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1. Introduction

In [4], the three authors presented a complete, explicit description of the injective envelope of every 
simple left module over LK(T ), the “Toeplitz Leavitt path K-algebra” associated to the “Toeplitz graph” 
T := • • , isomorphic to the well-studied Jacobson algebra K〈X, Y | XY = 1〉 (see for instance 
[8,10,12,13]). Clearly T is an elementary but nontrivial example of a graph that satisfies the following 
property.
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Definition 1.1. Let E be a finite graph. We say that E has disjoint cycles in case each vertex of E is the 
base of at most one cycle.

The condition that each vertex in a finite graph E is the base of at most one cycle has been studied 
in other settings. For example, in [6] the four authors establish that, for any field K, this condition is 
equivalent to the Leavitt path algebra LK(E) having finite Gelfand-Kirillov dimension. Subsequently, Ara 
and Rangaswamy in [7, Theorem 1.1] establish that this condition is also equivalent to the property that all 
simple modules over LK(E) are of a specified type (so-called Chen modules). More recently, in [11] these 
graphs have been characterised in terms of the Jordan-Hölder composition series of their talented monoid.

For us, the condition to have disjoint cycles sits at a wonderfully fortunate confluence of the ideas 
presented in [6] and [7]. On one hand, similar to a process carried out in [6], the condition affords the 
possibility to consider a well-defined positive integer representing the “length of a chain of cycles”, and 
in particular affords the possibility of applying an induction argument in such a situation. On the other 
hand, as provided by [7], having a complete explicit description of all the simple LK(E)-modules puts us in 
position to describe the injective envelopes of all simple modules, and consequently to describe an injective 
cogenerator for LK(E)-Mod.

We show in the current article that the “formal power series” idea developed in [4, Section 6] in the 
context of the graph T can indeed be extended to all graphs with disjoint cycles. In particular, we show 
that the injective envelopes of all the simple modules over LK(E) may be realised as a type of formal power 
series extension. This is the heart of our main result, Theorem 5.2. The proof, rather long and delicate, is 
obtained first reducing via Morita equivalences to connected graphs which contain no source vertices and 
in which every source cycle is a loop, and then on an induction reasoning on the number of cycles. The 
presence of cycles in the graph gives rise to elements of LK(E) which can be seen as polynomials with the 
cycles as indeterminate. It is therefore not surprising to come across formal series when dealing with this 
class of algebras.

The article is organised as follows. In Section 2 we review some of the basics of Leavitt path algebras, 
and provide some properties of Leavitt path algebras of graphs having a specified structure. In Section 3 we 
review the notion of a Chen simple LK(E)-module, as well as that of a Prüfer LK(E)-module. In Section 4
we introduce the formal power series construction associated to subsets of Path(E). With the Sections 3
and 4 material in hand, in Section 5 we state and prove the main result of the article, Theorem 5.2.

We conclude this introductory section by giving a reformulation of the standard Baer Criterion for 
injectivity, one which is well suited to our situation.

Proposition 1.2. Let L be an associative ring, and let M be a left L-module. Let I be a fixed left ideal of L. 
Assume that any morphism f : X → M from any left ideal X ≤ I extends to a morphism f̂ : I → M , and 
also assume that any morphism g : Y → M from any left ideal Y ≥ I extends to a morphism ĝ : L → M . 
Then M is injective.

Proof. Let J be any left ideal of L, and let h : J → M be an L-module morphism. The restriction 
h0 : J ∩ I → M extends by assumption to ĥ0 : I → M . Setting

h1(j + i) = h(j) + ĥ0(i)

for each j ∈ J, i ∈ I yields a morphism h1 : J+I → M . That h1 is well-defined follows from this observation: 
j + i = j′ + i′ implies j − j′ = i′ − i ∈ J ∩ I, and hence

h(j) − h(j′) = h(j − j′) = h0(j − j′) = h0(i′ − i) = ĥ0(i′ − i) = ĥ0(i′) − ĥ0(i),
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from which h(j) + ĥ0(i) = h(j′) + ĥ0(i′). Clearly h1 extends h. Now h1 : J + I → M extends by assumption 
to ĥ1 : L → M . By the Baer Criterion we conclude that M is injective. �
2. Leavitt path algebras

A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 together with maps r, s : E1 → E0, 
the range and the source maps. The elements of E0 are called vertices, those of E1 edges. E is finite in 
case both E0 and E1 are finite sets. Unless otherwise indicated, we assume throughout that all graphs are 
finite. A sink w is a vertex which emits no edges, i.e., s−1(w) = ∅; a source u is a vertex to which no edges 
arrive, i.e., r−1(u) = ∅. A finite path of length n is a sequence of edges ρ = e1e2 · · · en with r(ei) = s(ei+1)
for i = 1, 2, ..., n − 1. We denote s(ρ) = s(e1) and r(ρ) = r(en). Any vertex is viewed as a (trivial) path of 
length 0. We denote by Path(E) the set of all finite paths in E. For each e ∈ E1, we call e∗ the associated 
ghost edge; by definition, r(e∗) = s(e) and s(e∗) = r(e).

