
VIS User’s Manual

Tiziano Villa Gitanjali Swamy Thomas Shiple

The VIS Group

Adnan Aziz1

Robert Brayton1

Stephen Edwards1

Gary Hachtel2

Sunil Khatri1

Yuji Kukimoto1

Woohyuk Lee2

Abelardo Pardo2

Shaz Qadeer1

Rajeev Ranjan1

Alberto Sangiovanni-Vincentelli1

Shaker Sarwary3

Thomas Shiple1

Fabio Somenzi2

Gitanjali Swamy1

Tiziano Villa1

1University of California, Berkeley
2University of Colorado, Boulder
3Now at Lattice Semiconductor

Contents

1 Introduction to VIS 2
1.1 What is VIS ? : 2
1.2 History : 2
1.3 Overview of VIS : 3

1.3.1 VIS-v Philosophy : 3
1.3.2 VIS-s Philosophy : 3

2 Describing Designs for VIS 5
2.1 Verilog HDL : 5
2.2 VL2MV: from Verilog to BLIF-MV : 5
2.3 Features of Verilog Supported by VL2MV : 6

2.3.1 Assignments : 7
2.3.2 Nondeterminism : 7
2.3.3 Symbolic Variables : 7

2.4 Implicit vs. Explicit Clocking : 8
2.5 Verilog for VL2MV: Hints and Traps : 8
2.6 BLIF-MV : 11
2.7 BLIF : 12
2.8 Nondeterminism and Incomplete Specification : 12
2.9 Example: a Traffic Light Controller : 12

3 Introduction to Formal Verification 17
3.1 Model Checking of Temporal Logic : 17

3.1.1 Computation Tree Logic : 17
3.1.2 Specification of Properties in CTL : 19
3.1.3 Fairness Constraints : 20

3.2 Properties and Fairness Conditions of Traffic Light Controller in CTL : : : : : : : : : : : 21
3.3 Language Containment : 21

4 Formal Verification in VIS 23
4.1 Representing the System for Verification : 23

4.1.1 Building the Flattened Network : 23
4.1.2 Ordering : 24
4.1.3 Computing FSM Information : 25
4.1.4 Advanced Ordering : 25

4.2 FSM Traversal and Image Computation : 27
4.3 Specifying Fairness Constraints : 28
4.4 Language Emptiness : 28

1

4.5 Model Checking Operations : 30
4.5.1 Performing Model Checking : 30
4.5.2 Debugging for Model Checking : 32
4.5.3 Checking Invariants : 33
4.5.4 Advanced Model Checking: Abstraction and Reduction : : : : : : : : : : : : : : 33

4.6 Combinational and Sequential Equivalence : 35
4.7 Simulation : 35

5 Synthesis in VIS 37
5.1 Writing and Reading from SIS : 37
5.2 Flow of Operations for Synthesis : 38
5.3 Example of Synthesis of Traffic Light Controller : 38

A Commands in VIS 40
A.1 List of Commands in VIS : 40

2

Chapter 1

Introduction to VIS

This document introduces VIS (Verification Interacting with Synthesis). We describe what VIS is, what
it can do, how to write limited Verilog code for its input, its commands, and an extended example for the
new user. For more details, see the VIS home page http://www-cad.eecs.berkeley.edu/
Respep/Research/vis/doc/packages/index.html.

1.1 What is VIS ?

VIS is a verification and synthesis system for finite-state hardware systems, which is being developed at
Berkeley and Boulder. It improves upon first generation tools like HSIS and SMV by:

1. providing a better programming environment,

2. providing some new capabilities, and

3. improving performance in some cases.

VIS is divided into three parts: a common front end for reading in a description of a design, verification
(VIS-v), and synthesis (VIS-s).

1.2 History

Many first generation tools for automatic formal verification were based on two theoretical approaches.
The first is temporal logic model checking, where the properties to be checked are expressed as formulas
in a temporal logic, and the system is expressed as a finite state system. In particular, Computational Tree
Logic (CTL) model checking is a technique pioneered by Clarke and Emerson to verify whether a finite
state system satisfies properties expressed as formulas in a branching-time temporal logic called CTL.
SMV, a system developed at CMU, belongs to this class of tools.

Certain properties are not expressible in CTL, but they can be expressed as !-automata. The second
approach, language containment, requires the description of the system and properties as !-automata,
and verifies correctness by checking that the language of the system is contained in the language of the
property. Note that certain types of CTL properties involving existential quantification are not expressible
by !-automata. COSPAN, a system developed at Bell Labs, offers language containment.

A combination of both approaches is offered by the HSIS [6] system, which was developed at the
University of California, Berkeley. Our experience with verification tools (in particular HSIS) led to the
conclusion that sometimes, the simpler and more limited the approach, the more efficient it can be. A
number of design decisions that we made for HSIS made it unacceptably slow for some large examples.

3

With these problems in mind, we set about writing a tool that was more efficient, easily extendible, and
offered a good programming environment, in order that it can be more easily upgraded in the future as
more efficient algorithms are developed.

VIS also has the capability to interface with SIS to optimize logic modules; hence, VIS is an integrated
system for hierarchical synthesis, as well as verification. We plan to pursue research on the interaction
between verification and synthesis in the future; hence the name VIS, verification interacting with synthesis.

1.3 Overview of VIS

Fig. 1.1 presents of an overview of VIS. VIS has three main parts: a front-end to read and traverse a

verilog

-traversal of hierarchy
Front end

Verification

-restruct. hierarchy

VIS

-model checking

-equivalence check.
-cycle-based simul.

CTL
Synthesis

-state encoding
-state minimization

Figure 1.1: Block diagram of VIS.

hierarchical system described in BLIF-MV, which may have been compiled from a high-level language
like Verilog; a verification core, VIS-v, to perform model checking of Fair CTL and test language emptiness;
and a path to SIS, VIS-s, to optimize parts of the logic.

1.3.1 VIS-v Philosophy

We decided to offer limited but efficient capabilities. We felt that in the future, it would be easy to add
more features, as they are required, using a well defined programming interface. In line with this keep it
simple philosophy, VIS provides the following verification capabilities.� Only CTL formulas can be checked. Language containment may be handled in a later release.

However, we do handle language emptiness checks.� Fairness constraints must be of Büchi type, i.e., sets of states that must be visited infinitely often.
However, the internal VIS data structures do have the capability to support more complicated fairness
constraints.

1.3.2 VIS-s Philosophy

VIS can interact with SIS to assist the task of verification by simplifying parts of the system. Another
objective is to support a full-fledged hierarchical synthesis flow, that translates a Verilog description into

4

an optimized multi-level circuit at the gate level. Unlike existing logic optimization systems like SIS, VIS
can support hierarchical synthesis.

5

Chapter 2

Describing Designs for VIS

Given the special needs of hardware simulation, verification, and synthesis, specialized languages to
describe hardware have been defined. These are called hardware description languages (HDLs) and they
resemble general-purpose programming languages. Modern HDLs enable the designer to mix different
levels of design abstraction.

2.1 Verilog HDL

The two most widely used languages for digital design are Verilog, based on C, and VHDL, based on
ADA. Currently VIS only supports Verilog, but our intermediate format, BLIF-MV, was designed to
support translation from many languages.

Verilog allows mixed-level descriptions of hardware in terms of static structures and dynamic behaviors.
Dynamic behavior is described by means of high-level constructs as found in general-purpose programming
languages, like conditional, control of loops, and process fork-join.

A specification in Verilog consists of one or more modules. The top level module specifies a closed
system containing both test data and hardware models. Component modules normally have input and
output ports. Events on the input ports cause changes on the outputs. Events can be either changes in
the values of wire variables (i.e., combinational variables) or in the values of reg variables (i.e., register
variables), or can be explicitly generated abstract events. Modules can represent pieces of hardware
ranging from simple gates to complete systems (e.g., microprocessors), and they can be specified either
behaviorally or structurally, or by a combination of the two. A behavioral specification defines the behavior
of a module using programming language constructs. A structural specification expresses a module as
a hierarchical interconnection of submodules. The components at the bottom of the hierarchy are either
primitives or are specified behaviorally. Verilog has a library of predefined primitives. A good reference
for Verilog can be found in [1].

2.2 VL2MV: from Verilog to BLIF-MV

VIS operates on an intermediate format called BLIF-MV, which is an extension of BLIF, the intermediate
format for logic synthesis accepted by SIS and other tools. VIS includes a stand-alone compiler from
Verilog to BLIF-MV, called VL2MV

See [2] for a description of the synthesizable subset of Verilog that can be handled by VL2MV and of
the extensions of Verilog that are also supported by VL2MV. In this section we survey the key features of
Verilog for VL2MV. Conceptually, it would be easy to provide a translator from any other HDL language,
like VHDL or Esterel, to BLIF-MV.

6

The relationship between a behavioral description language like Verilog and a machine description
language like BLIF-MV is similar to that between a high-level programming language and an assembly
language. Basic constructs of BLIF-MV are module declarations/instantiations, input-output relational
tables which allow descriptions of nondeterminism, symbolic wires, and latches. In BLIF-MV, symbolic
latches are implicitly controlled by a global clock. This clock does not need to be a real wire in the
hardware sense. All symbolic latches transit instantaneously to the next state indicated by the relevant
transition tables. At each clock cycle, each table continuously updates its outputs according to the inputs
it sees until convergence is reached. 1 In the very beginning of the next cycle, all latches simultaneously
update their present state outputs according to their next state inputs. Then again tables update their
outputs accordingly.

VL2MV extracts a set of interacting finite state machines (FSMs) that preserve the behavior of the
source Verilog program defined in terms of simulated results. Allocation of hardware gates to operators
in Verilog (resource binding) is based on the assumption of unlimited resources, where resources are all
possible gates expressible in one table in BLIF-MV. No scheduling and optimization are performed, so
the extracted FSMs are not guaranteed to be optimal (for area, speed, and so on). In order to optimize the
logic, a synthesis program like SIS can be invoked on modules of the system. 2

A design in a synthesizable subset of Verilog consists of a set of modules (either hardware or software).
The first module encountered is regarded as the root module. All modules run in parallel and communicate
with each other through a set of channels (set of wire variables declared in the modules to which these
channels belong). It is assumed that communication through channels is instantaneous. Within each
module, values on channels can be accessed through a set of ports, that can be either wires or registers.
Through wire ports, a module can input and output from and to channels instantaneously, while through
register ports it takes one time unit. A wire port has no storage element associated with it, while a register
port has one storage element associated with it.

