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A B S T R A C T   

Background: Making sense of others’ actions relies on the activation of an action observation network (AON), 
which maps visual information about observed actions onto the observer’s motor system. This motor resonance 
process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the 
muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order 
AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance 
remains unclear. 
Methods: We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired asso-
ciative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, 
to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed 
motor resonance during action observation. 
Results: Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the 
observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from 
PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically 
occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post- 
stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor 
resonance. 
Conclusions: These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons 
causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that 
shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic 
mirror mechanisms that underlie social perception.   

1. Introduction 

Humans are equipped with a sophisticated neural system that allows 
for the perception and understanding of the actions performed by other 
people [1–3]. This system, often referred to as the action observation 

network (AON), maps visual information about others’ actions onto the 
observer’s motor representations in parietal and premotor regions [4,5]. 
This neural mechanism, termed motor resonance, is believed to involve 
mirror neurons [2,6,7]. 

Strong evidence for motor resonance in humans comes from studies 
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using single-pulse transcranial magnetic stimulation (TMS) over the 
primary motor cortex (M1) [5,8,9]. These studies have shown that ac-
tion observation enhances the amplitude of TMS-induced motor-evoked 
potentials (MEPs), reflecting an increase in M1 corticospinal excitability 
specific to the muscles involved in the observed action [10–16]. Motor 
resonance in M1 is believed to reflect the activity of higher-order fron-
to-parietal nodes within the AON, exerting a modulatory effect on M1 
excitability [11,17–20], mainly through the copious projections coming 
from the ventral premotor cortex (PMv) [21,22]. 

The AON is a dynamic and malleable system shaped by the coupling 
between perceived and executed actions [23–26]. When such coupling is 
experimentally altered, for example, when participants observe an ac-
tion while performing another (counter-mirror training), motor reso-
nance can reduce or reverse [27,28]. Similarly, atypical motor 
resonance can be induced when observing an action and stimulating the 
motor representation of another effector in M1 [29]. According to 
influential accounts, this experience-dependent tuning of AON activity 
is the result of Hebbian associative mechanisms of 
spike-timing-dependent plasticity (STDP) between visual and motor 
representations[2,30–32]. However, despite these plastic changes are 
believed to occur at the level of cortico-cortical connections within the 
AON, direct neurophysiological demonstration that STDP can act on 
AON connectivity is lacking. 

To address this outstanding issue, in this study, we tested whether 
the AON is amenable to STDP modifications in the strength of cortico- 
cortical connectivity with the M1. We focused on PMv – a core region 
of the AON – and M1, a key area where motor resonance is expressed 
[10–15,17–20]. Together, PMv and M1 form a thoroughly studied 
visuo-motor circuit, whose effective connectivity has been extensively 
documented at rest, during action performance and action observation 
[18,33–39], suggesting that the PMv-M1 circuits could provide a valu-
able test-bed for investigating the plasticity of AON connections. How-
ever, none of the previous research has addressed whether strengthening 
PMv projections to M1 (i.e., the PMv→M1 pathway) through STDP af-
fects motor resonance in M1. 

Therefore, in this study, we took advantage of a dual-coil TMS pro-
tocol named cortico-cortical paired associative stimulation (ccPAS), 
originally developed by Rizzo and colleagues [40], stemming from the 
classical PAS protocol [41,42], to modulate offline the strength of the 
PMv→M1 pathway and test whether this exogenous manipulation cau-
ses a change in motor resonance. 

The ccPAS is a dual-coil TMS technique modulating the synaptic 
efficacy of cortico-cortical connections [43–49]. The ccPAS protocol, 
uses two focal coils to stimulate two interconnected cortical areas and 
induce Hebbian STDP between them [40,50]. According to the Hebbian 
principle, synapses are potentiated when presynaptic neurons fire 
immediately before postsynaptic neurons in a coherent and repeated 
manner [50,51]. The ccPAS protocol mimics this pattern by repeatedly 
stimulating a “presynaptic area” immediately before the “postsynaptic 
area”. The inter-stimulus interval (ISI) between the two pulses is tailored 
to the temporal properties of the pathway connecting the two areas [41, 
49]. 

