
65

Deep Reinforcement Learning for Black-box Testing
of Android Apps

ANDREA ROMDHANA, DIBRIS - Università degli Studi di Genova, FBK-ICT, Security & Trust Unit

ALESSIO MERLO, DIBRIS - Università degli Studi di Genova

MARIANO CECCATO, Università di Verona

PAOLO TONELLA, Università della Svizzera italiana

The state space of Android apps is huge, and its thorough exploration during testing remains a significant

challenge. The best exploration strategy is highly dependent on the features of the app under test. Reinforce-

ment Learning (RL) is a machine learning technique that learns the optimal strategy to solve a task by trial

and error, guided by positive or negative reward, rather than explicit supervision. Deep RL is a recent exten-

sion of RL that takes advantage of the learning capabilities of neural networks. Such capabilities make Deep

RL suitable for complex exploration spaces such as one of Android apps. However, state-of-the-art, publicly

available tools only support basic, Tabular RL. We have developed ARES, a Deep RL approach for black-box

testing of Android apps. Experimental results show that it achieves higher coverage and fault revelation than

the baselines, including state-of-the-art tools, such as TimeMachine and Q-Testing. We also investigated the

reasons behind such performance qualitatively, and we have identified the key features of Android apps that

make Deep RL particularly effective on them to be the presence of chained and blocking activities. Moreover,

we have developed FATE to fine-tune the hyperparameters of Deep RL algorithms on simulated apps, since

it is computationally expensive to carry it out on real apps.

CCS Concepts: • Software verification and validation→ Empirical software validation;

Additional Key Words and Phrases: Deep reinforcement learning, Android testing

ACM Reference format:

Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. 2022. Deep Reinforcement Learning

for Black-box Testing of Android Apps. ACM Trans. Softw. Eng. Methodol. 31, 4, Article 65 (July 2022), 29 pages.

https://doi.org/10.1145/3502868

This work was partially supported by: (1) “Istituto Poligrafico e Zecca dello Stato”; (2) Unige Curiosity Driven 2018 “User-

defined Data Privacy in Android”; (3) H2020 project PRECRIME, funded under the ERC Advanced Grant 2017 Program

(ERC Grant Agreement no. 787703); and (4) project MIUR 2018-2022 “Dipartimenti di Eccellenza.”

Authors’ addresses: A. Romdhana, DIBRIS - Università degli Studi di Genova, FBK-ICT, Security & Trust Unit; email:

andrea.romdhana@dibris.unige.it; A. Merlo, DIBRIS - Università degli Studi di Genova; email: alessio.merlo@unige.it;

M. Ceccato, Università di Verona; email: mariano.ceccato@univr.it; P. Tonella, Università della Svizzera italiana; email:

paolo.tonella@usi.ch.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/07-ART65 $15.00

https://doi.org/10.1145/3502868

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

https://orcid.org/0000-0003-4651-8713
https://orcid.org/0000-0001-7325-0316
https://doi.org/10.1145/3502868
mailto:permissions@acm.org
https://doi.org/10.1145/3502868

65:2 A. Romdhana et al.

1 INTRODUCTION

The complexity of mobile applications (hereafter, apps) keeps growing, as apps always provide
more advanced services to the users. Nonetheless, it is of utmost importance that they work prop-
erly once they are published on app markets, as most of their success/failure depends on the user’s
evaluation. Therefore, an effective testing phase is fundamental to minimize the likelihood of app
failures during execution.

However, automated testing of mobile apps is still an open problem, and the complexity of
current apps makes their exploration trickier than in the past, as they can contain states that are
difficult to reach and events that are hard to trigger.

There exist several approaches to automated testing of mobile apps that aim to maximize code
coverage and bug detection during testing. Random testing strategies [21, 34] stimulate the App

Under Test (AUT) by producing pseudo-random events. However, random exploration with no
guidance may get stuck when dealing with complex transitions. Model-Based strategies [5, 22, 44]
extract test cases from navigation models built employing static or dynamic analysis. If the model
accurately reflects the AUT, then a Deep exploration can be achieved. Nonetheless, automatically
constructed models tend to be incomplete and inaccurate. Structural strategies [7, 16, 35] generate
coverage-oriented inputs using symbolic execution or evolutionary algorithms. These strategies
are more powerful, since a specific coverage target guides them. However, they do not take advan-
tage of past exploration successes to dynamically learn the most compelling exploration strategy.

Reinforcement Learning (RL) is a machine learning approach that does not require a labeled
training set as input, since the learning process is guided by the positive or negative reward expe-
rienced during the tentative execution of the task. Hence, it represents a way to dynamically build
an optimal exploration strategy by taking advantage of the past successful or unsuccessful moves.

RL has been extensively applied to the problem of GUI and Android testing [38, 41]. However,
only the most basic RL (i.e., Tabular RL) has been applied to testing problems so far. In Tabular RL,
the value of the state-action associations is stored in a fixed table. The advent of Deep Neural

Networks (DNN) replaced Tabular approaches with Deep Learning ones, in which the action-
value function is learned from the past positive and negative experiences made by one or more
neural networks. When the state space to explore is extremely large (e.g., when an app has a
significant amount of widgets), Deep RL has proved to be substantially superior to Tabular RL
[9, 30, 42]. In this respect, we argue that the state space of Android apps is a good candidate for
the successful adoption of Deep RL instead of Tabular RL for testing purposes.

This article presents the first Deep RL approach, ARES, for automated black-box testing of An-
droid apps. ARES uses a DNN to learn the best exploration strategy from previous attempts. Thanks
to such DNN, it achieves high scalability, general applicability, and the capability to handle com-
plex app behaviors.

ARES implements multiple Deep RL algorithms that come with a set of configurable, often crit-
ical, hyperparameters. To speed up selecting the most appropriate algorithm for the AUT and the
fine-tuning of its hyperparameters, we have developed another tool, FATE, which integrates with
ARES.

FATE is a simulation environment that supports a rapid assessment of Android testing algo-
rithms by running synthetic Android apps (i.e., abstract navigational models of real Android apps).
The execution of a testing session on a FATE synthetic app is, on average, 10 to 100 times faster
than the execution of the same session on the corresponding real Android app.

We applied ARES to two benchmarks made by 41 and 68 Android apps, respectively. The first
benchmark compares the performance of the ARES algorithms, while the latter evaluates ARES
w.r.t. the state-of-the-art testing tools for Android.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:3

Experimental results confirmed the hypothesis that Deep RL outperforms Tabular RL in
exploring the state space of Android apps, as ARES exposed the highest number of faults
and obtained the highest code coverage. Furthermore, we carried out a qualitative analysis
showing that the features of Android apps that make Deep RL particularly adequate include,
among others, the presence of concatenated activities and blocking activities protected by
authentication.

To sum up, this article provides the following advancements to state-of-the-art:

• ARES, the first publicly available testing approach based on Deep Reinforcement Learning,
released as open-source;
• FATE, a simulation environment for fast experimentation of Android testing algorithms, also

available as open-source;
• A thorough empirical evaluation of the proposed approach, whose replication package is

publicly available to the research community.

2 BACKGROUND

After a general overview on RL, this section presents in more detail Tabular RL and Deep RL.

2.1 Overview on Reinforcement Learning

The objective of Reinforcement Learning [46] is to train an agent that interacts with some envi-
ronment to achieve a given goal. The agent is assumed to be capable of sensing the current state

of the environment and to receive a feedback signal, named reward, each time the agent takes an
action.

At each timestep t, the agent receives an observation xt , takes an action at that causes the
transition of the environment from state st to state st+1. A state st is a complete description of the
state of the environment. An observation xt is a partial representation of the state, which may omit
information. The agent also receives a scalar reward R (xt ,at ,xt+1), that quantifies the goodness
of the last transition.

For simplicity, let us assume xt = st [4]. The behavior of an agent is represented by a policy π ,
i.e., a rule for making the decision on what action to take, based on the perceived state st . A policy
can be:

• Deterministic: at = π (st), i.e., a direct mapping between states and actions;
• Stochastic: π (at |st), a probability distribution over actions, given their state.

DDPG [32] and TD3 [15] are examples of RL algorithms that learn a deterministic policy, while
SAC [24] is an RL algorithm that learns a stochastic policy.

The standard mathematical formalism used to describe the agent environment is a Markov

Decision Process (MDP). An MDP is a 5-tuple, 〈S,A,R, P , ρ0〉, where :

• S is the set of all valid states,
• A is the set of all valid actions,
• R : S ×A→ IR is the reward function, with rt = R (st ,at , st+1),
• P : S×A→ P (s) is the transition probability function, with P (st+1 |st ,at) being the probability

of transitioning into state st+1 starting from state st and taking action at ,
• ρ0 (s) is the starting state distribution.

Markov Decision Processes obey the Markov property: A transition only depends on the most
recent state and action (and not on states/actions that precede the most recent ones).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:4 A. Romdhana et al.

The goal in RL is to learn a policy π that maximizes the so-called expected return, which can be
computed as:

G (τ) =

∞∑

t=0

γ trt .

A discount factor γ ∈ (0, 1) is needed for convergence. When t → ∞, if γ = 1, then the expected
return and the RL algorithm would not converge. The discount factor determines how much the
agent cares about rewards in the distant future relative to those in the immediate future: If γ is
small, then the agent will tend to be myopic and only learn about actions that produce an imme-
diate reward. If γ is close to 1, then the agent will evaluate each of its actions based on its esti-
mated future rewards. τ is a sequence of states and actions in the environment τ = (a0, s0,a1, s1...),
named trajectory or episode. Testing an Android app can be seen as a task divided into finite-
length episodes. Almost all reinforcement learning algorithms involve estimating value functions—
functions of states (or action-value functions—functions of state-action pairs) [46] that estimate the
goodness to perform a given action in a given state. The notion of goodness is defined in terms of
expected future return. The rewards the agent can receive in the future depend on what actions it
will take. The value function V π (s) is defined as the expected return starting in a state s and then
acting according to a given policy π :

V π (s) = E[Gt |s0 = s].

