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Abstract. We rephrase some well-known results in Donaldson-Thomas the-
ory in terms of (formal families of) Frobenius type and CV-structures on a

vector bundle in the sense of Hertling. We study these structures in an ab-

stract setting, and prove a convergence result which is relevant to the case of
triangulated categories. An application to physical field theory is also briefly

discussed.
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1. Introduction

1.1. Formal infinite-dimensional picture. Frobenius manifolds are (complex or
real) manifolds endowed with a special structure on their tangent bundle. They were
introduced by Dubrovin (see e.g. [D]) and play a key role in quantum cohomology,
the enumerative theory of rational curves on algebraic varieties.

There is a notion of Frobenius type structure on a general holomorphic bun-
dle, due to Hertling [H]. A particular Frobenius type structure on an auxiliary
infinite-dimensional bundle plays an important role in Donaldson-Thomas theory,
the enumerative theory of semistable objects in abelian and triangulated categories.
This is essentially a rephrasing of results of Bridgeland-Toledano Laredo [BT1],
Joyce [J], Kontsevich-Soibelman [KS]. This Frobenius type structure lives in an
infinite-dimensional bundle K → Stab(C) over the space of stability conditions on
the category C and is given by a collection of holomorphic objects (∇r, C,U ,V, g)
with values in K, satisfying a set of PDEs. It turns out that the endomorphism U
and the Higgs field C are given by the central charge Z of a stability condition and
its differential, while the flat connection ∇r and endomorphism V are roughly the
same as the holomorphic generating function f(Z) for counting invariants intro-
duced by Joyce [J]. In particular we have V(Z) = ad f(Z) for a certain Lie algebra
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structure on the fibres of K. The graded components of the Joyce function are
given by the matrix elements g(xα,V(xβ)) over a natural basis of sections of K,
where g is the quadratic form on K given by the Frobenius type structure.

In the important case when C is a triangulated category the above construction
is always purely formal, even in the simplest examples. The graded components
g(xα,V(xβ)) of f(Z) are formal infinite sums, and nothing is known about their
convergence or even in general how to regard them as formal power series. This
is essentially because of the shift functor [1] : C → C which preserves the class
of semistable objects and induces a symmetry of Donaldson-Thomas invariants
DT(α,Z) = DT(−α,Z) for all classes α in the Grothendieck group K(C). This
convergence problem for holomorphic generating functions was first discussed in
[J]. Notice that on the contrary when C is abelian and sufficiently simple (i.e. of
finite type) all sums become finite, and one can even work fully at the motivic level
(see [BT1]).

1.2. CV-structure. The Frobenius type structure embeds in a richer structure
introduced by Hertling [H] and called a CV-structure after Cecotti-Vafa. This is
suggested naturally by the physical work of Gaiotto, Moore and Neitzke [GMN].
The CV-structure lives on the same bundle K and is given by a collection of non-

holomorphic objects (D,C, C̃,U ,Q, κ, h) with values in K, satisfying a set of PDEs.
In particular the endomorphism Q is a deformation of V, as we have

lim
λ→0
Q(λZ) = V(Z)

(see Proposition 2.9). So in the CV-structure the Joyce function f(Z) is naturally
deformed to the operator Q(Z). When C is a triangulated category the above
construction is also purely formal. The matrix elements g(xα,Q(xβ)) are ill-defined
infinite sums.

1.3. Formal families. Suppose that C is triangulated and admits a heart of a
bounded t-structure A which is finite, with n distinct isomorphism classes of simple
objects. Let U(A) ⊂ Stab(C) denote the interior of the set of stability conditions
supported on A. The set U(A) is given by stability conditions with heart A and
central charge Z mapping the effective cone K>0(A) to the open upper half-plane
H. On U(A) both the Frobenius type and CV-structures can be regarded naturally
as formal families of structures defined on a formal neighborhood of 0 ∈ Cn. In
particular the ill-defined Joyce function f(Z) and operators V(Z), Q(Z) become
naturally well-defined formal power series fs(Z), Vs(Z) and Qs(Z) in an auxiliary
set of parameters s = (s1, . . . , sn). This is part of the general results Propositions
3.17, 3.18. The original ill-defined expressions are recovered for s = (1, . . . , 1),
modulo convergence. In this paper we study the convergence problem for the matrix
elements g(xα,Qs(Z)(xβ)), the CV-deformation of (the graded components of) the
Joyce function.

1.4. Abstract setting and convergence. We will work in an abstract setting
modelled on the case of a triangulated category discussed above. This has the
advantage of being fully rigorous, independently of the foundational problems of
Donaldson-Thomas theory for 3CY (Calabi-Yau, dimension 3) triangulated cate-
gories, and is achieved by working with abstract continuous families of stability
data in the sense of [KS] Section 2.3. Thus we fix a lattice Γ with a choice of skew-
symmetric integral form and an “effective” strictly convex cone Γ+ ⊂ Γ. We state
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all our results simply in terms of a suitable function DT : Γ × Hom+(Γ,C) → Q
defined on the product of Γ with the cone of “positive” central charges Hom+(Γ,C),
given by central charges mapping Γ+ to the open upper half-plane H. The function
DT(α,Z) should be locally constant in strata of Hom+(Γ,C), it should satisfy the
wall-crossing formulae of [JS, KS] across different strata, and moreover it should
enjoy the symmetry DT(α,Z) = DT(−α,Z), induced by the shift functor [1] in
the categorical case. The conditions on DT(α,Z) are summarised in the notion
of the double of a positive continuous family of stability data parametrised by
Hom+(Γ,C)1, see Definition 3.8. So DT(α,Z) is modelled on the restriction of the
Donaldson-Thomas invariants of a 3CY triangulated category to a domain U(A).

Just as in the categorical case such DT(α,Z) give rise to formal families of Frobe-
nius type and CV-structures, and so to functions fs(Z) and operators Vs(Z), Qs(Z),
with limλ→0Qs(λZ) = Vs(Z), see Propositions 3.17 and 3.18. The matrix ele-
ments g(xα,Qs(Z)(xβ)) are well-defined formal power series and, provided they con-
verge in a neighbourhood of s = (1, . . . , 1), their evaluation g(xα,Q(1,...,1)(Z)(xβ))
is the natural CV-deformation of the graded components of the Joyce functions
f(1,...,1)(Z).

Theorem 1.1. Fix a central charge Z0 ∈ Hom+(Γ,C). Suppose that DT(α,Z0)
grows at most exponentially for α ∈ Γ (in the sense of Definition 3.5). Then
for all ρ > 0 there exists λ̄ such that for λ > λ̄ all the formal power series
g(xα,Qs(λZ0)(xβ)) converge for ||s|| < ρ. Let U ⊂ Hom+(Γ,C) denote an open
subset such that the exponential growth condition for DT(α,Z) holds uniformly and
all Z ∈ U are uniformly bounded away from zero on elements of the cone Γ+.
Then for all sufficiently large λ the CV-deformations of the Joyce functions, given
by g(xα,Q(1,...,1)(λZ)(xβ)), are well defined and real-analytic on U , and uniformly
bounded as α varies in Γ for fixed β.

One may expect that in fact we have |g(xα,Q(1,...,1)(λZ)(xβ))| → 0 as ||α|| → ∞
in some fixed norm on Γ⊗R and for fixed β, but the methods of the present paper
are not sufficient to establish this. Although we have stated our main result in
terms of the operators Qs it will be clear from the proof that the same statement
holds for the full CV-structure. The exponential growth condition for DT type
invariants has been investigated in detail, see e.g. [W]. It is especially interesting
from a physical point of view, see e.g. [CS] for a recent contribution. Note that
a large class of 3CY categories with uniformly bounded DT invariants (to which
Theorem 1.1 applies) is discussed in [BS].

1.5. Application to physical field theory. Our methods in this paper are in-
spired by the fundamental physical work of Gaiotto, Moore and Neitzke [GMN].
We comment on the similarities and differences in Remark 6.5. Because of this
close link our results also say something about certain infinite sums which appear
in formal expansions of expectation values of line operators in [GMN], and we will
discuss this in Section 7 (the problem of giving a precise meaning to such expan-
sions was first pointed out explicitly in [N] Section 4.2.1). In particular these formal
expansions actually give well defined distributions on tori with values in the dual
of the charge lattice (see Corollary 7.1).

1Recently Bridgeland proposed the much nicer name “variation of BPS structure” for this
notion.
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1.6. Plan of the paper. Section 2 offers a more detailed introduction to the
Frobenius type and CV-structures appearing in Donaldson-Thomas theory in a for-
mal context. Section 3 discusses the abstract rigorous approach outlined above.
The proof of Theorem 1.1 is given in Section 6 and is based on explicit formulae
for Frobenius type and CV-structures in terms of graph integrals (given in Section
4), uniform estimates on graph integrals (derived in Section 5), and a functional
equation (studied in Section 6). Section 7 briefly discusses the application to phys-
ical field theories. This paper is based on the isomonodromy perspective developed
in [BT1, BT2] and in [FGS]. We have tried to make the exposition self-contained
apart from some proofs from these works which are not reproduced here.

Acknowledgements. We are grateful to Arend Bayer, Tom Bridgeland, Kwokwai
Chan, Mario Garcia-Fernandez, Kohei Iwaki, Andy Neitzke and Tom Sutherland
for helpful discussions related to this paper. Our work greatly benefitted from the
workshops “Current Developments in Mirror Symmetry”, TSIMF Sanya, 2014 and
“Geometry from Stability Conditions”, Warwick, 2015. We are grateful to their
respective organisers Maxim Kontsevich, Yan Soibelman and Arend Bayer, Tom
Bridgeland for the invitation. The research leading to these results has received
funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 307119.

