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Abstract The essential interaction between classical and intuitionistic features in the sys-
tem of linear logic is best described in the language of category theory. Given
a symmetric monoidal closed category with products, the category
can be given the structure of a *-autonomous category by a special case of the
Chu construction. The main result of the paper is to show that the intuition-
istic translations induced by Girard’s trips determine the functor from the free
*-autonomous category on a set of atoms to where
is the free monoidal closed category with products and coproducts on the set of
atoms (a pair in for each atom P of 0.
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1. Preface
An essential aim of linear logic [16] is the study of the dynamics of proofs,

essentially normalization (cut elimination), in a system enjoying the good proof-
theoretic properties of intuitionistic logic, but where the dualities of classical
logic hold. Indeed classical linear logic CLL has a denotational semantics
and a game-theoretic semantics; proofs are formalized in a sequent calculus,
but also in a system of proof-nets and in the latter representation cut elimina-
tion not only has the strong normalizability property, but is also confluent. Al-
though Girard’s main system of linear logic is classical, considerable attention
in the literature has also been given to the system of intuitionistic linear logic
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ILL, where proofs are also formalized in a sequent calculus and in a natural
deduction system. A better understanding of the relations between CLL and
ILL is one of the goals to which the present work is intended as a contribution.

The fact that intuitionistic logic plays an important role in the architecture
of linear logic is not surprising: as indicated in the introductory section of Gi-
rard’s fundamental paper [16], a main source of inspiration for the system was
its denotational semantics of coherent spaces, a refinement of Scott’s seman-
tics for the Fundamental decisions about the system CLL were
made so that CLL has a semantics of proofs in coherent spaces in the same
way as intuitionistic logic has a semantics of proofs in Scott's domains. But
linear logic is not just a refinement of intuitionistic logic, such as ILL: there
are expectations that CLL may tell us something fundamental about classical
logic as well, indeed, that through linear logic a deep level of analysis may
have been reached from which the “unity of logic” can be appreciated [17].
Therefore the relations between classical and intuitionistic components of lin-
ear logic deserve careful investigation.

A natural points of view to look at this issue is categorical logic. It has been
known for years that monoidal closed categories provide a model for intuition-
istic linear logic, though a fully adequate formulation of the syntax and of
the categorical semantics of ILL especially with respect to the exponentials,
has required considerable subtlety and effort [4, 5, 6]. It is also well known
that *-autonomous categories give a model for classical linear logic [3]. The
appendix to [2] provides a method, due to Barr’s student Chu, to construct
*-autonomous categories starting from monoidal closed ones.

In our proof-theoretic investigation we encounter a special case of Chu’s
construction, namely where is a symmetric monoidal closed cat-
egory with terminal object More specifically, given the free *-autonomous
category on a set of objects (propositional variables) and given
the symmetric monoidal closed category with products, free on the set

(a pair in for each atom P of    ,, the category
can be given the structure of a *-autonomous category by Chu’s construction.
Indeed, since the dualizing object is the terminal object, is just

and the pullback needed to internalize the homsets is in fact a prod-
uct. Here the tensor product must be an object of the
form and the identity of the tensor
must be Dually, the par is defined as

and the identity of the par must be
Now since is free, there is a functor F of *-autonomous categories from
to taking P to This is well-known, but so far no famil-
iar construction had been shown to correspond to the functor F given by the
abstract theory. The main contribution of this paper is to show that a familiar
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proof-theoretic construction, namely Girard’s trips [16] on a proof-net, repre-
sent the action of such a functor on the morphisms of . Of course one could
state the same result using Danos–Regnier graphs, as it was done in [8], but as
we shall see a simpler definition of orientations is possible in terms of Girard’s
trips.

