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ABSTRACT
Accepted version of the manuscript. Please refer to
https://dl.acm.org/doi/10.1145/3477314.3507049 for the pub-
lished version. We address the problem of learning state-variable
relationships across different episodes in Partially ObservableMarkov
Decision Processes (POMDPs) to improve planning performance.
Specifically, we focus on Partially Observable Monte Carlo Planning
(POMCP) and we represent the acquired knowledge with Markov
Random Fields (MRFs). We propose three different methods to com-
pute MRF parameters while the agent acts in the environment. Our
techniques acquire information from agent action outcomes, and
from the belief of the agent, which summarizes the knowledge
acquired from observations. We also propose a stopping criterion
to determine when the MRF is accurate enough and the learning
process can be stopped. Results show that the proposed approach al-
lows to effectively learn state-variable probabilistic constraints and
to outperform standard POMCP with no computational overhead.
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1 INTRODUCTION
Planning under uncertainty is an important problem in artificial
intelligence with important applications in robotics and cyber-
physical system control. In many real-world applications, agents
act in partially unknown environments and they know only the
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dynamics of these environments. However, in several cases there
are also other known properties of the environment which can
be used to improve planning performance. In this work, we fo-
cus on applications in which the state is representable by a set of
variables whose values are probabilistically related to each other.
An example are the variables representing rock values in the well
known rocksample domain [24]. Suppose to have an agent moving
through a grid containing valuable and valueless rocks: by knowing
in advance which rocks have the same value (i.e., knowing proba-
bilistic relationships on rock values), the agent can collect valuable
rocks faster. This improves planning performance by reducing the
number of steps needed to obtain the reward.

POMDPs [11, 25] provide a sound and complete framework for
planning under uncertainty. To tackle partial observability they
consider all possible states of the (agent-environment) system and
assign to each of them a probability value expressing its likelihood
of being the true state. These probabilities, considered as a whole,
constitute a probability distribution over states, called belief. A solu-
tion for a POMDP is a policy that maps beliefs into actions. Finding
optimal policies is unfeasible in general [18], therefore approxi-
mated policies are typically used. Here, we consider a particular
method for learning POMDP policies, called Partially Observable
Monte Carlo Planning (POMCP) [23]. It is based on Monte-Carlo
Tree Search (MCTS) [6], an efficient method to compute approx-
imate Q-values [26] on large state spaces, and particle filter for
representing the belief. Standard POMCP does not consider any
kind of prior knowledge about state-variable relationships. An ex-
tended version of POMCP has recently been proposed [7] which
considers state-variable constraints, expressed as Constraint Net-
works (CNs) or Markov Random Fields (MRFs). Introducing such
knowledge improves planning performance with no overhead in
terms of time complexity. In [7], however, state-variable relation-
ships are assumed to be known in advance (e.g. by experts).

In this paper we aim to learn state-variable relationships as the
agent acts in the environment. As in [7], we store this knowledge in
a MRF representing probabilistic constraints between state-variable
assignments. Furthermore, we answer a key question: “When can
the MRF be trusted?”. We propose, in particular, three different
MRF learning methods to convert the knowledge acquired step-by-
step by the agent into probabilistic constraints on state-variables,
and a criterion based on confidence intervals of MRF potentials to
decide when the learning stage can be stopped and the MRF can
be used by POMCP to obtain performance improvement. The first
MRF learning approach uses observations in the real world, while
the other two consider information in the belief of the agent, and
respectively, the maximum likelihood state and a weighted sum of
the states (where weights are belief probabilities).
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Our empirical analysis shows that the learning approach based
on the maximum likelihood state in the belief generates the most
accurate MRFs. Its usage in tandem with the stopping criterion
based on confidence intervals of MRF potentials yields a statistically
significant performance improvement over the standard POMCP
without any increase of time complexity.

In summary, the main contributions of this work to the state-of-
the-art are listed in the following:

(1) We propose three approaches for learning state-variable
relationships, represented by a MRF, in POMCP;

(2) We propose a criterion for stopping the learning process,
based on confidence intervals of MRF potentials;

(3) We empirically evaluate the proposed approach on two robotics-
inspired domains, showing that it yields a statistically sig-
nificant improvement of the discounted return without any
additional overhead in terms of time complexity.

2 RELATEDWORK
Recent works highlight the benefits of introducing prior knowledge
in POMCP. In [7], authors show that the introduction of such prior
knowledge leads to a performance improvement. In particular, they
make use of probabilistic constraints expressed as MRFs [17] and
CNs [10]. The main limitation of these works regards the require-
ment to have a full specification of the prior knowledge in advance.
This is not always feasible in practice, especially in complex appli-
cations such as robotic ones, due to the need of complete and exact
knowledge about state-variable relationships. What differentiates
our work from [7] is that we aim to overcome this limitation by
learning the MRF while acting in the environment.