Previous studies demonstrated that the ccPAS protocol effectively 
induces STDP in PMv→M1 projections [52–56], affects M1 excitability 
55,57–63 and motor performance relying on the PMv→M1 network [59, 
60,64]. Building on these findings, we hypothesize that a ccPAS protocol 
repeatedly activating the PMv→M1 pathway would increase the syn-
aptic efficiency of the circuit, fostering enhanced communication within 
the AON during action observation, thereby causing consistent 
cascading effects on the expression of motor resonance in M1. 

2. Materials and methods 

2.1. Participants 

Forty-eight right-handed healthy volunteers (26 females; mean 24 ±

3 years) with normal or corrected-to-normal visual acuity and no 
contraindication to TMS [65] were recruited for the study (see Supple-
mentary Materials for sample size justification). The Bioethical Com-
mittee of the University of Bologna approved the study in accordance 
with the ethical standards of the Declaration of Helsinki. All participants 
gave their written informed consent to the experiment. 

2.2. Experimental design 

We adopted a mixed-design with both between- and within-subjects 
factors. Participants were randomly assigned to 3 groups undergoing 
different ccPAS protocols (Fig. 1A–B). In the experimental group 
(ccPASPMv→M1), we targeted PMv and M1 to strengthening PMv→M1 
projections via STDP. For the active control group (ccPASM1→PMv), we 
used a stimulation of the same regions that is not expected to strengthen 
PMv→M1 projections, whereas, in the sham group (ccPASSham), no 
active TMS was administered. 

To assess motor resonance, we recorded MEPs in 3 sessions: before 
(PRE), immediately (T0) and 20 min (T20) after the administration of a 
ccPAS protocol (Fig. 1A). In each session, we applied single-pulse TMS 
over the left M1 hand region to induce MEPs in both the right first dorsal 
interosseous (FDI) and abductor digiti minimi (ADM), which control 
abduction/adduction movements of the index (IND) and little fingers 
(LIT), respectively. MEPs were recorded at rest during the presentation 
of two action observation (AO) stimuli, i.e., abduction/adduction 
movements performed by a right IND or a right LIT, and a fixation cross 
(FIX) serving as baseline (Fig. 1C). Stimuli were adapted from Ref. [14]. 

2.3. Apparatus and stimuli 

Visual stimuli were displayed on a 24″ LED screen with a full HD 
resolution (1920 × 1080 pixels) and a refresh rate of 60 Hz, placed at 80 
cm from the participant’s head. MATLAB (version R2013b) and Psy-
chophysics Toolbox controlled the presentation of the visual stimuli and 
triggered TMS pulses. 

Each session (PRE, T0, T20) consisted of 32 AO (16 IND and 16 LIT) 
and 20 FIX trials, presented in two ~3-min blocks. Trials had a common 
structure (Fig. 1C; Supplementary materials). 

In the AO trials, participants were shown videos presented in a 
pseudorandomized order depicting two cycles of an abduction/adduc-
tion movement (IND or LIT) of two male and two female Caucasian 
hands. The hands were presented in palm-down position from an over-
head view and rotated 90◦ clockwise or anti-clockwise from a first- 
person perspective to minimize visuo-spatial compatibility [66,67]. 

2.4. TMS procedure and MEP recording 

TMS was delivered through figure-of-eight iron branding coils (50- 
mm wing external diameter) connected to two TMS devices. To assess 
motor resonance, we used a Magstim Rapid2 device that generates pulses 
with biphasic waveforms [11,16] and a Biopac MP-35 (BIOPAC Systems, 
Inc., CA) to record electromyographic (EMG) signal from the right FDI 
and ADM muscles, via Ag–AgCl electrodes with a belly-tendon montage. 
EMG signal was sampled at 20 kHz and band-pass filtered (30–500 Hz). 
In the three testing sessions (i.e. PRE, T0, T20) we applied single-pulse 
TMS during AO and FIX trials by placing the coil over the optimal 
scalp position (OSP) defined as the M1 location where TMS pulses 
evoked maximal MEPs in the right FDI. Stimulation intensity was set to 
produce MEPs of ~1 mV in the resting FDI muscle. This intensity was 
enough to record stable MEPs from both muscles. The coil was oriented 
at ~45◦ with respect to the midsagittal line, with the second phase of the 
waveform generated by the biphasic pulse inducing an optimal 
posterior-to-anterior current in the brain [68,69] (Supplementary 
Fig. S1). The TMS inter-trial interval (ITI) was 7000 ± 800 ms (Fig. 1C). 
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2.5. Plasticity induction 

