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Abstract
Key message We present a high-density integrated map for grapevine, allowing refinement and improved understand-
ing of the grapevine genome, while demonstrating the applicability of the Vitis18K SNP chip for linkage mapping.
Abstract The improvement of grapevine through biotechnology requires identification of the molecular bases of target traits 
by studying marker-trait associations. The Vitis18K SNP chip provides a useful genotyping tool for genome-wide marker 
analysis. Most linkage maps are based on single mapping populations, but an integrated map can increase marker density and 
show order conservation. Here we present an integrated map based on three mapping populations. The parents consist of the 
well-known wine cultivars ‘Cabernet Sauvignon’, ‘Corvina’ and ‘Rhine Riesling’, the lesser-known wine variety ‘Deckrot’, 
and a table grape selection, G1-7720. Three high-density population maps with an average inter-locus gap ranging from 
0.74 to 0.99 cM were developed. These maps show high correlations (0.9965–0.9971) with the reference assembly, contain-
ing only 93 markers with large order discrepancies compared to expected physical positions, of which a third is consistent 
across multiple populations. Moreover, the genetic data aid the further refinement of the grapevine genome assembly, by 
anchoring 104 yet unanchored scaffolds. From these population maps, an integrated map was constructed which includes 
6697 molecular markers and reduces the inter-locus gap distance to 0.60 cM, resulting in the densest integrated map for 
grapevine thus far. A small number of discrepancies, mainly of short distance, involve 88 markers that remain conflictual 
across maps. The integrated map shows similar collinearity to the reference assembly (0.9974) as the single maps. This high-
density map increases our understanding of the grapevine genome and provides a useful tool for its further characterization 
and the dissection of complex traits.

Introduction

Grapevine, Vitis vinifera, is a commercially important fruit 
crop since the berries are used for a wide range of products 
such as wine, table grapes, raisins and spirits. Each of these 
products requires specific berry attributes concerning color, 
composition and firmness; therefore, grapevine improvement 
strategies, including breeding programs, have been tailored 
for such traits. Grapevine cultivation is increasingly prone 
to the impacts of the changing climate (Duchêne et al. 2010; 
Hannin 2019), resulting in the introduction of new breeding 
targets beside more traditional ones such as resistance to 
biotic stresses (Zyprian et al. 2016). Being a woody peren-
nial fruit crop, grapevine is characterized by a large plant 
size and long juvenile phase, making it time consuming and 
costly to grow and evaluate plants for breeding purposes. 
Therefore, the use of molecular markers in breeding is 
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appealing as seedlings can be selected before reaching matu-
rity, thereby reducing the space, time and money required 
(Myles 2013).

There are two main strategies to assist breeding with 
molecular selection: to use markers tightly linked to genomic 
regions controlling phenotypic traits (marker-assisted selec-
tion) or to exploit all available markers as predictors of breed-
ing value (genomic selection) (Barabaschi et al. 2016). In the 
first approach, linkage maps are used to identify genes and 
molecular markers associated with traits of interest. Dense 
linkage maps increase the probability of polymorphic mark-
ers in an important chromosome interval, thereby increas-
ing the probability of identifying a marker-trait association. 
Initially, the construction of linkage maps in grapevine was 
constrained by the availability of molecular markers (Lodhi 
et al. 1995; Dalbó et al. 2000; Doligez et al. 2002; Grando 
et al. 2003). With the introduction of single-nucleotide poly-
morphisms (SNPs) and cost-effective strategies for SNP 
genotyping, the number of markers on linkage maps greatly 
increased (Troggio et al. 2007; Salmaso et al. 2008; Moreira 
et al. 2011). Current high-throughput genotyping technolo-
gies like the Genotyping-By-Sequencing (GBS) approach 
based on Next-Generation Sequencing (NGS) have allowed 
the construction of dense linkage maps with thousands of 
markers (Teh et al. 2017; Torregrosa et al. 2017; Zhu et al. 
2018; Lewter et al. 2019; Tello et al. 2019). As with GBS, 
genotyping arrays, such as SNP hybridization chips, allow for 
inexpensive and high-throughput genotyping of markers on 
a genome-wide scale. The lower error rate, and thus higher 
reproducibility of SNP chip genotyping compared to GBS 
genotyping, makes it an attractive alternative (Mardis 2008; 
Houel et al. 2015). Moreover, GBS genotyping is often con-
strained by the use of different subsets of markers of varying 
quality. Genotyping by means of a standardized SNP chip can 
alleviate this problem allowing a faster data integration across 
populations. Several SNP arrays have been developed for var-
ious important fruit crops, such as apple (Chagné et al. 2012; 
Bianco et al. 2014, 2016), peach (Verde et al. 2012), pear 
(Montanari et al. 2013, 2019; Li et al. 2019), sweet and sour 
cherry (Peace et al. 2012) and strawberry (Bassil et al. 2015). 
In grapevine, following the release of the genome sequence 
and its annotation and later refinements (The French–Ital-
ian Public Consortium for Grapevine Genome Characteri-
zation 2007; Canaguier et al. 2017), a first SNP array, the 
Vitis9K SNP chip, was developed based on SNPs identified 
from resequencing of 11 Vitis vinifera cultivars and six wild 
Vitis species (Myles et al. 2010). Subsequently, the Grap-
eReSeq Consortium developed a second array, the Vitis18K 
SNP array, containing 13561 SNPs identified in 47 Vitis vin-
ifera cultivars and 4510 SNPs identified in 12 genotypes from 
five Vitis species and five Muscadinia rotundifolia genotypes 
(Le Paslier et al. 2013). The Vitis18K SNP chip has been 
mostly used to assess population genetic diversity, structure, 

and relatedness (De Lorenzis et al. 2015, 2019; Degu et al. 
2015; Mercati et al. 2016, 2021; Ruffa et al. 2016; Laucou 
et al. 2018; Marrano et al. 2018; Sunseri et al. 2018; Bianchi 
et al. 2020; Boccacci et al. 2020; Crespan et al. 2020, 2021; 
Raimondi et al. 2020; D’Onofrio et al. 2021), or to identify 
somatic variants to explain intra-varietal diversity (De Loren-
zis et al. 2017). The application of the Vitis18K SNP array to 
identify marker-trait associations, however, remains limited 
(Houel et al. 2015; Duchêne et al. 2020; Mamani et al. 2021). 
Finally, as for many other species, despite the generation of 
the high-throughput genotyping tools, the position of geno-
typed SNPs that can be inferred by sequence information still 
needs mapping validation.

Published linkage maps are usually based on single map-
ping populations. This limits the genetic background, and 
thus the level of polymorphism observed, thereby restrict-
ing the number of markers that can be mapped. This can 
be addressed by the construction of integrated maps, which 
combine the information from several maps and mapping 
populations. By identifying markers polymorphic across 
various genetic backgrounds, integrated maps increase 
the number of markers on the linkage maps. Furthermore, 
they enable development of highly validated marker orders 
across the genomes and are useful in overcoming local loss 
of genetic resolution by increasing recombination. Reli-
able information on markers and their ordering supports 
the identification of chromosomal rearrangements or gene 
duplications (Maccaferri et al. 2015; Wen et al. 2017). Also, 
the reliability of marker location provided by mapping and 
development of reference integrated maps can improve the 
efficiency of Quantitative Trait Loci (QTL), meta-QTL, 
genome-wide association (GWAS) studies, gene mapping 
and cloning, thereby facilitating molecular breeding and 
selection. To date, some integrated maps have been estab-
lished in grapevine. Doligez et al. (2006) established the first 
integrated map containing SSR (simple sequence repeat) 
markers based on five mapping populations generated from 
six wine grape parents (‘Bianca’, ‘Cabernet Sauvignon’, 
‘Chardonnay’, ‘Grenache’, ‘Riesling’ and ‘Syrah’), and two 
table grape parents (MTP2121-30 and MTP2223-27). Vez-
zulli et al. (2008) produced the first grapevine integrated 
map including SNP markers and AFLPs (amplified fragment 
length polymorphisms) together with SSRs, by using three 
mapping populations derived from five wine grape parents 
(‘Cabernet Sauvignon’, ‘Grenache’, ‘Pinot Noir’, ‘Riesling’ 
and ‘Syrah’). Subsequently, two integrated maps derived 
from interspecific hybrids were established. The first, by 
Moreira et al. (2011), was based on two mapping popula-
tions and contained SSR and SNP markers. The marker 
genotyping for the second map was obtained through GBS 
and generated an integrated map with only SNP markers 
based on two half-sib mapping progenies (Teh et al. 2017). 
The latest grapevine integrated maps were established using 
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GBS-SNP or rhAmpSeq SNP markers. The map by Lewter 
et al. (2019) used two half-sib muscadine grape mapping 
populations from the parents ‘Black Beauty’, ‘Nesbitt’ and 
‘Supreme’. The map by Tello et al. (2019) used ten half-
diallel populations derived from five elite grapevine culti-
vars. Finally, the map by Zou et al. (2020) was based on four 
bi-parental populations spanning the diversity of the Vitis 
genus and used markers that were designed by an innovative 
approach aiming to increase marker transferability across 
grapevine species.