2. Formal infinite-dimensional picture

This Section explains the infinite-dimensional picture of Frobenius type and CV-
strucures for Donaldson-Thomas theory. Although some parts of it are purely
formal, this Section contains essential motivation for our later abstract treatment,
and at the same time collects some basic definitions.

We fix a category C and assume that there are well-defined numerical Donaldson-
Thomas invariants DT(α,Z) enumerating objects in C with class α ∈ K(C) which
are semistable with respect to a choice of stability condition Z. In particular
C should be Calabi-Yau and three-dimensional (3CY). We refer to [JS, KS] for
foundational results. When C is triangulated 3CY one should work with stability
conditions in the sense of Bridgeland [B] and assume that there are invariants
satisfying the assumptions described in [J] Section 1. In particular the shift functor
[1] : C → C preserves the class of semistable objects and induces a symmetry of
Donaldson-Thomas invariants DT(α,Z) = DT(−α,Z). Notice that in this case our
notation Z for a stability condition is really a shortcut for the pair (A, Z) of a heart
of a bounded t-structure and a central charge Z ∈ Hom(K(A),C).

2.1. Frobenius type structure. One can use Donaldson-Thomas theory to at-
tach to C a Frobenius type structure on an infinite-dimensional bundle over the
space of stability conditions Stab(C). This is essentially a rephrasing of results in
[BT1, J, KS]. To explain this fact we start by recalling the definition of a Frobenius
type structure on an arbitrary bundle, due to Hertling ([H] Definition 5.6 (c)).

Definition 2.1. A Frobenius type structure on a holomorphic vector bundle K →
M is a collection of holomorphic objects (∇r, C,U ,V, g), with values in the bundle
K, where

• ∇r is a flat connection,
• C is a Higgs field, that is a 1-form with values in endomorphisms, with
C ∧ C = 0,
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• U ,V are endomorphisms,
• g is a symmetric nondegenerate bilinear form,

satisfying the conditions

∇r(C) = 0,

[C,U ] = 0,

∇r(V) = 0,

∇r(U)− [C,V] + C = 0 (2.1)

plus the conditions on the “metric” g

∇r(g) = 0,

g(CXa, b) = g(a,CXb),

g(Ua, b) = g(a,Ub),
g(Va, b) = −g(a,Vb). (2.2)

Going back to our category C we denote by 〈−,−〉 the integral bilinear form on
K(C) given by the Euler pairing. In the 3CY case this is skew-symmetric. The
group-algebra C[K(C)] endowed with the twisted commutative product and Lie
bracket induced by 〈−,−〉 becomes a Poisson algebra, known as the Kontsevich-
Soibelman algebra. It is generated by monomials xα, α ∈ K(C) with commutative
product xαxβ = (−1)〈α,β〉xα+β and bracket [xα, xβ ] = (−1)〈α,β〉〈α, β〉xα+β . A
central charge Z ∈ Hom(K(C),C) can be regarded as an endomorphism (in fact a
commutative algebra derivation) of C[K(C)] acting by Z(xα) = Z(α)xα.

Joyce [J] introduced a holomorphic generating function for Donaldson-Thomas

invariants. It is a formal infinite sum f(Z) of elements fα(Z) = f̃α(Z)xα of
C[K(C)]. Morally it defines a holomorphic function on Stab(C) with values in∏
α Cxα, encoding the Donaldson-Thomas invariants which enumerate semistable

objects in C. One can reinterpret this construction as giving a Frobenius type struc-
ture in the sense of Definition 2.1 on a trivial infinite-dimensional vector bundle
K → Stab(C).

Definition 2.2. The choice of bundle K → Stab(C) is given by:

• when C is abelian and finite we denote by K>0(C) the cone of effective

classes and let K be the trivial bundle over Stab(C) with fibre ̂C[K>0(C)],
the completion along the ideal generated by the classes of simple objects
[S1], . . . , [Sn];
• when C is abelian but not finite, or when C is triangulated we let K be

the trivial bundle over Stab(C) with fibre
∏
α∈K>0(C) Cxα, respectively∏

α∈K(C)\{0} Cxα. In both cases all the constructions below are a priori

ill-defined, and we work with formal infinite sums ignoring all convergence
questions, just as in [J] Section 5.

When summing over elements α of K(C) we will always assume α 6= 0.

Proposition 2.3. Let K → Stab(C) be our trivial infinite-dimensional vector bun-
dle (in particular we have ∂̄Kxα = 0). Fix a constant g0 ∈ C∗. Then there are
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(∇r, C,U ,V), satisfying the conditions (2.1), given by

∇r = d+
∑
α

ad fα(Z)
dZ(α)

Z(α)
,

C = −dZ,
U = Z,

V = ad f(Z).

If moreover C is triangulated we can complete these to a Frobenius type structure
with the choice

g(xα, xβ) = g0δαβ .

Notice that here we use the Lie algebra structure on C[K(C)] just to describe endo-
morphims of K, i.e. we work with a vector bundle not a principal bundle.

Remark 2.4. The function Z(α)−1fα(Z) extends across to locus where Z(α) = 0,
see [J] Section 5.

Proof. Let us first clarify our choice of Higgs field. For all γ ∈ K(C) the function
Z 7→ Z(γ) is a local holomorphic function on Stab(C). So we can define a 1-form
with values in endomorphisms by

dZ(X)xγ = (XZ(γ))xγ

for all local holomorphic vector fields X. One checks that dZ ∧ dZ = 0.
To check (2.1), (2.2) one uses repeatedly a PDE satisfied by the functions fα(Z)

(see [J] equation (4)),

dfα(Z) =
∑

β,γ∈K(C)\{0}, α=β+γ

[fβ , fγ ]d logZ(γ). (2.3)

Flatness of ∇r and covariant constancy of V follow from the same computations as
in [J] Section 4 (in particular equations (71) - (73)). The other conditions follow
from straightforward computations. As an example we have

∇r(dZ) = d2Z + ad
∑
α

fα(Z)
dZ(α)

Z(α)
∧ dZ

+ dZ ∧ ad
∑
α

fα(Z)
dZ(α)

Z(α)

where ∧ denotes the composition of endomorphisms combined with the wedge prod-
uct of forms. Now d2Z = 0, and evaluating on a section xβ gives a 2-form with
values in K

∇r(dZ)xβ =
∑
α

[fα(Z), xβ ](Z(α))−1dZ(α) ∧ dZ(β)

+
∑
α

[fα(Z), xβ ](Z(α))−1dZ(α+ β) ∧ dZ(α).

But we have dZ(α+ β) = dZ(α) + dZ(β) and the vanishing ∇r(dZ)xβ = 0 follows
for all β.
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As an example of a condition involving the quadratic form g in the triangulated
case we check skew-symmetry of V. We have

g(Vxα, xβ) =
∑
γ

f̃γ(Z)(−1)〈γ,α〉〈γ, α〉gα+γ,β

= g0

∑
γ

f̃γ(Z)(−1)〈γ,α〉〈γ, α〉δα+γ,β

= g0(−1)〈β,α〉〈β, α〉f̃β−α(Z).

Similarly
g(xα,Vxβ) = g0(−1)〈α,β〉〈α, β〉f̃α−β(Z).

In the 3CY case we have fα−β(Z) = fβ−α(Z) because of the shift functor. �

There is a standard construction of a “first structure” flat connection from a
Frobenius type structure. In the Donaldson-Thomas case this has a further scale
invariance property.

Lemma 2.5. Let p : Stab(C) × P1
z → Stab(C) denote the projection. Let λ ∈ R+

denote a scaling parameter. The meromorphic connection on p∗K → Stab(C)× P1
z

given by

∇r +
C

z
+

(
1

z2
U − 1

z
V
)
dz

is flat and invariant under the rescaling Z 7→ λZ, z 7→ λz. In particular the Joyce
function f(Z) has the “conformal invariance” property f(λZ) = f(Z).

Proof. Flatness of the connection follows from the conditions (2.1). Invariance
under the rescaling is equivalent to the property f(λZ) = f(Z) which is established
in [J] Section 3. �

2.2. Convergence problem for triangulated C. The K(C)-graded components
of f(Z) can be described explicitly. Let (UC[K(C)],⊗) denote the universal en-
veloping algebra of (C[K(C)], [−,−]). There are explicit formulae for the product
⊗, and one has in particular

xα1
⊗ · · · ⊗ xαk = c(α1, · · · , αk)xα1+···+αk

where c(α1, · · · , αk) ∈ Q is given by a sum over connected trees T with vertices
labelled by {1, . . . , k}, endowed with a compatible orientation,

c(α1, · · · , αk) =
∑
T

1

2k−1

∏
{i→j}⊂T

(−1)〈αi,αj〉〈αi, αj〉. (2.4)

Joyce proves that there exist holomorphic functions with branch-cuts Jn : (C∗)n →
C such that

fα(Z) =
∑

α1+···+αk=α,Z(αi)6=0

Jn(Z(α1), . . . , Z(αk))
∏
i

DT(αi, Z)xα1 ⊗ · · · ⊗ xαk

and so one has
fα(Z) = f̃α(Z)xα,

where the holomorphic function f̃α(Z) is given by

f̃α(Z) =
∑

α1+···+αk=α,Z(αi)6=0

c(α1, . . . , αk)Jn(Z(α1), . . . , Z(αk))
∏
i

DT(αi, Z).