The action-value function Qπ (s,a) can be used to describe the expected return after taking an
action a in state s and thereafter following the policy π :

Qπ (s,a) = E[Gt |s,a].

Correspondingly, we can define the optimal value function, V ∗ (s), as the V π (s) that gives the
highest expected return when starting in state s and acting according to the optimal policy in the
environment. The optimal action-value function, Q∗ (s,a), gives the highest achievable expected
return under the constraints that the process starts at state s , takes an action a and then acts
according to the optimal policy in the environment.

A policy that chooses greedy actions only with respect to Q∗ is optimal, i.e., knowledge of Q∗

alone is sufficient for finding the optimal policy. As a result, if we have Q∗, then we can directly
obtain the optimal action, a∗ (s), via a∗ (s) = argmaxa Q

∗ (s,a). The optimal value function V ∗ (s)
and action-value function Q∗ (s,a) can be computed by means of a recursive relationship known
as the optimal Bellman equations:

V ∗ (st) = max
a

E[r (st ,at) + γV ∗ (st+1)],

Q∗ (st ,at) = E[r (st ,at) + γ max
at+1

[Q∗ (st+1,at+1)]].

The optimal Bellman equations constrains the value of a state under an optimal policy to be
equal to the expected return for the best action from that state. The optimal Bellman equations
are actually a system of equations, one for each state. If the MDP of the environment is known,
then the system of equations can be solved analytically, finding the optimal value function (or the
optimal action-value function) and, at last, the optimal policy. Otherwise approximate solutions
are found iteratively.

2.2 Tabular RL

Tabular techniques refer to RL algorithms where the state and action spaces are approximated us-
ing value functions defined by means of tables. In particular, Q-Learning [48] is one of the most

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:5

adopted algorithms of this family. Q-Learning aims to learn a so-called Q-Table, i.e., a table con-
taining the value of each state-action pair. A Q-Table represents the current estimate of the action-
value function Q (s,a). Every time an action at is taken and a state st is reached, the associated
state-action value in the Q-Table is updated as follows:

Q (st ,at) := Q (st ,at) + α (rt + γ max
a

Q (st+1,a) −Q (st ,at)),

where α is the learning rate (between 0 and 1). If the learning rate is close to 0, then the agent
exploits only prior knowledge, while when close to 1, the agent considers only the most up-to-
date information. γ is the discount factor, applied to the future reward. Typically, γ ranges from
0.8 to 0.99 [15, 32, 40], while maxa Q (st+1,a) gives the maximum value for future rewards across
all actions. It is used to update the reward for the current state-action pair.

RL algorithms based on the Tabular approach do not scale to high-dimensional problems, be-
cause in such cases it is difficult to manually define a good initial Q-Table. In case a good initial
Q-Table is not available, convergence to the optimal table by means of the update rule described
above is too slow [32].

2.3 Deep Reinforcement Learning

In large or unbounded discrete spaces, where representing all states and actions in a Q-Table is
impractical, Tabular methods become highly unstable and incapable of learning a successful policy
[40]. The rise of Deep Learning, relying on the powerful function approximation properties of
Deep Neural Networks, has provided new tools to overcome these limitations. One of the first
Deep Reinforcement Learning algorithms is DQN (Deep Q-Networks) [40].

DQN uses convolutional neural networks to approximate the computation of the action-value
functionQπ . Training of such neural networks is achieved by using the so-called experience replay

[33]. With experience replay the agent’s experience et is stored within a buffer D named replay

buffer. The experience et is defined as the tuple:

et = (st ,at , rt , st+1,d).

The tuple contains the state st of the environment, the action at taken in st , the reward rt , and
the next state of the environment st+1. The parameter d represents a binary value that indicates
whether the transition has led the agent to a terminal state. To train the neural network, the al-
gorithm occasionally retrieves random experience samples from the replay buffer. If the network
learns only from consecutive samples of experience as they occurred sequentially in the environ-
ment, then the samples would be highly correlated and lead to inefficient learning [40]. Instead,
taking random samples from the memory replay breaks this correlation.

While DQN can indeed solve problems with high-dimensional observation spaces, it can only
handle discrete and low-dimensional action spaces. The recent advancements over DQN described
in the following paragraphs (namely, DDPG, TD3, and SAC) overcome such limitations and allow
dealing with high-dimensional action spaces.

Deep Deterministic Policy Gradient (DDPG). DDPG [32] is an Actor-Critic algorithm, i.e., it
includes two roles: the Critic, which estimates the value function, and the Actor, which updates
the policy π in the direction suggested by the Critic. It is based on a deterministic policy gradient
[43] that can operate over continuous action spaces.

More specifically, the Critic has the objective of learning an approximation of the functionQ∗ (s).
Suppose that the approximator is a neural networkQϕ (s,a) and that we have a set D of past expe-

riences et (st ,at , rt , st+1,d). The parameter list ϕ represents the coefficients of the neural network
model, and the objective of the training phase is to optimize them, while set D is the previously

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:6 A. Romdhana et al.

seen replay buffer. The replay buffer should be large enough to avoid overfitting. The loss func-
tion of the neural approximator is the so-called Mean-Squared Bellman Error (MSBE), which
measures how close Qθ (s,a) is to satisfying the Bellman equation:

L(ϕ,D) = E[(Qϕ (st ,at) − (rt + γ (1 − d) max
at+1

Qϕ (st+1,at+1)))2].

The term subtracted from Qϕ (st ,at) is named the target, because minimization of MSBE makes
the Q-function as close as possible to this value. Since the target depends recursively on the same
parameter ϕ to train, MSBE minimization can become unstable. The solution is to use a second
neural network, called target network, whose parameters are updated to be close to ϕ, but with
some time delay that gives stability to the process.

The Actor’s goal is to learn a deterministic policy πθ (s) that maximizes Qϕ (s,a). Because the
action space is continuous and we assume the Q-function is differentiable with respect to the
action, we can use gradient ascent with respect to the policy parameter. In case the action space is
non-differentiable, DDPG degenerates, performing like DQN [32].

Twin Delayed DDPG (TD3). Although DDPG can often achieve good performance, it tends to
be susceptible to critical tuning of its hyperparameters. In fact, Fujimoto et al. [15] demonstrated
that in Actor-Critic algorithms, such as DDPG, the policy update introduces errors, and overes-
timation of parameters ϕ. The researchers state that the introduced errors may be minimal, but
raise two concerns: (1) the error may develop into a more significant bias over many updates if
left unchecked, (2) an inaccurate value estimate may lead to poor policy update. TD3 [15] is an
algorithm that addresses this issue by introducing three major changes, mostly on the Critic side:
(1) Clipped Double Q-Learning: TD3 learns two Q-functions instead of one and uses the smaller
of the two Q-values as the target in the MSBE function. Using the smaller Q-value for the target,
and regressing towards that, helps mitigate overestimation in the Q-function. (2) Delayed Policy

Update: TD3 updates the policy and the target networks less frequently than the Q-function. Delay-
ing policy updates reduces per-update error and further improves performance. (3) Target Policy

Smoothing: TD3 adds noise to the target action to make it harder for the policy to exploit Q-function
errors by smoothing out Q across changes of the action.

Soft Actor Critic (SAC). The central feature of SAC [24] is entropy regularization. Using the
entropy-regularized method, an agent gets a bonus reward at each timestep that is proportional to
the entropy of the policy at that timestep. In fact, differently from TD3, the policy of SAC is non
deterministic and inclusion of entropy in the reward aims at promoting policies with a wider spread
of alternatives to choose stochastically from. The RL problem becomes the problem of finding the
optimal policy π ∗ according to the following equation:

π ∗ = argmax
π

E
⎡⎢⎢⎢⎢⎣

∞∑

t=0

γ t (R (st ,at , st+1) + αH (π (·|st)))
⎤⎥⎥⎥⎥⎦
.

The first term of the equation E[
∑∞

t=0 γ
t (R (st ,at , st+1)] comes from standard RL algorithms, in

which the objective is to maximize the expected sum of rewards. The second term αH (π (·|st))
contains the entropyH , which is directly controlled by the entropy regularization coefficient α > 0.
This parameter explicitly controls the explore-exploit tradeoff. With higher α the exploration is
encouraged, while lower α corresponds to more exploitation.

3 ARES: APPROACH

This section describes ARES (Application of REinforcement learning to android Software

testing), our approach to black-box Android GUI testing based on Deep RL. Figure 1 shows an

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:7

Fig. 1. The ARES testing workflow. Information about widgets is extracted from the GUI and used to compute

the state st and the reward rt . bi indicates the clickable buttons, scrollj indicates a portion of the GUI that

we can scroll, and editk an element that can be filled with text.

overview of the approach. The RL environment is represented by the Android application under

test (AUT), which is subject to several interaction steps. At each timestep, assuming the GUI state
is st , and the reward is rt , ARES first takes an action at . Then, it receives the new GUI state st+1

of the AUT, and a reward rt+1 (not shown in Figure 1). Intuitively, if the new state st+1 is similar
to the prior state st , then the reward is negative. Otherwise, the reward is a large positive value.
In this way, ARES promotes the exploration of new states in the AUT, under the assumption that
this is useful to test the application more thoroughly.

The reward is used to update the neural network, which learns how to guide the Deep RL algo-
rithm to explore the AUT in depth. The actual update strategy depends on the Deep RL algorithm
used (either DDPG, TD3, or SAC).

3.1 Problem Formulation

To apply RL, we have to map the problem of Android black-box testing to the standard mathemat-
ical formalization of RL: an MDP, defined by the 5-tuple, 〈S,A,R, P , ρ0〉. Moreover, we have to map
the testing problem onto an RL task divided into several finite-length episodes.

State Representation. Our approach is black-box, because it does not access the source code of
the AUT. It only relies on the GUI of the AUT. The state st ∈ S is defined as a combined state
(a0, ...an ,w0, ...wm). The first part of the state a0, ...an is a one-hot encoding of the current activity,
i.e., ai is equal to 1 only if the currently displayed activity is the ith activity, it is equal to 0 for
all the other activities. In the second part of the state vector, w j is equal to 1 if the jth widget is
available in the current activity; it is equal to 0 otherwise.

