VIS Usear’'s Manual

Tiziano Villa Gitanjali Swamy Thomas Shiple

The VIS Group

Adnan Aziz*
Robert Braytont
Stephen Edwardst
Gary Hachtel?
Sunil Khatrit
Yuji Kukimoto!
Woohyuk Lee?
Abelardo Pardo?
Shaz Qadeer?
Rajeev Ranjant
Alberto Sangiovanni-Vincentellit
Shaker Sarwary®
Thomas Shiplet
Fabio Somenzi?
Gitanjali Swamy?
Tiziano Villat

tUniversity of California, Berkeley
2University of Colorado, Boulder
3Now at L attice Semiconductor

Contents

Introduction to VIS

11 WhatisVIS?

12 History o e e

1.3 Oveviewof VIS e e
131 VISvPhilosophy
132 VISsPhilosophy

Describing Designsfor VIS
21 VeilogHDL e
22 viL2wv: fromVerilogtoBLIF-MV . . . o 0oL
2.3 Featuresof Verilog Supported by viL2My . . . oL L oo o
231 ASSgNMENtS e
232 Nondeterminism e
233 SymbolicVariables
24 Implicitvs. ExplicitClocking e
25 Veilogforvi2myv: Hintsand Traps o o oo n o
26 BLIF-MV . o e e
27 BLIF . . .
2.8 Nondeterminism and Incomplete Specification.o L.
29 Example aTrafficLightController L.

Introduction to Formal Verification

3.1 Modd Checking of Temporal Logic
311 ComputationTreeLogiC e
3.1.2 Specification of PropertiesinCTL
313 FairnessConstraints o e

3.2 Properties and Fairness Conditionsof Traffic Light Controller inCTL

33 LanguageContainment. o e e e

Formal Verification in VIS

4.1 Representing the System for Verification. oL
411 BuildingtheFattened Network Lo L.
412 Ordering e e
413 Computing FSM Information o oL
414 AdvancedOrdering e

4.2 FSM Traversal and Image Computation L.

4.3 Specifying FairnessConstraints Lo

44 LanguageEmpLiness

45 Modd CheckingOperations 30

451 PeformingModel Checking. Lo 30
452 Debuggingfor Model Checking oL oL 32
453 Checkinglnvariants e 33
454 Advanced Mode Checking: Abstractionand Reduction 33
4.6 Combinationa and Sequential Equivalenceo Lo oL 35
A7 Simulation L e 35
Synthesisin VIS 37
51 WritingandReadingfromSIS 37
52 Fow of Operationsfor Synthesis 38
5.3 Exampleof Synthesisof Traffic Light Controller 38
Commandsin VIS 40
A.l Listof CommandsinVIS e 40

Chapter 1

|ntroductionto VIS

This document introduces VIS (Verification Interacting with Synthesis). We describe what VIS is, what
it can do, how to write limited Verilog code for its input, its commands, and an extended example for the
new user. For more details, see the VIS home page htt p: //ww cad. eecs. ber kel ey. edu/
Respep/ Resear ch/ vi s/ doc/ packages/i ndex. ht m .

1.1 WhatisVIS?

VIS is a verification and synthesis system for finite-state hardware systems, which is being devel oped at
Berkeley and Boulder. It improves upon first generation toolslike HSIS and SMV by:

1. providing a better programming environment,
2. providing some new capabilities, and
3. improving performance in some cases.

VIS is divided into three parts: a common front end for reading in a description of a design, verification
(VISvV), and synthesis (VIS-s).

1.2 History

Many first generation tools for automatic formal verification were based on two theoretical approaches.
Thefirst istempora logic model checking, where the properties to be checked are expressed as formulas
in atemporal logic, and the system is expressed as afinite state system. In particular, Computationa Tree
Logic (CTL) model checking is a technique pioneered by Clarke and Emerson to verify whether a finite
state system satisfies properties expressed as formulas in a branching-time temporal logic called CTL.
SMYV, asystem developed at CM U, belongs to this class of tools.

Certain properties are not expressiblein CTL, but they can be expressed as w-automata. The second
approach, language containment, requires the description of the system and properties as w-automata,
and verifies correctness by checking that the language of the system is contained in the language of the
property. Notethat certain typesof CTL propertiesinvolving existential quantification are not expressible
by w-automata. COSPAN, a system developed at Bell Labs, offers language contai nment.

A combination of both approaches is offered by the HSIS [6] system, which was developed at the
University of California, Berkeley. Our experience with verification tools (in particular HSIS) led to the
conclusion that sometimes, the simpler and more limited the approach, the more efficient it can be. A
number of design decisions that we made for HSIS made it unacceptably slow for some large examples.

With these problems in mind, we set about writing atool that was more efficient, easily extendible, and
offered a good programming environment, in order that it can be more easily upgraded in the future as
more efficient a gorithms are devel oped.

VIS aso hasthe capability to interface with SISto optimizelogic modules; hence, VISisanintegrated
system for hierarchical synthesis, as well as verification. We plan to pursue research on the interaction
between verification and synthesisin thefuture; hencethenameV 1S, verificationinteracting with synthesis.

1.3 Overview of VIS

Fig. 1.1 presents of an overview of VIS. VIS has three main parts: a front-end to read and traverse a

VIS

Front end
-traversal of hierarchy

Verification Synthesis
‘% -model checking -state minimization
-equivalence check. | _gtate encodi ng
-cycle-based simul. | -restruct. hierarchy

Figure 1.1: Block diagram of VIS.

hierarchical system described in BLIF-MV, which may have been compiled from a high-level language
likeVerilog; averification core, VIS-v, to performmodel checking of Fair CTL and test language emptiness;
and apath to SIS, VIS-s, to optimize parts of thelogic.

131 VISV Philosophy

We decided to offer limited but efficient capabilities. We felt that in the future, it would be easy to add
more features, as they are required, using awell defined programming interface. In linewith thiskeep it
simple philosophy, VIS provides the following verification capabilities.

e Only CTL formulas can be checked. Language containment may be handled in a later release.
However, we do handle language emptiness checks.

e Fairness constraints must be of Blchi type, i.e., sets of states that must be visited infinitely often.
However, theinterna V1S datastructures do havethe capability to support morecomplicated fairness
constraints.

1.3.2 VIS-sPhilosophy

VIS can interact with SIS to assist the task of verification by simplifying parts of the system. Another
objective isto support afull-fledged hierarchical synthesis flow, that trandlates a Verilog description into

4

an optimized multi-level circuit at the gate level. Unlike existing logic optimization systemslike SIS, VIS
can support hierarchical synthesis.

Chapter 2

Describing Designsfor VIS

Given the special needs of hardware simulation, verification, and synthesis, speciaized languages to
describe hardware have been defined. These are called hardware description languages (HDLs) and they
resemble genera -purpose programming languages. Modern HDLs enable the designer to mix different
levels of design abstraction.

2.1 VerilogHDL

The two most widdly used languages for digital design are Verilog, based on C, and VHDL, based on
ADA. Currently VIS only supports Verilog, but our intermediate format, BLIF-MV, was designed to
support translation from many languages.

Verilog allowsmixed-level descriptionsof hardwareintermsof static structuresand dynamic behaviors.
Dynamic behavior isdescribed by meansof high-level constructsasfoundin general-purpose programming
languages, like conditional, control of loops, and process fork-join.

A specification in Verilog consists of one or more modules. The top level module specifies a closed
system containing both test data and hardware models. Component modules normally have input and
output ports. Events on the input ports cause changes on the outputs. Events can be either changes in
the values of wire variables (i.e., combinational variables) or in the values of reg variables (i.e., register
variables), or can be explicitly generated abstract events. Modules can represent pieces of hardware
ranging from simple gates to complete systems (e.g., microprocessors), and they can be specified either
behaviorallyor structurally, or by acombination of thetwo. A behavioral specification definesthe behavior
of a module using programming language constructs. A structural specification expresses a module as
a hierarchical interconnection of submodules. The components at the bottom of the hierarchy are either
primitives or are specified behaviorally. Verilog has alibrary of predefined primitives. A good reference
for Verilog can be found in [1].

2.2 vL2mv: from Verilogto BLIF-MV

VIS operates on an intermediate format called BLIF-MV, which is an extension of BLIF, the intermediate
format for logic synthesis accepted by SIS and other tools. VIS includes a stand-alone compiler from
Verilog to BLIF-MV, caled vL2mv

See [2] for adescription of the synthesizable subset of Verilog that can be handled by viL2mv and of
the extensions of Verilog that are also supported by vL2mv. In this section we survey the key features of
Verilog for vi2mv. Conceptudly, it would be easy to provide atranglator from any other HDL language,
like VHDL or Esterel, to BLIF-MV.

The relationship between a behavioral description language like Verilog and a machine description
language like BLIF-MV is similar to that between a high-level programming language and an assembly
language. Basic constructs of BLIF-MV are module declarations/instantiations, input-output relational
tables which alow descriptions of nondeterminism, symbolic wires, and latches. In BLIF-MV, symbolic
latches are implicitly controlled by a global clock. This clock does not need to be a real wire in the
hardware sense. All symbolic latches transit instantaneously to the next state indicated by the relevant
transition tables. At each clock cycle, each table continuously updates its outputs according to the inputs
it sees until convergence isreached. * In the very beginning of the next cycle, al latches simultaneously
update their present state outputs according to their next state inputs. Then again tables update their
outputs accordingly.

VL2MV extracts a set of interacting finite state machines (FSMs) that preserve the behavior of the
source Verilog program defined in terms of simulated results. Allocation of hardware gates to operators
in Verilog (resource binding) is based on the assumption of unlimited resources, where resources are al
possible gates expressible in one table in BLIF-MV. No scheduling and optimization are performed, so
the extracted FSM s are not guaranteed to be optimal (for area, speed, and so on). In order to optimize the
logic, a synthesis program like SIS can be invoked on modules of the system. 2

A designinasynthesizabl e subset of Verilog consistsof aset of modules (either hardware or software).
Thefirst moduleencountered isregarded astheroot module. All modulesrunin paralel and communicate
with each other through a set of channels (set of wire variables declared in the modules to which these
channels belong). It is assumed that communication through channels is instantaneous. Within each
module, values on channels can be accessed through a set of ports, that can be either wires or registers.
Through wire ports, a module can input and output from and to channels instantaneously, while through
register portsit takes onetime unit. A wire port has no storage element associated with it, while aregister
port has one storage element associated with it.

A Verilog modul e contai nsdecl arations, modul einstantiations, continuous assignmentsand procedural
blocks. Continuous assignments begin with the keyword assi gn and are aways active; they can be
thought of as combinational blocks. Procedural blocks are referred to asal ways statements; statements
within a procedura block are executed sequentialy.

Module instances, continuous assignments, and procedural blocks within a module run concurrently.
Execution of each continuous assignment, basic block in a procedura block and module instance is
assumed to be atomic within each instant. If there is more than one procedura block in the same module,
and outputsof one areinputsto another, the simulated result may depend on how expressionsfrom different
blocks are interleaved by the simulator.

vL2MV can be invoked as a stand-alone tool on a Verilog file to produce aBLIF-MV file. Thiscan be
read in VIS with the command read_blif_mv. As an aternative, the command read_verilog can be directly
used to read in a Verilog file. ThisinvokesvL2wmv internaly.

