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ABSTRACT
Cyber-Physical Systems (CPSs) are integrations of distributed com-
puting systems with physical processes via a networking with
actuators and sensors, where feedback loops among the compo-
nents allow the physical processes to affect the computations and
vice versa. Although CPSs can be found in several complex and
sometimes critical real-world domains, their verification and vali-
dation often relies on simulation-test systems rather then automatic

methodologies to formally verify safety requirements. In this work,
we prove the decidability of the reachability problem for discrete-
time linear CPSs whose physical process in isolation has a periodic
behavior, up to an initial transitory phase.

CCS CONCEPTS
• Theory of computation → Timed and hybrid models; Ver-
ification by model checking; • Computer systems organiza-
tion → Embedded and cyber-physical systems.
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linear cyber-physical systems, reachability problem, formal safety
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1 INTRODUCTION
Cyber-Physical Systems (CPSs) are integrations of networking and
distributed computing systems with physical processes, where feed-
back loops allow the latter to affect the computations of the former
and vice versa. Basically, CPSs have three main components: the
physical plant, i.e., the physical process that is managed by the
CPS; the logic, i.e., controllers, IDSs, and supervisors that govern
and control the physical process; the network to connect plant and
logic. The physical plant is usually represented by means of two
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equations: (i) the evolution equation, describing the dynamics of
the state variables depending on the control actions implemented
through actuators, and (ii) the measurement equation, providing the
measurements of the physical state through sensors.

The range of applications of CPSs is rapidly increasing and al-
ready covers several domains [10]: advanced automotive systems,
environmental monitoring, avionics, critical infrastructure control,
etc. The common feature of these systems is that they are all safety
critical and failures may cause catastrophic consequences. Thus,
while numeric simulations increase the confidence in the safety
of these systems, the complexity of CPSs advocate for automatic

methodologies to formally verify safety requirements.
One of the central problem in the safety verification of complex

systems is the reachability question: can an unsafe state be reached
by an execution of the system starting from a given initial state? The
goal of this paper is precisely to provide a reachability technique
for the safety verification of a significant subclass of linear CPSs.

The reachability problem for hybrid automata [3] (a sort of an-
cestors of CPSs) has been carefully investigated in the past couple
of decades and boundaries of decidability have been extensively
explored. In particular, it has been shown to be decidable for signif-
icant classes of hybrid automata [1, 2, 7–9, 11, 23, 24, 28].

However, in general, reachability remains undecidable even for
simple classes, with relatively simple dynamics, such as linear hy-
brid automata [5], in which the dynamics of the variables are defined
by linear differential inequalities, when time is continuous, and lin-
ear difference inequalities, in the discrete case. Despite such simple
dynamics, indeed, these automata are not suitable to algorithmic
analysis even when using only 3 continuous variables comparable
only to constants [3].

Nevertheless, decidability has been proven for a number of sub-
classes of linear hybrid automata equipped with either continuous
time [4, 7, 8, 22, 23] or discrete time [1, 2, 9, 27].

Most of these decidability results rely on demonstrating the
existence of a finite, computable partition of the state space that is
bisimilar to the original system.

Contribution. In this work, we focus on discrete-time linear CPSs
whose physical plant is expressed by means of two difference equa-
tions of the form:

xk+1 = Axk + Buk + w
yk = Cxk + ek

The first equation denotes the evolution law and returns the next
state vector depending on the current state, the input vector, and an
offset vector; while the second equation is the measurement law re-
turning the measurement vector yk depending on the current state
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itself and possible errors ek in the measurements. As in hybrid sys-
tems, the physical state vector xk must respect a system invariant;
here, we also require that the input vector uk and the measurement
vector yk respect the invariant: if the invariant is violated the CPS
reaches a deadlock state. Unlike hybrid systems, the state xk of a
CPSs cannot be directly analyzed: only its measurement yk can be
observed.

As main result, we prove that the reachability problem of linear
CPSs with rational coefficients can be solved in ExpSpace, under
the hypotheses that:

(i) the system invariant is bounded;
(ii) the transformation matrix A is periodic with transient h and

period k ;
(iii) the mathematical conditions triggering the system evolution,

the system invariant, and both the initial and the final sets
of states are all polyhedra with rational vertices.

In case the polyhedra in condition (iii) are rectangular, i.e., they can
be described by means of linear constraints of the form x ≍ v , with
≍ ∈ {<, ≤, >, ≥}, x a variable, and v ∈ Q a rational number, the
reachability problem of the resulting CPSs, called rectangular,1 can
be solved in PSpace.

Physical processes of this kind have a periodic behavior up to an
initial transitory phase, and capture a wide class of conservative pro-
cesses. For simplicity, we will call bounded periodic those CPSs that
meet the conditions above. Many water-tank plants are bounded
periodic CPSs; the paper contains a non-trivial water-tank running

example to help the reader in understanding the complexity of the
physical systems we are able to deal with.

Technically, instead of adopting hybrid automata as basic models,
we develop a proper formalization for CPSs which is more infor-
mative than hybrid automata as we pay particular attention to the
representation of physical devices, such as sensors and actuators,
and their mathematical treatment. More specifically, in the physical
environment of a CPS we report both the evolution and measure-
ment equations, admitting possible errors in the measurements
due to sensor precision. Whereas, the cyber controller can test the
physical process, by means of a pool of sensors, and influence its
evolution by acting on the actuators.

The first step of our reachability result consists in proving a
polynomial-time transformation of our CPSs into an equivalent
normal form, where the transformation matrix enjoys a number of
useful properties similar to those satisfied by an invertible matrix.
Then, we describe a ExpSpace (resp., PSpace) decidability proce-
dure of the reachability/safety problem for bounded periodic (resp.,
rectangular) CPSs, which is based on the notion of reachability poly-
hedric quotient. Intuitively, we want to determine if there exists an
execution starting from an initial configuration that reaches a final
one. To do this, we describe how to quotient a bounded periodic
CPS in such a way that (i) physical states locally behaving in a
similar way are grouped into polyhedra, and (ii) the reachability
property is preserved. In the general case, we will show that there
are at most doubly-exponentially many polyhedra that can be en-
tirely contained in our bounded system invariants. However, in the
case of rectangular CPSs, we are able to prove that the number of
possible rectangular polyhedra with the same property is at most
1Not to be confused with rectangular hybrid automata [8].

exponential in the number of physical state variables. Finally, we
show that, in case the boundedness requirement on the system
invariant is not satisfied, the same problem turns out to be unde-
cidable, even when assuming rectangular constraints, since such
systems can simulate a standard two-counter machine [12, 19].

Outline. Section 2 provides a formalization of CPSs, in terms of syn-
tax, operational semantics, and behavioral equivalence. Section 3
specifies the definition of linear periodic CPSs and some subclasses
of them. Then, it presents our running water-tank example and
proves the correctness of the transformation into the normal forms
mentioned above. Section 4 contains the decidability procedure
for the reachability/safety problem of bounded periodic CPSs, and
the undecidability result in the presence of unbounded invariants.
Section 5 draws conclusions and discusses related work.

2 CYBER-PHYSICAL SYSTEMS
From a high-level view point, beside the communication network,
a CPS can be seen as consisting of two main parts: (i) a physical
environment, defining variables, devices, evolution laws, etc.; (ii) a
cyber controller that interacts with the physical devices (sensors
and actuators) and manages the interaction with other cyber com-
ponents. In this section, we provide a formalization of CPSs that
preserves a distinction between these two parts via suitable evo-
lution and transition functions. Then, we describe an associated
operational semantics in terms of the graph of dynamics.

From now on, we shall make use of the following notation: given
a function e : (X∪S∪A) → R, we denote by eX ≜ e↾X, eS ≜ e↾S,
and eA ≜ e↾A, respectively, the restrictions of e to the subsets X,
S, and A of its domain.

Definition 1 (Cyber-Physical System). A cyber-physical sys-
tem (CPS, for short) w.r.t. the disjoint finite sets of state variables X,
sensors S, and actuators A is a tupleM = ⟨M, trn, evl,msr, act, I,
MI ,MF ⟩ whose components are defined as prescribed in the following:

(1) M ≜ C × E is the Cartesian product of a non-empty finite set

of control states C and a non-empty set of physical states
E ⊆ R(X∪S∪A)

;

(2) trn : C × RS → 2C is the transition function modeling the

digital part of the system dynamics;

(3) evl : RX × RA → RX is the evolution function modeling the

analogical part of the system dynamics;

(4) msr : RX → 2RS is the measurement function satisfying the

constraint eS ∈ msr(eX ), for all e ∈ E;
(5) act : C → RA is the actuator function satisfying the con-

straint eA = act(c ), for all (c, e ) ∈ M;

(6) I ⊆ M is the evolution invariant;2
(7) MI ,MF ⊆ M are the subsets of initial and final states.