Some works in the literature propose approaches to learn ar-
bitrary MRF structures [1, 4, 19, 21, 28]. These approaches have
a higher complexity than the approach we propose because our
approach is specialized on pairwise MRF and on the POMCP appli-
cation. In [22] authors also focus on pairwise MRF but the method-
ology they propose learns continuous pairwise MRF. The MRFs
that we use in our approach are instead discrete.

Another research field related to our work is that of Bayesian
adaptive learning in POMDPs [20]. An elegant method for learning
the transition and reward models in POMCP is presented in [12].
Authors extend the POMCP algorithm to the Bayes-Adaptive case,
proposing a so-called Bayes-Adaptive Partially Observable Monte
Carlo Planning (BA-POMCP) approach. It learns, however, the pa-
rameters of the transition model (i.e., the probability of a state to
change to another state in a step of the dynamics), while our method
learns probabilities of pairs of state-variables to have equal values
in single states (i.e., we do not consider any information about how
the state changes over time). We assume that the state can change
only from an episode to another and each state has a probability to
occur that depends on some (unknown) state-variable probabilistic
relationships. We notice that this setting is very common in prac-
tice (see the example of the warehouse in the problem definition
section, below) but it cannot be naturally encoded in the transition
model. The information encoded in our MRF is instead very simple
to understand and useful to initialize and update the belief. For
the same reason, our approach differentiates also from Factored
BA-POMCP [13], which learns a compact model of the dynamics by

exploiting the underlying structure of a POMDP, allowing to better
scale to large problems. Also this approach deals with knowledge
about the transition from one state to another across the steps of
an execution and it cannot learn the probability distribution of
states considering probabilistic state-variable relationships, as our
MRF does. We remark that we do not factorize the POMDP to learn
compact model of dynamics.

There are also works that address the problem of adding con-
straints to planning for improving the performance or scaling to
large environments. In [15] MCTS is used to generate policies for
constrained POMDPs and in [3] the multi-agent structure of some
specific problems is explored to decompose the value function. We
instead constrain the state space on the basis of state-variable re-
lationships to refine the belief during execution. Specifically, we
learn a MRF able to express variable constraints.

3 BACKGROUND
We provide formal definitions of the main frameworks used in this
work, namely, POMDP, POMCP and MRF.

3.1 POMDP and POMCP
A POMDP [11] is a tuple (S,A,O,T ,Ω,R,γ ) where S is a finite set
of states , A is a finite set of actions , Ω is a finite set of observations,
T : S × A→ Π(S) is the transition model where Π(S) is the space
of probability distribution over states, O : S × A → Π(Ω) is the
observation model, R : S × A → R is the reward function and
γ ∈ [0, 1) is the discount factor. The agent’s goal is to maximize
the expected discounted return E[

∑∞
t=0 γ

tR(st ,at )] acting optimally,
namely, choosing in each state st , at time t , the action at with the
highest expected reward. In POMDPs, however, the agent is not able
to directly observe the current state st but it maintains a probability
distribution over states S , called belief, which updates at each time-
step. We represent by symbol b(s) the probability of being in state
s according to belief b. The belief summarizes agent’s previous
experiences, i.e. the sequence of actions and observations that the
agent took from an initial belief b0 to the belief b. The solution of
a POMDP is an optimal policy, namely, a function that optimally
maps belief states into actions. A policy is optimal if it maximizes
the expected discounted return. The discount factor γ reduces the
weight of long-term rewards guaranteeing convergence.

POMCP [23] is a Monte-Carlo based algorithm for planning in
partially observable environments. A particle filter representing
the belief is initialized with k particles, each encoding a state s .
At each step, MCTS is used to find the best action. The Upper
Confidence bounds applied to Trees (UCT) strategy [14] is used to
balance exploration and exploitation in the simulation phase. After
the selected action a is performed in the real environment, a real
observation o is collected and particles in the belief are updated by
keeping only particles that explain the observation. Particle rein-
vigoration is used if the particle filter gets empty. In [7] MRFs are
used to introduce in POMCP prior knowledge about state-variable
relationships. The methodology improves planning performance
while keeping the time complexity unchanged.
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3.2 Markov Random Fields
A MRF is an undirected graph where nodes represent variables
and edges represent probabilistic relationships between variable
values [5, 17]. A potential function is a non-negative function repre-
senting the relative “compatibility” of different variable assignments.
According to the Hammersley-Clifford theorem [27], the joint prob-
ability represented by the MRF can be computed as the product of
potential functions over the maximal cliques of the graph, namely
p(x |θ ) = 1

Z (θ )
∏

c ∈C ψc (xc |θc ), where x is a variable configura-
tion (e.g., x = (1, 0 . . . , 0)), θ is a parametrization of the MRF, C
is the set of maximal cliques, ψc (xc |θc ) is the potential function,
and Z (θ ) is the partition function, i.e., a normalization factor that
can be computed as Z (θ ) =

