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Abstract

The paper studies the properties of the subnets of proof-nets. Very
simple proofs are obtained of known results on proof-nets for MLL™,
Multiplicative Linear Logic without propositional constants.

Preface

he theory of proof-nets for MLL™, multiplicative linear logic without the
ropositional constants 1 and L, has been extensively studied since Girard’s
fundamental paper [5]. The improved presentation of the subject given by
Danos and Regnier [3] for propositional MLE™ and by Girard [7] for the
first-order case has become canonical: the notions are defined of an arbitrary
proof-structure and of a ‘contex-forgetting’ map (. )~ from sequent derivations
to proof-structures which preserves cut-elimination; correctness conditions are
given that characterize proof-nets, the proof-structures R such that R = (D),
for some sequent calculus derivation D. Although Girard’s original correctness
condition is of an exponential computational complexity over the size of the
proof~structure, other correctness conditions are known of quadratic computa-
tional corplexity. '

A further simplification of the canonical theory of proof-nets has been ob-
tained by a more general classification of the subnet of a proof-net. Given a
proof-net R and a formula A in R, consider the set of subnets that have A
among their conclusions, in particular the largest and the smallest subnet in
this set, called the empire and the kingdom of A, respectively. One must give
& construction proving that such a set is not empty: in Girard’s fundamental
paper a construction of the empires is given which is linear in the size of the
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proof-net. When the notion of kingdom is introduced, the essential pro
ties of proof nets — including the existence of a sequent derivation D such th
R = (D) (Theorem 1, sequentialization theorem) — can be easily proved nsmg
simple properties of the kingdoms and empires, in par tlcula.r the fact that t
relation X is in the kingdom of Y is a strict ordering. !

Moreover the map { . )~ identifies equivalence classes of sequent deriv
tions, where D; and D; are equivalent if they differ only for permutations
inferences, Now consider the set of derivations B which have A as a concl
sion, and that are subderivations of some derivation D; in an equivalence clag
The kingdom and the empire of a formula A in the proof-net (D;)~ yield the
notions of the minimum and the maximum, respectively, in such a set of suly
derivations (Theorem 2), This fact gives evidence that the notions is question
do not depend on accidental features of the representation; therefore satisfac.:
fory generalizations of our results to larger fragments or to other logics should
include Theorem 2. '

Such a generalization is impossible in any logic with any form of Weakening,
e.g., in the fragment MLL of multiplicative linear logic with the rule for the
constant |. Indeed a minimal subderivation in which a formula 4 may be'::
introduced by Weakening is an axiom; but the process of permuiing Wea.keniné
upwards in a derivation is non-deterministic and does not always identify a
unique axiom as the minimum in our set of subderivations; hence in such 4
logic we cannot have a meaningful notion of kingdom.,

2 Proof Nets for Propositional MLL ™~

We give a simple presentation of the well-known basic theory of proof nets
for Multiplicative Linear Logic without- propomtwnai constants (MLL ™). The
main novelty is the use of the structural properties of subnets of a proof-net;
in particular the tight relations between kingdoms and empires. A pay-off is a;
simple and elegant proof of the following theorems:?

Theorem 1. There exists ¢ “context-forgetting” map ( . )~ from sequent
derivations in MLL™ to proof nets for MLL™ with the following properties:
(a) Let D be a derivation of T' in the sequent calculus for MEIL™; then (DY~
is a proof net with conclusions T'.

L'The notion of kingdom and the discovery of its properties originated in the Equlpe de:
Logique in the winter 1991-92 and appeared in discussions through electronic mait involving:
Danos, Girard, Gonthier, Joinet, Regnier, (Paris VII), Gallier and de Groote (Umvermty of
Pennsylvania) and the author (Umvexslty of Edinburgh). :

*Here we prove part (a) and (b) of Theorem 1; the proof of parts (c) and (d) are cle:
from [5, 7). '

(b) (Sequentialization) If R is a proof net with conclusions T for MLL +then
there is a sequent calculus derivation D of I' such that R =

(c} If D reduces to D', then D~ reduces to (D).
(d) If D~ reduces to R' then there is a D' such that D reduces to D' and

Theorem 2.
derivation of the same sequent - T in propositional MLL™.
(D'Y" if and only if there cxists a sequence of derivations D =D, Dy, ..
= D' such that D; and D,y differ only for a permutation of two consecutive
inferences.

(ii) Let R be a proof-net and let A be a formula occurrence in R. Then there

exists ¢ derivation D with (D)~
(B)™ = eA. A similar stalement holds for kA.
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(D)

= (D).

(Permutability of Inferences) (i) Let D and D' be a pair of
Then (D)™ =
o Dn

= R and a subderivation B of D such that

2.1 Propositional Proof Structures and Proof Nets

A link is an m+n-ary relation between formula occurrences, for some m,n = 0,

m +n # 0. Suppose Xi,...,
are called the premises of the link; if n > 0, then Xpnyq, ...
the conclusions of the Hnk. If m = 0, the link is called an aziom link.

Links are graphically represented as

Xintn are in a lnk: if m > 0, then X5, ..., X
; Xmtn are called

Xi,...
Xonttroos

 Xm
-Xm+n

We consider links of the following forms:

Identity Links:

: — A AL
aziom links: A At cul links:
cut
Multiplicative Links:
A B . A B
times links: i9B par links: m

Convention. We assume that the logical axioms and cut links are symmetric
relations. Other links are not regarded as symmetric. The word “cuf” in a cut
link is not a formula, but a place-holder; following commeon practice, we may

sometimes omit it.
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3. Y is the conclusion of a par and X is the occurrence selected by the
switching s.