(2.5)
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The crucial point is that the jumps of the functions Jn(z1, . . . , zn) across their
branch-cuts can be chosen so as to cancel the jumps of the Donaldson-Thomas
invariants DT(αi, Z) across walls in Hom(K(C),C). The functions Jn(z1, . . . , zn)
are universal, i.e. they do not depend on the underlying category C.

When C is triangulated there is a symmetry DT(α,Z) = DT(−α,Z) induced
by the shift functor [1], so the explicit formula (2.5) always involves summing over
infinitely many decompositions α1+· · ·+αk = α with c(α1, . . . , αk)

∏
i DT(αi, Z) 6=

0, as soon as DT(αi, Z) 6= 0 for at least two linearly independent αi. We do
not know an example where (2.5) is known to converge. Indeed the convergence
question is a priori ill-posed since no specific summation order has been fixed.
The convergence problem for f(Z) seems especially hard because of the conformal
invariance property of Lemma 2.5.

2.3. CV-structure. The Frobenius type structure of Proposition 2.3 is part of a
more complicated (formal) structure called a CV-structure (after Cecotti and Vafa)
in [H]. This point of view is also suggested naturally by [GMN]. To discuss it we

introduce the preliminary notion of a DCC̃-structure, which is also due to Hertling
([H] Definition 2.9).

Definition 2.6. A (DCC̃)-structure on a C∞ complex vector bundle K → M is

the collection of C∞ objects (D,C, C̃) with values in K where

• D is a connection,
• C is a (1, 0)-form with values in endomorphisms of K,

• C̃ is a (0, 1)-form with values in endomorphisms of K;

satisfying the conditions

(D′′ + C)2 = 0, (D′ + C̃)2 = 0,

D′(C) = 0, D′′(C̃) = 0,

D′D′′ +D′′D′ = −(CC̃ + C̃C) (2.6)

where D′ and D′′ are the (1, 0) and (0, 1) parts of D respectively.

Lemma 2.7. Let K → Stab(C) be the vector bundle of Definition 2.2. Then there

is a (DCC̃)-structure on K given by

D′ = ∇r, D′′ = ∂̄K ,

C = −dZ, C̃ = dZ̄.

Proof. Let ∂̄K denote our fixed (trivial) complex structure on K, with ∂̄K(xα) = 0.
The condition (D′′ + C)2 = 0 says that K is holomorphic and C is a holomorphic
Higgs bundle on it, which we know already from Proposition 2.3. Then D′(C) = 0
says that C is flat with respect to ∇r, which we also know already. The condition

(D′ + C̃)2 = 0 says that ∇r is flat (known), (dZ̄)2 = 0 and ∇r(dZ̄) = 0 (easily

checked). The condition D′′(C̃) = 0 becomes ∂̄K(dZ̄) = 0 and can be checked e.g.
in local coordinates on Stab(C) given by zk = Z(αk) where α1, . . . , αk is a basis for

K(C). Finally in our case one checks that we have separately CC̃ + C̃C = 0 and
D′D′′ +D′′D′ = 0. �

We can now recall the notion of a CV-structure introduced in [H] Definition 2.16.
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Definition 2.8. A CV-structure on a C∞ complex bundle K →M is a collection

of C∞ objects (D,C, C̃, κ, h,U ,Q) with values in K where

• (D,C, C̃) is a (DCC̃)-structure,

• κ is an antilinear involution with D(κ) = 0 which intertwines C and C̃,

κCκ = C̃,
• h is a hermitian (not necessarily positive) metric, which satisfies D(h) = 0,

h(CXa, b) = h(a, C̃X̄b) for (1, 0) fields X and which is real-valued on the
real subbundle KR ⊂ K defined by κ,
• U and Q are endomorphisms,

satisfying the conditions

[C,U ] = 0,

D′(U)− [C,Q] + C = 0,

D′′(U) = 0,

D′(Q) + [C, κUκ] = 0,

Q+ κQκ = 0,

h(Ua, b) = h(a, κUκb),
h(Qa, b) = h(a,Qb). (2.7)

Let us go back to the case of our bundleK → Stab(C). Let ι denote the involution
of K acting as complex conjugation, combined with xα 7→ x−α in the triangulated
case. Let ψ be a fixed endomorphism of K. Then we can make the following ansatz
on part of the data of a CV-structure on K:

• κ is the conjugate involution Adψ(ι),
• the pseudo-hermitian metric h is given by h(a, b) = g(a, κ(b)) where g is

the quadratic form of Proposition 2.3,
• U is the endomorphism Z as in Proposition 2.3,
• the Higgs field C is given by −dZ as in Proposition 2.3, and the anti-Higgs

C̃ is given by κCκ.

Proposition 2.9. Let K → Stab(C) be the vector bundle of Definition 2.2.

(a) There exist endomorphisms ψ(Z), Q(Z) and a connection D on K such

that the choices of C, C̃, κ, h, U above together with D and Q give a CV-
structure on K (in the abelian case only the conditions not involving h are
satisfied). Moreover ψ and Q induce fibrewise derivations of C[K(C)] as a
commutative algebra.

(b) Fix Z and let λ ∈ R+ denote a scaling parameter. Then

lim
λ→0
Q(λZ) = V,

where V = ad f(Z) is the endomorphism of Proposition 2.3 (i.e. essentially
the Joyce holomorphic generating function).

Proof. We will explain a rigorous approach and prove a rigorous result (which
applies to sufficiently simple abelian and triangulated categories) in Section 3 and
Proposition 3.18. The present formal statement can be “proved” (in the same sense
as Proposition 2.3) by the same arguments provided we work with formal infinite
sums, ignoring convergence questions. �
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There are explicit formulae for the matrix elements g(xα,Q(xβ)), g(xα, ψ(xβ))
which are very similar to (2.5), see Section 4. When C is triangulated these are
always formal infinite sums. They are not known to converge in general and indeed
the convergence question is a priori ill-posed since no specific summation order has
been fixed.

In the light of Proposition 2.9 (b) it is natural to make the following definition.

Definition 2.10. The CV-deformation of the Joyce holomorphic generating func-
tion f(Z) is the operator Q(Z) given by Proposition 2.9 (a).

There is an analogue of Lemma 2.5, which gives a new point of view on the con-
formal invariance property f(λZ) = f(Z). It follows from the proof of Proposition
3.18.

Lemma 2.11. Let (D,C, C̃, κ, h,U ,Q) be the CV-structure of Proposition 2.9. Let
p : Stab(C)× P1

z → Stab(C) denote the projection, and suppose λ ∈ R+ is a scaling
parameter. The meromorphic connection on p∗K → Stab(C)× P1

z given by

D +
C

z
+ zC̃ +

(
1

z2
U − 1

z
Q− κUκ

)
dz

is flat. Under the scaling Z 7→ λZ, z = λz, λ→ 0 it flows to the flat connection of
Lemma 2.5.

3. Formal families of structures

Starting with the present Section we study the Frobenius type and CV-structures
of Donaldson-Thomas theory in a rigorous abstract setting.

3.1. Stability data. Fix a finite rank lattice Γ with a skew-symmetric bilinear
form 〈−,−〉. We denote by n the rank of Γ.

Definition 3.1. We introduce coefficients c(α1, . . . , αk) given by (2.4). Notice that
these only depend on (Γ, 〈−,−〉).

Definition 3.2. A central charge Z is a group homomorphism Γ→ C.
A spectrum is a function of the form

(α,Z) 7→ Ω(α,Z) ∈ Q
for all α ∈ Γ and Z varying in an open subset U of a linear subspace of Hom(Γ,C).

A distinguished ray2 `α(Z) ⊂ C∗ is a ray of the form R>0Z(α) such that
Ω(α,Z) 6= 0.

We say that the spectrum Ω is

• positive if there exists a Z-basis {γi} of Γ such that Ω(α,Z) vanishes unless
α is a nonzero positive integral combination of the γi. In this case we say
that {γi} is a positive basis for Ω;

• symmetric if
Ω(α,Z) = Ω(−α,Z)

for all α ∈ Γ, Z ∈ U .
• the double of a positive spectrum if Ω is symmetric and there is a positive

spectrum Ω̃ such that Ω(α,Z) = Ω̃(±α,Z) for all α ∈ Γ, Z ∈ U .

2The opposite of a “BPS ray” in physics terminology. Recently Bridgeland proposed the name
“active ray”.



DT FROBENIUS TYPE, CV-STRUCTURES AND CONVERGENCE 11

Definition 3.3. Let {γi} be a fixed basis for Γ. The locus of positive central
charges Hom+(Γ,C) ⊂ Hom(Γ,C) is given by central charges mapping {γi} to the
open upper half plane H ⊂ C.

In the notation of the introduction we have the “effective cone” Γ+ given by
nonzero positive linear combinations of the {γi} and Hom+(Γ,C) is given by central
charges mapping Γ+ to H. Recall that in the categorical situation described in the
introduction, when A is a finite heart of a 3CY triangulated category C, Γ+ is
given by K>0(A) and there is a natural positive basis given by the classes of simple
objects [S1], . . . , [Sn]. When well defined the corresponding symmetric spectrum
provided by Donaldson-Thomas theory is the double of a positive spectrum.

Definition 3.4. We say that Z ∈ Hom(Γ,C) and Ω satisfy the support condition
if there exists a constant c > 0 such that picking a norm || − || on Γ⊗ R we have

|Z(α)| > c||α|| (3.1)

for all α ∈ Γ with Ω(α,Z) 6= 0. The condition does not depend on the specific
choice of norm.