∑
x
∏

c ∈C ψc (xc |θc ). Potentials can be
represented by a Boltzmann distribution, i.e., exponentials, thus
ψc (xc |θc ) = exp(−F (xc |θc )) where F (xc ) is the energy function.
Restricting the parametrization of the MRF to the edge rather than
to the maximal clique of the graph, we obtain pairwise MRF in
which the product of potentials can be computed by summing the
energies of all pairwise relationships. We call E the set of pair-
wise relationships (i, j) in the MRF, where i, j ∈ 1, . . . ,n, and n is
the number of state-variables. For instance, given a pair of state-
variables (Xi ,X j )|(i, j) ∈ E a potential could beψXi ,X j (0, 0) = 0.45,
which indicates a compatibility of 0.45 to have value 0 in both
state-variables Xi and X j , orψXi ,X j (0, 1) = 0.05 which indicates a
compatibility of 0.05 to have value 0 in state-variable Xi and 1 in
state-variableX j . In the following, whenwe refer to aMRFwemean
a set of potentials representing compatibilities of different variable
assignmentsψXi ,X j (l ,h), (i, j) ∈ E, l ,h ∈ {1, . . . ,k} where k is the
number of possible values of each variable.

4 METHODOLOGY
We formalize the problem, introduce three methods for learning the
MRF and present the stopping criterion. Then we define measures
to evaluate the learnt MRF and the policy.

4.1 Problem Definition
In this work we aim to learn MRFs representing probabilistic equal-
ity relationships between state-variables in POMDPs. These MRFs
are then used to improve planning performance of POMCP. The
advantage of using state-variable relationships inside POMCP was
proved in [7, 9] where authors show that its use speeds up the
convergence of the belief to the true state. Here, instead, we focus
on learning the MRF while the agent acts in the environment. As
an example of probabilistic equality relationship between state-
variables, consider two variables x1,x2 assuming values in {0, 1}.
A possible relationship is “x1 is equal to x2 with probability 0.8”. In
a warehouse, this could represent, for instance, the probability of
two aisles to have similar traffic levels. Interestingly, this relation-
ship does not concern the dynamics of the state since it reflects a
relative “compatibility” between state-variable values in a single
state, hence it cannot be encoded in the transition model. Instead,
it is a property of state distribution which can be well represented
by a MRF that uses state-variables as nodes and probabilistic rela-
tionships between pairs of state-variable values as edges. In other
words, our method learns the probabilities of pairs of state-variables
to have equal values in single states (i.e., we do not consider any
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Figure 1: Running example on rocksample. a) Board with
valuable (green) and valueless (red) rocks. b) MRF topology.

information about how the state changes over time). We assume
that the state can change only from an episode to another and each
state has a probability to occur that depends on some (unknown)
state-variable probabilistic relationships.

A second problem we tackle is that of identifying the right mo-
ment to stop learning the MRF and to start using it. If the learning
process is stopped too early, the parameters of the MRF could be
over specialized on the relationships of few episodes, yielding a de-
crease of planning performance instead of an improvement. Instead,
if the learning process is stopped too late than the last episodes
could be non informative for improving the MRF. In this case it
would be more convenient to use the learnt MRF in those episodes
in order to start benefiting from the improvement that it provides.

4.2 Running example
We introduce here rocksample [24] a benchmark domain which
we use as a running example in the following to explain the pro-
posed methodology. The same domain is also used in the result
section, together with a robotics-inspired domain, to evaluate the
performance of the proposed approach. We perform our tests on
rocksample(5,8), consisting of a grid with 5 rows and 5 columns
in which 8 rocks are placed in fixed positions (see pentagons in
Figure 1.a). Each rock can be valuable or valueless and the rock
value configuration changes at each episode. The agent (see the
circle in Figure 1.a) knows the rock locations but it cannot observe
rock values (which is the hidden part of the state). At each step, the
agent performs one action amongmovinд (up, down, left, right),
sensinд a rock (i.e., checking its value) or samplinд a rock (i.e., col-
lecting its value) and its goal is to maximize the discounted reward.
When a rock is checked (by the sensing action), however, its true
value is observed with a probability inversely proportional to the
distance between the agent and the rock. The reward obtained by
moving and sensing is 0, while sampling a rock gives a reward of
10 if the rock is valuable, -10 if it is valueless. The MRF used in our
running example, shown in Figure 1.b, has a clique in rocks 1, 2,
3, 4, 5, 6 and edge probabilities equal to 1.0, for simplicity, hence
admissible configurations of rock values must have all these rocks
with the same value to satisfy the constraint. The values of rocks 7
and 8 can instead be randomly assigned individually since there is
no constraint on their values in the MRF.

The state is characterized by the agent position on the grid, the
rocks configuration (hidden), and a flag indicating rocks already
sampled. The set of actions is composed by the four moving actions,
the sample action and a sensing action for each rock.Observations
have three possible values, namely: 1 (2) for valuable (valueless) rock
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observation returned by sensing actions, 3 for null observations
returned by moving actions. The discount factor used is γ = 0.95.
Since we aim at maximizing the information learnt about state-
variable relationships, we prevent the agent from exiting the grid.