Definitions 1. (1) A proof structure 8 for propositional MLL™ consists of -
(i) a nonempty set of formula-occurrences together with (ii) a set of identity -
links, multiplicative links satisfying the properties: '
Definition 3. Let R be a multiplicative proof-structure, R is a proof-net for
propositional MLL™ if for every switching s of R, the graph s(R) is acyclic
and connected (i.., an undirected tree).

1. Every formula-occurrence in S is the conclusion of one and only one iini.(;.
2. Every formula-occurrence in & is the premise of at most one link.

2.2 Subnets

Definitions 4. Tet m: & — R be any ihjective map of MLL™ proof struc-
- tures (regarded as sets of formula, occurrences) such that X and m(X) are
~ occurrences of the same formula.

We write X <Y if X is a hereditary premise of Y; in this case we also s.é,y
that ‘X is above ¥’, We shall draw proof structures in the familiar way as
non-empty, not necessarily planar, graphs.

(ii) We define the following reductions on propositional MLI™ proof struc.
tures:
(i) We say that m preserves the links if for every L in & there is a link £/ in

Aziom Reductions ‘R of the same kind such thai

: ) : L: Xi,---,Xk — .C" mX;,...,ka
X Xt X reduces to X 'X’“+1"“X‘“+“ MKt m Xy

(ii) A proof-structure S is a substructure of a proof-structure R if there is an
injectivemap ¢ : & - R preserving links. If § is a substructure of R, then the

S s ducti
yminetric Reductions lowermost formula occurrences of S are also called the doors of S.

(iif) We write stX for the smallest substructure of R containing ¥,

Y i 3 ta : : : (iv) A subnet is a substructure which satisfies the condition of proof-nets.
X 4 Xt YL X Xt v Vi '

X®eY Xtpyt reduces to

Remark. In definition 4.(ii) Jet ¢ be the identity map. A subset § of R (with
the links of R holding among the occurrences in S}is a substructure if and
only if

(1) 8 is closed under hereditary premises and
(2)if Xo Xj is an axiom and X; € Sthen X;_; ¢ 8.

In particular, the set of formula occurrences in sH(2) consists of %, of all the
hereditary premises of ¥ and of the axioms above them:

Pefinitions 2. Let R be a propositional proof structure for MLL".

1) A Danos-Regnier switching s for R consists in the choice for each par link
£ in R of one of the premises of £,

(i) Given a switching s for R, we define the undirected Danos-Regnier graph
s(R) as follows: ‘

® the vertices of s(R) are the formulas of R,

e there is an edge between vertices X and Y exactly when:

st(Y) = zUz{X : X =7} uZLéJE{X €X Y:V =<5}

Lemma 1. Let Ry and Ry be subnets of the proof net R. Then
(1) S =R U Ry is a subnet if and only if R1 'R, # ¢,

() If RiN Ry # B then Ro = Ry Ry is a subnet.

Proof. Let R be a proof net and R’ any substructure. Given a switching s’ for
R', extend s’ to a switching s for R; then s'R' is a subgraph of sR, hence s'R’

1. X and Y are the conclusions of a logical axioms or the premises of a ecut -
tink; or

2. X is a premise and ¥ the conclusion of a times link; or else
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By induction on the definition of a sequent derivation in MLL™ we define
1e map (. )7 from sequent derivations to proof structures (“forgetting the

ntext”).

heorem 1.(a) Let D be a derivation in the sequent calculus Jor MLL™; then
(D)™ is a proof net,

Proof. Axioms are proof nets, and the property of being a net is preserved
ander the #imes, cut and par rules by Proposition 1, B

is acyclic, since sR is. Therefore we need only to consider the connectedné
of 58 and sR,.

To prove (1), assume R1 and R, are subnets with nonempty intersection an
fix a switching s for § = R, u Ra. For i = 1,2 let sR; be the restriction ;
SR to Ry; then sR; is connected since R; is a subnet. Tet A be in Ry ap
BinRy#CeRN Ry, then A is connected with C since sy is connects
and B is connected with (7 since s, is connected, hence A4 is connected wit
B as required. The converse is immediate, namely, if Ry N R, = @, then an
Danos-Regnier graph on Ry U R, is disconnected. i

Definitions 5. Let X be a set of formula-occurrences in a proof-net R.

(i) The territory 3 of is the smallest subnet of R including ¥ (not necessarily
s doors).

(i) The kingdom kA [the empire eA] of a formula-occurrence 4 in a proof-net
R is the smallest {the largest] subnet of R having A as a door.

Remarks. (i) Given a proofnet R and formula occurrences ¥ in R, the
ubnet ¢¥ always exists by Lemma 1.

- (i) Suppose for no X, ¥ in T we have that X is a hereditary premise of
Y (X <Y). Then st¥, the smallest substructure containing X, has all the
© occurrences in £ among its doors. On the other hand, there may not be a
subnet having all of ¥ among its doors.