During ccPAS, we administered 90 pairs of pulses at rest to the left 
PMv and M1 through two coils connected to two different stimulators. 
The ccPASPMv→M1 protocol aimed to strengthen the PMv→M1 pathway: 
in each pulse pair, the TMS pulse over PMv preceded the pulse over M1 
by 8 ms, so that the corticocortical volley elicited by PMv stimulation 
reached M1 immediately before its direct stimulation, resulting in 
convergent activation of presynaptic and postsynaptic neurons, instru-
mental to STDP establishment [52,53,58]. This 8-ms ISI was selected 
according to prior PMv-M1 research that has demonstrated interactions 
at this timing during both resting conditions and relevant tasks, such as 
action preparation, execution, reprogramming, and observation [18, 
33–35,38,39]. Furthermore, this specific ISI had been employed to 

successfully modulate the PMv-M1 circuit using ccPAS [52,53,58,61, 
64]. 

To ensure that any results were not merely due to the stimulation of 
the two areas per se, in the ccPASM1→PMv protocol, the order of the two 
pulses in each pair was reversed (i.e., M1 was stimulated 8 ms before 
PMv); this protocol was found to reduce the strength of PMv→M1 pro-
jections [52,58], although other studies have reported little or no effect 
at a functional level [60,64] or M1 corticospinal excitability [61]. The 
ccPASSham was administered with the coils tilted at 90◦, resulting in an 
ineffective stimulation controlling for unspecific effects. 

In all ccPAS protocols, the TMS pairs were delivered at a rate of 
~0.14 Hz (i.e., one pair every 7 s, for a total duration of 10.5 min), well 
within the range used in the literature (0.1–0.2 Hz) [52,53,55,57,58], 
and in line with the testing phase, where pulses were delivered with an 

Fig. 1. (A) Graphical representation of experimental design showing the three ccPAS groups (ccPASPMv→M1, ccPASM1→PMv, ccPASSham) and three Sessions (PRE, T0, 
T20) testing MEPs during action observation stimuli (AO) and a ‘baseline’ control condition showing a fixation cross (FIX). (B) Cortical sites stimulated in the two 
active ccPAS groups and corresponding Talairach coordinates (mean ± SD). For illustrative purposes, individual stimulation sites were reconstructed using BrainNet 
Viewer after converting Talairach coordinates into the MNI space. (C) Timeline of single-pulse TMS trials, showing an initial black fixation cross of 2 × 2◦ of visual 
angle on a white background (duration: 1000 ms), followed by a stimulus screen (3000 ms) and a blank screen (3000 ms). The stimulus screen could display the same 
fixation cross (FIX; 20 trials), or a video-clip of a finger movement (AO; 32 trials). Each AO video-clip began with a static hand subtending a horizontal visual angle of 
13.8◦ (1200 ms) and was followed by two cycles of an abduction/adduction movement (1800 ms) of the index finger (IND) or the little finger (LIT). Clips were 
presented in a pseudorandomized order for the factorial combination of 4 models × 2 moving fingers × 2 hand orientations × 2 repetitions. In every trial, a single 
TMS pulse was delivered to M1 at five randomized intervals ranging from 2400 to 3200 ms after the beginning of the trial. This timing ensured that TMS was always 
administered during the observation of the finger movement in the AO condition, from 200 to 1000 ms after the movement onset. This large time window allowed us 
to randomize with significant variability the timing of TMS pulses, minimizing anticipation of the stimulation in the participants, while capturing motor resonance 
effects with muscle-specificity [9]. 
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average ITI of ~7 s. M1 stimulation involved the same device (biphasic 
Magstim Rapid2), coil orientation and stimulation intensity (eliciting 
~1 mV MEPs) utilized in the testing phase [64], see also [41,70,71]. 
PMv stimulation was performed with the Magstim 200, generating 
pulses with monophasic waveforms, with the coil oriented to induce a 
current flow in the neural tissue directed toward the M1 site [54,61,62, 
64] (Fig. S1), and an intensity of 110% of the resting motor threshold 
(rMT) [52,53,56,58]. The rMT was determined in the initial phase of the 
experiment and defined as the minimal intensity that evoked at least 5 
out of 10 MEPs with an amplitude >50 μV in the relaxed FDI [72] when 
targeting the OSP with the Magstim 200. A suprathreshold rather than a 
subthreshold PMv stimulation was preferred as the former might induce 
PMv-M1 connectivity changes, without affecting M1 excitability at rest 
(compare [52] with [61]). 

