of
our language:
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[x : A]....
x : B

x : A ⊃ B
⊃ I

x : A ⊃ B x : A
x : B

⊃ E

[x : ¬A]....
y : ⊥
x : A

RAA x : ⊥
α ⊥E

[xRy]....
y : A

x : FA
FI

x : FA xRy

y : A
FE

xUx
Urefl

xUy
yUx

Usymm
xUy yUz

xUz Utrans
xMy
xUy UI

[xMy]....
α
α Mser

xMy
yMy

Msrefl
α(x) xMx xMy

α(y/x)
Msub1

α(y) xMx xMy
α(x/y)

Msub2

In RAA, A 6= ⊥.
In FI , y is fresh: it is different from x and does not occur in any assumption on which y : A
depends other than xRy.
In Mser , y is fresh: it is different from x and does not occur in α nor in any assumption on which
α depends other than xMy.
We refer to the fresh y in FI and Mser as the parameter of the rule.

Fig. 8.1. The rules of MSQS

• �A means: A is true after the application of any unitary transformation.
• �A means: A is true in each quantum state obtained by a total measurement.

A labeled formula (l-formula) is an expression x : A, where x is a label andA is an m-
formula. A formula is either an r-formula or an l-formula. The metavariable α, possibly
indexed, ranges over formulas. We write α(x) to denote that the label x occurs in the
formula α, so that α(y/x) denotes the substitution of the label y for all occurrences of
x in α. Furthermore, we say that an l-formula x : A is atomic when A is atomic, which
is the case when A is a propositional symbol or ⊥. Finally, we define the grade of an
l-formula x : A, in symbols grade(x : A), to be the number of times ⊃ and F occur in
A, so that grade(x : A) = 0 for an atomic A.

8.2.2 The rules of MSQS

Figure 8.1 shows the rules of MSQS, where the notion of discharged/open assumption is
standard [79, 95], e.g. the formula [x : A] is discharged in the rule ⊃ I:

Propositional rules: The rules ⊃ I , ⊃ E and RAA are just the labeled version of the
standard ( [79, 95]) natural deduction rules for implication introduction and elimina-
tion and for reductio ad absurdum, where we enforce Prawitz’s side condition that
A 6= ⊥. The “mixed” rule ⊥E allows us to derive a generic formula α whenever we
have obtained a contradiction ⊥ at a world x; in this case, if α is z : A (with z 6= x),
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we do not enforce the side condition that A 6= ⊥ but allow the rule to derive y : ⊥
for some y from x : ⊥.1

Modal rules: We give the rules for a generic modal operator F, with a corresponding
generic relation R, since all the modal operators share the structure of these basic
introduction/elimination rules; this holds because, for instance, we express x : �A
as the metalevel implication xUy =⇒ y : A for an arbitrary y accessible from x. In
particular:
• ifF is � then R is U,
• ifF is � then R is M.

Other rules:
• In order to axiomatize �, we add rules Urefl , Usymm , and Utrans , formalizing

that U is an equivalence relation.
• In order to axiomatize �, we add rules formalizing the following properties:

– If xMy then there is a specific unitary transformation (depending on x and y)
that generates y from x: rule UI .

– The total measurement process is serial: rule Mser says that if from the as-
sumption xMy we can derive α for a fresh y (i.e. y is different from x and does
not occur in α nor in any assumption on which α depends other than xMy),
then we can discharge the assumption (since there always is some y such that
xMy) and conclude α.

– The total measurement process is shift-reflexive: rule Msrefl .
– Invariance with respect to classical worlds: rules Msub1 and Msub2 say that

if xMx and xMy, then y must be equal to x and so we can substitute the one
for the other in any formula α.

Definition 8.1 (Derivations and proofs). A derivation of a formula α from a set of for-
mulas Γ in MSQS (an MSQS-derivation, for short, or just “derivation” when MSQS
is clear from context or is not needed) is a tree formed using the rules in MSQS, ending
with α and depending only on a finite subset of Γ . We write Γ ` α to denote that there
exists an MSQS-derivation of α from Γ , and denote such a derivation Π graphically as

Γ
Π
α

A derivation in MSQS of α depending on the empty set is called a proof of α and we then
write ` α as an abbreviation of ∅ ` α and say that α is a theorem of MSQS.

For instance, the following labeled formula schemata are all provable in MSQS
(where, in parentheses, we give the intuitive meaning of each formula in terms of quantum
state transformations):

1. x : �A ⊃ A
(the identity transformation is unitary).

2. x : A ⊃ �♦A
(each unitary transformation is invertible).

1 See [98] for a detailed discussion of the rules for ⊥, which in particular explains how, in order
to maintain the duality of modal operators like � and ♦, it must be possible to propagate a ⊥ at
a world x to any other different world y.
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3. x : �A ⊃ ��A
(unitary transformations are composable).

4. x : �A ⊃ �A
(it is always possible to perform a total measurement of a quantum state).

5. x : �(A↔ �A)
(it is always possible to perform a total measurement with a complete reduction of a
quantum state to a classical one).

6. x : �A ⊃ ��A
(total measurements are composable).

As concrete examples, Figure 8.2 contains the proofs of the formulas 5 and 6, where,
for simplicity, here and in the following (cf. Figure 8.5), we employ the rules for equiv-
alence (↔ I) and for negation (¬I and ¬E), which are derived from the propositional
rules as is standard. For instance,

[x : A]1
Π
y : ⊥
x : ¬A ¬I1

abbreviates

[x : A]1
Π
y : ⊥
x : ⊥ ⊥E

x : A ⊃ ⊥ ⊃ I1

We can similarly derive rules about r-formulas. For instance, we can derive a rule for the
transitivity of M as shown at the top of the proof of the formula 6 in Figure 8.2:

xMy yMz
xMz Mtrans

abbreviates

xMy
xMy
yMy

Msrefl
yMz

xMz Msub1

8.3 A semantics for unitary transformations and total measurements

We give a semantics that formally describes unitary transformations and total measure-
ments of quantum states in terms of accessibility relations between worlds, and then prove
that MSQS is sound and complete with respect to this semantics. Together with the corre-
sponding result for generic measurements in MSpQS described in Section 8.4, this means
that our modal systems indeed provide a representation of quantum states and operations
on them, which was one of the main goals of the thesis.

Definition 8.2 (Frames, models, structures). A frame is a tuple F = 〈W,U,M〉, where:

• W is a non-empty set of worlds
(representing abstractly the quantum states);

• U ⊆W ×W is an equivalence relation
(vUw means that w is obtained by applying a unitary transformation to v; U is an
equivalence relation since identity is a unitary transformation, each unitary transfor-
mation must be invertible, and unitary transformations are composable);
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[y : A]2
[xMy]1

yMy
Msrefl

[yMz]3

z : A
Msub1

y : �A �I3

y : A ⊃ �A ⊃ I2

[y : �A]4
[xMy]1

yMy
Msrefl

y : A
�E

y : �A ⊃ A
⊃ I4

y : A↔ �A
↔ I

x : �(A↔ �A)
�I1

[x : �A]1
[xMy]2

[xMy]2

yMy
Msrefl

[yMz]3

xMz Msub1

z : A
�E

y : �A �I3

x : ��A �I2

x : �A ⊃ ��A ⊃ I1

Fig. 8.2. Examples of proofs in MSQS

• M ⊆W ×W
(vMw means that w is obtained by means of a total measurement of v);

with the following properties:

(i) ∀v, w. vMw =⇒ vUw

(ii) ∀v. ∃w. vMw

(iii) ∀v, w. vMw =⇒ wMw

(iv) ∀v, w. vMv & vMw =⇒ v = w

(i) means that although it is not true that measurement is a unitary transformation, locally
for each v, if vMw then there is a particular unitary transformation, depending on v
and w, that generates w from v; the vice versa cannot hold, since in quantum theory
measurements cannot be used to obtain the unitary evolution of a quantum system. (ii)
means that each quantum state is totally measurable. (iii) and (iv) together mean that
after a total measurement we obtain a classical world. Figure 8.3 shows properties (ii),
(iii) and (iv), respectively, as well as the combination of (iii) and (iv).2

A model is a pair M = 〈F , V 〉, where F is a frame and V : W → 2Prop is an
interpretation function mapping worlds into sets of formulas.

A structure is a pair S = 〈M ,I 〉, where M is a model and I : Var → W is an
interpretation function mapping variables (labels) into worlds in W .

We write R to denote a generic frame relation, i.e. R ∈ {U,M}, and, slightly abusing
notation, we write I (R) to denote the corresponding R.