The key idea is simple enough and may be illustrated as a logical translation
of formulas and proofs in CMALL into formulas and proofs in IMALL. In
the translation a CMALL sequent becomes polarized: a selected
formula-occurrence A is mapped to a positive formula-occurrence in the
succedent of an intuitionistic sequent (the output part of a logical computa-
tion); all other formula-occurrences in are mapped to negative in the
antecedent of (the input part). The polarized occurrences of an atom A be-
come just two copies of A. Negation changes the polarity. For other
complex polarized formulas, the polarization of the immediate subformulas is
uniquely determined – for instance, becomes – except in
the cases of and In these cases we take the product (log-
ically, the with) of two possible choices (the “switches” in a proof-net): for
instance, is encoded as The intuitive
motivation is clear: has a reading simultaneously as the internalization
of the function space and of the function space
The fact that the translation is functorial here means, roughly, that it is defined
independently on the formulas (objects) and on the proofs (morphisms) and
that it admits the rule of Cut (composition of morphisms); it is also compatible
with cut-elimination. In this form the result can be easily proved within the
formalisms of the sequent calculi for CMALL and IMALL. However, when
we ask questions about the faithfulness and fullness of such a functor, thus
also asking questions about the identity of proofs in linear logic, we find it
convenient to consider the more refined syntax of proof-nets.

On the other hand, proof-nets are also useful to highlight the geometric as-
pect of certain logical properties; indeed ideas related to the present result
have already proved quite useful in the study of what is sometimes called
the géometrie du calcul (geometry of computations). Our own investigation
has been motivated by the desire to understand and clarify the notion of a
proof-net and the present result appears to reward many collective efforts in
this direction. Given a proof-structure, i.e., a directed graph where edges
are labeled with formulas, a correctness criterion characterizes those proof-
structures which correspond to proofs in the sequent calculus. Girard’s original
condition (“there are no short trips”) [16] is exponential in time on the size of
the proof-structure, but other quadratic criteria were found soon after (among
others, one was given in [7]). Thus it is natural to ask what additional informa-
tion is contained in the construction of  Girard’s trips other than the correctness
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of a proof-structure. The beginning of an answer came in 1992, when Jacques
van de Wiele and the author, inspired by Danes’ notion of a pure net, defined
the trip translation: every Girard’s trip on a cut-free proof-net corresponds to
a derivation in the fragment of intuitionistic linear logic with times and linear
implication. But the significance of this result seemed limited by the fact that
the treatment of cut was quite cumbersome and the result itself did not seem
to extend beyond the multiplicative fragment. A better understanding of its
significance – and, as we hope, the possibility of its generalization – has come
only from an explicit effort to formulate the trip translation as a functorial op-
eration. In this way it became evident that classical multiplicative linear logic
has to be related to intuitionistic multiplicative and additive linear logic and the
categorical result followed, for which we gratefully acknowledge the influence
and the support of Martin Hyland.

There is a conspicuous literature on Chu’s spaces and linear logic. Moreover
Chu’s construction is related to many other more concrete semantics that yield
full completeness results for fragments of linear logic, from R. Loader’s Linear
logical Predicates [22] to various game-theoretic semantics (cf. [26]). Clearly
this is not the place to survey such a body of literature. It is impossible how-
ever not to mention the work of V. Pratt, who has advocated this direction of
research for a long time (see, e.g., [25]) and has recently obtained (with Plotkin
et al. [11]) a full completeness result for multiplicative linear logic (without
units) with respect to Chu spaces. Chu’s construction where is
a Heyting algebra, is also explicitly used by Anna Patterson in her thesis ([24],
Section 6.7.), to show that the algebra of constructive duality is a model of
CLL with Mix (we are grateful to an anonymous referee for this reference).

Among the researchers who have worked on proof-nets and developed ideas
related to the trip translation, we should mention F. Lamarche, who introduced
the notion of essential net for intuitionistic linear logic [20] in the context of
his research on the game-theoretic semantics [21]. Arnaud Fleury has con-
sidered trips and intuitionistic translations in a non-commutative context with
explicit exchange rule [13], giving one of the most interesting and least under-
stood developments in this area. Already in 1992-93 the consideration of trips
as translations from classical to intuitionistic linear logic had suggested the
possibility of giving a linear time correctness condition for proof-nets: after
all, just one unsuccessful trip suffices to discard a proof-structure as incor-
rect, and just one successful trip, if appropriately translated to an intuitionistic
derivation, suffices to test the correctness of a proof-net. However only in 1999
Murawski and Ong [23] were able to prove such a conjecture, making essential
use of a result of Gabow and Tarjan [15].