A Verilog module contains declarations, module instantiations, continuous assignments and procedural
blocks. Continuous assignments begin with the keyword assign and are always active; they can be
thought of as combinational blocks. Procedural blocks are referred to as always statements; statements
within a procedural block are executed sequentially.

Module instances, continuous assignments, and procedural blocks within a module run concurrently.
Execution of each continuous assignment, basic block in a procedural block and module instance is
assumed to be atomic within each instant. If there is more than one procedural block in the same module,
and outputs of one are inputs to another, the simulated result may depend on how expressions from different
blocks are interleaved by the simulator.

VL2MV can be invoked as a stand-alone tool on a Verilog file to produce a BLIF-MV file. This can be
read in VIS with the command read blif mv. As an alternative, the command read verilog can be directly
used to read in a Verilog file. This invokes VL2MV internally.

2.3 Features of Verilog Supported by VL2MV

VL2MV supports a synthesizable subset of Verilog, and also extends it minimally to make it usable for
formal verification. We survey the features that characterize Verilog as supported by VL2MV.

1Circuits with combinational cycles are legal in BLIF-MV, but currently they are not processed by VIS.
2VL2MV can also extract quantitative timing information from a timed Verilog program, producing BLIF-MVT, based on timed

automata, that is an extension of BLIF-MV with timing constructs [3]. Since verification with quantitative timing is not handled
in the current version of VIS, this feature is of no further interest here.

7

2.3.1 Assignments

Continuous assignments are always active, i.e., whenever any input changes, the output is updated instan-
taneously. Only wire variables can be used at the left hand side of continuous assignments. Continuous
assignments describe the combinational behavior of a circuit.

Procedural assignments (= within a procedural block), also referred to as blocking assignments,
execute sequentially within a procedural block, changing the content of state variables, until the execution
is blocked by a pause. VL2MV compiles procedural blocks based on the assumption that each basic block
will be executed atomically if the delay/event control of the block is satisfied. VL2MV assumes also that
execution of procedural assignments takes zero hardware time. All procedural blocks with active event
controls get executed concurrently. Notice that a Verilog simulator does not treat simple blocks as atomic.
If there is more than one procedural block sharing the same reg variables, caution should be taken to
make sure that the desired behavior does not depend on a specific interleaving among processes.

Procedural assignments update variables instantaneously, meaning that they change the left-hand side
variable so that the statement following the assignment (in the same process, or always statement) can
observe the value change. On the other hand, other processes (for instance, other always statements or
continuous assignments) cannot see the change until the next clock cycle. Because of this, race conditions
might arise among multiple procedural assignments. Non-blocking procedural assignments (<=) provide
a mechanism that defers the assignment without blocking the execution of statements in a block. On
encountering a non-blocking assignment, the right hand-side of the assignment is evaluated according
to the most recent values of the referred variables. However, without changing the variable on the left
hand-side, program execution continues. Then variables are updated simultaneously at the very beginning
of the next time slot. For VL2MV, non-blocking procedural assignments should never be used, since they
might introduce unwanted nondeterminism.

2.3.2 Nondeterminism

Non-blocking assignments also provide a way to introduce nondeterminism on reg variables. If there is
more than one non-blocking assignment in the current time slot assigning to the same register variable,
then the value of that register variable in the next clock cycle will be nondeterministically chosen from
those assigned values. Even though VL2MV accepts this way of specifying nondeterminism, in VIS, unlike
in HSIS, multiple assignments are not considered legal nondeterminism.

Instead, a nondeterministic construct, $ND, has been added to Verilog to specify nondeterminism on
wire variables and is the only legal way to introduce nondeterminism in VIS. For example, to require that
the output at a particular state is nondeterministically GO or NOGO, one can introduce a new variable, r,
and write the following Verilog fragment.

assign r=$ND{GO,NOGO};
.
.
always@(posedge clk) begin
.
.
state = r;
.
.
end

2.3.3 Symbolic Variables

Sometimes it is desirable to specify and examine the value of some variables symbolically, rather than
having to explicitly encode them. VL2MV extends Verilog to allow users to declare symbolic variables

8

using an enumerated type mechanism similar to the one available in the C programming language. As an
example, we introduce a symbolic type named door:

typedef enum {OPEN,OPENING,CLOSED,CLOSING} door;

2.4 Implicit vs. Explicit Clocking

The clocking discipline is determined by the definition of the Verilog simulator, and it can be either implicit
or explicit. Implicit is the default. Explicit may be required in some cases.

A Verilog simulator is an event-driven passive scheduler. A simulator schedules events generated from
Verilog modules and then sends them to modules which are sensitive to these events. Statements with
sensitized events (active statements) are executed and in turn more events are generated, which are then
scheduled by the simulator. The simulator itself does not generate any event, but it coordinates between
the producers and consumers of events. Hence, to write a synchronous system, a designer needs to write a
small clock generator, i.e., an event generator which creates events in time. The produced events provoke
a chain of reactions among modules. The system reaches a stable state when there are no more events
other than the clocking event. The next clocking event is then chosen by the simulator, and simulation
time is advanced according to the time stamp of the newly scheduled clocking event. We call the system
implicitly clocked when all transitions are synchronized by an implicit time. For an implicitly clocked
system hardware resources will not be allocated for a synchronizing variable. Also, for implicitly clocked
designs, one symbolic latch (or state variable) is allocated for each reg variable, and synchronization
variables are dropped. By default, implicit clocking semantics is assumed.

On the other hand, for some designs, the operation of a system depends explicitly on several phases
(rising edge, falling edge, 1-level, 0-level) of one or more synchronizing signals (generally referred to as
clocks). In such a case the clock signals should be interpreted literally and hardware resources should be
allocated. A design is called explicitly clocked if synchronizing signals are to be compiled literally into
hardware. For explicitly clocked systems, each reg variable is modeled by a symbolic latch along with
some extra logic to emulate the clocking mechanism. An example of explicit clocking declared by the
user is the following. Suppose that a system is composed of parallel components that progress differently
according to synchronization signals exchanged among them by means of wait statements. Then it is
necessary to declare an explicit clocking signal:

module env;
reg clk;
wire N_Go, S_Go, E_Go ;

tlc traffic(clk, N_Go, S_Go, E_Go);

always #1 clk = !clk;

endmodule

This code generates a clocking signal clk with a cycle of two time units used to drive the whole
system and make it simulatable.

2.5 Verilog for VL2MV: Hints and Traps

In this section a list of hints to follow, and traps to avoid, is provided for writing Verilog for VIS.

1. Inside an always block, only blocking assignments to reg variables are allowed. Therefore do
not write to an intermediate variable (that is a wire by definition) inside an always block and do
not use non-blocking assignments (<=) ever.

9

2. If variables that must be assigned depend on each other, assign them in separate always blocks,
otherwise the behavior may depend on the order of execution.

3. Inside an always block, blocking assignments = are sensitive to the order of the statements. Thus
the following two fragments evaluate differently:

state = 1;
out = state;

out = state;
state = 1;

Since we do not allow non-blocking assignments (<=) inside an always block, we have to analyze
the order of evaluation to be certain that we have the desired behavior.

4. It is not legal to have a block of assignments, as in:

assign begin
x = 1;
y = 2;

end

However, it is legal to have a block of assignments for an initial statement:

initial begin
x = 1;
y = 2;

end

5. In always blocks, at the next clock, reg variables keep their previous values if they are not
explicitly assigned to.

6. Introduce nondeterminism using only $ND assignments to wires. Unlike in HSIS, multiple assign-
ments such as:

always@(posedge clk) begin
state <= GO;
state <= NOGO ;
end

are not considered legal nondeterminism in VIS.

7. VL2MV will reject a Verilog description containing an unspecified initial state. If the user wants a
nondeterministic initial state, it should be specified explicitly using a $ND construct, for example:
initial x = $ND(a,b,c); in this case, a nondeterministic constant will be created with a name as
x$initial_n23.

8. for statements are supported by VL2MV. Here is an example:

always@(posedge clk) begin
// randomly push floor buttons
for (i=0;i<=‘floor-1;i=i+1) begin

if (random_up[i]) up_floor_buttons[i]=ON;
if (random_down[i]) down_floor_buttons[i]=ON;

end

10

Note that (unfortunately) a for loop can only be used inside an always block. Further, to process
it with VL2MV, invoke VL2MV with the -u (unroll) option. This simply macro-expands the Verilog
code before processing it.

9. A wire can be a vector but not an array. However, a reg can be an array: wire[1:10] a;
is correct but wire a[1:10]; is not. As an example of how things differ for wire and reg
variables consider:

typedef enum {UP,DOWN} dir;
wire[1:‘elev] stop_next;
dir reg direction[1:‘elev];

typedef enum {on, off, interm} onoff;

onoff reg a[1:10] is correct, but onoff wire a[1:10] and onoff wire[1:10] a are not correct.
Also reg [1:‘width] locations[1:‘elev] is correct, but onoff reg [1:‘width] locations[1:‘elev]

is not correct, since the latter are a two dimensional array of symbolic type.

10. VL2MV puts an extra buffer for $ND constructs when the -Z option is used , while by default
it does not. In other words, by default VL2MV connects the left-hand side variable directly to
the nondeterministic table for $ND. Notice that the only legal usage of $ND when -Z is not used
is: assign <var> = $ND(...); where the assign statement is a continuous assignment. The
generated nondeterministic table will use <var> as the output variable. Instead if the -Z option
is turned on, one can use $ND definitions in expressions , as in: assign a = $ND(0,1) + b, or
assign a = (sel) ? $ND(0,1) : b. In this case intermediate variables are generated for the $ND
construct. We recommend only using the default value and explicitly naming the nondeterministic
value, since this will become a pseudo-input to VIS and will in this case have a name given by the
user.

11. In VIS we insist on having nondeterminism only for single output constants. A BLIF-MV table like

.table -> x
-

is allowed and leads to a pseudo-input. However a table like

.table -> x<0> x<1>
0 0
0 1
1 0

is not allowed. The reason is that this table represents a relation and cannot be split into two
independent, nondeterministic, single output tables, since replacing it with

.table -> x<0>
-
.table -> x<1>
-

would lead to the possibility of x = 1 1.