2.6. Neuronavigation 

To target the left PMv we used a SoftTaxic Navigator system (EMS s. 
r.l., Italy), automatically estimating Talairach coordinates from an MRI- 
constructed stereotaxic template based on the digitized scalp of each 
participant acquired using a Polaris Vicra digitizer (Northern Digital 
Inc., Canada). The PMv site was identified as the scalp position overlying 
a rostro-ventral portion of the precentral gyrus at the border with the 
posterior inferior frontal gyrus, at Talairach coordinates x = − 52; y =
10; z = 24 which was targeted in prior studies on motor resonance and 
action perception [17,73] as well as prior ccPAS studies [59–62,64]. 
Individual Talairach coordinates corresponding to the projection of 
M1-OSP and PMv on the brain surface were calculated by the SoftTaxic 
Navigator (Fig. 1B). 

2.7. Data analysis 

EMG signal analysis was conducted using custom Matlab scripts. The 
mean MEP amplitude for each condition was computed as the peak-to- 
peak amplitude following removal of motor artifacts (7% of the total, 
see Supplementary Methods). Data from one participant was corrupted 
due to a technical failure, resulting in the following group sizes: 
ccPASPMv→M1, N = 16; ccPASM1→PMv, N = 16; ccPASSham, N = 15. 

To assess the occurrence of motor resonance before any ccPAS 
intervention, a preliminary mixed-factors ANOVA with the within- 
subjects factors Muscle (FDI, ADM) and Movement (IND, LIT) and the 
between-subjects factor ccPAS (ccPASPMv→M1, ccPASM1→PMv, ccPAS-
Sham) was performed on MEPs in the PRE session. For this analysis, MEPs 
recorded in the AO condition were normalized as a percentage of the 
average MEP of the FIX condition (% of FIX). 

To check whether ccPAS affected corticospinal excitability, MEP 
data acquired during the FIX condition were submitted to a mixed-factor 
ANOVA with the within-subjects factors Muscle (FDI, ADM) and Session 
(PRE, T0, T20) and the between-subjects factor ccPAS (ccPASPMv→M1, 
ccPASM1→PMv, ccPASSham). 

In the main analysis, to test the effect of ccPAS, we computed a motor 
resonance index (MR index) for each muscle by subtracting the average 
MEP recorded in AO trials during the incongruent movement from that 
of the congruent movement (i.e., FDIIND-FDILIT; ADMLIT-ADMIND) and 
dividing this difference to the square root of the mean of the variance of 
these two conditions [74,75], as follows: 

MR index=
Mean

(
MEPcongruent

)
− Mean

(
MEPincongruent

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2(MEPcongruent)+σ2(MEPincongruent)

2

√

An MR index>0 reflects muscle’s higher sensitivity for the congruent 
observed movement, indicating motor resonance. MR index data were 
analyzed through a mixed-factors ANOVA with within-subjects factors 
Muscle (FDI, ADM) and Session (PRE, T0, T20) and between-subjects 
factor ccPAS (ccPASPMv→M1, ccPASM1→PMv, ccPASSham). 

Lastly, the change in MR was individually computed by subtracting 

MR index values of PRE from those of the T0 session and averaging the 
resulting index across muscles, as follows: 

Mean(MR indexT0) − Mean(MR indexPRE)

A one-way ANOVA was used on this index to compare the effect of 
ccPAS protocols between groups directly. 

Statistical analyses were performed using the STATISTICA software 
(v.12; StatSoft Inc.). Post-hoc analyses were performed with the Dun-
can’s test. ANOVA effect sizes were reported as partial eta-squared 
values (ηp

2). Cohen’s ds and Cohen’s drm indices were computed be-
tween and within post-hoc comparisons, respectively [76]. Unless 
otherwise stated, values reported in the text are expressed as mean ± S. 
D. 