This study aims to generate the first integrated map using 
the Vitis18K SNP chip based on three mapping populations. 
The parents of these mapping populations include the well-
known wine varieties, ‘Cabernet Sauvignon’ and ‘Rhine 
Riesling’, the local variety ‘Corvina’, the lesser-known 
‘Deckrot’ and a muscat table grape selection (G1-7720). In 
addition to demonstrating the application of the Vitis18K 
SNP chip across various mapping populations, we confirmed 
by mapping, the positions for about 9500 of the included 
SNPs. By constructing a high-density integrated map a reli-
able order, validated in many cases across multiple maps, 
was released, while also providing a list of markers with 
less reliable positioning. This high-density integrated map 
represents a highly valuable tool that can now be exploited 
for QTL mapping of relevant traits segregating in the 
populations.

Materials and methods

Mapping populations

Three Vitis vinifera mapping populations were used in this 
study to build the single population genetic maps from 
which the high-density integrated grapevine map was con-
structed. The CSxC mapping population was derived from 
a cross made in 2015 by the University of Verona between 
the ‘Cabernet Sauvignon’ (VIVC 1929) and ‘Corvina 
Veronese’ (VIVC 2863) varieties, originally including 680 
seedlings planted on their own roots in 2017. A population 
sub-portion including the 142 progenies here considered 
for mapping purposes was later propagated and planted in 
two replicates at Società Agricola Vivai Gozzo in Verona, 
Italy (45° 25′ 45″ N, 11° 01′ 20″ E) on SO4 rootstock. The 
DRxG1 mapping population resulted from a cross made by 
the Agricultural Research Council (ARC) in 2009 between 
the wine grape ‘Deckrot’ (VIVC 3482) and a table grape 
selection, G1-7220, originating from a cross between ‘Black 
Rose’ (VIVC 1408) and ‘Muscat Seedless’ (VIVC 8251). 
The DRxG1 population, including 225 plants, was planted 
in 2011 in a single block at ARC Infruitec-Nietvoorbij in 
Stellenbosch, South Africa (33° 54′ 47.6″ S, 18° 51′ 54.9″ 
E). A subset of 137 individuals was used for mapping 

purposes. The RRxCS mapping population was obtained 
from a cross made in 2005 between ‘Riesling Weiss’ (VIVC 
10077) and ‘Cabernet Sauvignon’ (VIVC 1929) and was 
planted in 2008 in the experimental field “Giaroni” of the 
Fondazione Edmund Mach (FEM) in San Michele all’Adige, 
Trento, Italy (46° 11′ 36.7″ N, 11° 08′ 12.9″ E). It included 
300 vines maintained with standard viticultural practices 
among which 139 were here considered for mapping pur-
poses. The DRxG1 and CSxC progenies were tested for 
trueness-to-parent using five SSR markers (VMC6G1, 
VMC8A7, VMC8B5, VVMD7 and VrZAG79 for DRxG1 
and VVMD25, VVMD28, VVMD5, VVS2 and VrZAG79 
for CSxC, respectively), whereas the RRxCS progeny 
was tested using the nine SSR markers recommended for 
characterization of regional cultivars by the European Pro-
ject GrapeGen06 (VVS2, VVMD5, VVMD7, VVMD25, 
VVMD27, VVMD28, VVMD32, VrZAG62 and VrZAG79) 
(Maul et al. 2012).

SNP genotyping

The three mapping populations were genotyped with the 
Illumina Vitis18K SNP chip at FEM (San Michele all’Adige, 
Italy, Table S1). For each of the populations, one individual 
was genotyped in duplicate to determine reproducibility of 
the genotyping. Genomic DNA was extracted from 100 mg 
fresh young green leaves with the QIAGEN ® DNeasy Plant 
Mini Kit as per the manufacturer’s instructions. Following 
DNA quantification, using the NanoDrop™ Spectropho-
tometer 2000 (Thermo Scientific™), 200 nanograms were 
used for the genotyping assay. Raw SNP data were visual-
ized and clustered in GenomeStudio v2011.1 (Illumina Inc., 
San Diego, CA, USA) using a GenCall threshold of 0.20. 
Subsequently, SNPs were re-clustered using ASSiST v1.01 
(Di Guardo et al. 2015), which allows for the recovering of 
SNPs with poor clustering, such as SNPs containing null 
alleles or additional polymorphisms (multi-allelic cluster-
ing). The following quality thresholds were applied to filter 
the data: SNPs with more than 5% missing data, individuals 
with a call rate differing more than 10% from the population 
mean, individuals displaying more than 0.3% unexpected 
genotypes and SNP markers displaying more than 5% unex-
pected genotypes or segregation distortion at P < 0.001. 
ASSiST was also beneficial to recode the genotype dataset 
into JoinMap® input format based on the segregation of the 
markers in the population (efxeg, hkxhk, lmxll or nnxnp).

SSR genotyping

In addition to the SNP markers, SSRs were also genotyped 
mainly to link downstream QTL analyses results to previ-
ous results (Table S2). For SSR genotyping, genomic DNA 
was independently extracted from 100 mg fresh young green 
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leaves using a CTAB extraction (Doyle and Dickson 1987). 
The CTAB extraction buffer was supplemented with 2% pol-
yvinylpyrrolidone (PVP) and, only in the case of the DRxG1 
population, also 0.04 mg/ml proteinase K. For the DRxG1 
population, multiplex PCR reactions were prepared using the 
QIAGEN® Multiplex PCR kit in reaction volumes of 15 µl 
containing 1X QIAGEN® multiplex PCR master mix, 50 ng 
of genomic DNA and 0.2 µM of each primer. PCR ampli-
fications were performed as follows: an initial denaturation 
step of 15 min at 95 °C; followed by 35 cycles of 30 s at 
94 °C, 90 s at  TA and 60 s at 72 °C; followed by a final 
extension step of 30 min at 60 °C. SSR genotyping in the 
CSxC and RRxCS populations was performed as described 
by Emanuelli et al. (2013). Sizing analysis of PCR products 
was performed on an ABI 3730xl DNA sequencer (Applied 
Biosystems) at the Central Analytical Facilities (CAF, Stel-
lenbosch University) using a Genescan 500 LIZ™ or on an 
ABI 3130xl Genetic Analyzer (Applied Biosystems) using 
GeneScan™ 400HD ROX™ as internal size standard either 
at FEM or the University of Verona. Genemapper®v4.1 
(Applied Biosystems) was used to score genotypes visually. 
The datasets were converted in Excel to the JoinMap® input 
format (abxcd, efxeg, hkxhk, lmxll or nnxnp).