Such a situation comes up naturally when we want a variable to have any of the integers 0,1,2. But
we have to assign 2 bits to hold the variable, and we want to be able to increment or decrement the
variable later on (so it must be an integer, rather than a symbolic variable):

11

wire[0:1] x;
assign x = $ND(0,1,2);

VL2MV generates BLIF-MV for this code that is not accepted by VIS. An ackward way around this
is:

assign temp=$ND(0,1,2,3);
assign location = (temp==3)?2:temp;

2.6 BLIF-MV

BLIF-MV is a low-level language designed for describing hierarchical symbolic sequential systems with
nondeterminism. A system can be composed of interacting sequential subsystems, each of which can
be again described as a collection of communicating sequential subsystems. This makes it possible to
describe systems in a hierarchical fashion. The internal data structure of SIS does not support hierarchical
representations. Hence, even though BLIF can describe hierarchy, BLIF descriptions are flattened into a
single-level representation within SIS. In VIS, however, the original hierarchy specified in BLIF-MV is
preserved in internal data structures so that true hierarchical synthesis and verification is possible.

BLIF-MV also allows nondeterministic gates 3 and hence makes it possible to model nondeterministic
systems. For instance, a design in its early stages may contain nondeterminism, as many aspects may not
be yet decided. Lastly, BLIF-MV supports multi-valued variables, which can be used to simplify system
descriptions.

The semantics of BLIF-MV is defined over flattened networks, using a combinational/sequential
concurrency model. There are four basic primitives: variables, tables (intuitively nondeterministic gates),
wires and latches. A variable takes values from some finite domain. A relation defined over a set of
variables is represented using a table. The variables of a table are divided into inputs and outputs. A
particular variable can be designated as an output in at most one table. Tables are inter-connected using
wires. If a table is deterministic and Boolean, it may also be thought of as a logic gate. Wires may only
take values in the domain of the corresponding variable. A latch is a specialized element that can be placed
on a wire. The latch divides the wire into two parts; the input to the latch, and the output of the latch. A
set of initial values is associated to every latch; they must be a subset of the set of values of its wire. A
state is an assignment of values to the latches of a model, where a value assigned to a latch must be in its
domain. An initial state is a state where every latch takes a value from its set of initial values. Note that
the system can have more than one initial state in general.

At every time point, the system is in some state, where each latch has a value. At every clock tick,
all the latches update their values. These values then propagate through tables until all the wires have a
consistent set of values. If a latch is encountered during the propagation, i.e., an output of a table is an input
of an latch, the propagation process through that latch is stopped. Note that because of nondeterminism,
given a single state, there may be several consistent sets of values. This semantics can be seen as a simple
extension of the standard semantics of synchronous single-clocked digital circuits. In fact, if every table
is deterministic and every latch has a single initial state, the two semantics are exactly equal. The only
differences are in the interpretation of nondeterministic tables and latches with multiple initial states.

In VIS the command read blif mv reads a BLIF-MV description created by VL2MV, or some other
means, and then sets up a corresponding internal data structure. The write blif mv command writes a
BLIF-MV description to a file. The BLIF-MV format is not meant to be read or written directly by
the user, even though simple examples in BLIF-MV may exhibit some degree of clarity. In the VIS
documentation, the syntax of BLIF-MV is described in the document entitled “BLIF-MV”.

3These gates generate some output from the set of pre-specified outputs.

12

2.7 BLIF

BLIF (Berkeley Logic Interchange Format) is an intermediate format to describe sequential circuits. It
has been defined as an entry point to logic optimizers such as SIS, the synthesis system developed at UC
Berkeley. A BLIF file represents a sequential circuit either as an interconnection of logic gates and latches
or as the state transition table of a finite state machine (FSM) or in both ways (an FSM and a corresponding
gate-level implementation). It is possible to have VIS and SIS interact, by sending to SIS a binary encoded
and deterministic sequential circuit and receiving back an optimized version of the same. Notice that even
though SIS can also handle KISS files (i.e., partially encoded and partially deterministic FSMs), currently
VIS outputs hardware FSM descriptions (i.e., a netlist describing completely encoded and completely
deterministic FSMs), for SIS input. For a description of BLIF and SIS we refer to the tutorial paper [4].
A BLIF description can be read directly into VIS by the command read blif, while write blif converts the
internal VIS data structure into a BLIF file readable by SIS. The synthesis path from VIS to SIS and back
and related commands are described in Chapter 5.

2.8 Nondeterminism and Incomplete Specification

The only form of nondeterminism supported in VIS is the construct $ND in Verilog. A system so described
is considered internally as deterministic, because pseudo-input variables are introduced to “control” this
form of nondeterminism. Pseudo-input variables are, by definition, those variables introduced by a $ND
construct. A Verilog nondeterministic assignment, like assign rand_choice = $ND(0,1); is
translated by VL2MV into the table:

assign rand_choice = $NDset (0,1)
.names -> rand_choice
0
1

There are other ways of introducing nondeterminism in Verilog that are supported by VL2MV and
HSIS, but are not supported by VIS.

VL2MV always produces completely specified BLIF-MV tables. However, a BLIF-MV file not pro-
duced by VL2MV (but by another tool or manually) may contain incomplete specification. When the
internal data structure is built, each table is checked for determinism and complete specification (with
the exception of the pseudo-inputs). This is a conservative test, in the sense that one or more tables
may be nondeterministic while the entire network is deterministic. Similarly, one or more tables may be
incompletely specified while the network is completely specified.

2.9 Example: a Traffic Light Controller

In this tutorial, we will use the example of a traffic light controller (TLC), first introduced by Mead and
Conway [5], to illustrate several concepts.

A little used farm road intersects a multi-lane highway; a traffic light controls the traffic at the
intersection. The light controller is implemented to maximize the time the highway light remains green.
The main module ties together a timer, a sensor, a farm light control and a highway control submodules.

The timer submodule implements a timer, that outputs “short” and "long" timeouts. The highway
light stays green for at least “long” time. Any time after “long” time, if there is a car waiting on the
farm road, then the farm light turns green. The farm light remains green until there are no more cars
on the farm road, or until the long timer expires. The yellow light for both directions stays yellow for
“short” time. Note that only a single timer is used for both the farm road and highway controllers. In

13

theory, this could lead to conflicts; as implemented, such conflicts are avoided. From the START state,
the timer produces the signal “short” after a nondeterministic amount of time. The signal “short” remains
asserted until the timer is reset (via the signal “start”). From the SHORT state, the timer produces the
signal “long” after a nondeterministic amount of time. The signal “long” remains asserted until the timer
is reset. Notice that the use of nondeterminism in the description of the timer models an infinite number
of actual implementations, each with a different set-up for the “short” and “long” periods.

The farm light stays RED until it is enabled by the highway control. At this point, it resets the timer,
and moves to GREEN. It stays in GREEN until there are no cars, or the long timer expires. At this point, it
moves to YELLOW and resets the timer. It stays in YELLOW until the short timer expires. At this point,
it moves to RED and enables the highway controller.

The highway light stays RED until it is enabled by the farm control. At this point, it resets the timer,
and moves to GREEN. It stays in GREEN until there are cars on the farm road and the long timer expires.
At this point, it moves to YELLOW and resets the timer. It stays in YELLOW until the short timer expires.
At this point, it moves to RED and enables the farm controller.

There is a single sensor that detects the presence of a car in either direction of the farm road. At each
clock tick, it nondeterministically reports that a car is present or not.

The fact that the timer is a Moore machine (while the highway and farm controllers are Mealy
machines) ensures that the component FSMs can be combined to form a well-defined product FSM
(without combinational cycles).

Y

controller
farm road

farm road
light

highway
light

sensor

timer

highway
controller

R

G

Figure 2.1: Block diagram of traffic light controller.

Fig. 2.1 is a block diagram for the entire controller, and Fig. 2.2 describes the four FSMs that make up
the system.

This entire example is written in Verilog as:

/* Written by Tom Shiple, 25 October 1995 */

/* Symbolic variables */
typedef enum {YES, NO} boolean;
typedef enum {START, SHORT, LONG} timer_state;

14

LONG

SHORTSTART NO YES

GREEN
YELLOW

RED
RED

GREEN YELLOW

start or (!start and !rand_choice) !start and !rand_choice/short

T I M E R
S E N S O R

car_present and long_timer /

hwy_start_timer

short_timer/enable_farm
enable_hwy/

hwy_start_timer

!short_timer!car_present or !long_timer

H W Y _ C O N T R O L

!car_present or long_timer/

farm_start_timer

car_present and !long_timer

short_timer/enable_hwy
enable_farm/

farm_start_timer

!short_timer

!enable_farm

F A R M _ C O N T R O L

!enable_hwy

start/short

!start and rand_choice

!start and rand_choice/short
start/short,long

!start/short,long

rand_choice/
!car_present

!rand_choice/
car_present

rand_choice/car_present!rand_choice/!car_present

Figure 2.2: State transition graphs of FSMs of TLC.

typedef enum {GREEN, YELLOW, RED} color;

module main(clk);
input clk;

color wire farm_light, hwy_light;
wire start_timer, short_timer, long_timer;
boolean wire car_present;
wire enable_farm, farm_start_timer, enable_hwy, hwy_start_timer;

assign start_timer = farm_start_timer || hwy_start_timer;

timer timer(clk, start_timer, short_timer, long_timer);
sensor sensor(clk, car_present);
farm_control farm_control(clk, car_present, enable_farm, short_timer, long_timer,

farm_light, farm_start_timer, enable_hwy);
hwy_control hwy_control (clk, car_present, enable_hwy, short_timer, long_timer,

hwy_light, hwy_start_timer, enable_farm);

endmodule

module sensor(clk, car_present);
input clk;
output car_present;

wire rand_choice;
boolean reg car_present;

initial car_present = NO;
assign rand_choice = $ND(0,1);

always @(posedge clk) begin

15

if (rand_choice == 0)
car_present = NO;

else
car_present = YES;

end
endmodule

module timer(clk, start, short, long);
input clk;
input start;
output short;
output long;

wire rand_choice;
wire start, short, long;
timer_state reg state;

initial state = START;
assign rand_choice = $ND(0,1);