- (ili) The existence of kA and eA is immediate by Lemma 1 once we prove there
~exists a subnet having A as a door. This can be done by giving an explicit
- construction of e as in [5, 7] and in the following section. '

To prove (i1}, let sq be a switching for Ry = Ri NR3; let sq, sy be exténsion
of 50 to Ry, Ry, respectively; then s = s, Us, is a switching of Ry UR,.. |
A and B occur in Ra, then they are connected by a path 7 in 51Ry and bj;
path wy in 89Ry; if 1y # 73, then there is & cycle in 58, which is impossible
But #; = 7, means that A4 and B are connected in $oRy. &

Proposition 1: (i) Let R, and Ra be proof nets and let
R R R Ry

A B A AL
A@B or S = C"U,t (RI)RQI) =

S = Times (R, R2) =

Then S is a proof net if and only if Ry Ra =10
(i) Let Ry be a substructure of the proof net R and let

R

8 = Par (Ro) = A A
ApB
Then S is a subnet if and only if Ry is a subnet: -

2.3 Empires and Kingdoms: Existence and Properties

Among the results in this section, for the proof of the Sequentialization theorem
we need only the fact that for each formula occurrence A in s, proof-net R there
exists a subnet having 4 as a door.

Definition 6. Let A be a formula occurrence in the proof net R. For'a given
D-R-switching s, let s(R, A) be (the set of formula occurrences and of links
occurring in) the connected component of the graph sR which is obtained as
follows:

Proof. (i) Let s be a switching of & = Tymes (R1,Ra); since Ry and Rs:
are Iproof nets, each of the graphs sR,; and 5Ry are acyclic and connected: in
addition to sR, U 3R, 88 has the vertex A ® B and two edges (A, A ®,B
and (B A® B), which establish a connection between sR, and 37?,2, this g
the only connection gince Ry and Ry are disjoint. ’ g
Qonversely, ERINAR, # 0, then by lemma 1.(i) R, U7, is a subnet. Therefore -
gven any switching s of § , the nodes A and B in are connected already in.'-'..
s(Ry U Ry3); also the edges along link “i@ 2 vield another connection between
the vertices A and B, hence there is a cycle in sS. B k
P&rt (i) is immediate: for any switching s of R, s8 comes from sR, b:y
;nt;oiucing an additional edge (Ai, Aipd,) to a leaf A, where ApB is a new
eaf. '

o if Ais a premise of a link in R with conclusion Z and there is an edge
(A, Z) in the D-R-graph sR, then remove (A, Z) and let s(R, A) be the
component containing the vertex A. '

® otherwise, let s(R, A) be sR.

We write s(R, A) for the connected component not containing A after the
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To show that (a) C (b) we consider a principal switching s for A: thisis a
© switching such that for every parlink £, if a premise X; of £ is in (b}, but the
- conclusion Xpp X; is not, then s chooses Xi-;. We claim that if s is a principal

- switching, then s(R, A) is precisely (b).
_ Notice that any set § closed under clauses {i) — (v} has the property that
if & contains X, then it contains also every formula occurrence Z such that X

and Z are in a link £, in all cases except perhaps the following:

(1) X is A and a premise of £, while Z is the conclusion of L

(2} £ is a parlink, X is a premise and Z the conclusion of L, and the other
premise Y is not it &,

It follows that the set () is a substructure of R whose doors can only be
conclusions of R, or cuts, or occurrences X as in (1) or (2).

removal of the edge (A4, Z) from sR, if such an edge exists; s(R, A) is empty
otherwise. :

Definition 7. Let R be a proof-net and let ¥ be & set of formula-occurrences
R. We write path (L) for the smallest subgraph of s connecting all formuls,
occurrences in Y. Clearly path,(A, B) is a path of sR, for every A, Bin R
and every switching s for R.

Proposition 2. (Characierizartions of empires; cf. (3, 5, 7]} Let R be o proof
net. Then e(A) (the largest subnet of R containing A as a conclusion) exists
and is characterized by the Jollowing equivalent conditions:

(8) N, s(R, A), where s varies over ail possible switchings;

(b) the smallest set of formula occurrences in R closed under the following -
conditions: -

() A € e(A);

(ii) if 21522 js o Jink in § and ¥V € e(A), then X1, X, € e(A), (1-step);
(iti) if Xo "X, is an axiom in & and X € e(A), then X,_; € e(A) (—-step); .
(iv) if %(]E;TX)_? tsalinkin &, and fori = 1 or 2 Xi# Aand X; ¢ e(A), then .
X1 ® X; € e(A) (-step); -
() i S5 is alink in S, X, # A £ X, and (X, X5} C e(A), then
X1pX; € ¢(A) ({-step).

(According to our conventions, X; # A means that X; and A are diffez;ent
formula occurrences, ) :

Now suppose a formula-occurrence W is in (a) but not in {b); choose a
switching s principal for A. Since s(R, A) is connected and (b) is a substruc-
ture, the path 7 connecting A with W in s(R, A) must exit (b) from a door
X as in cases (1) or (2). But this is impossible by the definition of principal
switching and of s(R, A). Hence (a) C (b) as claimed.

We must show that A is a door of the substructure equivalently defined by
(a) and (b). Let Z € M, 3(R, A) and suppose A < Z. Choose a switching s

X X
such that if =2 Xl ig a link such that 4 < X; < Z, then s chooses X;_;.
(] 2% $1

B C
We claim that there must be a times link TYe, in 8(R, A) such that, say,

A =2 C' < Z: otherwise, Z ¢ s(R, A), by the choice of s and the definition of
3(R, A). Thus let £ be the uppermost such link: then the path 7 connecting
A and B in (R, A) does not pass through ; but then in sR we have two
distinct paths connecting A and B, and this contradicts the acyclicity of sR.

Since (b) is a substructure satisfying the condition {a), for each s the re-
striction of s(R, A) to (b) is acyclic and connected, hence (b) is a subnet. We
have proved that given a proof-net R and a formula-occurrence A in R, a
subnet with conclusion A always exists.