Given any field K and (finite) graph E, the Leavitt path K-algebra LK(E) is the free associative K-
algebra generated by a set of symbols {v : v ∈ E0} 
 {e, e∗ : e ∈ E1}, where {v : v ∈ E0} are orthogonal 
idempotents, and for which the following relations are imposed:

(1) for each e ∈ E1, s(e)e = e = er(e) and r(e)e∗ = e∗ = e∗s(e);

(2) for each pair e, f ∈ E1, e∗f =
{
r(f) if e = f,

0 otherwise; and
(3) for each non-sink v ∈ E0, v =

∑
e∈s−1(v) ee

∗.

The elements of LK(E) are K-linear combinations of paths λμ∗, λ, μ ∈ Path(E) [2, Lemma 1.2.12]. A 
nontrivial path e1e2 · · · en is a closed path (resp., a cycle1) if r(en) = s(e1) (resp., and s(ei) �= s(ej) for 
every i �= j). A cycle of length 1 is called a loop. A source cycle is a cycle without entrances, i.e., a cycle 
c = e1 · · · en such that, for each e ∈ E1, r(e) ∈ c0 := {s(ei) : i = 1, ..., n} implies e ∈ {e1, ..., en}.

Suppose A is a K-algebra, and suppose that there is a subset S := {av : v ∈ E0} 
 {ae, ae∗ : e ∈ E1}
of A for which {av : v ∈ E0} is a set of orthogonal idempotents, and for which the relations analogous to 
(1), (2), and (3) above are satisfied by the elements of S. Such a set S is called a Cuntz-Krieger E-family
in A. By the construction of LK(E), if S is a Cuntz-Krieger E-family in A, then there exists a K-algebra 
homomorphism Φ : LK(E) → A for which Φ(v) = av, Φ(e) = ae, and Φ(e∗) = ae∗ for all v ∈ E0 and e ∈ E1.

Because E is assumed to be finite, LK(E) is a unital K-algebra, with multiplicative identity 1LK(E) =∑
v∈E0 v. If d is a closed path in E and p(x) = a0 +

∑n
i=1 aix

i ∈ K[x], then p(d) denotes the element

p(d) := a01LK(E) +
n∑

i=1
aid

i

of LK(E).
A subset H ⊆ E0 is hereditary if, whenever v ∈ H and there exists p ∈ Path(E) for which s(p) = v and 

r(p) = w, then w ∈ H. An hereditary set of vertices is saturated if for any non-sink v ∈ E0, r(s−1(v)) ⊆ H

implies v ∈ H. In the Fig. 1 the set of vertices {t1, t2, t3, w, z} is hereditary, and the set {v, t1, t2, t3, w, z} is 
hereditary and saturated. Let P be any subset of Path(E). Let �1, �2 ∈ LK(E) denote either a vertex of E
or the sum of distinct vertices of E. We denote by

�1P�2 := {�1p�2 : p ∈ P}

1 however, see Definition 3.1 below.
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Fig. 1. Reference example of a graph with disjoint cycles.

the set of all paths in P which start in a vertex summand of �1 and end in a vertex summand of �2. Referring 
to the Fig. 1,

s2{g3h, bg3, bg3h, bg3g1e}(w + z) = {bg3h, bg3g1d}.

Additional general information about Leavitt path algebras may be found in [2].
For a hereditary saturated subset H of E0, EH denotes the restriction of E to H, that is, the graph with 

E0
H = H and E1

H = {e ∈ E1 | s(e) ∈ H}. Referring to the Fig. 1, if H = {v, t1, t2, t3, w, z}, then

t1
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h
w

EH = t3

g3

t2

g2

d
z

�

v n

Proposition 2.1. Let K be any field. Let τ be a source loop in the graph E, with s(τ) = r(τ) = t. Let H :=
E0 \ {t}, and let I be the two sided ideal of LK(E) generated by ρ :=

∑
u∈H u; that is, I = LK(E)ρLK(E). 

Then:

(1) The ideal I, when viewed as a K-algebra in its own right, is isomorphic to a Leavitt path K-algebra. 
Further, I is Morita equivalent to LK(EH).

(2) There is a lattice isomorphism between the lattice of left LK(E)-ideals contained in I and the lattice of 
left LK(EH)-submodules of ρI.

(3) Any left LK(E)-ideal properly containing I is a principal left ideal of LK(E). It is generated by an 
element of the form p(τ) ∈ LK(E), where p(x) ∈ K[x] has p(0) = 1.