4.3 MRF learning techniques
We present three different methods to learn the MRF during the
execution of standard POMCP. The first, named Sample-based MRF
Learning (SL) is based on knowledge gathered by the agent when
it gets the true value of the state-variables, i.e., using sampling
actions in rocksample. In this method we assume that the agent
can somehow (e.g., from the reward or a specific action) get the
true value of (hidden) state-variables; for instance, in rocksample
we assume the agent can see the true value of the rock only when
it collects it. We use this information only in the MRF learning
algorithm, not to update the belief. The second and third methods,
called Maximum-likelihood Belief-based MRF Learning (MBL) and
Weighted-likelihood Belief-based MRF Learning (WBL) are instead
based on the information present in the belief at the end of each
learning episode. The two methods differ from each other in the
way they use the information in the belief to compute theMRF:MBL
uses only the state having maximum likelihood, while WBL uses all
states in the belief, weighted by their likelihood. In all our tests we
assume to learn the MRF in NE episodes, where each episode e is
composed of a fixed number of steps. The methodology can simply
adapt to the case of episodes with different number of steps. We
initialize the MRF with uninformative priors and then update it at
the end of each episode. Details about the three learning methods
and common data structures are reported in the following.

4.3.1 Data structures used in the MRF-learning algorithms. Learn-
ing the MRF means learning the potentials of pairwise MRF repre-
senting state-variable relationships. Given two variables Xi and X j
connected by a pairwise relationship in the MRF and having k pos-
sible values each, we learn the potentialψXi ,X j (l ,h) for each pair
(l ,h) with l ∈ {1, . . . ,k} and h ∈ {1, . . . ,k}, where variable equality
occurs when l = h. We keep track of intermediate quantities using
three data structures:

• A vector of state-variable values Ve (i), i = 1, . . . ,n, for each
episode e , where n is the number of state-variables and the
value in cell i , namely, Ve (i) ∈ {1, . . . ,k} is the value of
state-variable Xi observed or extracted from the final belief
in episode e . This vector is initialized to Ve (i) = 0,∀i ∈
{1, . . .n}, and then each value Ve (i) is updated when the
value of variable Xi in episode e becomes available.
• A four-dimensional array of counts of state-variables equali-
ties and inequalities, for each episode e ,Me (i, j, l ,h), where
(i, j) ∈ E and l ,h, ∈ {1, . . . ,k}. The valueMe (i, j, l ,h) is the
number of times variable Xi had value l and variable X j had
value h in the previous e episodes, where e ∈ N. ArrayMe
is updated at the end of each episode e using the values in
Ve (i), and the MRF potentialsψXi ,X j (l ,h) are directly com-
puted using values inMe (i, j, l ,h) (see Equation 4), hence
the MRF can be updated using values inMe .
• A matrix of probabilities of state-variables equalities, Pe (i, j),
where (i, j) ∈ E. The value Pe (i, j) is the probability that

state-variables Xi and X j had equal values until episode e
(see Equation 5).

In summary, our pipeline at each episode e first computesVe ,
thenMe , afterwards ψ e , and finally Pe . What differentiates the
three MRF-learning strategies here proposed is how they populate
Ve and how they updateMe after each episode. In the next sections
we present the three proposed learning algorithms and the related
strategies for populatingVe and updatingMe .

4.3.2 Learning method 1: Sample-based MRF Learning (SL). In this
approachVe (i) is the value observed for state-variableXi when the
variable is sampled in episode e . We call thisVSL

e . If in rocksample
the i-th rock has been sampled and it was valuable, thenVSL

e (i) = 1,
if it was valueless then VSL

e (i) = 2, and if it was not sampled
thenVSL

e (i) = 0.MSL is initialized toMSL(i, j, l ,h) = 0 for each
(i, j) ∈ E, and l ,h ∈ {1, . . .k}. After each episodeMSL

e is updated
using vectorVSL

e as:

MSL
e+1(i, j, l, h) =

=

{
MSL

e (i, j, l, h) + 1, if VSL
e (i) = l ∧ V

SL
e (j) = h

MSL
e (i, j, l, h), otherwise

(1)

4.3.3 Learning method 2: Maximum-Likelihood Belief-based MRF
Learning (MBL). In this approachVe (i) is populated with the value
of state-variable Xi in the state having maximum likelihood in
the belief of the agent at the end of episode e . We call thisVMBL

e .
MMBL is initialized to MMBL(i, j, l ,h) = 0 ∀(i, j) ∈ E, ∀l ,h ∈
{1, . . .k}. At the end of each episode the arrayMMBL

e is updated
using vectorVMBL

e as:

MMBL
e+1 (i, j, l, h) =

=

{
MMBL

e (i, j, l, h) + 1, if VMBL
e (i) = l ∧ VMBL

e (j) = h
MMBL

e (i, j, l, h), otherwise
(2)

4.3.4 Learning method 3: Weighted-likelihood Belief-based MRF
Learning (WBL). In this approach we consider all the states in the
belief at the end of episode e . Each state s is considered with a
weight depending on its probability b(s) in the belief. Therefore, we
compute |S | vectors,VWBL

e,s , s = 1, . . . , |S |, and we updateMWBL
e

for each s ∈ S and for each (i, j) ∈ E as:

MWBL
e+1 (i, j, l, h) =

=

{
MWBL

e (i, j, l, h) + Xe (i, j, l, h), if VWBL
e (i) = l ∧ VWBL

e (j) = h
MWBL

e (i, j, l, h), otherwise
(3)

whereXe (i, j, l ,h) =
∑
s ∈S b(s) · 1(Xi=l,X j=h), and1 is the Kronecker

delta.