Action Representation. User interaction events in the AUT are mapped to the action set A of the
MDP. ARES infers executable events in the current state by analyzing the dumped widgets and
their attributes (i.e., clickable, long-clickable, and scrollable). In addition to the widget-level actions,
we use two system-level actions, namely, toggle internet connection and rotate screen. These system-
level actions are the only system actions that can be easily tested. In fact, since Android version

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:8 A. Romdhana et al.

7.0, testing other system-level actions (like those implemented in Stoat [44]) would depend on the
Android version used [20, 45] and would require a rooted device [17].

Moreover, certain apps, such as apps in the Finance and Entertainment categories (e.g., Netflix,
SkyGo, Amazon Prime, and Lloyds), do not start on a rooted device due to the root checks that are
on the apps [18, 39, 47], compromising their testing.

Each action a is three-dimensional: The first dimension represents the widget ARES is going to
interact with or the identifier of a system action. The second dimension specifies a string to be
used as text input if needed. Actually, an index pointing to an entry in a dictionary of predefined
strings is used for this dimension. The third dimension depends on the context: When the selected
widget is both clickable and long-clickable, the third action determines which of the two actions to
take. When ARES interacts with a scrollable object, the third dimension determines the scrolling
direction.

Transition Probability Function. The transition function P determines which state the application
can transit to after ARES has taken an action. In our case, this is decided solely by the execution
of the AUT: ARES observes the process passively, collecting the new state after the transition has
taken place.

Reward Function. The RL algorithm used by ARES receives a reward rt ∈ R every time it executes
an action at . We define the following reward function:

rt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Γ1 if act (st+1) � act (Et) or crash,

−Γ2 if pack (act (st+1)) � pack (AUT),

−Γ3 otherwise,

(1)

with Γ1 � Γ2 � Γ3 (in our implementation Γ1 = 1, 000, Γ2 = 100, Γ3 = 1). To select the values
of the reward, we conducted a preliminary experiment on a sub-sample of five apps (i.e., Anten-
napod, RedReader, Opentasks, Simple-Solitaire, and YalpStore). On these apps, we tested several
types of rewards that are commonly used in literature: combination I (Γ1 = 1,000, Γ2 = 100, Γ3 = 1),
combination II (Γ1 = 1, Γ2 = 1, Γ3 = 0), and combination III (Γ1 = 100, Γ2 = 10, Γ3 = 1). We found that
combination I gives the best results.

The exploration of ARES is divided into episodes. At time t , the reward rt is high (Γ1) if ARES
was able to transition to an activity never observed during the current episode Et (i.e., the next
activity act (st+1) does not belong to the set of activities encountered so far in Et): If a new episode
is started at t + 1, then its set of activities is reset: act (Et+1) = ∅.

Resetting the set of encountered activities at the beginning of each new episode is a technique
that encourages ARES to visit and explore the highest number of activities in each episode to rein-
force its explorative behaviors continuously. In contrast, if we provide the algorithm a significant
reward only a few times (i.e., “sparsely”), then the information to learn the optimal state-action
combinations might be insufficient. The algorithm might fail to reproduce the sequence of actions
leading to a high reward in the future. In that case, the performance of the algorithm results poor.
On the contrary, rewarding any activity change, regardless of their novelty, would encourage cy-
cling behaviors [12].

The reward is high (Γ1) also when a faulty behavior (crash) occurs. It is very low (−Γ2) when
the displayed activity does not belong to the AUT (i.e., the package of the current activity,
pack (act (st+1)), is not the package of the AUT), as we aim to explore the current AUT only. In
all other cases, the reward is moderately negative (−Γ3), as the exploration remains inside the
AUT, even if nothing new has been discovered.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:9

4 ARES: IMPLEMENTATION

ARES features a custom environment based on the OpenAI Gym [10] interface, which is a de facto
standard in the RL field. OpenAI Gym is a toolkit for designing and comparing RL algorithms
and includes a number of built-in environments. It also includes guidelines for the definition of
custom environments. Our custom environment interacts with the Android emulator [19] using
the Appium Test Automator Framework [3].

4.1 Tool Overview

As soon as it is launched, ARES leverages Appium to dump the widget hierarchy of the GUI in
the starting activity of the AUT. The widget hierarchy is analyzed by searching for clickable, long-
clickable, and scrollable widgets. Afterward, these widgets are stored in a dictionary containing
several associated attributes (e.g., resource-id, clickable, long-clickable, scrollable) and compose
the action vector, i.e., the vector of executable actions in the current state. At each timestep, ARES
takes an action according to the behavior of the exploration algorithm. Once the action has been
fully processed, ARES extracts the new widget hierarchy from the current GUI and calculates
its MD5 hash value. If it has the same MD5 value of the previous state, then ARES leaves the
action vector unchanged. If the MD5 value does not match, then ARES updates the action vector.
ARES performs the observation of the AUT state and returns the combined vector of activities and
widgets. ARES organizes the testing of each app as a task divided into finite-length episodes. The
goal of ARES is to maximize the total reward received during each episode. Every episode lasts
at least 250 timesteps. Its duration is shorter only if the app crashes. To select the ideal episode
boundaries, we conducted a preliminary experiment on a sample app. On this app, we trained the
same algorithm by varying the episode length. Training characterized by short episodes results in
poor performance due to the impossibility of exploring the application. Similarly, long episodes
suffered from poor performance due to a low number of episodes completed. Once an episode
comes to an end, the app is restarted, and ARES uses the acquired knowledge to explore the app
more thoroughly in the next episode.

4.2 Application Environment

The application environment is responsible for handling the actions to interact with the AUT. Since
the environment follows the guidelines of the Gym interface, it is structured as a class with two
key functions. The first function init(desired_capabilities) is the initialization of the class.
The additional parameter desired_capabilities consists of a dictionary containing the emulator
setup and the application to be tested. The second function is the step(a) function, which takes
an action a as command and returns a list of objects, including observation (current AUT state)
and reward.

4.3 Algorithm Implementation

ARES is a modular framework that adopts a plugin architecture to integrate the RL algorithm to
use. Hence, extension with a new exploration algorithm can be easily achieved. In the current
implementation, ARES provides five different exploration strategies: (1) random, (2) Q-Learning,
(3) DDPG, (4) SAC, (5) TD3. The random algorithm interacts with the AUT by randomly selecting
an action from those in the action vector. Compared to Monkey [21], our random approach per-
forms better, since it selects only actions from the action vector. In fact, Monkey generates random,
low-level events on the whole GUI, which could target no actual widget and then be discarded.

Our Q-Learning strategy implements the algorithm proposed by Watkins and Dayan [48]. The
Deep RL algorithms available in ARES are DDPG, SAC, and TD3. Their implementation comes

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:10 A. Romdhana et al.

Fig. 2. Prototype of a FATE model.

from the Python library Stable Baselines [25] and allows ARES to save the status of the neural
network as a policy file at the end of the exploration. In this way, the policy can be loaded and
reused on a new version of the AUT at a later stage, rather than restarting ARES from scratch
each time a new AUT version is released. ARES is publicly available as open source software at
https://github.com/H2SO4T/ARES.

4.4 Compatibility

ARES has been successfully tested on Windows 10, macOS 11.1 (and older), Ubuntu 20 (and older),
and Scientific Linux 7.5. ARES is fully compliant with parallel execution and enables parallel ex-
periments to be performed on emulators or real devices, handling each instance in a completely
separate manner. ARES is also compatible with several Android versions (i.e., it has been success-
fully tested on Android 6.0, 7.0, 7.1, 8.0, 8.1, 9.0, and 10.0). Moreover, since ARES is based on the
standard OpenAIGym, new algorithms and exploration strategies can be easily added to the tool.

5 FAST ANDROID TEST ENVIRONMENT (FATE)

Deep RL algorithms require fine-tuning, which is expensive on real apps. Therefore, we devel-
oped FATE, a simulation environment for fast Android testing. FATE models only the naviga-
tion constraints of Android apps, so it can efficiently compare alternative testing algorithms and
quickly tune their corresponding hyperparameters. After this algorithm selection and tuning phase
through FATE is completed, the selected algorithms and their configurations are ported to ARES
to test real apps.

5.1 Model-based Prototyping

5.1.1 FATE Design. In FATE, developers model an Android app by means of a deterministic
Finite State Machine (FSM) F = (Σ, S, s0,δ , F), where Σ is a set of events, S a set of states with
s0 the initial state and F the set of final states, and δ the state transition function δ : S × Σ −→ 2S .
The states S of the FSM correspond to the activities of the app, while the events Σ trigger the
transitions between activities, which in turn are modeled as a transition table δ . Events represent
the clickable widgets (e.g., buttons) available in each activity. Transitions have access to a set
of global variables and possess, among others, the following attributes: ID, type, active (Boolean
attribute), guard (Boolean expression that prevents the transition from being taken if it evaluates
to false), set (new values to be assigned to global variables), destination (target activity, i.e., value
of δ). A prototype of a FATE model is shown in Figure 2.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

https://github.com/H2SO4T/ARES

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:11

Fig. 3. FATE model of Social Network: Global variables are shown on the top-left; inputs on the bottom-left;

red edges indicate non deterministic transitions.

5.1.2 FATE Implementation. Figure 3 shows the FATE model of the prototypical app Social Net-

work. To build such a model, developers can use Ptolemy [29] to graphically draw an FSM that
mimics the behavior of the application. While creating an FSM with Ptolemy is not mandatory in
FATE, it simplifies the job of designing a logically correct model, thanks to the checks it performs.
Then, FATE automatically translates the Ptolemy model (saved in XML format) into a JSON file that
replicates the structure and behavior of the Ptolemy model. The JSON model translation has two
main fields: global_vars and nodes. The first contains a list of global variables organized by name
and value. The latter contains a list of all the activities. Each activity is characterized by a node_id
and a list of corresponding node transitions, each including all the respective transition attributes.