Theoretical physical position of markers

SNP marker expected positions, when available, were recov-
ered from the literature (Laucou et al. 2018). Alternatively, 
the flanking sequences of the SNP markers (https:// urgi. versa 
illes. inra. fr/ Speci es/ Vitis/ Grape ReSeq_ Illum ina_ 20K) were 
used as queries for BLASTN (threshold  1xE−05) searches to 
identify their theoretical position on the ‘PN40024 12X.v2’ 
reference genome sequence (Canaguier et al. 2017) down-
loaded from https:// urgi. versa illes. inra. fr/ Speci es/ Vitis/ Data- 
Seque nces/ Genome- seque nces. In the case of multiple hits, 
the best hit (smaller E-value) was selected. For SSR markers, 
expected physical positions were recovered as described in 
Delfino et al. (2019) or downloaded from https:// urgi. versa 
illes. inra. fr/ jbrow se/ from the GFF3 file. Only when the 
BLASTN search with primer sequences did not provide any 
output, was the Sequence-Tagged Site (STS) derived from 
NCBI (https:// www. ncbi. nlm. nih. gov/ nucco re) used as a 
query to recover the SSR physical position. The ‘PN40024 
12X.v2’ theoretical physical positions for all markers used 
in this study are reported in Table S1 (SNPs) and Table S2 
(SSRs) alongside the mapping information. Linkage disequi-
librium (LD) was estimated in Plink v1.90 between all geno-
typed SNPs with MAF > 0.05 for each chromosome either 
within each population or considering individuals from all 
three populations. Average r2 in sequential bins of 20 Kbp 
was plotted against physical positions with R 4.2.1.

Single population map construction

Genotype data of both SNP and SSR markers were used 
to construct population maps in JoinMap® v5 (Van Ooijen 
2019). The dataset for CSxC was flipped around (to CxCS) 
in order to allow direct comparison of the ‘Cabernet Sau-
vignon’ maps from CSxC and RRxCS. In all populations, 
marker data were filtered in JoinMap® to exclude individu-
als or markers with more than 5% missing data and markers 
that showed severe segregation distortion (χ2 ≥ 15). This 
second segregation distortion filtering step was necessary 
since microsatellites could not be assessed in ASSiST. All 
further markers were considered to construct single popula-
tion maps to validate genetic mapping positions. To con-
struct single population maps for map integration, the data-
sets were reduced by including only a single representative 
marker per group of markers with 100% similarity (matching 
genotypes across all individuals that would map to the same 
position). Representative loci were either selected using the 
‘exclude similar loci’ function in JoinMap® that retains the 
first locus in each group if no shared markers with other 
datasets were present or manually reduced in MS Excel to 
ensure that most shared markers across populations were 
retained as representatives to support downstream map 
integration.

Markers were grouped into linkage groups using a LOD 
score of 4.0 or higher. They were ordered using the maxi-
mum likelihood (ML) mapping algorithm, which uses the 
Haldane mapping function (Haldane 1919). The ML param-
eters were adapted to allow the algorithm to run longer until 
convergence and were set as follows: chain length = 3000 for 
S1, S2 and S3, 10,000 for S4, 15,000 for S5 and 30,000 for 
T0; stop criterion = 5000 for S1, S2 and S3, 20,000 for S4, 
25,000 for S5 and 50,000 for T0. The established map qual-
ity was inspected using the –log10P, Nearest Neighbor (NN) 
Fit and NN Stress values. Markers that were identified as a 
poor fit either due to creating large distances on the map, or 
to poor map quality criteria (high –log10P, high NN Fit or 
high NN Stress values) were removed. As explained in the 
Joinmap manual, poor fitting loci are expected to have values 
that are very different to the rest of the dataset. In this study, 
markers with NN Fit and NN stress values greater than 3.00 
or markers with -log10P larger than 0.10 were removed. The 
mapping analysis was repeated until the map contained no 
poor fitting markers. Excluded markers were then reintro-
duced one by one to confirm poor fit. If re-introduction of 
a marker resulted in poor fit criteria or increased the logE-
likelihood (indicator of overall map quality), the marker was 
removed from further analysis until a good quality map was 
established. As a last step to improve small distance ordering 
of the markers, the physical theoretical markers positions 

https://urgi.versailles.inra.fr/Species/Vitis/GrapeReSeq_Illumina_20K
https://urgi.versailles.inra.fr/Species/Vitis/GrapeReSeq_Illumina_20K
https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-sequences
https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-sequences
https://urgi.versailles.inra.fr/jbrowse/
https://urgi.versailles.inra.fr/jbrowse/
https://www.ncbi.nlm.nih.gov/nuccore
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of representative markers were considered to improve the 
ordering by providing them as a fixed order input in Join-
Map® and checking for similar or improved logE-likelihood 
values. Again, poor fitting markers were removed from the 
fixed order, to allow positioning only according to genetic 
data, and eventually from the map analysis, until the map 
contained again no poor fitting markers.

Integrated map construction

The integrated map was developed from the three population 
maps based on the reduced datasets, as explained previously, 
which included only one representative marker per group of 
identical markers. This was implemented to discard redun-
dant information for integration while maximizing shared 
markers.

The marker orders of the three population maps were 
inspected visually for collinearity. For each chromo-
some, the map positions of each marker were compared 
against each other in MS Excel to identify marker conflicts 
between population maps. The conflict orders were forced 
in the other population(s) to test whether the alternative 
orders were also acceptable. If the forced order resulted 
in an acceptable map quality (using the same map quality 
criteria as described previously, similar length maps and 
similar log-E likelihood), the conflict across maps was con-
sidered as inconclusive, and the shared acceptable order 
was accepted for building the integrated map. Although this 
sometimes introduced conflicts to the assembly in the other 
populations, we gave priority to the marker order obtained 
by the genetic data. Alternatively, if the forced order 
resulted in poorer map quality or higher stress of markers, 
the conflict order was not accepted in the other population, 
resulting in a conclusive conflict between populations. In 
this case both orders were retained in the respective popu-
lation for building the integrated map (Maccaferri et al. 
2015). The markers involved in these conflicts were differ-
ently labeled with suffixes to be included independently in 
alternative putative positions on the integrated map. The 
suffixes indicated the conflictual populations, where the 
population CSxC, DRxG1 or RRxCS was indicated with 
the letters A, B and C, respectively. This would mean that 
the suffix –AB was used for conflicts between CSxC and 
DRxG1, –AC for conflicts between CSxC and RRxCS, and 
–BC for conflicts between DRxG1 and RRxCS. Prior to 
map integration, the marker order of each population map 
was also compared against the ‘PN40024 12X.v2’ reference 
genome assembly. To also highlight markers and regions 
that were non-collinear to the assembly, these markers 
were labeled, for building the integrated map, indicating 
the population map that was non-collinear to the assem-
bly using the suffixes –A, –B or –C for the CSxC, DRxG1 
and RRxCS population respectively.

The integrated map was finally generated by using the 
MergeMap software (Wu et al. 2011), a package applying 
a “graph-method”-based approach for building consensus 
maps. The integrated map was built for each linkage group 
separately. A weight of 1.0 was applied to each population 
map for each linkage group. All maps were drawn with Map-
Chart v2.32 (Voorrips 2002).

Map evaluation

Genome coverage was estimated by mapping the first and 
last marker on each chromosome to the ‘PN40024 12X.v2’ 
assembly and determining the percentage of the physical 
sequence covered by the mapped markers (Tello et al. 2019).

The constructed single population maps and integrated 
map were tested for collinearity for each chromosome to the 
physical map of the grapevine ‘PN40024 12X.v2’ reference 
assembly (Canaguier et al. 2017). This was done by calculat-
ing pairwise Spearman rank correlation coefficients for each 
linkage group with the function cor as implemented in R ver-
sion 3.5.0. Furthermore, the collinearity was inspected visu-
ally with a dot-plot diagram generated by plotting the genetic 
position of each marker on the linkage groups against the 
physical position on the reference genome.

Chromosomal distribution of SNP markers that were dif-
ferently allocated by mapping compared to the 'PN40024 
12X.v2' assembly, either on different chromosomes or in 
the same chromosome but to a different region (inconsist-
encies > 10 cM), was visually depicted by means of Circos 
diagrams (Krzywinski et al. 2009). Circos diagrams were 
prepared as explained at http:// circos. ca/. Marker density 
across the chromosomes of the integrated map was evalu-
ated by counting the number of SNPs in contiguous windows 
of 5 cM.