The graph of the dynamics GM ≜ ⟨I,→⟩ of a CPSM is such that, for

all states (c, e ), (̂c, ê ) ∈ I, it holds that (c, e ) → (̂c, ê ) iff ĉ ∈ trn(c, eS )
and êX = evl(eX , êA ).3

Intuitively, a control state c ∈ C is an atomic element, while a
physical state e ∈ E is encoded as a valuation of variables, sensors,
2Unlike hybrid systems, our invariant also considers sensors and actuators.
3Notice that there are no restrictions to impose on the sensor and actuator components
of the state (ĉ, ê ) ∈ I ⊆ M, since this one already satisfies the properties êS ∈
msr(êX ) and êA = act(ĉ ).
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and actuators with real numbers, which we call, in the following,
variable state for eX , sensor state for eS , and actuator state for eA ,
respectively. The transition function, describing the program of the
digital component, assigns to each control state c ∈ C and sensor
state eS ∈ RS a set of possible next control states trn(c, eS ) ⊆ C.
The evolution function evl, modeling the physical laws, maps the
current variable state eX ∈ RX and an actuator state eA ∈ RA
to the next variable state evl(eX , eA ) ∈ RX . The measurement
function msr associates every variable state eX ∈ RX with the set
of admissible sensor states msr(eX ) ⊆ RS ; notice that here, as we
assume the presence of a measurement error, the function returns a
set of admissible sensor states, rather than a single one. The actuator
function act simply links each control state c ∈ C to the current
value of the actuator state act(c ). Finally, the relation→ allows to
determine how the system evolves globally in a single unit of time,
in a way that is compatible with both the transition and evolution
functions. Observe that, intuitively, the system gets stuck once it
reaches a state (c, e ) ∈ I having no successors inside the invariant,
i.e., such that (̂c, ê ) < I, for all (̂c, ê ) ∈ M with ĉ ∈ trn(c, eS ) and
êX = evl(eX , êA ).

In the following we will use a straightforward trace-based equiv-
alence between cyber-physical systems.

Definition 2 (System Eqivalence). We say that two CPSsM1

and M2 are equivalent (w.r.t. reachability) iff (i) a final state is

reachable from an initial state in the graph GM1
, when the same

holds for the graph GM2
and, vice versa, (ii) a final state is reachable

from an initial state in GM2
, when the same holds for GM1

.

3 LINEAR CYBER-PHYSICAL SYSTEMS
In this section, we provide a description of a number of classes
of linear CPSs with particular emphasis on bounded periodic CPSs,
whose physical evolution in isolation, after a transitory phase, has
a periodic behavior.

Before proceeding, let us fix some notation. By · we denote both
the classic matrix/vector product and the operation of product
between a matrix A and a set of vectors P of suitable dimensions
defined as usual as A · P ≜ {A · e : e ∈ P}. In addition, the sum
of a vector w and a set of vectors P of the same dimensions, also
known as translation of Pw.r.t. the directionw, is defined asw+P =
P + w ≜ {w + e : e ∈ P}. We can generalize this to the sum of two
sets of vectors as follows: P1 + P1 ≜ {e1 + e2 : ∀i ∈ {1, 2} . ei ∈ Pi }.
A square matrix A is singular if its determinant is zero, is nilpotent
if there exists a positive number ℓ ∈ N+, called order of A, such
that Aℓ = 0, with 0 the null matrix, and is periodic with transient

h and period k (h,k-periodic, for short) if Ak+h+1 = Ah+1, with
h,k ∈ N. Finally, it is h,k-zero padded if it can be decomposed in
blocks as follows, where ∆ ∈ R(n−k )×k is a rectangular matrix,
Γ ∈ R(n−k )×(n−k ) is a square matrix with rank h ≤ n − k , and
Λ ∈ Rk×k a nilpotent matrix, with n ∈ N+ the dimension of A:

A = *
,

Γ ∆

0 Λ
+
-
.

The index ℓ ∈ N+ of a h,k-zero padded matrix is the index of its
nilpotent submatrix, which can never exceed its dimension.

We can now introduce the definition of linear CPS, which en-
forces linearity constraints on the dynamics of the physical compo-
nent of the system.

Definition 3 (LinearCyber-Physical System). A cyber-physical

systemM = ⟨M, trn, evl,msr, act, I,MI ,MF ⟩ w.r.t. the disjoint finite
sets of state variables X, sensors S, and actuators A is linear if it
satisfies the following four properties, where nX ≜ |X|, nS ≜ |S|,
and nA ≜ |A|: 4

(1) there exists a partition of RnS = P1 ⊎ · · · ⊎ Pm intom ∈ N
polyhedra P1, . . . ,Pm ⊆ RnS , called condition polyhedra,
such that trn(c, eS1) = trn(c, eS2), for all c ∈ C, i ∈ [1,m],
and eS1, eS2 ∈ Pi ;

(2) there exist a square matrix A ∈ RnX×nX , a rectangular matrix

B ∈ RnX×nA , and a vector w ∈ RnX , called transformation
matrix, actuator matrix, and offset vector,5 respectively, such
that evl(eX , eA ) = A · eX + B · eA + w;

(3) there exist a rectangular matrix C ∈ RnS×nX and a polyhe-

dron D ⊆ RnS , called sensor matrix and error polyhedron,
respectively, such that msr(eX ) = C · eX + D;

(4) the evolution invariant I can be decomposed as the Cartesian

products C∗ × F∗ × G∗ of a set of control states C∗ ⊆ C, a
polyhedron F∗ ⊆ RnX+nS on the variable and sensor states,

and a finite set of actuator states G∗ ⊂ RnA .
(5) the sets of initial and finite states Mα with α ∈ {I , F } can be

decomposed as the Cartesian products Cα × Fα × Gα of sets

of control states Cα ⊆ C, polyhedra Fα ⊆ RnX+nS , and finite
sets of actuator states Gα ⊂ R

nA
.

M is rational if the matrices A, B, and C, the vector w, and the

vertices of the polyhedra D, F∗, FI , and FF are all rational. Moreover,

M is bounded (resp., singular, nilpotent, h,k-zero padded, or h,k-
periodic, with h,k ∈ N) if F∗ is bounded 6

(resp., A is singular,

nilpotent, h,k-zero padded, or is periodic with transient h and period

k).

Intuitively, a CPS is linear if both the evolution and the measure-
ment functions, as well as the sets of initial and final states and the
invariant, can be described bymeans of linear equations/inequalities.
It is also rational if the coefficients used in these equations/inequalities
are rational and it is bounded if all the values associated with the
variables, sensors, and actuators are a priori bounded during the
entire evolution of the physical system. Finally, it is periodic, if,
after a transient, the free evolution of the environment is periodic,
i.e., the state variable values change in a periodic way under the
action of the transformation matrix, and it is singular, nilpotent, or
h,k-zero padded if this matrix enjoys precisely the same properties.