Proof. 1.) Since τ is a source cycle, H is clearly hereditary. As τ is a loop based at t, H is necessarily 
(vacuously) saturated as well. Invoking [2, Theorem 2.5.19] we get that I is isomorphic to a Leavitt path 
algebra of a (not-necessarily finite) graph HE. (The graph HE is a so-called “hedgehog graph”.) Note then 
that I = LK(HE) need not have multiplicative identity. However, I has local units when viewed as a ring (see 
e.g., [2, Section 1.2]). Since ρ = ρ2, and I = LK(E)ρLK(E), clearly then I = IρI; as well, ρIρ = ρLK(E)ρ. 
Hence by [1, Corollary 4.3] we have an equivalence

I-Mod
ρI⊗I−

ρLK(E)ρ-Mod
Iρ⊗ρLK (E)ρ−

between the category I-Mod of unitary I-modules (i.e., for each M in I-Mod, M = IM holds) and the 
category of modules over the full corner ring ρLK(E)ρ. Since there are no paths containing t that both start 
and end in H, the ring ρLK(E)ρ is isomorphic to the Leavitt path algebra LK(EH).
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2.) Let J be a left ideal of LK(E) contained in I. Since I has local units, we have IJ = J and hence J
belongs to I-Mod. Conversely, any left I-submodule M of I is a left LK(E)-ideal contained in I, indeed

LK(E)M = LK(E)(IM) = (LK(E)I)M = IM = M.

Applying the equivalence described in point 1.), we get the indicated lattice isomorphism between the left 
LK(E)-ideals contained in I and the left LK(EH)-submodules of ρI ⊗I I ∼= ρI.

3.) Let J ′ be any left ideal of LK(E) properly containing I. We must prove that there exists p(x) =
1 +

∑m
i=1 aix

i ∈ K[x] for which

J ′ = LK(E)p(τ) = LK(E)(1LK(E) + a1τ + · · · + amτm).

By [2, Corollary 2.4.13], LK(E)/I ∼= LK( •tτ ) ∼= K[x, x−1]. Since 0 �= J ′/I is then a (left) ideal of 
the principal ideal domain LK(E)/I, it is generated as an LK(E)/I-ideal by a nonzero polynomial p(x) of 
degree m ≥ 0 with p(0) = 1 evaluated in τ + I. We consider the following two elements of LK(E):

pt(τ) := t + a1τ + · · · + amτm and

p(τ) := 1LK(E) + a1τ + · · · + amτm = ρ + pt(τ).

We show that J ′ = LK(E)p(τ). One can easily check that J ′ = LK(E)pt(τ) + I, and clearly J ′ contains 
pt(τ) + ρ = p(τ); since pt(τ) = tp(τ) we have

J ′ ≥ LK(E)p(τ) ≥ LK(E)pt(τ).

Since then J ′ ≤ LK(E)p(τ) + I, to prove that J ′ = LK(E)p(τ) we need to show that I is contained in 
LK(E)p(τ).

To do so, let s−1(t) = {τ, ε1, ..., εn} be the set of edges in E with source t = s(τ). Any element of I is a 
sum of the type αρ + βργs(τ) with α, β, γ ∈ LK(E). Clearly αρ = αρp(τ) belongs to LK(E)p(τ). Since τ
is a source loop, ργs(τ) =

∑n
j=1 kjργjε

∗
j (τ∗)�j for suitable kj ∈ K, �j ∈ N, and γj ∈ LK(E). We prove by 

induction on �j that ε∗j (τ∗)�j belongs to LK(E)p(τ) for any �j ≥ 0; this will then give that I ≤ LK(E)p(τ). 
Note that ε∗jτ = 0 for all 1 ≤ j ≤ n, so ε∗jp(τ) = ε∗j .

If �j = 0 then

ε∗j (τ∗)0 = ε∗j = ε∗jp(τ) ∈ LK(E)p(τ).

Let 0 < �j ≤ m = deg p(x). Then

ε∗j (τ∗)�jp(τ) = ε∗j (τ∗)�j (1LK(E) + a1τ + · · · + amτm)

= ε∗j
(
(τ∗)�j + a1(τ∗)�j−1 + · · · + a�j−1τ

∗ + a�j t + · · · + amτm−�j
)

= ε∗j (τ∗)�j + a1ε
∗
j (τ∗)�j−1 + · · · + a�j−1ε

∗
j (τ∗) + ε∗j

(
a�j t + · · · + amτm−�j

)
= ε∗j (τ∗)�j + a1ε

∗
j (τ∗)�j−1 + · · · + a�j−1ε

∗
j (τ∗) + (ε∗jp(τ))

(
a�j t + · · · + amτm−�j

)
= ε∗j (τ∗)�j + a1ε

∗
j (τ∗)�j−1 + · · · + a�j−1ε

∗
j (τ∗) + ε∗j

(
a�j t + · · · + amτm−�j

)
p(τ).

Note that in the last step we used the fact that τt = tτ = τ , and that polynomials in τ commute in LK(E). 
Therefore

ε∗j (τ∗)�j = ε∗j (τ∗)�jp(τ) − [a1ε
∗
j (τ∗)�j−1 + · · · + a�j−1ε

∗
j (τ∗)] − ε∗j

(
a�j t + · · · + amτm−�j

)
p(τ).
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By the inductive hypothesis, each summand in the bracketed term belongs to LK(E)p(τ), and thus so does 
ε∗j (τ∗)�j .