Results

SNP and SSR genotyping

The parents and progeny from the three mapping popula-
tions were genotyped using the Vitis18K SNP chip and by 
SSRs (Table 1). After SNP visualization and clustering 
in GenomeStudio, ASSiST was employed for data qual-
ity filtering, recovering SNPs with poor clustering and 
re-coding the SNP dataset to JoinMap format. Datasets 
including 7461, 6641 and 7397 SNPs, respectively, for the 
CSxC, DRxG1 and RRxCS populations (41.23%, 36.75% 
and 40.93% of total tested SNPs) were compiled for link-
age analysis. These datasets contained 227 (CSxC), 167 
(DRxG1) and 258 (RRxCS) SNPs recovered by ASSiST 
(Di Guardo et al. 2015). Genotyping data were found to 
be 99.76%, 99.78% and 99.80% reproducible in the CSxC, 

http://circos.ca/
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DRxG1 and RRxCS datasets, respectively. The extent of 
LD was evaluated in each single population as well as 
by considering all genotyped individuals from the three 
populations (Figure S1). Bins of flanking markers in full 
LD could be found in each single population as well as 
considering all individuals, but were strongly reduced 
in this second panel, promising a local increased resolu-
tion for mapping by integration. Detailed information on 
SNP markers, such as the SNP identity, the position on 
the assembly either available in the literature or recov-
ered by BLASTN of SNP flanking regions to the reference 
genome, and the ASSIST filtering results including the 
segregation type and reason for exclusion for each popula-
tion, is presented in Table S1.

One hundred and twenty-four SSR markers were geno-
typed on the parents of at least one of the three mapping 
populations. SSR genotyping on progenies was carried out 
for polymorphic SSRs mainly in two of the three popula-
tions, and 3, 92 and 64 SSR markers were finally added 
to the dataset for linkage analysis in CSxC, DRxG1 and 
RRxCS populations, respectively. Detailed information 
on SSR markers including SSR name, position on the 
assembly either available in the literature or recovered by 

BLASTN, as well as genotyping information is available 
in Table S2.

Linkage maps from individual populations

The SNP and SSR genotyping data were combined 
(Table S3) to construct three population maps. To develop 
linkage maps 142, 137 and 139 individuals for CSxC, 
DRxG1 and RRxCS populations, respectively, were used. 
Since markers were already filtered for segregation distor-
tion in ASSiST, only 3 SNPs were filtered for distortion 
during map building. On average across the three mapping 
populations, 13% of the ASSIsT-recovered SNPs were 
subsequently removed during map building. Although 
this is higher than the proportion (2%) of poor fit mark-
ers in the rest of the robust dataset, which includes only 
successfully genotyped SNPs, the recovery of SNPs by 
ASSiST still resulted in the addition of 152–217 SNP 
markers in the population maps. Furthermore, most poor 
fit markers (80%) still originated from the robust dataset. 
In general, segregation was evenly spread between mater-
nal (lmxll) and paternal (nnxnp) segregation, although the 

Table 1  Summary of 
information for SNP and SSR 
markers in three grapevine 
mapping populations (CSxC: 
‘Cabernet Sauvignon’ × 
‘Corvina’, DRxG1: ‘Deckrot’ 
× G1-7720, RRxCS: ‘Rhine 
Riesling’ × ‘Cabernet 
Sauvignon’)

The table distinguishes marker information for the dataset containing all markers (whole dataset including 
similar loci), as well as the representative marker dataset (excluding similar loci) used for the computation 
analyses. Number of markers in representative dataset are given in brackets
Subtotals are in italics, whereas total number of markers of input datasets and total mapped markers are 
indicated in bold

CSxC DRxG1 RRxCS

SNP markers excluded during filtering in ASSIST 10,610 11,430 10,674
Monomorphism 8594 9733 8958
Failed 1586 1558 1528
Segregation distortion 424 132 179
Null allele 6 7 9
SNP markers included during filtering in ASSIST 7461 6641 7397
Robust 7234 6474 7139
Recovered multi-allelic SNP 27 18 51
Recovered null allele SNP 200 149 207
Additional SSR markers included 3 91 64
Total n° markers included in whole data-

set (representative dataset) for linkage 
analysis in JoinMap®

7464 (3616) 6732 (3366) 7461 (3600)

Filtering in JoinMap® 0 (0) 4 (7) 4 (4)
Excluded due to segregation distortion 0 (0) 1 (1) 2 (2)
Removal of cross-link markers 0 (0) 2 (2) 2 (2)
Ungrouped markers 0 (0) 1 (4) 0 (0)
Excluded due to poor fit during map construction  331 (149) 402 (186) 282 (137)
Total n° markers mapped in whole dataset 

(representative dataset)
7133 (3467) 6326 (3173) 7175 (3459)
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DRxG1 parents had fewer shared alleles (segregation types 
efxeg and hkxhk) compared to the other parental pairs 
(Table S4).

For the CSxC population, 7133 polymorphic markers, 
which were represented by 3467 representative markers 
with fully matching genotypes of the same segregation 
kind, finally mapped at 1795 unique positions in 19 linkage 
groups corresponding to the 19 chromosome pairs of grape-
vine (Table 2, Table S5). The map had a length of 1259 cM 
with an average inter-locus distance of 0.74 cM and covered 
98.26% of the ‘PN40024 12X.v2’ genome assembly. In two 
chromosomes, there were gaps larger than 10 cM: chr09 had 
a gap of 16.54 cM and chr19 had a gap of 10.99 cM.

In total, 6326 markers were mapped on the DRxG1 
population map (Table 2, Table S5). Initial linkage analysis 
could not separate markers into 19 linkage groups, and this 
was solved by removal of the markers 13_23644810 and 
9_7465461 cross-linking chr03 and chr13, and chr09 and 
chr10, respectively. Four markers were unable to group to a 
linkage group and were excluded. The map contained 1725 
unique positions, mapped at an average of 0.99 cM between 
markers, and included 3173 representative markers. The map 
had a total length of 1660 cM and a genome coverage of 
98.21%. Gaps larger than 10 cM were observed on chr04 
(13.01 cM), chr11 (13.82 cM) and chr18 (24.21 cM).

For the RRxCS population, 7175 markers represented by 
3459 representative markers were mapped at 1815 positions 
(Table 2, Table S5). Removal of markers Un_19084121 and 
19_2008085 allowed the separation of chr01 and chr04, and 
of chr16 and chr19, to give 19 linkage groups corresponding 
to chromosomes. The map had a length of 1413 cM with an 
average distance of 0.78 cM between markers. The largest 
gap was observed on chr17 (8.47 cM). The map displayed 
a genome coverage of 98.17% compared to the ‘PN40024 
12X.v2’ assembly.

Among 10890 informative markers across the three map-
ping populations, 3827 markers (35.14%) were mapped only 
in a single population whereas 4382 markers (40.24%) and 
2681 markers (24.62%) were shared by two and three maps, 
respectively. As expected, due to the common parent, the 
CSxC and RRxCS maps shared more markers (22.80%) than 
CSxC and DRxG1 (8.71%) or RRxCS and DRxG1 (8.73%). 
Similarly, population DRxG1 contained more unique mark-
ers (16.03%) than CSxC and RRxCS (9.38% and 9.73%) 
(Fig. 1).

Comparing single population maps 
with the reference genome assembly

To evaluate the population map building approach and 
identify possible discrepancies, the marker order in each 
map was compared to the order deduced according to their 

theoretical physical positions in the grapevine reference 
genome assembly (Canaguier et al. 2017).

Although differences were expected, either due to real 
genetic divergence of parental genotypes compared to the 
reference, due to general problems in the assembly or due to 
inaccurate BLAST-based definition of theoretical positions, 
the expected position of the SNPs on the reference genome 
was still considered, in a first instance, to evaluate the map-
ping approach. The correlation coefficients between the map 
marker orders and that in the assembly revealed substantial 
marker order consistencies. Occasionally, slightly lower cor-
relation values were observed in particular chromosomes (see 
specifically chromosomes 3, 13 and 15 with lower values 
consistently detected in multiple population maps), but in all 
chromosomes the correlation was equal or higher than 0.9797, 
with an average value of at least 0.9965 (Table 2). High cor-
relations were also observed irrespective of whether or not the 
expected SNP order according to the reference was included 
to be used by the software in the first spatial sample for run-
ning the ML algorithm (see Table S6 for correlations without 
considering any order information as compared to Table 2 that 
included this information). The only exception was for the 
map of chromosome 8 of DRxG1, for which marker ordering 
was highly divergent compared to the reference when maps 
were compiled without any SNP order information (Table S6a 
and b). Because of that, and since including marker order 
information in general aided the compilation providing 
slightly shorter and better quality maps (according to NN Fit/
NN Stress values), in the previous section we considered as 
final population maps those built providing the SNP order 
information as starting point for the algorithm.