The model of Social Network in Figure 3 contains a transition from login to main_act, which is
subjected to the guard user_pass == real_pass, i.e., the entered password must be correct for
the transition to be taken. In the JSON model, such transition is coded as:

1 "transition": {

2 "transition_id": 0,

3 "type": "button",

4 "active": true ,

5 "guard": "user_pass == real_pass",

6 "set": null ,

7 "destination": "main_act"

8 }

Another example of guarded transition is the one between messages and chat_x. The guard
count_messages >= 1 checks whether there exists at least one message from which a chat thread
can be started. In the JSON model this is coded as:

1 "transition": {

2 "transition_id": 0,

3 "type": "button",

4 "active": true ,

5 "guard": "count_messages >= 1",

6 "set": null ,

7 "destination": "main_act"

8 }

In FATE, a Python environment compliant with the OpenAI Gym standard takes as input the
JSON app model and tests it automatically using the selected algorithm. The available algorithms

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:12 A. Romdhana et al.

are: (1) Random, (2) Q-Learning, (3) DDPG, (4) SAC, (5) TD3. FATE was built with modularity in
mind, and new exploration algorithms can be easily added to the tool. Compared to testing an
Android app through Espresso or Appium, FATE makes test case execution significantly faster,
because there is no need to interact with the app via its GUI. Moreover, the application navigation
logic is simulated by the transition function δ , making it usually much faster to execute. Conse-
quently, developers can run a large number of experiments, evaluate multiple algorithms, check
various algorithm or application configurations, and find the optimal set of hyperparameters, all
of which would be prohibitively expensive to execute on a standard Android testing platform.
A limitation of FATE is that its effectiveness in hyperparameter tuning depends on the fidelity
of the app models created by the developers. Despite not being the developers of the apps un-
der test, we have been able to define models for them that turned out to be sufficiently faithful.
In fact (see Section 6.1), the results obtained on the real apps with ARES and on their models
with FATE are very close to each other. FATE is publicly available as open source software at
https://github.com/H2SO4T/ARES.

5.2 Representative Family of Models

For fast evaluation of the Deep RL algorithms implemented in ARES, we modeled four Android
apps using FATE. Each model represents the generalization of the apps belonging to a specific
family, such as Shopping category. To obtain a set of app models representing the most common
apps used in everyday life, we inspected AppBrain (a website that aggregates Google Play Store
statistics and rankings) [2]. We selected four different and representative categories from the top
ten: Music & Audio, Lifestyle, Business, and Shopping. From each category, we then selected and
modeled in FATE one prototypical app: Player, Social Network, Bank, and Market Place. Each model
is configurable with a variable degree of complexity.

The simplest scenario is Player. It features a wide number of activities arranged in a tree-like
structure. It reflects the generalization of various applications, including apps or app components,
to manage the settings and stream/add/remove media contents. Social Network (see Figure 3) starts
by prompting a login activity with fields for username and password. Following the login activ-
ity, we have several activities that replicate a standard social network behavior, including a basic
chat activity. The presence of inner password-protected operations characterizes the Bank model.
Market Place models a typical app for e-commerce: The user can search for goods, login, purchase
products, and monitor the orders. The four representative app models used in this work are pub-
licly available inside the FATE tool.

6 EVALUATION

We seek to address the following research questions, split between the following two studies:
Study 1 (FATE):

• RQ1: Are the results of synthetic apps comparable to those of the their translated counterparts?

• RQ2: Which Deep RL algorithm and which algorithm configuration performs better on the

synthetic apps?

• RQ3: How does activity coverage vary as the model of the AUT becomes increasingly difficult

to explore?

• RQ4: What are the features of the synthetic apps that allow Deep RL to perform better than

Q-Learning?

In Study 1, we want to understand if results obtained on synthetic app models run by FATE
correlate with those obtained when executing the same apps (RQ1), once they are translated into

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

https://github.com/H2SO4T/ARES

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:13

real Android apps in Java code that can be executed by ARES. In particular, we translated three
synthetic apps to Java/Android: Social Network, Bank, and Market Place. We decided not to trans-
late the “Player” model due to its simplicity. We compare the rankings of the algorithms produced,
respectively, by FATE and by ARES. Text inputs are chosen from a dictionary of 40 strings, which
include credentials necessary to pass through the login activities. Since in this study we also use
synthetic apps generated from models (i.e., Player, Social Network, Bank, and Market Place), cov-
erage is measured at the granularity of Android activities. In fact, there is no source code imple-
menting the business logic. Each run has a length of 4,000 timesteps, close to an hour of testing in a
real Android test setting. With FATE, 4,000 times steps are executed approximately in 200 seconds.

To answer RQ2, we take advantage of the fast execution granted by FATE to compare al-
ternative RL algorithms on all synthetic apps and determine their optimal configuration (see
Appendix A.1). Text inputs are chosen from a dictionary of 20 strings, which include creden-
tials necessary to pass through the login activities. To account for non-determinism, we executed
each algorithm 60 times for each hyperparameter configuration of the algorithms and applied the
Wilcoxon non-parametric statistical test to draw conclusions on the difference between algorithms
and configurations, adopting the conventional p-value threshold at α = 0.05. Since multiple pair-
wise comparisons are performed with overlapping data, the chance to reject true null hypotheses
may increase (type I error). To control this problem, we adopt the Holm-Bonferroni correction [26],
which consists of using more strict significance levels when the number of pairwise tests increases.

To answer RQ3, we consider the best-performing configuration of the Deep RL algorithms, as
selected from RQ2, and gradually increase the exploration complexity of the apps. Specifically,
20_strings, 40_strings, 80_strings indicate an increasing size of the string pool. Such string pool is a
dictionary of 20, 40, or 80 strings containing numbers and words, including the app’s username and
password, to use with a login activity. The string pool does not contain duplicates. augmented_5

and augmented_10 indicate an increasing size of the self navigation links (with 5 or 10 “dummy”
buttons that do nothing) within the login activities.

For the assessment, we adopt the widely used metric AUC (Area Under the Curve), measur-
ing the area below the activity coverage plot over time. To account for the non-determinism of
the algorithms, we repeated each experiment 30 times and applied the Wilcoxon non-parametric
statistical test. In RQ4, we investigate qualitatively the cases where Deep RL is superior to Tabular
Q-Learning.

Study 2 (ARES):

• RQ5: How do code coverage and time-dependent code coverage compare between Random, Q-

Learning, DDPG, and SAC?

• RQ6: What are the fault exposure capabilities of the alternative approaches?

• RQ7: What features of the real apps make Deep RL perform better than Q-Learning?

• RQ8: How does ARES compare with state-of-the-art tools in terms of coverage and bug

detection?

In Study 2, we use real apps and compare the alternative Deep RL algorithms between each other
and with Random and Tabular Q-Learning. At last, we compare ARES to state-of-the-art testing
tools.

To address RQ5–RQ6 and RQ7, we randomly selected 100 apps among the 500 most starred F-
Droid apps available on GitHub, and 41 successfully compiled. We consider coverage at the source
code level and compare both the final coverage and the coverage increase over time (RQ5). To
obtain coverage data at the instruction level, we instrumented each app using JaCoCo [37]. As in
Study 1, we measured AUC with respect to the code coverage and compared AUC values using the
Wilcoxon statistical test with a significance level set to 0.05 (with correction). We exclude TD3 from

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:14 A. Romdhana et al.

Table 1. Ranking of Algorithms Produced by ARES vs. FATE; AUC Values

Below Ranked Algorithms

App Tool Ranking/AUC

Social ARES Q-Learn DDPG Rand SAC TD3
4: 7788 5: 6,802 3: 9,547 2: 9,594 1: 15,101

FATE Q-Learn DDPG Rand SAC TD3
4:7737 5:7,363 3:9,291 2:10,361 1:14,451

Bank ARES Q-Learn DDPG Rand SAC TD3
4: 8614 5: 7,976 3: 9,344 1: 12,138 2: 10,932

FATE Q-Learn DDPG Rand SAC TD3
4: 7750 5: 6,458 2: 9,746 1: 16,535 3: 9,305

Market ARES Q-Learn DDPG Rand SAC TD3
1: 16866 2: 16,788 4: 15,936 5: 15,930 3: 15,944

FATE Q-Learn DDPG Rand SAC TD3
1: 16496 2: 16,318 4: 15,943 5: 15,936 3: 15,949

the comparison, since it performed consistently worse than the other RL algorithms on synthetic
apps.

In addition to code coverage, we also report the number of failures (unique app crashes) trig-
gered by each approach (RQ6). To measure the number of unique crashes observed, we parsed the
output of Logcat and (1) removed all crashes that do not contain the package name of the app;
(2) extracted the stack trace; (3) computed the hash code of the sanitized stack trace, to uniquely
identify it. With RQ7, we analyze the different performances of Deep RL vs. Q-Learning on real
apps qualitatively.

To address RQ8, we evaluate and compare ARES and state-of-the-art tools in terms of code
coverage and the number of crashes, using two different sets of apps under test, RQ8-a and RQ8-
b, that accommodate the different requirements and constraints of the tools being compared. As
state-of-the-art tools, we selected Monkey [21], Sapienz [36], TimeMachine [14], and Q-Testing
[41]. In RQ8-a, we compare ARES, Monkey, Sapienz, and TimeMachine on a set of 68 apps coming
from AndroTest [11]. These apps are instrumented using Emma [1], the same coverage tool that is
used in Sapienz and TimeMachine. In RQ8-b, we compare ARES to Q-Testing on a set of 10 apps
instrumented using JaCoCo, the coverage tool supported by Q-Testing.

All experimental data were generated and processed automatically. Each experiment was con-
ducted with a one-hour timeout and was repeated 10 times for a total of 4,560 hours (≈190 days).
The emulators involved in the study are equipped with 2 GB of RAM and Android 10.0 (API
Level 29) or Android 4.4 only for the tool comparison.

6.1 Experimental Results: Study 1

Table 1 shows the ranking of the algorithms produced by ARES vs. FATE on the three apps trans-
lated from the synthetic FATE models to Java/Android. Below the ranking, Table 1 shows the
AUC values obtained by the respective algorithms. The behaviors of the considered algorithms on
synthetic (FATE) vs. translated (ARES) apps are very similar. The AUC values are quite close, and
Spearman’s correlation between AUC values across algorithms is 0.99 for Social, 0.89 for Bank, and
0.99 for Market; it is 0.95 overall. All correlations are statistically significant at level 0.05. ARES
required 450 hours to complete the experiments. FATE required around 10 hours, reducing the
computation time by a factor of 45 while producing similar results as ARES.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:15

Fig. 4. Activity coverage of the Social synthetic app in FATE.