Given this semantics, we can define what it means for formulas to be true, and then
prove the soundness and completeness of MSQS.

2 Note that while (iv) says that v is invariant with respect to M , a unitary transformation U could
still be applied to v (and hence the dotted arrow decorated with a “?” for U ).
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v
M // w v

M // w

M




v

M




M

��

?
U

��

v
M // w

M




M

��

?
U

  

(ii) (iii) (iv) (iii) and (iv)

Fig. 8.3. Some properties of the relation M

Definition 8.3 (Truth). Truth for an m-formula at a worldw in a model M = 〈W,U,M, V 〉
is the smallest relation � satisfying:

�M ,w r iff r ∈ V (w)
�M ,w A ⊃ B iff �M ,w A =⇒ �M ,w B

�M ,w �A iff ∀w′. wUw′ =⇒ �M ,w′ A

�M ,w �A iff ∀w′. wMw′ =⇒ �M ,w′ A

Hence, 2M ,w ⊥ for any M and w. For an m-formula A, we write �M A iff �M ,w A for
all w.

Truth for a formula α in a structure S = 〈M ,I 〉 is then the smallest relation �
satisfying:

�M ,I xMy iff I (x)MI (y)
�M ,I xUy iff I (x)UI (y)
�M ,I x : A iff �M ,I (x) A

Hence, �M ,I xRy iff I (x)I (R)I (y) iff I (x)RI (y). Moreover, 2M ,I x : ⊥ for any
x, M and I .

By extension, �M ,I Γ iff �M ,I α for all α in the set of formulas Γ . Thus, for a set
of formulas Γ and a formula α,

Γ � α iff ∀S . Γ �S α
iff ∀M ,I . Γ �M ,I α
iff ∀M ,I . �M ,I Γ =⇒ �M ,I α

We omit M when it is not relevant and, for example, write Γ �I α when �I Γ implies
�I α.

By adapting standard proofs to the case of labeled deduction (see, e.g., [42,79,90,95,
98]), we can show:

Theorem 8.4 (Soundness and completeness of MSQS). Γ ` α iff Γ � α. �

Theorem 8.4 follows from Theorems 8.5 and 8.10 below.

Theorem 8.5 (Soundness of MSQS). Γ ` α implies Γ � α.
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Proof. We let M be an arbitrary model and prove that if Γ ` α then Γ �I α for any I ,
i.e. �I Γ implies �I α for any I . The proof proceeds by induction on the structure of
the derivation of α from Γ . The base case, where α ∈ Γ , is trivial. There is one step case
for each rule of MSQS.

Consider an application of the rule RAA,

[x : ¬A]....
y : ⊥
x : A RAA

where Γ ′ � y : ⊥ with Γ ′ = Γ ∪ {x : ¬A}. By the induction hypothesis, Γ ′ ` y : ⊥
implies Γ ′ �i y : ⊥ for any I . We assume �I Γ and prove �I x : A. Since 2w ⊥
for any world w, from the induction hypothesis we obtain 2I Γ ′, and thus 2I x : ¬A,
i.e. �I x : A and 2I x : ⊥.

Consider an application of the rule ⊥E,

x : ⊥
α ⊥E

with Γ ` x : ⊥. By the induction hypothesis, Γ ` x : ⊥ implies Γ �I x : ⊥ for any I .
We assume �I Γ and prove �I α for an arbitrary formula α. If �I Γ then �I x : ⊥
by the induction hypothesis, i.e. �I (x) ⊥. But since 2w ⊥ for any world w, then 2I Γ
and thus �I α for any α.

Consider an application of the ruleFI

[xRy]....
y : A
x :FA

FI

where Γ ′ ` y : Awith y fresh and with Γ ′ = Γ ∪{xRy}. By the induction hypothesis, for
all interpretations I , if �I Γ then �I y : A. We let I be any interpretation such that
�I Γ , and show that �I x : FA. Let w be any world such that I (x)I (R)w. Since I
can be trivially extended to another interpretation (still called I for simplicity) by setting
I (y) = w, the induction hypothesis yields �I y : A, i.e. �w A, and thus �I (x) FA,
i.e. �I x :FA.

Consider an application of the ruleFE

x :FA xRy

y : A
FE

with Γ1 ` x :FA and Γ2 ` xRy, and Γ ⊇ Γ1 ∪ Γ2. We assume �I Γ and prove �I y :
A. By the induction hypothesis, for all interpretations I , if �I Γ1 then �I x : FA and
if �I Γ2 then I (x)I (R)I (y). If �I Γ , then �I x : FA and I (x)I (R)I (y), and
thus �I y : A.

The rules Urefl , Usymm , and Utrans are sound by the properties of U .
The rule UI is sound by property (i) in Definition 8.2.
Consider an application of the rule Mser
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[xMy]....
α
α Mser

with Γ ′ = Γ ∪{xMy}, for y fresh. By the induction hypothesis, Γ ′ ` α implies Γ ′ �I α
for any I . Let us suppose that there is an I ′ such that �I ′

Γ ′ and 2I ′
α. Let us consider

an I ′′ such that I ′′(z) = I ′(z) for all z such that z 6= y and I ′′(y) is the world w such
that I ′′(y)Mw, which exists by property (ii) in Definition 8.2. Since y does not occur in
Γ nor in α, we then have that �I ′′

Γ ′ and 2I ′′
α, contradicting the universality of the

consequence of the induction hypothesis. Hence, Mser is sound.
The rule Msrefl is sound by property (iii) in Definition 8.2.
Consider an application of the rule Msub1

α(x) xMx xMy
α(y/x) Msub1

with Γ1 ` α(x), Γ2 ` xMx, Γ3 ` xMy, and Γ ⊇ Γ1 ∪ Γ2 ∪ Γ3. We assume �I Γ
and prove �I α(y/x). By the induction hypothesis, Γ1 ` α(x) implies Γ1 �I α(x),
Γ2 ` xMx implies if �I Γ2 then I (x)MI (x), and Γ3 ` xMy implies if �I Γ3 then
I (x)MI (y). By property (iv) in Definition 8.2, we then have I (x) = I (y) and thus
�I α(y/x) : A. The case for rule Msub2 follows analogously.

To prove completeness (Theorem 8.10), we give some preliminary definitions and
results. For simplicity, we split each set of formulas Γ into a pair (LF ,RF ) of the subsets
of l-formulas and r-formulas of Γ , and then prove (LF ,RF ) � α implies (LF ,RF ) ` α.
We call (LF ,RF ) a context and, slightly abusing notation, we write α ∈ (LF ,RF )
whenever α ∈ LF or α ∈ RF , and write x ∈ (LF ,RF ) whenever the label x occurs in
some α ∈ (LF ,RF ). We say that a context (LF ,RF ) is consistent iff (LF ,RF ) 0 x : ⊥
for every x, so that we have:

Fact 1 If (LF ,RF ) is consistent, then for every x and every A, either (LF ∪ {x :
A},RF ) is consistent or (LF ∪ {x : ¬A},RF ) is consistent.

Let (LF ,RF ) be the deductive closure of (LF ,RF ) for r-formulas under the rules of
MSQS, i.e.

(LF ,RF ) ≡ {xRy | (LF ,RF ) ` xRy}

for R ∈ {U,M}. We say that a context (LF ,RF ) is maximally consistent iff

1. it is consistent,
2. it is deductively closed for r-formulas, i.e. (LF ,RF ) = (LF ,RF ), and
3. for every x and every A, either x : A ∈ (LF ,RF ) or x : ¬A ∈ (LF ,RF ).

Completeness follows by a Henkin–style proof, where a canonical structure

S c = 〈M c,I c〉 = 〈W c, U c,M c, V c,I c〉

is built to show that (LF ,RF ) 0 α implies (LF ,RF ) 2S c

α, i.e. �S c

(LF ,RF ) and
2S c

α.
In standard proofs for unlabeled modal logics (e.g. [26]) and for other non-classical

logics, the set W c is obtained by progressively building maximally consistent sets of
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formulas, where consistency is locally checked within each set. In our case, given the
presence of l-formulas and r-formulas, we modify the Lindenbaum lemma to extend
(LF ,RF ) to one single maximally consistent context (LF ∗,RF ∗), where consistency
is “globally” checked also against the additional assumptions in RF .3 The elements of
W c are then built by partitioning LF ∗ and RF ∗ with respect to the labels, and the rela-
tions R between the worlds are defined by exploiting the information in RF ∗.