Even though a substantial marker order consistency to 
the reference was revealed by correlation coefficients, closer 
inspection revealed that 2721 (38% of all informative mark-
ers), 1994 (32%) and 2731 (38%) markers were involved 
in conflictual ordering across the 19 chromosomes in the 
CSxC, DRxG1 and RRxCS maps, respectively. The collin-
earity between the population maps and reference genome 
assembly was also further investigated by plotting genetic vs 
physical distances (Fig. 2). These plots also revealed exten-
sive collinearity, despite the reported high number of con-
flicts. These analyses all indicate that most conflicts likely 
represent short distance rearrangements. Indeed, only a few 
signatures of larger distance inconsistencies could be clearly 
observed in these plots on chromosomes 3, 13 and 15, in 
agreement with the slightly lower correlation coefficients 
observed for these chromosomes (Table 2). No signature of 
inconsistency was observed, as expected, on chromosome 8 
for the DRxG1 population map obtained with the integration 
of the SNP order information from the reference. Addition-
ally, markers showed a characteristic pattern in these plots, 
with recombination rates varying along the chromosomes 
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and typically reduced around centromeric regions. On most 
chromosomes, the CSxC and RRxCS maps had comparable 
collinearity with the physical map, while the DRxG1 map 
showed greater genetic distances compared to the other two.

The comparison to the reference genome assembly was 
then used to enquire specific inconsistencies. A detailed 
investigation identified a group, including only 66 markers in 
the three different populations (29 in the CSxC population, 
27 in the DRxG1 population and 33 in the RRxCS popula-
tion), which were allocated, on the basis of linkage map-
ping, to a chromosome different from that of their expected 
physical position (Fig. 3a, Table S7a). For 16 of these mark-
ers, the alternative anchoring was confirmed in more than 
one population, while 46 markers were mapped in only one 
population and four SNPs (1_22328219, cn_18_21727890, 
mu_11_16646972 and 9_2395543) provided inconsistent 
results in the different populations. The distribution of mark-
ers with incorrect theoretical chromosome assignment was 
in general randomly scattered throughout the chromosomes 
and genomes without any clear pattern. In only one instance, 
on chromosome 5, a cluster of two markers that were physi-
cally linked (5_20313780 and 5_20326151), relocated to 
adjacent genetic positions on linkage group 7 of the CSxC 
and DRxG1 maps.

Focusing on markers that showed large distance order 
inconsistencies (exceeding 10 cM of distance in alloca-
tions inside the expected chromosome) 27 additional mark-
ers located on chromosomes 3, 4, 10, 12, 13, 15 and 17 
were identified (17 mapped in CSxC population, 18 in 
DRxG1 population and 16 in RRxCS population (Fig. 3b, 
Table  S8a)). Such discrepancies were still observable 
despite the marker order information provided during map 

compilation, and some were related to the signatures of 
inconsistencies already highlighted in Fig. 2. For 10 of 
these SNPs, the inconsistency in allocation was confirmed 
in two populations and for five it was confirmed in all three 
populations (lb_3_9414759, lb_4_37346, Un_17289290, 
Un_17310288 and Un_17383522). Investigation of the 
distribution of the markers displaying inconsistencies 
of more than 10 cM revealed a cluster of nine associated 
SNPs (Un_17252166, Un_17274294, Un_17289290, 
Un_17294697 ,  Un_17303121 ,  Un_17310288 , 
Un_17326323, Un_17337482 and Un_17383522) on chro-
mosome 13. These markers were positioned close to each 
other in both the physical sequence and on the maps, but 
at a different position in all maps, hinting at a genomic 
sequence region which might have been incorrectly located 
or orientated in the assembly. Moreover, two smaller clus-
ters of associated markers were also identified: again, on 
chromosome 13 but in a different region (Un_38650425 and 
Un_38651129), and on chromosome 3 (cn_3_15425566 and 
3_14558685).

Finally, 281 SNP markers, physically assigned to the 
so-called chrUn grapevine chromosome of the ‘PN40024 
12X.v2’ genome assembly, were genetically mapped to 
grapevine chromosomes (Table S9). Most of these mark-
ers were mapped to regions of chromosomes 2, 7 and 10. 
For 193 markers mapping was confirmed in more than one 
population. Interestingly, by comparison to the ‘PN40024 
12X.v2’ genome assembly we found that the genetic map-
ping was always consistent inside the different scaffolds. 
In detail, among 104 newly anchored scaffolds, 86 were 
anchored to the genome in at least two different populations 
(59 anchored by more markers and 27 by just one marker, 
respectively). Eighteen scaffolds were anchored in only one 
of the populations.

Integrated map

Population maps including only one representative marker 
per group of identical markers were considered for the pur-
pose of building an integrated map. We considered 6697 
representative informative markers, of which 3467, 3173 
and 3459 were mapped in the CSxC, DRxG1 and RRxCS 
populations, respectively. Of these 2023 markers mapped 
in two populations, and 690 markers mapped in all three 
populations.

The marker orders of the population maps were com-
pared to identify non-collinear regions to be preliminary 
addressed to avoid integrated map inflation due to conflicts. 
Of these non-collinear regions, 65% (51 regions) could be 
solved since the alternative marker order was of acceptable 
quality in the other population(s), indicating that marker 
order between population maps was largely conserved. The 
remaining 35% (31 regions) resulted in a conclusive conflict, 

Fig. 1  Overview of shared and unique informative markers across the 
three grapevine mapping populations (CSxC: ‘Cabernet Sauvignon’ 
× ‘Corvina’, DRxG1: ‘Deckrot’ × G1-7720 and RRxCS: ‘Rhine Ries-
ling’ × ‘Cabernet Sauvignon’) of the 10890 informative markers in 
this study
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meaning that the alternative order was not acceptable in the 
other population map(s) (Table S10). This involved 88 mark-
ers distributed on 14 of the 19 grapevine chromosomes. The 
highest number of these conflicts was on chromosomes 7 
(13 markers), 4 and 15 (10 markers), 3 (8 markers) and 13 
and 10 (7 markers). These non-collinear markers were sub-
sequently treated as independent markers and were mapped 
in more than one position in the integrated map (indicated 
with two letter suffix, Table S10, labeled in red).

Despite the high over-all collinearity of the population 
maps to the ‘PN40024 12X.v2’ genome assembly described 
previously (Table 2 and Fig. 2), we inspected each popula-
tion map for conflicts with the assembly to also indicate 
these in the integrated map. Altogether 1286 markers were 
involved in generating conflicts in at least one of the pop-
ulation maps, based on the reduced datasets (Table S11). 
As reported above for the maps based on the whole set of 
markers, only a few markers were involved in large conflicts 
(see Table S7 and Table S8 for a comprehensive list of such 
markers). Instead, we observed that a large majority of these 
markers were grouped in short conflictual areas, highlight-
ing specific regions for each of the three population maps. 
Information on these conflictual markers has been retained 
in the integrated map (labeled with suffixes –A, –B and –C 
in blue, Table S12). These suffixes provide an indication 
of the reliability of the integrated map in different regions. 
Among these conflictual markers for only 40, distributed 
in 18 regions, the alternative marker order compared to the 
assembly was consistently supported by more than one map 
(Table S11, dark blue). This again demonstrates that the 
majority of conflicts to the assembly consist of short dis-
tance rearrangements that are observed in only one popula-
tion map (Table S11, light blue).

