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Abstract. We consider a class of graphs embedded in R2 as noncommutative
proof-nets with an explicit exchange rule. We give two characterization of such
proof-nets, one representing proof-nets as CW-complexes in a two-dimensional
disc, the other extending a characterization by Asperti. As a corollary, we obtain
that the test of correctness in the case of planar graphs is linear in the size of
the data. Braided proof-nets are proof-nets for multiplicative linear logic with
Mix embedded in R3. In order to prove the cut-elimination theorem, we consider
proof-nets in R2 as projections of braided proof-nets under regular isotopy.

1. Introduction

Usual representations of proofs as graphs consider only abstract graphs. But
graphs may also be studied as embedded in a space: in proof-theory this means
giving explicit consideration to the rule of Exchange, as found in Gentzen’s
calculus of sequents; in the theory of monoidal categories, one weakens the
property of symmetry. Notice that the rule of Exchange is the only structural
rule of Linear Logic which is not disciplined: it is either regarded as implicit or
forbidden (or strictly restricted as in the case of cyclic linear logic [11]).

In the literature three cases arise: abstract graphs are used to study com-
mutative logic and symmetric monoidal categories; planar diagrams occur in
non-commutative linear logic and in non-symmetric monoidal categories; dia-
grams embedded in the three dimensional space give raise to braided monoidal
categories. By analogy, we speak of braided linear logic or braided proof-nets
[6].

� Research supported by EC Individual Fellowship Human Capital and Mobility, contract no.
930142. Both authors thank Jacques van de Wiele, for having contributed to the development of the
ideas in this paper.
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In this paper we consider multiplicative linear logic with Mix in the planar
and braided cases. The case of multiplicative logic without Mix was studied by
the second author in his thesis [8]. There are both logical and geometrical reasons
to consider the rule of Mix

� Γ � ∆

� Γ, ∆

for instance in the study of classical systems and in the theory of concurrency
[2]. Notice also that the usual geometric interpretation of the tensor product of
morphisms in monoidal categories is the juxtaposition of morphisms. To recover
such a construction in the context of Linear Logic we must add the rule of Mix.

We are concerned with the issues of correctness, sequentialization, identity of
proofs and cut elimination for geometric representations. A correctness criterion
is an algorithm to verify whether a graph corresponds to a proof; a sequential-
ization algorithm gives a proof-graph the tree-like ordering of a sequent calculus
derivation precisely when the graph is correct. Conceptually, proof-graphs should
be identified when they correspond to the same intuitive argument; technically,
an identity criterion should allow us to define cut-elimination as a confluent and,
if possible, local process.

We find that the two-dimensional representations of proofs have very inter-
esting algorithmic properties. The restriction to non-commutative logic is not
essential as we can easily recover the commutativity of the connectives by in-
troducing an explicit Exchange rule (the cyclic rule of Exchange will be implicit
in the syntax). One of the main results of this paper is to provide two simple
correctness criteria for such planar graphs, that terminate in time linear in the
size of the data. On the contrary, no linear criterion is known for abstract graphs.

The first criterion is a combinatorial condition on two-cells, which also allows
a simple characterization of the subnets of a proof-net. In the case of abstract
graphs, these computations involve a rather complex inductive construction [4].

The second criterion is inspired by Asperti’s characterization of proofs as
concurrent processes, in the spirit of Petri Nets: it involves concurrent agents,
which must synchronize at axioms and par links – in our generalization, also at
Exchange links. Asperti’s criterion may be regarded as the appropriate general-
ization to the case of MLL− with Mix of Girard’s no short trip condition.

The application of Asperti’s criterion in our noncommutative context (sec-
tion 4) allows us to dispose of Asperti’s switches: here the process interpretation
of A ⊗ B always requires performing B before A. As a consequence, only one
test of Asperti’s condition is needed to verify correctness and therefore the test
terminates in linear time. Moreover, a proof directly corresponds to precisely
one distributed process; this fact displays a connection between classical logical
systems and the theory of concurrency in a vivid way.