In the Lindenbaum lemma for predicate logic, a maximally consistent and ω-comple-
te set of formulas is inductively built by adding for every formula ¬∀x.A a witness to its
truth, namely a formula ¬A[c/x] for some new individual constant c. This ensures that
the resulting set is ω-complete, i.e. that if, for every closed term t, A[t/x] is contained in
the set, then so is ∀x.A. A similar procedure applies here in the case of l-formulas of the
form x : ¬FA. That is, together with x : ¬FA we consistently add y : ¬A and xRy
for some new y, which acts as a witness world to the truth of x : ¬FA. This ensures
that the maximally consistent context (LF ∗,RF ∗) is such that if xRz ∈ (LF ∗,RF ∗)
implies z : B ∈ (LF ∗,RF ∗) for every z, then x : FB ∈ (LF ∗,RF ∗), as shown
in Lemma 8.7 below. Note that in the standard completeness proof for unlabeled modal
logics, one instead considers a canonical model M c and shows that if w ∈ W c and
�Mc,w ¬FA, thenW c also contains a worldw′ accessible fromw that serves as a witness
world to the truth of ¬FA at w, i.e. �Mc,w′ ¬A.

Lemma 8.6. Every consistent context (LF ,RF ) can be extended to a maximally consis-
tent context (LF ∗,RF ∗).

Proof. We first extend the language of MSQS with infinitely many new constants for
witness worlds. Systematically let b range over labels, c range over the new constants for
witness worlds, and a range over both. All these may be subscripted. Let l1, l2, . . . be an
enumeration of all l-formulas in the extended language; when li is a : A, we write ¬li
for a : ¬A. Starting from (LF 0,RF 0) = (LF ,RF ), we inductively build a sequence of
consistent contexts by defining (LF i+1,RF i+1) to be:

• (LF i,RF i), if (LF i ∪ {li+1},RF i) is inconsistent; else
• (LF i ∪ {li+1},RF i), if li+1 is not a : ¬FA; else
• (LF i ∪ {a : ¬FA, c : ¬A},RF i ∪ {aRc}) for a c 6∈ (LF i ∪ {a : ¬FA},RF i), if

li+1 is a : ¬FA.

Every (LF i,RF i) is consistent. To show this we show that if (LF i ∪ {a : ¬FA},RF i)
is consistent, then so is (LF i ∪ {a : ¬FA, c : ¬A},RF i ∪ {aRc}) for a c 6∈ (LF i ∪
{a : ¬FA},RF i); the other cases follow by construction. We proceed by contraposition.
Suppose that

(LF i ∪ {a : ¬FA, c : ¬A},RF i ∪ {aRc}) ` aj : ⊥

where c 6∈ (LF i ∪ {a : ¬FA},RF i). Then, by RAA,

(LF i ∪ {a : ¬FA},RF i ∪ {aRc}) ` c : A ,

3 We consider only consistent contexts. If (LF ,RF ) is inconsistent, then LF ,RF ` x : A
for all x : A, and thus completeness immediately holds for l-formulas. Our language does not
allow us to define inconsistency for a set of r-formulas, but, whenever (LF ,RF ) is inconsistent,
the canonical model built in the following is nonetheless a counter-model to non-derivable r-
formulas.
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andFI yields
(LF i ∪ {a : ¬FA},RF i) ` a :FA .4

Since also
(LF i ∪ {a : ¬FA},RF i) ` a : ¬FA ,

by ¬E we have
(LF i ∪ {a : ¬FA},RF i) ` a : ⊥ ,

i.e. (LF i ∪ {a : ¬FA},RF i) is inconsistent. Contradiction.
Now define

(LF ∗,RF ∗) = (
⋃
i≥0

LF i,
⋃
i≥0

RF i)

We show that (LF ∗,RF ∗) is maximally consistent, by showing that it satisfies the three
conditions in the definition of maximal consistency. For the first condition, note that if

(
⋃
i≥0

LF i,
⋃
i≥0

RF i)

is consistent, then so is
(
⋃
i≥0

LF i,
⋃
i≥0

RF i) .

Now suppose that (LF ∗,RF ∗) is inconsistent. Then for some finite (LF ′,RF ′) included
in (LF ∗,RF ∗) there exists an a such that (LF ′,RF ′) ` a : ⊥. Every l-formula l ∈
(LF ′,RF ′) is in some (LF j ,RF j). For each l ∈ (LF ′,RF ′), let il be the least j such
that l ∈ (LF j ,RF j), and let i = max{il | l ∈ (LF ′,RF ′)}. Then (LF ′,RF ′) ⊆
(LF i,RF i), and (LF i,RF i) is inconsistent, which is not the case.

The second condition is satisfied by definition of (LF ∗,RF ∗).
For the third condition, suppose that li+1 6∈ (LF ∗,RF ∗). Then li+1 6∈ (LF i+1,

RF i+1) and (LF i∪{li+1},RF i) is inconsistent. Thus, by Fact 1, (LF i∪{¬li+1},RF i)
is consistent, and ¬li+1 is consistently added to some (LF j ,RF j) during the construc-
tion, and therefore ¬li+1 ∈ (LF ∗,RF ∗).

The following lemma states some properties of maximally consistent contexts.

Lemma 8.7. Let (LF ∗,RF ∗) be a maximally consistent context. Then

1. (LF ∗,RF ∗) ` aiRaj iff aiRaj ∈ (LF ∗,RF ∗).
2. (LF ∗,RF ∗) ` a : A iff a : A ∈ (LF ∗,RF ∗).
3. a : B ⊃ C ∈ (LF ∗,RF ∗) iff a : B ∈ (LF ∗,RF ∗) implies a : C ∈ (LF ∗,RF ∗).

4 Note that if A = ⊥, then we cannot apply RAA. But in that case, if

(LF i ∪ {a : ¬F⊥, c : ¬⊥},RF i ∪ {aRc}) ` aj : ⊥

then also
(LF i ∪ {a : ¬F⊥},RF i ∪ {aRc}) ` aj : ⊥ ,

which can only be the case if either LF i contains for someB both a : F¬B and a : FB, which
give rise to a ⊥ at c via aRc, or LF i contains a : FA, i.e. a : F⊥. In both such cases, it must
be that (LF i ∪ {a : ¬FA},RF i) is inconsistent, which contradicts the assumption.



170 8 Modal Labeled Deduction Systems for Quantum State Transformations

4. ai : FB ∈ (LF ∗,RF ∗) iff aiRaj ∈ (LF ∗,RF ∗) implies aj : B ∈ (LF ∗,RF ∗) for
all aj .

Proof. 1 and 2 follow immediately by definition. We only treat 4 as 3 follows analo-
gously. For the left-to-right direction, suppose that ai : FB ∈ (LF ∗,RF ∗). Then, by
(ii), (LF ∗,RF ∗) ` ai : FB, and, by FE, we have (LF ∗,RF ∗) ` aiRaj implies
(LF ∗,RF ∗) ` aj : B for all aj . By 1 and 2, conclude aiRaj ∈ (LF ∗,RF ∗) implies
aj : B ∈ (LF ∗,RF ∗) for all aj . For the converse, suppose that ai :FB 6∈ (LF ∗,RF ∗).
Then ai : ¬FB ∈ (LF ∗,RF ∗), and, by the construction of (LF ∗,RF ∗), there exists an
aj such that aiRaj ∈ (LF ∗,RF ∗) and aj : B 6∈ (LF ∗,RF ∗).

We can now define the canonical structure

S c = 〈M c,I c〉 = 〈W c, U c,M c, V c,I c〉 .

Definition 8.8. Given a maximal consistent context (LF ∗,RF ∗), we define the canonical
structure S c as follows:

• W c = {a | a ∈ (LF ∗,RF ∗)},
• (ai, aj) ∈ U c iff aiUaj ∈ (LF ∗,RF ∗),
• (ai, aj) ∈M c iff aiMaj ∈ (LF ∗,RF ∗),
• V c(r) = a iff a : r ∈ (LF ∗,RF ∗),
• I c(a) = a.

Note that the standard definition of Rc adopted for unlabeled modal logics, i.e.