After all different conflict regions were inspected, the 
final population maps were used to establish an integrated 
map (Fig. 4, Table S12, Figure S2). The integrated map 
contained all 6697 representative markers, which mapped 
at 3492 unique positions on 19 chromosomes, with a final 
total length of 2094.86 cM and an average inter-locus dis-
tance of 0.6 cM. Importantly this integrated map included 
2713 anchor markers mapped in at least two maps and 
3984 singletons. The largest gap was of 5.12 cM on chro-
mosome 13 and all other gaps were smaller than 4.29 cM 
(Table 3).

The integrated map displayed an even distribution of 
markers along each chromosome (Fig.  5). On average, 
the 5-cM bins contained 16.34 markers per bin. Areas on 
the map densely populated with more than 35 markers 
per 5-cM bin could be found on chr05 (75–80 cM), chr07 
(60–65 cM), chr11 (65–70 cM), chr14 (55–60 cM) and chr18 
(110–115 cM). Areas which were scarcely populated were 
found mainly on telomeric regions of chr06 (90–95 cM), 
chr09 (75–80 cM), chr13 (85–95 cM), chr18 (70–75 and 
85–90 cM) and chr19 (90–95 cM). The high correlation 
of the integrated map with the population maps (average 
correlation coefficient over 0.999904) demonstrates that 
the integrated map properly reflects the component maps 
(Table S13).

By considering the physical position of the terminal 
markers on each chromosome, the integrated map was esti-
mated to cover 98.82% of the genome, which was quite uni-
form across chromosomes, with the only exception being 
chromosome 9 (93.84%, Table 3). Similar to the single 
population maps, the integrated map showed high collin-
earity with the ‘PN40024 12X.v2’ assembly (Fig. 2). As 
the integrated map is based on the genetic distances within 
the population maps, the larger distances observed in the 
DRxG1 population map were also reflected in the integrated 
map. Interestingly, the correlations between genetic posi-
tions and physical positions were even higher in the inte-
grated map chromosomes compared to the population map 
chromosomes (Table 3).

Discussion

The Vitis18K SNP chip as genotyping tool

The Vitis18K SNP chip allows for high-throughput geno-
typing of 18071 SNPs distributed throughout the grapevine 
genome (Le Paslier et al. 2013). On the technical side, a high 
successful genotyping rate, i.e., the percentage of retained 
SNPs after removal of low quality and no-call loci, varying 
from 91.2% in CSxC to 91.5% in RRxCS (Table 1), was 
observed. These genotyping rates were close to the upper 
limit of the range 55.6–92.7% observed in previous studies 
applying similar thresholds for SNP filtering when using the 
Vitis18K SNP chip (De Lorenzis et al. 2015, 2017, 2019; 
Mercati et al. 2016; Ruffa et al. 2016; Sunseri et al. 2018; 
Bianchi et al. 2020). This can probably be attributed to the 
large set of genotypes used to classify SNPs and the fact 
that we analyzed full sib progenies. ASSiST considers the 
pedigree of each mapping population; thus, the progeny 
genotypes are expected, while the possible genotypes of 
germplasm accessions are not known a priori. Reproduc-
ibility was also comparable to that found in other studies 
employing the same array (99.8% for our control genotypes 

Fig. 2  Comparison of the genetic distance on the y axis (in cM) 
against the physical distance of the ‘PN40024 12X.v2’ assembly on 
the x  axis (in bp) of the three populations (CSxC (‘Cabernet Sauvi-
gnon’ × ‘Corvina’) in blue, DRxG1 (‘Deckrot’ × G1-7720) in red, 
RRxCS (‘Rhine Riesling’ × ‘Cabernet Sauvignon’) in green) and 
integrated (in yellow) grapevine maps. Abbreviation: chr = chro-
mosome. The black dashed boxes indicate inconsistencies between 
genetic and physical distances, while the red dashed block shows the 
homozygosity stretch on chromosome 8
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compared to 99–100% in Houel et al. 2015; Mercati et al. 
2016; De Lorenzis et al. 2019). This very low error rate in 
the positive detection of SNPs is an evident advantage of this 
tool when compared to highly multiplexed, shallow sequenc-
ing strategies like GBS (Genotyping-By-Sequencing) and 
RAD (Restriction site-Associated DNA) sequencing that 
result in a high proportion of genotyping error, as well as 
missing data and under-calling of heterozygous sites (Mardis 
2008; Barba et al. 2014; Hyma et al. 2015; Marrano et al. 
2018).

Despite the successful genotyping rate and reproduc-
ibility, genotyping failure was observed for more than 1500 
SNPs in each population (Table 1). The Vitis18K SNP array 
consists of approximately 25% loci identified from dif-
ferent Vitis species (Le Paslier et al. 2013), which could 
account for the low quality, or the lack of hybridization, 
for some SNP loci (De Lorenzis et al. 2015, 2019; Mercati 
et al. 2016; Sunseri et al. 2018). Accordingly, the fraction 

of non-vinifera SNPs loci among SNPs failing to genotype 
was greater than expected (52.9–54.7%), in agreement with 
the well-recognized low marker transferability in Vitis (Zou 
et al. 2020). Interestingly, a large proportion of SNPs failing 
to genotype were shared across the three mapping popula-
tions (Table S1). In conclusion, 1348 SNPs that failed in all 
three genotyped progenies are listed in this work (Table S1), 
which could support other researchers in SNP selection and 
deployment.

Concerning marker informativeness, we expected to find 
more informative markers in the DRxG1 mapping popula-
tion that came from parents with higher genetic distance-a 
wine grape and a table grape selection. However, this cross 
had approximately 700 fewer informative markers than the 
CSxC and RRxCS populations, which is instead in agree-
ment with a slightly lower heterozygosity of the two parents 
compared to the parents of the other two populations (‘Deck-
rot’ = 0.25, G1-7720 = 0.24, ‘Cabernet Sauvignon’ = 0.29, 

Fig. 3  Visualization of markers non-collinear to the 'PN40024 12X.
v2' assembly for the three grapevine population maps (CSxC: ‘Cab-
ernet Sauvignon’ × ‘Corvina’, DRxG1: ‘Deckrot’ × G1-7720 and 
RRxCS: ‘Rhine Riesling’ × ‘Cabernet Sauvignon’): a colored rib-
bons highlight markers that mapped to a different chromosome from 
that expected according to theoretical chromosome assignment and 
b colored ribbons highlight markers that mapped to the expected 

chromosome but showed a map position inconsistency greater than 
10 cM. ‘PN40024 12X.v2’ chromosomes are designated with the pre-
fix Vvi (left side), whereas the map chromosomes are designated with 
the prefix Lg (right side). Different colors are provided for non-col-
linear markers according to the expected chromosome location on the 
‘PN40024 12X.v2’ genome assembly. Gray lines indicate collinear 
markers
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‘Corvina’ = 0.31, ‘Rhine Riesling’ = 0.29). It is also possible 
that ascertainment bias during the SNP chip development 
reduced the number of informative markers in DRxG1. Most 
of the Vitis vinifera genotypes from which the SNP chip was 
developed are used for wine production, and only a few for 
table grapes. However, this would need to be investigated 
further.