The support condition was first introduced by Kontsevich-Soibelman in [KS]
Section 1.2, where its geometric relevance (related to special Lagrangian geometry)
was also discussed. Note that if Ω is positive or the double of a positive spectrum
parametrised by Hom+(Γ,C) then the support condition is automatically satis-
fied on Hom+(Γ,C). It holds uniformly on all subsets of Hom+(Γ,C) where Z is
bounded away from zero on the elements of a positive basis {γi}.

Definition 3.5. We say that a spectrum Ω grows at most exponentially at Z if
there is a λ > 0 such that∑

α∈Γ

|Ω(α,Z)| exp(−|Z(α)|λ) <∞. (3.2)

The spectra coming from Donaldson-Thomas theory share a crucial property:
they are continuous, that is they define continuous families of stability data (in the
sense of [KS] Section 2.3) on the Kontsevich-Soibelman graded Lie algebra modelled
on the underlying lattice (Γ, 〈−,−〉). Here we discuss this property briefly and refer
to [KS] Section 2 for more details.

Definition 3.6. The Kontsevich-Soibelman Poisson algebra gΓ is the (associative,
commutative) group algebra C[Γ] endowed with the twisted multiplication and Lie
bracket induced by 〈−,−〉: gΓ is generated by xα, α ∈ Γ, with commutative product
xαxβ = (−1)〈α,β〉xα+β and bracket [xα, xβ ] = (−1)〈α,β〉〈α, β〉xα+β . We will write
exp∗ for the commutative algebra exponential in gΓ when this may be confused
with the exponential of a derivation.

One checks that gΓ is indeed Poisson, i.e. inner Lie algebra derivations are
commutative algebra derivations. A central charge Z defines an endomorphism of
gΓ by Z(xα) = Z(α)xα. This is in fact a commutative algebra derivation.

Definition 3.7. Fix a basis {γi} as above. We write g>0 ⊂ gΓ for the monoid
generated by xα where α is nonzero and has nonnegative coefficients with respect
to the basis. We let ĝ>0 be the completion of g>0 along the ideal (xγ1

, . . . , xγn).
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Let DT(α,Z) denote the Möbius transform of Ω,

DT(α,Z) =
∑

k>0,k|α

1

k2
Ω(k−1α,Z). (3.3)

Definition 3.8. The family of stability data on gΓ parametrised by U corresponding
to the spectrum Ω is the gΓ-valued function given by

(α,Z) 7→ DT(α,Z)xα.

Assume every Z ∈ U satisfies the support property. We say that the family of
stability data on gΓ is continuous in the sense of [KS] if for every strictly convex
cone V ⊂ C∗ the product

→,Z∏
`⊂V

exp

 ∑
Z(α)∈`

DT(α,Z)xα

 (3.4)

is locally constant as a function of Z, where
→,Z∏

denotes the operation of writing
the ensuing group elements from left to right according to the clockwise Z-order.
(Making this local constancy fully precise is a rather technical matter for which we
refer to [KS] Section 2.3, but roughly speaking (3.4) should be constant in Z as
long as no distinguished rays enter or leave V , when we compute it imposing an
arbitrary upper bound on all ||α||).

We say that the spectrum Ω is continuous if the corresponding family of stability
data on gΓ is. We say that the family of stability data DT(α,Z) is positive, sym-
metric, or the double of a positive family if the corresponding condition is satisfied
by the underlying spectrum Ω(α,Z) given by inverting (3.3),

Ω(α,Z) =
∑
k|α

1

k2
m(k) DT(k−1α,Z)

where m denotes the Möbius function.

It will be important for us to regard the group element in (3.4), under suitable
conditions, as a product of explicit “symplectomorphisms”.

Definition 3.9. A central charge Z ∈ Hom(Γ,C) is generic if elements xα, xβ with
Z(α), Z(β) lying on the same ray ` have vanishing Lie bracket (i.e. 〈α, β〉 = 0). We
say that Z is strongly generic if Z(α), Z(β) lying on the same ray ` implies that
α, β are linearly dependent. We write Homsg(Γ,C) for the locus of strongly generic
central charges.

For Ω ∈ Q, β ∈ Γ let TΩ
β denote the operator given by

TΩ
β (xα) = xα(1− xβ)〈β,α〉Ω

(acting on a suitable pro-finite algebra containing gΓ, see [KS] Section 2.5). In fact
TΩ
β is a Poisson automorphism (it preserves the Lie bracket). This follows from the

identity

TΩ
β = exp

−Ω
∑
k≥1

[xkβ ,−]

k2

 .
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(the exponential of a derivation). Kontsevich-Soibelman [KS] Section 2.5 noticed
that for generic Z there is a factorisation

exp

 ∑
Z(β)∈`

−DT(β, Z)[xβ ,−]

 =
∏

Z(β)∈`

T
Ω(β,Z)
β . (3.5)

The continuity condition becomes the constraint that the product of Poisson au-

tomorphisms
∏→,Z
`⊂V

∏
Z(β)∈` T

Ω(β,Z)
β is locally constant. In particular it remains

constant in the locus of generic central charges (even when crossing the nongeneric
locus) as long as no distinguished rays enter or leave V (again see [KS] Section 2.5
for the technicalities of making this fully precise).

The notion of a continuous family of stability data with values in g makes sense
quite generally for a Γ-graded Lie algebra g over Q (see [KS] Section 1.2). It
will be important for us to consider continuous families with values in the Lie
algebra gΓ[[s1, . . . , sn]] endowed with the Poisson Lie bracket extended from gΓ by
C[[s1, . . . , sn]]-linearity.

Let {γi} be a basis for Γ and introduce formal parameters s = (s1, . . . , sn).
For α ∈ Γ we write α =

∑
i aiγi and sα for the Laurent monomial

∏
i s
ai
i . Set

[α]± =
∑
i[ai]±αi where [ai]± denote the positive and negative parts. In particular

s[α]+−[α]− is a monomial (not just a Laurent monomial). Let J ⊂ gΓ[[s]] denote the
ideal generated by s1, . . . , sn.

Definition 3.10. With a fixed choice of basis as above we write TΩ
β,s for the element

of Aut(gΓ[[s]]) given by

TΩ
β,s(xα) = xα(1− s[β]+−[β]−xβ)〈β,α〉Ω

Lemma 3.11. Let Ω be the double of a positive spectrum. Fix a positive basis
{γi}. Suppose that Ω is continuous, parametrised by Hom+(Γ,C). Then the family
of automorphisms TΩ

β,s ∈ Aut(gΓ[[s]]) comes from a continuous family of stability

data with values in gΓ[[s]] via the construction in (3.5). In particular the products∏→,Z
`⊂V

∏
Z(α)∈` T

Ω(α,Z)
α,s for all fixed strictly convex sectors V remain constant in the

locus of generic central charges in Hom+(Γ,C) (even when crossing the nongeneric
locus) as long as no rays supporting a nonvanishing factor enter or leave V .

Proof. Suppose that Ω is the double of a positive, continuous spectrum parametrised
by Hom+(Γ,C). Then the continuity condition given by constancy of the formal
Lie group element (3.4) holds if and only if it holds for all strictly convex cones V
contained in the open upper half-plane H. On such a cone V ⊂ H the constancy
condition for (3.4) is compatible with the extra grading by s by the Baker-Campbell-
Hausdorff formula. �

Remark 3.12. The idea of working with such formal families is natural from the
point of view of scattering diagrams described e.g. in [GPS].

Definition 3.13. Suppose Ω is a positive, continuous spectrum parametrised by
Hom+(Γ,C) and fix a positive basis. The corresponding Joyce function f(Z) is the

ĝ>0-valued function with graded components f̃α(Z)xα given by the expression (2.5).
This is well-defined because there are only finitely many possible decompositions
in (2.5) for each fixed α ∈ Γ>0.
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Definition 3.14. Let Ω be the double of a positive, continuous spectrum parametri-
sed by Hom+(Γ,C). The corresponding Joyce function fs(Z) is the function with

values in gΓ[[s]] with Γ-graded components f̃αs (Z)xα, where

f̃αs (Z) =
∑

α1+···+αk=α,Z(αi)6=0

c(α1, . . . , αk)J(Z(α1), . . . , Z(αk))

∏
i

s[αi]+−[αi]− DT(αi, Z). (3.6)

This is well-defined because there are only finitely many decompositions in (3.6)
modulo JN for N � 1.

3.2. Formal families of Frobenius type and CV-structures. Fix a basis {γi}
of Γ. We consider a spectrum Ω which is either positive with respect to {γi} or the
double of such a positive spectrum.

Definition 3.15. We introduce a holomorphic bundle K → Hom+(Γ,C) given by:

• if Ω is positive, K is the trivial bundle with fibre ĝ>0;
• if Ω is the double of a positive spectrum, K is the trivial bundle with fibre
gΓ[[s]].

Although our main result Theorem 1.1 only concerns the double of a positive
spectrum, for the sake of completeness we summarise the results in the case of a
positive spectrum in the following Proposition. The part concerning the Frobenius
type structure follows from the results of [BT2], while the claims about the CV-
structure are proved exactly as in Proposition 3.17 below, working with ĝ>0 rather
than gΓ[[s]].

Proposition 3.16. Suppose Ω is a positive, continuous spectrum parametrised by
Hom+(Γ,C). Let K → Hom+(Γ,C) be the vector bundle of Definition 3.15. Then
the obvious analogues of Propositions 2.3, 2.9 and Lemmas 2.5, 2.11 hold.

Turning to the double of a positive spectrum, the construction of a formal family
of Frobenius type structures follows from the results of [BT2], so we only give a
sketch of the proof.