As an example of physical system, consider a water-tank plant as
depicted in Figure 1, where the volume of each tank is 100 liters. In
any unit of time, due to an always-on pump, the water in Tank T1
flows completely into Tanks T2 and T3 with a ratio of 3 to 1 in
favor of the first. Because of some losses along the pipe before
the bifurcation, 1 liter of this water gets lost. Still in one time
4From now on, with an abuse of notation, given an arbitrary finite set N of nN
elements, we identify the two isomorphic sets RN and RnN .
5For simplicity, we assume a perturbation of the physical evolution represented in
terms of a simple offset that affects the evolution in a constant manner.
6Observe that the invariant I is bounded iff the associated polyhedron F∗ is bounded
as well, due to the fact that the set of actuator states G∗ is finite.
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Figure 1: Water Tank PlantMWT .

unit, the content of Tank T2 is completely pumped into Tanks T3
and T4, again with a ratio of 3 to 1 in favor of the second. Of the
water directed to Tank T4, 0.5 liters gets lost. At the same time,
due to an elevation gain of Tanks T3 and T4 w.r.t. Tank T1, the
water of the first two tanks completely flows into the third one;
this automatically actuates two pumps that transfer half of the
contents of Tanks T4 and T2 into Tank T1. Through the three-
position Valve V1, a controller can introduce from an external
water supply network 5, 2.5, or 0 liters of water, per time unit, in
both Tanks T1 and T4, simultaneously. Via the on/off Valves V2
and V3, a controller can remove 7.5 and 3 liters from Tanks T2
and T3, respectively. The quantity of water in the Tanks T2, T3
and T4 can bemeasured through three electric linearly-proportional
probes with a 1% precision w.r.t. the maximum scale value. Probe P1
transforms the water level of Tank T4, actually its volume, into
an electric signal in the range from 0 to 12 volts, while Probes P2
and P3 do the same in the range from 0 to 5 volts for the Tanks T2
and T3, respectively. Finally, in the initial state of the plant each
tank contains about 25 liters of water with a precision of 5%, and
all valves are shut off. Moreover, as critical states, i.e., states outside
the invariant, we consider those where all tanks are empty and, at
the same time, Valve V1 for external supply is shut off.

As an example of digital controller for the physical system de-
scribed above, we can consider a simple one that nondeterministi-
cally chooses among the following two actions:
• if Probe P1 returns a signal whose value is lower than 6
volts but greater than 3 volts, the controller opens half of
the Valve V1; if the value is lower than or equal to 3, then it
opens the valve completely; in all other cases such a valve is
shut off;
• if Probe P2 (resp., Probe P3) returns a value greater than
2.5 volts, the controller opens Valve V2 (resp., Valve-V3),
otherwise, it is shut off.

This tank plant in its entirety can be modeled by means of a
rational CPS MWT = ⟨M, trn, evl,msr, act, I,MI ,MF ⟩ as follows,
where the quantity of water in the tanks is represented via the
variables x1, x2, x3, and x4 , the probes via the sensors s1, s2, and s3,
and the valves via the corresponding actuators a1, a2, and a3:
• the finite set of control states can be represented as C =
{c0} ∪ 2{P1≤3 , 3<P1<6 , P2>2.5 , P3>2.5} , where c0 is the initial
control state, while the other ones denote all the possible
distinguishable evaluations of the three probes;

• the physical states in E are isomorphically represented as
points in the R10 vector space, where the first four coordi-
nates identifies the variables x1, x2, x3, and x4 , the second
three the sensors s1, s2, and s3, and the last ones the actuators
a1, a2, and a3;
• trn(c, eS ) ≜ {c0}, if eS (s1) ≥ 6, eS (s2) ≤ 2.5, and eS (s3) ≤
2.5, while trn(c, eS ) contains the proposition Pi ≍ v iff the
value eS (si ) read on the sensor si satisfies the relation ≍ v ,
e.g., P1 ≤ 3 ∈ trn(c, eS ) iff eS (s1) ≤ 3;
• the transformation and actuator matrices together with the
offset vector are

A=
*....
,

0 0 1.5 1.5
0.75 0 0 −0.5
0.25 0.25 0 0
0 0.75 −0.5 0

+////
-

,B=
*....
,

5 0 0
0 −7.5 0
0 0 −3
5 0 0

+////
-

,w=
*....
,

0
−0.75
−0.25
−0.50

+////
-

;

• the error polyhedron D is [−0.12, 0.12] × [−0.05, 0.05] ×
[−0.05, 0.05], while the sensor matrix is

C = *.
,

0 0 0 0.12
0 0.05 0 0
0 0 0.05 0

+/
-
,

• act(c0) (a) ≜ 0, for all a ∈ {V1,V2,V3}; act(c ) (V1) ≜ 1
iff P1 ≤ 3 ∈ c; act(c ) (V1) ≜ 0.5 iff 3 < P1 < 6 ∈ c;
act(c ) (V2) ≜ 1 iff P2 > 2.5 ∈ c; act(c ) (V3) ≜ 1 iff P3 >
2.5 ∈ c .
• the invariant I is the Cartesian product of the control state set
C with the following intervals of values: [0, 100] for the state
variables, [−0.12, 12.12] for the first sensor, [−0.05, 5.05] for
the other two sensors, {0, 0.5, 1} for the first actuator, and
{0, 1} for the other two actuators;
• the set of initial states MI is the Cartesian product of the sin-
gleton {c0}with the following intervals of values: [23.75, 26.25]
for the variables, [2.73, 3.27] for the first sensor, [1.1375, 1.3625]
for the other two sensors, and {0} for the actuators;
• the set of finals states MF is the Cartesian product of the con-
trol state set C with the following intervals of values: {0} for
the variables, [−0.12, 0.12] for the first sensor, [−0.05, 0.05]
for the other two sensors, {0} for the first actuator, and {0, 1}
for the other two actuators.

It is interesting to notice that the just described CPSMWT is also
bounded, singular, 3, 0-zero padded, and 0, 3-periodic. Thus, the
system under consideration does not have a transitory phase. Had
we addedn extra tanks in cascade, with the last onewhich uniformly
distributes its content to Tanks T1, T2, T3, and T4, we would have
had a n, 3-periodic system.

In the following, wemake use of the well-known notion of matrix
similarity: two square matrices A1,A2 ∈ R

n×n are similar if there
exists an invertible matrix P ∈ Rn×n such that A2 = P−1 · A1 · P.

Once all necessarymathematical machinery about linear CPS has
been defined, we are ready prove the first technical result about how
to modify the transformation matrix A in order to get an invertible
sub-matrix Γ. This will be necessary to put the original linear CPS in
a proper normal form suitable for the decision procedure described
later in this article.

Lemma 1 (Zero-Padded Matrices). For every i, j-zero-padded
(rational, h,k-periodic) square matrix A ∈ Rn×n , with i + j < n, there
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exists a similar i∗, (j + 1)-zero-padded (rational, h,k-periodic) square
matrix Ã ∈ Rn×n , for some i∗ ≤ n − j − 1.

Proof. Since i + j < n, the matrix A ∈ Rn×n can be rewritten,
w.l.o.g., as a block matrix of the form

A = *
,

Γ ∆

0 Λ
+
-
, Γ = *

,

Ξ Ξ·µc

µ
⊺
r ·Ξ µ

⊺
r ·Ξ·µc

+
-
, ∆ = *

,

Ψ

ψ⊺
+
-
,

where Ξ ∈ R(n−j−1)×(n−j−1) , Ψ ∈ R(n−j−1)×j , and Λ ∈ Rj×j are
three matrices, the last one of which is nilpotent, µr , µc ∈ Rn−j−1
andψ ∈ Rj are three vectors, and ⊺ is the transposition operation.
Intuitively, we are expressing the first n − j components of the
(n − j )-th row and column of A as a linear combination of the same
components of its first n − j − 1 rows and columns, respectively,
where the corresponding coefficients are grouped into the vectors
µr and µc . This is possible as the square submatrix Γ composed of
the first n − j rows and columns of A has rank i smaller than its
dimension.

Now, consider the following modified matrix Ã ∈ Rn×n , where I
is the identity matrix of dimension n − j − 1 and ⊗ the operation of
outer product between a column vector and a row one:

Ã ≜ *
,

Γ̃ ∆̃

0 Λ̃
+
-
, Γ̃ ≜ Ξ · ( I + µc ⊗ µ

⊺
r ), ∆̃ ≜

(
Ξ · µc Ψ

)
,

Λ̃ ≜ *
,

0 ψ⊺ − µ
⊺
r · Ψ

0 Λ
+
-
.

It is not hard to see that Ã is i∗, (j + 1)-zero padded, for some
i∗ ≤ nX − j − 1. Indeed, i∗ = rank(Γ̃) ≤ nX − j − 1, since Γ̃ has
dimension nX − j − 1. In addition, the (j + 1)-dimensional square
submatrix Λ̃ of Ã composed of its last j + 1 rows and columns is
nilpotent, since Λ is nilpotent as well:

*
,

0 λ⊺

0 Λ
+
-

ℓ+1
= *
,

0 λ⊺ · Λℓ

0 Λ · Λℓ
+
-
= *
,

0 λ⊺ · 0

0 Λ · 0
+
-
= 0,

where ℓ is the degree of Λ, and λ⊺ = ψ⊺ − µ
⊺
r · Ψ.

