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, RAMSEY INTERPRETED:
A PARAMETRIC VERSION OF RAMSEY'’S THEOREM

Gianluigi Bellin
te Michele

ABSTRACT. The No Counterexample Interpretation (NCI) and other proof-theoretic
techniques are applied to a proof of the Infinite Ramsey Theorem. A parameiric form
of Ramsey’s Theorem is obtained, that implies the Infinite, the Finite and the Paris-
Harrington versions of Ramsey’s Theorem. Applications of the proof theory of fragments
of PA and of Linear Logic are suggested, The work was a preliminary experiment for
the implementation of the NCI in Ketonen's Proof Checker EKL.

1. Motivation.

The project of applying basic results of Proof Theory to suitable mathematical prob-
lems to obtain results of general mathematical interest and computational significance has
been pursued and advocated by G.Kreisel for over 30 years (Kreisel [1989]). Significant
new results have been obtained (consider, for instance, Girard [1987 a] pp.237-251 and
484-496, Luckhardt [1989]). The aim of extracting information implicit in the proof of
an infinitary theorem - such as bounds on the growth of functions - may be obtained by
making the “constructive content” of the proof explicit, or, using a different jargon, by a
synthesis of a program from the proof. Two basic techniques of Proof Theory can have
computational significance, namely Gentzen’s Cu#Elimination and FPunctional Interpre-
tations — of the latter the Herbrand—Kreisel “No Counterexample Interpretation” {NCI)
seems most suitable for practical applications. The following type of application is of in-
terest to us. Suppose we have a proof of & statement of the form Vz.Jy.4(z, y), expressing
the fact that a certain set H is unbounded. Then the above techniques allow us to define
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a function{al) F' such that

(1) Vr.¢(x, F(z))

and at the same time provide information about its complexity.

Fruitful use of this method in practice d'eper_liis on the conditions of the proof. In the
simplest and best—known case ¢ is quantifier—free, and (1) is (inductively) derived from
universal axioms. What happens in the case of more complex axioms? Consider a formal

deduction of a sentence of the form (1) from assumptions of the form
{2) Y. 3o Vz.6(u, v, 2)

and suppose that (2) contains the definition of the set H. The NCI functional interpretation
of {2) = (1) yields functionals U, Z and F - I/ and Z functionals of v, & — such that

VV:L‘. [Q(U,V{U},Z) 2 ¢($¢F(V)$))]

The (set of) parameter(s} v may be crucial in determining the set H' which is defined by
8(U,v[U], Z). If we let v satisfy Skolem axioms of the form

Vu.3o.Vz.0(u,v,2) D Vuz.8(u,v[ul, z), then H is H'. However the choice of different pa-
rameters gives us the opportunity to search for interesting sets H',

In this paper we analyze the Infinite Ramsey Theorem (see Graham, et al. [1980])
and present applications that are relevant to some fnite versions of Ramsey’s Theorem.
Let [N]* be the set of all k-clement subsets of N. Given any c-coloring x : [N]* — ¢, a set
Ais x-homogeneous if all k-element subseis of A are monochromatic.

Infinite Ramsey Theorem. (IRT) For every ¢, k and any c-coloring x : [N}* = ¢, there
1 an tnfinite x-homogeneous set H.

Let [n1,n3]* be the set of k-element subsets of {n1,...,n2 — 1}, [n]* = [0,n]*. Say that A
is large if |A| > min(A).

Finite Ramsey Theorem. (FRT) For every ¢, k, I there is & number n = R(c, k,1) such
that for eny c-coloring x : [n]¥ —» ¢, there ezist o x-homogeneous subset A of [n], with
1A=L '

Ramsey—Paris-Harrington Theorem. {RPH) For every c, k and ny, there exists ny =
LR(c, k,n1) such that for every coloring x : Iny,n2]% — ¢ there s a large x -homogenecous
set.

We consider the case of ¢ = k = 2. The Infinite Ramsey Theorem can be formally
proved in a system of second order arithmetic. Since % is fixed, in this paper we use instead
first order Peano Arithmetic,. with additional function and predicate symbols — we need a
bipary function symbol for ¥ and a unary function symbol for the auxiliary f°%**: a unary
predicate for H, a unary predicate for the auxiliary set Hy and a binary predicate for the
sequence of sets. S(n), where f**%, H, H;, S(n) are defined in Section (8.1) below. Given

! Consideration of this example was suggested in [KREISEL 1977].
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an interpretation T for the extended language, H {(in the standard model) is the desired

yz-homogeneous set, assuming that the defining properties of f****, H, H; and S(n) are
satisfied in Z. '

The proof can be divided into two parts: the first part shows that a set H is unbounded
and the second that H is x-homogeneous. Part one has the form (2) = (1), where (1)
expresses that H is unbounded, and (2) contains the formal definition of H and of the
auxiliary sets, together with the assumption that y is a 2-coloring.

The main result is the following. We give a formula expressing restrictions for a “mean-
ingful” choice of the parameters v, called Non- Triviality Condition (NTC). This must be
satisfied either globally, for all n, or locally, over the segment [z, y], in which case we write
(NTQ)[z,y]. In the statement of the main theorem FU)(x,v,n) = F(x, v, FC=D(x,v,n))
is the I-th iteration of F.

Parametrized Ramsey Theorem (PRT): There is a functional F, primitive recursive
% in x, v, Sr and Hy, such thot for every coloring x : [NP — [2] and every choice of v,

(1) #f v satisfies the (NTC) and p = FO(x,v,1), then [p] contains o x-homegeneous
set of cardinality I

(i) if v satisfies the (NTC)[z,y} and po,...p1 € [x,y)], where p; = FO(x,v,py), then
fz,y] containg a x-homogeneous set of cardinality L.

Moreover, for all x and 1, there exists v satisfying the NTC; in particular:

(1) for any fized x, some v satisfies the NTC for all I;

(2) for any fized [, there exist p and v satisfying the NTC0, p| for all x;

(3) for any fized ny, there exist ny and v sotisfying the NTCin, na| for all ¥, with
I=F(x,v,m).

Corollary 1: The Parameirized Ramsey Theorem and Compaciness® imply the Infinite
Ramsey Theorem for c=k = 2.