When the languages and the aims of different scientific communities meet
in a new theory and new structures are identified, the conceptual architecture
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may look different from the different points of view and it may be hard to
say which structures are fundamental. From the point of view of categorical
logic Chu’s construction seems to suggest a fundamental status to monoidal
closed categories with respect to the *-autonomous ones. However, such a
view must accompanied by the warning that the correspondence established by
our interpretation of Chu’s construction is not an isomorphism, as the functor
F is not full, and its faithfulness at the moment is only a conjecture. Research
towards a refinement of the present result, in particular with respect to the
units and the additives is in progress, as well as towards its extension to the
exponentials. Finally, further work is needed to spell out intriguing analogies
between our version of Chu’s construction and the game theoretic semantics
of linear logic.

2. The trip translation
In this section, after the basic formal definitions we present our functorial

translation from the sequent calculus for CMALL to that for IMALL , we state
the categorical result and sketch the proof.

2.1 Languages, intuitionistic and classical MALL
The syntax of propositional classical Linear Logic CLL is given in Girard

[16]: formulas are in “negation normal form”, i.e., they are built from propo-
sitional constants and 0, atoms and negations of atoms using
the connectives and and the exponential operators ! and ?; linear
negation for nonatomic formulas is defined and linear implication is also de-
fined, see in Table 0.

CMALL [CMLL] is the fragment of CLL without exponentials [without
exponentials and additives]; is CMLL without propositional con-
stants.

Recall that the sequent calculus for propositional CMALL is defined by the
axioms and rules given in Table 1:
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The propositional language of intuitionistic Linear Logic ILL is built from
a set of propositional atoms and the propositional con-
stants 1, and 0, using the connectives (linear implication) and & and

and the exponential !. (We take the point of view that there is no symbol
for “multiplicative falsity” in ILL. Thus and may be regarded as

“positive and negative atoms”, respectively). Again IMALL is the fragment
of ILL without exponentials, etc.

The sequent calculus for propositional IMALL has the axioms and rules
given in Table 2.
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When a derivation (in CMALL or IMALL) ends with a cut inference and
the immediate subderivations are we use the notation for

2.2 The functorial trip translation for MALL

Definition 1 (Trip translation) (i) The trip translation maps formulas of
CMALL to pair of formulas of The formulas of
CMALL are first polarized and then translated into IMALL formulas. To say
that a formula A is polarized is to say that it is regarded either as an output
(positive polarization) or as an input (negativepolarization).

(ii) The trip translation maps polarized atoms to atomic formulas of
IMALL (also denoted by respectively). For polarized constants and
polarized complex formulas the trip translation is defined inductively accord-
ing to the table in Table 3.
(iii) A pointed sequent A is a sequent with a selected formula occurrence,
i.e., with a switch choosing one of its formulas. The chosen formula will be
written in boldface.
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(iv) The polarization of a sequent is defined as follows: the selected
formula A is regarded as an output all other formulas C in are regarded
as inputs we write to indicate this fact.

(v) The trip translation maps a pointed sequent A of CMALL to a
sequent of IMALL, where and are translated as in (ii).
Notice that since a sequent may be regarded as the par of all its formulas,
by Table 3 the translation of the pointed sequent is the
product (with) of the translations of all the “pointings” of

(vi) The trip translation maps sequent derivations of CMALL to sequent deriva-
tions in IMALL according to the definition in Table 4.

Proposition 2 For any formula A of CMALL, the translation satisfies
and Therefore the translation of the cut-rule is well-

defined.

PROOF. By induction on the logical complexity of A.