At this point, to conclude the proof, one can observe by direct
computation that A and Ã are similar, i.e., Ã = P−1 · A · P, via the
following invertible matrix P ∈ Rn×n :

P ≜
*...
,

I 0 0

µ
⊺
r 1 0

0 0 I

+///
-

, with P−1 =
*...
,

I 0 0

−µ
⊺
r 1 0

0 0 I

+///
-

,

where the two identity matrices along the principal diagonal have
dimension nX − j − 1 and j, respectively.

Finally, notice that Ã is obviously rational, if A is rational. More-
over, the periodicity of the latter is preserved in the former. In-
deed, suppose that A is h,k-periodic, i.e., Ak+h+1 = Ah+1. Then,
Ãk+h+1 = (P−1 · A · P)k+h+1 = P−1 · Ak+h+1 · P = P−1 · Ah+1 · P =
(P−1 · A · P)h+1 = Ãh+1, since P−1 · An · P = (P−1 · A · P)n , for any
n ∈ N. Thus, Ã is h,k-periodic as well. □

Before proceeding, we observe that the Jordan canonical form [20]
provides an effective way to characterize periodic matrices. For-
mally, a square matrix A is h,k-periodic iff
• it is diagonalizable on the complex field C,

• all non-null eigenvalues are (k − 1)-th roots of the unit, and
• 0 is one of its eigenvalues with multiplicity h, when h > 0.

Therefore, to determine the period k and the transient h of A it is
enough to analyze its characteristic polynomial and verify whether
it can be decomposed in the form λh (λ − λ0)m0 · · · (λ − λn )

mn , for
some numbers n,m0, . . . ,mn ∈ N, where all λi are complex (k − 1)-
th roots of 1. Then, by exploiting the knowledge on the eigenvalues
0, λ0, . . . , λn , one can check if A is diagonalizable by using the
standard null-space algorithm. Notice that part of this process is
automatically done by the normalization procedure behind the
proofs of Lemma 1, which automatically returns the transient h, so,
one can just focus on the non-singular submatrix Γ of A.

Thanks to the above lemma, we can now derive the following
theorem allowing us to show that, for every CPSM having a trans-
formation matrix A with a singular non-nilpotent part Γ, there
exists an equivalent CPS M̃ whose transformation matrix Ã has a
non-singular non-nilpotent part Γ̃.

Theorem 1 (Zero-Padded CPSs). For every i, j-zero-padded (ra-
tional, bounded, h,k-periodic) CPS M on nX variables, with i +
j < nX , there exists an equivalent i∗, (j + 1)-zero-padded (rational,
bounded, h,k-periodic) CPS M̃, for some i∗ ≤ nX − j − 1.

Proof. LetM = ⟨M, trn, evl,msr, act, I,MI ,MF ⟩ and consider
the i∗, (j + 1)-zero padded CPS M̃ = ⟨M̃, trn, ẽvl, m̃sr, act, Ĩ, M̃I ,

M̃F ⟩ with the same cyber controller as M, but a new physical
environment defined as follows, where the transformation matrix
Ã is computed, via Lemma 1, as Ã ≜ P−1 · A · P, for some invertible
matrix P ∈ RnX×nX :
• the set of states M̃ ≜ C × Ẽ is the product of the original
set of control states C with the set of the physical states Ẽ
containing exactly those vectors ẽ ∈ RnX+nS+nA for which
there exists a physical states e ∈ E such that: (i) ẽX = P−1 ·eX ,
(ii) ẽS = eS , and (iii) ẽA = eA ; the invariant Ĩ and the sets of
initial and final states Ẽα , with α ∈ {0, F }, are built similarly,
thus, if I is bounded, Ĩ is bounded as well;
• the evolution function ẽvl uses the transformation matrix
Ã, while both the actuator matrix and the offset vector are
those of the CPSM;
• the measurement function m̃sr uses the sensor matrix C̃ ≜
C · P, where C is the sensor matrix of the CPSM, while the
error polyhedron is inherited fromM without modifications.

To conclude the proof, we need to show that M̃ is equivalent to
M. In order to do so, one can observe that the bijective mapping
(c, e ) 7→ (c, ẽ ) between state of the dynamics graphs GM and G

M̃
allows to map paths of GM into paths of G

M̃
and, vice versa, where

(i) ẽX = P−1 · eX , (ii) ẽS = eS , and (iii) ẽA = eA . The easy step-by-
step verification is left to the reader. □

An easy induction on the difference nX − (i + j ) between the
dimension and the sum of the two indexes of a i, j-zero-padded
matrix allows to show that we can always put a system in a kind
of normal-form where the transformation matrix has the shape

A ≜ *
,

Γ ∆

0 Λ
+
-
, where Γ is invertible, Λ is nilpotent, and ∆ is an

arbitrary matrix. This is formally stated in the following corollary.
Observe that all relevant properties or the original transformation
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matrix are preserved during the normalization process. Finally, it
is not hard to see that the computational resources required by
this process are polynomially bounded by the dimension of the
matrix. Indeed, to perform such a transformation, we need to ap-
ply Theorem 1 at most nX times. The cost of each application is
proportional to the sum of (i) the cost of a Gaussian elimination to
obtain the transformation matrix Ã and (ii) the cost of the linear
transformations of the sensor matrix C together with that of the
polyhedra constituting the invariant I and the sets of initial and
final states MI and MF .

Corollary 1 (CPSNormalization). For every (rational, bounded,
h,k-periodic) CPS M on nX variables, there exists an equivalent

i, (nX − i )-zero padded (rational, bounded, h,k-periodic) CPS M̃,

for some 0 ≤ i ≤ nX . Moreover, M̃ can be computed fromM in

polynomial time.

As an instance of the CPS normalization process, consider again
the CPSMWT of the water-tank plant described above. It is not
hard to see that its transformation matrix A, being 3, 0-zero padded,
can be decomposed as follows, where both matrices ∆ and Λ are
empty (the decimal values previously reported are represented here
as fractions):

A =
*....
,

0 0 3/2 3/2
3/4 0 0 −1/2
1/4 1/4 0 0
0 3/4 −1/2 0

+////
-

= *
,

Ξ Ξ · µc

µ
⊺
r · Ξ µ

⊺
r · Ξ · µc

+
-
,

where µ⊺r = (−1/3,−1, 3), and µ⊺c = (−2/3, 2/3, 1).
At this point, after the application of the normalization process

described in the proof of Lemma 1, we obtain the followingmodified
3, 1-zero-padded 0, 3-periodic transformation matrix Ã:

Ã =
*....
,

−1/2 −3/2 6 3/2
11/12 1/2 −3/2 −1/2
1/4 1/4 0 0
0 0 0 0

+////
-

= *
,

Γ̃ ∆̃

0 Λ̃
+
-
,

with Γ̃ = Ξ · *.
,

1 + 2/9 2/3 −2
−2/9 1 − 2/3 2
−1/3 −1 1 + 3

+/
-
.

In addition, the modified sensor matrix C̃ is:

C̃ = *.
,

−1/25 −3/25 9/25 3/25
0 1/20 0 0
0 0 1/20 0

+/
-
= C · P,

where P =
*....
,

1 0 0 0
0 1 0 0
0 0 1 0
−1/3 −1 3 1

+////
-

.

An interested reader can also verify that Ã = P−1 · A · P. Finally,
beside the control states, the invariant I is the Cartesian product of
the following interval of values: [0, 100] for the first three variables,
[−200/3, 0] for the fourth variable, [−0.12, 12.12] for the first sen-
sor, [−0.05, 5.05] for the other two sensors, {0, 0.5, 1} for the first
actuator, and {0, 1} for the other two actuators. The set of initial
and final states are modified similarly. To conclude, observe that
the normalized CPS M̃WT , although equivalent to the original one

MWT , does not preserve the physical meaning of the variable x4
whose corresponding components of the transformation matrix
have been modified.

4 REACHABILITY PROBLEM
We now provide an ExpSpace decidability procedure for the reach-
ability/safety problem of bounded periodic CPSs, which is based
on the notion of reachability polyhedric quotient. We prove that
the same procedure runs in PSpace under the assumption that the
condition polyhedra, the invariant, and both the initial and the final
sets of states are rectangular, i.e., they can be described by means
of linear constraints of the form x ≍ v , with ≍ ∈ {<, ≤, >, ≥}, x a
variable, and v ∈ Q a rational number. Finally, we show that, in
case the boundedness requirement on the invariant is relaxed, the
same problem turns out to be undecidable.