Corollary 2: The Parametrized Ramsey Theorem implies the Finite Ramsey Theorem for
c=k=2.

Corollary 3: The Parametrized Ramsey Theorem implies the Erdés-Mills version of the
Romsey-Paris-Harrington Theorem for e =k =2,

The PRT can be regarded as a generalization of beth the Infinite and the Finite Ramsey
Thedrem as shown by the corollaries.? This theorem provides a precise mathematical con-
tent to the following “phenomenclogical” remark. In the proofs of the Ramsey Theorems

under consideration, two components can be distinguished:

% In fact, F is in &2(x, 8, H1,v), the third class in the Grzegorezyk hierarchy relativized to
X, vV, 8r and Hy.

? Since we consider only countable colorings, when we speak of “Compactness” we mean an
application of {Weak) Kénig's Lemma.

4 Remember that we cannot derive the Infinite Ramsey theorem from the Finite version by
Konig’s Lemma (at least not in a conservative extension of PA, since IRT implies RPH).
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(i) the common frame of the infinite and the finite versions of the theorem is the

structure of their recursive definitions and inductive arguments;”

(ii) the properties of the set H — being x-homogeneous, or of a certain cardinality, or
“large” -— depend on the choice of certain set and function parameters, different parameters

yielding different versions of the theorem.

Component (i) is represented by the functional Ax v.F; the choices in (ii) are repre-
sented by the parameters § and v. The NTC provides constraints for the choices in (ii) to
be meaningful. The computational complexity of the proof is determined by the choices
in (ii) and by the verification of the NTC, while the computational complexity of F' itself
is very low. ‘

Although we have not checked it in detail, it seems clear that one can prove the PRT
for arbitrary exponents k, following the pattern of the proof given below for & = 2.

2. Proof Theoretic Tools.

In this section we review some classical proof-theoretic results, The proofs are well-
known. In sections (2.1) and (2.2) we consider some refinements of those results for frag-
ments of PA.

The following proposition, together with the Cut-Elimination Theorem for Predicate
Calculus, yields Herbrand’s Theorem. Let £ be a first order language.

Proposition. (i) Let T be a set of 1Y sentences and let ¢ be a quantifier-free formula
of L. If 't Va.3y.s(z,y) is provable in LK without Cut, and a is o parameter not used
in the derivation, then there are terms ty,...,tn € L such that T F Payt1)y . P(a, ty,) ds
provable in LXK without Cut.

(ii) Let S be any sequent in £ and let L' be an extension of L containing Herbrand funclions
for the essentially universal quantifiers © of 5. In L' there are terms t and a quantifier-free
sequent E{S) (the Herbrand expansion of §) such that § has a normal derivation if and
only if £¢(S} has one,

Remark. If conditional terms if...then...elza,.. can be expressed in £, then in part
(i) we can take n = 1 and in part (i) there are terms £ € £’ (functionals of predicate
logic) such that £(S) is obtained from § by replacing the essentially universal variables §
by Herbrand functions ¥ and the essentially existential variables & with i': We write Sg
for S{a’:’/i?, #/¥), when the ¥ are functionals of predicate logic.

® Thus an alternative proof of the Finite Ramsey theorem by double induction (see Graham
et al.[19801, p.3) does not belong to this family of proofs,

¢ A quantifier and its bound variable are essentially universal if they are universal in a positive
context or existential in a negative context; otherwise, they are essentially existential, We will use
the boldface y for the Herbrand function as a formal symbol of the extended language £', where
¥ is associated with an essentially universal quantifier Vy.
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The Herbrand theorem fails if LXK is extended by the induction rule: we need a
functional interpretation, the No Counterexample Interpretation (NCI). Let Lpa be the
first order language of Peano Arithmetic. If §: T' - A is any sequent in £pa and £'
is as above, the language L of the NCI is £' extended by functionals of type < 2:
Ay ¥m - X(¥1,- -, ¥m), for the essentially existential quantifiers of §. The functionals
are defined by a-recursion, for & < € (emténded Grzegorezyk hz'em_'rchy). 7 Consider the

extended Ackermann function

filz) =2z
Fatr(z) =F(z),
Folz) =fatw) (), for o limit,

where (&) denotes the z-th iteration of f and where a(z) is the z-th element in the “natural
sequence” for e. A function f dominates g if there is a ng such that f(n) > g(n) for all
n > ng. Remember that the closure of Grzegorczyk's class £, under one application of the
scheme of primitive recursion is £,41 and that the Ackermann function f,(z) dominates
all primitive recursive functions {see Rose [1984], Chapter 2}). In general, the functions
of Grzegorezyk’s class £g are dominated by f,, with # < a.

No Counterexample Interpretation. (Kreisel [1952], see also Tait [1965 a] and
(1965 bl) Let ¢ : Vynde: ... VynTen (s, 21, Y2, .. - Un, Zn) be o theorem of PA, with 1
quantifier-free.® Then there exist functionals X1, ..., Xn, which are a-recursive in ¥ =

Y13y ¥n such that if (;SF 3
¢F: ¢(YI,X1(B_"):Y2[X1(5;)L---aYn[Xz(f),---:Xn—l(f)],Xn(ff))

then ¢:p[)'r'/ﬂ is true for every choice of (appropriate) numerical functions f for V.

We may choose the Herbrand functions using the least number principle: (Vy.¢(y)} =
¢(my.m¢(y)). Then
Corollary. Let ¢ be Ve.3ya(x,y) and let F be o function(el) such that F(a) is the least
y such thet Y{a,y) holds. If F dominates fo for all o < ey, then PA cannot prove ¢.
Finally, as . Kreisel has often pointed out, the following fact is very useful to sharpen
the estimation of the bounds. To prove it, use the fact that the functional interpretation
of a I} lemma Vz.A(z) is A(x), where x is 0-ary.

Proposition. The funclional F such thot Va.¢{z, F(z), constructed by interpreting a given
proof of Ve.3y.¢(x,y), does not depend on the proofs of II] Lemmas.

" See Rose [1984], A short summary of the notions needed for Ketonen and Solovay’s proof
of the Paris Harrington result can be found in Graham et al.[1980], pp.150-154,
8 For expository purpose it is convenient to consider prenex formulas.
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2.1. Functionals in fragments of PA.