In the planar representation of proofs questions arise concerning the cut-
elimination process and the identity of proofs; in our context those questions can
be answered by considering planar proofs as projections of three-dimensional
objects. Here proofs are regular isotopy classes of graphs embedded in R3 and the
process of cut-elimination is defined in a natural way. Notice also that in monoidal



Planar and braided proof-nets for multiplicative linear logic with mix 311

categories (as the ∗-autonomous ones) it is an important issue whether to define
symmetry as an equality between monoidal functors or as a natural equivalence.
This leads to the consideration of braided monoidal categories ([10]). This fact
too suggests a connection between Linear Logic and the topology of R3.

2. Language

We use the familiar language of multiplicative linear logic, with propositional
atoms P0, P1, . . ., an involution ( . )⊥ without fixed points (linear negation)
on the atoms, formulas built up from atoms and their linear negation using the
connectives ⊗ (times), ℘ (par); negation for compound formulas is defined as
usual by noncommutative de Morgan laws:

(A⊗ B )⊥ =d B⊥℘A⊥ (A℘B )⊥ =d B⊥ ⊗ A⊥

We also use a label cut, which is not a formula, as in [9].
We formalize MLL− in a sequent calculus, where sequents are sets of

formula-occurrences with a cyclic ordering; the rules are familiar:

IDENTITY \ NEGATION
identity cut

� P⊥,P
� Γ,A � A⊥, ∆

� Γ,cut, ∆

STRUCTURE
mix exchange

� Γ � ∆

� Γ, ∆

� Γ,A,B , ∆

� Γ,B ,A, ∆

LOGIC
times par

� Γ,A � B , ∆

� Γ,A⊗ B , ∆

� Γ,A,B , ∆

� Γ,A℘B , ∆

Remark. In the case of the Mix rule, the cyclic order of the conclusion is
intuitively obtained as follows: open the cycles arbitrarily and then glue them
together. We leave it to the reader to provide a precise definition. The symbol
cut is explicitly indicated, because it may become active later in an exchange
rule.

The formulas A and B in the premise of an Exchange are called the active
formulas and the formulas B , A in the conclusion the principal formulas of the
inference.
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2.1. Links and proof-structures

For the standard definitions of links and proof-structures for commutativeMLL−,
we refer to the definitions in the papers [3, 9]. The following variant definition
is simpler, and evidently equivalent to the standard one. Proof-structures can be
regarded as abstract oriented graphs, where formulas are associated with oriented
edges and links with vertices. In a non-commutative context, the crossing of two
edges is regarded as a link, the exchange link.

Given a graph, we give each vertex the counterclockwise orientation on the
incident edges; then there is a ‘canonical’ embedding of the graph into a surface,
which can be roughly described as follows: paste a disk on the edges following
the counterclockwise orientation of the vertices, but leaving vertices with only
one incident edge (e.g., the conclusions of a proof-structure) on the boundary
of the surface. For instance, the following two proof-structures have a canonical
embedding into a cylinder and a torus, respectively, as in Fig. 1, (a) and (b).

A B A⊥ B⊥ A B A⊥ B⊥

A⊗ B A⊥ ⊗ B⊥ A⊗ B A⊥ ⊗ B⊥

(A⊗ B )℘(A⊥ ⊗ B⊥)

On the other hand, using the explicit exchange, we produce a graph whose
associated canonical surface is a 2-dimensional disk, as in Fig. 1, (c).

The main idea of this paper, further developed in the thesis of the second
author [8], is to consider embeddings in a two-dimensional disk and to define a
correctness condition for proof-nets in terms of the resulting the 2-cells.