2.3 Featuresof Verilog Supported by vL2mv

VL2MV supports a synthesizable subset of Verilog, and aso extends it minimally to make it usable for
formal verification. We survey the features that characterize Verilog as supported by vL2myv.

ICircuits with combinational cyclesare legal in BLIF-MV, but currently they are not processed by VIS.

2yL2mv can also extract quantitative timing information from atimed Verilog program, producing BLIF-MV T, based on timed
automata, that is an extension of BLIF-MV with timing constructs[3]. Since verification with quantitative timing is not handled
in the current version of VIS, thisfeature is of no further interest here.

231 Assgnments

Continuous assignments are always active, i.e., whenever any input changes, the output is updated instan-
taneously. Only wi r e variables can be used at the left hand side of continuous assignments. Continuous
assignments describe the combinationa behavior of acircuit.

Procedural assignments (= within a procedural block), also referred to as blocking assignments,
execute sequentially within aprocedura block, changing the content of state variables, until the execution
isblocked by a pause. vL2mMv compiles procedura blocks based on the assumption that each basic block
will be executed atomically if the delay/event control of the block is satisfied. vL2Mv assumes a so that
execution of procedura assignments takes zero hardware time. All procedura blocks with active event
controls get executed concurrently. Noticethat a Verilog simulator does not treat simple blocks as atomic.
If there is more than one procedural block sharing the same r eg variables, caution should be taken to
make sure that the desired behavior does not depend on a specific interleaving among processes.

Procedural assignments update variables instantaneously, meaning that they change the left-hand side
variable so that the statement following the assignment (in the same process, or al ways statement) can
observe the value change. On the other hand, other processes (for instance, other al ways statements or
continuous assignments) cannot see the change until the next clock cycle. Because of this, race conditions
might arise among multiple procedura assignments. Non-blocking procedural assignments (<=) provide
a mechanism that defers the assignment without blocking the execution of statements in a block. On
encountering a non-blocking assignment, the right hand-side of the assignment is evaluated according
to the most recent values of the referred variables. However, without changing the variable on the left
hand-side, program execution continues. Then variables are updated simultaneously at the very beginning
of the next time dlot. For vL2mv, non-blocking procedura assignments should never be used, since they
might introduce unwanted nondeterminism.

2.3.2 Nondeterminism

Non-blocking assignments also provide away to introduce nondeterminismon r eg variables. If thereis
more than one non-blocking assignment in the current time slot assigning to the same register variable,
then the value of that register variable in the next clock cycle will be nondeterministically chosen from
those assigned values. Even though vL2MV accepts thisway of specifying nondeterminism, in VIS, unlike
in HI S, multiple assignments are not considered legal hondeter minism.

Instead, a nondeterministic construct, $ND, has been added to Verilog to specify nondeterminism on
wire variables and isthe only legal way to introduce nondeterminism in VIS. For example, to require that
the output at a particular state is nondeterministically GO or NOGO, one can introduce a new variable, r,
and write the following Verilog fragment.

assi gn r=$ND{ GO, NOGT} ;

él ways @ posedge cl k) begin

.st ate =r;

énd

2.3.3 Symbolic Variables

Sometimes it is desirable to specify and examine the value of some variables symbolicaly, rather than
having to explicitly encode them. vL2mv extends Verilog to alow users to declare symbolic variables

using an enumerated type mechanism similar to the one available in the C programming language. Asan
example, we introduce a symbolic type named door :

typedef enum { OPEN, OPENI NG CLCOSED, CLCSI NG door

2.4 Implicit vs. Explicit Clocking

The clocking disciplineisdetermined by the definition of the Verilog simulator, and it can beeither implicit
or explicit. Implicitisthe default. Explicit may be required in some cases.

A Verilog simulator is an event-driven passive scheduler. A simulator schedules events generated from
Verilog modules and then sends them to modules which are sensitive to these events. Statements with
sensitized events (active statements) are executed and in turn more events are generated, which are then
scheduled by the simulator. The simulator itself does not generate any event, but it coordinates between
the producers and consumers of events. Hence, to write a synchronous system, a designer needs to writea
small clock generator, i.e., an event generator which creates eventsin time. The produced events provoke
achain of reactions among modules. The system reaches a stable state when there are no more events
other than the clocking event. The next clocking event is then chosen by the simulator, and simulation
time is advanced according to the time stamp of the newly scheduled clocking event. We call the system
implicitly clocked when al transitions are synchronized by an implicit time. For an implicitly clocked
system hardware resources will not be allocated for asynchronizing variable. Also, for implicitly clocked
designs, one symbolic latch (or state variable) is alocated for each r eg variable, and synchronization
variables are dropped. By default, implicit clocking semanticsis assumed.

On the other hand, for some designs, the operation of a system depends explicitly on several phases
(rising edge, faling edge, 1-level, O-level) of one or more synchronizing signals (generally referred to as
clocks). In such a case the clock signals should be interpreted literally and hardware resources should be
alocated. A designis called explicitly clocked if synchronizing signals are to be compiled literaly into
hardware. For explicitly clocked systems, each r eg variable is modeled by a symbolic latch aong with
some extra logic to emulate the clocking mechanism. An example of explicit clocking declared by the
user isthe following. Suppose that a system is composed of parallel componentsthat progress differently
according to synchronization signals exchanged among them by means of wai t statements. Thenitis
necessary to declare an explicit clocking signal:

nodul e env;

reg clk;

wire NG, S G, E Go ;

tlc traffic(clk, N.Go, S Go, E Go);
al ways #1 clk = Iclk;

endnodul e

This code generates a clocking signa cl k with a cycle of two time units used to drive the whole
system and make it simulatable.

2.5 Veilogfor vL2vyv: Hintsand Traps

In this section alist of hintsto follow, and traps to avoid, is provided for writing Verilog for VIS.

1. Inside an al ways block, only blocking assignmentsto r eg variables are allowed. Therefore do
not write to an intermediate variable (that isawi r e by definition) insidean al ways block and do
not use non-blocking assignments (<=) ever.

2. If variables that must be assigned depend on each other, assign them in separate al ways blocks,
otherwise the behavior may depend on the order of execution.

3. Insidean al ways block, blocking assignments= are sensitive to the order of the statements. Thus
the following two fragments eval uate differently:

state = 1;
out = state;

out = state;
state = 1;

Since we do not alow non-blocking assignments (<=) insidean al ways block, we haveto analyze
the order of evaluation to be certain that we have the desired behavior.

4. Itisnot legal to have a block of assignments, asin:

X 1;

assi gn begin
y =2

end

However, itislega to have ablock of assignmentsforani ni ti al statement:

initial begin
X 1;
y =2
end

5. In al ways blocks, at the next clock, r eg variables keep their previous values if they are not
explicitly assigned to.

6. Introduce nondeterminism using only $ND assignmentsto wires. Unlikein HSIS, multiple assign-
ments such as:

al ways@ posedge cl k) begin
state <= GO

state <= NOGO ;

end

are not considered legal nondeterminismin VIS.

7. vL2mv will reject a Verilog description containing an unspecified initial state. If the user wants a
nondeterministicinitia state, it should be specified explicitly using a $ND construct, for example:
initial x = $ND(a, b, ¢); in this case, a nondeterministic constant will be created with a name as
x$initial _n23.

8. f or statementsare supported by vL2mv. Hereisan example:

al ways@ posedge cl k) begin
/1 randomy push floor buttons
for (i=0;i<='floor-1;i=i+1) begin
if (randomup[i]) up_floor_buttons[i]=0N,
if (random down[i]) down_floor_buttons[i]=0N;
end

10

10.

11.

Note that (unfortunately) af or loop can only beused insidean al ways block. Further, to process
it with vL2mv, invoke vi2my with the -u (unroll) option. This simply macro-expands the Verilog
code before processing it.

A Wi r e can be avector but not an array. However, areg can bean array: wi re[1: 10] a;
iscorrect but wi re a[1: 10]; isnot. Asan example of how things differ for wi r e and r eg
variables consider:

typedef enum {UP, DOM\} dir;
wire[l:‘elev] stop_next;
dir reg direction[1:"'elev];

typedef enum {on, off, intern} onoff;

onoff reg a[1:10] iScorrect, but onoff wire a[1:10] and onoff wire[1:10] a are not correct.
AlSOreg [1:*width] locations[1:*elev] ISCOrrect, but onoff reg [1:‘width] |ocations[1:"*elev]
is not correct, since the latter are atwo dimensional array of symbolic type.

vL2MV puts an extra buffer for $ND constructs when the -Z option is used , while by default
it does not. In other words, by default vL2mv connects the left-hand side variable directly to
the nondeterministic table for $ND. Notice that the only legal usage of $ND when -Z is not used
iS: assign <var> = $ND(...); Where the assi gn statement is a continuous assignment. The
generated nondeterministic table will use <var > as the output variable. Instead if the -Z option
is turned on, one can use $ND definitions in expressions , as in: assign a = $ND(0,1) + b, OF
assign a = (sel) ? $ND(0,1) : b. In this case intermediate variables are generated for the $ND
construct. We recommend only using the default value and explicitly naming the nondeterministic
value, since thiswill become a pseudo-input to VIS and will in this case have a name given by the
user.

In VIS we insist on having nondeterminism only for single output constants. A BLIF-MV tablelike

.table -> x

isalowed and leads to a pseudo-input. However atablelike

.table -> x<0> x<1>

= OO
oOr o

is not allowed. The reason is that this table represents a relation and cannot be split into two
independent, nondeterministic, single output tables, since replacing it with
.table -> x<0>

.table -> x<1>

would lead to the possibility of x = 1 1.

Such a situation comes up naturally when we want a variable to have any of the integers 0,1,2. But
we have to assign 2 bits to hold the variable, and we want to be able to increment or decrement the
variable later on (so it must be an integer, rather than a symbolic variable):

11

wire[0:1] x;
assign x = $NIO, 1, 2);

vL2MV generates BLIF-MYV for this code that is not accepted by VIS. An ackward way around this
is:

assign temp=$ND O, 1, 2, 3);
assign location = (tenp==3)?2:tenp;

26 BLIF-MV

BLIF-MV isalow-level language designed for describing hierarchical symbolic sequential systemswith
nondeterminism. A system can be composed of interacting sequential subsystems, each of which can
be again described as a collection of communicating sequentia subsystems. This makes it possible to
describe systemsin ahierarchical fashion. Theinterna datastructure of SIS does not support hierarchical
representations. Hence, even though BLIF can describe hierarchy, BLIF descriptions are flattened into a
single-level representation within SIS. In VIS, however, the origina hierarchy specified in BLIF-MV is
preserved in interna data structures so that true hierarchical synthesisand verification is possible.

BLIF-MV also allows nondeterministic gates ® and hence makesit possibleto model nondeterministic
systems. For instance, adesign in itsearly stages may contain nondeterminism, as many aspects may not
be yet decided. Lastly, BLIF-MV supports multi-valued variables, which can be used to simplify system
descriptions.