Figure 4 shows the coverage growth for the synthetic app Social. Each curve shows the mean of
60 runs. The shaded area around the mean represents the Standard Error of the Mean (SEM =
σ/
√
n, where σ is the standard deviation and n = 60 the number of points). The highest activity

coverage is obtained consistently by Deep RL algorithms, which have higher AUC values. Table 2
reports the AUC obtained on the synthetic apps in all tested configurations. Table 2 also shows
the Vargha-Delaney effect size in the case of a statistically significant p-value < α/k where k is
computed from the Holm-Bonferroni correction for multiple tests, between the winner algorithm
(highest AUC) and the remainders.

Results show that Deep RL algorithms achieve higher coverage in most experiments. DDPG
performs better in the simplest configuration, 20_strings, while SAC performs better in almost all
other configurations, including the most complex ones. Q-Learning prevails in only two scenarios
belonging to Market Place, but the difference from the other algorithms is not statistically signifi-
cant (p-value > α).

DDPG is selected due to its high performance in relatively simple scenarios; SAC because of its
ability to adapt and maintain good performance in the majority of scenarios.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:16 A. Romdhana et al.

Table 2. Mean AUC for Synthetic Apps: Effect Size between the Winner (Shaded Cell)

and Other Algorithms Is Reported Only When p-value is Statistically Significant

(S = Small; M = Medium; L = Large)

App Config Rand Q-Learn TD3 SAC DDPG Effect Size

Player 20_str 88,719 89,022 89,903 89,943 90,337 –

Social

20_str 15,840 20,387 22,809 25,463 30,008 L(Rand), M(Q)
40_str 9,291 7,737 14,451 10,361 7,363 S(DDPG)
80_str 4,535 5,640 5,730 7,254 4,774 –
aug_5 13,960 15,400 13,094 17,402 13,385 –
aug_10 5,291 3,998 13,737 11,559 8,870 M(Q, Rand)

Bank

20_str 22,894 21,622 29,159 28,016 36,977 M(Q, Rand)
40_str 9,746 7,750 9,305 16,535 6,458 S(Q, DDPG)
80_str 3,998 4,843 4,776 5,621 4,798 –
aug_5 12,815 8,634 8,702 14,914 11,472 –
aug_10 4,121 6,289 13,289 14,195 15,361 M(Q, Rand)

Market

20_str 19,236 18,471 20,980 23,403 25,923 –
40_str 15,943 16,496 15,949 15,936 16,318 –
80_str 15,944 15,945 15,935 15,937 15,932 –
aug_5 18,917 16,377 16,500 21,208 16,027 –
aug_10 4,121 6,289 13,289 14,195 15,361 –

We have manually inspected the step-by-step exploration performed by Q-Learning and by the
Deep RL algorithms. We found that login activities complicate substantially the exploration per-
formed by Q-Learning. In fact, it is more difficult to reproduce the right username-password com-
bination for a Tabular Q-Learning algorithm, which has limited adaptation capabilities. In contrast,
Deep RL algorithms memorize the right combination in the DNN used to guide the exploration. In
addition, large action spaces make it challenging for Q-Learning to learn an effective exploration
strategy. The DNNs used by Deep RL algorithms can easily cope with large spaces of alternatives
to choose from. The performance degradation of Q-Learning confirms this as the string pool in-
creases in dimension or as new interactive elements (“dummy” buttons) are added, which confuse
Q-Learning during its exploration.

6.2 Experimental Results: Study 2

Table 3 shows coverage and crashes produced by each algorithm deployed in ARES. The highest
average coverage and average number of crashes over 10 runs are shaded in gray for each app. We
grouped the apps into three different size categories (Low-Medium, Medium, and High), depending
on their ELOC (Executable Lines Of Code). Results show that the Deep RL algorithms arise more
often as winners when the ELOC increase. Usually, larger-size apps are more sophisticated and
offer a richer set of user interactions, making their exploration more challenging for automated
tools. We already know from Study 1 that when the action space or the observation space of the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:17

Table 3. Average Coverage and Number of Crashes Observed on 41 Real

Open-source Apps in 10 Runs of ARES

Applications ELOC Rand Q SAC DDPG Rand Q SAC DDPG
%Coverage(mean) #Crashes(mean)

Silent-ping-sms 263 41 41 41 41 0 0 0 0
Drawablenotepad 452 20 21 26 25 0.7 0.6 0.7 0.1
SmsMatrix 466 23 20 24 22 1.2 0 1.2 0.9
Busybox 540 75 73 74 76 0 0 0 0
WiFiKeyShare 627 37 36 37 37 0 0 0 0
Talalarmo 1,094 69 71 71 71 0 0.5 0.5 0
AquaDroid 1,157 55 55 55 55 1.0 0.4 0.8 0.3
Lexica 1,215 72 72 74 75 0.3 0.1 1.5 1.2
Loyalty-card-locker 1,228 41 37 50 41 0.5 0.4 0.8 0.1
Dns66 1,264 58 58 58 58 0.1 0 0 0.2
Gpstest 1,311 47 46 47 46 0 0 0 0
Memento 1,336 77 76 74 77 0 0 0 0
Editor 1,547 50 46 51 50 0 0 0 0
AndOTP 1,560 20 25 27 20 0.5 0.5 0.7 0.2
BookyMcBookface 1,595 26 25 25 24 0 0 0 0
Tuner 2,207 80 74 79 75 0 0 0 0
WifiAnalyzer 2,511 78 75 80 79 0 0 0 0
AdAway 3,064 38 37 45 40 0 0 0.1 0.1
Gpslogger 3,201 36 31 32 28 0 0 0 0.1
Connectbot 3,904 26 25 28 18 0 0 0 0
Neurolab 3,954 29 28 29 28 0 0.4 0.3 0.6
Anuto 4,325 46 46 47 47 0 0 0 0
PassAndroid 4,569 1 1 1 1 0 0 0 0
Markor 4,607 51 43 53 41 0.3 0 0.4 0
Vanilla 4,747 29 34 41 33 0 0 0 0
Average 45 43.84 46.76 44.32 0.15 0.12 0.28 0.15

Afwall 5,130 12 12 16 13 0 0 0 0
OpenTracks 5,260 45 42 44 45 0 0 0 0
Opentasks 5,772 43 50 53 44 0 0 0.2 0
UserLAnd 5,901 60 60 60 60 0.1 0.2 0.4 0.2
Simple-Solitaire 5,907 10 30 31 31 0 0.4 0.4 0.2
Authorizer 5,923 5 5 5 5 0 0 0 0
YalpStore 6,734 35 34 38 33 0 0 0 0
CameraRoll 6,836 32 31 31 32 0.8 0.1 1.6 0.1
AntennaPod 7,975 46 40 48 38 0.5 0.1 0.8 0.4
Phonograph 8,758 16 16 16 16 0 0 0 0
Average 30.4 30.5 34.2 31.7 0.14 0.08 0.34 0.09

MicroMathematics 10,506 35 35 47 41 0 0 0 0
LightningBrowser 11,961 35 36 43 37 0 0 0.4 0.1
Firefox-focus 12,482 33 34 41 35 0.5 0.3 0.8 0.1
RedReader 12,958 42 42 44 46 0 0 0.1 0
Wikipedia 23,543 42 43 44 41 0 0 0 0
Slide 30,483 19 17 18 19 0.8 0.3 1.2 0.3
Average 34.33 34.50 39.5 36.5 0.21 0.1 0.38 0.1

Total Average 39.62 39.58 42.61 40.09 0.17 0.1 0.3 0.12
Unique crashes 73 43 102 52

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:18 A. Romdhana et al.

Fig. 5. Instruction coverage over time for the app Loyalty-card-locker.

apps increase, Deep RL can infer the complex actions needed to explore such apps more easily
than other algorithms. Study 2 confirms the same trend.

Overall, SAC achieves the best performance, with 42.61% instruction coverage and 0.3 faults de-
tected on average. DDPG comes next, with 40.09% instruction coverage and 0.12 faults detected on
average. To further investigate these results, we computed the AUCs reached by each algorithm,
and we applied the Wilcoxon test to each pair of algorithms. Table 4 shows the AUCs achieved
by the four algorithms and the Vargha-Delaney effect size between the winner and the other algo-
rithms when the p-value is less than α . SAC results as the winner on 56% of the considered real
apps, followed by Random (34%). Moreover, Table 4 confirms the trend observed in Table 3: As
ELOC increase, a higher proportion of Deep RL algorithms produces the highest AUC. Figure 5
shows an example of code coverage over time for the app Loyalty-card-locker, averaged on 10 runs.
SAC increases its coverage almost until the end of the exploration, while the other algorithms
reach a plateau after around 35 minutes of exploration.

We suspect that the higher performance of SAC is related to its entropy regularization parameter.
Thanks to the entropy regularization, in contrast to the other Deep RL algorithms that do not
contain such parameter, SAC can maintain a high level of exploration even at the end of the testing
phase, preventing the policy from converging to a bad local optimum.