/* short could as well be assigned to be just (state == SHORT) */
assign short = ((state == SHORT) || (state == LONG));
assign long = (state == LONG);

always @(posedge clk) begin
if (start) state = START;

else
begin
case (state)
START:

if (rand_choice == 1) state = SHORT;
SHORT:

if (rand_choice == 1) state = LONG;
/* if LONG, remains LONG until start signal received */

endcase
end

end
endmodule

module farm_control(clk, car_present, enable_farm, short_timer, long_timer,
farm_light, farm_start_timer, enable_hwy);

input clk;
input car_present;
input enable_farm;
input short_timer;
input long_timer;
output farm_light;
output farm_start_timer;
output enable_hwy;

boolean wire car_present;
wire short_timer, long_timer;
wire farm_start_timer;
wire enable_hwy;
wire enable_farm;
color reg farm_light;

initial farm_light = RED;
assign farm_start_timer = (((farm_light == GREEN) && ((car_present == NO) || long_timer))

|| (farm_light == RED) && enable_farm);
assign enable_hwy = ((farm_light == YELLOW) && short_timer);

always @(posedge clk) begin
case (farm_light)
GREEN:

if ((car_present == NO) || long_timer) farm_light = YELLOW;
YELLOW:

if (short_timer) farm_light = RED;
RED:

16

if (enable_farm) farm_light = GREEN;
endcase

end
endmodule

module hwy_control(clk, car_present, enable_hwy, short_timer, long_timer,
hwy_light, hwy_start_timer, enable_farm);

input clk;
input car_present;
input enable_hwy;
input short_timer;
input long_timer;
output hwy_light;
output hwy_start_timer;
output enable_farm;

boolean wire car_present;
wire short_timer, long_timer;
wire hwy_start_timer;
wire enable_farm;
wire enable_hwy;
color reg hwy_light;

initial hwy_light = GREEN;
assign hwy_start_timer = (((hwy_light == GREEN) && ((car_present == YES) && long_timer))

|| (hwy_light == RED) && enable_hwy);
assign enable_farm = ((hwy_light == YELLOW) && short_timer);

always @(posedge clk) begin
case (hwy_light)
GREEN:

if ((car_present == YES) && long_timer) hwy_light = YELLOW;
YELLOW:

if (short_timer) hwy_light = RED;
RED:

if (enable_hwy) hwy_light = GREEN;
endcase

end
endmodule

17

Chapter 3

Introduction to Formal Verification

Formal verification is the process of checking whether a design satisfies some requirements (properties).
We are concerned with the formal verification of designs that may be specified hierarchically (as illustrated
in the previous section); this is also consistent with how a human designer operates. In order to formally
verify a design, it must first be converted into a simpler “verifiable” format. The design is specified as a
set of interacting systems; each has a finite number of configurations, called states. States and transition
between states constitute FSMs. The entire system is an FSM, which can be obtained by composing
the FSMs associated with each component. Hence the first step in verification consists of obtaining a
complete FSM description of the system. Given a present state (or current configuration), the next state (or
successive configuration) of an FSM can be written as a function of its present state and inputs (transition
function or transition relation).

We note that this entire framework is one of discrete functions. Discrete functions can be represented
conveniently by BDDs (binary decision diagram; a data structure that represents boolean (2-valued)
functions) and its extension MDDs (multi-valued decision diagram; a data structure that represents finite
valued discrete functions). We use BDDs and MDDs to represent all quantities required in this discrete
space (more specifically the transition functions, the inputs, the outputs and the states of the FSMs). For
BDDs and MDDs to be efficient representations of discrete functions, a good ordering of input variables
(actual inputs, outputs, state) of the functions must be computed. In general, BDDs operate on sets of
points rather than individual points; this is called symbolic manipulation.

The two most popular methods for automatic formal verification are language containment and model
checking. The current version of VIS emphasizes model checking, but it also offers to the user a limited
form of language containment (language emptiness).

3.1 Model Checking of Temporal Logic

A finite state system can be represented by a labeled state transition graph, where labels of a state are
the values of atomic propositions in that state (for example the values of the latches). Properties about
the system are expressed as formulas in temporal logic of which the state transition system is to be a “a
model”. Model checking consists of traversing the graph of the transition system and of verifying that it
satisfies the formula representing the property, i.e., the system is a model of the property.

3.1.1 Computation Tree Logic

Temporal logic expresses the ordering of events in time by means of operators that specify properties such
as “p will eventually hold”. There are various versions of temporal logic. One is computational tree logic
(CTL). Computation trees are derived from state transition graphs. The graph structure is unwound into

18

an infinite tree rooted at the initial state. Fig. 3.1 shows an example of unwinding a graph into a tree. Paths
in this tree represent all possible computations of the system being modelled. Formulae in CTL refer to
the computation tree derived from the model. CTL is classified as a branching time logic because it has
operators that describe the branching structure of this tree.

G R

R

Y

R

R

G

Y

G

unwind
==>

R

GY

Figure 3.1: Unwinding of state transition graph.

Formulae in CTL are built from atomic propositions (where each proposition corresponds to a variable
in the model), standard boolean connectives of propositional logic (e.g., AND, OR, XOR, NOT), and
temporal operators. Each temporal operator consists of two parts 1: a path quantifier (A orE) followed by
a temporal modality (F , G, X , U). All temporal operators are interpreted relative to an implicit “current
state”. There are in general many execution paths (sequences of state transitions) of the system starting at
the current state. The path quantifier indicates whether the modality defines a property that should be true
of all those possible paths (denoted by universal path quantifierA) or whether the property needs only hold
on some path (denoted by existential path quantifier E). The temporal modalities describe the ordering of
events in time along an execution path and have the following intuitive meaning:

1. F � (reads “� holds sometime in the future”) is true of a path if there exists a state in the path where
formula � is true.

2. G � (reads “� holds globally”) is true of a path if � is true at every state in the path.

3. X � (reads “� holds in the next state”) is true of a path if � is true in the state reached immediately
after the current state in the path.

4. � U (reads “� holds until holds”, called “strong until” 2) is true of a path if is true in some
state in the path, and � holds in all preceding states.

In the VIS documentation there is a description of the syntax of CTL in the document entitled “CTL
Syntax”. In this chapter CTL formulas will be written in a simplified syntax.

The state of a system consists of the values stored in all latches. Each formula of the logic is either
true or false in a given state; its truth is evaluated from the truth of its subformulas in a recursive fashion,
until one reaches atomic propositions that are either true or false in a given state. A formula is satisfied by
a system if it is true for all the initial states of the system. If the property does not hold, the model checker
will produce a counterexample, that is an execution path that witnesses the failure. An efficient algorithm

1A formula that contains any temporal modality (F , G, X , U) without an associated path quantifier (A, E) is not a legal CTL
formula.

2“Weak until” is when � holds forever, i.e., is not required to hold at some state in the future.

19

for automatic model checking used also in VIS has been described by Clarke et al. [7]. The following
table shows examples of evaluations of formulas on the computation tree of Fig. 3.1:

formula T/F
EG (RED) true
E (RED U GREEN) true
AF (GREEN) false

3.1.2 Specification of Properties in CTL

Temporal logic formulas can be difficult to interpret, so that a designer may fail to understand what property
has been actually verified. Therefore it is important to be familiar with the most common constructs of
CTL used in hardware verification.

1. AG(req ! AF ack)
For all reachable states (AG), if req is asserted in the state, then always at some later point (AF)
we must reach a state where ack is asserted. AG is interpreted relative to the initial states of the
system. AF is interpreted relative to the state where req is asserted. In other words, it is always the
case that if the signal req is high, then eventually ack will also be high. A common mistake would
be to write req ! AF ack, instead of AG(req ! AF ack). The meaning of the former is that ifreq is asserted in the initial state, then it is always the case that eventually we reach a state whereack is asserted, while the latter requires that the condition is true for any reachable state where req
holds. If req is identically true, AG(req ! AF ack) reduces toAG AF ack.

2. AG AF enabled
From every reachable state, for all paths starting at that state we must reach another state whereenabled is asserted. In other words, enabled must be asserted infinitely often.

3. AG EF restart
From any reachable state, there must exist a path starting at that state that reaches a state whererestart is asserted. In other words, it must always be possible to reach the restart state.

4. EF (started ^ :ready)
It is possible to get to a state where started holds, but ready does not hold.

5. AG(send! A(send U receive))
It is always the case that if send occurs, then eventually receive is true, and until that time, send
must continue to be true.

6. AG(inp! AX AX out)
Whenever inp goes high, out will go high within two clock cycles.

7. EF (a^ EX(a^EX a))! EF (b^ EX EX c)
If it is possible for a to be asserted in three consecutive states, then it is also possible to reach a state
where b is asserted and from there to reach in two more steps a state where c is asserted.

We summarize the most common CTL templates with the corresponding English language meaning:

1. AGp is “nothing bad ever happens” (:p is bad). Used to specify an invariant, i.e., a condition
that must be true in all states. Helpful for partial correctness (no wrong answers are produced),
mutual exclusion (no two processors are in a critical section simultaneously), deadlock freedom (no
deadlock state is reached).

20

2. AF AG p is “eventually the system is confined to states where p is always true” or “the system stays
out of states where p is true only a finite number of times”. It can be used to specify the property of
finite number of failures in the system.

3. AG(p ! AF q) is “from all reachable states where p is true, something good, q, eventually
happens”. Helpful to express total correctness (termination eventually occurs with correct answers),
accessibility (eventually a requesting process will enter its critical section), starvation freedom
(eventually service will be granted to a waiting processor). If p is always true, it reduces toAG AF q.

4. AG AF q is “infinitely often q”, i.e., from any reachable state one must reach a state where q is
asserted. It can be used, for instance, to enforce a reset condition from any state.

5. AF q is “something good, q, eventually (or finally) happens” (less restrictive than AG AF q).

6. AGEF p is “always p possible”. It can detect, for instance, the absence of deadlocks, by requiring
that is it always possible to reach deadlock-free states. This is an example of a CTL property that
cannot be represented by an !-automaton 3.

7. AG true forces a complete traversal of the states of the system.

8. EF p is “p is possible”. This is another example of a CTL property that cannot be represented by
an !-automaton.

Caveats

1. The variables appearing in a CTL formula must be a function of register variables (e.g., states or
outputs attached to states). Variables that depend on inputs or pseudo-inputs are not allowed, since
this could lead to a state where both p and :p are true, depending on the input.

2. The propositional logic operator !, as in a! b is equivalent to :a+ b, and is satisfied by :a. Do
not use it in place of a ? b, which is true if and only if a and b are both true.

3. The syntax of CTL and of Verilog are different. For instance, we have:

Verilog CTL meaning

&& * AND
|| + OR
== = equal
a!=NO !(a=NO) not equal

-> implies
ˆ xor

3.1.3 Fairness Constraints

It is often necessary to introduce some notion of fairness. For example, if the system allocates a shared
resource among several users, only those paths along which no user keeps the resource forever should be
considered. CTL by itself cannot express assertions about correctness along fair paths.