The semantics of BLIF-MV is defined over flattened networks, using a combinational/sequential
concurrency model. There are four basic primitives. variables, tables (intuitively nondeterministic gates),
wires and latches. A variable takes values from some finite domain. A relation defined over a set of
variables is represented using a table. The variables of atable are divided into inputs and outputs. A
particular variable can be designated as an output in at most one table. Tables are inter-connected using
wires. If atableisdeterministic and Boolean, it may aso be thought of as alogic gate. Wires may only
take valuesinthedomain of the corresponding variable. A latchisaspeciaized element that can be placed
on awire. The latch dividesthe wire into two parts; the input to the latch, and the output of the latch. A
set of initial values is associated to every latch; they must be a subset of the set of values of itswire. A
state is an assignment of values to the latches of a model, where avaue assigned to alatch must beinits
domain. Aninitial state is a state where every latch takes avaue from its set of initial values. Note that
the system can have more than one initial state in general.

At every time point, the system is in some state, where each latch has avalue. At every clock tick,
al the latches update their values. These values then propagate through tables until al the wires have a
consistent set of values. If alatchisencountered during the propagation, i.e., an output of atableisan input
of an latch, the propagation process through that latch is stopped. Note that because of nondeterminism,
given asingle state, there may be several consistent sets of values. This semantics can be seen asasimple
extension of the standard semantics of synchronous single-clocked digital circuits. In fact, if every table
is deterministic and every latch has a single initia state, the two semantics are exactly equal. The only
differences are in the interpretation of nondeterministic tables and latches with multipleinitia states.

In VIS the command read_blif_mv reads a BLIF-MV description created by vL2mv, or some other
means, and then sets up a corresponding internal data structure. The write blif_mv command writes a
BLIF-MV description to a file. The BLIF-MV format is hot meant to be read or written directly by
the user, even though simple examples in BLIF-MV may exhibit some degree of clarity. In the VIS
documentation, the syntax of BLIF-MV is described in the document entitled “BLIF-MV”.

3These gates generate some output from the set of pre-specified outputs.

12

2.7 BLIF

BLIF (Berkeley Logic Interchange Format) is an intermediate format to describe sequential circuits. It
has been defined as an entry point to logic optimizers such as SIS, the synthesis system developed at UC
Berkeley. A BLIF file represents asequential circuit either as an interconnection of logic gates and latches
or asthe state transition table of afinite state machine (FSM) or in both ways (an FSM and a corresponding
gate-level implementation). Itispossibleto have VIS and SIS interact, by sending to SIS abinary encoded
and deterministic sequentia circuit and receiving back an optimized version of the same. Noticethat even
though SIS can also handle KISSfiles (i.e., partially encoded and partialy deterministic FSMs), currently
VIS outputs hardware FSM descriptions (i.e., a netlist describing completely encoded and completely
deterministic FSMs), for SISinput. For a description of BLIF and SIS we refer to the tutoria paper [4].
A BLIF description can be read directly into VIS by the command read_blif, while write_blif converts the
internal VIS data structure into a BLIF file readable by SIS. The synthesis path from VIS to SIS and back
and related commands are described in Chapter 5.

2.8 Nondeterminism and I ncomplete Specification

The only form of nondeterminism supportedin VISisthe construct $NDin Verilog. A system so described
is considered internally as deterministic, because pseudo-input variables are introduced to “control” this
form of nondeterminism. Pseudo-input variables are, by definition, those variables introduced by a $ND
construct. A Verilog nondeterministic assignment, like assi gn rand_choi ce = $ND(O0, 1); is
tranglated by vL2mv into the table;

assign rand_choice = $NDset (0,1)
.names -> rand_choi ce

0

1

There are other ways of introducing nondeterminism in Verilog that are supported by viL2mv and
HSIS, but are not supported by VIS,

vL2mv aways produces completely specified BLIF-MV tables. However, a BLIF-MV file not pro-
duced by viL2mv (but by another tool or manually) may contain incomplete specification. When the
internal data structure is built, each table is checked for determinism and complete specification (with
the exception of the pseudo-inputs). This is a conservative test, in the sense that one or more tables
may be nondeterministic while the entire network is deterministic. Similarly, one or more tables may be
incompl etely specified while the network is completely specified.

2.9 Example: aTraffic Light Controller

In thistutorial, we will use the example of atraffic light controller (TLC), first introduced by Mead and
Conway [5], toillustrate severa concepts.

A little used farm road intersects a multi-lane highway; a traffic light controls the traffic at the
intersection. The light controller is implemented to maximize the time the highway light remains green.
The main modul e ties together atimer, a sensor, afarm light control and a highway control submodules.

The timer submodule implements a timer, that outputs “short” and "long" timeouts. The highway
light stays green for at least “long” time. Any time after “long” time, if there is a car waiting on the
farm road, then the farm light turns green. The farm light remains green until there are no more cars
on the farm road, or until the long timer expires. The yellow light for both directions stays yellow for
“short” time. Note that only a single timer is used for both the farm road and highway controllers. In

13

theory, this could lead to conflicts; as implemented, such conflicts are avoided. From the START state,
the timer produces the signal “short” after anondeterministic amount of time. The signal “short” remains
asserted until the timer is reset (via the signal “start”). From the SHORT state, the timer produces the
signal “long” after a nondeterministic amount of time. The signal “long” remains asserted until the timer
isreset. Notice that the use of nondeterminism in the description of the timer models an infinite number
of actual implementations, each with a different set-up for the “short” and “long” periods.

The farm light stays RED until it is enabled by the highway control. At this point, it resets the timer,
and movesto GREEN. It staysin GREEN until there are no cars, or thelong timer expires. At thispoint, it
movesto YELLOW and resets thetimer. It staysin YELLOW until the short timer expires. At this point,
it moves to RED and enables the highway controller.

The highway light stays RED until it is enabled by the farm control. At this point, it resets the timer,
and moves to GREEN. It staysin GREEN until there are cars on the farm road and the long timer expires.
At thispoint, it movesto Y ELLOW and resetsthetimer. It staysin Y ELLOW until the short timer expires.
At this point, it movesto RED and enables the farm controller.

Thereisasingle sensor that detects the presence of acar in either direction of the farm road. At each
clock tick, it nondeterministically reports that acar is present or not.

The fact that the timer is a Moore machine (while the highway and farm controllers are Mealy
machines) ensures that the component FSMs can be combined to form a well-defined product FSM
(without combinational cycles).

farm road
farm r?ad light
controller ——
highway
highway light
controller
timer

Figure 2.1: Block diagram of traffic light controller.

Fig. 2.1 isablock diagram for the entire controller, and Fig. 2.2 describes the four FSMs that make up
the system.
Thisentire exampleiswrittenin Verilog as.

/* Witten by Tom Shiple, 25 Cctober 1995 */
/* Synbolic variables */

typedef enum {YES, NO} bool ean;
typedef enum {START, SHORT, LONG tiner_state;

14

TIMER
SENSOR

start or (!start-and !rand_choice) | irand choice/short Irand rand_choice/car_present

Irand_choice/
car_present

FARM_CONTROL

Icar_present o Ishort_timer car_present and long_timer
car_present and long_timer / @a N . ow
- Icar_present or long_timer/
hwy_start_timer K
farm_start_timer
enable_hwy. "
. enable_fia
hwy_start_time _{jmer/enable_farm Jenable_hwy

farm_start_tin

Figure 2.2: State transition graphs of FSMs of TLC.

typedef enum { GREEN, YELLOW RED} col or;

nmodul e mai n(cl k) ;
i nput clk;

color wire farmlight, hwy_Ilight;

wire start_tiner, short_timer, long_tiner;

bool ean wire car_present;

wire enable farm farmstart_tinmer, enable_hwy, hwy_start_tiner;

assign start_tiner = farmstart_timer || hwy_start_tiner;

timer tiner(clk, start_tinmer, short_tiner, long tinmer);

sensor sensor(clk, car_present);

farmcontrol farmcontrol (clk, car_present, enable_farm short_timer, long_tiner,
farmlight, farmstart_tinmer, enable_hw);

hwy_control hwy_control (clk, car_present, enable_hwy, short_tiner, long_tiner,
hwy_light, hwy_start_tiner, enable_farm;

endnodul e

nmodul e sensor (clk, car_present);
i nput clk;

out put car_present;

wi re rand_choi ce;
bool ean reg car_present;

initial car_present = NO
assign rand_choi ce = $NIX O, 1);

al ways @ posedge cl k) begin

15

if (rand_choice == 0)
car_present = NO
el se
car_present = YES;
end
endnodul e

modul e timer(clk, start, short, |ong);
i nput clk;

input start;

out put short;

out put | ong;

wi re rand_choi ce;
wire start, short, |ong;
timer_state reg state;

initial state = START;
assign rand_choi ce = $NIX O, 1);

/* short could as well be assigned to be just (state == SHORT) */
assign short = ((state == SHORT) || (state == LONG));
assign long = (state == LONG);

al ways @ posedge cl k) begin
if (start) state = START;

el se
begi n
case (state)
START:
if (rand_choice == 1) state = SHORT;
SHORT:
if (rand_choice == 1) state = LONG
/* if LONG renmmins LONG until start signal received */
endcase
end
end
endnodul e

modul e farmcontrol (clk, car_present, enable_farm short_tinmer, long_tiner,
farmlight, farmstart_tinmer, enable_hw);

i nput clk;

i nput car_present;

input enable _farm

i nput short_timer;

input long_tinmner;

output farmlight;

output farmstart _tiner;

out put enabl e_hwy;

bool ean wire car_present;
wire short_tiner, long_ tinmer;
wire farmstart _tiner;

wi re enabl e_hwy;

wire enable_farm

color reg farmlight;

initial farmlight = RED,

assign farmstart _timer = (((farmlight == GREEN) && ((car_present == NO) || long_tiner))
|| (farmlight == RED) && enable_farn);

assign enable_hwy = ((farmlight == YELLON && short_tinmer);

al ways @ posedge cl k) begin
case (farmlight)

GREEN:

if ((car_present == NO || long_tiner) farmlight = YELLON
YELLOW

if (short_tiner) farmlight = RED;
RED:

16

if (enable_farm farmlight = GREEN,
endcase
end
endnodul e

modul e hwy_control (cl k, car_present, enable_hwy, short_tiner, long_tiner,
hwy_light, hwy_start_tiner, enable_farm;

i nput clk;

i nput car_present;

i nput enabl e_hwy;

i nput short_tinmer;

input long_tiner;

out put hwy_light;

out put hwy_start _timer;

out put enabl e_farm

bool ean wire car_present;
wire short_tiner, long_ tinmer;
wire hwy_start_tinmer;

wire enabl e farm

wi re enabl e_hwy;

color reg hwy_light;

initial hwy_light = GREEN,

assign hwy_start _timer = (((hwy_light == GREEN) && ((car_present == YES) && long_tiner))
|| (hwy_light == RED) && enabl e_hwy);

assign enable_farm= ((hwy_|light == YELLON && short_tinmer);

al ways @ posedge cl k) begin
case (hwy_light)

GREEN:
if ((car_present == YES) && long_timer) hwy_light = YELLOW
YELLOW
if (short_timer) hwy_light = RED;
RED:
if (enable_hwy) hwy_light = GREEN;
endcase
end
endrodul e

17

Chapter 3

| ntroduction to Formal Verification

Formal verification is the process of checking whether a design satisfies some requirements (properties).
We are concerned with theformal verification of designsthat may be specified hierarchically (asillustrated
in the previous section); thisis also consistent with how a human designer operates. In order to formally
verify adesign, it must first be converted into a simpler “verifiable” format. The design is specified as a
set of interacting systems; each has a finite number of configurations, called states. States and transition
between states constitute FSMs. The entire system is an FSM, which can be obtained by composing
the FSMs associated with each component. Hence the first step in verification consists of obtaining a
complete FSM description of the system. Given a present state (or current configuration), the next state (or
successive configuration) of an FSM can be written as a function of its present state and inputs (transition
function or transition relation).