Finally, let �j > m. Then

ε∗j (τ∗)�jp(τ) = ε∗j (τ∗)�j (1 + a1τ + · · · + amτm)

= ε∗j (τ∗)�j + a1ε
∗
j (τ∗)�j−1 + · · · + amε∗j (τ∗)�j−m.

Thus

ε∗j (τ∗)�j = ε∗j (τ∗)�jp(τ) − [a1ε
∗
j (τ∗)�j−1 + · · · + amε∗j (τ∗)�j−m],

which, again by the inductive hypothesis, belongs to LK(E)p(τ). �
The following result regarding expressions in LK(E) will be extremely useful in the sequel.

Lemma 2.2. Let E be a finite graph. Suppose that γ1, γ2 ∈ Path(E) have r(γ1) = r(γ2) = v for some v ∈ E0. 
Suppose further that neither γ1 nor γ2 is of the form γδ, where δ is a closed path having s(δ) = r(δ) = v. 
Then in LK(E),

γ∗
1γ2 =

{
v if γ1 = γ2,

0 otherwise.

Proof. If γ1 or γ2 are vertices, then the result is easy to check. So now assume γ1 = α1 · · ·αh and γ2 =
β1 · · ·βk, where h, k ≥ 1, and r(αh) = r(βk) = v. Then

γ∗
1γ2 = α∗

h · · ·α∗
1β1 · · ·βk.

Assume γ∗
1γ2 �= 0. If h < k we would have α1 = β1,..., αh = βh; since r(αh) = r(βh) = r(βk) = v, we 

get that the path βh+1 · · ·βk would be a closed path with source and range vertex v, contradicting the 
hypothesis on γ2. The situation in which h > k follows similarly. Therefore h = k and γ1 = γ2, and the 
result follows. �

We close this section by noting some graph-theoretic properties related to the condition of having disjoint 
cycles.

Lemma 2.3. Let E be a finite graph. Then E has disjoint cycles if and only if all closed paths in E are 
powers of cycles.2

Proof. Clearly any graph in which the only closed paths are powers of cycles has disjoint cycles.
Conversely, let e := e1 · · · en be a closed path in E. We proceed by induction on the length n of e. If 

n = 1, then e is a loop and hence it is a cycle. Let n > 1. Assume that e is not a power of a cycle. Consider 
the sequence of vertices (s(e1), ..., s(en)). Since e is not a cycle, in the sequence there are repetitions. In the 
set

{(i, j) : i < j ∈ {1, ..., n}, s(ei) = s(ej), j − i minimal}

2 This lemma has been obtained in one of our fruitful discussions with our friend and colleague Kulumani M. Rangaswamy.
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consider the pair (i, j) with i minimal. Then e1 · · · ei−1ej · · · en and ei · · · ej−1 are respectively a closed path 
p and a cycle d in E of length < n. By the inductive hypothesis we have p = cm for a suitable cycle c in E
and m ≥ 1. The cycles c and d have in common the vertex s(ei) = r(ei−1): therefore, since distinct cycles 
are disjoint, c = d. By the minimality of i, we get i = 1 and hence

c = d = e1 · · · ej−1, p = cm = ej · · · en.

Therefore e = cm+1, a power of the cycle c. �
The set of vertices of a graph E is naturally endowed with a preorder structure. Given u, v ∈ E0, we 

write v ≤ u if there exists p ∈ Path(E) with s(p) = u and r(p) = v.
Writing u ≡ v if u ≤ v and v ≤ u, one obtains an equivalence relation ≡ on E0. The pre-

order ≤ induces a partial order on the quotient set E0
≡. Because E0 is assumed to be finite, E0

≡
contains maximal elements. Referring to the Fig. 1, E0 = {u, s1, s2, s3, s4, v, t1, t2, t3, w, z} and E0

≡ =
{[u], [s1, s2, s3, s4], [v], [t1, t2, t3], [w], [z]}; [u] is the only maximal element in E0

≡.

Remark 2.4. If the graph E has disjoint cycles, then (using Lemma 2.3) each equivalence class in E0
≡ is 

either a single vertex, or the set of vertices of a cycle. In particular, the maximal elements in E0
≡ are either 

source vertices or the set of vertices of a source cycle.
Therefore, if E in addition contains no source vertices, then the finiteness of E together with the condition 

of having disjoint cycles implies that E contains at least one source cycle.

3. Chen simples and Prüfer modules

We reiterate here our standing assumption that E is a finite graph. So the Leavitt path algebra LK(E)
has a multiplicative identity, namely, 1LK(E) =

∑
v∈E0 v.

In [9] Chen introduced classes of simple left modules over Leavitt path algebras. Here, we concentrate 
on those simples associated to sinks or to cycles: LK(E)w (for any sink w) and V[c∞] (for any cycle c) in 
E. We will see that, although these have been viewed as distinct classes in the literature, they in fact share 
many properties.

A sink w is an idempotent in LK(E): we consider the left ideal LK(E)w. Since there are no ghost edges 
ending in w, any element of LK(E)w is a K-linear combination of paths in Path(E)w, i.e., of (real) paths 
ending in w. Since LK(E) =

⊕
u∈E0 LK(E)u as left LK(E)-ideals, we have clearly

LK(E)w ∼= LK(E)/LK(E)(w − 1).