Fair CTL is a modification of CTL to handle fairness. Fair CTL is characterized by the introduction of
fairness constraints, which are sets of states expressed by means of CTL formulas, each giving a fairness
condition; a fair path is a path along which each fairness condition is satisfied infinitely often. These types

3It is possible to show two transition systems that recognize the same language, of which one satisfies AG EF p, and the
other does not.

21

of fairness constraints are called Büchi type. More general fairness constraints, such as Street type, are
not allowed currently. Fair CTL has the same syntax as CTL, but the semantics is modified so that all path
quantifiers only range over fair paths. VIS supports Fair CTL; in the documentation we may sometimes
refer to CTL, where we really mean Fair CTL.

An example of a fairness condition is p, that restricts the system to only those paths where p is asserted
infinitely often.

3.2 Properties and Fairness Conditions of Traffic Light Controller in CTL

Not all behavior exhibited by the description of the Traffic Light Controller is valid. In order to restrict
the behavior we impose the following two fairness constraints. The first is:

!(timer.state=START);

The timer must eventually leave the START state. This constraint prevents it from staying in START
forever. The second fairness constraint:

!(timer.state=SHORT);

ensures that the timer must eventually leave the SHORT state. Liveness properties (e.g, cars on farm road
and highway will eventually cross) would not pass if these fairness constraints are not placed on the timer.

One obvious property to check is that the light is not green in both directions at the same time, ensuring
that collisions do not occur between traffic on the farm road and highway. This property is written as the
CTL formula:

AG (!((farm_light = GREEN) * (hwy_light = GREEN)));

To ensure that a car on the farm road eventually crosses the intersection, we require that if a car is
present on the farm road, and the timer is long, then eventually the farm light will turn green. In CTL this
is written as:

AG(((car_present = YES) * (timer.state = LONG)) -> AF(farm_light = GREEN));

In addition, regardless of what happens on the farm road, the highway should always be green in the
future:

AG(AF(hwy_light = GREEN));

The presence of a car on the farm road does not guarantee that eventually the farm light will turn green.
A car may approach, and then back away, all before the timer goes long. This property is not necessary
for safety, it just maximizes the time that the highway light is green. Thus, it is desirable that the system
satisfies the following property:

!(AG((car_present = YES) -> AF(farm_light = GREEN)));

3.3 Language Containment

There are properties of practical interest that cannot be described in CTL. An example is the “almost
always” property: a condition, q, always holds after a finite number of transitions (note that formulasFG q and AF G q would express this, but these are not legal CTL formulas). This property looks a lot
like AF AG q, but it is not the same. One can exhibit a transition system where AF G q is true, whileAF AG q is false.

22

A solution would be to use a more expressive type of temporal logic (for instance, the previous property
could be expressed in PLTL or CTL*). But there would be drawbacks, such as the higher complexity of
algorithms for model checking. An alternative is to use another verification paradigm, called language
containment, based on the theory of !-automata. For example, it is easy to express the previous “almost
always” property using an automaton.

Currently VIS supports a restricted form of language containment. We review briefly the idea of
language containment: for a system to satisfy a property it must be that L(S) � L(T), where S is an!-automaton representing the system, T is an !-automaton representing the property andL is the language
accepted by the automaton. It is a fact that L(S) � L(T) is equivalent to L(S)\ L(T) = ;.

To achieve language containment checking we represent the composition of the given system with a
model representing the negation of the property and check it for language emptiness. The language of the
composed system is empty if and only if the system satisfies the property T .

Language emptiness is used not only to verify properties that cannot be expressed in Fair CTL, but
also to check whether the abstraction of a system still contains the original system. In both cases one
must complement an !–automaton (T), and this is hard to do if the automaton is nondeterministic (as is
usually the case for an abstraction). The fact that complementation of a deterministicproperty is easy, while
complementation of a nondeterministicproperty may be hard, is a key problem with language containment.
This has prompted a lot of research on different classes of !-automata with different expressiveness and
difficulty of complementation. Currently VIS supports language emptiness of nondeterministic Büchi
automata; only it is the responsibility of the user to derive the complement of a given nondeterministic
property. Büchi automata acceptance conditions are states that must be reached infinitely often and they
are specified by means of fairness constraints. Thus to use language containment, the user must insert in
the Verilog hierarchy a monitor, which represents the complement automaton structure, and impose a set
of fairness conditions to specify the complement automaton acceptance conditions, i.e., the acceptance
conditions are specified in terms of fair paths.

As a final note, inside VIS, language emptiness (language containment) is reduced to CTL, by checking
the CTL formula E G true on the system (system composed with complemented property), i.e., whether
there is an infinite path (notice that true is always satisfied), satisfying appropriate fairness constraints.

23

Chapter 4

Formal Verification in VIS

In this chapter we describe the usage and the relation between the VIS commands that perform formal
verification. The main sections are:

1. building an internal representation of the finite-state system,

2. FSM traversal,

3. specification of fairness constraints,

4. language emptiness,

5. model checking,

6. equivalence checking, and

7. simulation.

4.1 Representing the System for Verification

In this section, we describe the steps involved in converting a BLIF-MV description into an internal FSM
representation.

4.1.1 Building the Flattened Network

The compound init verify command executes the entire set of required initialization commands. When a
BLIF-MV description is read into VIS, it is stored as a “hierarchy” tree, which is a hierarchical description
of the design; it consists of modules (also called hnodes) that in turn consist of sub-modules (also hnodes)
that are related in some fashion. This relation is represented as a table, which implements the output
function in terms of the sub-module inputs. The print hierarchy stats command in VIS prints hierarchy
information, and the print models command lists statistics on all the models in the hierarchy. Other useful
print commands are print io and print latches.

The hierarchy can be described by a tree. The root of the tree is the main module, and the leaves
are lower level instantiations of modules. The hierarchy in VIS can be traversed in a manner similar to
traversing directories in UNIX. It is possible to reach a desired node in the tree by walking up and down
with the cd command. At any node simulation, verification and synthesis operations can be performed.
The command pwd prints the name of the current node. The command ls lists all the nodes (submodules)
in the current node; ls -R lists all the nodes in the current subtree.

24

The first step towards verification consists of “flattening” this hierarchical description into a single
network (netlist of multi-valued logic gates). The output is computed from the inputs of the design by the
network circuit, which consists of logic gates, interconnections between them, and latches to represent the
sequential elements. The flatten hierarchy command creates this network, and the print network command
can be used to print it. Other related commands are print network stats command that prints statistics
about the network, and test network acyclic command that checks the network for combinational cycles.
On the Traffic Light Controller example these commands work as follows :

UC Berkeley, VIS Release 1.0 (compiled 11-Dec-95 at 10:36 AM)
VIS> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> print_hierarchy_stats
Model name = main, Instance name = main
inputs = 0, outputs = 0, variables = 12, tables = 3, latches = 0, children = 4
vis> print_models
Model name = hwy_control
inputs = 4, outputs = 3, variables = 49, tables = 44, latches = 1
subckts = 0
Model name = sensor
inputs = 0, outputs = 1, variables = 12, tables = 11, latches = 1
subckts = 0
Model name = main
inputs = 0, outputs = 0, variables = 12, tables = 3, latches = 0
subckts = 4
Model name = timer
inputs = 1, outputs = 2, variables = 40, tables = 38, latches = 1
subckts = 0
Model name = farm_control
inputs = 4, outputs = 3, variables = 49, tables = 44, latches = 1
subckts = 0
vis> flatten_hierarchy
vis> print_network_stats
main combinational=142 pi=0 po=0 latches=4 pseudo=2 const=40 edges=206
vis> test_network_acyclic
Network has no combinational cycles
vis> ls
farm_control
hwy_control
sensor
timer
vis> cd hwy_control
vis> print_io
inputs: car_present enable_hwy long_timer short_timer
outputs: enable_farm hwy_light hwy_start_timer
vis> print_latches
hwy_light
vis> flatten_hierarchy
vis> pns
hwy_control combinational=45 pi=4 po=3 latches=1 pseudo=0 const=12 edges=68

Note that when a node is arrived at for the first time, there is no network for that node until flat-
ten hierarchy is called for that node.

Also flatten hierarchy automatically checks each table in the network for being deterministic (except
for pseudo-inputs) and completely specified. Since this checking takes some time, it can be turned off
safely using the option flatten hierarchy -b, after a BLIF-MV file has been checked once.

4.1.2 Ordering

The next step towards verification consists of converting this network representation into a functional
description that represents the output and next state variables as a function of the inputs and current state
variables. We use the BDD (binary decision diagram) and its extension the MDD (multivalued decision
diagram) to represent boolean and discrete functions. Before creating the MDDs, it is necessary to order

25

the variables in the support of the MDD. This is accomplished by the static order command, which
gives an initial ordering. Networks with combinational cycles cannot be ordered. If the MDD variables
have already been ordered, then static order does nothing. To undo the current ordering, reinvoke the
command flatten hierarchy. At any stage the current variable ordering can be written out to a file using
the write order command.

4.1.3 Computing FSM Information

The build partition mdds command computes the transition function MDDs. Depending on the parti-
tioning method selected, the MDDs for the combinational outputs (COs) are built in terms of either the
combinational inputs (CIs) or some subset of intermediate nodes of the network. The MDDs built are
stored in a DAG called a “partition”. The vertices of a partition correspond to the CIs, COs, and any
intermediate nodes used. Each vertex has a multi-valued function (represented by an MDD) expressing the
function of the corresponding network node in terms of the partition vertices in its transitive fanin. Hence,
the MDDs of the partition represent a partial collapsing of the network. The inout method represents one
extreme where no intermediate nodes are used, and total represents the other extreme where every node
in the network has a corresponding vertex in the partition. If no method is specified on the command
line, then the value of the flag partition method is used as default (this flag is set by the command set
partition method), unless it does not have a value, in which case the inout method is used. The parti-
tion graph can be printed to a file with the print partition command. Another related command is the
print partition stats command that prints statistics on the partition graph.

The complete set of commands included by init verify are:

1. flatten hierarchy,

2. static order, and

3. build partition mdds.