We can control the complexity of the functionals, if we succeed in)working within
fragments of PA. We are interested mainly in (11 — IR), in which the induction rule
is restricted to induction formulas of the form VZ.3§.4), with ¥ quantifier-free. For this
fragment, formalized in classical sequent calculus, We'ca,n define the NCI directly, using
explicit definitions in correspondence with the logical and structural rules and primitive
recursion in correspondence with the induction rule. A direct definition of the interpreta-
tion for the Cut rule is possible if this is restricted to I3-formulas. Let us call the NCI

for the fragment (II) - TIR) primitive interpretation, when it is defined in the form just
described.

Proposition. In (II} — IR) any functional X (¥) of the (NCI) is primitive recursive in ¥.

The proposition is a corollary of classical results of the proof theory of fragments of
arithmetic and weak subsystem of analysis, established by Parsons and Mine and refined
by Sieg [1985] and [1988]. These results provide a general method to obtain sharp upper
bounds on the complexity of the functionals,

Let (QF — IA) be the fragment of first order arithmetic PA in which first order
quantification is allowed, but the induction formula in the induction axiom IA is quantifier-
free; (QF — IA) is a conservative extension of primitive recursive arithmetic PRA. Let
F be any set of functions that includes the functions of Grzegorczyk’s class & and let F;
be the k-th class of Grzegorezyk's hierarchy, relativized to F. Let {(QF(F,) —IA) be the
subsystem of (QF —IA) where only function symbols and defining axioms for the functions
of the class Fi are allowed. We obtain a hierarchy of proper subsystems of (QF —TAY);
indeed, the reﬂectim} principle for (QF(F,,) —IA) can be proved in (QFp1q ~ IA) (Sieg
[1988]).

Restriction of the number of applications of (IIJ — IR) yields the same hierarchy. Let
(3(F)—IR); be the fragment that allows at most k applications of the I3-induction rule

and, in addition, only function symbols and defining axioms for the functions of F.

Theorem (Sieg [1988]). (II}(F) — IR); and (QF(Fi) — LA) prove the same sentences
in the language of (II5(F) — IR); this holds alse for extensions of the theories by oy -

sentences. In particular, (II — IR is conservative over PRA.

Now the corollary of the Cui-Elimination Theorem (section 2) gives the following
information.

Corollary (Sieg [1988]). If (TIS(F)—1IR); proves a N3-sentence Vo Jy.¢(x, y), then there
is a function(al) F' € Fy, such that (QF(Fi) — IA) proves ¢(a, F(a)).

2.2. Functionals in Linear Fragments.

It is common practice in everyday mathematics to break down a long proof into

several Lemmas, in order to make the verification easier. In choosing Lemmas, we tend to
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consider propositions that have an independent interest or a simple formulation; a Lemma
must be easy to grasp and to remember. In producing a functional interpretation, it is
desirable that the definition of the functionals correspond closely to the main steps of the
proof. Thus we may define functionals corresponding to a Lemma and then apply them
to specific arguments provided in the rest of the proof. However, the values obtained by
such a computation may be different from the values of functionals obtained from a “more
direct” proof. It is therefore significant that if we work in the fragment of classical predicate
logic called Multiplicative Linear Logic (Girard [1987 b]) the definition and evaluation of

“primitive” functionals is independent of Cut-elimination.

Let LML1 be a sequent calculus where sequents are multisets, the only structural

rule is Exchange and propositional rules have a multiplicative interpretation, e.g.,

TFA¢ IIFAP T,é,9F A

PIEAAGAY _ T,onpFA

to which we add the usual rules for firsé order quantifiers. The system LI) for Direct Logie
(Ketonen and Weyhrauch [1984], Bellin and Ketonen [19891) is obtained from LML1
by adding the Weakening rules.

Herbrand’s Theorem (Proposition (ii) in section 2) has a particularly simple form in
Direct and Multiplicative Linear Logic: the expansion £(5) has minimal complexity. Let
L, yiz], L' be as above,

Herbrand’s Theorem: Let ¢ @ 2. Vyy. ... dz, Vy,.2p be in prenes form. ® There are
terms ty,...,tn € L' such thet ¢ is provable in First Order Direct Logic if and only if
dar p(t, ¥ty o tny Yults, - ooy ta]) 48 provable in Propositional Direct Logic.

We have formulated Herbrand’s Theorem as a corollary of the Cui-elimination Theorem.
However we can easily define the Herbrand expansion for the Cut rule if this is restricted

to I} Cut-formulas. The following fact is practically useful:

Lemma. Let D be a derivation of S in LML in which the only application of Cut s the
last inference and such that the Cui-formule s 115. Let Sp(8) be the Herbrand expansion
of the conclusion, defined by induction on D. If D* is the result of the Cut-elimination
procedure and Sp(t) is the Herbrand expansion of the conclusion defined by induction on
D*, then §= £.10 '

(11§ — IR — LML1) is Multiplicative Linear Logic with the I} induction rule.

® Here the restriction is essential, as shown by the counterexample V. (¢(x) A9} ¥ (Vug(v)) A,
H3) A F ) A,
® This is not true in general for Direct Logic: if the Cut-formula is introduced by Weakening,
say, in the derivation of the left premise, then i in D* all the side formulas of the rlght premise are
introduced by Weakening, thus some terms in { may be simpler than some terms in &.
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Proposition. (0§ — IR — LML1) is the largest fragment in which the value of every Finally, let U7 = {z € H; : f****(z) = §} for j = 0,1. Define
Junctional defined from the “primitive” functional interpretation of a derivation D is always _ : . .
. o .
independent of the oceurrence of 113-Cuts in D. : ; H o= Ue, it U7 2 o
_ 7Y otherwise.

3. Proofs of R 's Th . ]
roofs of Ramsey’s Theorems Since Hy is unbounded and f?!% is a 2-coloring of Hy, H must be unbounded, too.