Proposition 3.17. Let Ω be the double of a positive, continuous spectrum parametri-
sed by Hom+(Γ,C). Let K → Hom+(Γ,C) be the vector bundle of Definition 3.15,
with fibre gΓ[[s]]. Then there is a C[[s]]-linear Frobenius type structure on K with
flat holomorphic connection given by

∇rs = d+
∑
α

ad fαs (Z)
dZ(α)

Z(α)
,

with residue endomorphism

Vs = ad fs(Z)

and with C,U , g given by −dZ,Z and the quadratic form of Proposition 2.3, extended
by C[[s]]-linearity. In other words the equations (∇rs)2 = 0 and (2.1) - (2.2) hold as
identities of formal power series in the formal parameters s1, . . . , sn.

In particular the coefficients of the formal power series (3.6) in s are well-defined
holomorphic functions on Hom+(Γ,C).
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Proof (sketch). It follows from Lemma 3.11 and the results of [BT2] (on the explicit
inverse of a certain Stokes map) that the functions fαs (Z) satisfy the PDE (2.3)
as formal power series in s. Then the corresponding Frobenius type structure is
constructed as in the proof of Proposition 2.3. �

Let ι denote the involution of K acting as complex conjugation combined with
xα 7→ x−α. Note that ι is an anti-linear commutative algebra automorphism. Let
ψs be a fixed invertible endomorphism of K. Then we can make the following
ansatz on part of the data of a C[[s]]-linear CV-structure on K:

• κs is the conjugate involution Adψs(ι),
• the pseudo-hermitian metric hs is given by h(a, b) = g(a, κs(b)) where g is

the quadratic form in Proposition 2.3,
• U is the endomorphism Z extended by C[[s]]-linearity,
• the Higgs field C is given by −dZ extended by C[[s]]-linearity, and the anti-

Higgs field C̃s by κsCκs.

Proposition 3.18. Suppose we are in the situation of Proposition 3.17.

(a) There exist C[[s]]-linear endomorphisms ψs and Qs and a connection Ds on

K such that the choices of C, C̃s, κs, hs, Us above together with Qs give a
C[[s]]-linear CV-structure on K. In other words the equations 2.6 and 2.7
hold as identities of formal power series in s. Moreover ψs and Qs induce
fibrewise C[[s]]-linear derivations of gΓ[[s]] as a commutative algebra.

(b) We have
lim
λ→0
Qs(λZ) = Vs,

where Vs = ad fs(Z) is the endomorphism of Proposition 3.17 (i.e. essen-
tially the formal family of Joyce holomorphic generating functions given by
(3.6)).

Proof. We consider the family of automorphisms of the commutative algebra gΓ[[s]]

induced by T
Ω(α,Z)
α,s for a fixed Z ∈ Homsg(Γ,C) ∩ Hom+(Γ,C). In [FGS] Section

3 the corresponding Riemann-Hilbert factorization problem for a map X : C∗ →
Aut(gΓ[[s]]) is studied. This is the problem of finding a function X(z) with values in
Aut(gΓ[[s]]) such that, for all N ≥ 1 and α ∈ Γ, the class of X(z)(xα) in gΓ[[s]]/JN

is a holomorphic function of z in the complement of the distinguished rays ` with
` 6= `±α(Z), and for z0 ∈ ` we have

X(z+
0 )(xα) = X(z−0 ) ◦

∏
Z(β)∈`

T
Ω(β,Z)
β,s (xα) mod JN

where z±0 denote the limits in the counterclockwise, respectively clockwise direc-
tions. Note that by working modulo JN there are only finitely many branch-
cuts. In [FGS] Lemma 3.10 a distinguished explicit solution X(z) is constructed,
satisfying some additional properties (this construction is very much inspired by
ideas in [GMN]). We denote this distinguished family of solutions as Z varies in
Homsg(Γ,C) ∩Hom+(Γ,C) by X(z, Z), and also set3

X̃(z, Z) = X(z, Z) ◦ expD(gΓ[[s]])(−z−1Z − zZ̄).

3In [FGS] X̃(z, Z) is denoted by Y (z, Z). In the present paper we have reserved the latter
symbol for a flat section of the connection given by (3.9) below in order to simplify the notation,

see Proposition 4.2.
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Consider the flat connection on Hom+(Γ,C)× P1
z given by

∇tr = d− dZ

z
+ zdZ̄ +

(
1

z2
Z − Z̄

)
dz.

We may regard ∇tr as a flat connection on the trivial vector bundle with fibre
gΓ[[s]]/JN . Together with g(a, ι(b)) it defines a CV-structure on the trivial vector
bundle with fibre gΓ[[s]]/JN on Hom+(Γ,C). We pull back ∇tr locally on a sector

Σ between consecutive branch-cuts by X̃(z, Z) mod JN to the locally defined flat
connection

∇str|Σ = d− 1

z
X̃ ·dZ+zX̃ ·dZ̄+dZX̃ ◦X̃−1 +

(
1

z2
X̃ · Z − X̃ · Z̄ + ∂zX̃ ◦ X̃−1

)
dz.

By [FGS] Sections 3.7 and 3.9, ∇str glues over different sectors Σ and is induced
by the class mod JN of a well-defined real-analytic flat connection on gΓ[[s]] →
Hom+(Γ,C)× P1

z of the form

∇str(Z) = d+ B(0)(Z) +
1

z
B(−1)(Z) + zB(1)(Z)

+

(
1

z2
A(−1)(Z) +

1

z
A(0)(Z) +A(1)(Z)

)
dz.

Moreover the A(i), B(i) are derivations (respectively 1-forms with values in deriva-
tions) of gΓ[[s]] and we have

A(1)(Z) = −ιA(−1)(Z)ι, A(0)(Z) = −ιA(0)(Z)ι,

B(1)(Z) = ιB(−1)(Z)ι, B(0)(Z) = ιB(0)(Z)ι. (3.7)

By [FGS] Section 3.7 the limit X̃0(Z) = limz→0 X̃(z, Z) is well-defined, and we
have

X̃−1
0 · ∇str(Z) = d+ AdX̃−1

0
B(0)(Z)− 1

z
dZ + zAdX̃−1

0
B(1)(Z)

+

(
1

z2
Z +

1

z
AdX̃−1

0
A(0) + AdX̃−1

0
A(1)

)
dz. (3.8)

Notice that by (3.7) and (3.8) we have

AdX̃−1
0
A(1) = −AdX̃−1

0
AdιA(−1)

= −AdX̃−1
0

Adι AdX̃0
(Z),

AdX̃−1
0
B(1) = AdX̃−1

0
Adι B(−1)

= AdX̃−1
0

Adι AdX̃0
(−dZ),

so using the conjugate involution κ = AdX̃−1
0

(ι) we may rewrite (3.8) as

X̃−1
0 · ∇str(Z) = d+ AdX̃−1

0
B(0)(Z)− 1

z
dZ + zκ(−dZ)κ

+

(
1

z2
Z +

1

z
AdX̃−1

0
A(0) − κZκ

)
dz.

Then the flat connection X̃−1
0 · ∇str(Z) together with κ define the required gΓ[[s]]-

linear CV-structure, with D = d+AdX̃−1
0
B(0)(Z), C = −dZ, C̃ = κ(−dZ)κ, U = Z,
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Q = −AdX̃−1
0
A(0), h(a, b) = g(a, κb). The automorphism in the statement of the

Proposition is given by ψs(Z) = X̃−1
0 (Z).

The limit

lim
λ→0
Q(λZ) = V(Z)

is proved in [FGS] Theorem 4.2. We provide a sketch of the argument. Since they
are constructed from a solution to the Riemann-Hilbert factorization problem, the
family of connections on P1

z

d+

(
1

z2
Z − 1

z
Qs(λZ)− λ2κs(λZ)Zκs(λZ)

)
dz (3.9)

parametrised by Hom+(Γ,C) are isomonodromic, with constant generalized mon-

odromy at z = 0 for generic Z given by rays ` with Stokes factors
∏
Z(β)∈` T

Ω(β,Z)
β,s (xα).

One checks that the limit as λ→ 0 is well-defined and equals

d+

(
1

z2
Z − 1

z
lim
λ→0
Qs(λZ)

)
dz.

The result follows from a uniqueness result proved in [BT2]. �

Corollary 3.19. The statement of Lemma 2.11 holds for the Frobenius type and
CV-structures constructed in Propositions 3.17 and 3.18.

Definition 3.20. We write ∇s(Z, λ) for the family of meromorphic connections on
P1 given by (3.9).

4. Explicit formulae

In this Section we give an explicit formula for the operator Qs(Z). We always as-
sume that we fix a continuous symmetric spectrum Ω parametrized by Hom+(Γ,C)
which is the double of a positive spectrum. We also assume that a positive basis
{γi} has been fixed.

4.1. Explicit formula for flat sections. In the rest of the paper we write T for
a finite rooted tree, with vertices decorated by elements of Γ. We assume that T
is connected unless we state explicitly otherwise. Denote the root decoration by
αT . The operation of removing the root produces a finite number of new connected,
Γ-decorated trees T 7→ {Tj}. We introduce holomorphic functions with branch-cuts

HT : C∗ ×Hom+(Γ, C) ∩Homsg(Γ,C)× R≥0 → C∗

attached to trees by the recursion

HT (z, Z, λ) =
1

2πi

∫
`αT

dw

w

z

w − z
exp(−Z(αT )w−1−λ2Z̄(αT )w)

∏
j

HTj (w), (4.1)

with the initial condition H∅ = 1. We also introduce weights WT (Z) ∈ Γ ⊗ Q
attached to trees by

WT (Z) =
1

|Aut(T )|
DT(αT , Z)αT

∏
{v→w}⊂T

〈α(v), α(w)〉DT(α(w), Z). (4.2)
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We can pair WT (Z) with β ∈ Γ to obtain 〈β,WT (Z)〉 ∈ Q. We extend this pairing
to possibly disconnected trees T with finitely many connected components Ti by
setting

〈β,WT (Z)〉 =
∏
i

〈β,WTi(Z)〉.