4.3.5 Computation of potentials ψ from M. We compute MRF
potentialsψ from multi-dimensional arrayM after e episodes, by
normalizing each cell (with (i, j) ∈ E) using the following formula

ψ e
Xi ,X j

(l ,h) =
Me (i, j, l ,h)∑

w,y=1, ...,kMe (i, j,w,y)
. (4)

4.3.6 Computation of probabilities of state-variables equalities P
fromψ . These probabilities are finally computed for each (i, j) ∈ E

Pe (i, j) =
∑

l=1, ...,k
ψ e
Xi ,X j

(l , l) (5)

namely, as the sum of potentials on equal values of Xi and X j .
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4.4 Stopping criterion
The methodology here presented aims to stop the learning process
when the MRF is informative enough to bring an improvement
in planning performance. We use a statistical approach based on
confidence intervals (CI) of state-variable equality probabilities
Pe (i, j), (i, j) ∈ E. Algorithm 1 formalizes the approach. It receives
the matrix of equality probabilities Pe (i, j), the significance level
α , and the episode index e . It returns true if, for every edge, the
sample size is large enough and the CI of the probability does not
include value 0.5. According to a known rule of thumb [2, 16],
when a probability p is sampled, the sample size N is large enough
if (N · p > 5) ∧ (N · (1 − p) > 5). This condition is checked in line
2 of Algorithm 1. The condition on the CI is instead checked in
line 5. The lower and upper bounds, respectively, Lei, j and U

e
i, j , are

computed using the formula of the CI for population proportion [2]

pei, j ± Zα/2

√
pei, j (1−p

e
i, j )

e , in which Zα/2 represents the Z value that
cuts off a right-tail area of α/2 under the standard normal curve [2].

The rationale of this algorithm is that a MRF must provide qual-
ity information for all state-variable relationships in order to be
informative for planning (i.e., to improve planning performance).
We translate the concept of quality into a statistical form using
CIs. Namely, given a confidence level (1 − α)100%, our approach
guarantees that every equality constraint (i.e., edge with equality
probability greater than 0.5) has only a small probability α to refer
to an inequality relationship (i.e., an edge with equality probability
less than 0.5). In the other way around, every inequality constraint
has only a small probability α to actually refer to an equality rela-
tionship1.

Algorithm 1: Stopping criterion
Data: Pe (i, j): equality probabilities at episode e;

α : significance level; e: episode index
Result: True if learning should stop, False otherwise

1 for i, j | (i, j) ∈ E do // Iterate on all edges (i,j)
2 if (e · Pe (i, j) > 5) ∧ (e · (1 − Pe (i, j)) > 5) then // Sz

3 Lei, j ← Pe (i, j) − Zα/2

√
Pe (i, j)(1−Pe (i, j))

e // Lower

4 U e
i, j ← Pe (i, j) + Zα/2

√
Pe (i, j)(1−Pe (i, j))

e // Upper

5 if (Lei, j < 0.5) ∧ (U e
i, j > 0.5) then // Chk CI

6 return False
7 else
8 return False
9 end

10 return True

4.5 Performance Measures
We introduce here three measures to evaluate our MRF-learning
strategy. One for evaluating planning performance, one for the
goodness of the learnt MRF, and one for the goodness of the belief.

1This has an interesting parallelism with hypothesis testing conducted using Student’s
t-test on linear regression coefficients, in which a coefficient is said to be not significant
if its confidence interval contains the zero value.

4.5.1 Discounted return. The discounted return of an episode e ,
called ρe , is the sum of the discounted rewards collected in all
steps of that episode. The difference between the discounted return
obtained using the learnt MRF and the discounted return obtained
by the standard POMCP on episode e is called ∆ρe and the average
of this difference over all episodes of all runs is called ∆ρe .

4.5.2 MRF distance. Assuming to know the true matrix of prob-
abilities of state-variables equalities P∗(i, j), (i, j) ∈ E and that
computed after learning episode e by our method Pe (i, j), (i, j) ∈ E,
the MRF distance deM is computed as the Euclidean distance normal-
ized by the number of edges in the MRF ∥P∗ − Pe ∥2/|E | between
the two matrices. Usually we compute this measure after the last
learning episode and we call it dM . The average of this difference
over all learning stages of different runs is called dM .