We note that this entire framework is one of discrete functions. Discrete functions can be represented
conveniently by BDDs (binary decision diagram; a data structure that represents boolean (2-valued)
functions) and its extension MDDs (multi-valued decision diagram; a data structure that represents finite
valued discrete functions). We use BDDs and MDDs to represent al quantities required in this discrete
space (more specifically the transition functions, the inputs, the outputs and the states of the FSMs). For
BDDs and MDDs to be efficient representations of discrete functions, a good ordering of input variables
(actud inputs, outputs, state) of the functions must be computed. In genera, BDDs operate on sets of
points rather than individua points; thisis called symbolic manipulation.

The two most popular methods for automatic formal verification are language containment and model
checking. The current version of VIS emphasizes model checking, but it aso offers to the user alimited
form of language containment (language emptiness).

3.1 Model Checking of Temporal Logic

A finite state system can be represented by a labeled state transition graph, where labels of a state are
the values of atomic propositions in that state (for example the values of the latches). Properties about
the system are expressed as formulas in tempora logic of which the state transition system isto be a“a
model”. Model checking consists of traversing the graph of the transition system and of verifying that it
satisfies the formula representing the property, i.e., the system isamodel of the property.

3.1.1 Computation Tree Logic

Tempora logic expresses the ordering of eventsin time by means of operators that specify properties such
as“p will eventually hold”. There are various versions of temporal logic. One is computational treelogic
(CTL). Computation trees are derived from state transition graphs. The graph structure is unwound into

18

aninfinitetreerooted at theinitia state. Fig. 3.1 showsan exampleof unwinding agraphintoatree. Paths
in this tree represent al possible computations of the system being modelled. Formulaein CTL refer to
the computation tree derived from the model. CTL is classified as a branching time logic because it has
operators that describe the branching structure of thistree.

unwind

Figure 3.1: Unwinding of state transition graph.

Formulaein CTL arebuilt from atomic propositions (where each proposition correspondsto avariable
in the moddl), standard boolean connectives of propositiona logic (e.g., AND, OR, XOR, NOT), and
temporal operators. Each temporal operator consists of two parts: apath quantifier (A or £) followed by
atempora modality (¥, G, X, U). All temporal operators are interpreted relative to an implicit “current
state”. There arein genera many execution paths (sequences of state transitions) of the system starting at
the current state. The path quantifier indicates whether the modality defines a property that should be true
of all those possible paths (denoted by universal path quantifier A) or whether the property needs only hold
on some path (denoted by existential path quantifier £). The temporal modalities describe the ordering of
events in time aong an execution path and have the following intuitive meaning:

1. F ¢ (reads” ¢ holds sometimein thefuture”) istrue of apath if there exists a state in the path where
formula ¢ istrue.

2. G ¢ (reads“ ¢ holds globaly”) istrue of apath if ¢ istrue a every statein the path.

3. X ¢ (reads“ ¢ holdsin the next state”) istrue of apath if ¢ istruein the state reached immediately
after the current state in the path.

4. ¢ U 1+ (reads “ ¢ holdsuntil ¢ holds’, called “strong until” 2) istrue of a path if « is truein some
state in the path, and ¢ holdsin al preceding states.

In the VIS documentation there is a description of the syntax of CTL in the document entitled “CTL
Syntax”. In thischapter CTL formulas will be written in a simplified syntax.

The state of a system consists of the values stored in all latches. Each formula of the logic is either
true or falsein agiven state; itstruth is evaluated from the truth of its subformulasin arecursive fashion,
until one reaches atomic propositionsthat are either true or falsein agiven state. A formulais satisfied by
asystemif itistruefor al theinitial states of the system. If the property does not hold, the model checker
will produce a counterexample, that is an execution path that witnesses the failure. An efficient algorithm

A formulathat contains any temporal modality (F', G, X, /) without an associated path quantifier (A, F) isnotalegal CTL
formula.
24\Weak until” iswhen ¢ holdsforever, i.e., ¢ is not required to hold at some state in the future.

19

for automatic model checking used aso in VIS has been described by Clarke et . [7]. The following
table shows examples of evaluations of formulas on the computation tree of Fig. 3.1:

formula | TIF
EG (RED) true
E (RED U GREEN) | true
AF (GREEN) false

3.1.2 Specification of Propertiesin CTL

Temporal logicformulascan bedifficult tointerpret, so that adesigner may fail to understand what property
has been actudly verified. Therefore it is important to be familiar with the most common constructs of
CTL used in hardware verification.

1

AG (req — AF ack)

For all reachable states (AG), if req is asserted in the state, then always at some later point (AF)
we must reach a state where ack is asserted. AG isinterpreted relative to the initia states of the
system. AF isinterpreted relative to the state where req is asserted. In other words, it isawaysthe
casethat if the signa req ishigh, then eventualy ack will aso be high. A common mistake would
betowritereq — AL ack, instead of AG(req — AF ack). The meaning of the former isthat if
req is asserted in the initia state, then it is aways the case that eventualy we reach a state where
ack is asserted, while the latter requires that the condition is true for any reachable state where req
holds. If req isidenticaly true, AG(req — AF ack) reducesto AG AF ack.

AG AF enabled
From every reachable state, for al paths starting at that state we must reach another state where
enabled is asserted. In other words, enabled must be asserted infinitely often.

AG EF restart
From any reachable state, there must exist a path starting at that state that reaches a state where
restart isasserted. In other words, it must aways be possible to reach the restart state.

EF(started A —ready)
It is possibleto get to a state where started holds, but ready does not hold.

AG (send — A(send U receive))
It is always the case that if send occurs, then eventually receive is true, and until that time, send
must continue to be true.

AG (inp — AX AX out)
Whenever inp goes high, out will go high within two clock cycles.

EF(aNEX(aNFEX a)) = EF(bAEX EX ¢)
If itispossiblefor « to be asserted in three consecutive states, then it is a so possibleto reach astate
where b is asserted and from there to reach in two more steps a state where ¢ is asserted.

We summarize the most common CTL templates with the corresponding English language meaning:

1

AGp is “nothing bad ever happens’ (—p is bad). Used to specify an invariant, i.e., a condition
that must be true in al states. Helpful for partia correctness (no wrong answers are produced),
mutual exclusion (no two processorsareinacritical section simultaneously), deadlock freedom (no
deadlock stateis reached).

20

AF AG pis“eventudly the systemis confined to stateswhere p isawaystrue” or “the system stays
out of stateswhere p istrue only afinite number of times’. It can be used to specify the property of
finite number of failuresin the system.

AG(p — AF q) is “from dl reachable states where p is true, something good, ¢, eventually
happens’. Helpful to expresstota correctness (termination eventually occurs with correct answers),
accessibility (eventually a requesting process will enter its critical section), starvation freedom
(eventualy service will be granted to a waiting processor). If p is aways true, it reduces to
AG AF q.

AG AF q is“infinitely often ¢”, i.e., from any reachable state one must reach a state where ¢ is
asserted. It can be used, for instance, to enforce areset condition from any state.

AF ¢ is"something good, ¢, eventualy (or finaly) happens’ (lessrestrictivethan AG AF q).

AG EF pis“awaysp possible’. It can detect, for instance, the absence of deadlocks, by requiring
that is it always possibleto reach deadlock-free states. Thisis an example of a CTL property that
cannot be represented by an w-automaton .

AG true forces acomplete traversal of the states of the system.

8. FI'pis“pispossible’. Thisisanother example of a CTL property that cannot be represented by
an w-automaton.

Caveats

1. The variables appearing in a CTL formula must be a function of register variables (e.g., states or

outputs attached to states). Variables that depend on inputs or pseudo-inputs are not alowed, since
this could lead to a state where both p and —p are true, depending on the inpui.

The propositional logic operator —, asina — b isequivaent to —a + b, and is satisfied by —a. Do
not useit in place of @ x b, whichistrueif and only if « and b are both true.

The syntax of CTL and of Verilog are different. For instance, we have:

Veril og CTL nmeani ng

&& * AND

I + R

== = equal

al=NO ! (a=NO) not equal
> inplies

Xxor

3.1.3 Fairness Constraints

It is often necessary to introduce some notion of fairness. For example, if the system alocates a shared
resource among severa users, only those paths aong which no user keeps the resource forever should be
considered. CTL by itself cannot express assertions about correctness along fair paths.

Fair CTL isamodification of CTL to handlefairness. Fair CTL ischaracterized by theintroduction of

fairness constraints, which are sets of states expressed by means of CTL formulas, each giving afairness
condition; afair pathisapath along which each fairness condition is satisfied infinitely often. Thesetypes

%It is possible to show two transition systems that recognize the same language, of which one satisfies AG' EF p, and the
other does not.

21

of fairness constraints are called Biichi type. More genera fairness constraints, such as Street type, are
not allowed currently. Fair CTL hasthe same syntax as CTL, but the semanticsismodified so that al path
guantifiers only range over fair paths. VIS supports Fair CTL; in the documentation we may sometimes
refer to CTL, where werealy mean Fair CTL.

Anexample of afairness conditionis p, that restrictsthe system to only those pathswhere p is asserted
infinitely often.

3.2 Propertiesand Fairness Conditions of Traffic Light Controller in CTL

Not al behavior exhibited by the description of the Traffic Light Controller isvalid. In order to restrict
the behavior we impose the following two fairness constraints. Thefirst is:

I(timer.state=START);

The timer must eventually leave the START state. This constraint prevents it from staying in START
forever. The second fairness constraint:

I(timer.state=SHORT);

ensures that the timer must eventually leave the SHORT state. Liveness properties (e.g, cars on farm road
and highway will eventually cross) would not passif these fairness constraints are not placed on the timer.