(ai, aj) ∈ Rc iff {A | �A ∈ ai} ⊆ aj ,

is not applicable in our setting, since {A | �A ∈ ai} ⊆ aj does not imply ` aiRaj .
We would therefore be unable to prove completeness for r-formulas, since there would
be cases, e.g. when RF = {}, where 0 aiRaj but (ai, aj) ∈ Rc and thus �S c

aiRaj .
Hence, we instead define (ai, aj) ∈ Rc iff aiRaj ∈ (LF ∗,RF ∗); note that therefore
aiRaj ∈ (LF ∗,RF ∗) implies {A | �A ∈ ai} ⊆ aj . As a further comparison with the
standard definition, note that in the canonical model the label a can be identified with the
set of formulas {A | a : A ∈ (LF ∗,RF ∗)}. Moreover, we immediately have:

Fact 2 aiRaj ∈ (LF ∗,RF ∗) iff (LF ∗,RF ∗) �S c

aiRaj .

The deductive closure of (LF ∗,RF ∗) for r-formulas ensures not only completeness
for r-formulas, as shown in Theorem 8.10 below, but also that the conditions on Rc are
satisfied, so that S c is really a structure for MSQS. More concretely:

• U c is an equivalence relation by construction and rules Urefl , Usymm , and Utrans .
For instance, for transitivity, consider an arbitrary context (LF ,RF ) from which we
build S c. Assume (ai, aj) ∈ U c and (aj , ak) ∈ U c. Then aiUaj ∈ (LF ∗,RF ∗) and
ajUak ∈ (LF ∗,RF ∗). Since (LF ∗,RF ∗) is deductively closed, by 1 in Lemma 8.7
and rule Utrans , we have aiUak ∈ (LF ∗,RF ∗). Thus, (ai, uk) ∈ U c and U c is
indeed transitive.

• ∀v, w ∈W c. vMw =⇒ vUw holds by construction and rule UI .
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• ∀v ∈ W c. ∃w ∈ W c. vMw holds by construction and rule Mser . For the sake of
contradiction, consider an arbitrary ai and a variable a′j that do not satisfy the prop-
erty. Define (LF ′,RF ′) = (LF ∗,RF ∗) ∪ {aiMa′j}. Then it cannot be the case that
(LF ′,RF ′) ` α, for otherwise (LF ∗,RF ∗) ` αwould be derivable by an application
of the rule Mser . Thus, (LF ′,RF ′) 0 α. But then (LF ′,RF ′) must be in the chain
of contexts built in Lemma 8.7. So, by the maximality of (LF ∗,RF ∗), we have that
(LF ′,RF ′) = (LF ∗,RF ∗), contradicting our assumption. Hence, for some aj , the
r-formula aiMaj is in (LF ∗,RF ∗), which is what we had to show.

• ∀v, w ∈W c. vMw =⇒ wMw holds by construction and rule Msrefl .
• ∀v, w ∈ W c. vMv & vMw =⇒ v = w holds by construction and rules Msub1

and Msub2 since v is a classical world. Consider an arbitrary context (LF ,RF ) from
which we build S c and assume (ai, ai) ∈ M c and (ai, aj) ∈ M c. Then aiMai ∈
(LF ∗,RF ∗) and aiMaj ∈ (LF ∗,RF ∗). Thus, for each ai : A ∈ (LF ∗,RF ∗),
we also have aj : A ∈ (LF ∗,RF ∗); otherwise, since (LF ∗,RF ∗) is deductively
closed, we would have aj : ¬A ∈ (LF ∗,RF ∗) and also aj : A ∈ (LF ∗,RF ∗) by
1 in Lemma 8.7 and rule Msub1 , and thus a contradiction. Similarly, if aj : A ∈
(LF ∗,RF ∗) then ai : A ∈ (LF ∗,RF ∗) by rule Msub2 . Hence, for each m-formula
A, we have that ai : A ∈ (LF ∗,RF ∗) iff aj : A ∈ (LF ∗,RF ∗), which means that ai

and aj are equal with respect to m-formulas.
Under the same assumptions, we can similarly show that ai and aj are equal with re-
spect to r-formulas, i.e. that whenever (LF ∗,RF ∗) contains an r-formula that includes
ai then it also contains the same r-formula with aj substituted for ai, and vice versa.
To this end, we must consider eight different cases corresponding to eight different
r-formulas.
1. If akUai ∈ (LF ∗,RF ∗) for some ak, then from the assumption that aiMaj ∈

(LF ∗,RF ∗) we have aiUaj ∈ (LF ∗,RF ∗), by 1 in Lemma 8.7 and rule UI .
Therefore, akUaj ∈ (LF ∗,RF ∗) by rule Utrans .

2. We can reason similarly for ajUak ∈ (LF ∗,RF ∗) and also apply rules UI and
Utrans to conclude that then also aiUak ∈ (LF ∗,RF ∗).

3. If aiUak ∈ (LF ∗,RF ∗) for some ak, then from the assumption that aiMaj ∈
(LF ∗,RF ∗) we have aiUaj ∈ (LF ∗,RF ∗), by 1 in Lemma 8.7 and rule UI , and
thus ajUai ∈ (LF ∗,RF ∗), by rule Usymm . Therefore, ajUak ∈ (LF ∗,RF ∗)
by rule Utrans .

4. We can reason similarly for akUaj ∈ (LF ∗,RF ∗) and also apply rules UI ,
Usymm , and Utrans to conclude that then also akUai ∈ (LF ∗,RF ∗).

5. If akMai ∈ (LF ∗,RF ∗) for some ak, then from the assumption that aiMaj ∈
(LF ∗,RF ∗) we have akMaj ∈ (LF ∗,RF ∗), by 1 in Lemma 8.7 and the derived
rule Mtrans .

6. We can reason similarly for ajMak ∈ (LF ∗,RF ∗) and also apply rule Mtrans to
conclude that then also aiUak ∈ (LF ∗,RF ∗).

7. If aiMak ∈ (LF ∗,RF ∗) for some ak, then from the assumptions that aiMai ∈
(LF ∗,RF ∗) and aiMaj ∈ (LF ∗,RF ∗) we have ajMak ∈ (LF ∗,RF ∗), by 1 in
Lemma 8.7 and rule Msub1 .

8. We can reason similarly for akMaj ∈ (LF ∗,RF ∗) and apply rule Msub2 to
conclude that then also akMai ∈ (LF ∗,RF ∗).

Hence, ai and aj are equal also with respect to r-formulas, and thus ai = aj whenever
(ai, ai) ∈M c and (ai, aj) ∈M c, which is what we had to show.
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By Lemma 8.7 and Fact 2, it follows that:

Lemma 8.9. a : A ∈ (LF ∗,RF ∗) iff (LF ∗,RF ∗) �S c

a : A.

Proof. We proceed by induction on the grade of a : A, and we treat only the step case
where a : A is ai : FB; the other cases follow analogously. For the left-to-right di-
rection, assume ai : FB ∈ (LF ∗,RF ∗). Then, by Lemma 8.7, aiRaj ∈ (LF ∗,RF ∗)
implies aj : B ∈ (LF ∗,RF ∗), for all aj . Fact 2 and the induction hypothesis yield that
(LF ∗,RF ∗) �S c

aj : B for all aj such that (LF ∗,RF ∗) �S c

aiRaj , i.e. (LF ∗,RF ∗)
�S c

ai : FB by Definition 8.3. For the converse, assume ai : ¬FB ∈ (LF ∗,RF ∗).
Then, by Lemma 8.7, aiRaj ∈ (LF ∗,RF ∗) and aj : ¬B ∈ (LF ∗,RF ∗), for some aj .
Fact 2 and the induction hypothesis yield (LF ∗,RF ∗) �S c

aiRaj and (LF ∗,RF ∗) �S c

aj : ¬B, i.e. (LF ∗,RF ∗) �S c

ai : ¬FB by Definition 8.3.

We can now finally show:

Theorem 8.10 (Completeness of MSQS). Γ � α implies Γ ` α.

Proof. If (LF ,RF ) 0 biRbj , then biRbj 6∈ (LF ∗,RF ∗), and thus (LF ∗,RF ∗) 2S c

biRbj by Fact 2.
If (LF ,RF ) 0 b : A, then (LF ∪ {b : ¬A},RF ) is consistent; otherwise there exists

a bi such that (LF ∪ {b : ¬A},RF ) ` bi : ⊥, and then (LF ,RF ) ` b : A. Therefore,
by Lemma 8.6, (LF ∪ {b : ¬A},RF ) is included in a maximally consistent context
((LF ∪{b : ¬A})∗,RF ∗). Then, by Lemma 8.9, ((LF ∪{b : ¬A})∗,RF ∗) �S C

b : ¬A,
i.e. ((LF ∪ {b : ¬A})∗,RF ∗) 2S c

b : A, and thus (LF ,RF ) 2S c

b : A.