Definition. (i) A proof-structure is a finite 2-dimensional CW-complex, which is
isomorphic to a closed disk D2. The 0-cells (i.e., vertices) are of three kinds:

1. axioms, of incidence 2 (binary links);
2. Cut, times and par links (ternary links) and conclusions on the boundary, of
incidence 3;

3. exchange links, of incidence 4 (quaternary links)

as represented in Fig. 2. As usual, if D is a CW-complex, then ∂D denotes the
boundary of D . The 1-cells lying on the boundary are oriented counterclockwise;
the other 1-cells have the orientation indicated in Fig. 2 and are typed, i.e., a
unique formula is assigned to the arrow. Namely, an edge incident to the boundary
which does not lie on it must be oriented towards it; such an edge is called a
conclusion of the proof-structure. For vertices not on the boundary and among
the edges incident to a link, those oriented towards it are the premises, the other
are the conclusions of the link; binary and quaternary links have two conclusions,
ternary links one. The ordering of 0-cells and 1-cells induced by the arrows will
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Fig. 1. a canonical embedding in a cylinder, b canonical embedding in a torus, c embedding in a
disc

be called the structural orientation. We say that a vertex v� is above a vertex v
if there is a directed path from v� to v.

Fig. 2.

Proposition. In every proof-structure from every 0-cell there is a directed path to
a conclusion of the proof-structure.

Proof. Suppose there is a vertex v0 from which we can reach neither the boundary
nor a logical link by a directed path. Consider the set V of all vertices that are
reachable by a directed path from v0. It follows that every v ∈ V belongs to a
cyclic directed path pv . Consider the 2-cell outside the union of all the pv , for
v ∈ V : this cell is not a disk, contrary to the definition of a CW-complex.

Suppose from v0 we reach a logical link v1, but not the boundary. Follow
the arrow from v1 across exchange links to the next logical link v2, go to the
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conclusion and follow the arrow, and so on. Since the proof-structure is finite, a
non-terminating path must be cyclic and reach again a vertex vi , necessarily from
a premise. But this is impossible, since the arrows are typed by propositional
formulas, which cannot be proper subformulas of themselves, or by the label
cut, which cannot occur inside a formula.

The argument in the second paragraph of the proof applies in general to
abstract graphs. The argument of the first paragraph does not exclude the presence
of cyclic directed paths, but it will be shown that in the case of proof-nets the
structural orientation is a partial ordering.

3. A combinatorial characterization

Definition. (Correctness criterion) We define a subset C of the 2-cells set induc-
tively thus:

1. the 2-cells on the boundary are in C;
2. if the 2-cells c1 and c2 are adjacent to the conclusion of a par link and belong
to C, then the third 2-cell c adjacent to the premises of the par link is in C;

3. if the 2-cells c1, c2 and c3 are adjacent to the conclusions of an Exchange
and belong to C, then the fourth 2-cell c adjacent to the premises of the
Exchange is in C.

A proof-structure is a proof-net if all 2-cells are in C.

Theorem 1. Let R be a proof-structure embedded in a 2-dimensional disk. Then
R is a proof-net if and only if there exists a sequent derivation D such that
R = (D )−.

The if part is left to the reader as an easy exercise. The only if part is the
Sequentialization Theorem below.

Example. Corresponding to the derivation

� A⊥,A � B ,B⊥

� A⊥,A⊗ B ,B⊥ ⊗

� A⊥,B⊥,A⊗ B
exchange

� A⊥℘B⊥,A⊗ B
℘

� A⊥,A � B ,B⊥

� A⊥,A⊗ B ,B⊥ ⊗

� B⊥℘A⊥,A⊗ B
℘

� A⊥℘B⊥,cut,A⊗ B
cut

we construct the proof-structure embedded in a disk as shown in Fig. 3.
There a cell which has been put in the set C at the i -th stage of the procedure

is marked with a cross ×i . Notice that planarity is essential to our combinatorial
characterization: the first two examples in Fig. 1 show that our procedure fails
to detect incorrect proof-structures on a cylinder or a torus.
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Fig. 3.

Sequentialization Theorem. There is an effective procedure which given a proof-
net R yields a sequent derivation D such that R = (D )−.

Proof. By induction on the number of 2-cells in the proof-structure d .
Case 0. If the graph can be partitioned in two disconnected graph, then we can
apply the induction hypothesis and the rule of Mix.
Case 1. There is no par link nor any Exchange, hence all cells are on the bound-
ary. Then we can certainly find a times link which is splitting, i.e., such that its
removal yields two disconnected proof-structures. Then the induction hypothesis
followed by a times rule concludes the case.