In the following, given a linear CPSM, we shall declare that
two states (c1, e1), (c2, e2) ∈ I are equivalent, in symbols (c1, e1) ≡
(c2, e2), if the associated control states are equal and the two sensor
states belong to the same condition polyhedron. Formally, (c1, e1) ≡
(c2, e2) if the following properties hold true: (i) c1 = c2; (ii) e1S ∈ Pi
iff e2S ∈ Pi , for all indexes i ∈ [1,m], where Pi is the i-th condition
polyhedron as described in Item 1 of Definition 3. Intuitively, two
states are equivalent if they cannot be distinguished by the control
system.

In the next definition we describe how to quotient the dynam-
ics graph GM induced by a bounded CPSM in such a way that
(i) physical states locally behaving in a similar manner are grouped
into polyhedra, and (ii) the reachability property is preserved.

Definition 4 (Reachability Quotient). The reachability quo-
tient of a linear CPS M = ⟨M, trn, evl,msr, act, I,MI ,MF ⟩ is the

graph G≡
M

≜ ⟨W,⇒⟩ defined as follows:

• W ≜ {Q ⊆ I : ∃Q⋆ ∈ (I/ ≡) .Q ⊆ Q⋆};

• Q1 ⇒ Q2 iff Q2 ∈ ({(c2, e2) ∈ I : ∃(c1, e1) ∈ Q1 . (c1, e1) →
(c2, e2)}/ ≡), for all Q1,Q2 ∈ W.

The sets of elements Q ∈ W are called pseudo states. Moreover, Q is

initial (resp., final) if Q ⊆ MI (resp., Q ∩MF , ∅).

Intuitively, a pseudo state Q2 is a successor of a pseudo state Q1

if every state (c2, e2) ∈ Q2 is a successor of some state (c1, e1) ∈ Q1.
The next result shows that the quotient G≡

M
associated with a

linear CPSM preserves the reachability property. To prove this, one
can transform a path ρ of GM into a path ρ≡ of G≡

M
and vice versa,

in such a way that the last element of ρ is final iff the corresponding
element of ρ≡ is final as well. This can be done, for the forward
direction, by replacing each state (ci , ei ) in ρ with a pseudo state
Qi , following the increasing order of the indexes i ∈ N, where Qi
is a suitably chosen subset of the equivalence class [(ci , ei )]≡. For
the backward direction, in decreasing order of indexes, one extract
from each Qi a representative state (ci , ei ) ∈ Qi that also preserves
the transition relation w.r.t. the already chosen state (ci+1, ei+1).

Lemma 2 (ReachabilityQuotient I). A dynamics graph GM
of a CPSM admits a path starting in an initial state and terminating

in a final one iff there exists a path in the reachability quotient G≡
M

from an initial pseudo state to a final one.



On the Decidability of Linear Bounded Periodic CPSs HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

Proof. Given a path ρ = (c0, e0), (c1, e1), . . . , (ck , ek ) in GM
starting from an initial state (c0, e0), we can construct a path ρ≡ =
Q0,Q1, . . . ,Qk in the associated reachability quotient G≡

M
as fol-

lows, where [(c, e )]≡ denotes the equivalence class in I containing
the state (c, e ) ∈ I:
• Q0 ≜ [(c0, e0)]≡ ∩MI ;
• Qi+1 ≜ [(ci+1, ei+1)]≡ ∩ {(c⋆, e⋆) ∈ I : (ci , ei ) → (c⋆, e⋆)},
for all indexes 0 ≤ i < k .

Obviously, Q0 is an initial pseudo state and, if (ck , ek ) is a final
state, then Qk is a final pseudo state.

Dually, given a path ρ≡ in G≡
M

ending in a final pseudo state,
we can extract from it several paths ρ of GM as follows:
• (ck , ek ) ∈ Qk ∩MF ;
• (ci−1, ei−1) ∈ {(c

⋆, e⋆) ∈ Qi−1 : (c⋆, e⋆) → (ci , ei )}, for all
indexes 0 < i ≤ k .

Obviously, (ck , ek ) is a final state and, if Q0 is an initial pseudo
state, then (c0, e0) is an initial state.

The soundness of the above constructions is easy to prove by
standard induction on the length k of the paths. □

By exploiting elementary linear algebra and standard theory of
convex polyhedra, one can easily show that every pseudo state
along a path in the reachability quotient G≡

M
of a CPSM can be

decomposed into a Cartesian product of control states, polyhedra
on variable and sensor states, and actuator states (see Lemma 3).

From now on, by Y1, . . . ,Ym ⊆ RnX , we denote the m ∈ N
polyhedra on variable states such that Pi = C · Yi + D, for all
i ∈ [1,m], where Pi ⊆ RnS are the condition polyhedra described
at Item 1 of Definition 3. In addition, given a polyhedron of variable
and sensor states U ⊆ RnX+nS , with U↾X ⊆ RnX (resp., U↾S ⊆
RnS ) we indicate the polyhedron of variable (resp., sensor) states
only, obtained from U by projecting out the sensor (resp., variable)
state components of each vector in U. Observe that U↾X ⊆ Yi iff
U↾S ⊆ Pi , for all i ∈ [1,m].

Lemma 3 (ReachabilityQuotient II). Let ρ≡ = Q0,Q1, . . . ,Qk
be a path in the reachability quotientG≡

M
of a CPSM, withQ0 initial.

Then, for all indexes i ∈ [0,k], there exist a control state ci ∈ C,
a polyhedron of variable and sensor states Ui ⊆ R

nX+nS , and an

actuator state eAi ∈ R
nA

such thatQi = {ci }×Ui ×{eAi }. Moreover,

for Vi ≜ Ui ↾X, it holds that Vi+1 = (A · Vi + B · eAi+1 +w) ∩ Yji+1 ,
for some index ji+1 ∈ [1,m].

Proof. First observe that, for all indexes i ∈ [0,k] and states
(c1i , e1i ), (c2i , e2i ) ∈ Qi , it holds that c1i = c2i , since (c1i , e1i ) ≡
(c2i , e2i ). Thus, e1iA = act(c1i ) = act(c2i ) = e2iA . Consequently,
Qi = {ci } × Ui × {eAi }, for some set of variable and sensor states
Ui ⊆ R

nX+nS , where ci = c1i = c2i and eAi = e1iA = e2iA . More-
over, again by definition of the equivalence relation ≡ among states,
it follows that Ui ⊆ R

nX × Pji , for some index ji ∈ [1,m], where
Pji is one of the condition polyhedra. Therefore, Vi ⊆ Yji , where
Vi ≜ Ui ↾X. We can now show that Ui is actually a polyhedron.
The proof of this fact proceeds by induction on the length k of the
path ρ≡ reaching a certain pseudo state Qk .

For the base case k = 0, we have that {c0} ×U0 × {e0A } = Q0 ⊆

MI = CI × FI ×GI , since Q0 is an initial pseudo state, where CI , FI ,
and GI are the sets described at Item 5 of Definition 3. Therefore,

Q0 ∈ ((CI ×FI ×GI )/ ≡), which means that U0 = FI ∩ (RnX ×Pj0 ).
However, the Cartesian product of a polyhedron Pj0 with RnX is a
polyhedron and the intersection of two polyhedra is a polyhedron
as well. Hence, the thesis holds for Q0.

As the inductive case k > 0, suppose that the property holds true
at index k − 1 and let us show that the same holds for index k . Since
Qk−1 ⇒ Qk , by definitions of reachability quotient and graphs of
dynamics, we have that, for each state (ck , ek ) ∈ Qk , there exists
a state (ck−1, ek−1) ∈ Qk−1 such that (ck−1, ek−1) → (ck , ek ). This
means that ekX = A ·ek−1X+B ·ekA+w, from which it follows that
Vk = (A ·Vk−1 +B · eAk +w) ∩ Yjk . Now, by inductive hypothesis,
Qk−1 is a polyhedron. Thus Vk−1 is a polyhedron as well, implying
that Vk satisfies the same property being obtained from the first via
a linear transformation and an intersection. Moreover, by Item 3
of Definition 3, we necessarily have Qk ↾S = C · Vk + D. Hence,
this set is a polyhedron too. Consequently, Qk enjoys the required
property, concluding the proof. □

We now provide a proposition describing the structure of an
arbitrary power of an i, j-zero-padded matrix. The easy proof is by
mathematical induction on the power index.