But (a} is also the largest among such subnets: let' S be a substructure
of R with A as a door and suppose Z € & \ {a); then for some s, we have
% ¢ 3(R,A), from which it follows that no path connects A and Z in sS;
hence § is not a subnet. We conclude that e(A) = {a)={(b). B

Proof. The following proof of (a) = (b) follows the argument in I7]. To show
that (b} C (a) we show that the sef. (a) is closed under the conditions (1) — (v)
defining (5). This is easy for clauses (i), (i), (iv) and (v) of (b}, and also for
clause (ii), if the link in question is a times link, Now suppose that for some
par link £ the conclusion XipX, € [, 8(R, A}, but, say, for the premise X,
we have X, ¢ ), 8(R, A). Then for some s we have that X;pX, belongs to
$(R, A) and X; does not. Therefore A is premise of a link with conclusion Z
and X3 belongs to the same connected component, as 4, Le., to s(R, AY; let 7
be: path,(X,, Z), the path connecting X, and Z in s{R, A). Since the switching =
§ in L is Left and the edge (X1, X19X;) belongs to (R, A), it plays no role
in the connections = between Xz and Z. Therefore if s is like 3, except that
the switch on £ is changed from Left to Right, then we still have a connection -
T between X, and 7 since X pX, € s 3(R, A4), = can be extended to a
connection path,,(A, 7), between A and 7 in s'(R, A); but then in §'A we have -
a cycle, and this is a contradiction, Therefore {X;, Ao} CeA. .

The construction of a principal switching was given first in Girard’s Trip L
Theorem {cf. (5], 2.9.5.); using Girard’s notion of a #rip the principal switching - '
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constructed ‘dynamicaily’, by making the following choices during a tzip.

Starting from A, the trip proceed upwards in R, and at a branching point,

i.e., at times link, we choose arbitrarily;

e if the trip reaches a par link for the first time from below, then we fix s
arbitrarily and the trip continues to the chosen premise;

o if the trip reach a parlink for the first time from a premise, then we let
$ choose the other premise.

The Trip Theorem shows that eA is exactly the set of occurrences visited
between the first and the second visit to A. The algorithm is transfered to our
setting using the correspondence between trips and D-R-graphs established
by Danos and Regnier [3]. One advantage of such a formulation is that the
following corollary becomes completely obvious.

Corollary. The complezity of the computation of eA is linear on the size of
the proof-net. B

Proposition 3.(I) (properties of territories). Let R be a proof-net and let 3
be a set of occurrences in R. Then the territory L3 satisfies '

t8 = t(path, () = () X
Xepath (o)
for any swilching 5. @

Proposition 3.(II) (characterizations of kingdoms).> Let R be a proof net.
Then the kingdom kA of A in R (the smallest subnet of R having A as 4

conclusion), exists and is characterized by the following equivalent conditions:

(a) t4;

(b} the smallest set scztisfg)'iné the'folléﬂ.}ing conditions {Danos et al.):
(o) A € kA.
(i) Let X XL occur in R. Then

X Xl=kX =X X% e
. A B : i
(ii) Let £ : Y be a link in R. Then

ch@Y:kXUkYU{X@Y}.

3Characterization (5) is due to Danos and others, as specified in footnote 1, Characteri— :

zation (¢) was suggested to us by J-Y. Girard.
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be a link in K. Then

X Y
(iii) Let £ : Xor

kXpY = | J{kC|C € path (X,Y)} U {XpY}

{for any switching s.

(c) the smallest set of formula occurrences closed under the following condi-
tions:

(i) A € k(A);

(ii) if 122 is a link in § and Y € k(A), then Xy, X5 € k(A) [similarly, if

Xqi—[-l;)? is a link in & and Jy. X € k(A), then X[t/y] € k(A)] (1-step);

(i) if Xo X7 is an axiomin & and X; € k(A), then X1_; € k{A) (—-step);

(iv)if =X js alinkin S X £ A £ Y, X € k(A), then Y € kA ff A ¢ eX

*The proof is left to the reader; for case (c)(iv), see the following Lemma 2.

2.4 Sequentialization Theorem

Lemma 2. {Empire-Kingdom Nesting) Let £; : =4+ and £, : =B be distinct
links in a proof net R for MLL™. Suppose B € e¢A; then D ¢ eA if and only

if C € kD.

Proof. Clearly B € ¢AN kD, hence Rg = eANkD and § = eAU kD are
subnets of R. If C' ¢ £D and D ¢ €A, then § is a subnet with conclusion A,
which is larger than eA, since i contains I: this contradicts the definition of
the empire of A. If C € kD and D € eA, then Ry is a subnet with conclusion
D, which is smaller than &0 since it does not contain : this contradicts the
definition of the kingdom of [. @

Lemma 3. (Kingdom Ordering) (i) Let R be a proof net and let X, Y occur
R, If X <€V and Y <« X then either X and Y ave the same occurrence
or they occur in an aziom X Y of R. (ii) Hence < is an ordering of the
conclusions of non-axiom links.

Proof. For an axiom A = X X! we have kX = A = kXL, Otherwise, let
X € kY, with X and Y distinct; if also Y € £X, then kY N kX is a subnet,
and necessarily £X = kX NkY = kY.