In the following informal arguments we stress the structural similarity of the proofs of _ Part 2. It remains to verify that H is y-homogeneous.
the Infinite Ramsey Theorem (IRT), the Finite Ramsey Theorem (FRT) and the Ramsey-

Paris-Harrington Theorem (RPH). We consider only ¢ = & = 2, namely, 2-colorings of (# % *) Cleatly, if z € S(n) then x(n,z) = f steb(n) — by the definitions of S(n) and Foied,

We need to show that there exists v such that for all n,m € H withn <m, x(n,m) =

graphs. It is enough to work with ordered pairs (x,y), where z < y. We write r(I) .
v; we can choose v = 0 if U® is unbounded, v = 1 otherwise.

for the Ramsey function R(2,2,!) and Ir(n,) for the Ramsey-Paris-Harrington function
LR(2,2,m). Suppose U? is unbounded and let n € H, m € H and n < m. It follows from the

definition of Hy that m € S(n). By definition of H, Fet*b(ny = 0, thus k(n,m) = 0 by

3.1. Proof of the Infinite Ramsey Theorem. (% * %), Since n and m are arbitrary, we are done. If U? is bounded, the argument is

similar. B
As explained in Section 1, we distinguish two parts. The first part consists of three

steps. Let x : [N]?> — 2 be given.
Part 1, step 1.} Fori € N define a chain of subsets S(i) of N as follows. Let S(—1) = N; 3.2.
let Green (n) = {y: x{n,y) = 0}, and Red (n) = {y : x(n,y) = 1}. Finally, let T%(n) be
Green (n) N S(n — 1) and let 7% (n) be Red (n) N S(n —1).

Proof of the Finite Ramsey Theorem.

Let n = 221 _ 1. We claim r(I) < n. Let x : [n]* — 2 be given. If we take
5(—1) = [n] and we restrict all definitions to [n], then the sets S(i), Hy, F*** and H are

T, if n € S(n —1) and [T%(n)| 2 [T (n)}; : Steps 1 and 2 are combined. We need to show that
T'(n) otherwise.

{ S{in—1), In¢Sn-1) _ | defined as in the proof of IRT.
S(ﬂ) ==

By induction on n, one can prove that each S${n) is unbounded, ‘ |H| =211

¥) Clearly, each S(j) is a subset of $(3), for all ¢ < 7. .
() ) (1) (%) J and we prove, by induction on p, that for 1 <p< 2l -1, there is ¢, < n such that
Step 2. Define the “diagonal intersection” H; of the sets S(n) by course-of-value recursion: .

= d 1S(g,)| = 2220,
H, = {z:Yd e H, 0 [z]l.z € S(d)} |Hynjgp+1l=p and |S(g)l2

We prove that H; is unbounded. If b is a bound for H;, consider S(b) and let ¢ be an The computation is easy — let ¢ be 0 E Hi, let gpy1 be the least .eilizment (i S(Q‘;)
arbitrary element of 5(b). Let d be an arbitrary element of H;. Since b is a bound for Hy, _' (remember that g, < inf S(gp)). Finally, since |5(gu-2)l > Oi e can piek qat— _dn. mf;
d <°b; since ¢ € S(b), ¢ € S(d) by {*). Since d was a,r’bitrary, ¢ satisfies the definition of Step 3, the pigeon-hole principle is invoked to conclude that, since iHyi>2l~1land f

-' Hy and thus ¢ < b. But ¢ was arbitrary, thus S(b) is bounded by b, contradicting step 1. is & 2-coloring of Hy, we must have |H| =1 &

Step 3. Define an induced coloring f*°% : N -2 by ’
3.3. Proofs of the Ramsey-Paris-Harrington Theorem.
Fetabin) = 0, ifn € S(n—1)and T%n) is unbounded; ‘

1, otherwise. The following is an adaptation of the argument by Erdds and Mills [1981] to our
. context. Given n; we need to find ny such that for any ¥ : [n1,ng)? — 2 there is a large
x-homogeneous H C [n1,ns). Let r(n) = 22"~ — 1. Define Ir by Ir(0} = ny + 1 and

11 Steps 1 and 2 are usually combined. , S B : Ir(n+ 1) = Ir(n) + r(Ir(n)). We claim that we can take ng = Ir(2ny — 2).

(#%) Clearly, £°**¥(n) = 0V f***(n) = 1, for all n.

L
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We use the following notation. Let Green(z) = {y : x(z,y) = 0} and Red(z) = {y : Proof 2. Let S(ni} = Enl,;flg]. For n > ny, we define sets S{n) as follows

x(z,y} =1}, Let
( S{n —1), ifn ¢ Sn—1)
ag =bg =m _ : ' | Green(n)n8(n—1), ifneS(n—1)and
Git1 =pE.E € ﬂ Green(a;} = pz.2 > a; A {as, ..., a;, ¢} is y-homogeneous green. : ' zlr peif;h ﬁix,t 3.1B;} = b; An = b;
S : : S(n): 4 f)rp(‘n.l, but 3j.|Bjiij/\n>bj/\
biy1 =pr.z € ﬂ Red(b;) = pz.o > b; A {bo,...,b;,z} is x-homogeneous red. A Green(n) N S(n — 1)} = |Red(n)N S(n — 1)§;
isi . : or ¢ < ni, but 35|41 2 a; An > ajA
AlGreen(n) N S{n — 1})| 2 |Red(n) N S(n — 1}|;
Red(n) N S(n — 1) otherwise.

Aip1 ={x 1 ag,..., ai,z} is x-homogeneous green, but y(eit1,2) =1 [= red].
By ={z: by,..., b;,x} is x-homogeneous red, but x(bit1,2) = 0 [= green].
. : Now we define the “diagonal intersection” H; as above and show:
Finally, let Cy; = (Y,¢; Green(ar) Uy, Red(bi). Then (i) either p = ny and |Hy| > ny;
. - — H
(i) or ¢ = n; and |H;| 2 ng;
(iii) or p,g < ny and |Hy| 2 I+ 2¢;, where ¢; = aj or by, I < n;.
This replaces steps (1) and (2) in the proof of FRT.
Step (3). We define f*'**(n) in accordance with the new definition of S(n). We define
; H as above. Then, arguing as in Proof 1, we.show that [H:| = |H| > ny if (i} or (2); if
Gp =ny = by (iii), we show that |H| > ny if n; € H and that LHi > e; if ¢; € H. We verify that

N b (x* %) if z € S(n) then x(n,z) = Fotabin)

[n1,n2] ={ag} U Coyp

={ag, ...,a,-_l} U {bg, ...,bj_l} U U Al U BruU C,',J,'
I<i 1<

fori<p,j<gq,p+g<2n; — 2. The picture is

with the new definitions of S(n) and f****, We prove that H is y-homogeneous as before. B

By : . 4. Remarks and Questions.