8.4 Generic measurements

In quantum computing, not all measurements are required to be total: think, for example,
of the case of observing only the first qubit of a quantum state. To this end, in this section,
we propose MSpQS, a variant of MSQS that provides a modal system representing all
the possible (thus not necessarily total) measurements. We obtain MSpQS from MSQS
by means of the following changes:

• The alphabet of the modal language contains the unary modal operator � instead of
�, with corresponding �, where �A intuitively means that A is true in each quantum
state obtained by a measurement.

• The set of relational formulas contains expressions of the form xPy instead of xMy,
and we now write xRy to denote a generic r-formula, with R ∈ {U,P}.

• The rules of MSpQS are given in Figure 8.4. In particular,F is either � (as before)
or �, for which then R is P, and whose properties are formalized by the following
additional rules:
– If xPy then there is a specific unitary transformation (depending on x and y) that

generates y from x: rule PUI .
– The measurement process is transitive: rule Ptrans .
– There are (always reachable) classical worlds: class says that y is a classical world

reachable from world x by a measurement.
– Invariance with respect to classical worlds for measurement: rules Psub1 and

Psub2 .
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⊃ I, ⊃ E, RAA, ⊥E, FI, FE, Urefl , Usymm, Utrans,

xPy

xUy PUI
xPy yPz

xPz
Ptrans

[xPy] [yPy]....
α
α class

α(x) xPx xPy

α(y/x)
Psub1

α(y) xPx xPy

α(x/y)
Psub2

In FI , y is fresh: it is different from x and does not occur in any assumption on which y : A
depends other than xRy.
In class , y is fresh: it is different from x and does not occur in α nor in any assumption on which α
depends other than xPy and yPy.
We refer to the fresh y in FI and class as the parameter of the rule.

Fig. 8.4. The rules of MSpQS

[x : �¬(A ⊃ �A)]2 [xPy]1

y : ¬(A ⊃ �A)
�E

[y : A]3 [yPy]1 [yPz]4

z : A
Psub1

y : �A �I4

y : A ⊃ �A ⊃ I3

y : ⊥ ¬E

x : ¬� ¬(A ⊃ �A)
¬I2

x : ¬� ¬(A ⊃ �A)
class1

Fig. 8.5. An example proof in MSpQS

Derivations and proofs in MSpQS are defined as for MSQS. For instance, in addition
to the formulas for � already listed for MSQS, the following labeled formula schemata
are all provable in MSpQS (as shown, e.g., for formula 3 in Figure 8.5):

1. x : �A ⊃ �A
(it is always possible to perform a measurement of a quantum state).

2. x : �A ⊃ � �A
(measurements are composable).

3. x : �(A ⊃ �A), i.e. x : ¬� ¬(A ⊃ �A)
(it is always possible to perform a measurement with a complete reduction of a quan-
tum state to a classical one).

The semantics is also obtained by simple changes with respect to the definitions of
Section 8.3. A frame is a tuple F = 〈W,U, P 〉, where P ⊆W ×W and vPw means that
w is obtained by means of a measurement of v, with the following properties:

(i) ∀v, w. vPw =⇒ vUw
(as for (i) in Section 8.3).
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(ii) ∀v, w′, w′′. vPw′ & w′Pw′′ =⇒ vPw′′

(measurements are composable).
(iii) ∀v. ∃w. vPw & wPw

(each quantum state v can be reduced to a classical one w by means of a measure-
ment).

(iv) ∀v, w. vPv & vPw =⇒ v = w
(each measurement of a classical state v has v as outcome).

Models and structures are defined as before, with I (P) = P , while the truth relation
now comprises the clauses

�M ,w �A iff ∀w′. wPw′ =⇒ �M ,w′ A
�M ,I xPy iff I (x)PI (y)

Finally, MSpQS is also sound and complete.

Theorem 8.11 (Soundness and completeness of MSpQS). Γ ` α iff Γ � α. �

We can reason similarly to what we did for MSQS to show the soundness and com-
pleteness of MSpQS with respect to the corresponding semantics: Theorem 8.11 follows
from Theorems 8.12 and 8.13 below.

Theorem 8.12 (Soundness of MSpQS). Γ ` α implies Γ � α.

Proof. We let M be an arbitrary model and prove that if Γ ` α then �I Γ implies �I α
for any I . The proof proceeds by induction on the structure of the derivation of α from
Γ . The base case, where α ∈ Γ , is trivial. There is one step case for each rule of MSpQS,
where the soundness of the rules ⊃ I , ⊃ E, RAA, ⊥E, Urefl , Usymm , Utrans follows
exactly like in the proof of Theorem 8.5.

The soundness of the rules FI and FE follows exactly like in the proof of Theo-
rem 8.5, with the only difference that whenF is � then R is P.

The rule PUI is sound by property (i) in the definition of the semantics for MSpQS.
The rule Ptrans is sound by property (ii) in the definition of the semantics for

MSpQS.
The soundness of the rule class follows like for the soundness of the rule Mser in the

proof of Theorem 8.5, this time exploiting property (iii) in the definition of the semantics
for MSpQS.

The soundness of the rules Psub1 and Psub2 follows like for the soundness of the
rules Msub1 and Msub2 in the proof of Theorem 8.5, this time exploiting property (iv) in
the definition of the semantics for MSpQS.

To prove completeness (Theorem 8.10), we proceed like for MSQS, mutatis mutan-
dis in the construction of the canonical model. In particular, given a maximal consistent
context (LF ∗,RF ∗), we define the canonical structure S c = 〈W c, U c, P c, V c,I c〉 by
setting

• (ai, aj) ∈ P c iff aiPaj ∈ (LF ∗,RF ∗).

To show that the conditions on Rc are satisfied, so that S c is really a structure for
MSpQS, we reuse the results proved for MSQS and in addition show the following:

• ∀v, w ∈W c. vPw =⇒ vUw holds by construction and rule PUI .
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• ∀v, w′, w′′ ∈ W c. vPw′ & w′Pw′′ =⇒ vPw′′ holds by construction and rule
Ptrans .

• ∀v ∈ W c. ∃w ∈ W c. vPw & wPw holds by construction and rule class . For the
sake of contradiction, consider an arbitrary ai and a variable a′j that do not satisfy the
property. Define (LF ′,RF ′) = (LF ∗,RF ∗)∪{aiPa

′
j , a

′
jPa

′
j}. Then it cannot be the

case that (LF ′,RF ′) ` α, for otherwise (LF ∗,RF ∗) ` α would be derivable by an
application of the rule class . Thus, (LF ′,RF ′) 0 α. But then (LF ′,RF ′) must be in
the chain of contexts built in Lemma 8.7. So, by the maximality of (LF ∗,RF ∗), we
have that (LF ′,RF ′) = (LF ∗,RF ∗), contradicting our assumption. Hence, for some
aj , the r-formulas aiPaj and ajPaj are both in (LF ∗,RF ∗), which is what we had to
show.

• ∀v, w ∈ W c. vPv & vPw =⇒ v = w holds by construction and rules Psub1 and
Psub2 since v is a classical world. Consider an arbitrary context (LF ,RF ) from
which we build S c and assume (ai, ai) ∈ P c and (ai, aj) ∈ P c. Then aiPai ∈
(LF ∗,RF ∗) and aiPaj ∈ (LF ∗,RF ∗). Thus, for each ai : A ∈ (LF ∗,RF ∗),
we also have aj : A ∈ (LF ∗,RF ∗); otherwise, since (LF ∗,RF ∗) is deductively
closed, we would have aj : ¬A ∈ (LF ∗,RF ∗) and also aj : A ∈ (LF ∗,RF ∗) by
1 in Lemma 8.7 and rule Psub1 , and thus a contradiction. Similarly, if aj : A ∈
(LF ∗,RF ∗) then ai : A ∈ (LF ∗,RF ∗) by rule Psub2 . Hence, for each m-formula
A, we have that ai : A ∈ (LF ∗,RF ∗) iff aj : A ∈ (LF ∗,RF ∗), which means that ai

and aj are equal with respect to m-formulas.
Under the same assumptions, we can similarly show that ai and aj are equal with re-
spect to r-formulas, i.e. that whenever (LF ∗,RF ∗) contains an r-formula that includes
ai then it also contains the same r-formula with aj substituted for ai, and vice versa.
To this end, we must consider eight different cases corresponding to eight different
r-formulas.
1. If akUai ∈ (LF ∗,RF ∗) for some ak, then from the assumption that aiPaj ∈

(LF ∗,RF ∗) we have aiUaj ∈ (LF ∗,RF ∗), by 1 in Lemma 8.7 and rule PUI .
Therefore, akUaj ∈ (LF ∗,RF ∗) by rule Utrans .