3. Results 

3.1. Evidence of motor resonance before ccPAS 

The ANOVA conducted on MEPs in the PRE session showed a sig-
nificant Muscle × Movement interaction (F1,44 = 13.5, p < 0.001; ηp

2 =

0.23; Fig. 2), indexing motor resonance. 
Post-hoc analysis revealed that MEPs were higher in the muscle 

congruent with the observed movement (FDIIND = 108 ± 29%; ADMLIT 
= 107 ± 23%) compared to the incongruent movement (FDILIT = 100 ±
20%; ADMIND = 102 ± 24%) for FDI (p = 0.002; drm = 0.32) and 
marginally for ADM muscle (p = 0.08; drm = 0.19). Furthermore, FDIIND 
response was higher than that of ADMIND (p = 0.028; drm = 0.22), and 
ADMLIT response was higher than that of FDILIT (p = 0.009; drm = 0.33). 

No other main effects or interactions resulted significant (all p ≥
0.34). The null effects suggest comparable motor resonance before the 
ccPAS intervention (Table 1). 

3.2. Effect of ccPAS on FIX trials 

We tested whether ccPAS could induce global changes in M1 excit-
ability over time. A mixed-factor ANOVA performed on MEP amplitudes 
showed a non-significant effect of the factor Muscle (F1,44 = 3.27, p =
0.077; ηp

2 = 0.07; Fig. 3), indicating slightly larger MEPs for the FDI 
(1.07 ± 0.32 mV) compared to the ADM (0.91 ± 0.63 mV). This trend is 
not surprising considering that the OSP was set according to the FDI 
representation. No other significant effects or interactions were detected 
(p ≥ 0.15; Table S3). 

3.3. ccPASPMv→M1 enhances motor resonance 

The ANOVA performed on the MR index revealed a main effect of 
Muscle (F1,44 = 5.61, p = 0.022; ηp

2 = 0.11), indicating larger sensitivity 
to observed actions in the FDI (0.19 ± 0.4) than in the ADM (0.06 ±
0.41) and, critically, a Session × ccPAS interaction (F4,88 = 2.83, p =
0.029; ηp

2 = 0.11; Fig. 4A), reflecting a change in muscle-specific sensi-
tivity over time depending on the ccPAS protocol. Post-hoc analyses 
revealed that ccPASPMv→M1 led to enhanced motor resonance at T0 
compared to PRE (p = 0.037; drm = 0.69); the effect was no longer 
present at T20 (p = 0.47; drm = 0.26, Fig. 2B). No modulation of motor 
resonance was detected following ccPASM1→PMv (all p ≥ 0.41) or 
ccPASSham (all p ≥ 0.49). Moreover, while the sensitivity of the three 
ccPAS groups was comparable in the PRE session (all p ≥ 0.54), at T0, 
sensitivity was greater following ccPASPMv→M1 compared to both the 
ccPASM1→PMv (p = 0.048; ds = 0.86) and the ccPASSham (p = 0.042; ds =

0.88). No other main effects or interactions reached significance in the 
ANOVA (all F ≤ 0.89, all p ≥ 0.41). 

In line with our hypothesis, these results demonstrate that 
ccPASPMv→M1, empowering PMv-M1 connectivity, enhanced motor 
resonance. The ANOVA conducted on the modulation index showed a 
main effect of ccPAS (F2,44 = 3.46, p = 0.04; ηp

2 = 0.14; Fig. 5), indicating 
larger modulation following ccPASPMv→M1 compared to ccPASM1→PMv 
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(p = 0.035; ds = 0.83) and ccPASSham (p = 0.03; ds = 0.75) which, in 
turn, were comparable (p = 0.97). 