Theorem 3 (i) The trip translation maps a CMALL proposition A to a pair
of IMALL propositions and a CMALL derivations of an
IMALL derivation A is a pointing of then a
branch of contains a derivation of

(ii) The trip translation is functorial in the sense it preserves the cut rule.
Namely, given a derivation ending with a cut

and a pointing of there is a unique pair of pointings of
and of such that

(iii) Moreover, if S is translated to S' and S reduces to by cut-elimination,
then there exists which is the translation of and S’ reduces to
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Remark 4 (i) The concise notation of part of Theorem 3 can be spelt
out as follows. Here is the trip translation of restricted to
the given pointing        of  Depending on whether is in or in

we have either the pair of pointings or the pair
Moreover, and are the trip translations of

and restricted to the appropriate pointings, i.e., either is a derivation of
and a derivation of                 or      is a derivation of

and a derivation of The theorem says that is the same
as the derivation which is obtained by applying cut to and

(ii) Notice that there is no anomaly in the rule. One pointing of
selects and thus one branch in the derivation    of 
is given by the axiom Such a branch adds no information in addition
to that contained in the derivation of which is also contained in the
other branches of

Fact 5 (i) To the trip translation there corresponds an obvious map in the op-
posite direction, let us write it as in proof-theoretic terms it amounts to
regarding IMALL as a fragment of CMALL, namely:

writing formulas in “negation normal form”, using De Morgan laws as
in Table 0 and then rewriting
for propositional letters P;

writing proofs in the sequent calculus with “right-hand sequents” only.

(ii) Unfortunately, in general it is not true that

3. Chu’s construction
We follow the categorical semantics for IMLL in [5]:

Theorem 6 Let A be the free * -autonomous category on a set of objects {P,
P', ...} and let C be the symmetric monoidal closed category with products,
free on the set of objects (a pair for each atom
P of A).

(i) We can give the structure of a * -autonomous category thus:

with unit and involution

where 1 is the unit of in and the terminal object of

Therefore there is a functor F from A to sending an object P
to If is a morphism of A represented as a proof-net
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with conclusions then the morphism is given
by all the Girard’s trips on in the precise sense spelt out in Proposition 15
below.

(ii) If in addition C has also coproducts, then has also products:

The functor F preserves also the structure of the products.

PROOF. [Sketch] In define and
and show that gives the closed structure for By the defini-

tions

We exhibit a natural bijection of hom-sets

Indeed a map in consists of a map
and of a pair of maps a map in

consists of a pair of maps
and of a map But and

by the natural bijections given by the symmetric monoidal closed structure of
C. Similarly, there is a natural bijection between and

and also a natural bijection between and
composing and we get Therefore is a right

adjoint for in

To see how the action of the functor is given by Girard’s trips in the case of
CMLL without units, the proof in [8], pp. 37-44, (briefly reviewed in the fol-
lowing section) shows that a Danos–Regnier graph on a cut-free proof-net
with conclusions C (with C the selected conclusion) determines an orienta-
tion (polarization) of the formulas in the proof-net and a reduced translation
of into a cut-free derivation       of in (The  same result
holds if we start with a Girard trip, as indicated below; indeed each Girard trip
uniquely determines a Danos–Regnier graph.)

Now it is easy to see that a derivation can also be obtained as follows:
consider the IMALL derivation given by the trip translation of (a se-
quentialization of) and remove all &-left and &-right inferences, modifying
the formulas in the derivation accordingly. The result is a family of
derivations, a pair of derivations for each &-right application in Ev-
ery derivation determined by some Danos–Regnier switching is equivalent
modulo permutations of inferences with one derivation in and, moreover,
every derivation in is equivalent to a derivation for some induced
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we have: where are all the
Danos–Regnier switchings of

A simpler formulation of the above result could be given by mapping proof-
nets for classical to F. Lamarche and A. Tan’s proof-nets for intu-
itionistic (see [20, 26]). For an extension to CMLL with units and
to CMALL, see Remarks 7 and 17 below.

Remark 7 (i) The functor F is not full. For instance, and
there is a morphism                  in namely, the map

where however, the free
category A does not have a morphism i.e., is not provable in MLL.
The system has been studied, e.g., in [14], and perhaps this
extension of linear logic deserves further consideration, but it is not the answer
to our concern here. The task is rather to characterize a subcategory of
for which the functor F is full.