Oneobvious property to check isthat thelightisnot greenin both directions at the sametime, ensuring
that collisions do not occur between traffic on the farm road and highway. This property iswritten as the
CTL formula

AG ('((farmlight = GREEN) * (hwy_light = GREEN)));

To ensure that a car on the farm road eventually crosses the intersection, we require that if acar is
present on the farm road, and the timer islong, then eventually the farm light will turn green. In CTL this
iswritten as:

AG ((car_present = YES) * (tinmer.state = LONG) -> AF(farmlight = GREEN));

In addition, regardless of what happens on the farm road, the highway should aways be green in the
future;

AGAF(hwy | ight = GREEN));

The presence of acar on thefarm road does not guarantee that eventual ly the farm light will turn green.
A car may approach, and then back away, al before the timer goes long. This property is not necessary
for safety, it just maximizes the time that the highway light is green. Thus, it is desirable that the system
satisfies the following property:

I'(AGQ((car_present = YES) -> AF(farmlight = GREEN)));

3.3 Language Containment

There are properties of practical interest that cannot be described in CTL. An example is the “amost
aways’ property: a condition, ¢, aways holds after a finite number of transitions (note that formulas
FG gand AF G g would express this, but these are not legal CTL formulas). This property looks a lot
like AF" AG ¢, but it is not the same. One can exhibit a transition system where AF' G ¢ is true, while
AF AG qisfase

22

A solutionwould beto use amore expressive type of tempora logic (for instance, the previous property
could be expressed in PLTL or CTL*). But there would be drawbacks, such as the higher complexity of
algorithms for model checking. An alternative is to use another verification paradigm, called language
containment, based on the theory of w-automata. For example, it is easy to express the previous “amost
always’ property using an automaton.

Currently VIS supports a restricted form of language containment. We review briefly the idea of
language containment: for a system to satisfy a property it must be that L(S) C L(T'), where S is an
w-automaton representing the system, 7' isan w-automaton representing the property and I isthelanguage
accepted by the automaton. It isafact that L.(S) C L(T) isequivalentto L(S) N L(T) = §.

To achieve language containment checking we represent the composition of the given system with a
model representing the negation of the property and check it for language emptiness. The language of the
composed system isempty if and only if the system satisfies the property T'.

Language emptiness is used not only to verify properties that cannot be expressed in Fair CTL, but
also to check whether the abstraction of a system still contains the origina system. In both cases one
must complement an w—automaton (77), and thisis hard to do if the automaton is nondeterministic (asis
usually thecasefor an abstraction). Thefact that complementati on of adeterministicproperty iseasy, while
complementation of anondeterministicproperty may be hard, isakey problem with language contai nment.
This has prompted alot of research on different classes of w-automata with different expressiveness and
difficulty of complementation. Currently VIS supports language emptiness of nondeterministic Bichi
automata; only it is the responsibility of the user to derive the complement of a given nondeterministic
property. Bichi automata acceptance conditions are states that must be reached infinitely often and they
are specified by means of fairness constraints. Thus to use language containment, the user must insert in
the Verilog hierarchy a monitor, which represents the complement automaton structure, and impose a set
of fairness conditions to specify the complement automaton acceptance conditions, i.e., the acceptance
conditions are specified in terms of fair paths.

Asafina note, inside VIS, language emptiness (language containment) isreduced to CTL, by checking
the CTL formula F G true on the system (system composed with complemented property), i.e., whether
thereisan infinite path (notice that true isaways satisfied), satisfying appropriate fairness constraints.

23

Chapter 4

Formal Verification in VIS

In this chapter we describe the usage and the relation between the VIS commands that perform formal
verification. The main sections are;

1. building an internal representation of the finite-state system,
2. FSM traversal,

3. specification of fairness constraints,

language emptiness,

model checking,

equivalence checking, and

N o g &

simulation.

4.1 Representing the System for Verification

In this section, we describe the steps involved in converting a BLIF-MV description into an internal FSM
representation.

4.1.1 Buildingthe Flattened Network

The compound init_verify command executes the entire set of required initialization commands. When a
BLIF-MV descriptionisread into VIS, it isstored asa“hierarchy” tree, whichisahierarchical description
of thedesign; it consists of modules (al so called hnodes) that in turn consist of sub-modules (al so hnodes)
that are related in some fashion. This relation is represented as a table, which implements the output
function in terms of the sub-module inputs. The print_hierarchy_stats command in VIS prints hierarchy
information, and the print_models command lists statisticson all the modelsin the hierarchy. Other useful
print commands are print_io and print_atches.

The hierarchy can be described by atree. The root of the tree is the main module, and the leaves
are lower level instantiations of modules. The hierarchy in VIS can be traversed in a manner similar to
traversing directoriesin UNIX. It is possible to reach a desired node in the tree by walking up and down
with the cd command. At any node simulation, verification and synthesis operations can be performed.
The command pwd prints the name of the current node. The command Islistsall the nodes (submodul es)
in the current node; Is-Rlistsall the nodesin the current subtree.

24

The first step towards verification consists of “flattening” this hierarchical description into a single
network (netlist of multi-vaued logic gates). The output is computed from the inputs of the design by the
network circuit, which consists of logic gates, interconnections between them, and latches to represent the
sequential elements. Theflatten_hierarchy command creates thisnetwork, and the print_network command
can be used to print it. Other related commands are print_network stats command that prints statistics
about the network, and test_network_acyclic command that checks the network for combinational cycles.
On the Traffic Light Controller exampl e these commands work as follows::

UC Berkel ey, VIS Release 1.0 (conpiled 11-Dec-95 at 10:36 AM

VIS> read_blif_nv tlc.nmv

War ni ng: Sone vari abl es are unused in nodel nmain

vis> print_hierarchy_stats

Model nane = main, Instance name = main

inputs = 0, outputs = 0, variables = 12, tables = 3, latches =0, children = 4
vi s> print_nodel s

Model nane = hwy_contro

inputs = 4, outputs = 3, variables = 49, tables = 44, latches
subckts = 0

Model nane = sensor

inputs = 0, outputs = 1, variables = 12, tables = 11, latches =1
subckts = 0

Model nane = main

inputs = 0, outputs = 0, variables = 12, tables = 3, latches = 0
subckts = 4

Model nane = tiner

inputs = 1, outputs = 2, variables = 40, tables = 38, latches =1
subckts = 0

Model nane = farm.contro

inputs = 4, outputs = 3, variables = 49, tables = 44, latches
subckts = 0

vis> flatten_hierarchy

Vi s> print_network_stats

mai n conbi national =142 pi=0 po=0 |atches=4 pseudo=2 const=40 edges=206

vi s> test_network_acyclic

Net wor k has no conbi nati onal cycles

vis> |s

farmcontro

hwy_contro

sensor

tiner

vis> cd hwy_contro

vis> print_io

inputs: car_present enable_hwy long tinmer short_tiner

outputs: enable_farmhwy_|ight hwy_start_tiner

vis> print_|atches

hwy_|i ght

vis> flatten_hierarchy

Vi s> pns

hwy_control conbinational =45 pi=4 po=3 Ilatches=1 pseudo=0 const=12 edges=68

1
=

1
=

Note that when a node is arrived at for the first time, there is no network for that node until flat-
ten_hierarchy is caled for that node.

Also flatten_hierarchy automatically checks each table in the network for being deterministic (except
for pseudo-inputs) and completely specified. Since this checking takes some time, it can be turned off
safely using the option flatten_hierarchy -b, after aBLIF-MV file has been checked once.

412 Ordering

The next step towards verification consists of converting this network representation into a functiona
description that represents the output and next state variables as afunction of theinputs and current state
variables. We use the BDD (binary decision diagram) and its extension the MDD (multivalued decision
diagram) to represent boolean and discrete functions. Before creating the MDDs, it is necessary to order

25

the variables in the support of the MDD. This is accomplished by the static_order command, which
gives an initia ordering. Networks with combinationa cycles cannot be ordered. If the MDD variables
have aready been ordered, then static_order does nothing. To undo the current ordering, reinvoke the
command flatten_hierarchy. At any stage the current variable ordering can be written out to afile using
thewrite_order command.

4.1.3 Computing FSM Infor mation

The build_partition_-mdds command computes the transition function MDDs. Depending on the parti-
tioning method selected, the MDDs for the combinationa outputs (COs) are built in terms of either the
combinational inputs (Cls) or some subset of intermediate nodes of the network. The MDDs built are
stored in a DAG caled a “partition”. The vertices of a partition correspond to the Cls, COs, and any
intermediate nodesused. Each vertex has amulti-va ued function (represented by an MDD) expressing the
function of the corresponding network node in terms of the partition verticesin itstransitivefanin. Hence,
the MDDs of the partition represent a partia collapsing of the network. The inout method represents one
extreme where no intermediate nodes are used, and total represents the other extreme where every node
in the network has a corresponding vertex in the partition. If no method is specified on the command
line, then the value of the flag partition_.method is used as default (this flag is set by the command set
partition_method), unless it does not have a value, in which case the inout method is used. The parti-
tion graph can be printed to a file with the print_partition command. Another related command is the
print_partition_stats command that prints statistics on the partition graph.
The complete set of commandsincluded by init_verify are:

1. flatten_hierarchy,
2. static_order, and
3. build_partition_mdds.

UC Berkel ey, VIS Release 1.0 (conpiled 11-Dec-95 at 10:36 AM

vis> read_blif_nv tlc.nmv

War ni ng: Sonme vari abl es are unused in nodel main.

vis> flatten_hierarchy

vi s> static_order

vis> build_partition_ndds

vis> print_partition_stats

Met hod | nput s-Qut puts, 8 sinks, 10 sources, 14 total vertices, 78 ndd nodes

414 Advanced Ordering

Dynamic ordering of variables may be enabled and disabled using the dynamic_var _ordering command.
Dynamicordering isatechniqueto reorder theM DD variablestoreduce thesize of theexistingMDDs. The
commands flatten_hierarchy and static_order must be invoked before this command. Available methods
for dynamic reordering are window and sift. Dynamic ordering may be time consuming, but can often
reduce the size of the MDDs dramatically.

Dynamic ordering is best invoked explicitly (using the dynamic_var _ordering -f <method> option)
after the build_partition_mdds and print_img_info commands. If dynamic ordering finds a good ordering,
then you may wish to save this ordering (using write_order <file>) and reuse it (using static_order -s
<method> <file>). With option dynamic_var _ordering -e <method> dynamic ordering is automatically
enabled whenever a certain threshold on the overall MDD size is reached. Enabling dynamic ordering
may slow down the verification, but it can make the difference between completing and not completing a
verification task.