Remarks. (i) The RPH Theorem, as formulated in section (1) can be formulated
in Lpa, but is not provable in PA. The proof in Ketonen and Solovay [1981] (see also
Graham et al. [1980]) is a remarkable application of the Corollary in Section (2), since it
shows that LR(c, k,n) dominates every fo. For any fixed k, however, the result is provable
in PA. .

(i¢) Let k = 2. Erdds and Mills {1981] show that LR(n,2,n) is the Ackermann
function f,(n). In particular, a coloring x : [n, fe(rn) — 1]® — e is exhibited such that every
x-homogeneous set has cardinality less than n. Namely, x(z,y) is defined to be the least

We give two variants of the proof.

Proof 1. By induction on n, for n < 2n; ~ 2, we show that for some {,7 withi+j=mn

(1) either for some ! < ¢, | A = r{a);

(ii} or for some I < j, |Bi| = r(b1); _

(iii) or {as, ..., @i} is x-homogeneous green, {by, ..., b;} is x-homogeneous red and [C; ;| > = z,y € [fP(n) () — 1
: . 1 1 IJd g

i < ¢ such that for some j

ng — lr(n). :

Clearly, if (i), then either there is a y-homogeneous red set D C A; of cardinality a;, and (see also Graham et al. [19801, p.151). For a fixed ¢, however, LR(c,2,n) is primitive
{a:} U D is x-homogeneous and large, or there is a y-homogeneous green set I C A; of i recursive.

cardinality a;, and {ao,...,ai-1} U D is x-homogeneous and certainly large. Similarly, (#74) The FRT and the RPH Theorem follow by & compactness argument from the
if (ii). Finally, if (iii) with +J = 2ny — 2, then |C; ;| > 0 and either {ay,...,a;,c} or IRT — see section (6). Since we consider only countable colorings, (Weak) Konig’s Lemma

{byy...,b;,¢} is x-homogencous and large, where ¢ is the least element of C; ;. E suffices.
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(¢v) From (%) and (#41) it follows that the IRT is not provable in a conservative extension
of PA. For fixed k, the IRT is provable in a conservative extension of PA.

Notice that the compactness argument asserts the existence of an n, for which FRT

holds, but does not explicitly give it as a function of e, kand L

Question 1: Cen we actuelly obtain a bound for the function R{c,k, 1) by the functional

interpretation of the compaciness arqument for the Finite Ramsey Theorem from the infi-
nile version?

Question 2: The above proofs of the Infinite, the Finite and the Ramsey-Paris-Harrington
theorems have different conclusions and computational complexities, but similar structure.

Can we formulaie the common features in the form of @ more general lemma?
5. Analysis of a First Order Proof of the Infinite Ramsey Theoi:em.

We postpone consideration of the compactness argument and of Question 1 to the
section (6). We focus on a formal proof of the Infinite Ramsey Theorem, and we restrict
ourselves to the proof of IRT, exponent 2. Moreover, only I'art 1 of the proof in section
(3.1) is computationally significant, namely, the part in which we prove that the set H is
unbounded. The language is that of first order PA with additional predicate and function
symbols — namely y, f***, S, H,, H - as described in section 1.

Write a formal derivation in Z3-IR 2 of

Step 1. Vn.def S(n), Yng.x(n,q) =0V x(n,g)=1, F VYnkIi.Sn,iAi>k
Here def 5(n) is the formal definition of the sets S(n):
Vz.5(0, ) =[“z € T9(0) A T°(0) is unbounded”]v
[“z € T*(0) A T*(0) is bounded”],
V2.5(n + 1,2) =[-S(nn + 1) A S(n, )]V | N
[S(r,n+ 1) A “@s € T(n + 1) A T%(n + 1) is unbounded™]v
[S(nyr+1)A %2 € T (n+ 1) AT%(n + 1) is bounded”].

Since in the first part of the proof only one direction of the equivalence is used, we may

let def S(n) be
Vz.[(Ve.3d.x(0,d) = 0Ad > e) A x{0,z) = 0]V
V [(3b.¥m.x(0,m) =0 > m < b} A x(0,2) = 1] D 5(0, z),
Ve.[-8(n,n 4+ 1) A S(n,z)lv
VI[S(n,n +1) A(Ve3d.S(n,d) A x(n+ L,d) =0Ad > e) A S(n,z) A x(n + 1, r} = 0]
V[S{n,n+1) A (30.Ym.S(n,m} A x(n+ L,m)= 0> m < b)A
Slr,x)Ax{(n+1,2)=1] 2 S(n+1,z).

12 TI3-TR is not enough here, because the side formula. def S{n) in the antecedent increases the
logical complexity of the sequent (see W.Sieg [1985], p.40, footnote 6).

RAMSEY INTERPRETED: A PARAMETRIC VERSION OF RAMSEY'S THEOREM ~ 39

Next, forﬁdize the argument of section (3.1) to provide a derivation 12 of
Step 2. def S, def Hy, VEI.S(k,D)AiZk +  Vb3IeHi{c)Ac >b

def Hy is a course-of-value inductive definition of the set Hy: V:B.Hl(mj = (Vdd < 2z A
Hi(d) D S(d, z)). In part 1 we use only the direction

Va.[Vd.d < z A Hi(d) D §(d,2)] > Hy(z).

Finally, write a formal derivation *® of
Step 3.
def H, ¥n.f** b n) =0V f**¥n) =1, Vo.3c.Hi(c) Ac2 b F ViIdmH(m)Am>j

def His the explicit definition of the set H:
Vz.H(z) = [“z € U AU® is unbounded”] V [“z € U' AU is bounded”]

In part 1 we use only the direction

Va. [(Vp.3¢.Hi(g) A f***(q) = 0A ¢ > p) A Hi(z) A F50(a)]V
V [(FrVu.Hy(u) A F71%w) = 0 D u < r) A Hi(z) A £219%(2)) D H(z)

The only property of £°%®® relevant here is f2%2° : [N} — 2.