Mapping the SNPs of the Vitis18K SNP chip

Validation of SNP chromosomal location is required for 
the use of SNPs in marker-assisted selection as well as 
for genomics, trait mapping and gene cloning. Theoretical 
genomic positions can be deduced by BLASTN analysis 
of the SNP flanking regions. However, genetic mapping 
is required to validate positions. Theoretical positions on 
the latest 12X.v2 grapevine genome assembly were avail-
able in the literature for 10206 of the SNPs included in the 
Vitis18K SNP chip (Laucou et al. 2018). In this work, we 
integrated the BLASTN-derived positions on the ‘PN40024 
12X.v2’ assembly for the additional 7859 SNPs (in agree-
ment with those reported at https:// urgi. versa illes. inra. fr/ 
jbrow se/; Table S1). Three genetic maps have been built so 
far using data derived from the Vitis18K SNP chip (Houel 
et al. 2015; Duchêne et al. 2020; Mamani et al. 2021). In 
these studies, 1122, 1587 and 1737 of the SNPs included in 
the Vitis18K SNP chip were mapped; however, the mapping 
data for only 1587 SNPs are available in tabular format. 
Thus, the largest part of the SNP markers in the Vitis18K 
array was not mapped previously. In the present study, we 
mapped 10890 SNPs. For most of these markers (86.6%), 
no mapping information had been reported. Most markers 
mapped showed a genetic position that was congruent to 
their expected theoretical position, which confirmed the SNP 
chromosomal assignment according to BLASTN of flanking 
sequences. We only identified a few SNPs which mapped 
to different chromosomes compared to their expected loca-
tion (64 SNPs that are included in the 66 markers listed 
in Table S7) or which showed large inconsistencies (more 
than 10 cM) compared to the expected locations (27 SNPs, 
Table S8). Our SNP mapping results were highly congru-
ent with the available published map data of Duchêne et al. 
(2020). Comparison of the ‘Riesling’ map from that work 
and ours resulted in a very high average Spearman rank cor-
relation coefficient (0.9906) across linkage groups based on 
784 common markers among which 764 were SNP mark-
ers genotyped by the Vitis18K SNP chip in both works 
(Table S14). Moreover, among the 66 markers mapping to 
chromosomes different from those expected that were identi-
fied in the present study (Table S7), two (ae_9_7573501 and 
ae_5_12606386) were also mapped in ‘Riesling’ by Duch-
êne et al. (2020) to the same alternative chromosome, further 
confirming our findings.

The scattered distribution across the genome of the SNPs 
mapping to chromosomes other than those established by 
BLASTN of flanking regions (Table S7a) suggests that their 
incorrect assignment might be related to short, repeated 
regions and consequent BLAST issues. Accordingly, our 
BLAST data show that more than one BLAST hit was 
found for 37 out of the 64 of the SNP flanking sequences. In 
more than half of these cases (21 out of 37), the alternative 
position established by genetic mapping was identified in 
the secondary BLAST hit(s) (in bold in Table S7b). Incor-
rect allocation by BLASTN mainly concerned SNP probes 
originating from species other than Vitis vinifera. Indeed, 
71.9% of the SNPs that mapped to chromosomes different 
from those expected were identified in non-vinifera spe-
cies, whereas non-vinifera SNPs represent only 25% in the 
Vitis18K SNP chip, again confirming low marker transfer-
ability across species within Vitis (Zou et al. 2020). Regard-
ing markers with large intra-chromosomal inconsistencies 
compared to the expected position, such bias was lower, and 
we found two or more BLAST hits on the same chromosome 
in only three out of 27 cases (in bold in Table S8b), while 
we found clusters of linked SNPs in three different cases 
(Table S8a). Therefore, in general, the unexpected map-
ping positions can be attributed to less effective BLASTN 
searches due to cross-species markers as well as genome 
duplications. It is possible that these genome duplications 
are not present in the reference assembly, or present only in 
a specific parental genotype and associated mapping popu-
lation. Conversely, inconsistent markers found in blocks of 
linked loci might indicate wrong alignment or orientation of 
scaffolds in the ‘PN40024 12X.v2’ assembly or transloca-
tions. In conclusion, in this work we were able to validate 
the theoretical genomic positions of 9431 SNPs not previ-
ously validated from the Vitis18K SNP chip by genetic map-
ping and provide a list of markers for which the theoretical 
physical position needs to be revised. This information is 
a valuable contribution to other genetic studies using the 
Vitis18K SNP chip. Finally, 281 markers assigned to the 
chromosome “chrUn” in the ‘PN40024 12X.v2’ genome 
were genetically mapped in this work to nine chromosomes, 
mainly to chromosomes 2, 7 and 10 (Table S9). Out of these, 
only 15 markers had been genetically positioned in previ-
ous studies (Houel et al. 2015; Duchêne et al. 2020), and 
these located on the same chromosomes that we identified. 
Similarly, most of the 76 GBS-derived variants physically 
assigned to the “Unknown” chromosome of the ‘PN40024 
12X.v2’ genome that were genetically mapped by Tello et al. 
(2019), were placed in the same three chromosomes. The 
281 markers were assigned to 104 different scaffolds stacked 
in the chromosome “ChrUn” (Table S9). Markers assigned 
to same scaffold were mapped in all cases to close genetic 
positions, and in several cases (193 markers) the same map-
ping was confirmed in more populations. Even though the 
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current genome assembly (12X.v2) managed to assign 8% of 
the genome sequences unassigned in the previous assembly 
(12X.v0), 1692 scaffolds remained unanchored (Canaguier 
et al. 2017). The genetic position of the 281 originally unan-
chored markers mapped in the present work helps to anchor 
104 of these scaffolds to the 19 chromosomes of the grape-
vine genome, with 86 scaffolds anchored in more than one 
population. This information can be used in building future 
versions of the grapevine reference genome.

Developing an integrated map for grapevine based 
on the Vitis18K SNP chip

Despite the development of some genetic maps with data 
derived from the Vitis18K SNP chip already reported, 
no integrated map has been built so far to combine such 
information. To increase map marker density and provide a 
reliable shared marker order, we constructed an integrated 
reference map from three population maps. Two alterna-
tive approaches can be used in producing integrated genetic 
maps. The first, a “genetic merging approach”, makes use 
of recombination frequencies from genotypes to develop the 
integrated map in a similar fashion to bi-parental mapping, 
as is employed by the softwares Carthagene (De Givry et al. 
2005), JoinMap (Van Ooijen 2009) and Lep-MAP3 (Rastas 
2017). Alternatively, maps can be built from component 
maps by linear programming algorithms according to the 
“graph-method”, using marker positions and orders of the 
different population maps as starting information (Macca-
ferri et al. 2015), as is employed by the softwares MergeMap 
(Wu et al. 2008) and LPMerge (Endelman and Plomion 
2014). In line with the previous reports (Tello et al. 2019), 
map integration starting from recombination frequencies, 
although providing a theoretical higher accuracy, proved too 
computationally demanding with large numbers of markers 
(> 5000) limiting the choice to the second approach. There-
fore, to compensate for a lower integration accuracy of this 
approach, highly accurate population maps should be pro-
vided as well as a sufficient number of shared markers. A 
strategy incorporating a novel phasing system to reconstruct 
local haplotypes from adjacent bi-allelic SNPs to increase 
the percentage of fully informative multi-allelic markers to 

build accurate maps has been recently proposed for GBS-
derived SNPs in grapevine (Tello et al. 2019). Here, even 
though an overall largely shared SNP ordering across the 
different maps with low number of conflicts was obtained 
using our strategy, some limits in building reliable shared 
orders at short distance, likely related to the low-informative 
nature of bi-allelic SNPs, were evident. On the other hand, in 
this study, the same markers were genotyped across the dif-
ferent subpopulations with the Vitis18K SNP chip. Focusing 
on the same marker set could represent an advantage, where 
other genotyping approaches like GBS, despite genotyping 
a much larger number of markers, do not necessarily obtain 
data for similar regions across individuals. Increasing the 
sequencing depth improves the shared marker density also in 
GBS genotyping, but requires suitable tools and approaches 
to ensure accuracy (Klápště et al. 2021).

The presented integrated map was constructed from a 
dataset including 6697 SNPs, of which 2713 markers were 
shared across at least two maps. For the map integration 
step, previous grapevine studies relied on the LPmerge 
software (Endelman and Plomion 2014), which aids linear 
conflict solving. Another “graph-method”-based software, 
MergeMap (Wu et al. 2008) has been widely used in other 
plant species despite typically estimating longer maps (Close 
et al. 2009; Galeano et al. 2011; Khan et al. 2012; Wang 
et al. 2014; Wen et al. 2017). In this study, we chose to 
apply this software, but we implemented a manually curated 
conflict solving step and included renaming of markers with 
different orders to avoid further map length inflation, which 
could result from order discrepancies (Maccaferri et al. 
2015).