Given a cycle c = e1 · · · en in E, the “infinite path” obtained by repeating c infinitely many times, 
denoted c∞, can be considered as an “idempotent-like element”: one has cn · c∞ = c∞ for each n ≥ 1. 
Extending the product defined between elements of LK(E) and c, one can in the expected way construct 
the left LK(E)-module LK(E)c∞, which is usually denoted by V[c∞]. Since e∗c∞ = 0 for each e �= e1, and 
e∗1c

∞ = e2 · · · enc∞, any element in LK(E)c∞ is a K-linear combination of paths in Path(E)c∞, i.e., of 
(real) paths ending in s(c) times c∞. By [5, Theorem 2.8] we have

LK(E)c∞ ∼= LK(E)/LK(E)(c− 1).

If one thinks of a sink w as a cycle of length 0, and observes that w∞ = w, the two above constructions 
of simple modules may be viewed as two manifestations of the same idea.
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Definition 3.1. By a cycle in the graph E we mean either a sink (i.e., a cycle of length 0), or a proper cycle, 
i.e., a cycle of length n ≥ 1. We unify notation by setting

V[w∞] := LK(E)w

for any sink w in E.

Definition 3.2. Let E be a finite graph, and c any cycle in E. By PE
c we denote the following subset of 

Path(E):

PE
c :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{γ ∈ Path(E) : r(γ) = s(c) = c} = Path(E)c
if c is a sink;

{γ ∈ Path(E) : r(γ) = s(c), and γ �= γ′c ∀γ′ ∈ Path(E)}
if c is a proper cycle.

.

Less formally, if c is a sink then PE
c is the set of paths in E ending in s(c) = c. Otherwise, if c is a proper 

cycle, PE
c is the set of paths in E which end at the source vertex s(c) of the cycle c, but for which the path 

does not end with a complete traverse of the cycle c.

Referring to the Fig. 1, the set PE
w of all paths in E ending in w is infinite: it contains the sink w and all 

the left truncations of paths of the form pd4(d1d2d3d4)id1bg3(g1g2g3)jh (i, j ≥ 0). As well, the sets PE
g1g2g3

, 
and PE

� are infinite. The former contains the vertex t1 = s(g1), g2g3, and all the left truncations of paths 
of the form pd4(d1d2d3d4)id1bg3 (i ≥ 0); the latter contains the vertex z and all the left truncations of 
paths of the form pd4(d1d2d3d4)id1d2mn and pd4(d1d2d3d4)id1bg3(g1g2g3)jg1e. The set PE

d1d2d3d4
is finite: 

it contains s1, d4, pd4, d3d4, d2d3d4.

Remark 3.3. By Lemma 2.3, if the graph E has disjoint cycles, then for any cycle c the paths in PE
c do not 

end with the traverse of any closed path.

Remark 3.4. It follows by [9, §3.1] and [2, Corollary 1.5.15] that for any cycle c, the set

PE
c · c∞ = {p · c∞ : p ∈ PE

c }

is a K-base for the simple left LK(E)-module V[c∞].

If c is any cycle and 0 �= a ∈ K, we denote by σc,a the “gauge” automorphism of LK(E) associated to c
and a. This automorphism is defined to be the identity if c is a sink. Otherwise, if c = e1e2 · · · en is a proper 
cycle, σc,a sends u to u for each u ∈ E0, e to e and e∗ to e∗ for each e ∈ E1 \ {e1}, and e1 to ae1 and e∗1 to 
a−1e∗1. If a = 1, then σc,1 is clearly the identity automorphism of LK(E).

For M in LK(E)-Mod, we define Mσc,a ∈ LK(E)-Mod by setting Mσc,a = M as an abelian group, but 
with the modified left LK(E)-action

� � m := σc,a(�)m

for each � ∈ LK(E) and m ∈ M . The automorphism σc,a induces an auto-equivalence of the category 
LK(E)-Mod given by the functor

LK(E)σc,a ⊗LK(E) − : LK(E)-Mod → LK(E)-Mod
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which sends any LK(E)-module M to the “twisted” LK(E)-module Mσc,a ∼= LK(E)σc,a ⊗M . The twisted 
module V σc,a

[c∞] is a simple left LK(E)-module for each 0 �= a ∈ K.
A family of simple LK(E)-modules wider than the one presented in [9] for proper cycles was obtained by 

Ara and Rangaswamy in [7] as follows. Let K be any field, c be any cycle in E, and f(x) ∈ K[x] be a basic 
irreducible polynomial in K[x], i.e., a polynomial which is irreducible in K[x], and for which f(0) = −1. 
Denote by K ′ the field K[x]/〈f(x)〉 and by x the element x + 〈f(x)〉 ∈ K ′.

Definition 3.5. We denote by V f
E,[c∞] the left LK(E)-module obtained from the twisted left LK′(E)-module 

V
σc,x

E,[c∞] by restricting scalars from K ′ to K.