2. We can reason similarly for ajUak ∈ (LF ∗,RF ∗) and also apply rules PUI and
Utrans to conclude that then also aiUak ∈ (LF ∗,RF ∗).

3. If aiUak ∈ (LF ∗,RF ∗) for some ak, then from the assumption that aiPaj ∈
(LF ∗,RF ∗) we have aiUaj ∈ (LF ∗,RF ∗), by 1 in Lemma 8.7 and rule
PUI , and thus ajUai ∈ (LF ∗,RF ∗), by rule Usymm . Therefore, ajUak ∈
(LF ∗,RF ∗) by rule Utrans .

4. We can reason similarly for akUaj ∈ (LF ∗,RF ∗) and also apply rules PUI ,
Usymm , and Utrans to conclude that then also akUai ∈ (LF ∗,RF ∗).

5. If akPai ∈ (LF ∗,RF ∗) for some ak, then from the assumption that aiPaj ∈
(LF ∗,RF ∗) we have akPaj ∈ (LF ∗,RF ∗), by 1 in Lemma 8.7 and the rule
Ptrans .

6. We can reason similarly for ajPak ∈ (LF ∗,RF ∗) and also apply rule Ptrans to
conclude that then also aiUak ∈ (LF ∗,RF ∗).

7. If aiPak ∈ (LF ∗,RF ∗) for some ak, then from the assumptions that aiPai ∈
(LF ∗,RF ∗) and aiPaj ∈ (LF ∗,RF ∗) we have ajPak ∈ (LF ∗, RF ∗), by 1 in
Lemma 8.7 and rule Psub1 .

8. We can reason similarly for akPaj ∈ (LF ∗,RF ∗) and apply rule Psub2 to con-
clude that then also akPai ∈ (LF ∗,RF ∗).
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Hence, ai and aj are equal also with respect to r-formulas, and thus ai = aj whenever
(ai, ai) ∈ P c and (ai, aj) ∈ P c, which is what we had to show.

Proceeding like for MSQS, we then have:

Theorem 8.13 (Completeness of MSpQS). Γ � α implies Γ ` α. �

8.5 Normalization

In this section, we show that each derivation of an l-formula in MSQS and MSpQS can
be reduced to a normal form that does not contain unnecessary detours and satisfies a
subformula property, from which we then obtain syntactic proofs of the consistency of
both MSQS and MSpQS. We first consider MSQS and then discuss the extensions and
changes needed in the case of MSpQS.

8.5.1 Normalization for MSQS

We begin by proving a useful lemma about parameters, i.e., as we mentioned above, the
fresh variables used in the applications of FI5 and Mser . By extension, we speak of a
parameter y of a derivation if y is the parameter of some application of FI or Mser in
the derivation.

Lemma 8.14 (Parameter condition). Let Π be an MSQS-derivation of x : A from a set
Γ of assumptions. Then we can build an MSQS-derivation Π ′ of x : A from Γ such that:

• each parameter is the parameter of exactly one application ofFI or Mser , and
• the parameter of any application of FI or Mser occurs only in the sub-derivation

above that application of the rule.

Proof. The lemma follows quite straightforwardly by induction on the derivation of Γ `
x : A, where the proof essentially boils down to a systematic renaming of the parameters.

In the remainder of the thesis, we thus assume that all the derivations satisfy the pa-
rameter condition.

To show normalization, we follow, where possible, standard presentations such as [79,
80,95]. We begin by introducing some restrictions to simplify the development; in partic-
ular, we restrict applications of RAA and ⊥E to the case where the conclusion x : A is
atomic, i.e. A is atomic.6 Moreover, we also restrict applications of Msub1 , Msub2 ans
Mser to atomic conclusions.
5 We recall the convention stated in Section 8.2.2: if F is � then R is U, if F is � then R is M.
6 When presenting classical first-order logic, Prawitz [79] first introduces a natural deduction

system consisting of an elimination rule for ⊥ and introduction and elimination rules for all
the other connectives, and then, to show normalization, restricts his attention to the functionally
complete ⊥, ∧, ⊃, ∀ fragment, where RAA is restricted to atomic conclusions (that are also
different from ⊥). In this way, he avoids having to treat the rules for ∨ and ∃, which behave
‘badly’ for normalization. Here, since we have already focused on the functionally complete ⊥,
⊃, F system, we do not need further restrictions than the ones on RAA and⊥E (where however
we allow the atomic conclusion A to be falsum itself, albeit labeled differently), as well as on
Msub1 , Msub2 , and Mser .
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Lemma 8.15. If Γ ` α in MSQS, then there is an MSQS-derivation of α from Γ where
the conclusions of applications of RAA, ⊥E, Msub1 , Msub2 , and Mser are atomic.

Note that we do not need to consider derivations of r-formulas, e.g. by ⊥E, since in
MSQS we only have atomic r-formulas by definition; the same holds for MSpQS. We
can then prove the above lemma as follows:

Proof. We first show that any application of RAA with a non-atomic conclusion can be
replaced with a derivation in which RAA is applied only to l-formulas of smaller grade.
Note that we only show the part of the derivation where the transformation, denoted by
 , actually takes place; the missing parts remain unchanged.

There are two possible cases, depending on whether the conclusion is x : B ⊃ C or
x :FB.
Case 1: We distinguish two subcases, depending on whether C is ⊥ or not. If C 6= ⊥,
then

[x : (B ⊃ C) ⊃ ⊥]1
Π
y : ⊥

x : B ⊃ C RAA1

 

[x : C ⊃ ⊥]2
[x : B ⊃ C]1 [x : B]3

x : C ⊃ E

x : ⊥ ⊃ E

x : (B ⊃ C) ⊃ ⊥ ⊃ I1

Π
y : ⊥
x : C RAA2

x : B ⊃ C ⊃ I3

If C = ⊥, then

[x : (B ⊃ ⊥) ⊃ ⊥]1
Π
y : ⊥

x : B ⊃ ⊥ RAA1

 

[x : B ⊃ ⊥]1 [x : B]2

x : ⊥ ⊃ E

x : (B ⊃ ⊥) ⊃ ⊥ ⊃ I1

Π
y : ⊥
x : ⊥ ⊥E

x : B ⊃ ⊥ ⊃ I2

Case 2: We distinguish two subcases, depending on whether B is ⊥ or not. If B 6= ⊥,
then

[x :FB ⊃ ⊥]1
Π
y : ⊥
x :FB RAA1

 

[y : B ⊃ ⊥]2
[x :FB]1 [xRy]3

y : B
FE

y : ⊥ ⊃ E

x : ⊥ ⊥E
x :FB ⊃ ⊥ ⊃ I1

Π
y : ⊥
y : B RAA2

x :FB FI
3

where, if necessary, we follow Lemma 8.14 to rename the parameters in the derivation to
avoid possible clashes due to the new application ofFI .

If B = ⊥, then
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[x :F⊥ ⊃ ⊥]1
Π
y : ⊥
x :F⊥ RAA1

 

[x :F⊥]1 [xRy]2

y : ⊥ ⊃ E

x : ⊥ ⊥E
x :F⊥ ⊃ ⊥ ⊃ I1

Π
y : ⊥
x :FB FI

2

We proceed analogously for ⊥E: we show that any application of ⊥E with a non-
atomic conclusion can be replaced with a derivation in which ⊥E is applied only to
l-formulas of smaller grade. Hence, there are again two possible cases, depending on
whether the conclusion is x : B ⊃ C or x :FB.
Case 1:

Π
y : ⊥

x : B ⊃ C
⊥E  

Π
y : ⊥
x : C ⊥E

x : B ⊃ C
⊃ I

Case 2:
Π
y : ⊥
x :FB ⊥E  

Π
y : ⊥
z : B ⊥E
x :FB

FI

Applications of Msub1 and Msub2 can be reduced to atomic formulas as follows,
where we now consider the two subcases for � and � explicitly:

Π1

x : A ⊃ B
Π2

xMx
Π3

xMy
y : A ⊃ B

Msub1
 

Π1

x : A ⊃ B

[y : A]1
Π2

xMx
Π3

xMy
x : A Msub2

x : B ⊃ E
Π2

xMx
Π3

xMy
y : B Msub1

y : A ⊃ B ⊃ I1
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Π1

y : A ⊃ B
Π2

xMx
Π3

xMy
x : A ⊃ B

Msub2
 

Π1

y : A ⊃ B

[x : A]1
Π2

xMx
Π3

xMy
y : A Msub1

y : B ⊃ E
Π2

xMx
Π3

xMy
x : B Msub2

x : A ⊃ B ⊃ I1

Π1

x : �A
Π2

xMx
Π3

xMy
y : �A Msub1

 
Π1

x : �A
[yUz]1

Π2

xMx
Π3

xMy
xUz Msub2

z : A �E

y : �A �I
1

Π1

y : �A
Π2

xMx
Π3

xMy
x : �A Msub2

 
Π1

y : �A
[xUz]1

Π2

xMx
Π3

xMy
yUz Msub1

z : A �E

x : �A �I
1

Π1

x : �A
Π2

xMx
Π3

xMy
y : �A Msub1

 
Π1

x : �A
[yMz]1

Π2

xMx
Π3

xMy
xMz Msub2

z : A �E

y : �A �I
1

Π1

y : �A
Π2

xMx
Π3

xMy
x : �A Msub2

 
Π1

y : �A
[xMz]1

Π2

xMx
Π3

xMy
yMz Msub1

z : A �E

x : �A �I
1

We proceed in the same way for the Mser rule.
Case 1:

[xMy]1
Π

u : B ⊃ C
u : B ⊃ C Mser1

 

[xMy]1
Π

u : B ⊃ C [u : B]2

u : C ⊃ E

u : C Mser1

u : B ⊃ C ⊃ I2

Case 2:
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[xMy]1
Π

u :FA
x :FA Mser1

 

[xMy]1
Π

u :FA [uRw]2

w : A
FE

w : A Mser1

u :FA FI
2

where we choose the parameter w so to allow for the application ofFI .
By iterating these transformations, we transform an arbitrary MSQS-derivation Γ `

α into an MSQS-derivation of α from Γ where the conclusions of applications of RAA,
⊥E, Msub1 , Msub2 , and Mser are atomic.

An immediate consequence of this lemma is the equivalence of the restricted and the
unrestricted natural deduction systems. In the rest of this section, we will therefore assume
applications of RAA, ⊥E, Msub1 , Msub2 , and Mser to be restricted in this way.

In a generic derivation, we can have a detour caused by the application of an elimina-
tion rule immediately below the application of the corresponding introduction rule. That
is, if an l-formula is introduced and then immediately eliminated, then we can avoid in-
troducing it in the first place; recall that in MSQS we only have atomic r-formulas by
definition, so we do not need to consider the detours that would arise from non-atomic
r-formulas. Formally, since the same formula may appear several times in a derivation,
we distinguish these different formula occurrences to define:

Definition 8.16. An l-formula occurrence x : A is a cut in an MSQS-derivation when
it is both the conclusion of an introduction rule and the major premise of an elimination
rule. We call x : A the cut-formula of the cut.

An MSQS-derivation is in normal form (is a normal MSQS-derivation) iff it contains
no cut-formulas.

Like for any “good” deduction system, we prove a normalization result that shows
how to transform (in an effective way) each MSQS-derivation into a normal one. In order
to remove cut-formulas, we introduce the notion of contraction, where the contraction
relation . is defined as follows:

[x : A]
Π1

x : B
x : A ⊃ B

⊃ I Π2

x : A
x : B ⊃ E

.

Π2

x : A
Π1

x : B

(.⊃)

[xRy]
Π1

y : A
x :FA

FI Π2

xRz

z : A
FE

.

Π2

xRz
Π1[z/y]
z : A

(.F)

where Π ′[z/y] is obtained from Π by systematically substituting z for y. Note that the
correctness of the contractions, and also of the substitution Π ′[z/y], is guaranteed by
the assumption that all the derivations satisfy the parameter condition of Lemma 8.14.
Note also that it suffices to consider the generic modal operator F since the two modal
operators � and � do not interfere (nor do the corresponding contractions).
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Cuts are removed from a derivation by finitely many applications of contractions.
Context closure of the contraction relation leads to the formal definition of the notions of
reduction and normalization.

Definition 8.17. We say that an MSQS-derivationΠ1 immediately reduces to an MSQS-
derivation Π2, in symbols Π1 � Π2, iff there exist MSQS-derivations Π3 and Π4 such
that Π3 . Π4 and Π2 is obtained by replacing Π3 with Π4 in Π1 .

Hence, if Π is a normal MSQS-derivation (i.e. it contains no cut-formulas), there is
no Π ′ such that Π � Π ′.

Definition 8.18. Writing � for the reflexive and transitive closure of �, we say that an
MSQS-derivation Π normalizes to another MSQS-derivation Π ′ if Π � Π ′ and Π ′ is
in normal form.

Definition 8.19. We define the rank rank of an l-formula as rank(x : A) = rank(A)
where

• rank(A) = 0 if A is atomic;
• rank(A ⊃ B) = max{rank(A), rank(B)}+ 1;
• rank(FA) = rank(A) + 1 .

Then, for Π a derivation in MSQS,

• a maximal cut-formula in Π is a cut-formula in Π with maximal rank;
• d = max{rank(x : A) | x : A is a cut-formula in Π}, where max{} = 0;
• cr(Π) = (d, n) is the cut rank of Π , where n is the number of maximal cut-formulas

in Π and where cr(Π) = (0, 0) when Π has no cuts.

The ordering on cut ranks is lexicographic: (d, n) < (d′, n′) iff d < d′ or both d = d′

and n < n′. To prove our normalization result, we will systematically lower the cut rank
of a derivation until all cuts have been eliminated. Before we do that, we prove a useful
lemma:

Lemma 8.20. Let Π be an MSQS-derivation with a cut at the bottom, and let this cut
have rank q while all the other cuts in Π have rank < q. Then the contraction of Π at this
lowest cut yields a derivation with only cuts of rank < q.

Proof. Consider all the possible cuts at the bottom of Π and check the ranks of the cuts
after the contraction. The proof follows since the two contractions (.⊃) and (.F) explic-
itly give formulas with lower rank, while nothing happens in Π1 and Π2, so all the cuts
in the derivation resulting from the contraction have rank < q.

Lemma 8.21. LetΠ be an MSQS-derivation. If cr(Π) > (0, 0), then there is an MSQS-
derivation Π ′ with Π .Π ′ and cr(Π ′) < cr(Π).

Proof. Select a maximal cut-formula in Π such that all cuts above it have lower rank.
Apply the appropriate contraction to this maximal cut. Then the part of Π ending in the
conclusion of the cut is replaced, by Lemma 8.20, by a sub-derivation in which all cut-
formulas have lower rank. If the maximal cut-formula was the only one, then d is lowered
by 1, otherwise n is lowered by 1 and d remains unchanged. In both cases, cr(Π) gets
smaller. (Note that in the first case n may become much larger, but that does not matter in
the lexicographic order.)
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We are now in a position to give our desired normalization results.

Theorem 8.22. Every MSQS-derivation of x : A from Γ reduces to an MSQS-derivation
in normal form.

Proof. By Lemma 8.21, the cut rank can be lowered to (0, 0) in a finite number of steps,
hence the last derivation in the reduction sequence has no more cuts.

Normal MSQS-derivations possess a well-defined structure that has several desirable
properties. Specifically, by analyzing the structure of a normal MSQS-derivation, we can
characterize its form: we can identify particular sequences of formulas, and show that in
these sequences there is an ordering on inferences. By exploiting this ordering, we can
then show a subformula property for MSQS.

Definition 8.23. A thread in an MSQS-derivationΠ is a sequence of formulasα1, . . . , αn

such that (i) α1 is an assumption of Π , (ii) αi stands immediately above αi+1, for
1 ≤ i < n− 1, and (iii) αn is the conclusion of Π .

We further characterize a thread in terms of the formulas occurring in it: an l-formula-
thread is a thread where α1, . . . , αn are all l-formulas, and an r-formula-thread is a thread
where α1, . . . , αn are all r-formulas.

A track in an MSQS-derivation Π is an initial part of a thread in Π which stops
either at the first minor premise of an elimination rule in the thread or at the conclusion
of the thread. We call main track a track that is also a thread and ends at the conclusion
of the derivation.

Definition 8.24. B is a subformula of A iff (i) A is B; or (ii) A is A1 ⊃ A2 and B is a
subformula ofA1 orA2; or (iii)A isFA1 andB is a subformula ofA1. We say that y : B
is a labeled subformula (or, slightly abusing notation, simply “subformula”) of x : A iff
B is a subformula of A.