UC Berkeley, VIS Release 1.0 (compiled 11-Dec-95 at 10:36 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> flatten_hierarchy
vis> static_order
vis> build_partition_mdds
vis> print_partition_stats
Method Inputs-Outputs, 8 sinks, 10 sources, 14 total vertices, 78 mdd nodes

4.1.4 Advanced Ordering

Dynamic ordering of variables may be enabled and disabled using the dynamic var ordering command.
Dynamic ordering is a technique to reorder the MDD variables to reduce the size of the existing MDDs. The
commands flatten hierarchy and static order must be invoked before this command. Available methods
for dynamic reordering are window and sift. Dynamic ordering may be time consuming, but can often
reduce the size of the MDDs dramatically.

Dynamic ordering is best invoked explicitly (using the dynamic var ordering -f <method> option)
after the build partition mdds and print img info commands. If dynamic ordering finds a good ordering,
then you may wish to save this ordering (using write order <file>) and reuse it (using static order -s
<method> <file>). With option dynamic var ordering -e <method> dynamic ordering is automatically
enabled whenever a certain threshold on the overall MDD size is reached. Enabling dynamic ordering
may slow down the verification, but it can make the difference between completing and not completing a
verification task.

26

UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> init_verify
vis> print_partition_stats
Method Inputs-Outputs, 8 sinks, 10 sources, 14 total vertices, 78 mdd nodes
vis> write_order
UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
network name: main
generated: Wed Dec 13 14:13:57 1995
#
name type mddId vals levs
sensor.rand_choice pseudo-input 0 2 (0)
timer.state latch 1 3 (1, 2)
hwy_light latch 2 3 (3, 4)
car_present latch 3 2 (5)
car_present$NS shadow 4 2 (6)
farm_light latch 5 3 (7, 8)
timer.rand_choice pseudo-input 6 2 (9)
timer.state$NS shadow 7 3 (10, 11)
farm_light$NS shadow 8 3 (12, 13)
hwy_light$NS shadow 9 3 (14, 15)
vis> dynamic_var_ordering -f sift
Dynamic variable ordering forced with method sift....
vis> print_partition_stats
Method Inputs-Outputs, 8 sinks, 10 sources, 14 total vertices, 70 mdd nodes
vis> write_order
UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
network name: main
generated: Wed Dec 13 14:14:20 1995
#
name type mddId vals levs
sensor.rand_choice pseudo-input 0 2 (0)
timer.state latch 1 3 (1, 2)
hwy_light latch 2 3 (3, 6)
farm_light latch 5 3 (4, 5)
car_present$NS shadow 4 2 (7)
car_present latch 3 2 (8)
timer.rand_choice pseudo-input 6 2 (9)
timer.state$NS shadow 7 3 (10, 11)
farm_light$NS shadow 8 3 (12, 13)
hwy_light$NS shadow 9 3 (14, 15)
vis> write_order tlc.sift
vis> quit

/projects/vis/vis/mips/bin/vis
UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> flatten_hierarchy -b
vis> static_order -s input_and_latch tlc.sift
vis> write_order
UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
network name: main
generated: Wed Dec 13 14:34:08 1995
#
name type mddId vals levs
sensor.rand_choice pseudo-input 0 2 (0)
timer.state latch 1 3 (1, 2)
hwy_light latch 2 3 (3, 4)
farm_light latch 3 3 (5, 6)
car_present$NS shadow 4 2 (7)
car_present latch 5 2 (8)
timer.rand_choice pseudo-input 6 2 (9)
timer.state$NS shadow 7 3 (10, 11)
farm_light$NS shadow 8 3 (12, 13)
hwy_light$NS shadow 9 3 (14, 15)

27

Dynamic ordering moves around binary valued variables, possibly separating a group of variables
which encode a single multi-valued variable. Note, however, that the resolution of reading and writing
variable ordering files is at the multi-valued variable level, not the bit-level. Therefore when the ordering
found by dynamic ordering is read back, the BDD variables which encode the MDD variables do not
necessarily occupy the same levels as reported in the file tlc.sift. See for example variable hwy light
in the example above. The only information that is used from the file tlc.sift is the order of the MDD
variables in the first column. By editing the file tlc.sift any order can be imposed. Given an ordering of
MDD variables, BDD variables which encode them are assigned to the first adjacent available levels.

4.2 FSM Traversal and Image Computation

FSM traversal is the core computation in design verification. Efficient traversal requires grouping the
MDDs, in a manner optimal for traversal. To traverse the FSM, the present state, input, and next state
variables are organized for easy manipulation. All this information is included in an FSM data structure
created in the compute reach command. This also invokes traversal of the entire reachable state set of
the FSM representing the design, and may be invoked with different verbosity options to get varying
amounts of traversal information. On subsequent calls to compute reach, the reachability computation is
not reperformed, but statistics can be printed using -v.

The reachability computation makes extensive use of image computation. There are several user-
settable options that affect the performance of image computation. The documentation for the set command
lists these options. Use the command set image method to change the image computation method, and then
re-initialize verification (starting at the flatten hierarchy command 1). The print img info prints current
image information. Notice that while print partition stats prints information on the next state functions,
print img info prints information on the next state transition relations. The command print img info
creates transition relations from transition functions by clustering several functions together. The result is
a partitioned transition relation. It is often a good idea to force dynamic variable reordering (for instance,
dynamic var ordering -f sift) at this point to reorder these relation MDDs. The reachability computation
is an optional step of the model checking algorithm; unreachable states may be used as don’t cares to
minimize the BDD representation.

The following illustrates the command compute reach on the Traffic Light Controller:

UC Berkeley, VIS Release 1.0 (compiled 11-Dec-95 at 10:36 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> init_verify
vis> compute_reach -v 1
Computing reachable states using the iwls95 image computation method.
Printing Information about Image method: IWLS95

Threshold Value of Bdd Size For Creating Clusters = 1000
(Use "set image_cluster_size value " to set this to desired value)

Verbosity = 0
(Use "set image_verbosity value " to set this to desired value)

W1 = 6 W2 = 1 W3 = 1 W4 = 2
(Use "set image_W? value " to set these to desired values)

Shared Bdd Size of 1 components is 97

Reachability analysis results:
FSM depth = 8
reachable states = 20
MDD size = 8
analysis time = 0

1Whenever a hierarchy is reinitialized, the option flatten hierarchy -b can be used safely for efficiency.

28

4.3 Specifying Fairness Constraints

Fairness constraints are used to restrict the behavior of the design. Each fairness condition specifies a
set of states in the machine, and requires that in any acceptable behavior these states must be traversed
infinitely often (i.e., these states must be on a cycle). Such constraints are called “Büchi fairness”
constraints. Fairness constraints are stored in fairness files (with extension .fair by convention);
the syntax for fairness files can be found in http://www-cad.eecs.berkeley.edu/Respep
/Research/vis/doc/packages/read fairnessCmd.html. A fairness file is read in by the
read fairness command. Active fairness conditions can be displayed by means of print fairness. The
reset fairness command is used to reset the fairness constraint to “true”; by default, there is one fairness
condition that contains all states.

Fairness constraints remove unwanted behavior from a system. They are a powerful, but dangerous
tool, because it is easy to make a faulty system pass wanted properties by a careless use of fairness
constraints.

4.4 Language Emptiness

The language of a design is given by sequences over the set of reachable states that do not violate the
fairness constraint. If the language is empty, we know that the system does not exhibit any behavior. VIS
supports the command lang empty as an alias for model cheking the formula EG true. This is relevant
in the context of language containment, where the properties to be verified are also specified as automata
and a modified system, consisting of the behavior of the system that does not satisfy the property, is tested
for emptiness. Before invoking model checking, lang empty can also be used to ensure that the system is
non-trivial. This is pertinent because the fairness constraint specified may make the entire system “unfair”,
and an empty system passes all universal properties.

VIS produces a debug trace to help the designer understand the cause of the failure. Common corrective
actions are the correction of an error in the original system description or addition of fairness constraints.

The language emptiness trace for the Traffic Light Controller example with a fairness constraint is:

UC Berkeley, VIS Release 1.0 (compiled 14-Dec-95 at 1:04 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> init_verify
vis> read_fairness tlc.fair
vis> print_fairness
Fairness constraints:
!(timer.state=START);
!(timer.state=SHORT);
vis> lang_empty -i
LE: language is not empty
LE: generating path to fair cycle
LE: path to fair cycle:

--State 0:
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

This indicates that there is valid behavior in the system, and an example of this is given; a closed
path that begins at the initial state, where no car is present car present : NO, the farm light is redfarm light : RED, the highway light is green hwy light : GREEN , and the timer is in its start statetimer:state : START . From the initial state the machine loops through a fair cycle, which has 8 states,

29

and is described below. Note that this trace is differential for both states and inputs; only variables that
have changed in the last step are printed.

LE: fair cycle:

--State 0:
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

--Goes to state 1:
car_present:YES
timer.state:SHORT

--On input:
sensor.rand_choice:1
timer.rand_choice:1

--Goes to state 2:
timer.state:LONG

--On input:
<Unchanged>

--Goes to state 3:
hwy_light:YELLOW
timer.state:START

--On input:
timer.rand_choice:0

--Goes to state 4:
timer.state:SHORT

--On input:
timer.rand_choice:1

--Goes to state 5:
car_present:NO
farm_light:GREEN
hwy_light:RED
timer.state:START

--On input:
sensor.rand_choice:0
timer.rand_choice:0

--Goes to state 6:
car_present:YES
farm_light:YELLOW

--On input:
sensor.rand_choice:1

--Goes to state 7:
timer.state:SHORT

--On input:
timer.rand_choice:1

--Goes to state 8:
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

--On input:

30

sensor.rand_choice:0
timer.rand_choice:0

4.5 Model Checking Operations

4.5.1 Performing Model Checking

The model check command calls model checking in VIS. A description of the syntax of CTL for VIS is pre-
sented in http://www-cad.eecs.berkeley.edu/Respep/Research/vis/doc/ctl/ctl
ctl.html. By convention CTL properties are in a file with extension .ctl. The following illustrates the
functioning of model check on the Traffic Light Controller example. Note that in this session the fairness
constraints are not read in. Debugging error traces is explained in the next section.

UC Berkeley, VIS Release 1.0 (compiled 14-Dec-95 at 1:04 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> init_verify
vis> model_check -i tlc.ctl

MC: formula passed --- AG(!((farm_light=GREEN * hwy_light=GREEN)))

This indicates that the property passed (i.e. the system satisfies the property).

MC: formula failed --- AG(((car_present=YES * timer.state=LONG) -> AF(farm_light=GREEN)))
MC: Calling debugger

This indicates that the property failed, and gives the following error trace that shows behavior seen in
the system that does not satisfy the property.