(ii) Is the functor F is faithful? This question raises the issue of the identity
of proofs in linear logic. Proof-nets provide a solution to this problem for
the multiplicative fragment without units, because in this fragment proof-nets
represent sequent derivations up to permutations of inferences and the Church-
Rosser property holds strictly (see the next section). Notice that in [5] cut re-
ductions in IMALL correspond to equality of the terms which express the
maps in the free symmetric monoidal closed category and commutative con-
versions correspond to natural isomorphisms between them. If in we
consider terms up to equivalence, then faithfulness is obtained by making
the corresponding assumption about A, i.e., by stipulating that the morphisms
of A are represented by proof-nets up to cut-elimination and
For an extension to this result to MLL with units, see the note in Section 4.4.
However, in the case of proof-nets for MALL the notion of identity of proofs
is not well-understood, and thus the issue of faithfulness must be left to further
research.

4. Proof-nets, trips and translations
In this section we summarize some results about proof-nets that illustrate the

geometric connections between Girard’s trips and translations into fragments
of intuitionistic linear logic.

4.1 Proof-nets: basic definitions

Definition 8 (i) Proof-structures for CMALL are directed graphs with at least
one external point and where each vertex is typed and has the form indicated
in Figure 2.1. The dashed line in a is called an attachment. When a

by a Danos–Regnier switching .  ( in the terminology of Proposition  15 below
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is attached to an edge A, we may think of the attachment as resulting
from an axiom linked to a times link 1 A, i.e., as an application of the
isomorphism

(ii) On proof-structures for CMLL Girard’s trips are defined according to the
drawings in Figure 2.2; the choice of the form of a trip at a par link is called
a left or right switch. Proof-nets for MLL are proof-structures satisfying Gi-
rard’s no-short-trip condition, namely, that for every switching of the par links
and every conclusion the trip starting at returns to after visiting each
edge precisely twice (cf. [16])

(iii) Perhaps more familiar is the equivalent characterization of proof-nets for
in terms of Danos–Regnier graphs [10] (which is readily extended to

MLLwith units using attachments as above). Given a proof-net for
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a switching of in the sense of Danos–Regnier is an assigment to each par
link in of a choice of the left or right premise and, moreover, a “pointing”
of the conclusions of Given a proof-net and a switching of it, the
Danos–Regnier graph (determined by ,s) is the graph resulting from
by removing the edge which enters a par link from the premise which is not
selected by . The standard correctness condition for proof-nets is the
following: a proof-structure for is a proof-net if for every switching

 the Danos–Regnier graph is acyclic and connected (an undirected tree).

In the case of CMALL we have true boxes which behave like
axioms. Moreover, a boolean valued polynomial is associated with each edge,
a distinct boolean variable is associated with each with link, and
being added to the polynomials associated with the left and right premise of
the with link in question. The polynomial of the conclusion of a link is the sum
of the polynomials of the premises. All the conclusions of the proof-net must
have 1 as associated polynomial. A proof structure is sliced by substituting
arbitrary boolean values for the variables and erasing the edges whose poly-
nomial evaluates to 0; in a sliced proof-structure additive links are all unary.
(For a more precise definition, of additive proof-nets, see Girard [18].) All
said, a CMALL proof-structure is a proof-net if for every evaluation of the
polynomials, the resulting slice has no short trip.

What matters here is that the following theorem can be proved:

Girard’s Theorem. There exists a ‘context-forgetting’ map from sequent
derivations in MALL to proof-nets with the following properties:

Let d be a sequent derivation of then is a proof-net with
conclusion

(Sequentialization) If is a proof-net with conclusion then there is a
sequent calculus derivation d of such that

(a)

(b)

About proof-nets for more can be proved (see [9], Theorem 2):

Permutability of Inferences Theorem. Let d and d' be a pair of derivations
of the same sequent in Then if and only if there
exists a sequence of derivations such that and
differ only for a permutation of consecutive inferences.

Remark 9 A corollary of the latter theorem is that the syntax of proof-nets
for solves the problem of identity of proofs in this fragment; for this
reason proof-nets have found applications to coherence problems in category
theory.
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4.2 Trips and linear terms
A trip in the sense of Girard induces the structure of a in any suitable

graph with a selected external point (pointed graph):

Theorem 10 (J. van de Wiele) Every connected pointed graph with vertices
of incidence 1 and 3 corresponds to a linear (and vice versa). The
correspondence is established in linear time by a trip starting with the selected
external point.