4. Discussion 

The present study shows that ccPAS administered over PMv and M1 
to strengthen directional PMv→M1 connectivity transiently enhances 
the effect of AO on M1 corticospinal excitability. Before ccPAS, brief 
clips displaying simple movements of the right index or little finger 
modulated left M1 corticospinal excitability tuned to the observed 
movements. The effect, probed by single-pulse TMS during AO, showed 
a high degree of muscle specificity, with FDI and ADM MEP facilitation 
occurring when observing index and little finger movements, respec-
tively, thus reflecting the hallmark of motor resonance [6,8,9]. Impor-
tantly, we found that ccPASPMv→M1 enhanced motor resonance effects at 
T0. During ccPASPMv→M1, PMv stimulation (first pulse) triggered a 
cortico-cortical volley that reached M1 neurons just before M1 stimu-
lation (second pulse) [34,35]. This repeated paired-stimulation meeting 
the timing and the hierarchical organization of the PMv→M1 pathway, 

Fig. 2. Evidence of motor resonance before the ccPAS intervention (time PRE) as shown by mean MEP amplitudes (% FIX) during the AO clips. (A) Muscle ×
Movement interaction indicating a muscle-specific motor resonance response, so that the FDI muscle was activated by the observation of index finger movements 
(IND) and the ADM muscle by the observation of little finger movements (LIT). Error bars denote standard error of the mean. Hashmarks and asterisks denote 
significance of post-hoc comparisons: #p = 0.08; *p ≤ 0.05; **p ≤ 0.01. Individual MEPs, box plots, and density plots in the IND and LIT conditions are shown for the 
(B) FDI and (C) ADM muscles. 

Table 1 
Motor resonance across the three groups before ccPAS administration. Means ±
S.D. of normalized MEP amplitudes (% of FIX) and correspondent raw ampli-
tudes (in mV) reported in brackets during the session PRE.   

PMv→M1 M1→PMv Sham 

IND LIT IND LIT IND LIT 

FDI 112 ±
31% 

99 ±
17% 

114 ±
32% 

102 ±
23% 

98 ±
22% 

97 ±
21% 

(1.08 ±
0.32 mV) 

(0.97 ±
0.25 mV) 

(1.16 ±
0.38 mV) 

(1.04 ±
0.29 mV) 

(1.09 ±
0.24 mV) 

(1.07 ±
0.21 mV) 

ADM 108 ±
29% 

111 ±
32% 

104 ±
22% 

106 ±
16% 

95 ±
21% 

104 ±
18% 

(0.82 ±
0.55 mV) 

(0.81 ±
0.51 mV) 

(0.83 ±
0.59 mV) 

(0.84 ±
0.58 mV) 

(1.10 ±
0.80 mV) 

(1.15 ±
0.78 mV)  

Fig. 3. (A) Main effect of muscle on MEP recorded during FIX trials, indicating a trend for higher MEP amplitudes for FDI compared to ADM (p = 0.08). (B) In-
dividual MEPs obtained from the FDI and ADM muscles of single participants with relative box plots and density plots. 
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resulted in a consistent presynaptic and postsynaptic pairing, instru-
mental for the establishment of Hebbian STDP [50,51]. The increase in 
motor resonance was not observed following ccPASM1→PMv or ccPAS-
Sham, suggesting it was specific to the enhancement of PMv→M1 direc-
tional connectivity [52,53,56], and not provoked by any consistent 
stimulation pairing the targeted areas or due to unspecific effects. The 
enhancement reflected a short-term expression of associative plasticity 
as it disappeared at T20. These findings provide unprecedented evidence 
that affecting PMv-M1 connectivity via exogenous manipulation of 
STDP transiently modulates motor resonance in humans. 

The AON is a network composed of sensory and motor regions crucial 
for perceiving the actions of others [77–84] [77–84] [77–84]. It has 
been repeatedly shown that the stimulation of PMv and nearby inferior 
frontal regions affects action perception tasks [15,73,85–89], whereas 
M1 stimulation yielded mixed results, with some studies showing effects 
on AO tasks [9,90–92] and others reporting no consistent effects [78,83, 
93,94]. Studies on AO in monkeys have shown that both PMv and M1 
contain purely motor, purely visual, as well as mirror neurons coupling 
observed actions with motor representations of similar actions [3,7,95, 
96], although they are believed to play partially distinct roles in action 
performance and AO alike, with PMv positioned higher than M1 in the 
hierarchical organization of the motor system and reflecting more 

abstract representations of the action’s goal [3,7,97]. In turn, M1 would 
encode lower-level motor parameters necessary for achieving the goal 
and contribute to preventing unwanted reproductions of observed ac-
tions [95,98]. 