Suppose now that cases 0 and 1 do not apply; then by the inductive definition
of C there are 2-cells that have been reached from two or three cells on the
boundary. Let c be one such cell and let L be the par or Exchange link whose
premises are adjacent to c.
Case 2. If all the conclusions of L are on the boundary, then we can remove
L , apply the induction hypothesis and the rule L .
Case 3. Otherwise, let L be the par or Exchange link indicated in Fig. 4.

Notice that we can cut the disk across one of the conclusion of L ; of the two
resulting disks let d � be the one which does not contain L . We can transform
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Fig. 4.

d � into a correct proof-structure by introducing an axiom link; such a proof-
structure d � is clearly a proof-net and has certainly one 2-cell less than d and at
least one link different from the new axiom. Therefore we can apply the induction
hypothesis and obtain a sequent derivation D �. The last inference of D � cannot
be an axiom; therefore we find a link L � in d � to which either case 1 or case 2
can be applied. But then we can apply the induction hypothesis to L � already
in d and conclude the proof as above.

3.1. Subnets of proof-nets

Definitions. (i) A substructure S of a proof-structure R is constructed in the
following manner. First embed a disk D2 in R so that (1) the image of the
boundary of D2 does not contain any link (i.e., a 0-cell which is not on the
boundary) and (2) if a 1-cell intersects the boundary of D2, then it does so
trasversally and exiting the disk. Such an embedding determines a CW-complex
(obviously, the one inside the disk), and the latter is itself a proof-structure. A
subnet is a substructure which is also a proof-net.
(ii) In our context, a nonlogical axiom link A1, . . . ,Am , with m > 0, is a vertex
with m exiting arrows. If S is a substructure of R, then (R \ S ) ∪ ∂S is
called the complementary context; it may be regarded as a proof-structure with
a non-logical axiom link A1, . . . ,Am , where A1, . . ., Am are all the 1-cells of R
which are cut by the boundary of S : simply contract S to a point. A context
for which the combinatorial condition is satisfied may be called a proof-net with
nonlogical axioms.
(iii) A subnet S of R is normal if both S and its complementary context S
are proof-nets. The kingdom (the empire) of A in R is the smallest (the largest)
normal subnet with A as a conclusion.

Thus a classification of the normal subnets amounts to the characterization of
all possible sequentializations of a proof-net. For this purpose we may consider
the following variant of our combinatorial condition. The set C contains now
0-cells and 2-cells. We proceed inductively, according to Fig. 5: we may put in
C the cells marked by a square, only if the crossed cells are already in C.
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Fig. 5.

An easy induction shows that this version of combinatorial correctness crite-
rion is not more restrictive than the original one. It can be shown that, given a
proof net R and any sequentialization D of R, the order of inferences of D
is preserved by the order in which the 0-cells are put in C in some execution of
the procedure.

As an application, let A be an arrow exiting from a vertex v. First, perform
all the steps of the procedure that are possible without putting v in C, then stop.
Let K (A) be the set of all 0-cells that are not in C at this point, together with
all the 1-cells adjacent to them. Next, execute all the steps of the procedure that
must be performed before we may be able to put v in C, and only those, then
stop. Let E (A) be the set of all 0-cells that are not in C at this point, together
with all the 1-cells adjacent to them. (We write also K (v) and E (v)).

Proposition. The kingdom (the empire) of A in R is the substructure generated
by K (A) (by E (A)).

How is the above proposition related to the characterization of kingdoms and
empires in the case of abstract graphs (see [4])?

Definition. A chain �v, v�� in a proof-structure is a path across 2n +1 links, with
the following properties:

(1) v = v0, v2n = v� and for 0 < i < n , v2i is a times or cut link;
(2) for 0 ≤ j < n , v2j+1 is an axiom or exchange link;
(3) for 0 ≤ j < n , v2j+1 is above v2j and v2j+2.

In a similar way we define a chain �v, v�� across 2n links where v� = v2n−1 is
above v2n−2. Write v� ≺ v if v� is above v.