We perform a trip in the style of Girard according to the figure below; during
the trip we determine whether a vertex is to be regarded as (1) a variable, (2)
an application or (3) a Case (2) occurs when during the second
visit to a vertex of incidence 3 the trip enters the vertex through the same edge
from which it had exited after the first visit; case (3) occurs when the second
visit is through the other edge; case (1) is that of an external vertex different
from the selected one.

The proof is by induction on the number of vertices. Notice that if we re-
move the first vertex of incidence 3 encountered during the trip then the re-
sulting graph is disconnected in case (2) but remains connected in case (3).
Different variables are assigned to different external points in case (1). Since
linear are always typable, van de Wiele’s result also shows that every
such connected pointed graph corresponds to a proof in the implicative frag-
ment of intuitionistic linear logic.

Reduced translations from to4.3
Essentially the same technique applied to a proof-net for yields

a translation of the proof-net into a derivation in the implication and tensor
fragment of intuitionistic multiplicative linear logic. These translations shall be
called reduced trip translations or simply reduced translations. Trips always
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have a starting point in a conclusion and the order of the passages across a link
matters. To state our result we need a definition.

Definition 11 Given a proof-net for and a selected conclusion A,
we say that a Girard trip starting from A is covariant on an edge if the second
passage of the trip is in the same direction as the edge; otherwise, the trip is
contravariant on the edge. Now a trip starting from A induces an input-output
orientation thus: an edge X is an output or an input
depending on whether the trip is covariant or contravariant on it.

Theorem 12 (Bellin and van de Wiele) (i) Every Girard’s trip on a cut-free
proof-net for starting from a selected conclusion corresponds to a
sequent calculus derivation in
(ii) Conversely, every sequent derivation in corresponds to a trip on a
proof-net.

The following proposition follows almost immediately from the definition of
orientation and the basic properties of trips.

Proposition 13 Every orientation makes the selected conclusion an output, all
other conclusions are inputs. Every link is oriented in one of the admissible
ways indicated in Figure 2.4.
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Given an orientation the formulas in the proof-net are
translated as follows:

For further details, see [8], pp. 37–44.

Remark 14 (i) Theorem 12 could be stated in terms of Danos–Regnier graphs,
as it was done in [8]; notice that every Girard’s trip determines a unique Danos–
Regnier graph [10]. Girard’s trips allow us to give a more concise definition of
orientation, but Danos and Regnier’s characterization yields the refinements in
Proposition 15 below.

(ii) Reduced translations of formulas are not functorial, in the sense that they
depend not only on the given CMLL formula, but also on a trip on a given
proof; i.e., the map on objects depends also on morphisms. Reduced transla-
tions of proofs are not functorial, in the sense that they may not be compatible
with cut. Indeed, the orientation induced by a switching may be computation-
ally inconsistent: e.g., consider the orientation on the cut formulas
and induced by a left switch on the par link.

(iii) The above result does not extend to full CMLL : let be the selected
conclusion in the cut-free proof-net with conclusion

(iv) The above result does not extend to CMALL: consider the cut-free proof-
net with conclusions

However, reduced translations suffice to characterize the action of the func-
tor F of theorem 6 on a derivation in the fragment in the following
sense. Let be a switching in the sense of Danos–Regnier on a proof-net R
for Let be IMALL without plus. Consider the set of maps

with the following properties:
(a) acts on the propositions as follows:

(i) or

(ii) or

(b) acts on    derivations     by removing all &-right and &-left infer-
ences

Clearly, given such a defined arbitrarily on propositions we do not know
whether there is a proof such that is a proof of

Moreover, given any derivation in needs not
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be a derivation in (for instance, if the map on derivation removes a &-
left inference with active formula and the map on propositions
yields However, Danos–Regnier switchings allow us to define
well-behaved maps as functions of a proof-net and of a switchings.

Proposition 15 Let be a cut-free proof-net for with conclusions
and let be a Danos–Regnier switching of Let be the derivation of

in given by the Chu functor. Then there exists a map
such that is a derivation of in Moreover,

iff

Remark 16 (i) It can be shown that and the map depends only on the val-
ues of on the par links which in a Girard trip are reached from below, i.e., the
par links whose conclusion is oriented as an “output” and which correspond to
formula-occurrences of type (i) in

(ii) Let be a reduced translation in of a derivation d in and
let be its translation back to according to Fact 5. Then d and
are equal (possibly modulo permutations of inferences).