--State
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

fails AG(((car_present=YES * timer.state=LONG) -> AF(farm_light=GREEN)))
--Counter example is a path to a state where
((car_present=YES * timer.state=LONG) -> AF(farm_light=GREEN)) is false

--State 0:
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

--Goes to state 1:
car_present:YES
timer.state:SHORT

--On input:
sensor.rand_choice:1
timer.rand_choice:1

--Goes to state 2:
timer.state:LONG

--On input:
<Unchanged>

--State
car_present:YES

31

farm_light:RED
hwy_light:GREEN
timer.state:LONG

fails ((car_present=YES * timer.state=LONG) -> AF(farm_light=GREEN))

--State
car_present:YES
farm_light:RED
hwy_light:GREEN
timer.state:LONG

passes (car_present=YES * timer.state=LONG)

--State
car_present:YES
farm_light:RED
hwy_light:GREEN
timer.state:LONG

passes car_present=YES

--State
car_present:YES
farm_light:RED
hwy_light:GREEN
timer.state:LONG

passes timer.state=LONG

--State
car_present:YES
farm_light:RED
hwy_light:GREEN
timer.state:LONG

fails AF(farm_light=GREEN)

--A fair path on which farm_light=GREEN is always false:

--Fair path stem:

--State 0:
car_present:YES
farm_light:RED
hwy_light:GREEN
timer.state:LONG

--Goes to state 1:
hwy_light:YELLOW
timer.state:START

--On input:
sensor.rand_choice:1
timer.rand_choice:0

--Fair path cycle:

--State 0:
car_present:YES
farm_light:RED
hwy_light:YELLOW
timer.state:START

--Goes to state 1:
<Unchanged>

32

--On input:
sensor.rand_choice:1
timer.rand_choice:0

This is the end of the debug trace for this CTL formula. The command model check continues with
the next formula.

MC: formula failed --- AG(AF(hwy_light=GREEN))
MC: Calling debugger

This indicates that the property failed, and it is followed by an error trace that shows behavior seen in
the system that does not satisfy the property. To save space, we omit the error trace.

MC: formula passed --- !(AG((car_present=YES -> AF(farm_light=GREEN))))

This indicates that the property passed (i.e. the system satisfies the property).

4.5.2 Debugging for Model Checking

If model checking or language emptiness checks fail, VIS reports the failure with a counterexample, i.e.,
an error trace of sample “bad” behavior (i.e., behavior seen in the system that does not satisfy the property
- for model checking, or valid behavior seen in the system - for language emptiness). This is called the
“debug” trace. Debug traces list a set of states that are on a path to a fair cycle and fail the CTL formula.

In the previous section, the second and third properties fail during model checking. This may
be rectified by reading in the fairness constraints previously described for the Traffic Light Controller
example. If the fairness constraints are read in, the valid behavior is restricted and these properties pass.
In particular, the fairness constraint !(timer.state=START) disallows behavior, where the system
stays forever in the state:

car_present:YES
farm_light:RED
hwy_light:YELLOW
timer.state:START

--On input:
sensor.rand_choice:1
timer.rand_choice:0

More precisely, the fairness constraint disallows behavior, where there is a car in the farm road, but
the timer is stuck in its initial state, by forcing the timer to progress in finite time to the next state.

UC Berkeley, VIS Release 1.0 (compiled 11-Dec-95 at 10:36 AM)
vis> read_fairness tlc.fair
vis> model_check tlc.ctl

MC: formula passed --- AG(!((farm_light=GREEN * hwy_light=GREEN)))

MC: formula passed --- AG(((car_present=YES * timer.state=LONG) -> AF(farm_light=GREEN)))

MC: formula passed --- AG(AF(hwy_light=GREEN))

MC: formula passed --- !(AG((car_present=YES -> AF(farm_light=GREEN))))

33

4.5.3 Checking Invariants

An important class of CTL formulas is invariants. These are formulas of the form AG f , where f is a
quantifier-free formula. The semantics of AG f is that f is true in all reachable states. The command
check invariant implements an algorithm that is specialized for these formulas. In the following example,f is the formula

!((farm_light = GREEN) * (hwy_light = GREEN));

contained in the file tlc.invar.

UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> init_verify
vis> check_invariant tlc.invar

INV: formula passed --- !((farm_light=GREEN * hwy_light=GREEN))

4.5.4 Advanced Model Checking: Abstraction and Reduction

When performing model checking and checking invariant properties, one can use the reduce option -r, to
perform model checking on a “pruned” FSM, i.e., one where parts that do not affect the formula (directly
or indirectly) have been removed.

This mechanism can be combined with the abstraction mechanism available through the command
flatten hierarchy <file>. <file> contains the names of variables to abstract. For each variable x appearing
in <file>, a new primary input node named x$ABS is created to drive all the nodes that were previously
driven by x. Hence, the node x will not have any fanouts; however, x and its transitive fanins will remain
in the network. Abstracting a net effectively allows it to take any value in its range, at every clock cycle.
This mechanism can be used to perform manual abstractions.

We show an example, where the file tlc.abstract contains the variable timer.start. By
abstracting timer.start, the timer module is disconnected from the rest of the Traffic Light Controller.

Then we perform model checking of the CTL property read from the file tlc.reduce.ctl:

AG((timer.state = START) -> AF (timer.state = LONG));

This property refers only to the timer module. Since the timer has been disconnected, the rest of the
system can be pruned away when testing this property. As expected this property fails, since no fairness
constraint has been read in.

UC Berkeley, VIS Release 1.0 (compiled 15-Dec-95 at 2:18 PM)
Sourcing .visrc of Tiziano
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> flatten_hierarchy tlc.abstract
vis> static_order
vis> build_partition_mdds
vis> mc -i -r tlc.reduce.ctl

MC: formula failed --- AG((timer.state=START -> AF(timer.state=LONG)))

MC: Calling debugger

--State
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

34

fails AG((timer.state=START -> AF(timer.state=LONG)))
since (timer.state=START -> AF(timer.state=LONG)) is false at this state

--State
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

fails (timer.state=START -> AF(timer.state=LONG))

--State
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

passes timer.state=START

--State
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

fails AF(timer.state=LONG)

--A fair path on which timer.state=LONG is always false:

--Fair path stem:

--State 0:
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

--Fair path cycle:

--State 0:
car_present:NO
farm_light:RED
hwy_light:GREEN
timer.state:START

--Goes to state 1:
<Unchanged>

--On input:
sensor.rand_choice:0
timer.rand_choice:0

In this particular example, the same effect of “restricted” model checking can be obtained by changing
(using the cd command) to the timer node and performing model checking. When at the timer node, the
inputs to timer from the rest of the system are considered free inputs. Notice that the names of variables
in the CTL property in the file tlc.reduce.ctl must be revised as follows:

AG((state = START) -> AF (state = LONG));

since the convention for names is to drop the current node and all nodes above from the namepath.

UC Berkeley, VIS Release 1.0 (compiled 14-Dec-95 at 1:04 AM)
Sourcing .visrc of Tiziano
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> cd timer

35

vis> init_verify
vis> mc tlc.reduce.ctl

MC: formula failed --- AG((state=START -> AF(state=LONG)))

However, there are more complex situations that cannot be emulated so simply.

4.6 Combinational and Sequential Equivalence

In VIS it is also possible to check the equivalence of two networks. The command comb verify verifies the
combinational equivalence of two flattened networks. In particular, any set of functions (the roots), defined
over any set of intermediate variables (the leaves), can be checked for equivalence between two networks.
Roots and leaves are subsets of the nodes of a network, with the restriction that the leaves should form a
complete support for the roots. The correspondence between the roots and the leaves in the two networks
is specified in a file. The default option assumes that the roots are the combinational outputs and the leaves
are the combinational inputs. Two networks are declared combinationally equivalent iff they have the
same outputs for all combinations of inputs and pseudo-inputs. An important usage of comb verify is to
provide a sanity check when using SIS to re-synthesize portions of a network, as explained in Chapter 5.

The command seq verify tests the sequential equivalence of two networks. In this case the set of
leaves has to be the set of all primary inputs. This produces the constraint that both networks should have
the same number of primary inputs. The set of roots can be an arbitrary subset of nodes. Moreover, no
pseudo-inputs should be present in the two networks being compared. Sequential verification is done by
building the product finite state machine. The command verifies whether any state, where the values of
two corresponding roots differ, can be reached from the set of initial states of the product machine. If this
happens, a debug trace is provided.

4.7 Simulation

Simulation, although not “formal verification”, is an alternate method for design verification. After the
command build partition mdds is invoked, the network can also be simulated. In VIS we provide internal
simulation of the BLIF-MV description generated by VL2MV, via the simulate command. Thus, VIS
encompasses both formal verification and simulation capabilities. simulate can generate random input
patterns or accept user-specified input patterns.

UC Berkeley, VIS Release 1.0 (compiled 15-Dec-95 at 10:24 PM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> init_verify
vis> simulate -n 10
UC Berkeley, VIS Release 1.0 (compiled 15-Dec-95 at 10:24 PM)
Network: main
Simulation vectors have been randomly generated

.inputs sensor.rand_choice timer.rand_choice

.latches car_present farm_light hwy_light timer.state

.outputs

.initial NO RED GREEN START

.start_vectors

sensor.rand_choice timer.rand_choice ; car_present farm_light hwy_light timer.state ;

0 0 ; NO RED GREEN START ;
1 1 ; NO RED GREEN START ;
0 0 ; YES RED GREEN SHORT ;

36

1 0 ; NO RED GREEN SHORT ;
1 1 ; YES RED GREEN SHORT ;
0 1 ; YES RED GREEN LONG ;
0 1 ; NO RED YELLOW START ;
0 0 ; NO RED YELLOW SHORT ;
0 0 ; NO GREEN RED START ;
1 0 ; NO YELLOW RED START ;
Final State : NO YELLOW RED START
vis> cd farm_control
vis> simulate -n 10
There is no network. Use flatten_hierarchy.
vis> init_verify
vis> simulate -n 10
UC Berkeley, VIS Release 1.0 (compiled 15-Dec-95 at 10:24 PM)
Network: farm_control
Simulation vectors have been randomly generated

.inputs car_present enable_farm long_timer short_timer

.latches farm_light

.outputs enable_hwy farm_light farm_start_timer

.initial RED

.start_vectors

car_present enable_farm long_timer short_timer ; farm_light ; enable_hwy farm_light farm_start_timer

NO 1 0 0 ; RED ; 0 RED 1
YES 1 1 1 ; GREEN ; 0 GREEN 1
NO 1 0 1 ; YELLOW ; 1 YELLOW 0
YES 0 0 0 ; RED ; 0 RED 0
NO 1 1 0 ; RED ; 0 RED 1
NO 1 1 1 ; GREEN ; 0 GREEN 1
YES 1 1 1 ; YELLOW ; 1 YELLOW 0
NO 0 1 0 ; RED ; 0 RED 0
NO 0 0 0 ; RED ; 0 RED 0
YES 0 1 0 ; RED ; 0 RED 0
Final State : RED

Any level of the specified hierarchy may be simulated. The user may traverse the hierarchy to reach
the relevant level via the cd command. The init verify command must be called to set up the appropriate
internal data structures before simulation.