5.1. Estimation of the complexity.

Let “def’ §(n)" be the Skolemization of the definition of S(n) in Step 1 and “def’
F#1%5 be the Skolemization of the definition of £*t2® in Step 3. 1¢ Assume we have a formal
derivation of Part 1, using def’ S(n) and def’ f****: now every application of the induction
rule i3 an instance of I3-IR. The new derivation contains only one * application of I13-
IR relevant to the complexity of the functionals. Let v be the set of Skolem functions in
question. By applying the Corollary in section 2.1, we conclude

Proposition. The functional F such thet
T+ ViH(EFEG)AF(G) 27,

obiained from the interpretation of the derivation of part 1, i3 in Fy, where F is
{x,5,Hy, H,v}, namely the third class of Grzegorczyk’s hierarchy relativized to F. @

3 Tn Steps 2 and 3 induction is only used to prove the facts (%} and (##). These are I} lemmas,
thus they are irrelevant for the computation of the bounds, according to the Proposition of section
(2). However, by the previous footnote, these inductions are formally instances of the Tf — IR.

1 Notice that a Skolem function for a formula becomes a Herbrand function, when the formula
is written in the antecedent of a sequent.

18 See footnote ¥ of the previous section.
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Remark. In Section (5.3) we show that given x : [N]? — 2, by iteration of F we can
generate a y-homogenerous set H i” of cardinality [ for certain choices of the parameters
and a large x-homogeneous set H, L"‘ 2] for other choices. We also show that H,E’) and
H"0") are bounded by the usual functions R(2,2,1) and LR(2,2,n,), respectively, for
any x.

By using auxiliary colorings !® we may obtain a proof of the IRT with exponent

k=2 and an arbitrary number ¢ of colors, and then construct a functional F, which will-

be in F[,, for an appropriate set F' of parameters. Then x-homogeneous sets of given
cardinality and large ¥-homogeneous sets can be obtained by iteration of Fi, for arbitrary
¢ and x : [N]* — ¢ and for appropriate choices of parameters. Now R(c,2,1) is primitive
recursive but LR(c,2,c) is the Ackermann function. I 4s clear that the computational

complezity of H" and HL""M} ultimately depends on the parameters.

5.2. Functional Interpretation of the Infinite Ramsey Theorem.

We give now the proof of the Parametrized Ramsey Theorem, stated in section (1).
We consider derivations of Step 1 — Step 3 (section 5) and produce their interpretations
Step 1z - Step 3p. By the correctness of the NCI we know that for any choice of
numerical functions for the parameters, the functionals will produce values making the

sequents true. 17 Tt is reasonable to assume the following

Convention. The interpretations of the predicate letters S(n,y), Hi(z), H(z) and of
the function letter f*'*¥(z) are sets Sr(n), Hip, Hr and a function f3* such that the
sentences def Sp, def Hip and def Hp in the sequents Step 17 — Step 3F are true. 18

'8 Let x : [N]? — ¢ for some e, Define auxiliary colorings xi for i < ¢ by letting xi(z,y) = 0 if
x{(z,¥) ={—1, xi(2,¥) = 1 otherwise. Then Part 1 of the proof of the IRT, with exponent k =2
and ¢ + 1 colors, can be obiained by repeating ¢ times Part 1 of the proof of the IRT. By the
argument for the Proposition, we can construct a derivation with only ¢ significant applications
of the O3-IR. :

" 7 We may assume x : [N]* — 2 to be true; we may restrict ourselves to terms x{=z,¥) where
2 < y. These assumptions are part of the doia of our problem: there is no point here in considering
deviant interpretations of those symbols.

" 8 This last condition would be guaranteed if we used the comprehension axiom in second order
logic to define the sets S(n), H; and H, instead of introducing additional predicates. Consider,
for instance, the base case Step 1; in the argument by induction that proves Step 1:

Vp.x(0,p) =0V x(0,p)=1 F VkIiec{e:0(x)}Ai>k
For some @;  and some jy, the interpretation is
X(0,8) =0Vx(0,) =1 + Vigj(lj € {e: 0p(a)} AL; 2 k)

and, by the correctness of the interpretation, U;<;,{x : 8; p(z)} is nonempty (assuming x(0,t} =
0V x(0,¢) =1).
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Interpretation of Step 1. Finally, we produce the definitions of the functionals. The
most interesting part is the proof of Step 1. Write

Step 1, Yn.def S(n), “x: [N —=2" F k38004 Al > k

for the base case, and .
Step 17, Vn.def S(n), “x: [N]? = 2°,¥eda.S(n,a)Aa>c I YE.S(n+1,000 > k

for the induction step, Since the proofs of Stepl, and of Stepl, ., do not require appli-

cations of the induction rule, it is convenient o look at their Herbrand expansion.'?

In the following table

e, = [0, 7] my; = m0,r K]
ey — e[O, ml] Mz = m[O, r 62]
e; = ¢[0, 7] my = m[0,t, e;],
t = maz(eq, k)

20 -

and we may take k for r.

Herbrand Expansion of Step I

x(0,7) =0V x{(0,m) =1, x(0,8) =0V x(0,t) =1,

1 .
( E((x(ﬂ,t) —O0AE > es)V (x(0,ms) =0 Ay > eg)) Ax(0,r) = 0]V

[(e(0,mz) =0 D mg < eg)V (x(0,mq} = 0D my <k) Ax{0,r) = 1]

o 5(0,r),
(2) [(x(0, mg) = 0 Ay > ez) A x(0,my) = 0] D 5(0; ),
(3) [(x(0,m3) = 0 D my < e3) A x(0,%) = 1] o 5(0,t)

i_
S(O,r)Ar>k,  SO,m)Am >k SOtk

Now we define functionals B' and D' from (1):

_ ey, if x(0,mp) =02 my < ey is trug;
B'(0,m,e,k) = { k  otherwise;
t if x(0,8) =0 At > ey (Le, x(0,8) = 0) is true;
my, otherwise.

D'(0,m, e, k)= {

1% ere we work in Direct Logic, using the result of Section (2.2). For details, see Bellin [1988].
20 We may consider only k > 0 and assume -x(0,0) = 0 A=x(0,0) = 1.