Here is a more precise formulation of V f
E,[c∞]. The K-algebra homomorphism K → K ′ induces a functor 

U from LK′(E)-modules to LK(E)-modules which is the right adjoint of the extension of scalars functor 
− ⊗K K ′ : LK(E)-Mod → LK′(E)-Mod. Then V f

E,[c∞] is defined to be U(V σc,x

E,[c∞]).
In particular, for each 0 �= a ∈ K we may view the previously defined twisted modules in these more 

general terms by noting that

V
σc,a

E,[c∞] = V f
E,[c∞] where f(x) = a−1x− 1.

We will often omit the graph E when it is clear from the context, writing simply V f
[c∞]. If c = w is a sink, 

then

V f
[w∞] = LK(E)w = KPE

w = KPath(E)w

for any basic irreducible polynomial f(x) ∈ K[x].

Remark 3.6. Since any element of K ′ is a K-linear combination of elements of the form xh (0 ≤ h <
deg(f(x))), by Remark 3.4 for any cycle c, the set

PE
c · {xi : 0 ≤ i < deg f(x)} · c∞ = {p · xi · c∞ : p ∈ PE

c , 0 ≤ i < deg f(x)}

is a K-base for the simple left LK(E)-module V f
[c∞].

Definition 3.7. Let c be any sink and f(x) any basic irreducible polynomial in K[x]. Following Ara and 
Rangaswamy [7], we call any simple left LK(E)-module of the form V f

[c∞] a Chen simple module.

Remark 3.8. If c1 is a cycle of length ≥ 2 obtained by “rotating” the cycle c2, then the simple modules 
V f
E,[c∞1 ] and V f

E,[c∞2 ] are isomorphic. If c is a fixed sink, then V f
E,[c∞] = VE,[c∞], for any basic irreducible 

polynomial f(x) ∈ K[x]. Aside from these cases, the Chen simple modules are pairwise non-isomorphic. 
(See [9, Theorem 6.2] and [7, Proposition 3.8].)

Referring to the Fig. 1, a complete list of the simple left LK(E)-modules up to isomorphisms is given by: 
V[w∞] = LK(E)w, V f

[(d1d2d3d4)∞], V
f
[(g1g2g3)∞], and V f

[�∞], for any basic irreducible polynomial f(x) ∈ K[x].
In addition to the Chen simple modules, there is another important (and related) construction of LK(E)-

modules which will be relevant in the sequel. Let E be a finite graph, and c any cycle in E. In [3] the three 
authors constructed the Prüfer LK(E)-module UE,c−1 associated to any proper cycle c in E. The module 
UE,c−1 is an infinite length uniserial artinian LK(E)-module with all composition factors isomorphic to 
V[c∞]. The module UE,c−1 is the direct limit

UE,c−1 := lim−−→ {LK(E)/LK(E)(c− 1)i, ψE,i,j}

i,j≥1
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of the factor modules LK(E)/LK(E)(c − 1)i, with respect to the morphisms

ψE,i,j : LK(E)/LK(E)(c− 1)i → LK(E)/LK(E)(c− 1)j , defined by setting

1 + LK(E)(c− 1)i �→ (c− 1)j

(c− 1)i + LK(E)(c− 1)j ∀1 ≤ i < j.

Denoting by

ψE,i : LK(E)/LK(E)(c− 1)i → UE,c−1

for each i ≥ 1 the induced monomorphism, the Prüfer module UE,c−1 is generated as an LK(E)-module by 
the elements

αc,i := ψE,i(1 + LK(E)(c− 1)i), i ≥ 1.

If c = w is a sink, then αw,i = (−1)i+1αw,1. The Prüfer module corresponding to a sink then becomes

UE,w−1 = V[w∞] = LK(E)w = KPE
w .

Clearly, for any cycle c, LK(E)αc,1 is isomorphic to the simple module V[c∞], and hence it is the socle of 
the module UE,c−1 (it is equal to V[c∞] if c is a sink). In particular V[c∞] is essential in UE,c−1. In general 
we omit reference to the graph E and write simply Uc−1.

We now provide some additional information about the Prüfer LK(E)-module Uc−1 for any cycle c of E. 
Let m ≥ 1. Setting αc,0 = 0, we have

(c− 1)αc,m =
{

0 if c is a sink,
αc,m−1 if c is a proper cycle.

If u ∈ E0 \ {s(c)}, then easily one shows that u = (−1)mu(c − 1)m for each m ≥ 1, so we get uαc,m = 0. 
(As a result, s(c)αc,m = αc,m.)

If c has length 0 and e ∈ E1, or c is a proper cycle and e ∈ E1 \ {e1}, it is also easily shown that 
e∗ = (−1)me∗(c − 1)m for each m ≥ 1. So e∗αc,m = 0 for all m ≥ 1 in this situation as well.