26

UC Berkel ey, VIS Release 1.0 (conpiled 13-Dec-95 at 8:36 AM

vis> read_blif_nv tlc.nmv

War ni ng: Sone vari abl es are unused in nodel main.

vis> init_verify

vis> print_partition_stats

Met hod | nput s-Qut puts, 8 sinks, 10 sources, 14 total vertices, 78 ndd nodes
vis> wite_order

UC Berkeley, VIS Release 1.0 (conpiled 13-Dec-95 at 8:36 AM

network nanme: nain

generated: Wed Dec 13 14:13:57 1995

#

nane type nmddl d val s |evs
sensor.rand_choi ce pseudo-i nput 0 2 (0)
tiner.state I atch 1 3 (1, 2)
hwy _| i ght | atch 2 3 (3, 4)
car _present latch 3 2 (5)

car _present $NS shadow 4 2 (6)
farmlight I atch 5 3 (7, 8)
timer.rand_choice pseudo- i nput 6 2 (9)
tinmer.state$NS shadow 7 3 (10, 11)
farmlight $NS shadow 8 3 (12, 13)
hwy_|i ght $NS shadow 9 3 (14, 15)

vi s> dynam c_var_ordering -f sift

Dynam c variable ordering forced with nethod sift....

vis> print_partition_stats

Met hod | nput s-Qut puts, 8 sinks, 10 sources, 14 total vertices, 70 ndd nodes
vis> wite_order

UC Berkeley, VIS Release 1.0 (conpiled 13-Dec-95 at 8:36 AM

network nanme: nain

generated: Wed Dec 13 14:14:20 1995

#

nane type nmddl d val s |evs
sensor.rand_choi ce pseudo-i nput 0 2 (0)
tiner.state I atch 1 3 (1, 2)
hwy _| i ght | atch 2 3 (3, 6)
farmlight |l atch 5 3 (4, 5)
car _present $NS shadow 4 2 (7)

car _present latch 3 2 (8)
timer.rand_choice pseudo- i nput 6 2 (9)
tinmer.state$NS shadow 7 3 (10, 11)
farm|ight $NS shadow 8 3 (12, 13)
hwy_|i ght $NS shadow 9 3 (14, 15)
vis> wite_order tlc.sift

vis> quit

/ projects/vis/vis/mps/bin/vis

UC Berkel ey, VIS Release 1.0 (conpiled 13-Dec-95 at 8:36 AM
vis> read_blif_nv tlc.nmv

War ni ng: Sonme vari abl es are unused in nodel main.

vis> flatten_hierarchy -b

vis> static_order -s input_and_latch tlc.sift

vis> wite_order

UC Berkeley, VIS Release 1.0 (conpiled 13-Dec-95 at 8:36 AM
network nanme: nain

generated: Wed Dec 13 14:34:08 1995

#

nane type nddl d val s |evs
sensor.rand_choi ce pseudo-i nput 0 2 (0)
tiner.state I atch 1 3 (1, 2)
hwy_|i ght | atch 2 3 (3, 4)
farmlight I atch 3 3 (5, 6)
car _present $NS shadow 4 2 (7)

car _present latch 5 2 (8)
timer.rand_choice pseudo- i nput 6 2 (9)
tinmer.state$NS shadow 7 3 (10, 11)
farm|ight $NS shadow 8 3 (12, 13)
hwy_|i ght $NS shadow 9 3 (14, 15)

27

Dynamic ordering moves around binary valued variables, possibly separating a group of variables
which encode a single multi-vaued variable. Note, however, that the resolution of reading and writing
variable ordering filesis at the multi-valued variable level, not the bit-level. Therefore when the ordering
found by dynamic ordering is read back, the BDD variables which encode the MDD variables do not
necessarily occupy the same levels as reported in the file tic.sift. See for example variable hwy | i ght
in the example above. The only information that is used from the file tlc.sift is the order of the MDD
variables in the first column. By editing the file tlc.sift any order can be imposed. Given an ordering of
MDD variables, BDD variables which encode them are assigned to thefirst adjacent available levels.

4.2 FSM Traversal and Image Computation

FSM traversal is the core computation in design verification. Efficient traversal requires grouping the
MDDs, in a manner optimal for traversa. To traverse the FSM, the present state, input, and next state
variables are organized for easy manipulation. All thisinformation isincluded in an FSM data structure
created in the compute_reach command. This also invokes traversal of the entire reachable state set of
the FSM representing the design, and may be invoked with different verbosity options to get varying
amounts of traversal information. On subsequent calls to compute reach, the reachability computationis
not reperformed, but statistics can be printed using -v.

The reachability computation makes extensive use of image computation. There are several user-
settabl e optionsthat affect the performance of image computation. Thedocumentationfor the set command
liststhese options. Usethe command set image method to change theimage computation method, and then
re-initialize verification (starting at the flatten_hierarchy command). The print_img_info prints current
image information. Notice that while print_partition_stats prints information on the next state functions,
print.iimg_info prints information on the next state transition relations. The command print_.img-info
creates transition relations from transition functions by clustering severa functionstogether. Theresultis
a partitioned transition relation. It is often a good ideato force dynamic variable reordering (for instance,
dynamic_var_ordering -f sift) at this point to reorder these relation MDDs. The reachability computation
is an optiona step of the modd checking algorithm; unreachable states may be used as don’t cares to
minimizethe BDD representation.

Thefollowing illustrates the command compute reach on the Traffic Light Controller:

UC Berkel ey, VIS Release 1.0 (conpiled 11-Dec-95 at 10:36 AM
vis> read_blif_nv tlc.nmv
War ni ng: Sone variabl es are unused in nodel main.
vis> init_verify
vi s> conpute_reach -v 1
Conputi ng reachabl e states using the i W s95 i rage conputation nethod
Printing Informati on about | mage net hod: |W.S95
Threshol d Val ue of Bdd Size For Creating Custers = 1000
(Use "set image_cluster_size value " to set this to desired val ue)
Verbosity = 0
(Use "set image_verbosity value " to set this to desired val ue)
W= 6W=1W=1W =2
(Use "set image_ W? value " to set these to desired val ues)

Shared Bdd Size of 1 conponents is 97
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkkhkhkkkkkkkk*x*%x
Reachability analysis results
FSM depth = 8
reachabl e states = 20
MDD size = 8
analysis tine = 0

Whenever a hierarchy is reinitialized, the option flatten_hierarchy -b can be used safely for efficiency.

28

4.3 Specifying Fairness Constraints

Fairness constraints are used to restrict the behavior of the design. Each fairness condition specifies a
set of states in the machine, and requires that in any acceptable behavior these states must be traversed
infinitely often (i.e., these states must be on a cycle). Such constraints are called “Buchi fairness’
constraints. Fairness constraints are stored in fairness files (with extension . f ai r by convention);
the syntax for fairness files can befound in htt p: // ww« cad. eecs. ber kel ey. edu/ Respep
/ Resear ch/ vi s/ doc/ packages/ read_fai rnessCnd. ht nl . A fairness file isread in by the
read_fairness command. Active fairness conditions can be displayed by means of print_fairness. The
reset_fairness command is used to reset the fairness constraint to “true”; by default, there is one fairness
condition that contains al states.

Fairness constraints remove unwanted behavior from a system. They are a powerful, but dangerous
tool, because it is easy to make a faulty system pass wanted properties by a careless use of fairness
constraints.

4.4 Language Emptiness

The language of a design is given by sequences over the set of reachable states that do not violate the
fairness constraint. If the language is empty, we know that the system does not exhibit any behavior. VIS
supports the command lang_empty as an alias for model cheking the formula F'G true. Thisisrelevant
in the context of language containment, where the propertiesto be verified are aso specified as automata
and amodified system, consisting of the behavior of the system that does not satisfy the property, istested
for emptiness. Before invoking model checking, lang_empty can a so be used to ensure that the system is
non-trivial. Thisis pertinent because the fairness constraint specified may makethe entire system “unfair”,
and an empty system passes all universal properties.

VIS produces adebug trace to hel p thedesigner understand the cause of thefailure. Common corrective
actions are the correction of an error in the original system description or addition of fairness constraints.

The language emptiness trace for the Traffic Light Controller example with a fairness constraint is:

UC Berkel ey, VIS Release 1.0 (conpiled 14-Dec-95 at 1:04 AM
vis> read_blif_nv tlc.nmv

War ni ng: Sonme vari abl es are unused in nodel main.
vis> init_verify

vis> read_fairness tlc.fair

vi s> print_fairness

Fai rness constraints:

I (tiner.state=START);

I(timer.state=SHORT);

vis> lang_enpty -i

LE: language is not enpty

LE: generating path to fair cycle

LE: path to fair cycle:

--State O:
car_present: NO
farmlight: RED
hwy_I i ght : GREEN
timer.state: START

This indicates that there is valid behavior in the system, and an example of thisis given; a closed
path that begins at the initiad state, where no car is present car _present : NO, the farm light is red
farm_light : RED, the highway light is green hwy_light : GREEN, and thetimer isin its start state
temer.state . START. From theinitia state the machine loops through afair cycle, which has 8 states,

29

and is described below. Note that this trace is differential for both states and inputs; only variables that
have changed in the last step are printed.

LE: fair cycle:

--State O:
car_present: NO
farm.light: RED
hwy_| i ght : GREEN
timer.state: START

--Coes to state 1:
car _present: YES
timer.state: SHORT

--On input:
sensor.rand_choice: 1
tinmer.rand_choice: 1

--Coes to state 2:
timer.state: LONG

--On input:
<Unchanged>

--Coes to state 3:
hwy_|i ght: YELLOW
timer.state: START

--On input:
timer.rand_choice: 0

--Coes to state 4:
timer.state: SHORT

--On input:
tinmer.rand_choice: 1

--Coes to state 5:
car_present: NO
farm.|ight: GREEN
hwy_I i ght: RED
timer.state: START

--On input:
sensor.rand_choice: 0
timer.rand_choice: 0

--Coes to state 6:
car _present: YES
farmlight: YELLOW

--On input:
sensor.rand_choice: 1

--Coes to state 7:
timer. state: SHORT

--On input:
tinmer.rand_choice: 1

--Coes to state 8:
car_present: NO
farmlight: RED
hwy_I| i ght : GREEN
timer.state: START

--On input:

30

sensor.rand_choice: 0
timer.rand_choice: 0

4.5 Model Checking Operations

45.1 Performing Mode Checking

Themodel _check command callsmodel checkinginVIS. A description of thesyntax of CTL for VISispre-
sentedin http://ww« cad. eecs. ber kel ey. edu/ Respep/ Resear ch/ vi s/ doc/ctl/ctl
ctl.htm . By convention CTL propertiesare in afile with extension .ctl. The following illustrates the
functioning of model _check on the Traffic Light Controller example. Note that in this session the fairness
constraints are not read in. Debugging error traces is explained in the next section.

UC Berkel ey, VIS Release 1.0 (conpiled 14-Dec-95 at 1:04 AM
vis> read_blif_nv tlc.nmv

War ni ng: Sonme vari abl es are unused in nodel main.

vis> init_verify

vi s> nodel _check -i tlc.ctl

MC: fornul a passed --- AQ! ((farm.light=GREEN * hwy_| i ght =GREEN)))

Thisindicates that the property passed (i.e. the system satisfies the property).

MC: fornula failed --- AGQ ((car_present=YES * tiner.state=LONG -> AF(farm.|ight =GREEN)))
MC:. Cal li ng debugger

Thisindicates that the property failed, and gives the following error trace that shows behavior seen in
the system that does not satisfy the property.