Proposition. (i) A subnet S of a proof-net R is normal if and only if for every
v and v� in S every chain between v and v� in R occurs entirely within S .
(ii) Let v be a vertex in R.Then the kingdom of v is the subnet generated by

�

γ

�

w∈γ

K (w) ∪ {w : w ≺ v}

where γ ranges over chains �v�, v���, for vertices v�, v�� ≺ v.
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Proof. See [4].
The condition there is no cyclic chain would also give an inefficient correct-

ness criterion, analogue to the standard correctness condition for abstract graphs
[4, 7]. But we can do better than searching all possible chains: only some chains
have to be tested, and this can be done in linear time, as we show in the next
section.

4. A characterization in terms of concurrent processes

We consider a variant of Asperti’s token game [2]; the original formulation by
Asperti is in terms of Petri Nets; we speak informally of trips of tokens in a
proof-structure and regard this condition as the right generalization of Girard’s
no-short-trip condition to the case of MLL− + Mix.

There are tokens of type ↑ and ↓. Given a multiplicative proof-structure R,
in the initial position we have a token of type ↑ on each conclusion of R; the
game succeeds if it reaches the terminal position where there is a token of type
↓ on each conclusion of R; the permissible movements of the tokens are those
in accordance with the following instructions:

– case of an axiom link A A⊥:

from a pair ↑A, ↑A⊥ go to the pair ↓A, ↓A⊥;

– case of a par link
A B
A℘B

:

from ↑A℘B go to the pair ↑A, ↑B ;

from the pair ↓A, ↓B , go to ↓A℘B ;

– case of an exchange link
A B
B � A� :

from ↑B � ↑A� go to the pair ↑A, ↑B ;

from the pair ↓A, ↓B , go to ↓B �, ↓A�;

– case of a times link
A B
A⊗ B

:

from ↑A⊗ B go to ↑B ;

from ↓B go to ↑A;

from ↓A go to ↓A⊗ B .
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The case of cut is identical to that of a times link, and will no longer be
mentioned.

Remark. In the original correctness condition by Asperti, where proof-structures
for MLL− are abstract graphs, for each proof-structure there are several games
determined by times switches. Here in a non-commutative context, we verify
correctness with only one Asperti game, thus in linear time! The positions of the
game for times corresponds to the Right switching on all times links; we could
have taken uniformly the Left switching without loss of generality; but not every
switching would work. The first two cases of Fig. 1 shows that the uniform Right
switching fails to detect incorrect proof-structures in the case of abstract graphs.

Definitions. (i) A deadlock is a position of the tokens which is reachable from
the initial position from which the game cannot successfully terminate.
(ii) Given a proof-structure, a causal path for the Asperti game is a path of n +1
edges together with n transitions such that one of the following cases occurs:

1. either the transition ti takes a token from the edge ei−1 and puts a token in
the edge ei ;

2. or the edge ei−1 is the right premise of a times link, the edge ei is the
conclusion of the same link and the transition ti puts a token of type ↓ in ei
(so that the transition ti was preceded by a transition t � from ei−1 putting a
token of type ↑ on the other premise of the times link);

3. or the edge ei−1 is the conclusion of a times link, ei is the left premise of
the same link and the transition ti puts a token of type ↑ in ei (so that the
transition ti must be preceded by a transition t � from ei−1 putting a token of
type ↑ on the other premise of the times link);

4. or the edge ei−1 is a conclusion of an Exchange, the edge ei is the other
conclusion of the exchange and the transition ti puts a token of type ↓ in ei .
Notice that in this case in the Asperti game the transition ti must be preceded
by a transition t � putting tokens of type ↑ on both premises of the Exchange
link.

Given a proof-structure, letM0 andMT denote the initial and terminal position
of the Asperti game, respectively.

Proposition 1. (i) In any computation M0 ⇒ M � every transition can be fired at
most once.
(ii) We cannot have infinite computations starting from M0.
(iii) In any computation M0 ⇒ MT every transition is fired exactly once.