Using the described strategy, we produced an integrated 
map which included all 6697 SNPs with a total length of 
2094.86 cM. The integrated map covers 98.8% of the grape-
vine genome, implying that most of distal ends of chromo-
somes are also represented. A significant lower coverage 
(93.8%) was only observed for chromosome 9 (Table 3, 
Fig. 5). Closer inspection confirmed that this reflected 
a lower marker density in the original population maps 
(Fig. 2). A similar under-representation of this region was 
also encountered in previous maps based on the Vitis18K 
SNP chip (Houel et al. 2015; Duchêne et al. 2020; Mamani 
et al. 2021). This is likely due to the fact that the majority of 
the markers at the distal end of chromosome 9 originate from 
the Vitis markers subset and were scored as monomorphic 
or failed in genotyping.

Our integrated map efficiently increased overall marker 
density compared to the three population maps including 
3467, 3173 and 3459 representative SNP markers of the 
CSxC, DRxG1 and RRxCS populations, respectively. Com-
pared to previous integrated maps available in grapevine, 
this map represents the densest integrated map for grape-
vine reported so far (Teh et al. 2017; Lewter et al. 2019; 

Fig. 4  Grapevine integrated map based on three mapping popula-
tions (CSxC: ‘Cabernet Sauvignon’ × ‘Corvina’, DRxG1: ‘Deck-
rot’ × G1-7720 and RRxCS: ‘Rhine Riesling’ × ‘Cabernet Sauvi-
gnon’). Marker regions that are in conflict with the ‘PN40024 12X.
v2’ assembly are indicated in blue (dark blue if supported by more 
than one population map, with exception of those introduced by forc-
ing orders during the between maps conflict solving step), whereas 
marker regions in conflict between population maps are indicated in 
red. List of these markers are given in Tables S11 and S10 respec-
tively. Marker positions are indicated with horizontal lines. Abbrevia-
tion: chr = chromosome
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Table 3  Summary statistics 
of the integrated map based 
on three population maps of 
grapevine (CSxC: ‘Cabernet 
Sauvignon’ × ‘Corvina’, 
DRxG1: ‘Deckrot’ × G1-7720 
and RRxCS: ‘Rhine Riesling’ × 
‘Cabernet Sauvignon’)

Length and gaps are expressed in cM
a Marker 1_22328219 maped on both chr01 and chr16
b Marker cn_18_21727890 maped on both chr12 and chr19
c Marker mu_11_16646972 maped on both chr14 and chr18, depending on the population map. These 
markers were only considered once in the final marker count

Total 
mapped 
markers

Unique 
positions

Length Inter-locus 
gap dis-
tance

Largest gap Correlation 
to assembly

Coverage (%)

chr01 358a 210 129.69 0.62 3.38 0.9997 99.02
chr02 319 159 94.18 0.59 2.34 0.9996 98.62
chr03 276 161 89.89 0.56 2.81 0.9976 99.34
chr04 362 195 124.25 0.64 3.03 0.9997 99.65
chr05 380 205 116.96 0.57 2.63 0.9998 98.99
chr06 328 180 112.02 0.62 3.36 0.9997 99.34
chr07 579 281 155.71 0.55 3.65 0.9998 99.49
chr08 337 183 107.69 0.59 1.86 0.9998 99.40
chr09 243 117 74.32 0.64 4.29 0.9959 93.84
chr10 458 230 127.41 0.55 2.27 0.9995 98.36
chr11 273 143 80.51 0.56 2.50 0.9993 99.41
chr12 340b 165 105.54 0.64 2.94 0.9995 99.73
chr13 376 201 130.24 0.65 5.12 0.9912 99.56
chr14 390c 206 121.94 0.59 2.47 0.9997 99.40
chr15 281 156 96.12 0.62 3.02 0.9861 98.76
chr16 344a 156 86.97 0.56 2.26 0.9919 99.16
chr17 301 151 87.84 0.58 2.63 0.9994 96.19
chr18 441c 229 162.54 0.71 2.66 0.9996 99.64
chr19 314b 164 91.04 0.56 3.67 0.9978 99.78
Total 6697 3492 2094.86 0.60 5.12 0.9974 98.82

Fig. 5  Distribution of marker density on the grapevine integrated map. Marker distribution is reported along the chromosomes (chr) with respect 
to 5-cM bins
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Tello et al. 2019; Zou et al. 2020). Moreover, additional 
genetic maps eventually developed based on the Vitis18K 
SNP chip can be easily further integrated based on the same 
approach described here. Despite the greater length we are 
reporting compared to previous integrated maps, this map 
provides a good uniform marker distribution across the 
genome (Fig. 5) and reduced gap lengths. Five to 9 gaps 
longer than 5 cM were observed in the population maps, 
due to long non-segregating stretches. Only one of the gaps, 
located on chromosome 13, was still retained in the inte-
grated map, since this region was homozygous in both the 
CSxC and DRxG1 map. We can hypothesize that the applied 
genotyping strategy positively contributed to a homogene-
ous marker distribution and shorter gap length compared to 
other integrated maps (Teh et al. 2017; Lewter et al. 2019), 
since the SNP chip included SNPs pre-selected for a homo-
geneous genome coverage compared to random GBS-based 
genotyping (Le Paslier et al. 2013). We also explored the 
extent of LD by considering plants from all populations and 
observed this was largely reduced compared to that found in 
each population, indicating that a higher mapping resolution 
could be achieved by using the integrated map. However, the 
LD did not reach low values typically observed in accession 
collections in grapevine (Marrano et al. 2018). LD decayed 
below 0.2 on average within 600 kbp (ranging from 160 to 
1360 Kbp across chromosomes, Figure S1), suggesting that 
the Vitis18K SNP chip would still provide a suitable tool 
for efficient trait mapping. Finally, released data can also 
support further simulation approaches relying on recombina-
tion, as well as, be used for testing and implementing also 
in grapevine LD-based strategies to position still unmapped 
SNP markers (Yadav et al. 2021).

A largely shared consensus order (uncolored regions in 
the final integrated map; Fig. 4, Table S10, Figure S2) was 
obtained, with only 88 markers across 31 genomic regions, 
highlighted in red, where no collinear marker order across 
maps could be deduced. The high consistency in marker 
order between the individual maps and integrated map 
demonstrates that the integrated map accurately represents 
the information from population maps. The integrated 
map showed a similar, even slightly higher, correlation 
to the assembly compared to that of the population maps. 
In order to provide information about the likelihood-of-
fit of the integrated map, we also highlighted all markers 
potentially involved in generating conflicts to the assembly 
in the population maps. Blue regions include discrepan-
cies with the assembly in original population maps. It is 
not possible to conclude whether discrepancies in such 
regions are due to inaccuracy in genetic data/assembly 
or to real genetic differences in any of the parents. Dark 
blue regions are those for which such discrepancies were 
shared across multiple maps, indicating a higher prob-
ability of inaccurately assembled short genomic portions 

(e.g., on chromosomes 4, 5, 8 and 13 where a few markers 
were incongruently allocated in all three genetic maps) 
or genetic differences shared in the different populations 
(e.g., on chromosome 3 and 5 in the CSxC and RRxCS 
populations, which share the ‘Cabernet Sauvignon’ par-
ent). These areas should be investigated in more detail in 
future studies to establish the correct order in the respec-
tive genotypes.

In conclusion, in the present study, we document the 
genetic position of about 9500 markers included in the 
Vitis18K SNP chip tool and provide valuable information 
for the use of the Vitis18K SNP chip array. This is par-
ticularly valuable given the convenience and accuracy of 
high-throughput genotyping by cost-efficient SNP arrays. 
Furthermore, we release some interesting information for 
improving future grapevine genome assemblies. Finally, we 
explored the possibility to apply this tool as a standardized 
resource for breeding. By using three mapping populations, 
we constructed a reliable reference integrated SNP map, 
which represents the most saturated and high-density inte-
grated genetic map thus far for cultivated grapevine. This 
integrated map will allow comparison of QTL locations 
of important phenotypic traits among different bi-parental 
populations, as well as fine mapping due to the increased 
marker density. Furthermore, it provides the foundation for 
establishing experiments of multi-parental QTL mapping as 
a valuable tool to increase power in QTL detection (Qu et al. 
2021), contributing to a more comprehensive understanding 
of the genetic architecture of complex traits in this species.
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