One interesting property of normal MSQS-derivations, which can be read off from
their structure, is that tracks in a normal MSQS-derivation have a standard form:

Lemma 8.25. Let Π be a normal MSQS-derivation, and let t be a track α1, . . . , αn in
Π . Then t contains a subsequence of formulas αi, . . . , αk, called the minimal part, which
separates two possibly empty parts of t, called the elimination part and the introduction
part of t, where:

• each formula αj in the elimination part, i.e. for j < i, is an l-formula and is the major
premise of an application of an elimination rule and contains αj+1 as a subformula;

• each formula αs in the minimal part except the last one is the premise of an applica-
tion of RAA, ⊥E, Msub1 , Msub2 , Mser , Urefl , Usymm , Utrans , UI , or Msrefl ;

• each formula αj in the introduction part except the last one, i.e. for k < j < n, is an
l-formula, is a premise of an introduction rule, and is a subformula of αj+1;

• Π has at least one main track, ending in the conclusion.

The lemma follows quite straightforwardly by observing that in a track in a normal
MSQS-derivation no introduction rule application can precede an application of an elim-
ination rule; hence, if the first rule is an elimination, then all eliminations come first.

From these considerations, we can derive some other properties of normal tracks. For
example, we can observe that if a thread t has an r-formula as top formula, then t is an
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r-formula–thread and if we extract a track t′ from t, then we have empty elimination and
introduction parts. Moreover, let α1, . . . , αn be a thread and let α1, . . . , αi be l-formulas;
if αi+1 is an r-formula, then all αj , for i < j ≤ n, are r-formulas.

We can further observe that a “mixed” track (i.e. a track consisting of l-formulas and
r-formulas) has the following structure: an introduction part of l-formulas; a minimal part
in which an r-formula is introduced by an application of ⊥E and a (possibly empty)
sequence of applications of RAA, Msub1 , Msub2 , Mser , Urefl , Usymm , Utrans , UI ,
Msrefl ; and an empty introduction part.

The above results allow us to show that normal derivations in MSQS satisfy the fol-
lowing subformula property.

Definition 8.26. Given an MSQS-derivation Π of x : A from a set Γ of assumptions, let
S be the set of subformulas of the formulas in {C | z : C ∈ Γ ∪ {x : A} for some z},
i.e. S is the set consisting of the subformulas of the assumptions Γ and of the conclusion
x : A.

We say that Π satisfies the subformula property iff for each l-formula occurrence
y : B in the derivation (i) B ∈ S; or (ii) B is an assumption D ⊃ ⊥ discharged by an
application of RAA, where D ∈ S; or (iii) B is an occurrence of ⊥ obtained by ⊃ E
from an assumption D ⊃ ⊥ discharged by an application of RAA, where D ∈ S; or
(iv) B is an occurrence of ⊥ obtained by an application of ⊥E.

In other words, we define an MSQS-derivation to have the subformula property iff
for all y : B in the derivation, either B is a subformula of the assumptions or of the
conclusion of the derivation, or B is the negation of such a subformula and is discharged
by RAA, or B is an occurrence of ⊥ immediately below the negation of a subformula,
or B is an occurrence of ⊥ immediately below another occurrence of ⊥ that is labeled
differently.

Theorem 8.27. Every normal derivation of x : A from Γ in MSQS satisfies the subfor-
mula property.

Proof. We introduce an ordering of the tracks in a normal MSQS-derivation depending
on their distance from the main track: the order of a track is o(tm) = 0 for a main
track tm, and o(t) = o(t′) +1 if the end formula of a generic track t is a minor premise
belonging to a major premise in t′.

Consider now an l-formula occurrence y : B in a normal derivation Π of x : A from
Γ in MSQS. If y : B occurs in the elimination part of its track t, then it is a subformula
of the assumptions at the top of t. If not, then it is a subformula of the l-formula z : C
at the end of t. Hence, z : C is a subformula of an l-formula w : D of a track t1 with
o(t1)〈o(t). Repeating the argument, we find that y : B is a subformula of an assumption
in Γ or of the conclusion x : A. This closes the case for all assumptions, so let us now
consider the other formulas.

If y : B is a subformula of a discharged assumption, then it must be a subformula of
the resulting implicational l-formula in the case of an application of ⊃ I , or of the result-
ing l-formula in the case of an application of RAA, or (and these are the only exceptions)
it is itself discharged by an application of RAA or it is z : ⊥ (for some z) immediately
following such an assumption or an application of ⊥E.

In proof theory it is standard to give purely syntactical proofs of consistency. The
consistency of MSQS follows as a corollary from previous results:



184 8 Modal Labeled Deduction Systems for Quantum State Transformations

Corollary 8.28. MSQS is consistent.

Proof. Suppose, for the sake of contradiction, that ` x : ⊥ in MSQS. Then there is a
normal derivation ending in ` x : ⊥ with all assumptions discharged. There is a track
through the conclusion; in this track there are no introduction rules, so the top assumption
is not discharged. Contradiction.

8.5.2 Normalization for MSpQS

We can again simplify the development by restricting applications of RAA and ⊥E to
the case where the conclusion x : A is atomic, and we can also restrict applications of
Psub1 , Psub2 , and class to atomic conclusions, where, as for MSQS, we do not need
to consider derivations of r-formulas, e.g. by ⊥E, since also in MSpQS we only have
atomic r-formulas by definition.

Lemma 8.29. If Γ ` α in MSpQS, then there is an MSpQS-derivation of α from Γ
where the conclusions of applications of RAA,⊥E, Psub1 , Psub2 , and class are atomic.

Recalling that the grade of an l-formula x : A is the number of times⊃ andF occur inA,
whereF is either � or � for MSpQS, we can prove the lemma and thus the equivalence
of the restricted and the unrestricted system MSpQS as follows.

Proof. By considering the same transformations employed for MSQS in Lemma 8.15, we
can replace applications of RAA and ⊥E with non-atomic conclusions with derivations
in which RAA and ⊥E are applied only to l-formulas of smaller grade.

Applications of Psub1 and Psub2 can be reduced to atomic formulas as follows,
where we consider only the two subcases for � and �, as the subcases for ⊃ follow like
those in Lemma 8.15:
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Π1

x : �A
Π2

xPx
Π3

xPy

y : �A Psub1
 

Π1

x : �A
[yUz]1

Π2

xPx
Π3

xPy

xUz Psub2

z : A �E

y : �A �I
1

Π1

y : �A
Π2

xPx
Π3

xPy

x : �A Psub2
 

Π1

y : �A
[xUz]1

Π2

xPx
Π3

xPy

yUz Psub1

z : A �E

x : �A �I
1

Π1

x : �A
Π2

xPx
Π3

xPy

y : �A Psub1
 

Π1

x : �A
[yPz]1

Π2

xPx
Π3

xPy

xPz
Psub2

z : A �E

y : �A �I1

Π1

y : �A
Π2

xPx
Π3

xPy

x : �A Psub2
 

Π1

y : �A
[xPz]1

Π2

xPx
Π3

xPy

yPz
Psub1

z : A �E

x : �A �I1

For class , similarly to Mser in Lemma 8.15, we have

[xPy]1 [yPy]1
Π

u : B ⊃ C
u : B ⊃ C class1

 

[xPx]1 [yPy]1
Π

u : B ⊃ C [u : B]2

u : C ⊃ E

u : C class1

u : B ⊃ C ⊃ I2

[xPy]1 [yPy]1
Π

u :FA
u :FA class1

 

[xPy]1 [yPy]1
Π

u :FA [uRw]2

w : A
FE

w : A class1

w : A FE
2

where we choose the parameter w so to allow for the application ofFI .
By iterating these transformations, we transform an arbitrary MSpQS-derivation Γ `

α into an MSpQS-derivation of α from Γ where the conclusions of applications of RAA,
⊥E, Psub1 , Psub2 and class are atomic.

The contractions that remove cut-formulas from a derivation in MSpQS are the same
as the ones for MSQS, where in this caseF stands for � and �. Hence, proceeding as in
the previous section, mutatis mutandis, we obtain a normalization result for MSpQS and
the corresponding consequences.
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Theorem 8.30. Every MSpQS-derivation of x : A from Γ reduces to an MSpQS-
derivation in normal form. �

Theorem 8.31. Every normal derivation of x : A from Γ in MSpQS satisfies the subfor-
mula property. �

Corollary 8.32. MSpQS is consistent. �
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