4.4 Chu’s construction in MLL with units
As indicated in the Preface, one of the original motivations for this paper

was to find a functorial definition of the trip translation, in view of a possi-
ble extension to the whole system CLL and given the fact that the reduced
trip translation does not extend beyond We have now a functorial
translation and a satisfactory explanation of its meaning in terms of Chu’s con-
struction. But what about extensions to MLL with units and CMALL?

As indicated in Remark 7, the problem with fullness may require a basic re-
formulation of the construction, e.g., the definition of a subcategory of
for which the functor is full. Moreover, faithfulness for CMALL requires a
reconsideration of additive proof-nets. On the other hand, the proof of faithful-
ness for MLL with units seems at hand, thanks to A. Tan’s thesis [26], although
we cannot spell out the details here.

Remark 17 (MLL with units) (i) We do not know how to define proof-nets
for MLL with units so as to extend the theorem on Permutability of Inferences
to MLL with units, thus it is no longer true that the the proof-net representa-
tion solves the problem of identity of proofs in MLL with units (cf. Remark 9).
Any permutation of the nil rule with other inferences in a derivation d results
in a rewiring of i.e., in a modification of the ‘attachment’ of the corre-
sponding (Of course, this problem would not occur in the system MLL
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with the axiom Therefore the obvious way to characterize the identity
of proofs for MLL with units is to give explicit equations between proof-nets.

(ii) A similar problem occurs for the representation of proofs in IMLL: in fact
the systems of Natural Deduction or Sequent Calculi with term-assignments
for ILL in [4, 5, 6] are given together with an axiomatic characterization of
the identity of proofs in the form of an equational theory of terms. Similarly,
Lamarche’s proof-nets for ILL [20] require a theory of rewiring already in the
case of MLL with units. This work has been done in Chapter 6 of A. Tan’s the-
sis [26]: after a careful definition of the correspondence between sequent cal-
culus with term assignments and proof-nets for IMLL, the process of rewiring
is defined so that it does preserves the correctness criterion, it does not affect
the (equivalence classes of) terms which the proof-net interprets, it is strongly
normalizing and confluent and, moreover, the process of cut-elimination, in-
corporating unit rewirings, remains strongly normalizing and confluent.

(iii) Rewiring in CMLL proof-nets is also defined in such a way that it pre-
serves the correctness criterion. Since classical proof-nets may have several
conclusions, it is not obvious how to define a canonical element in each equiv-
alence class of proof-nets.

(iv) Let us consider the again action of the functor
on the units. If is a proof of then an axiom, i.e.,
the proof is erased. It follows that a single reduced translation, regarded as
a CMLL proof, no longer contains the same information as the original proof
(cf. Remark 16.(ii)).

(v) Considering the definition of reduced translations from Danos–Regnier
graphs, we may follow the hint of Definition 8.(i) and define the orientation as
if an attachment resulted from an axiom 1 where the edge 1 enters a times
link with conclusion The definition extends without problems
when the orientation of is indeed the corresponding IMLL proof-net
has a 1-link with a suitable attachment. If the orientation is we may no
longer have a coherent orientation for the edge A (in the case where we would
give the different orientations but this is still fine, because

and we may certainly take an axiom in the reduced
translation.

(vi) Finally, let us consider the effect of rewiring of CMLL proof-nets
on a reduced trip translation of Given a link in the rewiring in question
may

preserve the orientation or
preserve the orientation or
change an orientation into or
vice versa.

(1)
(2)
(3)
(4)
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In case (1) the effect of the rewiring is either null or a rewiring in IMLL as
described in [26]. In case (2) the effect is either null or a commutation of a
axiom, in accordance with standard equations between IMALL-proofs. Only
cases (3) and (4) do reserve some surprises; e.g., in case (iii) the IMLL proof-
net resulting from a switching ¨       may be obtained from the IMLLproof-net
corresponding to only through some complicated “surgery”.
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