Finally, if c is a proper cycle c = e1e2 · · · en, then for each m ≥ 1, multiplying each side of the equation 
(c − 1)αc,m = αc,m−1 by e∗1 and rearranging terms, we get that e∗1αc,m = e2 · · · enαc,m − e∗1αc,m−1. (We 
interpret e2 · · · en as t = s(c) if n = 1.) Continuing in this way, we iteratively get

e∗1αc,m = e2 · · · en

(
m−1∑
�=0

(−1)�αc,m−�

)
.

Therefore, by the three previous paragraphs, any element of Uc−1 can be written in the form

m∑
j=1

∑
j∈F

kj,γγαc,j

for suitable kj,γ ∈ K and finite subset F ⊆ PE
c . Less formally, we have established that each element of 

Uc−1 can be written as an LK(E)-linear combination of the αc,m in such a way that the LK(E)-coefficients 
do not involve any ghost edges. This observation will play a key role later on.

Analogous to the construction of the simple module V f
[c∞] associated to any proper cycle c and any basic 

irreducible f(x) ∈ K[x], we have
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Definition 3.9. Let E be any finite graph, and K any field. Let c be any cycle, f(x) be any basic irreducible 
polynomial in K[x], and x := x + 〈f(x)〉 ∈ K ′ = K[x]/〈f(x)〉. We define

Uf(c) := U(Uσc,x

c−1 ),

the left LK(E)-module obtained from the twisted LK′(E)-module Uσc,x

E,c−1 via the functor U which restricts 
scalars to K.

Observe that if c = w is a sink, then Definition 3.9 reduces to

Uf(w) = Uw−1 = V[w∞] = LK(E)w = KPE
w .

Remark 3.10. Since for each 0 �= a ∈ K, any automorphism of LK(E) induces an autoequivalence of LK(E)-
Mod, it is clear that for any proper cycle c = e1 · · · en the twisted LK(E)-module Uσc,a

E,c−1 has the same 
submodule structure as UE,c−1. Precisely, Uσc,a

E,c−1 is an infinite length uniserial artinian left LK(E)-module 
with composition factors isomorphic to V σc,a

[c∞] . Moreover, setting

αa
c,m := 1LK(E) ⊗LK(E) αc,m in LK(E)σc,a ⊗LK(E) UE,c−1 ∼= U

σc,a

E,c−1

we have

(a−1c− 1)αa
c,m =

(
(a−1c− 1) � 1LK(E)

)
⊗LK(E) αc,m

= σc,a(a−1c− 1) ⊗LK(E) αc,m

= (c− 1) ⊗LK(E) αc,m

= 1LK(E) ⊗LK(E) (c− 1)αc,m

= αa
c,m−1.

If f(x) ∈ K[x] is basic irreducible and K ′ = K[x]/〈f(x)〉, taking a equal to the invertible element x =
x + 〈f(x)〉 of K ′ we get that

(x−1c− 1)αx
c,m = αx

c,m−1

in the twisted left LK′(E)-module Uσc,x

E,c−1. Multiplying by x on both sides one gets xαx
c,m = cαx

c,m−xαx
c,m−1, 

which iteratively gives

xαx
c,m = cαx

c,m − cαx
c,m−1 + · · · + (−1)m−1cαx

c,1.

In such a way, multiplication of αx
c,m by x yields a linear combination of αx

c,j ’s having coefficients in LK(E). 
Moreover for each edge e �= e1 ∈ E1 we have

e∗xhαx
c,m = xhe∗αx

c,m = xh(1LK(E) ⊗LK(E) e
∗αc,m) = 0,

while when e = e1 we have

e∗1x
hαx

c,m = xhe∗1α
x
c,m = xhe∗1(1LK(E) ⊗LK(E) αc,m)

= xh(1LK(E) ⊗LK(E) e
∗
1αc,m)

= xh(1LK(E) ⊗LK(E) e2 · · · en
m−1∑

(−1)�αc,m−�)

�=0
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=
m−1∑
�=0

(−1)�e2 · · · enxhαx
c,m−�.

The discussion over the previous paragraphs has established the following.

Proposition 3.11. For any sink w, any proper cycle c and any basic irreducible f(x) ∈ K[x] we have the 
following equalities of K-vector spaces

Uw−1 = KPE
wαw,1 = KPE

w and Uf(c) =
⊕
j≥1

deg f(x)−1∑
h=0

KPE
c xhαx

c,j .

Specifically, any element of Uf(c) is a finite sum of elements of the form {kγxhαx
c,j | k ∈ K, γ ∈ PE

c , h ≥
0, j ≥ 1}.

As mentioned previously, the cases of simple LK(E)-modules corresponding to sinks and those corre-
sponding to proper cycles have historically been treated separately in the literature. We believe that there 
is enough commonality to these two types of simples that merits treating them as two cases of the same 
construction. Indeed, this is the case in all of our subsequent results. Thus, as we already said in Defini-
tion 3.1, when we use the word cycle we will mean either a sink, or a proper cycle. Admittedly, however, 
there is a small price of additional notation to pay in order to achieve this single approach.

Definition 3.12. We set

Ic :=
{
N≥1 if c is a proper cycle
{1} if c = w is a sink

degc f(x) :=
{

deg f(x) if c is a proper cycle ,

1 if c = w is a sink.