--State
car_present: NO
farmlight: RED
hwy_I i ght : GREEN
timer.state: START

fails AQ ((car_present=YES * tinmer.state=LONG -> AF(farm.|ight=CGREEN)))
--Counter exanple is a path to a state where
((car_present=YES * tinmer.state=LONG -> AF(farmlight=GREEN)) is false

--State O:
car_present: NO
farmlight: RED
hwy_I| i ght : GREEN
timer.state: START

--Coes to state 1:
car _present: YES
timer.state: SHORT

--On input:
sensor.rand_choice: 1
tinmer.rand_choice: 1

--Coes to state 2:
timer.state: LONG

--On input:
<Unchanged>

--State
car _present: YES

31

farmlight: RED
hwy_I| i ght : GREEN
tinmer.state: LONG

fails ((car_present=YES * timer.state=LONG -> AF(farm.|i ght =GREEN))

--State
car_present: YES
farmlight: RED
hwy_| i ght : GREEN
timer.state: LONG

passes (car_present=YES * tiner.state=LONG

--State
car_present: YES
farmlight: RED
hwy_| i ght : GREEN
timer.state: LONG

passes car_present =YES

--State
car_present: YES
farmlight: RED
hwy_| i ght : GREEN
timer.state: LONG

passes tinmer. state=LONG

--State
car_present: YES
farmlight: RED
hwy_I i ght : GREEN
timer.state: LONG

fails AF(farm.light =CGREEN)
--Afair path on which farmlight=GREEN i s al ways fal se:
--Fair path stem

--State O:
car_present: YES
farmlight: RED
hwy_I i ght : GREEN
timer.state: LONG

--Coes to state 1:
hwy_|i ght: YELLOW
timer.state: START

--On input:
sensor.rand_choice: 1
timer.rand_choice: 0

--Fair path cycle:

--State O:

car _present: YES
farmlight: RED
hwy_Ii ght: YELLOW
timer.state: START

--Coes to state 1:
<Unchanged>

32

--On input:
sensor.rand_choice: 1
timer.rand_choice: 0

Thisis the end of the debug trace for this CTL formula. The command model _check continues with
the next formula

MC: fornula failed --- AG AF(hwy_l i ght =GREEN))
MC:. Cal li ng debugger

Thisindicates that the property failed, and it is followed by an error trace that shows behavior seen in
the system that does not satisfy the property. To save space, we omit the error trace.

MC: fornul a passed --- ! (AQ (car_present=YES -> AF(farm.|ight=GREEN))))

Thisindicates that the property passed (i.e. the system satisfies the property).

45.2 Debuggingfor Model Checking

If model checking or language emptiness checks fail, VIS reports the failure with a counterexample, i.e.,
an error trace of sample“bad” behavior (i.e., behavior seen in the system that does not satisfy the property
- for model checking, or valid behavior seen in the system - for language emptiness). Thisis caled the
“debug” trace. Debug traces list a set of statesthat are on a path to afair cycle and fail the CTL formula.

In the previous section, the second and third properties fail during model checking. This may
be rectified by reading in the fairness constraints previously described for the Traffic Light Controller
example. If the fairness constraints are read in, the valid behavior is restricted and these properties pass.
In particular, the fairness constraint ! (ti mer. st at e=START) disallows behavior, where the system
staysforever in the state:

car_present: YES
farmlight: RED
hwy_Ii ght: YELLOW
tinmer.state: START

--On input:
sensor.rand_choice: 1
timer.rand_choice: 0

More precisaly, the fairness constraint disallows behavior, where there is a car in the farm road, but
thetimer isstuck initsinitial state, by forcing the timer to progressin finite timeto the next state.

UC Berkel ey, VIS Release 1.0 (conpiled 11-Dec-95 at 10:36 AM
vis> read_fairness tlc.fair
vi s> nodel _check tlc.ctl

MC. fornula passed --- AGQ ! ((farmlight=GREEN * hwy_I|i ght =GREEN)))

MC. fornula passed --- AG ((car_present=YES * tiner.state=LONG -> AF(farm.i ght=GREEN)))
MC. fornul a passed --- AG AF(hwy_l i ght =GREEN))

MC. fornula passed --- ! (AG (car_present=YES -> AF(farm.|ight=GREEN))))

33

45.3 Checkinglnvariants

An important class of CTL formulasis invariants. These are formulas of the form AG f, where f isa
guantifier-free formula. The semantics of AG f isthat f istruein al reachable states. The command
check_invariant implementsan a gorithm that is specialized for these formulas. 1n the following example,
f istheformula

F'((farmlight = GREEN) * (hwy_light = GREEN));
contained in thefile tic.invar.

UC Berkel ey, VIS Release 1.0 (conpiled 13-Dec-95 at 8:36 AM
vis> read_blif_nv tlc.nmv

War ni ng: Sone vari abl es are unused in nodel main.

vis> init_verify

vi s> check_invariant tlc.invar

INV: fornula passed --- ! ((farm.light=GREEN * hwy_I i ght =GREEN))

454 Advanced Model Checking: Abstraction and Reduction

When performing model checking and checking invariant properties, one can use the reduce option -r, to
perform model checking on a“pruned” FSM, i.e., one where parts that do not affect the formula (directly
or indirectly) have been removed.

This mechanism can be combined with the abstraction mechanism available through the command
flatten_hierarchy <file>. <file> containsthe names of variablesto abstract. For each variable x appearing
in <file>, anew primary input node named x$ABS is created to drive all the nodes that were previously
driven by x. Hence, the node x will not have any fanouts; however, x and its transitive faninswill remain
in the network. Abstracting a net effectively alowsit to take any value in its range, at every clock cycle.
This mechanism can be used to perform manual abstractions.

We show an example, where the filet | c. abstract contains the variableti mer. start. By
abstractingt i mer . st ar t, thetimer moduleis disconnected from therest of the Traffic Light Controller.

Then we perform model checking of the CTL property read from thefilet | c. r educe. ct 1 :

AG (tiner.state = START) -> AF (tiner.state = LONG);

This property refers only to the timer module. Since the timer has been disconnected, the rest of the
system can be pruned awvay when testing this property. As expected this property fails, since no fairness
constraint has been read in.

UC Berkel ey, VIS Release 1.0 (conpiled 15-Dec-95 at 2:18 PM
Sourcing .visrc of Tiziano

vis> read_blif_nv tlc.nmv

War ni ng: Sonme vari abl es are unused in nodel main.

vis> flatten_hierarchy tlc. abstract

vi s> static_order

vis> build_partition_ndds

vis>nt -i -r tlc.reduce. ctl

MC. fornula failed --- AG(tiner.state=START -> AF(tiner.state=LONG)))
MC:. Cal li ng debugger

--State

car_present: NO

farmlight: RED

hwy_I i ght : GREEN
timer.state: START

34

fails AG(tiner.state=START -> AF(tiner.state=LONG)))
since (tiner.state=START -> AF(tiner.state=LONG)) is false at this state

--State
car_present: NO
farmlight: RED
hwy_| i ght : GREEN
timer.state: START

fails (timer.state=START -> AF(tinmer.state=LONG))

--State
car_present: NO
farmlight: RED
hwy_I| i ght : GREEN
timer.state: START

passes tiner. stat e=START

--State
car_present: NO
farmlight: RED
hwy_I i ght : GREEN
timer.state: START

fails AF(timer.state=LONG
--Afair path on which tiner.state=LONG i s al ways fal se:
--Fair path stem

--State O:
car_present: NO
farmlight: RED
hwy_I i ght : GREEN
timer.state: START

--Fair path cycle:

--State O:
car_present: NO
farmlight: RED
hwy_I| i ght : GREEN
timer.state: START

--Coes to state 1:
<Unchanged>

--On input:
sensor.rand_choice: 0
timer.rand_choice: 0

In thisparticular example, the sameeffect of “restricted” model checking can be obtained by changing
(using the cd command) to the timer node and performing model checking. When at the timer node, the
inputs to timer from the rest of the system are considered free inputs. Notice that the names of variables
inthe CTL property inthefilet | c. reduce. ct| must be revised asfollows:

AG (state = START) -> AF (state = LONG);

since the convention for names isto drop the current node and al nodes above from the namepath.
UC Berkel ey, VIS Release 1.0 (conpiled 14-Dec-95 at 1:04 AM

Sourcing .visrc of Tiziano

vis> read_blif_nv tlc.nmv

War ni ng: Sonme vari abl es are unused in nodel main.
vis> cd tinmer

35

vis> init_verify
vis> nt tlc.reduce.ct

MC. fornula failed --- AG(state=START -> AF(state=LONG)))

However, there are more complex situations that cannot be emulated so simply.

4.6 Combinational and Sequential Equivalence

InVISitisalso possibleto check the equivalence of two networks. The command comb_verify verifiesthe
combinational equival ence of two flattened networks. In particular, any set of functions(theroots), defined
over any set of intermediate variables (the leaves), can be checked for equival ence between two networks.
Roots and leaves are subsets of the nodes of a network, with the restriction that the leaves should form a
complete support for the roots. The correspondence between the roots and the leaves in the two networks
isspecified inafile. The default option assumesthat the roots are the combinationa outputsand the leaves
are the combinational inputs. Two networks are declared combinationally equivaent iff they have the
same outputs for al combinations of inputs and pseudo-inputs. An important usage of comb_verify isto
provide a sanity check when using SIS to re-synthesi ze portions of a network, as explained in Chapter 5.

The command seq_verify tests the sequential equivalence of two networks. In this case the set of
leaves has to be the set of al primary inputs. This produces the constraint that both networks should have
the same number of primary inputs. The set of roots can be an arbitrary subset of nodes. Moreover, no
pseudo-inputs should be present in the two networks being compared. Sequentia verification is done by
building the product finite state machine. The command verifies whether any state, where the values of
two corresponding roots differ, can be reached from the set of initia states of the product machine. If this
happens, adebug trace is provided.

4.7 Simulation

Simulation, athough not “formal verification”, is an alternate method for design verification. After the
command build_partition_mddsis invoked, the network can aso be simulated. In VIS we provide interna
simulation of the BLIF-MV description generated by vL2Mv, via the simulate command. Thus, VIS
encompasses both formal verification and simulation capabilities. simulate can generate random input
patterns or accept user-specified input patterns.

UC Berkel ey, VIS Release 1.0 (conpiled 15-Dec-95 at 10:24 PM
vis> read_blif_nv tlc.nmv

War ni ng: Sone vari abl es are unused in nodel main.

vis> init_verify

vis> sinulate -n 10

UC Berkeley, VIS Release 1.0 (conpiled 15-Dec-95 at 10:24 PM
Network: main

Simul ation vectors have been random y generated

.inputs sensor.rand_choice tiner.rand_choice
.latches car_present farmlight hwy_light tiner.state
.outputs

.initial NO RED GREEN START

.start_vectors
sensor.rand_choice tiner.rand_choice ; car_present farmlight hw_light tiner.state
; NO RED GREEN START ;

00
11; NO RED GREEN START ;
0 0 ; YES RED GREEN SHORT

36

; NO RED GREEN SHORT ;

i YES RED GREEN SHORT ;

;. YES RED GREEN LONG ;

NO RED YELLOW START ;

; NO RED YELLOW SHORT ;

; NO GREEN RED START ;

; NO YELLOW RED START ;

Final State : NO YELLOWRED START

vis> cd farmcontrol

vis> sinulate -n 10

There is no network. Use flatten_hierarchy.

vis> init_verify

vis> sinulate -n 10

UC Berkeley, VIS Release 1.0 (conpiled 15-Dec-95 at 10:24 PM
Network: farm.control

Simul ation vectors have been randomly generated

PP OOOORrRKk
OO0OORrRRFREFRO

.inputs car_present enable_farmlong tinmer short_tiner
.latches farmlight

.outputs enable_hwy farmlight farmstart_tiner
.initial RED

.start_vectors

car_present enable_farmlong_timer short_tiner ; farmlight ; enable_hwy farmlight farmstart_tiner

NO 100 ; RED ; 0 RED 1
YES111; GREEN ; 0 GREEN 1
NO 101 ; YELLOW; 1 YELLOWO
YES O 0 0 ; RED ; 0 RED 0
NO 110 ; RED ;. 0 RED 1
NO 111 ; GREEN ; 0 GREEN 1
YES 11 1; YELLOWN; 1 YELLONO
NO 010 ; RED ; 0 RED 0
NO 00O ; RED ; 0 RED 0
YES 01 0 ; RED ; 0 RED 0
Final State : RED

Any level of the specified hierarchy may be simulated. The user may traverse the hierarchy to reach
the relevant level viathe cd command. The init_verify command must be called to set up the appropriate
internal data structures before simulation.