Proposition 1 (Zero-Padded Power). The k-th power of an

i, j-zero-padded matrix A of dimension n ∈ N+ and index ℓ ∈ N+,
where ℓ≤k ∈N, is equal to

Ak = *
,

Γk ∆⋆

0 0
+
-
, with A = *

,

Γ ∆

0 Λ
+
-
,

for some matrix ∆⋆ ∈ R(n−j )×j .

Finally, everything is in place to provide our ExpSpace decid-
ability procedure for the reachability problem of rational bounded
h,k-periodic CPSs. In addition, we prove that the same procedure
runs in PSpace under the assumption that the condition polyhedra,
the invariant, and both the initial and final sets of states are rect-
angular, i.e., they can be described by means of linear constraints
of the form x ≍ v , with ≍ ∈ {<, ≤, >, ≥}, x a variable, and v ∈ Q a
rational number. In such a case, we call the CPS rectangular. Notice
that the CPS of the example described in the previous section is
rectangular.

Thanks to Lemma 2, one can solve the problem for a CPSM by
reducing it to a nondeterministic search in the reachability quotient
G≡
M

for a path ρ≡ = Q0,Q1, . . . ,Qk meeting a final pseudo state
Qk and starting from an initial one Q0. In particular, the search
does not require the construction of the entire structure G≡

M
in

advance, since every pseudo state Qi+1 along ρ≡ can be computed
directly from the previous one Qi , as described by Lemma 3, via
the equality

Vi+1 = (A · Vi + B · eAi+1 + w) ∩ Yji+1 .

Moreover, in general, there are at most doubly-exponentially many
reachable pseudo states, since there are atmost doubly-exponentially
many polyhedra that can reside entirely in the invariant of the
system, as we shall show later in this section. Indeed, a convex
polyhedron can be uniquely identified by its set of vertex and there
are at most exponentially many suitably such vertexes. In the case
of rectangular constraints, instead, we are able to show that the
number of rectangular polyhedra that can be reached is at most
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exponential. This is because, to identify a single rectangle, it is
enough to determine the coordinate of nX of its vertexes, where
nX is the dimension of the variable state space.

The decision procedure we provide strongly relies on the zero-
padded normal form of the transformation matrix A ofM ensured
by Corollary 1. With more detail, such a property induces in its turn
a normal form on the variable-state polyhedra Vi ⊆ RnX . Indeed,
it can be shown that, if A is h,k-periodic, after a transient of length
h, each set Vi+h+1 satisfies the equality

Vi+h+1 = (Ai · Vh+1) ∩
h+k⋂
j=0

Aj ·Z⋆i, j + z
⋆
i ,

where Z⋆i, j is a polyhedron (resp., rectangular polyhedron) among
doubly-exponentially (resp., exponentially) many polyhedra (resp.,
rectangular polyhedra) that are independent from Vh+1 and only
depend on the invariant I and the condition polyhedra P1, . . . ,Pm .
Moreover, there are only exponentially many displacements z⋆i
Now, thanks to Proposition 1, one can observe that Ai · Vh+1 =
Ai+k · Vh+1. Thus, the number of possible reachable pseudo states
Qi is linear in the number of the sets Z⋆i, j and vectors z

⋆
i . This shall

conclude the proof.

Theorem 2 (Decidability). The reachability problem for a ra-

tional bounded h,k-periodic CPS can be decided in ExpSpace. If the

above CPS is also rectangular, then the reachability problem can be

decided in PSpace.

Proof. By an application of Corollary 1, the reachability prob-
lem for an arbitrary rational bounded h,k-periodic CPS on nX
variables can be linearly reduced to the same problem for a rational
bounded h,k-periodic p, (nX − p)-zero-padded CPSM, for some
0 ≤ p ≤ nX . The latter can then be solved, due to Lemmas 2 and 3,
by nondeterministically searching in the associated reachability
quotient G≡

M
for a path ρ≡ = Q0, . . . ,Qn that starts in an initial

pseudo state Q0 and ends in a final one Qn . Since such a search
does not require the construction of the entire quotient G≡

M
and

every pseudo state Qi+1 can be computed from the previous one Qi
by using the decomposition described in the statement of Lemma 3,
it shall be sufficient to employ a counter to verify if a loop has been
found before encountering a final pseudo state. Such a counter
has exponentially many bits in case we are considering arbitrary
polyhedra, while only polynomially many, if we focus on rectangu-
lar constraints. The required complexity follows directly from this
simple observation.

Let us proceed with the details of the proof. First notice that,
by Lemma 3, there is a bijection between a path Q0, . . . ,Qn and a
sequence (c0,V0), . . . , (cn ,Vn ) of the same length, where Vi+1 =
(A · Vi + B · eAi+1 + w) ∩ Yji+1 and eAi = act(ci ), for some index
ji+1 ∈ [1,m]. The proof consists in showing the following sequence
of five claims, whose proofs can be found in the Appendix, where we
set (i)wi ≜ B·eAi+w, (ii) zi ≜

∑i
l=1 A

i−l ·wl , and (iii)Zi ≜ Yji −zi .
The first claim states that every polyhedra Vi reachable during

the search is completely included into a polyhedron computable
directly from the initial one V0.

Claim 1. Vi ⊆ (Ai · V0) ∩
⋂i
l=1 A

i−l ·Zl + zi , for all i ∈ N.

Thanks to the above inequality, we can show that all components
from the (i + 1)-th to the nX-th of a vector in the polyhedron Vh+1,
obtained after the transient has terminated, are constant.

Claim 2. (eX1)j = (eX2)j , for all vectors eX1, eX2 ∈ Vh+1 and
indexes i + 1 ≤ j ≤ nX .

After the transient phase is concluded, all reachable polyhedra
have a more structured form than those reached before, as described
in the statement of the following claim, where we set:
• z⋆i ≜

∑i
l=1 A

i−l · wl+h+1;
• Z⋆i ≜ {ex ∈ Yji+h+1 :∀p+1 ≤ j ≤ nX . (ex )j=(z

⋆
i+h+1)j } − z

⋆
i .

Claim 3. Vi+h+1 = Ai · (Vh+1∩
⋂i
l=1 A

i−l ·Z⋆l )+z
⋆
i , for all i ∈ N.

At this point, we are able to describe a normal form for all poly-
hedra that are reachable after the transient phase is concluded,
where we set Z⋆i, j ≜ Z⋆i−j , if i − j ≤ h, and Z⋆i, j ≜

⋂
q ∈ [0, k [
i − j = l + q · k

Z⋆l ,

otherwise.

Claim 4. Vi+h+1 = (Ai ·Vh+1)∩
⋂h+k
j=0 Aj ·Z⋆i, j +z

⋆
i , for all i ∈ N.

Finally, we can give a bound on the number of reachable polyhe-
dra Vi during the nondeterministic search for a final one.

Claim 5. There are doubly-exponentially (resp., exponentially)
many polyhedra (resp., rectangular polyhedra) Z⋆i, j .

To conclude the proof, it is enough to observe that, thanks to
Claims 4 and 5, in order to maintain a polyhedron Vi+h+1 along
the search, after the transient phase is terminated, it is enough to
record at every step the index i , the k + h + 1 polyhedra Z⋆i, j , and
the vector z⋆i . Hence, the complexity immediately follows. □

It is quite easy to prove that, if the system invariant is not
bounded, then the decidability result does not hold anymore. Indeed,
such systems can simulate a standard two-counter machine [12, 19],
where the associated control logic is embedded in the controller
and the two counters are maintained by the environment into two
physical variables. We prove the undecidability result for rational
unbounded h,k-periodic rectangular CPSs, the generalization to
non-rectangular CPSs is an immediate consequence.

Theorem 3 (Undecidability). The reachability problem of ra-

tional unbounded h,k-periodic rectangular CPSs is undecidable.