Table 3 shows that SAC exposed the highest number of unique crashes (102), followed by Ran-
dom (73), DDPG (52), and Q-Learning (43). The most common types of error exposed by SAC
during testing are: RuntimeException (34 occurrences), NullPointerException (14), IllegalArgu-

mentException (13). Figure 6 shows around a 30% overlap between the crashes found by SAC and

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:19

Table 4. AUCs Achieved on Real Apps; Effect Size between Winner

and Others When p-value < α

App Rand Q SAC DDPG Effect Size

Silent-ping-sms 0.36 0.36 0.38 0.37 S(DDPG),M(Rand),L(Q)
Drawable-notepad 0.13 0.14 0.20 0.18 L(Rand,Q)
SmsMatrix 0.13 0.13 0.11 0.11 -
Busybox 0.54 0.56 0.68 0.68 L(Q,Rand)
WiFiKeyShare 0.29 0.29 0.33 0.30 L(DDPG,Q,Rand)
Talalarmo 0.62 0.60 0.64 0.64 L(Q)
AquaDroid 0.529 0.526 0.531 0.522 L(Rand, Q, DDPG)
Lexica 0.63 0.61 0.66 0.65 L(Q,Rand)
Loyalty-card-locker 0.23 0.23 0.34 0.21 L(DDPG,Q,Rand)
Dns66 0.51 0.51 0.47 0.45 L(DDPG,SAC)
Gpstest 0.40 0.40 0.39 0.36 L(DDPG)
Memento 0.64 0.65 0.64 0.65 -
Editor 0.42 0.37 0.37 0.37 L(DDPG,Q,SAC)
AndOTP 0.16 0.18 0.23 0.15 M(Rand), L(DDPG)
BookyMcBookface 0.22 0.20 0.20 0.20 M(DDPG), L(SAC)
Tuner 0.68 0.66 0.60 0.60 L(DDPG,SAC)
WifiAnalyzer 0.56 0.56 0.67 0.58 L(DDPG,Q,Rand)
AdAway 0.25 0.25 0.27 0.25 -
Gpslogger 0.28 0.28 0.23 0.20 L(DDPG,SAC)
Connectbot 0.19 0.19 0.22 0.09 L(DDPG,Q,Rand)
Neurolab 0.23 0.23 0.22 0.22 -
Anuto 0.35 0.40 0.43 0.33 L(DDPG,Q,Rand)
PassAndroid 0.018 0.017 0.017 0.017 -
Markor 0.40 0.40 0.43 0.25 L(DDPG,Q,Rand)
Vanilla 0.17 0.23 0.26 0.23 L(Rand)

Afwall 0.09 0.09 0.13 0.10 L(DDPG,Q,Rand)
OpenTracks 0.37 0.35 0.35 0.35 -
Opentasks 0.18 0.46 0.46 0.29 L(DDPG,Rand)
UserLAnd 0.49 0.49 0.49 0.47 -
Simple-Solitaire 0.06 0.21 0.19 0.18 L(Rand)
Authorizer 0.05 0.046 0.047 0.049 S(SAC), M(Q)
YalpStore 0.28 0.28 0.31 0.26 L(DDPG,Q,Rand)
Camera-Roll 0.26 0.37 0.25 0.25 L(Rand,DDPG,SAC)
AntennaPod 0.33 0.33 0.35 0.22 L(DDPG)
Phonograph 0.085 0.077 0.075 0.076 S(Q,DDPG,SAC)

MicroMathematics 0.17 0.17 0.30 0.18 L(DDPG,Q,Rand)
Lightning-Browser 0.28 0.28 0.36 0.29 L(DDPG,Q,Rand)
Firefox-focus 0.27 0.28 0.43 0.35 L(Rand, Q)
RedReader 0.31 0.31 0.31 0.33 -
Wikipedia 0.30 0.30 0.33 0.28 -
Slide 0.13 0.13 0.12 0.14 -

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:20 A. Romdhana et al.

Fig. 6. Comparison of total number of unique crashes on the 41 apps involved in RQ5–6: Dark gray areas

indicate the proportion of crashes found by both techniques.

the other algorithms. The overlap with Random is the highest. SAC discovers about 40% of unique
crashes found by Random; however, SAC found many new crashes that Random did not find.

We have manually inspected the coverage progress of the different algorithms on some of the
real apps considered in Study 2. We have identified two structural patterns: concatenated activities
(i.e., a sequence of nested activities possibly requiring some precondition to move from one to
the next) and blocking activities (activities that require a specific input combination to enable
the transition to the next activity). We observed that Deep RL algorithms achieve higher coverage
than the other algorithms when it is necessary to replicate complex behaviors to: (1) overcome
blocking activities, e.g., to create an item to be able to access its properties later or to successfully
authenticate within the app; (2) to pass through concatenated activities without being distracted
by already seen activities or ineffective buttons (high dimensional action/observation space);
(3) reach an activity located deeply in the app. Such behaviors are possible, thanks to the learning
capabilities of the DNNs used by Deep RL algorithms, while they are hardly achieved by the other
existing approaches, including Tabular Q-Learning.

6.2.1 Comparison between ARES and State-of-the-art Tools. RQ8-a. Table 5 shows the coverage
reached and the faults exposed by each testing tool on 68 Android apps from AndroTest. Coverage
data are summarized employing boxplots in Figure 7. The highest average coverage and average
number of crashes over 10 runs are highlighted with a gray background. ARES achieved 54.2%
coverage and detected 0.48 crashes on average. TimeMachine achieved 50.4% code coverage and
0.42 faults on average. Sapienz reached a mean code coverage of 48.8% and discovered 0.22 faults

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:21

Table 5. Results on 68 Open-source Apps Coming from AndroTest

App Coverage Faults
Monkey Sapienz TM ARES Monkey Sapienz TM ARES

a2dp 38 44 42 42 0 0.4 0.1 0.3
aagtl 16 18 17 19 0.3 1.0 1.7 1.5

aarddict 13 15 17 17 0 0 0.2 0.2
acal 18 27 27 28 0.5 0.8 1.0 1.0
addi 19 20 17 20 0.4 0.3 0.4 0.6

adsdroid 30 36 36 35 0.1 0.4 0.5 0.7
aGrep 45 - 59 56 0.1 - 0.3 0.2

aka 65 84 77 84 0.1 0.7 0.1 0.4
alarmclock 64 41 60 71 0.5 0.5 0.6 0.8

aLogCat 67 71 75 87 0 0 0 0
Amazed 36 66 63 89 0.1 0.3 0.2 0.2
AnyCut 63 65 63 73 0 0 0 0

anymemo 31 50 43 53 0.2 0.8 0.3 1.0
autoanswer 12 16 21 15 0 0 0.5 0.5
baterrydog 63 67 62 69 0 0.1 0.4 0.5

battery 73 78 77 92 0 0.4 0.5 0.4
bites 34 41 45 43 0.1 0.2 0.9 0.5

blokish 55 52 68 45 0 0.2 0 0.3
bomber 76 73 77 84 0 0 0 0

Book-Catalogue 27 29 27 25 0.1 0.2 0.8 0.5
CountdownTimer 74 62 77 84 0 0 0 0

dalvik-explorer 66 72 70 72 0.3 0.2 0.7 0.8
dialer2 39 42 42 44 0 0 0.3 0.4

DivideAndConquer 84 83 82 80 0 0.2 1.0 0.9
fileexplorer 41 49 55 64 0 0 0 0

frozenbubble 80 76 75 70 0 0 0 0
gestures 37 52 51 55 0 0 0 0
hndroid 7 15 18 18 0.1 0.4 1.1 1.3
hotdeath 75 75 72 74 0.1 0.2 0.8 0.9

importcontacts 40 39 40 42 0.1 0 0.6 0.8
jamendo 53 41 54 63 0 0.4 1.4 1.6
k9mail 6 7 8 8 0.4 0 1.8 1.2
LNM 47 - - 75 0 - - 0.2

lockpatterngenerator 75 79 74 78 0 0 0 0
LolcatBuilder 26 25 29 26 0 0 0.1 0

manpages 40 73 70 74 0 0.4 0.3 0.4
mileage 38 45 48 45 0.3 1.0 2.3 1.8
Mirrored 57 59 62 59 0.4 0 0.8 0.7

mnv 41 60 43 56 0.5 0.3 1.0 1.1
multismssender 34 59 61 73 0 0.2 0.3 0.4

MunchLife 67 72 71 88 0 0 0 0
MyExpenses 41 60 50 63 0 0 0.2 0.2

myLock 25 31 50 30 0 0 0.5 0.2
Nectroid 34 66 58 57 0 1.0 0.3 0.9

netcounter 43 70 58 69 0 0 0.4 0.5
PasswordMaker 53 58 55 59 0.3 0.8 0.6 0.9

passwordmanager 7 8 17 18 0 0 0 0
Photostream 30 34 35 29 0.1 0 0.4 0.8

QuickSettings 50 45 46 52 0 0.2 0 0.4
RandomMusicPlayer 53 58 58 63 0 0 0.6 0.8

Ringdroid 22 29 48 30 0 0.1 0.3 0.2
sanity 26 19 31 22 0.2 0.3 0.5 0.4

soundboard 42 32 59 61 0 0.6 0 0.4
SpriteMethodTest 58 80 73 88 0 0 0 0

SpriteText 60 60 57 60 0 0.4 0 0.5
swiftp 12 14 13 17 0 0.4 - 0.6

SyncMyPix 21 21 23 25 0 0 0 0
tippy 75 83 74 85 0 0.4 0.3 0.4

tomdroid 47 46 51 69 0 0.3 0 0.3
Translate 49 48 48 50 0 0 0 0
Triangle - - - - - - - -

weight-chart 63 67 66 71 0 0 0 0
whohasmystuff 61 68 66 81 0.1 0 0.9 1.0

wikipedia 31 32 33 35 0 0 0 0
Wordpress 4 5 7 8 0 0.5 1.5 1.0
worldclock 83 88 86 90 0 0 0.6 0.4

yahtzee 51 57 56 69 2 0.2 0.5 0.5
zooborns 30 16 35 37 0 0 0.1 0.5
Average 43.9 48.8 50.4 54.2 0.11 0.22 0.42 0.48

Sum 51 103 179 171

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:22 A. Romdhana et al.

Fig. 7. Code coverage achieved by ARES, TimeMachine, Sapienz, and Monkey.