X X

X is X1pX, in alink £; 2
19X _

kY is still a subnet, and this contradicts the definition of kY.

then the result of removing X and £ from
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X X,
X1 ® X
hence for ¢ = 1 or 2, ¥ € k(X;); but by Lemma 2, ¥ is not even in e(X;). #

If X is X; ® X, in a link then clearly kX = E(X;) U K(X2) U {X),

Theorem 1.{b) (Sequentialization) If R 4s a proof net with conclusions I",.

then there is a sequent calculus derivation D of ' such that R = (D)™,

Proof. By induction on the size of R. If R is an axiom, then D is an axiom
sequent. I one of the lowermost links is a par or for all link, then we remove

such a link, we apply the induction hypothesis to the resulting subnet and

we conclude by applying a suitable par inference. Now suppose that all the
conclusions of R are conclusions either of an axiom or of a times link: we
choose a terminal fimes link £ whose conclusion X = A; ® B; is maximal
w.r.t. €. In this case ed; and eB; split R\ {A; @ #;}. Suppose not; then
there is a link £ : —27— such that, say, D € eB; and C ¢ eB;. But ' occurs at
or above another conclusion Y = A;® B;. By thelemma 2 X = A;® B; € kC;
also € € kY hence kC' C kY; thus we obtain X € kY, contradicting the choice
of X. B B

Remark. The computational complexity of Girard’s no-shori-frip condition
and of Danos-Regnier’s requirement that all D-R-graphs be acyclic and con-
nected is clearly exponential on the size of the given proof-structure. It is
known (see, e.g., [3, 4, 1]) that there are procedures to decide whether or
not a proof-structure R for MLL™ is a proof-net in fime quadratic over the
cardinality of R. :

2.5 Permutability of Inferences in the Sequent Calculu:s_..

Given a derivation D and two formula-occurrences X; and X, in some sequenté
of D, if X is an ancestor of X; then certainly the inference introducing X7 must
occur above the inference introducing X,. We are concerned with occurrences
X; and X5 in D such that neither one is an ancestor of the other. Suppose X1
is introduced above X, in P, we ask whether there is a derivation D’ which

is obtained from D by successive permutation of the inferences and such that
Xj is introduced below X, in T,

Counterexample. The following is a derivation in MLL™ in which the ap-.
plications of the ®@-rule and of the p-rule cannot be permuted.

PP FQ,Qt
F P PRQ, Q"
FQL, P, PeQ

QP PRQ

exchange
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Remark. In the sequent calculus for propositinal MLL™ ® [, cutfp and /¥
are the only exceptions to the permutability of inferences where neither one of
the principal formulas is an ancestor of the other.

A full characterization of permutability of inference in MLL™ is obtained using
the ‘context-forgetting’ map (. )~ of derivations into proof-nets and the notions
of empire and kingdom. Such a map uniquely associates each inference 7 in D
other than Exchange with a link £ in (D)~ and the principal formula(s) of T
with the conclusion(s) of L.

Theorem 2. (i) Let D and D' be a pair of derivation of the same sequent
b T in propositional MLL™. Then (D)™ = (DY~ if and only if there exists
a sequence of derivations D =Dy, s, ..., D, =D such that D; and Dy
differ only for a permutation of two consecutive inferences.

(i) Let R be a proof-nel and let A be a formula occurrence in R. Then there
cwists a dervivation D with (D)~ = R and o subderivation B of D such that
(B)™ = eA. A similar stotement holds for kA.

Proof. (i) The “if” part is clear. To prove the “only if” part, let (D)™ =
R = (T¥)"; consider a branch of D and let T the last inference from bottom
up where D agrees with D', If T is an axiom, then D and D' entirely agree
i1 the order of inferences in this branch. Otherwise, let Ty be the inference
immediately above g in the branch of D under consideration, and let T be
the inference of ' such that the principal formulas of T4 and I} are mapped
to the same formula occurrence A of R: such an T} exists, since (D)~ = (D')™.

Moreover, let I/, ..., T} be the inferences which occur in D' between 7,
and I, (proceeding downwards). Notice that if the principal formula of any Z;
for i < k is mapped to a formula B of R, then the inference Iy of T whose
principal formula is mapped to B also occurs above the inference Zo, by our
assumption that D and D' agree in the given branch up to Zy. It follows that
no descendant of A is active in If, ..., Z}. -

If the inference T is an instance of the por rule, then clearly it can be
permuted below I, ..., T, £ I} is a times rule, say, A is A; ® A,, then we
have

B B B B

FTi, AL F Dy Ay FALAL F Ag A
IA . i I‘l,rg,Al ® A2 I;l : - AhAg,Al ®Ag

If 7} is another times rule, then clearly it can be permuted above I, I I{ is a
par rule, then consider the inference Z¢ of P such thai the principal formulas
of T} and T are mapped to the same formula occurrence €' = CopCh of K.
Now {B;)™ is a subnet of R with A; as a conclusion, hence (B;)~ C e(A));
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Co

3.1 First-Order Proof-Structures

similarly (B!)™ C e(4;). Since ¢ occurs above Ty, the link CI ocenrs i

0§y e
e{A;); moreover, e(A4;) Ne(Ay-;) = §, hence the active formulas ¢ and Cyio
T, are both in the same branch B; of D', Tt follows that 7; can be permuted

above TY).

;We work vﬁth a first-order language for MLL™ and consider multiplicative
proof-structures with the addition of the following links.