Definition 4.1. A distinguished sector Σ is the inverse system under inclusion of
sectors ΣN between consecutive distinguished rays ` such that∑

Z(α)∈`

DT(α,Z)s[α]+−[α]−xα /∈ JN .

This is well defined because for each N there are only finitely many distinguished
rays for which the above sum does not vanish modulo JN .

Proposition 4.2. The automorphism Ys(z, Z, λ) of gΓ[[s]] acting by

Ys(z, Z, λ)(xβ) = xβ exp∗
∑
T

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v)

= xβ
∑

disconnectedT

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v)

(4.3)

induces a flat section of ∇s(Z, λ) on each distinguished sector Σ.

Proof. This is proved in [FGS] Section 4 (see in particular Section 4.3). Note that

in the notation of the proof of Proposition 3.18 we have Ys(z, Z, λ) = X̃−1
0 (λZ) ◦

X(λz, λZ). �

4.2. Explicit formula for coefficients. We proceed to discuss explicit formulae
for the coefficients of ∇s(z, Z, λ) rather that its flat sections. Let As ∈ D(gΓ[[s]])
denote the opposite of the connection 1-form of ∇s(z, Z, λ), so

∂zYs(z, Z, λ) = As Ys(z, Z, λ)

(where the right hand side is given by the composition of linear maps). Locally As

is given by the composition of linear maps (∂zYs)Y
−1
s , where

∂zYs(xα) = ∂z(Ys(z, Z, λ)(xα))

= Ys(z, Z, λ)(xα)
∑
T

〈α,WT (Z)〉∂zHT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v).

Notice that a map of the form (∂zY )Y −1 where Y takes values in automorphisms
of a commutative algebra is automatically a derivation.

Because of its specific form Ys can be inverted explicitly via multivariate La-
grange inversion. Recall that this gives a concrete way to invert self-maps of a ring
of formal power series R[[ξ1, . . . , ξm]] of the form ξi 7→ ξi exp(−Φi(ξ1, . . . , ξm)) for
some Φi(ξ1, . . . , ξm) ∈ R[[ξ1, . . . , ξm]], where R is a ground C-algebra.

To reduce the problem of explicitly inverting Ys to a multivariate Lagrange inver-
sion we notice that since Ys is a commutative algebra automorphism it is enough to
calculate Y −1

s (xγi) for i = 1, . . . , n. We may then try to apply a Lagrange inversion
formula over the base ring R = C[[s]]. A further technical difficulty arises since Ys
is a self-map of a ring of Laurent polynomials C[[s]][x±1

γ1
, . . . , x±1

γn ] over C[[s]] rather
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than formal power series. To remedy this we introduce 2n auxiliary parameters
ξ = (ξ1, . . . , ξ2n) and set for α ∈ Γ

ξα =

n∏
i=1

ξ
[αi]+
i

2n∏
j=n+1

ξ
−[αj ]−
j .

Consider the auxiliary problem of inverting the self-map of C[[s]][[ξ]] given by

(ξ1, . . . , ξ2n) 7→ (F1(ξ), . . . , F2n(ξ)), Fi(ξ) = ξi exp(−Φi(ξ))

where we choose

Φi(ξ) = −
∑
T

〈γi,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−ξα(v)

for i = 1, . . . , n, respectively

Φi(ξ) =
∑
T

〈γi,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−ξα(v)

for i = n+ 1, . . . , 2n. If we can solve this then specialising ξi = xγi for i = 1, . . . , n,
respectively ξi = x−1

γi for i = n+ 1, . . . , 2n determines the inverse Y −1
s completely.

Going back to the auxiliary problem, suppose that we can solve the equations

Ei(ξ) = ξi exp (Φi(E1(ξ), . . . , E2m(ξ))) . (4.4)

Then we have

Fi(E1, . . . , E2m) = Ei exp (−Φi(E1, . . . , E2m)) = ξi,

so the inverse is given by (ξ1, . . . , ξ2m) 7→ (E1(ξ), . . . , E2m(ξ)).

Lemma 4.3. There exist unique Ei(ξ) ∈ C[ξ][[s]] solving (4.4). Moreover for each
multi-index k ∈ Z2m

>0 the coefficient of ξk in Ei(ξ) is given by

[ξk]Ei(ξ) = [ξk] det(δpq + ξp∂qΦp(ξ))ξi exp

−∑
j

kjΦj(ξ)

 . (4.5)

Proof. Regard Φi(ξ) as formal power series in ξ1, . . . , ξ2m with coefficients in C[[s]].
Applying the multivariate Lagrange inversion formula in a version due to Good (see
e.g. [Ge] Theorem 3, equation (4.5)) over the ground ring C[[s]] shows that there
exists a unique solution (E1, . . . , E2m) of (4.4) where Ei ∈ C[[s]][[ξ]] are given by
(4.5). That we have in fact Ei(ξ) ∈ C[ξ][[s]] follows from the definition of Φi(ξ). �

For a multi-index k ∈ Z2m
>0 , k = (k1, . . . , k2m) we set [k] =

∑m
i=1(ki − km+i)γi ∈

Γ. Note that we have
∏m
i=1 x

ki
γi

∏m
j=1 x

−kj+m
γj = ±x[k] for a unique choice of sign,

depending only on k. We denote this sign by (−1)k.

Corollary 4.4. For i = 1, . . . ,m and α ∈ Γ we have

g(xα, Y
−1
s (xγi)) = g0

∑
[k]=α

(−1)k[ξk]Ei(ξ)

= g0

∑
[k]=α

(−1)k[ξk] det(δpq + ξp∂qΦp(ξ))ξi exp

−∑
j

kjΦj(ξ)

 .
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Corollary 4.5. For i = 1, . . . ,m we have

As(z, Z, λ)(xγi) =
∑
α∈Γ

∑
[k]=α

(−1)k[ξk] det(δpq + ξp∂qΦp(ξ))ξi exp

−∑
j

kjΦj(ξ)


Y (xα)

∑
T

〈α,WT (Z)〉∂zHT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v).

(4.6)

In particular the CV-deformation Qs(λZ) is the derivation of gΓ[[s]] determined by

Qs(λZ)(xγi) = Resz=0As(xγi).

5. Estimates on graph integrals

In this Section we study the graph integrals HT (z, Z, λ). We fix a tree T and
z∗ ∈ C∗ which does not belong to any of the rays `α(v) for v ∈ T . We will write

HT (Z, λ) = H(z∗, Z, λ).

Proposition 5.1. Let T be a Γ-labelled rooted tree with n vertices. Then there exist
universal constants λ̄, C1, C2 > 0, depending only on the constant in the support
condition (3.1) (in particular, independent of n, z∗), such that

|HT (Z, λ)| ≤ Cn1 exp(−C2

∑
v∈T
|Z(α(v))|λ) (5.1)

for all λ > λ̄.

The crucial point is that the estimate (5.1) holds up to the boundary of Homsg(Γ,C)
where some distinguished rays collide, and irrespective of the presence of accumu-
lation points for the set of distinguished rays for a fixed central charge Z.

We now collect some necessary preliminaries to the proof of Proposition 5.1. For
nonzero α ∈ Γ, λ > 0 we introduce a function

uα,λ(s) =
1

s
exp(−λ|Z(α)|(s−1 + s))χ(0,+∞).

Notice that uα,λ ∈ C∞(R) ∩ Lp(R) for all 1 ≤ p ≤ ∞.

Definition 5.2. We denote by H the Hilbert transform on the real line, a bounded
linear operator mapping Lp(R) to itself for 1 < p <∞ (by a theorem of M. Riesz,
see e.g. [H] Section 3.2). In particular we have by definition

H[uα,λ](s) = pv

∫ ∞
0

dw

w

1

s− w
exp[−λ|Z(α)|(w−1 + w)].

By the Riesz theorem H[uα,λ](s) lies in Lp(R) for 1 < p <∞. Standard regular-
ity results imply that H[uα,λ](s) is in C1(Rs ×Rλ>0) and that we can differentiate
under the H operator. One can check by explicit computation that H[uα,λ] as well
as ∂sH[uα,λ] lie in L∞(Rs × Rλ>0).

We consider a class of functions defined iteratively by

τsluα,λ(s)

k∏
i=1

H[vi](s) (5.2)

where τ ∈ C∗, l = 0, 1 and each vi is again of the form (5.2) for some αi ∈ Γ.

Examples include uα0,λ

∏k
i=1H[uαi,λ] as well as uα0,λH[uα1,λH[uα2,λ · · · ]].
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Lemma 5.3. Let u be a function of the form (5.2), with m corresponding lattice
elements α1, . . . , αm (not necessarily distinct). Then there are constants C1, C2, λ̄1,
independent of m, depending only on τ and a lower bound on |Z(α1)|, . . . , |Z(αm)|,
such that for all λ > λ̄1 we have

||u(s)||L1 ≤ Cm1
m∏
i=1

exp(−C2|Z(αi)|λ).