Fig. 8. Comparison of total number of unique crashes involved in RQ8-a: Dark gray areas indicate the pro-

portion of crashes found by both testing tools.

on average. Monkey achieved 43.9% code coverage and discovered 0.11 faults. ARES achieved the
highest code coverage on average, followed by TimeMachine, Sapienz, and Monkey. TimeMachine
detected most unique crashes (179), followed by ARES (171), Sapienz (103), and Monkey (51). Actu-
ally, ARES discovered less crashes than TimeMachine mostly because TimeMachine uses a system-
level event generator, taken from Stoat [44], which ARES does not support. However, system events
present two major drawbacks: (a) they vastly change depending on the Android version [20, 45]
(despite TimeMachine is compatible with Android 7.1, it uses only system-level actions compati-
ble with Android 4.4 [13]); and (b) to execute them, root privileges are required. ARES does not
require root privileges to work properly on any app (i.e., we recall that certain apps do not execute
on rooted devices [47]). Analyzing the execution traces of each tool, we searched and identified
the faults immediately after the generation of system events not related to the AUT. More than
a third (63) of the crashes generated by TimeMachine come from system-level actions. Figure 8
shows a pairwise comparison of detected crashes among evaluated techniques. TimeMachine also
finds only 20% of unique crashes found by ARES. For example, in the app mnv, only ARES gener-
ated a crash of the type NullPointerException, in which a missing control on input generates the
failure of the conversion function CharSequence.toString(). The text field from which the bug can
be generated is not immediately available, but several interaction steps with the app are required.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:23

This shows that ARES can be used together with other state-of-the-art Android testing techniques
(in particular, TimeMachine) to cover more code and discover more crashes jointly.

The good results of ARES in code coverage and exposed faults are due to the reinforcement
mechanisms of the RL algorithms and the reward function that drives the testing tool through
states of the app leading to hard-to-reach states. Search-based techniques such as Sapienz typically
observe the program behavior over an event sequence that may be very long. Hence, the associated
coverage feedback, used to drive search-based exploration, does not have enough fine-grained
details to support good local choices of the actions to be taken. The fitness function used by these
algorithms evaluates an entire action sequence and does not consider the individual steps in the
sequence. TimeMachine improved this weakness by relying on the coverage feedback obtained at
an individual state to determine which portion of the app is not still explored. The drawback of
this kind of approach is a higher computational cost that requires a higher testing time. In fact,
while the time to dump the GUI is in common both to TimeMachine and ARES, measuring the
coverage as feedback at each timestep implies three steps

• generation of the coverage files concerning the AUT,
• retrieval of coverage files from the Android device,
• coverage computation and processing.

These steps together take on average a second and a half to be completed. The strategy of ARES
relies on monitoring the transition between activities taking on average 0.1 milliseconds rather
than computing the code coverage at each timestep. Hence, the latter approach offers a better
tradeoff between the granularity of the feedback and the computational cost required to obtain it.

RQ8-b. Table 6 shows the coverage reached and the faults exposed by ARES and Q-Testing on 10
Android apps instrumented with JaCoCo. ARES achieved 64.3% coverage and exposed 0.41 faults on
average; it detected 17 unique crashes. Q-Testing achieved 52.5% code coverage and 0.27 crashes on
average, and it detected 16 unique crashes. ARES achieved the highest code coverage on almost all
apps, and on average ARES covered 12% more code than Q-Testing. Q-Testing generated six faults
in common with ARES, while the other four faults are generated using the system-level events
of Stoat. In the app antennapod, only ARES generated a NumberFormatException with a text field
located deeply in the Settings submenu. In this comparison, the main advantage of ARES seems
to be a better reward function that encourages the tool to visit the greatest number of activities
within the same episode. Instead, Q-Testing determines the reward of the Q-Learning algorithm
by computing the similarity between Android app states, which does not guarantee an efficient
way to overcome blocking activities.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:24 A. Romdhana et al.

Fig. 9. Code coverage achieved by ARES and Q-Testing.

Table 6. Comparison between Q-Testing and ARES

App Coverage Faults

ARES Q-Testing ARES Q-Testing

Alogcat 84 76 0 0
Antennapod 48 42 0.8 0.4

AnyCut 72 67 0 0
batterydog 65 49 0.5 0.3
Jamendo 64 46 0.4 0.7

Multismssender 71 45 0.4 0
Myexpanses 63 36 0.4 0.2

talalarmo 74 74 0.8 0.5
Tomdroid 61 50 0.3 0.2

vanilla 41 40 0.5 0.4

Average 64.3 52.5 0.41 0.27
Sum 17 16

6.3 Threats To Validity

We adopted several strategies to enhance the internal validity of our results. We chose apps coming
from a standard testing benchmark used in previous studies to mitigate risks of selection bias. We
used default settings, given the same starting condition, and ran each tool several times under
the same workload to ensure that no testing tool was at a disadvantage. We followed the Stoat
protocol to identify unique crashes and, also, we manually checked the crashes found. To measure
coverage, we used JaCoCo, a standard coverage tool.

7 IMPLICATIONS AND LIMITATIONS

Using ARES as testing tool involves several benefits:

• black-box automated testing: ARES relies only on the GUI of the AUT. This allows de-
velopers to test their production apps with no modifications. Available state-of-the-art tools,
such as Sapienz and TimeMachine, rely on code coverage to drive exploration, and as recog-
nized by the researchers who developed them, this makes testing less efficient.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:25

• wide compatibility: ARES works on Windows, Linux, and MacOS. ARES can test apps in
parallel on emulators or real devices with Android from 6.0 to 10.0.
• policy reuse: At the end of the testing phase, ARES saves the status of the neural network

as a policy file. Instead of restarting ARES from scratch each time a new version of the AUT
is launched, the policy can be loaded and reused on a later version of the AUT.
• modularity: Within ARES, the app environment is decoupled from the RL algorithm used

during the testing phase, allowing to deploy new algorithms easily.

Despite the advantages given by ARES there are also some limitations:

• benefits on easy apps: Performance on simpler apps sometimes align with the performance
of dummy methods such as random algorithms and does not justify the use of Deep RL.
• system-level events: ARES implements a limited set of events that act at the system-level,

including the most commonly supported ones, such as toggle Internet connection and rotate

screen. The other system-level events require rooted devices to work, which brings some
drawbacks, among which the inability to work with apps that, for security reasons, perform
a “root-check” and stop working if the device is rooted.

8 RELATED WORK

As suggested by Reference [27], existing research on Android testing can be classified by the
methodologies that the testing approaches adopt.

8.1 Random Testing

Testing tools in this category generate random events on the AUT GUI. Monkey [21] is one of
the most popular black-box Android testing tools. It triggers events by interacting randomly with
screen coordinates. This simple random approach worked relatively well on some benchmark ap-
plications [11]. Nonetheless, Monkey tests involve many ineffective or repeated events, as there
is no guidance to make the exploration efficient. ARES implements a smarter version of Monkey,
which we used as a baseline (Random). Such an improved version selects only actions that are
possible in a given GUI state, thus making the exploration strategy a bit more efficient.

8.2 Model-based Testing

Model-based tools [5, 6, 23] first build navigation models of the Android app by means of static or
dynamic analysis, used to explore efficiently the application states, and then they extract test cases
from such models to eventually expose bugs. AndroidRipper [5], MobiGUITAR [6] try to maximize
the exploration by using the ripping technique. Guo et al. [23] use static analysis to effectively
improve GUI exploration performance. Stoat [44] uses a stochastic FSM to model the app behavior.
The app model is built using dynamic analysis, enhanced with a weighted UI exploration strategy,
and with the help of static analysis. Compared to Stoat, ARES can be viewed as computing a
navigation model implicitly: The MDP model used by the Deep RL algorithms. One key advantage
of using an implicit model is that we do not have to deal with the combinatorial explosion of its
size, which Stoat controls using model compaction heuristics.

8.3 Structural Testing

Structural strategies [7, 14, 16, 35, 36] generate coverage-oriented inputs using symbolic execu-
tion or evolutionary algorithms. Sapienz [36] maximizes code coverage and bug revelation using
a Pareto-optimal multi-objective search-based approach, which applies genetic operators such as
mutation and crossover to produce new test cases. It can generate specific input for text fields
by reverse-engineering the APK. This process occasionally results in invalid sequences discarded

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:26 A. Romdhana et al.

by the fitness functions that reward test cases with high coverage. TimeMachine [14] improves
Sapienz by identifying interesting states in the past and restarting the search process from them
when the search stagnates. While coverage-oriented approaches require the possibility to instru-
ment the app to measure coverage and possibly execute it symbolically, our approach is black-box
and does not suffer from the scalability issues affecting, e.g., symbolic execution.

8.4 Machine Learning-based Testing

Some ML-based testing approaches [8, 28, 31] use an explicit, supervised training process to learn
from previous test executions. They can reuse previous knowledge acquired on different apps or
past versions of the app under test. Approaches as QBE [28] make the transfer of knowledge to
new apps possible by abstracting the app state in a form that is supposed to hold across differ-
ent domains and implementations. However, the effectiveness of such a transfer learning process
depends on the similarity between new and old apps.

One of the first works proposing RL for GUI testing is AutoBlackTest [38]. This approach is
based on the simplest form of RL, Tabular Q-Learning, whose effectiveness is strongly dependent
on the initial values in the Q-Table. On the contrary, ARES learns the action-value function from
scratch during the exploration of the AUT. One of the most recent approaches to Android testing
based on Deep Learning is Q-Testing [41]. However, it also uses Tabular Q-Learning as a backbone.
At the same time, learning is limited to the computation of the similarity between Android app
states, which determines the reward of the Q-Learning algorithm. ARES instead learns both the
state similarity and the action-value function during its interactions with the AUT.

9 CONCLUSION AND FUTURE WORK

We have proposed an approach based on Deep RL for the automated exploration of Android apps.
The best exploration strategy is learned automatically as the test progresses. The approach is im-
plemented in the open-source tool ARES, which is complemented by FATE, a model-based Android
testing tool that we developed to support fast execution and configuration of the alternative Deep
RL algorithms of ARES. The resulting configuration of ARES, particularly when running the SAC
Deep RL algorithm, outperformed all the considered baselines in terms of coverage achieved over
time and exposed bugs.

In our future work, we plan to investigate specific fault categories that are particularly relevant
for Android apps, such as security vulnerabilities. In fact, we think that the adaptation and reward
mechanisms used by Deep RL algorithms to learn the optimal exploration strategy could be par-
ticularly effective when the fault to be exposed is a security fault. We also plan to port ARES and
FATE to iOS.