37

Chapter 5

Synthesis in VIS

VIS can interact with SIS in order to optimize the existing logic. There are two possible goals/scenarios:

1. Synthesis for verification.
Synthesis can be used to optimize the logic that represents the system, for simpler verification.

2. Front-end to synthesis.
Files described in Verilog and compiled into blif mv (using VL2MV or another tool) can be synthesized
by using VIS and SIS together.

A key fact is that only the current level of the hierarchy is sent to SIS, and not the subtree rooted at the
current node. 1 Modules at a lower level are treated as external and the boundary variables are carefully
preserved, by reintegrating their multi-valued status after the optimization step in SIS (SIS requires that
boundary variables are completely encoded, i.e., are binary variables).
Caveat To prevent that a signal (possibly referred to in a CTL property) is optimized away during
synthesis, declare it as an output of a module.

In the current version, only combinational logic is sent to SIS: latches are cut away from the module
sent to SIS and they are reincorporated when the design is read back into VIS. Therefore we cannot
take advantage of sequential optimizations in SIS, either at the level of a completely encoded sequential
network or of a symbolic state table. The boundaries between modules are established when the initial
hierarchy is described, and they are rigid in the sense that optimizations can never bridge them, but only
operate within them. Notice that there is a way to replace a subtree of the hierarchy with another one by
using read blif mv -r; this feature could be used to change boundaries in the original specification.

5.1 Writing and Reading from SIS

VIS communicates with SIS via the write blif and read blif commands.
Operations performed by write blif are:

1. All variables are encoded, i.e., values of multi-valued variables are replaced by binary vectors. For
variables at the boundary with modules at different levels of the hierarchy the encoding assignments
are stored into a file with extension .enc, so that it is possible to reintegrate the multi-valued
boundaries between modules when coming back to VIS.

2. All unspecified input combinations in the tables are specified by assigning zero code vectors as
outputs. Default constructs in the specification of tables are handled appropriately.

1One would need a flattening routine different from the one which starts the verification flow already in VIS, and such a routine
to flatten for synthesis is not yet available.

38

3. Nondeterministic tables are determinized by adding pseudo-inputs. As a result a file with extension
.blif is created that can be read and optimized by SIS. SIS must be invoked outside of VIS by
means of a different shell. All SIS operations to optimize combinational logic can be applied.

In summary, write blif scans all the tables of a given node in the hierarchy and encodes all symbolic
variables, determinizes the tables by adding pseudo-inputs, and resolves incomplete specification by
associating unspecified input combinations to outputs encoded by zero binary vectors.

Operations performed by read blif are:

1. Restore the symbolic values of multi-valued I/O variables of the node being read in. This is done
using the information in the file with extension .enc (e.g., read blif -e model.enc s-sim.blif), which
was written out during the write blif process.

2. Replace in the hierarchy the old node with the new node.

5.2 Flow of Operations for Synthesis

The typical flow of operations of synthesis for verification is:� read blif mv� write blif� optimization by SIS� read blif� init verify� suite of verification operations

The typical flow of operations for direct synthesis is:� read blif mv� write blif� optimization by SIS� read blif

It is possible to verify that after optimization with SIS the new global network (where the node returned
from SIS is plugged back in the original network) is equivalent to the old global network, by using the
command comb verify that checks combinational equivalence of networks. Combinational equivalence
can be checked at each level of the network hierarchy, from root to leaves. Before applying comb verify,
the command init verify must be invoked.

5.3 Example of Synthesis of Traffic Light Controller

The following script demonstrates the path from VIS to SIS and back. We have chosen to optimize the
network of the leaf farm control. We verify that the initial global network and the new network, after
replacement of the network in the leaf farm control by the one optimized by SIS, are combinationally
equivalent. The script used to run SIS (in a different shell) is shown too. Experiments report big savings in
literals for the optimized modules, since the BLIF-MV files generated by VL2MV have a lot of redundancy.

39

UC Berkeley, VIS Release 1.0 (compiled 11-Dec-95 at 10:36 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> init_verify
vis> ls
hwy_control
sensor
timer
farm_control
vis> print_network_stats
main combinational=142 pi=0 po=0 latches=4 pseudo=2 const=40 edges=206
vis> cd farm_control
vis> write_blif farm_control.blif
Writing encoding information to farm_control.enc
vis> read_blif -e farm_control.enc farm_control.opt.blif
Warning: Some variables are unused in model farm_control[0].
vis> cd ..
vis> init_verify
vis> comb_verify tlc.mv
Networks are combinationally equivalent.
vis> print_network_stats
main combinational=132 pi=0 po=0 latches=4 pseudo=2 const=34 edges=186

sis> read_blif farm_control.blif
Warning: network ‘farm_control’, node "[1]0" does not fanout
Warning: network ‘farm_control’, node "[5]0" does not fanout
Warning: network ‘farm_control’, node "[11]0" does not fanout
sis> print_stats
farm_control pi=18 po= 6 nodes= 62 latches= 0
lits(sop)= 709 lits(fac)= 419
sis> source script.rugged
sis> print_stats
farm_control pi=18 po= 6 nodes= 24 latches= 0
lits(sop)= 34 lits(fac)= 34
sis> write_blif farm_control.opt.blif

In the previous example, the command init verify has been given only in order to do print network stats
before logic synthesis, to compare the networks before and after optimization by SIS.

40

Appendix A

Commands in VIS

A.1 List of Commands in VIS

The following list contains a one line summary of all the commands available within VIS. The list can also be
found in http://www-cad.eecs.berkeley.edu/Respep/Research/vis/doc/packages
/cmdIndex.html. Fig. A.1 graphically illustrates the suite of commands available within VIS, and
their dependencies. A command cannot be executed before its predecessors (unless the predecessor is also
a successor). Default aliases are defined, type alias to list them.

cd

flatten_hierarchy
print_network_stats
print_network
test_network_acyclic

static_order

build_partition_mdds

write_orderinit_verify

ls
pwd
write_blif(_mv)
read_blif(_mv) −i

simulate
compute_reach
comb_verify
seq_verify
print_img_info

read_blif (_mv)

model_check
lang_empty
check_invariance

read_fairness
print_fairness

reset_fairness

VIS_V

Figure A.1: A Flow Chart of Commands in VIS.

1. alias: provide an alias for a command

2. build partition mdds: build a partition of MDDs for the current network

3. cd: change the current node

41

4. check invariant: checks all states reachable in flattened network satisfy specified invariants

5. comb verify: verifies the combinational equivalence of two networks

6. compute reach: compute the set of reachable states of the FSM

7. dynamic var ordering: control the application of dynamic variable ordering

8. echo: merely echoes the arguments

9. flatten hierarchy: create a flattened network

10. help: provide on-line information on commands

11. history: a UNIX-like history mechanism inside the VIS shell

12. init verify: create and initialize a flattened network for verification

13. lang empty: performs BDD based check of language emptiness under Buchi fairness

14. ls: list all the child nodes at the current node

15. model check: performs BDD based fair CTL model checking on a network

16. print bdd stats: print the BDD statistics for the flattened network

17. print fairness: print the fairness constraints of the flattened network

18. print hierarchy stats: print the statistics of the current node

19. print img info: print information about the image method currently in use

20. print io: print the names of inputs/outputs in the current node

21. print latches: print the names of latches in the current node

22. print models: list all the models and their statistics

23. print network: print the flattened network

24. print network stats: print statistics about the flattened network

25. print partition: write a file in the "dot" format describing the partition graph

26. print partition stats: print statistics about the partition graph

27. pwd: print out the full path of the current node from the root node

28. quit: exit VIS

29. read blif: read a blif file

30. read blif mv: read a blif-mv file

31. read fairness: read a set of fairness constraints

32. read verilog: read a verilog file

33. reset fairness: reset the fairness constraints

42

34. seq verify: verifies the sequential equivalence of nodes in two networks

35. set: set an environment variable

36. simulate: simulate the flattened network

37. source: execute commands from a file

38. static order: order the MDD variables of the flattened network

39. test det and comp spec: test if the outputs are completely specified and deterministic

40. test network acyclic: determine whether the network is acyclic

41. time: provide a simple elapsed time value

42. unalias: removes the definition of an alias

43. unset: unset an environment variable

44. usage: provide a dump of process statistics

45. which: look for a file called name

46. write blif: determinize, encode and write an hnode to a blif file

47. write blif mv: write a blif-mv file

48. write order: write the current order of the MDD variables of the flattened network

43

Bibliography

[1] D.E. Thomas, P.R. Moorby. The Verilog Hardware Description Language. Kluwer Academic
Publishers, Nowell, Massachusetts, 1991.

[2] S.-T. Cheng. Compiling Verilog into automata. Tech. Rep. UCB/ERL M94/37, May 1994.

[3] F. Balarin, and R. Brayton, and S-T. Cheng, and D. Kirkpatrick, and A. Sangiovanni-Vincentelli.
A Methodology for Formal Verification of Real-Time Systems. Tech. Rep. UCB/ERL M95/11,
February 1995.

[4] E.M. Sentovich et al. SIS: a system for sequential circuit synthesis. Tech. Rep. M92/41, May 1992.

[5] C. Mead, L. Conway. Introduction to VLSI systems. Addison-Wesley, 1980.

[6] R. K. Brayton et al. HSIS: A BDD based system for formal verification. Proc. of Design Automation
Conference, 1994.

[7] E. Clarke, and O. Grumberg, and K. McMillan, and X. Zhao. Efficient generation of counterexamples
and witnesses in symbolic model checking. Proc. of Design Automation Conference, 1995.

44