Proof. To prove the undecidability of the reachability problem
for rational unbounded periodic rectangular CPSs, we describe a
reduction from the halting problem of a two-counter machine. First,
consider a rational unbounded 0, 1-periodic CPS with two variables,
two sensors, and two actuators defined as follows:M = ⟨C×R2, trn,
evl,msr, act,C × R2, {(c0, (0, 0))},MF ⟩; the transformation, sensor,
and actuator matrices are the identity, i.e., A = C = B = I; the offset
vector is the zero one, i.e., w = (0, 0); the error polyhedron is the
trivial one, i.e. D = {(0, 0)}. Now, it is easy to see that the logic of
the two-counter machine can be simulated by a cyber controller
with the same set of states C and the same initial state c0 by suitably
testing each sensor for zero, where the increment/decrement of the
first/second counter is mapped to a 1/−1 value on the associated
actuator. The final states of the controller are the halting states
of the machine MF . Obviously, the invariant, both the initial and
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final sets of states, and the the testing of a sensor for zero can be
described by means of rectangular linear constraints. HenceM
is rectangular. At this point, it is immediate to observe that the
solution of the reachability problem on the described CPS would
correspond to a solution of the halting problem of the two-counter
machine. The undecidability result immediately follows. □

Corollary 2. The reachability problem of rational unbounded

h,k-periodic CPSs is undecidable.

5 CONCLUSIONS, RELATED AND FUTURE
WORK

The paper provides a decidability procedure of the reachability/safety
problem for a significant subclass of discrete-time linear CPSs, more
precisely, for h,k-periodic CPSs, i.e., CPSs whose physical process
in isolation, i.e., without any interaction with the controller, has a
behavior with a period k and transient h. A necessary requirement
for decidability is the boundedness of the invariant: if the invari-
ant is not bound, indeed, the reachability problem of h,k-periodic
CPSs is still undecidable, even under the hypotheses of rectangular
constraints.

The steps followed to derive the decidability result are as fol-
lows. The first step of our reachability result consists in providing
a polynomial-time transformation of our CPSs in its corresponding
zero-padded normal form. One of the main technical challenges
of the paper, in fact, consists in proving that, for every bounded
periodic CPS, there exists a corresponding equivalent zero-padded
normal form (Lemma 1, Theorem 1, and Corollary 1). This result is
not a trivial one, because it requires something similar to a partial
matrix diagonalization process on the rational field Q. Then, we
describe a ExpSpace (resp., PSpace) decidability procedure of the
reachability/safety problem for bounded periodic (resp., rectangu-
lar) CPSs, which is based on the notion of reachability quotient
(Theorem 2). Intuitively, we show that if there exists an execution
of the CPS starting from an initial state that reaches a final one,
there exists a corresponding path in the reachability quotient and
vice versa. In other words, we describe how to quotient a bounded
periodic CPS in such a way that (i) physical states locally behaving
in a similar way are grouped into polyhedra, and (ii) the reachability
property is preserved. In the general case, we show that there are
at most doubly-exponentially many polyhedra that can be entirely
contained in our bounded system invariants. This because every
polyhedron can be uniquely identified by its set of vertexes and
there are at most exponentially many values to associate with them
inside the invariant. However, in the case of rectangular CPSs, we
are able to prove that the number of possible rectangular polyhedra
with the same property is at most exponential in the number of
physical state variables, since every rectangular polyhedron only
requires a number of points equal to the dimension of the space to
be identified. Notice that a PSpace lower bound should be easily
derivable from the emptiness problem of classic timed automata,
since these are basically periodic CPSs in which the transformation
matrix is the identity and where the boundedness of the invariant is
somehow intrinsic in the nature of the problem (it can be computed
from the maximal constant occurring in a clock constraint).

Finally, we show that, in case the boundedness requirement on
the system invariant is not satisfied, the same problem turns out to

be undecidable, even when assuming rectangular constraints (The-
orem 3), since such systems can simulate a standard two-counter
machine [12, 19].

Related work. The reachability problem for hybrid automata has
been shown to be decidable for a number of classes of hybrid au-
tomata including timed automata [4], certain subclasses of rect-
angular hybrid automata [8], semi-algebraic o-minimal hybrid au-

tomata [11], semi-algebraic STORMED hybrid systems [28], and,
more recently, initialized linear inclusion automata [24].

In the last three classes of automata mentioned above the dy-
namics of the state variables is given by an exponential function.
However, in general, reachability remains undecidable even for
simpler classes, with simpler dynamics, such as linear hybrid au-
tomata [5], in which the dynamics of the variables are defined by
linear differential inequalities.

Nevertheless, besides the papers [4, 8], decidability has been
proven for a number of subclasses of linear hybrid automata equipped
with either continuous or discrete time. In the continuous case, de-
cidability has been proven for: (i) planar linear hybrid automata [22],
a subclass with only two state variables, monotonic along some
direction in the plane and with no resets; (ii) rectangular hybrid au-
tomata, with continuous state variables, but controllers that check
them in discrete-time instants [7]; (iii) initialized rectangular au-

tomata [23], in which the bounds of the derivative of each variable
are constants except when the variable assumes an integer value
or it is initialized to a new value.

In the discrete case, decidability has been proven for lazy rect-
angular automata [1], in which the observation of the continuous
space takes place with bounded delays; basically, this is a gener-
alization of [7], where the discrete time behavior of rectangular
automata is studied under the condition that all instantaneous tran-
sitions should take place only at integer-valued instances of time.
This work was subsequently extended [2, 9] with the introduction
of two key features: (i) the values of the continuous variables can be
observed with only finite precision, (ii) the guards controlling the
transitions are finite conjunctions of arbitrary linear constraints.

Another significant achievement in discrete-time linear hybrid
systems can be found in the control-theory paper [27]. In that paper,
the dynamics of a physical system is given by means of a discrete-
time evolution law of the form

xk+1 = Axk + Buk + Cdk

in which xk is the current state vector,uk is the input vector (i.e., the
control actions implemented through actuators), and dk denotes
the vector of disturbance variables; A, B and C are rational matrices
characterizing the dynamics of the system. The paper proves that
(a control-theory problem corresponding to) reachability is decid-
able under the following hypotheses: (i) the matrix resulting from
the calculation B(AB) . . . (An−1B) has maximum rank; (ii) for any
disturbance d , it must holdM((An−1C) . . .C)dn ≤ β , whereM and
β come from the safe set constraint Mx ≤ β , for any state vector x .

Linear control systems, a class of control systems closely related
to the previous ones, even supports decidable model checking of
Linear Temporal Logic (LTL) formula [25, 26].
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Finally, in order to get around the limitations of the automatic
verification of linear hybrid systems, the paper [6] provides a semi-
decision method for the safety of robust polynomial hybrid system,
a class of continuous polynomial hybrid systems enriched with
a simple model of perturbation (or noise). Intuitively, all physical
variables of these systems are subject to a perturbation that is at
most ϵ , for some fixed ϵ > 0. The decidability holds when assum-
ing certain distances, such as Euclidean distance, between genuine
and perturbed physical values, but not for others, such as discrete
metrics or radar-screen metrics. As reported by the author him-
self, the model of perturbation used in the paper is actually a bit
too simplistic: realistic models of noise should better be quantita-
tive, representing noise in terms of some appropriate probabilistic
distribution. The paper does not provide any computation of the
complexity of the proposed methodology.

Future work. Wewould like to investigate new significant subclasses
of linear CPSs, with possibly more efficient decidability procedures.
In particular, it would be interesting to understand how to relax the
linearity and periodicity constraints still maintaining a decidable
reachability problem.

This paper is part of a wider project whose goal is to apply
formal methods to lay and streamline logical foundations to reason
about CPSs [21] (see [13, 18]) and cyber-physical attacks [29], i.e.,
security breaches in cyberspace that adversely affect the physical
processes of CPSs (see [15–17]). Actually, we will consider applying
the results of the current paper in the context of CPS security [29]
by developing a ad hoc logics for building up a security analysis
to statically detect cyber-physical attacks targeting both physical
devices and logical components (a first attempt in this direction
can be found in [14]).
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A DETAILS OF THE PROOF OF THEOREM 2
Claim 1. Vi ⊆ Ai · V0 ∩

⋂i
l=1 A

i−l · Zl + zi , for all i ∈ N.

Proof. The proof proceeds by induction. The base case i =
0 is trivial, since A0 = I and, by definition, an empty-indexed
intersection contains all elements and an empty-indexes summation
assumes zero as value, thus, ⋂0

l=1 A
i−l · Zl = R

nX and z0 = 0.
Suppose now that the above inclusion holds at index i and let us
prove it for index i + 1. The steps of our reasoning are reported in
the following, where we express the polyhedron Vi+1 as (A · Vi +
wi+1) ∩ Yji+1 .