-
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Finally, on the basis of the above Convention, we define the functional Iy(m, e, k) as follows Notice that for this m and e we can choose colotings that make F9 — the I-th iteration

r, i Sp(0,r)Ar >k is true; of F — grow as fast as desired, i.e., this choice gives no bound for R(2,2,1). Also notice
Iy(m, e, k) = oy i Se(0,my} Amy >k _ that H £n+]) is an extension of H, i“); thus from the set H, by compactness we obtain again
t otherwise. the Infinite Ramsey Theorem, as expected.

We proceed similarly in the induction step, and we define the functional Line(a,m, e, k,n) : : Example 2: Let S(—1) = [p], Green (n) and Red (n) as before.
as

r, Sp(rn+Llr)Ar>k; ' e[, ] = 0, if |Green (n) N S(n —1)| 2 {Red (n) N S(n — 1)|;
Lina(m, e, k) = my, if Sr(n+1,m)}Am; > k; : P p otherwise,
a;  otherwise.

pz<pz€ Green(m)NSn—1)Az>y

Here a, is a[n,t}; a[n, 2] is a parameter deriving from the interpretation of the inductive if |Green ()N S(n — 1) 2 |Red (n) N §(n —1);

. mn,z,y] =
hypothesis Ve.Ja.5(n,a) A @ > ¢ ~ namely, S(n,a1) A a; > t ~. Finally, we define the _ . pz < pz € Ret'i(n) nSn—1),
functionals B, D, X and I corresponding to the conclusion of the Induction Rule, Step otherwise.
1. For instance, define I to be If p > 221, the above choice for m and e makes Sp(n) N [p} satisfy the definition of $(n)

in the Finite Ramsey Theorem and as k varies over [p], I{n,m, e, k) generates the elements
1(0, m, e, k) =Iy(m, e, k) . e .
of 5{n) — notice that for y > p, m[n,z,y] = 0: considering the Herbrand expansion of

I{n+1,m,e,k) =Iing(Ak.I(n,m, e, k), m, e, k, n) Step 1y we see that (1) becomes a tautology for k > p; thus N\ Ip — 1] C S5(0) — We

by primitive recursion. This concludes the interpretation of Step 1. The interpretation of may conclude that with this choice of parameters (and with suitable choices for q and u)
Steps 2 and 3 is omitted. _ by iterating the functional F' [ times we generate a x-homogeneous set H. 0, Following the
' proof of the Finite Ramsey Theorem (section 3.2), we can check that H, O fp] for any ¥,

5.3. Choices for the “Hidden Parameters”, i.e., the familiar bound is preserved.

Before giving a formal characterization of the Non-Triviality Condition, we consider - Example 3: Let [ny,n2], goy.ery 25y boseenydgy Aryeres Ap, Bi,..., By be as in section (3.3) and
some examples of evaluation of the functionals. Here let H, = {F(1), F2(1),..} C Hp be . consider the definition by cases of S(n) given in Proof 2, section (3.3).
the result of iterating the functional An.F(x, m, e, q,u,n) extracted from the proof of the
Infinite Ramsey Theorem, for the given values of the parameters m,e,q,u, n; write il

e[n, 2] = { 0 if S(n) = Green{n}N S(n — 1)
for H, N [z,y] and let H™ be the x-homogeneous set given by n iterations of F.,

na otherwise.
pr<npz€ Green (N)NSn—1)Az>y

Example 0. Let mn, 2,y} = maz(n + 1,y), e[n, 2] = 0. Then in the Herbrand expansion min, e, y] = if S(n) = Green(n)N S{n — 1);

of Step 1y we have ¢; = ¢ = ¢3 = 0, my = ¢ = k, mg = mz = 1 and the defining pz < ng.z € I?ed (n)NnS(n-1)

conditions for Sy are tautological, thus Sr is N. Similarly for the expansion of Step 7 otherwise.

17,4. Thus Sp(n) = N for all n, and so Hyp = N, too. Not surprisingly, the iteration of _ As before, we check that with this choice of parameters (and with suitable choices for g
F in this case grows linearly. and u) Sp(n) N [n1,n,] satisfies the definition of S(n) in the RPH theorem and as k varies

over [ny,ng] I(n,m, e, k) generates the elements of S(n) and F' generates a x-homogeneous

{z,3]

Example 1: As usual, let 5{(—1) = N, Green ={z: ,2} = 0} and Red ={z:
(-1) (n) = {z : x(n,z) = 0} and Red (n) = {2 large set HY""Y for any ¥, i.e., the familiar bound is preserved.

x(n,z) = 1} (by our assumption, for all z in Green (n) or Red (n), z > n). Let
From the examples we see that our computation will produce one of the following
eln, 2] = { 0, if Green (n) N S(n — 1) is unbounded;
’ maz{ Green (n) N S(n 1))  otherwise. ) . . .
pz.z € Green (n) N S(n—1)Az>y _ . (i} as k varies, the functional I{n,m, e, k) gives values both in Green (n) andin Red {(n)
mln, z,y] = { 7 if Green {(n)N S(n— 1) is unbounded; and the set H, is not y-homogeneous;
0 otherwise. :

outcomes, depending on the choice of the parameters and m, e:

(ii) as k varies, the functional I(n,mn, ¢, k) gives values only in Green (n) orin Red (n},
Functions m and e satisfying the above conditions are in fact Skolem functions for def S{n), ¢ and thus the set H, is y-homogeneous;
the defining conditions of S(n), as well as for def f**%® and so “preserve the meaning” of (iii) as k varies within a segment [z,y] of N, the functional I(n,m, e, k) gives values

those definitions, There is nothing to verify here. only in Green (n) or in Red (n), thus the set H, is x-homogeneous in the segment [z,y].

e
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Finally, information about the cardinality of a certain segment of Hy requires ad-
ditional proof. In example 2 we needed to know that p = r(I) in order to argue that
|H,£=0’p ]] > [ independenly of y and in example 8 we used the fact that ny = Ir(n1) in
arguing that Hirmal g large, for any x.