4.5.3 Belief-state distance. This measure, introduced in [9], allows
to quantify the discrepancy between the agent belief about the true
state and the true state itself. The prior knowledge introduced by
the learnt MRF is expected to improve the planning performance
(i.e., discounted return) by improving the belief, hence it is expected
to reduce the belief-state distance. This distance, called dSB in the
following, is the weighted averaged Manhattan distance between
the state-variable configuration in the true hidden state and the
state-variable configuration of all states s ∈ S weighted by their
belief probability b(s). In our tests we compute the difference of the
belief-state distance reached at each step by POMCP with the MRF
and the standard POMCP, and we name it ∆dSB . Then we average
these differences over all steps of all episodes of all runs, and we
name this ∆dSB .

4.5.4 Time Complexity. The learning strategies together with the
stopping criterion have a complexity O((|S | + |E |) · NE), where |S |
is the number of states (to scan the belief), |E | is the number of
edges (to updateM) and NE is the number of learning episodes.

5 RESULTS
In this section we present the results of our empirical analysis. We
perform two different types of tests. In Section 5.2 we compare the
performance achieved by the three MRF-learning strategies after
a fixed number of learning episodes, we identify the best learning
strategy and analyze its performance depending on the number
of training episodes. In Section 5.3, we analyze the performance
of the best method when it is used with the stopping criterion.
Experiments are performed on two application domains described
in Section 5.1, using JuliaPOMDP and C++ simulators respectively.
The extensive analysis of performance considers different MRF
topologies and several repetitions of the experiments to guarantee
the statistical significance of the results.

5.1 Domains
5.1.1 Rocksample. This domain is explained in Section 4.2.

5.1.2 Velocity regulation. In the velocity regulation problem [8, 9] a
mobile robot traverses a pre-defined path split into segments дi and
subsegments дi, j . Every segment is characterized by a difficulty fi
depending on the density of obstacles in the segment. The robot has
to reach the end of the path in the shortest possible time, tuning its
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speedv to avoid collisions with obstacles. A time penalty is given to
the robot each time it collides. The robot does not know in advance
the true difficulty of each segment (which is the hidden part of the
state) but it can only infer its value from the readings of a sensor
(Figure 2). This problem can be formalized as a POMDP. The state
contains: i) the (hidden) true configuration of segment difficulties
(f1, . . . , fm ), where fj ∈ {L,M,H }, L (low), M (medium) and H
(high), ii) the position p = (i, j) of the robot in the path, where i and
j are the indexes of the segment and the subsegment, iii) t is the
time elapsed from the beginning of the path. Actions correspond
to the speed of the robot in a subsegment, which can be L (low),
M (medium) or H (high). Observations are related to subsegment
occupancy, namely, p(o = 1| f = L) = 0.0, p(o = 1| f = M) = 0.5
and p(o = 1| f = H ) = 1.0. The current time is updated depending
on both the action performed by the agent and the collision penalty.
The agent needs 1 time unit to traverse a subsegment at high speed,
2 time units at medium speed, and 3 time units at low speed. The
collision probability is governed by the collision model of Table 1.
The reward function is R = −(t1 + t2), where t1 is the action time
and t2 is the penalty due to collision. In our test we use t2 = 10.
Finally, we use a discount factor γ = 0.95.

Table 1: Collision model of velocity regulation

p(c|f,a)
p(1 |L, L) = 0.0 p(1 |L, M ) = 0.0 p(1 |L, L) = 0.0
p(1 |L, L) = 0.0 p(1 |M, M ) = 0.5 p(1 |M, H ) = 0.9
p(1 |H, L) = 0.0 p(1 |H, M ) = 1.0 p(1 |H, H ) = 1.0

Figure 2: Path traveled by the agent in the velocity regu-
lation environment. Nodes are subsegment starting points
and red blocks represent obstacles.

5.2 Comparison of learning methods
We perform two tests on rocksample(5,8). In the first test (called
test 1 in the following) we compare the performance of the three
learning methods presented in Section 4.3. In the second test (called
test 2) we investigate the dependence of the MRF performance on
the number of learning episodes.

Figure 3: a) Density of difference in discounted return from
STD. b) Difference in final discounted return from STD (that
is equivalent to MBL100).

5.2.1 Experimental setting. In both tests we perform NR=5 runs.
Each run is composed of NE=100 episodes of rocksample, and in
each episode the agent performs NS=100 steps. In each episode rock
values change but they always satisfy the constraints of the MRF
of Figure 1.b. POMCP always uses 100000 particles and performs
the same number of simulations. For each run, the learnt MRF is
then tested by performing the same 100 episodes. Performance are
evaluated in terms of discounted return and distance between the
true MRF and the learnt MRF. Notice that during the learning phase
the information gathered in the MRF is not used in POMCP.