Proof. (cf. [2], 3.13, 3.15, 3.16) (i ) Show by induction on the length of the
computation M0 ⇒ M � and by inspection of cases that for every edge e there
are at most two transition t and t � putting a token on e, where t puts a token
of type ↑, t � one of type ↓ and t must precede t �. (ii ) follows from (i ) and the
finiteness of proof-structures. (iii ) If a transition t is not fired on some edge e,
then the terminal position MT cannot be reached, by the proposition in Sect. 2.1.
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Proposition 2. In some computation M0 ⇒ M � there is a deadlock if and only if
a cyclic chain is a causal path.

Sketch of proof. (see [2], Theorem 3.24.) (if) It is easy to see that the transitions
in a cyclic causal path can never be performed. (only if) There is a conclusion C
and a transition t putting a token ↓ on C , such that t cannot be fired. Following
the hereditary preconditions of t , i.e., the transitions that would make t possible,
we construct an infinite causal path ending with C , and this path is a chain. Since
the proof-structure is finite, the chain must be cyclic.

Proposition 3. Let R = (D )− for some sequent derivation D . Then the Asperti
game does not end in a deadlock.

Proof. By induction on the length of the derivation (cf. [2], 4.1).

Theorem 2. Let R be a proof-structure embedded in a 2-dimensional disk. Then
R satisfies the combinatorial criterion if and only if the Asperti game terminates
without deadlock.

Proof. (only if) If R satisfies the combinatorial criterion then it is sequentializ-
able (Theorem 1), hence every Asperti game is deadlock-free by Proposition 3.
(if) Suppose the combinatorial condition fails, i.e., R\C /= ∅. Let γ = ∂C \∂R.

The exchange rule may determine singular points in γ0 of the form

(a) (b)

which we remove. It can be easily checked that these are the only singular points
of γ0.

Let γ0 be a connected component of γ. Starting from γ0 we need to construct
a cyclic chain which is a causal path. To this end we give γ0 the clockwise
orientation (denoted by a solid arrow in the figures below), which makes γ0 a
directed path, though not necessarily a causal path. In the case of singularities
(a) and (b) we proceed as follows:

obtaining a nonempty disjoint union of cyclic directed paths. Notice that γ cannot
cross a link in the following positions, since in this case all the cells adjacent to
the link would belong to C.
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Suppose such a path γ1 does not contain one of the following critical con-
figurations:

then we claim that γ1 can be regarded as a causal path. The reader should check
that a transition of the Asperti game can be assigned for each passage of γ1
through a link. There remain the case of an axiom link, 5 cases of a times links,
4 cases of a par link and 11 cases of an exchange link. Some typical cases are
given in the picture below.

If a cyclic directed path γ1 contains some critical configuration (c), (d) and (e),
then we produce a cyclic directed path γ2 containing a lower number of critical
cases; this concludes the proof, by induction on the number of critical cases.

Let d1 be the disk with boundary γ1. Starting from the link L of a critical
case, we construct a new directed path π by descending along the structural
orientation of the edges. If a subpath π1 of π is cyclic, then it is a causal path.
Otherwise, we eventually reach γ1, necessarily from the premise of a link L �

different from L . In this way we have split d1 in two disks d � and d ��; let γ�

= ∂d � and γ�� = ∂d ��. If π reaches L1 from the right premise then we let γ2
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= γ��, otherwise we let γ2 = γ�. We define a directed cyclic path by giving the
clockwise orientation to γ2.

Suppose γ2 = γ�; let e1 and e2 be the edges in γ2 immediately preceeding and
following π, respectively; let π2 be the concatenation e1 ∗π ∗ e2. Since π crosses
all links from a premise to a conclusion, e1 is a premise of L , and e2 is a
conclusion of L �, the path π2 is a causal path. On the other hand, if γ2 = γ��,
then for similar reasons the reverse of the path π2 is a causal path. This shows
that γ2 contains a lower number of critical cases than γ1.

5. Weak cut elimination

It is not immediately obvious how to define Cut reductions in our noncommuta-
tive environment. For instance, we cannot define the multiplicative cut-reduction
as the transformation

since the resulting proof-structure may no longer be correct, even if the original
one was a proof-net – in our example, the 2-cell d is never reached, as we cannot
propagate across the indicated exchange because of its orientation.