In line with this hierarchical organization, prior work demonstrated 
that activation of motor resonance mechanisms in M1 is influenced by 
the activity of the PMv node of the AON [11,17,18,20]. For example, in 
early studies, low-frequency (inhibitory) repetitive TMS over PMv was 
found to disrupt motor resonance in M1 [11,17], while the same re-
petitive TMS protocol administered over M1 itself reduced M1 cortico-
spinal excitability without impacting the magnitude of motor resonance 
[11]. Other studies using dual-coil TMS demonstrated that ipsilateral 
[18] or contralateral [19] PMv conditioning prompted or increased 
muscle-specific M1 corticospinal facilitation during AO. Taken together, 
these prior studies suggest that PMv and M1 have distinct roles in 
driving motor resonance over M1 corticospinal neurons, aligning with 
the notion of distinct neural representations in PMv and M1 mirror 
neurons [3,95,97,98]. Moreover, these studies support a premotor 
origin of M1 motor resonance [6,8,11], suggesting that visual informa-
tion about observed actions is mapped onto PMv neurons, which in turn 
influence M1 corticospinal excitability. 

Although associative plasticity is believed to forge mirror responses 

Fig. 4. (A) Motor resonance (MR) index, reflecting muscle-specific sensitivity to observed actions, displayed over time as a function of the ccPAS protocol. 
ccPASPMv→M1 led to enhanced motor resonance at T0 compared to PRE, while no modulation of motor resonance was detected following ccPASM1→PMv or ccPASSham 
protocols. Error bars denote standard error of the mean. Asterisks indicate significant post-hoc comparison: p ≤ 0.05. (B) Individual MR index, box plots, and density 
plots of the ccPASPMv→M1 group across the three sessions. 

Fig. 5. (A) Changes in the MR index at T0 (relative to Pre) as a function of the ccPAS protocol. Changes induced by the ccPASPMv→M1 protocol were greater than 
those induced by the ccPASM1→PMv or ccPASSham protocols. Error bars denote standard error of the mean. Asterisks indicate significant post-hoc comparison: p ≤ 0.05. 
(B) Individual changes in MR index of the three groups, correspondent box plots, and density plots. 
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and shape cortico-cortical connections within the AON [2,25,29–31,99], 
no prior study attempted to manipulate PMv-M1 cortico-cortical con-
nectivity via STDP to investigate the mechanism of motor resonance. 
Building on prior seminal TMS studies on motor resonance and 
leveraging the Hebbian rule, we used ccPAS to target directional 
PMv→M1 projections as a test-bed for studying the premotor origin of 
M1 motor resonance. By showing that experimental manipulation of the 
strength of PMv→M1 connectivity via ccPASPMv→M1 can transiently and 
causally enhance the effect of AO on MEP amplitudes, we demonstrate 
the active contribution of PMv-M1 projections in shaping motor reso-
nance mechanism in M1. These findings provide novel mechanistic in-
sights into the functional role of human PMv→M1 projections during AO 
and underscore their dynamic malleability in relation to motor 
resonance. 

Anatomical and physiological studies on the homologue PMv area of 
monkeys show that this region is densely interconnected with M1 via 
glutamatergic cortico-cortical projections [21,22,100] through which 
the former exerts a powerful influence on the latter’s activity [22]. 
Notably, these PMv projections synapse onto both inhibitory and 
excitatory interneurons in M1, thus providing a mechanism for modu-
lating specific corticospinal representations. Prior studies using dual-coil 
TMS have clarified that PMv→M1 projections can shift from inhibition 
to facilitation depending on the task at hand [34,35]. For example, 
during grasping preparation, muscle-specific PMv→M1 projections are 
facilitated depending on the type of grasp [34], and similar 
muscle-specific modulations have been reported during AO [18]. More 
broadly, PMv→M1 influences are state-dependent, however, they also 
depend on stimulation parameters used to probe them, such as the ISI 
and the intensity of the PMv conditioning [36,37,63]. Importantly, 
while prior ccPASPMv→M1 studies using subthreshold PMv conditioning 
have demonstrated modulations at the level of M1 corticospinal neurons 
(e.g. [61]), in this study, we employed suprathreshold PMv stimulation 
[52,53,56,58], which proved to affect PMv→M1 connectivity without 
modulating M1 corticospinal excitability [52]. Accordingly, we found 
no net effect of ccPAS during FIX trials over time (Table S1), suggesting 
that the documented changes in motor resonance could be attributed to 
STDP of PMv→M1 projections rather than local changes in M1 corti-
cospinal excitability. 