37

Chapter 5

Synthesisin VIS

VIS can interact with SIS in order to optimize the existing logic. There are two possible goal §/scenarios:

1. Synthesisfor verification.
Synthesis can be used to optimize the logic that represents the system, for simpler verification.

2. Front-end to synthesis.
Filesdescribedin Verilog and compiledinto blif_mv (using vL2mv or another tool) can be synthesized
by using VIS and SIS together.

A key fact isthat only the current level of the hierarchy is sent to SIS, and not the subtree rooted at the
current node. * Modules at alower level are treated as external and the boundary variables are carefully
preserved, by reintegrating their multi-valued status after the optimization step in SIS (SIS requires that
boundary variables are completely encoded, i.e., are binary variables).

Caveat To prevent that a signa (possibly referred to in a CTL property) is optimized away during
synthesis, declare it as an output of a module.

In the current version, only combinational logic is sent to SIS: latches are cut away from the module
sent to SIS and they are reincorporated when the design is read back into VIS. Therefore we cannot
take advantage of sequentia optimizationsin SIS, either at the level of a completely encoded sequential
network or of a symbolic state table. The boundaries between modules are established when the initia
hierarchy is described, and they are rigid in the sense that optimizations can never bridge them, but only
operate within them. Notice that there is a way to replace a subtree of the hierarchy with another one by
using read_blif_mv -r; thisfeature could be used to change boundariesin the original specification.

5.1 Writing and Reading from SIS

VIS communicates with SIS viathewrite_blif and read_blif commands.
Operations performed by write blif are:

1. All variables are encoded, i.e., values of multi-valued variables are replaced by binary vectors. For
variablesat the boundary with modulesat different level s of the hierarchy the encoding assignments
are stored into a file with extension . enc, so that it is possible to reintegrate the multi-vaued
boundaries between modules when coming back to VIS.

2. All unspecified input combinations in the tables are specified by assigning zero code vectors as
outputs. Default constructs in the specification of tables are handled appropriately.

10Onewould need aflattening routine different from the onewhich starts the verification flow already in VIS, and such aroutine
to flatten for synthesisis not yet available.

38

3. Nondeterministic tables are determinized by adding pseudo-inputs. As aresult afile with extension
. blif iscreated that can be read and optimized by SIS. SIS must be invoked outside of VIS by
means of a different shell. All SIS operations to optimize combinational logic can be applied.

In summary, write blif scans all the tables of a given node in the hierarchy and encodes al symbolic
variables, determinizes the tables by adding pseudo-inputs, and resolves incomplete specification by
associating unspecified input combinations to outputs encoded by zero binary vectors.

Operations performed by read_blif are;

1. Restore the symbolic values of multi-valued 1/0O variables of the node being read in. Thisisdone
using theinformationin thefile with extension . enc (e.g., read_blif -e model.enc s-ssim.blif), which
was written out during the write_blif process.

2. Replacein the hierarchy the old node with the new node.

5.2 Flow of Operations for Synthesis

Thetypical flow of operations of synthesisfor verificationiis:
e read_blif_mv
e Write blif
e optimizationby SIS
e read_blif
e init_verify
e suiteof verification operations
Thetypical flow of operationsfor direct synthesisis:
e read_blif_mv
e Write blif
e optimizationby SIS
e read_blif

Itispossibleto verify that after optimizationwith SIS the new global network (where the node returned
from SIS is plugged back in the origina network) is equivalent to the old globa network, by using the
command comb_verify that checks combinationa equivaence of networks. Combinationa equivaence
can be checked at each level of the network hierarchy, from root to leaves. Before applying comb_verify,
the command init_verify must be invoked.

5.3 Example of Synthesis of Traffic Light Controller

The following script demonstrates the path from VIS to SIS and back. We have chosen to optimize the
network of theleaf f ar mcont r ol . We verify that theinitial global network and the new network, after
replacement of the network intheleaf f ar mcont r ol by the one optimized by SIS, are combinationally
equivalent. The script used to run SIS (in adifferent shell) isshowntoo. Experimentsreport big savingsin
litera sfor the optimized modules, sincethe BLIF-MV files generated by viL2mMv have alot of redundancy.

39

UC Berkel ey, VIS Release 1.0 (conpiled 11-Dec-95 at 10:36 AM
vis> read_blif_nv tlc.nmv

War ni ng: Sone vari abl es are unused in nodel nmain

vis> init_verify

vis>|s

hwy_contro

sensor

tiner

farmcontro

Vi s> print_network_stats

mai n conbi nati onal =142 pi=0 po=0 |atches=4 pseudo=2 const=40 edges=206
vis> cd farmcontro

vis> wite_blif farmcontrol.blif

Witing encoding information to farmcontrol.enc

vis> read_blif -e farmcontrol.enc farmcontrol.opt.blif
War ni ng: Sone variabl es are unused in nodel farmcontrol[0].
vis> cd .

vis> init_verify

vis> conb_verify tlc.nmv

Net wor ks are conbi nati onal |y equi val ent.

Vi s> print_network_stats

mai n conbi national =132 pi=0 po=0 |atches=4 pseudo=2 const=34 edges=186

sis> read_blif farmcontrol.blif

Warning: network ‘farmcontrol’, node "[1] 0" does not fanout
Warning: network ‘farmcontrol’, node "[5]0" does not fanout
Warning: network ‘farmcontrol’, node "[11] 0" does not fanout
sis> print_stats

farmcontrol pi =18 po= 6 nodes= 62 | atches= 0

lits(sop)= 709 lits(fac)= 419

si s> source script.rugged

sis> print_stats

farmcontrol pi =18 po= 6 nodes= 24 | atches= 0
lits(sop)= 34 lits(fac)= 34

sis> wite_blif farmcontrol.opt.blif

Inthe previousexample, thecommand init_verify hasbeen givenonly in order to do print_network_stats
before logic synthesis, to compare the networks before and after optimization by SIS.

40

Appendix A

Commandsin VIS

A.1 List of Commandsin VIS

Thefollowinglist containsaonelinesummary of al thecommandsavailablewithinVIS. Thelist canalsobe
foundin http://ww*- cad. eecs. berkel ey. edu/ Respep/ Resear ch/ vi s/ doc/ packages
/ cmdl ndex. ht ml . Fig. A.1 graphicaly illustrates the suite of commands available within VIS, and
their dependencies. A command cannot be executed before its predecessors (unlessthe predecessor is also

asuccessor). Default aliases are defined, type aliasto list them.

Sa read_blif (_mv)

Is

- pwd

write_blif(_mv)
read_blif(_mv) —i

flatten_hierarchy

print_network_stats
print_network
test_network_acyclic

init_verify static_order

write_order

build_partition_mdds

simulate
compute_reach
comb_verify
seq_verify
print_img_info

read_fairness
print_fairness

/ﬁel_-;heck
lang_empty

check_invariance

reset_fairness

Figure A.1: A Flow Chart of Commandsin VIS.

1. dias: providean alias for acommand

2. build_partition_-mdds: build a partition of MDDs for the current network

3. cd: change the current node

41

© © N o o &

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

check_invariant: checks al states reachable in flattened network satisfy specified invariants
comb_verify: verifies the combinational equivaence of two networks
compute_reach: compute the set of reachable states of the FSM
dynamic_var_ordering: control the application of dynamic variable ordering
echo: merely echoes the arguments

flatten_hierarchy: create aflattened network

help: provide on-line information on commands

history: a UNIX-like history mechanism inside the VIS shell

init_verify: create and initialize aflattened network for verification
lang_empty: performs BDD based check of language emptiness under Buchi fairness
Is: list al the child nodes at the current node

model _check: performs BDD based fair CTL model checking on a network
print_bdd_stats: print the BDD statisticsfor the flattened network
print_fairness: print the fairness constraints of the flattened network
print_hierarchy _stats. print the statistics of the current node

print_iimg-info: print information about the image method currently in use
print_io: print the names of inputs/outputsin the current node

print_latches: print the names of latches in the current node

print_-models: list all the modelsand their statistics

print_network: print the flattened network

print_network _stats: print statistics about the flattened network
print_partition: write afilein the"dot" format describing the partition graph
print_partition_stats: print statisticsabout the partition graph

pwd: print out the full path of the current node from the root node

quit: exit VIS

read_blif: read ablif file

read_blif_mv: read ablif-mv file

read_fairness: read a set of fairness constraints

read_verilog: read averilog file

reset_fairness: reset the fairness constraints

42

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

45.
46.
47.
48.

seq-verify: verifies the sequentia equivalence of nodes in two networks
Set: set an environment variable

simulate: simulate the flattened network

source: execute commands from afile

static_order: order the MDD variables of the flattened network
test_det_and_comp_spec: test if the outputs are completely specified and deterministic
test_network_acyclic: determine whether the network is acyclic

time: provide a simple eapsed time value

undias. removes the definition of an aias

unset: unset an environment variable

usage: provide adump of process statistics

which: look for afile called name

write_blif: determinize, encode and write an hnode to a blif file
write_blif_mv: write ablif-mv file

write_order: writethe current order of the MDD variables of the flattened network

43

Bibliography

[1] D.E. Thomas, PR. Moorby. The Verilog Hardware Description Language. Kluwer Academic
Publishers, Nowell, Massachusetts, 1991.

[2] S-T.Cheng. Compiling Verilog into automata. Tech. Rep. UCB/ERL M94/37, May 1994.

[3] F Bdarin, and R. Brayton, and S-T. Cheng, and D. Kirkpatrick, and A. Sangiovanni-Vincentelli.
A Methodology for Formal Verification of Rea-Time Systems. Tech. Rep. UCB/ERL M95/11,
February 1995.

[4] E.M. Sentovich et a. SIS: asystem for sequential circuit synthesis. Tech. Rep. M92/41, May 1992.
[5] C. Mead, L. Conway. Introduction to VLS| systems. Addison-Wesley, 1980.

[6] R.K.Braytoneta. HSIS: A BDD based systemfor formal verification. Proc. of Design Automation
Conference, 1994.

[7] E.Clarke, and O. Grumberg, and K. McMillan, and X. Zhao. Efficient generation of counterexamples
and witnesses in symbolic model checking. Proc. of Design Automation Conference, 1995.