Proof. We will argue by induction on m. Using the specific form (5.2) of u we find

||u(s)||L1 ≤
k∏
i=1

||H[vi](s)||∞||τsluα,λ(s)||L1

provided all the H[vi] are bounded. By explicit computation (for example using
the Laplace approximation for exponential integrals) the factor ||τsluα,λ(τs)||L1

has the required uniform exponential decay dominated by C1 exp(−C2|Z(α)|λ) for
some fixed uniform C2 and all sufficiently large C1. So we focus on ||H[vi](s)||∞.
By an elementary Sobolev embedding we have

||H[vi](s)||∞ ≤ c1||H[vi]||W 1,2

so we start by controlling the L2 norms ||H[vi]||L2 , ||∂sH[vi]||L2 . By L2 boundedness
of H and the fact that it commutes with ∂s we find

||H[vi]||L2 ≤ c2||vi||L2 , ||∂sH[vi]||L2 ≤ c2||∂svi||L2 ,

that is

||H[vi]||∞ ≤ c1c2||vi||W 1,2 .

We have reduced the problem to finding exponential bounds on ||vi||L2 and ||∂svi||L2 .
Writing

vi = τis
liuβ,λ(s)

ki∏
j=1

H[wj ](s)

we get

||vi||L2 ≤
ki∏
j=1

||H[wj ](s)||∞||τisliuβ,λ(s)||L2 ,

||∂svi||L2 ≤
ki∑
r=1

||H[∂swr](s)||L2

∏
j 6=r

||H[wj ](s)||∞||τisliuβ,λ(s)||∞

+

ki∏
j=1

||H[wj ](s)||∞||∂s(τisliuβ,λ(s))||L2

≤ c3

 ki∑
r=1

||∂swr(s)||L2

∏
j 6=r

||H[wj ](s)||∞||τisliuβ,λ(s)||∞

+

ki∏
j=1

||H[wj ](s)||∞||∂s(τisliuβ,λ(s))||L2

 .

Notice that we chose the L2 norm for the factor H[∂swr](s) rather than the supre-
mum norm so that no further derivatives are required to control this. By explicit
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computation (e.g. Laplace approximation) ||τisliuβ,λ(s)||L2 , ||τisliuβ,λ(s)||∞ and
||∂s(τisliuβ,λ(s))||L2 are all dominated by C1 exp(−C2|Z(β)|λ) for some fixed uni-
form C2 and all large C1. Assuming inductively that we have the required expo-
nential bounds on the norms ||wj ||L2 , ||∂swj ||L2 for all j = 1, . . . , ki the inequalities
above imply a bound (denoting by mi the number of lattice elements αij attached
to vi, counted with their multiplicities)

||vi||W 1,2 ≤ cmi4

mi∏
j=1

exp(−C2|Z(αij)|λ).

Taking the product over i = 1, . . . ,m yields the result, with C1 = c4. �

Proof of Proposition 5.1. In the course of the proof we use the notation sv for v ∈ T
to denote positive real integration variables. Hopefully these will not be confused
with the parameters s of our formal families; the latter never appear in the present
Section. Parametrising the ray `α(v) for v ∈ T by

λ−1(|Z(α(v))|)−1Z(α(v))sv, sv ∈ R>0

for each v ∈ T turns HT (Z, λ) into an iterated integral along the positive real line
(0,+∞). Pick a vertex w ∈ T with unique incoming vertex v distinct from the
root. There is a corresponding factor in HT (Z, λ) given by

(2πi)−1

∫ ∞
0

dsw
τwsv

τwsv − sw
uα(w),λ(sw),

with

τw =
|Z(α(w))|
Z(α(w))

Z(α(v))

|Z(α(v))|
.

Let c1, δ > 0 denote positive constants to be determined independently of T (in
particular, independently of n). Suppose that there is an edge {v → w} ⊂ T such
that | Im(τw)| < δ. Choose the edge for which Im(τw) is the smallest possible in T
(that is, such that the sine of the convex positive angle between the corresponding
rays `α(v), `α(w) is less than δ, and the smallest among edges in T ). Notice that by
our minimal choice of v → w there are no further rays `α(w′) with w → w′ between
`α(v) and `α(w). We claim that for sufficiently small δ there is a uniform c1 such
that

|HT (Z, λ)| ≤ c1(|HT,1(Z, λ)|+ |HT,2(Z, λ)|),
where the iterated integrals HT,1(Z, λ) and HT,2(Z, λ) are obtained by replacing
the factor

(2πi)−2

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)

∫ ∞
0

dsw
τwsv

τwsv − sw
uα(w),λ(sw) (5.3)

attached to the subgraph {o → v → w} ⊂ T (denoting by o the unique vertex
mapping to v) by the Hilbert transform

(2πi)−2

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)svH[uα(w),λ](sv) (5.4)

in the case of HT,1(Z, λ), respectively by

(2πi)−1

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)uα(w),λ(sv) (5.5)
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in the case of HT,2(Z, λ). This holds because by the classical Sokhotski-Plemelj
theorem in complex analysis (see e.g. [H] Section 3.2) the limit of the factor (5.3)
as τw → 1 is given by the sum of the principal value part (5.4), and the residue
part (5.5), with suitable signs (determined by whether Im(τw) → 0 from below or
above). The τw → 1 limit holds uniformly for all α(v), α(w), so the claim follows.

Notice that we can estimate the residue part (5.5) by

||uα(w),λ||∞
∣∣∣∣(2πi)−1

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)

∣∣∣∣ .
Let T2 be the rooted, Γ-labelled tree obtained from T by contracting the edge
{v → w} ⊂ T to a single vertex decorated by α(v). By the estimate above we have

|HT,2(Z, λ)| ≤ ||uα(w),λ||∞|HT2(Z, λ)|),
so

|HT (Z, λ)| ≤ c2(|HT,1(Z, λ)|+ ||uα(w),λ||∞|HT,2(Z, λ)|). (5.6)

On the other hand edges {v → w} ⊂ T for which we have a fixed lower bound
| Im(τw)| ≥ δ > 0 can be “integrated out”: let T3 ⊂ T be the (rooted, Γ-labelled)
subtree obtained by chopping out the (rooted, Γ-labelled) subtree T4 ⊂ T with root
w. Then there is a constant c3, depending only on δ, such that

|HT (Z, λ)| ≤ c3|HT3
(Z, λ)||HT,4(Z, λ)|,

wherer HT,4(Z, λ) equals essentially HT4
(Z, λ), but with root factor in the integral

replaced with ∫ ∞
0

dswuα(w),λ(sw).

We can now proceed inductively applying the two steps described above, decreas-
ing the number of vertices of T or increasing the number of H operators inserted.
The process stops in a finite number of steps, yielding residual functions Hi(Z, λ)
for a finite set of indices i ∈ I, with cardinality |I| ≤ 2n, such that

|HT (Z, λ)| ≤ cn4

(∑
i∈I
|Hi(Z, λ)|

)
where c4 > 0 does not depend on T . By construction each |Hi(Z, λ)| is bounded
by a finite product of factors of the form ||uα(w),λ||∞ or ||u(s)||L1 , where u belongs
to the class of functions (5.2). So by Lemma 5.3 and repeated application of (5.6)
each |Hi(Z, λ)| is bounded by Cn1 exp(−C2

∑
v∈T |Z(α(v))|λ) for absolute constants

C1, C2 and all λ > λ̄ (independently of T ). The bound (5.1) now follows with that
same C2, λ̄ and taking the constant C1 in the statement to be 2C1c4 in our present
notation. �

6. Functional equation and convergence

In this Section we complete the proof of our main result Theorem 1.1. We fix a
continuous symmetric spectrum Ω parametrised by Hom+(Γ,C) which is the double
of a positive spectrum.

Definition 6.1. Fix constants c1, c2, λ > 0 and a collection of formal power series
Sα(s) ∈ C[[s]] for α ∈ Γ. Define a new collection F [S]β(s) ∈ C[[s]] for β ∈ Γ by

F [S]β(s) =
∏
α∈Γ

(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−Sα(s))|〈β,α〉||Ω(α,Z)|.
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Let us write S(0) for the family of constant formal power series

S0
β(s) = 1 ∈ C[[s]].

for all β ∈ Γ. We define inductively for i ≥ 0

S
(i+1)
β (s) = F [S(i)]β(s).

Lemma 6.2. Fix ρ̄ > 0. There exists λ̄ > 0, depending only on ρ̄ and the constants
in the support and exponential growth conditions (3.1), (3.2), such that for λ ≥ λ̄

all the formal power series S
(i)
β (s) converge for ||s|| < ρ̄, uniformly for i ≥ 0.

Proof. We argue by induction on i. For r > 0 we write Br = {s ∈ Cn : ||s|| < r} for
the open ball. Pick a norm ||−|| on Γ⊗C. Suppose that ρ̄ > 0, λ̄ > 0 and c3 > 0 are

constants such that S
(i)
α (s) converges absolutely and uniformly in compact subsets

of Bρ̄ and moreover we have

|S(i)
α (s)| < c3e

||α||. (6.1)

for all s ∈ Bρ̄, λ > λ̄, α ∈ Γ. In the case of S0 we can choose the constants ρ̄, λ > 0
arbitrarily, while c3 is a positive constant that only depends on the choice of norm
|| − ||.