The level at which ccPAS effects occurred has implications for un-
derstanding the mechanisms of motor resonance in M1. The discovery of 
pyramidal mirror neurons in the monkey PMv, which directly project to 
the spinal cord [97,101], has raised the possibility that this class of 
neurons drives changes in M1 corticospinal excitability as observed in 
TMS-MEPs during AO. While we do not rule out the possibility that PMv 
could directly influence descending pathways [102], resulting in a 
modulation of MEP amplitude during AO, our study supports a more 
indirect premotor-motor pathway, highlighting the active role of 
PMv→M1 projections in carrying information about observed actions to 
M1 corticospinal neurons. Also, in light of the existence of mirror neu-
rons in the monkey M1 [95,98,103], it could be proposed that these 
neurons are tuned based on PMv→M1 projections. 

Motor response to TMS over M1 can be affected by spatial compat-
ibility between the position of visual cues and the observer’s effectors 
[28]. To rule out an account of our results in terms of spatial compati-
bility, we rotated AO stimuli to make them orthogonal relative to the 
observer’s hand [66,67]. Thus, we can assume that our MEP measure-
ments truly reflected motor resonance, and ccPASPMv→M1 enhanced this 
mechanism instead of space-related visuo-motor associations. 

Our study does not allow us to speculate on whether the modulation 
of motor resonance was uniquely due to improved synaptic efficacy of 
the PMv→M1 projections or rather the consequence of a broader 
modification of connectivity weights in the wider AON. Indeed, using 
the same ccPASPMv→M1 protocol, Johnen and colleagues [53] reported 
increased functional connectivity within a broader dorsolateral network 
for motor programming in which PMv-M1 are embedded. Additionally, 
studies have reported compensatory plasticity in remote network nodes 

following repetitive TMS, suggesting a redistribution of functional 
weights to offset the induced imbalance [17,104]. Therefore, one may 
argue that our effects could result from an altered connectivity affecting 
the wider AON. 

In this study, we focused on a key node of the AON, specifically the 
PMv. Yet, it is important to clarify that the plastic effects we observed 
should not be considered selective for the AO domain, even though 
undeniably influenced processes within it. The PMv plays a significant 
role in several visuomotor functions, including transforming geometric 
properties of objects into an appropriate hand configuration for grasping 
and manipulation [34,35,38] and, accordingly, prior studies have 
shown improved grasping-related hand performance following 
ccPASPMv→M1 interventions [57,60,64]. Thus, while we provided causal 
evidence of an increase in motor resonance resulting from the manipu-
lation of PMv→M1 projections, suggesting an enhancement of AON 
signals to M1, we acknowledge that the impact may extend beyond the 
domain of AO, and other visuomotor functions may also have been 
influenced by ccPAS manipulation. 

In our study we did not distinguish between early and late phases of 
motor resonance. By examining M1 activity from 200 to 1000 ms from 
movement onset, we ensured to capture the feature of muscle specificity 
that distinguishes motor resonance from unspecific arousal responses 
[9]. However, prior work has also shown that while the earliest com-
ponents of motor resonance are stimulus-driven, later components 
(>300 ms) are affected by top-down regulation, visuomotor training, 
and contextual information [28,67,105–107]. Consequently, future in-
vestigations employing ccPAS could shed light on whether these early 
and late components of motor resonance rely on distinct cortico-cortical 
pathways. 

Finally, while we administered distinct ccPAS protocols between 
groups, future research may consider adopting a fully repeated- 
measures design to address the issue of inter-subject variability and 
protocol specificity. Yet, it is important to note that our randomized 
design does not hinder our ability to draw conclusions on the functional 
role of the PMv-M1 circuit in motor resonance. Indeed, our study pro-
vides the first direct evidence of short-term associative plasticity be-
tween a key node of the AON and the area directly expressing its 
processing, namely the PMv and M1. Our findings demonstrate that the 
neural pathway connecting PMv to M1, i.e., the PMv→M1 pathway, 
exhibits sensitivity to Hebbian STDP manipulations of cortico-cortical 
connectivity. This sensitivity underscores the pathway’s functional 
malleability and its causal role in facilitating motor resonance during 
AO. 
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