First-order links:

(ii) Let {2)~ = R; let T, be the inference in D whose principal formula, iy
mapped to A in R; let B4 be the subderivation of D ending with Z4. To find i
derivation D’ and a subderivation B’ such that (B') = eA, let & be the numbe;
of formula-occurrences in eA \ (B4)~: then there are also k inferences in.
which must be successively permuted above Z4. We proceed by inductio
eA, as characterized by Proposition 2. We need to consider only the following
cases:

I-step for times, clause (iv): X € ed and X # A implies XQY € A B

induction hypothesis we may assume that X is introduced above Ty B
introduces X ® Y and oceurs below Z4, then X is a passive formula of eve;
sequent between Ty and 7', I we permute T’ with the inference 7 immedis

above it, we do not increase the number of formulas in ¢4\ (B}, After a finite
number of steps, the inference introducing X®Y is permuted above T, an
we have reduced k. L

U-step for par links, clause {v): X € eA,Y € e¢A and X # A#Y impl
XpY € eA. By induction hypothesis we assume that both X and Yiar
introduced above T4, and let 7' be the inference introducing X pY below T, ]
follows that for each application of the @-rule between T4 and 77 the ancestor
of XpY occur in one branch only, namely that containing T4. Therefore th
inference 7’ can always be permuted with the inference 7" immediately ab
it, even in the case when I” is a ®-rule. After a finite number of steps
reduce k.

Finally, to find a derivation D" and a subderivation B such that (B"y=
consider the doors of k(4) which are premises of some link; let X7, ., X,
the conclusions of such links. Since X; ¢ kA by Lemma 2, we have A c ¢
and by the above argument, the inference Iy can be permuted above
inference T; introducing X; in D. The argument can be repeated for all ¢
without permuting 74 below a previously considered Z;; the result follow

A . Altfz]
fOT‘ all: m erists: m

Definition 8. The variable = (possibly) occurring free in the premise of a Jor

oll link £ Vo i

that the same variable  occurs free in the premise and bound in the conclusion
of £. We associate with each eigenvariable z a constant z. Obviously, a link
' Alz/a]

is called the eigenvariable associated with the link £. Notice

is tncorrect.

of the form
: xZ.

Definitions 9. (i} A proof structure for first order MLL™ is defined as before
with the addition of the following conditions:

3. {a) Fach occurrence of a quantifier link uses a distinct bound variable.

(b) K a variable occurs freely in some formula of the structure, then the
variable is the eigenvariable of exactly one V-link.

{c} The conclusions of the proof structure are closed formulas.

‘4. We say that in a first-order prool-structure § eigenvariables are used
© strietly if no substitution of any set of occurrences of an eigenvariable
z with the constant z yields a correct proof structure with the same
conclusions as R. We require also that in first-order proof-structures
eigenvariable are used strictly.*

it} Let R be a proof structure for MLL™ and let # be an eigenvariable in
R. The free range of x in S is the set of all formula occurrences in which the
igenvariable & occurs freely. The existential border of © is the set of all the
' Blifyl
dy.B
ccurs in the premise but not conclusion of £. We say also that the link £ is
n the existential border of . o

where ¢

ormula occurrences which are the conclusion of a link £

3 Proof Nets for First Order MLI,~

+* *We modify the setting of Girard [7] only with the condition of a strict use of the eigen-
ariables; this is enough to give a smooth tratment of kingdom and empires. . -

This section is essentially based on Girard {7}
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(iii) We define the following additional reductions,

Symmetric Reductions

R(z) : Rt/ 2]

Alt/z] AL reduces to  Al¢/q] ALt/
3z.A Ve, AL cut
cut

where R{z) is the smallest substructure containing all occurrences of the eigen-
variable = and R[t/z] results from R(z) by replacing # for z everywhere.

The definition of Danos-Regnier graph for first order proof structures ig -

extended as follows.

Definitions 168. Let R be a proof structure for first order MLE,~.

(i} A Danos-Regnier switching s in a first order proof structure R for MLI~ -

consists in a switch for each par and for all link of R, where
o a switch for a par link is the choice of one of the premises of the link and

® a switch for a for all Yinlk with associate eigenvariable z is a choice of
either (1) the premise of the livk or of a formula occurrence in {2) the
free range or in (3) the existential border of  (case (1) is needed if g
does not oceur free in R).

(i) Given a switching s for R, we define the undirected Danos-Regnier graph
3(R) as follows:

® the vertices of s(R) are the formulas of R;

® there is an edge between vertices X and V' exactly when;
(a) X and Y are the conclusions of a logical axioms or the premises of
a cut link;
(b) X isa premise and V the conclusion ol a times or exists link;

(¢) Y is the conclusion of a paror for all link and X is the occurrence
selected by the switching s.

(ili) R is a proof net for first order DI, IMLL™] if for every switiching s of R,
the graph s(R) is acyclic [and connected).

The requirement that eigenvariable should be used strictly gnarantees that
the following structure is incorrect:
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Afz) At(z) B(z) B(x)
Vo, A Jz. At 3z Jz.BL
Jz. At ®@ 3. B

and must be rewritten as

Az} Al(z) B(c) B(e)
Va. A Jz. AL Je.B Jz. B+
Iz.ALt @ d2.B

where ¢ is a new constant.