On the contrary, there is a natural and indeed compelling topological intuition
of proof-nets as braided objects in a 3-dimensional space, where cut-elimination
is performed as efficiently as in the familiar case of abstract graphs. Here a very
strong notion of isotopy is available, due to Reidemeister, and we will regard
our planar representition as a projection of braided proof-nets. Nevertheless, it
seems plausible that the algorithmic content of a planar representation should
depend on the particular notion of isotopy; for this reason, we will work with the
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regular isotopy , i.e., the isotopy corresponding to Reidemeister’s equivalences
II and III, without assuming equivalence I:

but not

It is not difficult to see that by using the equivalences (II), (III) and (IV) we
can obtain the following reduction:

We proceed similarly if the premise of the cut passes above the other edge. In
this paper the notion of a braided proof-net is only needed for this use of the
regular isotopy in Cut-Exchange reduction: otherwise, we work with their planar
projections.

The logical cut-reduction is the following:
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Weak Cut-Elimination Theorem. Given a proof-net R with conclusions Γ ,
there is a sequence of reductions yielding a cut-free proof-net S with conclusion
Γ .

Proof. By induction on the number n of logical links, i.e., links different from
an Exchange. Given a proof-net R and a cut e, write S for k (e): we modify
S and transform R into a proof-net R� with less logical links. If one premise
of e is a conclusion of an axiom v, then we eliminate both links e and v and the
result is immediate.
Case 1. Suppose the no premise of e is the conclusion of an Exchange, then we
can apply a logical reduction to S , yielding S �. Let e� and e�� be the new cuts,
where e� ∈ k (e��). We claim that S � is still a proof-net: indeed, in S we can
“cross” the indicated times link only at a stage when the 2-cell adjacent to its
premises has already been crossed; the corresponding stage of the verification
of correctness in S � is one where we have “crossed” all 2-cells adjacent to the
conclusions of the new exchange, and we are ready to “cross” this new exchange
and the 2-cell adjacent to its premises. The claim follows.

Let R0 = R\S . In R let p be the path from e to the boundary, consisting
of conclusions ei of exchanges such that e is above ei . In R0 draw a copy p�

of p parallel to p, so that the resulting strip contains no link and is adjacent only
to premises of exchanges; let R�

0 be resulting configuration.

Let R� be the result of replacing R�
0 for R0 and S � for S so that in R�

the new cuts e� and e�� are connected to the boundary by the paths p and p�,
respectively. By induction on the number of 2-cells in the new strip, starting
from the boundary, we can see that the correctness condition terminates in R�
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if and only if it terminates in R; thus R� is a proof-net containing only n − 1
logical links, as required.
Case 2. If one of the premises of the cut is conclusion of an exchange, let r
be the number of links (including Exchange) in k (e): apply a Cut-Exchange
reduction to S yielding a substructure S �; it is easy to see that S � is indeed a
proof-net. Let R� be the result of replacing S � for S in R: then R� is also
a proof-net. The kingdom of e in S � has r − 1 links, since one exchange link
has been “pushed below” the link e. We repeat this step until no premise of e
is conclusion of an exchange and then we apply the reduction of Case 1. This
concludes the proof of the Weak Cut-elimination theorem.

6. Open problems

Many directions of research are open, not necessarily in convergent directions. On
one hand, it would be important to give an isotopy invariant characterization of
proofs in R3. On the other hand, we interpret Exchange in R2 as synchronization
of processes. What dynamical and computational interpretation is to be given of
Exchange in R3, where one edge passes above the other? This open question is
relevant to the work on strict noncommutative proof-nets by Abrusci [1].

Another, more puzzling example can be seen in our logical reduction step for
cut: when we replace a cut with two cuts of lower logical complexity, the new cuts
must be written in a certain order if the resulting proof-structure is to remain
correct (section 5). This rather misterious order of cuts in a noncommutative
environment is certainly worthy of further investigations.
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