A APPENDIX

A.1 Study 1- Deep RL

Certain parameters of the algorithms are omitted for simplicity and can be found in the documen-
tation of Stable Baselines [25].

Control Policy:

Deep RL algorithms rely on a policy based on an MLP composed of 2 layers and 64 neurons each.
Learning rates:

• DDPG: 0.0001
• SAC: 0.0003
• TD3: 0.0003

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:27

DDPG

Configuration 1 2 3 4 5 6 7 8

random_exploration 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8
nb_train_steps 5 25 5 25 5 25 5 25

TD3

Configuration 1 2 3 4 5 6 7 8

random_exploration 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8
train_frequency 25 100 25 100 25 100 25 100

SAC

Configuration 1 2 3 4 5 6 7 8

target_update_interval 1 1 2 2 5 5 10 10
train_frequency 1 5 1 5 1 5 1 5

A.2 Study 1- Tabular RL

Q-Learning

Configuration 1 2 3 4 5 6 7 8

epsilon 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
gamma 0.99 0.99 0.99 0.99 0.9 0.9 0.9 0.9
alpha 0.628 0.628 0.628 0.628 0.628 0.628 0.628 0.628

A.3 Study 2

Some parameters used in Study 2 have been selected from the results of Study 1 (see Section 6).
DDPG:

• Control Policy: MLP, 2 layers, 64 neurons
• Learning rate: 0.0001
• nb_train_steps: 10
• random_exploration: 0.7

SAC:

• Control Policy: MLP, 2 layers, 64 neurons
• Learning rate: 0.0003
• train_freq: 5
• target_update_interval: 10

TD3:

• Control Policy: MLP, 2 layers, 64 neurons
• Learning rate: 0.0003
• train_freq: 10
• random_exploration: 0.8

Q-Learning:

• epsilon: 0.8
• gamma: 0.9
• alpha: 0.628

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

65:28 A. Romdhana et al.

REFERENCES

[1] 2006. Emma.Retrieved from http://emma.sourceforge.net.

[2] 2020. Appbrain. Retrieved from https://www.appbrain.com.

[3] 2020. Appium. Retrieved from http://appium.io.

[4] Josh Achiam. 2018. Key Concepts in RL. Retrieved from https://spinningup.openai.com/en/latest/spinningup/rl_intro.

html.

[5] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine, and Atif M. Memon. 2012.

Using GUI ripping for automated testing of Android applications. In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering. IEEE, 258–261.

[6] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta, and Atif M. Memon. 2014. Mobi-

GUITAR: Automated model-based testing of mobile apps. IEEE Softw. 32, 5 (2014), 53–59.

[7] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Automated concolic testing of smartphone

apps. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering.

1–11.

[8] Nataniel P. Borges, Maria Gómez, and Andreas Zeller. 2018. Guiding app testing with mined interaction models. In

Proceedings of the IEEE/ACM 5th International Conference on Mobile Software Engineering and Systems (MOBILESoft).

IEEE, 133–143.

[9] Justin A. Boyan and Andrew W. Moore. 1995. Generalization in reinforcement learning: Safely approximating the

value function. In Proceedings of the Conference on Advances in Neural Information Processing Systems. 369–376.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.

2016. Openai Gym. arXiv preprint arXiv:1606.01540 (2016).

[11] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Automated test input generation for Android:

Are we there yet?(e). In Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE, 429–440.

[12] Jack Clark and Dario Amodei. 2016. Faulty Reward Functions in the Wild. Retrieved from https://openai.com/blog/

faulty-reward-functions/.

[13] Zhen Dong, Marcel Bohme, Lucia Cojocaru, and Abhik Roychoudhury. 2020. Github Repository: TimeMachine.

Retrieved from https://github.com/DroidTest/TimeMachine/blob/master/fuzzingandroid/sys_event_generator/sys_

event.py.

[14] Zhen Dong, Marcel Bohme, Lucia Cojocaru, and Abhik Roychoudhury. 2020. Time-travel Testing of Android apps. In

Proceedings of the 42nd International Conference on Software Engineering (ICSE). 481–492.

[15] Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing function approximation error in actor-critic

methods. arXiv preprint arXiv:1802.09477 (2018).

[16] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android testing via synthetic symbolic

execution. In Proceedings of the 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE).

IEEE, 419–429.

[17] Google. 2019. Broadcasts. Retrieved from https://developer.android.com/guide/components/broadcasts.

[18] Google. 2019. Safety Net. Retrieved from https://developer.android.com/training/safetynet/attestation.

[19] Google. 2020. Android Emulator. Retrieved from https://developer.android.com/studio/run/emulator/.

[20] Google. 2020. System-Level Events API 25. Retrieved from https://cs.android.com/android/platform/superproject/+/

android-7.1.2_r36:frameworks/base/core/res/AndroidManifest.xml.

[21] Google. 2020. UI/Application Exerciser Monkey. Retrieved from https://developer.android.com/studio/test/monkey.

[22] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong

Su. 2019. Practical GUI testing of Android applications via model abstraction and refinement. In Proceedings of the

IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 269–280.

[23] Wunan Guo, Liwei Shen, Ting Su, Xin Peng, and Weiyang Xie. 2020. Improving automated GUI exploration of Android

apps via static dependency analysis. In Proceedings of the IEEE International Conference on Software Maintenance and

Evolution (ICSME). 557–568. DOI:https://doi.org/10.1109/ICSME46990.2020.00059

[24] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: Off-policy maximum entropy

deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290 (2018).

[25] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla Dhariwal,

Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and

Yuhuai Wu. 2018. Stable Baselines. Retrieved from https://github.com/hill-a/stable-baselines.

[26] Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6, 2 (1979), 65–70.

[27] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, and Jacques Klein. 2018. Automated testing of Android

apps: A systematic literature review. IEEE Trans. Reliab. 68, 1 (2018), 45–66.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

http://emma.sourceforge.net
https://www.appbrain.com
http://appium.io
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://openai.com/blog/faulty-reward-functions/
https://github.com/DroidTest/TimeMachine/blob/master/fuzzingandroid/sys_event_generator/sys_event.py
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/studio/run/emulator/
https://cs.android.com/android/platform/superproject/+/android-7.1.2_r36:frameworks/base/core/res/AndroidManifest.xml
https://developer.android.com/studio/test/monkey
https://doi.org/10.1109/ICSME46990.2020.00059
https://github.com/hill-a/stable-baselines

Deep Reinforcement Learning for Black-Box Testing of Android Apps 65:29

[28] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tanriverdi, and Yunus Donmez. 2018. QBE:

QLearning-based exploration of Android applications. In Proceedings of the IEEE 11th International Conference on

Software Testing, Verification and Validation (ICST). IEEE, 105–115.

[29] Edward A. Lee. 2009. Finite State Machines and Modal Models in Ptolemy II. Technical Report UCB/EECS-2009-151.

EECS Department, University of California, Berkeley. Retrieved from http://www2.eecs.berkeley.edu/Pubs/TechRpts/

2009/EECS-2009-151.html.

[30] Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274 (2017).

[31] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A deep learning-based approach to au-

tomated black-box Android app testing. In Proceedings of the 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE). IEEE, 1070–1073.

[32] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and

Daan Wierstra. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[33] Long-Ji Lin. 1993. Reinforcement Learning for Robots Using Neural Networks. Technical Report. Carnegie-Mellon Uni-

versity School of Computer Science, Pittsburgh PA.

[34] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input generation system for Android apps.

In Proceedings of the 9th Joint Meeting on Foundations of Software Engineering. 224–234.

[35] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented evolutionary testing of Android

apps. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.

599–609.

[36] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for Android applications. In

Proceedings of the 25th International Symposium on Software Testing and Analysis. 94–105.

[37] Evgeny Mandrikov, Marc R. Hoffmann, Brock Janiczak. 2020. Jacoco Code Coverage. Retrieved from https://www.

eclemma.org/jacoco/.

[38] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro. 2012. AutoBlackTest: Automatic black-box

testing of interactive applications. In Proceedings of the IEEE 5th International Conference on Software Testing, Verifica-

tion and Validation. IEEE, 81–90.

[39] Microsoft. 2020. Your Device is Rooted and You Can’t Connect-Android. Retrieved from https://docs.microsoft.com/it-

it/mem/intune/user-help/your-device-is-rooted-and-you-cant-connect-android.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin

Riedmiller. 2013. Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[41] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020. Reinforcement learning based curiosity-

driven testing of Android applications. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software

Testing and Analysis. 153–164.

[42] Martin Riedmiller. 2005. Neural fitted Q iteration–First experiences with a data efficient neural reinforcement learning

method. In Proceedings of the European Conference on Machine Learning. Springer, 317–328.

[43] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. 2014. Deterministic

policy gradient algorithms. In Proceedings of the 31st International Conference on Machine Learning, Vol. 32, Eric P.

Xing, and Tony Jebara (Eds.). PMLR, 387–395. https://proceedings.mlr.press/v32/silver14.html.

[44] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su. 2017.

Guided, stochastic model-based GUI testing of Android apps. In Proceedings of the 11th Joint Meeting on Foundations

of Software Engineering. 245–256.

[45] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su. 2017.

System-Level Events API 19. Retrieved from https://sites.google.com/site/stoat2017/evaluation/stoat-s-system-level-

events.

[46] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement learning: An introduction. MIT press.

[47] Vincent F. Taylor and Ivan Martinovic. 2017. Short paper: A longitudinal study of financial apps in the Google Play

store. In Proceedings of the International Conference on Financial Cryptography and Data Security. Springer, 302–309.

[48] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Mach. Learn. 8, 3–4 (1992), 279–292.

Received January 2021; revised August 2021; accepted November 2022

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 4, Article 65. Publication date: July 2022.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-151.html
https://www.eclemma.org/jacoco/
https://docs.microsoft.com/it-it/mem/intune/user-help/your-device-is-rooted-and-you-cant-connect-android
https://proceedings.mlr.press/v32/silver14.html
https://sites.google.com/site/stoat2017/evaluation/stoat-s-system-level-events