The following is an equivalent way of characterizing the same property,

Definition 11. An z-tread in proof-structure R is a sequence (Y, ..., C, of
formula occurrences which contain the free variable 2 and such that for each
¢ < m there is a link £ such that either (1} C; is the premise and ., is the
conclusion of £ or (2) C; and Cit1 are conclusions of £ (an axiom link) or (3)
C; is the conclusion and Cit1 is the premise of £,

Fact 1, Ing proof structure eigenvariables are used strictly if and only if every
occurrence of an eigenvariable 3 belongs to an z-thread ending with the V-link
associated with z. &

3.2 Subnets

The definition of a substructure Sy of a proof-structure § must take into ac-
count the requirement that all conclusion of Sg should be closed formulas,

Definitions 12. (i) Let S be a proof structure for first order MLL. A set of
formula occirrrences and links Sy is a substructure of § if So 13 a proof structure
and there is an injective map¢: & — 8§ preserving links such that X and
{(X) are the same formula or X comes from o(X) by a substitution of a free
variable  with z. (We will usually omit to mention the map ¢, )

As before, a subnet is a substructure which satisfies the condition of proof-nets,

Fact 2. If 8 is q substructure of g Jirst order proof-structure R and o link
A

Ve A
contained in S.

occurs in S, then the free range of = and its existential border are
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Remark. It is not true that if § = Ezisis Ry and S is a proof-net then Ry is
a proof-net: for instance in A[t/x] the term ¢ may contain the eigenvariable of
,some for gll link which occur in Rg.

As before Theorem 1.(a) follows as a corollary. {Notice that if F T is the end
sequent of D and a free variable x occurs in T, then (D)™ = (D[z/z])", a
proof-siructure with conclusions T'[z/xz].)

Proof. All eigenvariables are used strictly in § by definition. Suppose £
occurs in & but z occurs outside S; then there is an z-thread ‘crossing the
border of’ S, say at a door . This means that any substitution of z for z in
C spoils the link £, i.e., § cannot be a substructure, a contradiction. &

Lemma 1 (first order case) In first order MLL™, the intersection and the

unton of subnets are subnets if and only if the intersection is nonemply. Theorem 1.(a) (first-order case) Let D be a derivation in the sequent calculus

Proof. The argument for the propositional case applies here; we need only to for first order MLL™; then (D)~ is a proof net, ®
make sure that if Ry and Ry are subnets of a proof-net R with Ry N R, # 0,
then § = Ry U Ry and Ry = Ry NRy are first-order substructures, and in
particular, the eigenvariables are used strictly and their conclusions are closed.
If a V-link of R does not occur in S, then the associated eigenvariable z is
replaced by z in the subnets R, and in R, hence in 8 too.
If a V-link with eigenvariable z occurs in Rq, then {since eigenvariables are
used strictly in R} 2 also occurs inside Ry but not in any door of Ry, by the
Fact 2.

Finally, if a V link with eigenvariable 7 occurs, say, in Ry \ R,, then any -
occurrence of z in the substructure Ry is replaced by z. Moreover z does not
occur in the doors of §: indeed by the same corollary, z does not occur in the
doors of R, hence it does not occur in R, \ Ry either. B :

3.3 Empires and Kingdoms: Existence and Properties

As in the propositional case, we need to prove that given a proof-net R and
a formula A in R, there always exists a subnet of R having A among its
conclusions.

Proposition 2. (Characterization of empires, first-order case; cf, (7]) Let R
be a proof net for first order MLL™ and let A occur in R. Then the empire eA
of A in R exists and is characterized by the following equivalent conditions:

{a) N, 8(R, A), where s varies over all possible switchings;

(b) the smallest set of formula occurrences in R closed under conditions

Proposition 1. (first order cases) Let Ry be a substructure of the proof net {b)()}-(v) of Proposition 2 for propositional multiplicative links and moreover

gfi'i) Then (vi) it )3( [t/j{’] is a link in 8 and X[t/y] # A, then Jy.X € e(A) if and only if
Y.
Ro[z/z] Xt/y] € e(A}, (1- and 1-steps);
& = For All (Ry) = A _
r Vo, A (v if isalinkin & and X # A, then Vy.X € e4 if and only if the free

Yy X
range of y and the occurrences in its existential border belong to eA (fr- and
J-steps).

Proof. We follow Girard {7]. (vii) Suppose ¥y.X € ed, but for some  in the

is a subnet ¢f only if Ro is o subnet and z does not oceur in T,
(iv) The substructure

R
S = Euists {Ro) = Al t/ox] free range of y we have C ¢ eA. Then A must be a premise of some link with
e conclusion 7, and for some s we have Vy.X € s(R, A) and C € s(R, A), where
7.

(R, A) is the connected component not, containing A after removal of the edge
(A, Z) from sR. Therefore in (R, A) there is a path connecting A and Vy. X
- and rmoreover in s(R, A) there is a path connecting Z and ' which obviously
- does not depend on the switch for Vy.X. Now if we change the switch for
¥y.X to choose C leaving all other choices unchanged, then we obtain a switch
- such that s"R is cyclic: indeed there still remains a connection between
 Z and C in 5'(R, A) (which lies outside ¢A) and there certainly is a distinct
- connection between A and Vy. X in §'(R, A) (since Vy.X € eA). But then s'R

is o subnet if Ry is one..

Proof. (iii) & is a substructure, since the substitution of z for z does not’
affect the conclusions of S, which remain closed. Given a switching s for &,
s& differs from sRq only for having a leaf V. A connected by an edge to some
vertex of Ro; thus 8§ is acyclic and connected, since sR is. (iv) is similar but’
easier. B '
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contal ict? . . .
ontains a cycle, a contradiction. o -Proof. We consider first the lowermost par and for all links, if such links exist,
“(therwise, we choose a terminal link £ whose conclusion is maximal w.r.t. <.
“1f £ is an ezisls link, then the result of removing it is still a proof-net. Suppose

Aft/z]

x.