Vi+1 = (A · Vi + wi+1) ∩ Yji+1 (1)

⊆ (A · (Ai · V0 ∩

i⋂
l=1

Ai−l · Zl + zi ) + wi+1) ∩ Yji+1 (2)

= (A · (Ai · V0 ∩

i⋂
l=1

Ai−l · Zl ) + A · zi + wi+1) ∩ Yji+1 (3)

= (A · (Ai · V0 ∩

i⋂
l=1

Ai−l · Zl ) + zi+1) ∩ Yji+1 (4)

= A · (Ai · V0 ∩

i⋂
l=1

Ai−l · Zl ) ∩ (Yji+1 − zi+1) + zi+1 (5)

= A · (Ai · V0 ∩

i⋂
l=1

Ai−l · Zl ) ∩ Zi+1 + zi+1 (6)

⊆ Ai+1 · V0 ∩ A ·
i⋂

l=1
Ai−l · Zl ∩ Zi+1 + zi+1 (7)

= Ai+1 · V0 ∩

i+1⋂
l=1

Ai+1−l · Zl + zi+1 (8)

On Step 1 we have the equality observed above. The inclusion on
Step 2 is obtained from Step 1 by applying the inductive hypothesis
and the fact that the function F(V) ≜ (A · V + wi+1) ∩ Yji+1 is
monotone, i.e., if V′ ⊆ V′′ then F(V′) ⊆ F(V′′). The third step
follows from the second one by distributing the product of A over
the sum, while the forth is then due just to the absorption of the term
wi+1 inside the term zi+1, since zi+1 = A ·zi +wi+1. Step 5 is derived
from Step 4 by using the simple equality (V+z)∩Y = (V∩ (Y−z))+z.
Intuitively, the intersection of two polyhedra, the first of which is
translated by a certain vector z, can be obtained by translating the
second in the opposite direction −z, computing the intersection,
and then translating the result by z. Step 6 immediately follows by
applying the definition of the polyhedron Zi+1. By applying the
inclusion A · (V′ ∩V′′) ⊆ A · V′ ∩A · V′′, we derive Step 7 from the
previous one. Observe that, the converse does not necessarily hold
when A is singular. Finally, in Step 8, we just absorb the polyhedron
Zi+1 inside the intersection

⋂i+1
l=0 A

i+1−l · Zl . □

Claim 2. (eX1)j = (eX2)j , for all vectors eX1, eX2 ∈ Vh+1 and
indexes i + 1 ≤ j ≤ nX .

Proof. Since A is an h,k-periodic p, (nX − p)-zero-padded ma-
trix, by Proposition 1, we have that

*
,

Γk+h+1 ∆⋆

0 0
+
-
= Ak+h+1 = Ah+1 = *

,

Γh+1 ∆⋆

0 0
+
-
,

for some matrix ∆⋆ ∈ Rp×(nX−p ) . Therefore, Γk+h+1 = Γh+1. More-
over, Γ is non-singular, since it has rank p equal to its dimension, so,
it admits an inverse Γ−1. Thus, Γk+1 = Γ−h · Γk+h+1 = Γ−h · Γh+1 =
Γ, i.e., Γ is 0,k-periodic. In addition, for any set V ⊆ RnX , vector
eX ∈ Ah+1 · V, and index p + 1 ≤ j ≤ nX , we have that the j-th
component of eX is zero, i.e., (eX )j = 0. This is due to the fact that
all rows of Ah+1 from the (p + 1)-th to the last one are zero vectors.
Consequently, it holds that the components from the (p + 1) to
nX of a vector in Vh+1 are constant. Formally, (eX1)j = (eX2)j , for
all eX1, eX2 ∈ Vh+1 and p + 1 ≤ j ≤ nX . This easily follows from
Claim 1 applied to i = h + 1:

Vh+1 ⊆ Ah+1 · V0 ∩

h+1⋂
l=1

Ah+1−l · Zl + zh+1.

Indeed, all vectors in Ah+1 · V0 ∩
⋂h+1
l=1 Ah+1−l · Zl have zero value

on the components from the (p + 1)-th to the last one, and all of
them are translated by the same vector zh+1 in order to obtain those
in the covering of Vh+1. □

Claim 3. Vi+h+1 = Ai ·Vh+1∩
⋂i
l=1 A

i−l ·Z⋆l +z
⋆
i , for all i ∈ N.

Proof. The proof proceeds by induction on the index i exactly
as the one of Claim 1, where, in place of the inclusion A · (V′∩V′′) ⊆
A·V′∩A·V′′ at Step 7, we use the equalityA·(V′∩V′′) = A·V′∩A·V′′

that holds true under the assumption that (i) A is p, (nX − p)-
zero-padded and (ii) (eX1)j = (eX2)j , for all eX1, eX2 ∈ V′ ∪ V′′

and p + 1 ≤ j ≤ nX , i.e., both V′ and V′′ are constants on the
components from the (p + 1)-th to the last one. This can be done,
thanks to Claim 2, because of the fact that Vh+1 is constant on the
components of its vectors from the (p+1)-th to the last one. Indeed,
for any vector eX ∈ A ·V′∩A ·V′′, there exist two vectors eX′ ∈ V′
and eX

′′ ∈ V′′ such that eX = A · eX′ = A · eX′′. Now, consider
the row decompositions

eX
′ =

(
s ′

t

)
and eX′′ =

(
s ′′

t

)
,

where s ′, s ′′ ∈ Rp and t ∈ RnX−p . Due to the above equality, we
have that

*
,

Γ ∆

0 Λ
+
-
·

(
s ′

t

)
= A · eX

′ = A · eX
′′ = *

,

Γ ∆

0 Λ
+
-
·

(
s ′′

t

)
,

from which we derive(
Γ · s ′ + ∆ · t

Λ · t

)
=

(
Γ · s ′′ + ∆ · t

Λ · t

)
.

Therefore, it holds that Γ ·s ′+∆ ·t = Γ ·s ′′+∆ ·t and, so, Γ ·s ′ = Γ ·s ′′,
which implies s ′ = s ′′, being Γ invertible, as already observed in
the proof of Claim 2. Consequently, eX′ = eX

′′ ∈ V′ ∩ V′′. Hence,
eX ∈ A · (V′ ∩ V′′). □

Claim 4. Vi+h+1 = Ai ·Vh+1 ∩
⋂h+k
j=0 Aj ·Z⋆i, j +z

⋆
i , for all i ∈ N.
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Proof. The equality immediately follows by Claim 3 and the
(h,k )-periodicity of the transformationmatrixA. Indeed, it is enough
to intersect together all the polyhedra Z⋆l1 and Z⋆l2 , with l1 ≤ l2,
associated with power indexes i − l1 and i − l2 such that h < i − l2
and i − l1 = i − l2 + q · h, for some number q ∈ [0,k[. □

Claim 5. There are doubly-exponentially (resp., exponentially)
many polyhedra (resp., rectangular polyhedra) Z⋆i, j .

Proof. We can finally prove that there are at most doubly-
exponentially (resp., exponentially) many reachable (resp., rectan-
gular) polyhedra. Every Z⋆i, j is obtained from the intersection of
possibly several polyhedra Z⋆l , which are in turn obtained as restric-
tion and translation of the derived condition polyhedra Y1, . . . ,Ym ,
w.r.t. some vector zi . Due to the boundedness of the invariant I, it is
not hard to see that there are at most exponentially many vectors
zi that allow a translation of a polyhedron Yi to remain inside the

invariant. Consequently, in general, every polyhedron Z⋆i, j is the
intersection of at most exponentially many polyhedra derived from
Y1, . . . ,Ym . Thus, we can have at most doubly-exponentially many
polyhedra Z⋆i, j . This fact can be also derived by thinking that a con-
vex polyhedron can be uniquely identified by the set of its vertexes
and there are at most exponentially many values to be associated
with them.

A better estimation can be computed in case the condition poly-
hedra Y1, . . . ,Ym are rectangular. Indeed, translations and intersec-
tion of rectangular polyhedra are rectangular as well. Consequently,
all Z⋆i, j are necessarily rectangular. Now, every such a polyhedron
inside the invariant requires only nX points to be identified, and
there are at most exponentially many values that these points can
assume. Consequently, in this case the number of possible reachable
polyhedra is at most exponential. □
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