5.2.2 Test 1: Identification of the best MRF learning method. In
this test, for each run we learn the MRF first with SL, then with
MBL and finally with WBL. Afterwards, we insert each learnt MRF
in POMCP and compute its performance. Figure 3.a shows the
difference ∆ρe between the discounted return obtained by standard
POMCP [23] (STD in the following) and that obtained using the
MRF learnt by the three methods in all the runs (i.e, each box
plot represents data of 5 runs). The worst performance is achieved
by SL, with a median ∆ρe of -1.11. This method reaches worse
performance than STD because the MRF is computed using only
information from collected rocks (not from observed rocks), and
POMCP tends to collect more valuable rocks than valueless rocks,
hence the information is partial and the MRF is not accurate. This
is clear also analyzing the final distance between the true MRF
and the learnt MRF, namely, dM = 0.11. MBL and WBL instead
achieve a performance improvement, with median ∆ρe 3.92 and
2.19, respectively. This is because these methods use the belief as a
source of information, hence they consider the information coming
from observations (i.e., rock sampling) that are performed on both
valuable and valueless rocks. MBL reaches an average distance to
the true MRF of 0.01 and WBL of 0.03. This analysis clearly shows
that MBL reaches the best performance. Figure 3.a finally shows
that the median ∆ρe achieved by using the true MRF is 4.10, higher
than all the other methods, as expected.

5.2.3 Test 2: Dependence of the performance on the number of
training episodes. Test 2 considers only the best learning method,
namely MBL. We learn the MRF for different number of episodes
z ∈ {1, 3, 5, 20, 40, 60, 80}, and then we use the learnt MRF in the
remaining episodes until the 100th. Each test is repeated 5 times,
namely, we perform NR = 5 runs, and we analyze the average dif-
ference of final discounted return ∆ρ achieved by MBL compared to
STD with related standard deviations. Figure 3.b shows the results.
Interestingly, the MRF obtained using one and three episodes, labels
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Figure 4: a), e), i) and m) MRF topologies. b), f), j) and n) Density of difference in discounted return from STD. c), g), k) and o)
Heatmap of the true MRF to learn. d), h), l) and p) Average of the learnt MRFs during experiment 1 and 2.

MRF_1 and MRF_3 in the chart, have lower performance than STD.
This is because they are specialized only on the rock configurations
of these episodes but they do not generalize enough on the true
probability distribution of rock configurations. In fact, the distances
of these two MRFs to the true one are high, i.e., dM = 0.12 and
dM = 0.05, respectively. Figure 3.b shows instead that the perfor-
mance obtained with the MRFs learnt with 5 and more episodes
are higher than that of STD, with a maximum obtained with 40
episodes (see MRF_40). Notice that in our test the performance
decrease after 40 episodes not because the MRF gets worse but
because it has fewer and fewer episodes to exploit the acquired
knowledge.

5.3 Performance of MBL with stopping
criterion

In these experiments we perform tests using MBL with the stopping
criterion described in Section 4.4 on rocksample(5,8) (see test 3 in
the following), and velocity regulation, (see test 4 in the following).

5.3.1 Experimental setting. In test 3 we first select a true MRF (i.e.,
a set of relationships among rock values, as those shown in Figures
4.a,e). Edge probabilities are always set to 0.9 in the true MRF. We

perform NR=10 runs. In each run we start preparing an empty
MRF having the same topology (i.e., set of edges) of the true one
(notice that our current method does not learn the topology of the
MRF but only the potentials of a MRF with pre-defined topology).
We learn the MRF potentials for a number of episodes determined
by the stopping criterion in which the information in the MRF
is not used in POMCP. The configuration of rock values changes
with each episode satisfying the distribution defined by the true
MRF. Then we evaluate the performance of the MRF by introducing
it in POMCP and performing NE=100 episodes with and without
the MRF, comparing the discounted return of each episode and
averaging it over all the runs. In each episode the agent performs
NS=70 steps. POMCP always uses 100000 particles and performs
the same number of simulations. Test 4 is performed in the same
way but on the velocity regulation domain. The MRF topologies
used are displayed in Figures 4.i,m. Edge probabilities are again
set to 0.9. The number of steps per episode is in this case NS=16,
namely, the number of subsegments in the path. To summarize the
flow of test 3 and test 4, we show in Figure 5 the MRF learning and
usage for MBL with stopping criterion.

To prove that the introduction of the learnt MRF provides a
statistically significant improvement with respect to the standard
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Table 2: Performance improvement obtained by the learnt
MRF compared to STD in tests 3 and 4.

Test MRF topol. ∆ρe (∆ρe%) p-val dM ∆dSB
3 a 1.72(8.35%) 1.29 · 10−62 0.04 -0.16
3 b 1.36 (7.16%) 7.71 · 10−16 0.03 -0.14
4 a 1.08 (3.52%) 2.08 · 10−6 0.04 -0.52
4 b 1.17 (3.92%) 4.85 · 10−6 0.06 -0.33

POMCP, we show that the average difference ∆ρe between the
discounted return obtained with the learnt MRF and the discounted
return obtained with STD is significantly larger than zero. Notice
that the difference is computed episode by episode to reduce the
randomness and the average is computed across all the NE=100
episodes of each run (i.e., over 1000 episodes in total). More precisely,
at episode e , we compute the difference of discounted return ρe as
∆ρe = ρ

MBL
e −ρSTDe . Then we compute the average of these values

over all the episodes of all the runs average discounted return ∆ρe .
Similarly we compute the average belief-state distance ∆dSB . This is
however averaged over all steps of each episode of all runs, which
are 70 · 100 · 10 = 70000 in rocksample and 16 · 100 · 10 = 16000 in
velocity regulation.