The infinite product∏
α∈Γ

(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)
α (s))|〈β,α〉||Ω(α,Z)|

converges absolutely and uniformly in compact subsets of Bρ̄ if and only if this
happens for the series∑

α∈Γ

|〈β, α〉||Ω(α,Z)| log(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)
α (s)). (6.2)

There is a uniform constant c4 > 0 such that for all sufficiently large λ, depending
only on the constant in the support condition (3.1) and the inductive bound (6.1),
the series (6.2) is bounded by

c4||β||
∑
α∈Γ

||α|||Ω(α,Z)|c1 exp(−c2|Z(α)|λ)c3ρ̄
[α]+−[α]−e||α||. (6.3)

This bound is independent of i. If the spectrum Ω(α,Z) has at most exponential
growth then the series (6.3) converges for all sufficiently large λ, depending only on
ρ̄, the support condition (3.1) and the exponential growth condition (3.2). Moreover
for all sufficiently large λ, depending only on (3.1), (3.2), the sum of the series is
bounded by ||β|| log c3, from which we get

|S(i+1)
β (s)| < c3e

||β||

in Bρ̄. So if we choose our initial λ̄ sufficiently large, depending only on ρ̄ and the
conditions (3.1), (3.2), the induction goes through. �

Let T denote a Γ-labelled rooted tree as usual. We write depth(T ) for the length
of the longest oriented path in T . Let us denote by µ|Ω|(α,Z) the Möbius transform
of the function |Ω(α,Z)|,

µ|Ω|(α,Z) =
∑

k>0, k|α

1

k2
|Ω(k−1α,Z)|.
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Note that in general µ|Ω|(α,Z)xα is not a continuous family of stability data in gΓ,
and |Ω(α,Z)| is not a continuous spectrum. This is completely irrelevant for our
purposes, since we will only use the obvious bound

|DT(α,Z)| ≤ µ|Ω|(α,Z).

Let us introduce weights W̃T (Z) ∈ Γ⊗Q by

W̃T (Z) =
1

|Aut(T )|
µ|Ω|(αT , Z)αT

∏
{v→w}⊂T

〈α(v), α(w)〉µ|Ω|(α(w), Z).

Lemma 6.3. We have

S
(i)
β (s) =

∑
disconnectedT, depth(T )≤i

c
|T |
1 |〈β, W̃T (Z)〉|

exp(−c2
∑
v∈T
|Z(α(v))|λ)

∏
v∈T

s[α(v)]+−[α(v)]− .

Proof. We write

S
(i+1)
β = exp

∑
α∈Γ

|〈β, α〉||Ω(α,Z)| log(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)
α (s)).

The result follows from expanding log(1 − c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S
(i)
α (s)) as

a formal power series and arguing by induction, starting from S
(0)
α = 1 for all α,

precisely as in [FGS] Section 3.6. �

Corollary 6.4. Fix c1, c2, ρ̄ > 0. There exists λ̄ > 0, depending only on ρ̄ and the
constants in the support and exponential growth conditions (3.1), (3.2), such that
for all λ ≥ λ̄ the formal power series∑

disconnectedT

c
|T |
1 |〈β, W̃T (Z)〉| exp(−c2

∑
v∈T
|Z(α(v))|λ)

∏
v∈T

s[α(v)]+−[α(v)]−

converges for ||s|| < ρ̄.

Proof of Theorem 1.1. We show first that, under the assumptions of the Theorem,
for all sufficiently large λ, depending only on ρ̄ and the constants in the sup-
port condition (3.1) and the exponential bound (3.2) all the formal power series
g(xα, Y (z, Z, λ)(xβ)) converge absolutely and uniformly for ||s|| < ρ̄.

By our explicit formula (4.3) for the action of Y (z, Z, λ)(xβ) it remains to prove
that there exists λ̄ > 0 as above such that for all λ > λ̄ and β ∈ Γ the complex-
valued formal power series∑

disconnectedT :
∑
v∈T α(v)=α

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−

converges for ||s|| < ρ̄.
We will in fact prove a statement which is independent of α: we claim that there

exists λ̄ > 0 as above such that for all λ > λ̄ and β ∈ Γ the complex-valued formal
power series ∑

disconnectedT

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−
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(summing over all decorated trees, without the constraint that
∑
v∈T α(v) is fixed)

converges for ||s|| < ρ̄. By Proposition 5.1 and the comparison principle it is enough
to prove the claim for the formal power series∑

disconnectedT

C
|T |
1 |〈β, W̃T (Z)〉| exp(−C2

∑
v∈T
|Z(α(v))|λ)

∏
v∈T

s[α(v)]+−[α(v)]− (6.4)

for all β, where C1, C2 are the constants in (5.1). By Corollary 6.4 we can ensure
that this converges for ||s|| < ρ̄ by choosing λ̄ large enough, depending only on ρ̄
and (3.1), (3.2) as required.

To extend the convergence statement to the matrix elements of the connection
1-form As we rely on our explicit formula (4.6). Plugging the expansion for Ys(xγi)
in (4.6) one checks that each Γ-graded component of As(xγi) is given by a finite
product of factors which are infinite sums over decorated, disconnected trees and
are all dominated by a sum of the form (6.4) for possibly larger but fixed constants
C1, C2. �

Remark 6.5. As we mentioned our proof of Theorem 1.1 is very much inspired
by the work of Gaiotto, Moore and Neitzke in mathematical physics [GMN]. In
[GMN] appendix C an integral operator is studied, and the proof of a convergence
property for its iterations is sketched using functional analytic techniques. In our
present situation we cannot follow this approach directly, since we wish to prove
a convergence result that holds uniformly as Z approaches the boundary of the
strongly generic locus Homsg(Γ,C). More precisely the estimate [GMN] (C.20)
needed for the contraction property cannot hold uniformly as we approach the
boundary ∂Homsg(Γ,C), since it is based on saddle point approximations such as
[GMN] (C.10), (C.11) which do not hold uniformly as Z → ∂Homsg(Γ,C). One
can get estimates similar to (C.10), (C.11) that depend on the number of vertices
of the underlying diagram as in Proposition 5.1, but this is not enough to establish
[GMN] (C.20). In the present paper we have replaced the integral operator with
the algebraic operator F acting on formal power series, and proved a convergence
result for its iterations for which the type of exponential decay of the functions
HT (z, Z, λ) established in Proposition 5.1 is sufficient. Proposition 5.1 follows in
turn from a combination of classical estimates on the Hilbert transform operator,
combinatorial considerations, and elementary Sobolev embeddings. Recently C.
Garza has informed us of his very interesting work in progress towards proving
much stronger results in the functional-analytic framework of [GMN].

7. Application to field theory

We discuss briefly the original physical setup of [GMN]. In that context one
studies the low-energy effective Lagrangian of a class of N = 2 supersymmetric
gauge theories on R3 × S1

R (a circle of radius R). This is known to be given by
a supersymmetric sigma-model with values in a noncompact hyperkähler fibred
manifold M → B. The generic fibre is isomorphic to Γ ⊗ R/Z, where Γ is the
lattice of electro-magnetic charges, with a natural skew-symmetric pairing 〈−,−〉.
The gauge theory naturally specifies functions on the smooth locus Bo ⊂ B (where
the fibres are smooth), the central charge Z : Bo → Γ∨ ⊗ C (which also encodes
the energy scale at which we are looking) and the locally constant BPS spectrum
Ω: Bo → Γ∨ ⊗Q. The spectrum Ω can in fact be realized as the set of Donaldson-
Thomas invariants of a 3CY category C. This is expected from general physical
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principles (realizing the gauge theory as the field theory limit of a suitable string
theory), and was proved mathematically for a large class of theories in [Su, BS].

In [GMN] a set of preferred holomorphic Darboux coordinates for the target
metric is found. These coordinates are expressed in terms of a local trivialization
of the fibration as formal pairings 〈β,

∑
α cαe

iθα〉 where β ∈ Γ and θα denotes an
angular coordinate on the fibre dual to α ∈ Γ. The coefficients cα are functions on
Bo with values in Γ, given in turn by a sum over trees

cα =
∑

T :
∑
v α(v)=α

1

|Aut(T )|
αTGT (z, Z,R)

∏
{v→w}⊂T

〈α(v), α(w)〉
∏
v

DT(α(v), Z)

(7.1)
where DT and Ω are related by (3.3). The functions GT (z, Z,R) are determined
explicitly in [GMN] and depend nontrivially on the radiusR and a twistor parameter
ζ ∈ C∗. They are closely related to our HT (z, Z, λ) above. Denoting by Bsg ⊂ Bo
the locus of generic central charges in Bo, the functions GT : C∗ ×Bsg ×R>0 → C∗
are defined inductively by

GT (ζ, Z,R) =
1

2πi

∫
`αT

dw

w

w + ζ

w − ζ
exp(−RZ(αT )w−1 −RZ̄(αT )w)

∏
j

GTj (w),

(7.2)
with the initial condition G∅ = 1 (recall that with the sign conventions of this paper
we have `αT = R>0Z(αT )).

In general the series (7.1) contains infinitely many terms. This is because of the
symmetry DT(α,Z) = DT(−α,Z), expressing the physical fact that every BPS
particle of charge α ∈ Γ has a CPT conjugate antiparticle of charge −α. In [GMN]
no order of summation is specified a priori for (7.1), so unless the series is abso-
lutely convergent the convergence problem is ill-defined. Following the arguments
of Sections 5 and 6 verbatim, with the new choice of integration kernel (7.2), and
in particular recalling that the proof of Theorem 1.1 gives an estimate on the series
(6.4) which is independent of α, we find a corresponding result for the series (7.1).

Corollary 7.1. Fix ζ∗ ∈ C∗ which does not lie on a distinguished ray. For large
enough R, independent of α, depending only on the support and exponential growth
condition, the series (7.1) for the cα converges absolutely and uniformly. Moreover
there is a common bound |〈β, cα〉| < C, independent of α. It follows that for
large enough R the formal expansion 〈− ,

∑
α cαe

iθα〉 actually gives a well defined
distribution on the torus Γ⊗ R/Z with values in Γ∨.
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