The example at the beginning of the present section shows that an cige
variable & can occur outside the kingdom of V. A, unless a strict use of eigen:
variables is required. We have the following characterization of kingdoms i
first order MLL™ (which is not true in in the setting of {7]). :

‘not; then L: is in the existential border of y, where y is associated with

B

Yy.B
" &. The rest of the proof is as before. @

then dz.A € k(Vy.B), by Fact 2, hence J2. A it cannot be maximal w.r.t,

Proposition 3. (Inductive definition of kingdoms, first-order cases) Let R
be a proof et for first order MLL™. Then kA, the kingdom of a in R exists
and is characterized as the smallest set of formula occurrences closed under

conditions (i)-(iv) of Proposition 8 for multiplicative propositional links and:

maoreover

(i)’ if M is a link in & and 3y.X € k(A), then X[t/y] ¢ k(A) tep):
HyX . ) Y b (?'S ep)i

X
Yy X
occurrences in its existential border belong to kA (f-step). ®

(v) if

3.4 Sequentialization

The proof of Lemma 2 extends to the first-order case without ﬁ}ddiﬁcaﬁons;
e . '

Lemma 2. (Empire-Kingdom Nesting) Let £ : 5= and Ly =5= be distinct

links in a proof net R. Suppose B € eA; then D ¢ eA if and only if C € kD
B .

Lemma 3. (Ordering of the kingdomns, first-order case) In proof-nets for first
order MLL™ the relation < is a strict ordering of formula-occurrences that

are not conclusions of aziom links.

Proof. Suppose X € kY, where X and Y not the conclusions of a.xibms linké
T'wo cases are to be added to the propositional proof,
Alt/z]

Let X be the conclusion of a link
Jdz. A

kingdom and proposition 1 that £X = k(dz.A) = k(Alt/2]) U {(3z.A}. B X

a:nd Y are distinct and also YV € kX, then ¥ € k(A[t/z]) and this is absurd,
since ¥ ¢ e{ A[t/z]) follows from Jz.A4 € kY by lemma 2. :

Finally, let X be the conclusion of a link VA
&£

1 that kX \ {V2.A} C eA. If X and ¥ are distinct and also ¥ & kX, then -

Y € eA, and this contradicts lemma 2. ®

Theorem 1.(b) The Sequentialization Theorem holds in Jirst order ML];’F.

is a link in § and ¥y.X € kA, then the free range of g and the

. It follows from the definition of :

T If follows from proposition -

3.5 Permutability of Inferences in the Sequent Calculus

Counterexample. Let z occur free in P. The following is a derivation in
MLL™ in which the applications of the J-rule and of the V-rule cannot be

permuted.

FPLP
FPL Ge.P
F Vz.Pt, 3z.P

Theorem 2. (first order case} The Theorem on permutabilily of inferences
holds in first order MLL™.

Proof. (i) Assuming the pure parameter property, the argument is similar to
the propositional case, where for all rules behave like par rules and exists rules
like times rules. The nontrivial case is the following: an inference 7/, of D' has
the principal formula A = 3z.A4; and must be permuted below a for all rule
I;. As before we argue that in D we have an inference Zg such that 7] and Ip
are mapped to B = Vy.B; and that such an inference must occur above the
inference 74 whose active formula is A4[t/z]; by the pure parameter property
of D, i does not occur in ¢, and the permutation is permissible.

(i1} As before, the argument is by induction on eA\ (B4)™; to the proposi-
tional cases we add the following cases (the cases of existential links heing

unproblematic):

(f-step) for all link, clause (vié): By the pure parameter property the eige'n_.-.: .: R
variables occur only above the associated V-inference, which already occurs .

above 74 by induction hypothesis. Lo
(Y-step) for all links, clause (viz): Let I’ be the inference introducing Yy: X
below Z, where Vy. X € eA. By induction hypothesis the eigenvariable y occurs
only in sequents above Z4, except for one occurrence of a formula X{
ancestor of Vy.X) for each sequent between T4 and I'. Hence we ca
permute 7’ with the inference immediately above it. &
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225 Preface

049 This volume is based to a large extent on the Linesr Logic Workshop held June
14-18, 1993 at the MSI' and partially supported by the US Army Research
Office and the US Office of Naval Research. The workshop was attended

211 by about 70 participants from the USA, Canada, Europe, and Japan. The
; workshop program committee was chaired by A. Scedrov (University of Penn-
297 sylvania) and included S. Abramsky {Imperial College, London), J.-Y. Girard

(CNRS, Marseille), D. Miller (University of Pennsylvania), and J. Mitchell
(Stanford). The principal speakers at the workshop were J.-M. Andreoli,
A. Blass, V. Danos, J.-Y. Girard, A. Joyal, Y. Lafont, J. Lambek, P. Lin-

307 f: coln, M. Moortgat, R. Pareschi, and V. Pratt. There were also a number of

2 invited 30 minute talks and several software demonstration sessions.

39 - Our intention was not only to publish a volume of proceedings. We also
.+ wanted to give an overview of a topic that started almost 10 years ago and
- that is of interest for mathematicians as well as for computer scientists. For
these reasons, the book is divided into 5 paris:

i+ 1. Categories and Semantics

. Complexity and Expressivity
‘ Proof Theory

; ?roof Nets

:Geometry of Interaction

ive parts are preceded by a general introduction to Linear Logic by
Girard. Furthermore, parts 2 and 4 start with survey papers by P. Lin-
c'I'fY' Lafont, We hope this book can be useful for those who work in
a as: well as for those who want to learn about it. All papers have
fe) 'ed and the editors are grateful to A. Scedrov who took care of the

Jean-Yves Girard
Yves Lafont
Laurent Regnier

a,l Smences Inbtltute, Cornell University, Ithaca, New York, USA. MSTis a
ot Excellence