The condition for the “non-triviality” of the computation is easily spelled out. Given
a certain choice of m and e, let

(0, &) =[(x(0,m[0, X, B]) = 0 Am[0,X,B] > B) A x(0,X) =0]
pln+1,k) =[(S{(N,mn+ 1, X, B} A x(n+1,mn+1,X,B])=0A
Am[n+1,X,B] = BYAS(n,X) A x(n+ I,Xj = 0]
o(0, %) =[(x(0,0)=0> D < {0, X]} A x(0, X} = 1]
o(n+1,k)=[(S(n,D)Ax(n+1,D)=0D D <e[n+1,XHA
ASX) Ax(n+1,X)=1)

(here B, D and X depend on n and k, and by definition of X the value X = k is tested).
For the “non-triviality” of F' {over a certain segment {r,y]) we need
(NTC): for all n, if S(n — 1,n), then (Vk.p(n, &)} V (Vk.o{n,k) and Vk.p(n, k) =
—o{n, k). :
(NTC)[z,y]: for all n € [z, y], if S(n—1,n), then (Vko<k<y.p(r, E)}V (Vhz < <y-o(n, k)
and Yko<p<y.p(n, k) = —~o{n, k).

The Parametrized Ramsey Theorem (section 1) is now proved, @
6. Sketch of an interpretation of the Compactness Argument.

In the last section we have made choices of parameters m, e, q and u, rélying on well-
known facts of finite combinatorics and we have shown that for those choices the desired
sets are generated by iteration of the functionals within known bounds. It is conceivable
that if we work with a compactness argument, there may be implicit in the part of the
proof to which the IRT is applied (1) a particular choice of a coloring xo and (2) specific
numeric functions for m, e, q and u, such that they may be mechanically uncovered by
some proof-theoretic transformation. We might hope that (1) the coloring xo would give
information about a “worst case coloring” or (2} the numeric functions for m, e, q and u
would be choice functions operating on an initial fragment of xo. In these cases the answer
to Question I (section 4} would be positive.?! Part of the problem is to decide what the
compactness argument is - different mathematical techniques may produce different proofs
and different bounds. An ebvious choice is the use of Kdnig’s Lemma.

# Although a detailed analysis is beyond the scope of this paper, the following remarks provide
evidence for our belief that the results presented in the previous sections are optimal for the
techniques under consideration.
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Compactness Argument. Assume the negation of the FRT, namely for given ¢, k, I,

~FRT®; for cach n there is a coloring &n : [n]* — c such that every set H C [n] of

cardinality [ i3 not {n-homogeneous.

The set of finite colorings £, falsifying the FRT, ordered by the relation “£; is exfended by
¢;”, forms a tree, which by our assumption is infinite, At each node £, : [n]*¥ — ¢ there are
at most u21) extensions ¢+ [n+1)* - ¢ of £n. By Konig’s Lemma there is an infinite
path through our tree, i.e., a coloring x : [N]* -» ¢ such that every set H of cardinality |
is not y-homogeneous. This contradicts IRT*}, the TRT with exponent k. B

The above argument may be formalized by a derivation D in PAZ, the sequent calculus
for second order PA as follows. Let KL be a formalization of Konig’s Lemma. 22 Let Df
and Dz be derivations in PAZ of IRT™® and KL, respectively; let Dy be a derivation of

(<) IRT), KL, ~FRT® .

in LK?, the sequent calculus for pure second order logic. Now D results from Df, D; and
Dy by two applications of Cut. We are interested in the following transformation: apply
Cut-Elimination to D and then the No Counterexample Interpretation to the resulting
derivation T,

Notice that FRT® has the form In.¥&,.¢(£n,n) and that the NCI of D', yields
a functional N such that ¢p(¢[N], V) is true for all choice of mumerical functions for
the parameters. Here £ is a new k + l-ary function parameter, representing an infinite
sequence of finite colorings {{, : n]* — ¢}, L., any attempted counterexample to the

FRT. Moreover, £ may be regarded as an infinite co}orir}g ¢ [N — e by

(*) E(i[},...,ik)=‘E,‘k(io,.--,1‘.km1)

(we assume ig < ... < if).

We have not checked this in detail, but we conjecture a negative answer to Question
1 on the basis of the following experiment. The Finite Ramsey Theorem with exponent &
follows from the Infinite Ramsey Theorem with exponent & + 1. Let D+ be a derivation
of IRTF+1) and let D, be a derivation in LK? of

(&) IRTHHY | V¢ 3n.$(¢(n), n).

If D is the derivation ending with an application of Cut to the conclusions of Df"’l and
D, then it is easy to see that after the elimination of this Cut and application of the
NCI, the functional N still depends on the coloring { — which is arbitrary — and on the

: ; ; 23
parameters m and e — rather than on specific numeric functions.

22 We write IRT®? and FRT®™) for their formalizasion, too.
3 The significance of this experiment for an analysis of the compactness argument follows from
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7. Conclusion.

What conclusions may we draw from our experiment? Our application of Proof Theory
to Combinatorics has produced the Parametrized Ramsey Theorem, a general logical frame
for “Ramsey-type” results. Additional computational instructions, in the form of choice-
function parameters, yield the Infinite, the Finite and the Paris-Harrington versions of
Ramsey’s Theorem (see Question 2),

From this exercise we have not obtained new bounds for the Finite Ramsey Theorem.
24 It is an open question whether one can provide new function parameters for which the
interpretation is non-trivial on a certain segment [z,y] and such that {F(z),..., F¥(2)} C
[#,4] for any coloring x. 2%

We have considered fragments of arithmetics in which the No Counterexample Tnter-
pretation has a simple definition and the functionals are primitive recursive in the function
parameters. In particular, using results by Sieg we have obtained a straigtforward esti-
mation of the complexity of the functional interpretation of the Infinite Ramsey Theorem
(section 5.1).

We have shown that Ketonen's Direct Logic and Girard’s Linear Logic can be used

to keep cumbersome computations under control — in these logics Herbrand’s Theorem

has minimal complexity and for proofs in II-IR the result of evaluating the functionals is
invariant under elimination of I13-Cuts.

The interest of this approach is increased by the fact that Direct Logic is the logic of the
decision procedure of the proof-checker EKL (see Ketonen [19831); thus implementation in

EKL of the funetional interpretation will make extensive experimentation more accessible.
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