5.3.2 Test 3: results on rocksample. The results on rocksample are
summarized in the first two rows of Table 2 and the first two rows
of Figure 4. The main result is represented by the average difference
in discounted return ∆ρe achieved using the learnt MRF compared
to not using it, which is 1.72 (i.e, 8.35%) with the MRF topology a
displayed in Figure 4.a, and 1.36 (i.e, 7.16%) with the MRF topology
b displayed in Figure 4.e. These average differences are computed
over 100 episodes and the 10 runs. The distributions of these differ-
ences are displayed in Figures 4.b,f. We verified that these average
differences are statistically different from zero using the Student’s
t-test. In both cases the p-values are lower than 0.05, confirming
that the learnt MRF produces on average a statistically significant
performance improvement.

To explain the motivation of this improvement we show in Fig-
ures 4.c,d and in Figures 4.g,h, the differences between the true
MRF and the learnt MRF, respectively, for the first and second MRF
topology. The similarity is very high, in fact the average MRF dis-
tance is dM = 0.04 for topology a and dM = 0.03 for topology b (see
Table 2). This shows that MBL with the proposed stopping criterion
manages to generate an accurate MRF. Furthermore, we display in
the fifth and sixth column of Table 2 that the usage of the learnt
MRF produces a statistically significant decrease in the average
belief-state distance ∆dSB . The negative values of these differences,
respectively -0.16 and -0.14, mean that the average belief-state dis-
tance obtained using the MRF is smaller than that obtained without
using it. This provides insight into the mechanism that generates
the improvement in the discounted return. Namely, using the learnt
MRF the belief tends to converge faster to the true state (i.e., the
true rock value configuration) allowing the agent to collect larger
rewards than standard POMCP. Finally, in Figure 6 we show the
trends of the lower bounds Lei, j of probabilities Pe (i, j), (i, j) ∈ E
of the MRF learnt in the first run of test 3 (topology a, shown in

Figure 5: Main steps of MRF learning and usage with MBL
with stopping criterion. The blue background highlights the
MRF learning phase, while the green one emphasizes the
MRF usage process.

Figure 4.a). Episodes e are displayed in the x-axis and lower bound
values Lei, j in the y-axis. Since the equality probabilities in the true
MRF are all 0.9, the stopping criterion (Algorithm 1) stops the learn-
ing phase (line 5) when all lower bounds are higher than 0.5 (black
horizontal line in Figure 6) and the condition on the sample size (line
2) is satisfied. This happens at episode 28 in the chart. We highlight
that the lower bounds tend to be low in the first episodes, when the
counts of state-variables equalities/inequalitiesMMBL

e+1 (i, j, l ,h) are
low, and they tend to converge to the true equality probability as
the number of episodes increases.

Figure 6: Lower bound of MRF equality probability for the
first run of test 3/a (black line represents value 0.5).

5.3.3 Test 4: results on velocity regulation. The experiments on the
velocity regulation domain confirm the positive results achieved
with rocksample. The average increase of discounted return ob-
tained using the MRF is in this case of 3.52% with the MRF topology
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a displayed in Figure 4.i, and of 3.92% with the MRF topology b
displayed in Figure 4.m. The numerical results are summarized in
the third and fourth rows of Table 2. Also in this case the p-values
of the ∆ρe , which are lower than 0.05, confirm the statistical signifi-
cance of the improvement. The motivation of the improvement can
be found, again, in the very good approximations of the true MRFs
(see Figures 4.l,p,k,o and Table 2) generated by MBL learning with
stopping criterion. These good approximations yield a statistically
significant reduction of the average belief-state distance ∆dSB , of
-0.52 and -0.33, respectively, in the first and second MRF topology.

6 CONCLUSIONS AND FUTUREWORK
In this paper we propose three methods to learn state-variable
relationships in POMDPs and introduce them in the POMCP al-
gorithm to improve planning performance. Moreover, we propose
a confidence-interval based criterion to decide when to stop the
MRF leaning process and to start using it safely i.e., without per-
formance loss. Results show that our approach produces MRFs
informative enough to achieve performance improvement. Future
research directions involve developing a method able to adapt the
learnt MRF to the specific episode characteristics during the ap-
plication phase. Moreover, we are investigating the possibility to
integrate the learning process with planning to optimally balance
the exploration-exploitation trade-off and we are also implementing
the approach on real robots (Turtlebots) using ROS libraries.
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