Moreover, if c = w is a sink, then αx
c,1 := w.

Lemma 3.13. Let c be any cycle in the graph E, and let f(x) ∈ K[x] be basic irreducible. Assume the graph 
E has disjoint cycles. Then in Uf(c) the set

{γxhαx
c,j | γ ∈ PE

c , 0 ≤ h < degc f(x), j ∈ Ic}

is K-linearly independent.

Proof. Assume

∑
j∈F1

degc f(x)−1∑
h=0

∑
γ∈F2

kj,γ,hγx
hαx

c,j = 0

for suitable finite subsets F1 of Ic and F2 of PE
c . Since the cycles are disjoint, we can apply Lemma 2.3 to 

get that the elements in PE
c do not end with any closed path. Therefore, multiplying on the left by any γ∗

(with γ ∈ PE
c ), by Lemma 2.2 we get

∑ ⎛⎝degc f(x)−1∑
kj,γ,hx

h

⎞⎠αx
c,j = 0.
j∈F1 h=0
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Since the set {αx
c,j | j ∈ F1} is linearly independent over the field extension K ′ = K[x]/〈f(x)〉 of K, we 

have that 
∑degc f(x)−1

h=0 kj,γ,hx
h = 0 in K ′ for each 1 ≤ j ≤ m. Since {xh | 0 ≤ h < degc f(x)} is K-linearly 

independent, we get kj,γ,h = 0 for any j ∈ F1 and 0 ≤ h < degc f(x). Because γ was arbitrary, we are 
done. �

As expected, the wider class of modules Uf(c) satisfy properties similar to the specific modules Uc−1.

Proposition 3.14. Let E be a finite graph, K any field, c a proper cycle in E, and f(x) = xg(x) − 1 a basic 
irreducible polynomial in K[x]. The LK(E)-module Uf(c) is an infinite length uniserial artinian module with 
all composition factors isomorphic to V f

[c∞].

Proof. As sets, we have Uf(c) = Ug(x)c−1. It is sufficient to prove that the lattice of LK(E)-submodules of 
Uf(c) is equal to the lattice of LK′(E)-submodules of Ug(x)c−1. Clearly any LK′(E)-submodule of Ug(x)c−1
is also a LK(E)-submodule of Uf(c). Consider now an LK(E)-submodule M of Uf(c). Since, as observed in 
Remark 3.10,

xαx
c,j = cαx

c,j − cαx
c,j−1 + · · · + (−1)j−1cαx

c,1,

we have that xm belongs to M for each m ∈ M . Then M is also a LK′(E)-submodule of Ug(x)c−1. �
We end the section with an observation about the left-module action of LK(E) on Uf(c).

Remark 3.15. Let c be either a sink in E, or c = e1e2 · · · en a cycle in E. Let e ∈ E1 and γ ∈ PE
c for which 

r(e) = s(γ). In general there are two possible interpretations of an expression of the form eγ. One is simply 
the concatenation of the paths e and γ. The other is as e · γ, where we view e ∈ LK(E), γ ∈ Uf(c), and ·
denotes the left LK(E)-action on Uf(c).

If for example e = e1 and γ = e2 · · · en then γ ∈ PE
c , but the concatenation eγ is not in PE

c . So in this 
situation the concatenation eγ is not an element of the form indicated in Proposition 3.11, and the two 
interpretations of eγ differ.

However, consideration of the lengths of paths shows that the situation described in the previous 
paragraph is the only configuration one needs to consider in order to avoid the situation in which the 
concatenation of an edge e with a path γ ∈ PE

c having r(e) = s(γ) yields a path which is not in PE
c . 

Consequently, suppose for example that γ ∈ PE
c for which |γ| ≥ |c|, and let e ∈ E1 with r(e) = s(γ). Then 

the concatenation path eγ is necessarily in PE
c . Thus for an element y of Uf(c) of the form y = kγxhαc,j

with k ∈ K, |γ| ≥ |c| and r(e) = s(γ), the element e · y of Uf(c) is equal to the element k(eγ)αc,j of Uf(c).
A similar observation holds for e∗ where e ∈ E1. Specifically, suppose γ ∈ PE

c has γ = eγ′ for some 
γ′ ∈ Path(E). Then necessarily γ′ ∈ PE

c . So the two possible interpretations of the expressions e∗γ (as 
either the element γ′ of PE

c , or as the element e∗ · γ of Uf(c)) coincide. We note that the only elements of 
the form kγxhαc,j of Uf(c) for which e∗kγxhαc,j �= 0 and γ �= eγ′ must have γ = v = s(c). In this case, 
the iterative version of the expression for e∗1xhαc,m given in Remark 3.10 yields a sum of elements of the 
indicated form, where the lengths of the paths appearing are each equal to |c| − 1.

4. Formal power series built from E

In this section we introduce the key construction by which we will produce the injective envelopes of 
Chen simple modules.

For any cycle c, the set PE
c ⊆ Path(E) is a K-linearly independent set in LK(E) by [2, Corollary 1.5.15].
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Definition 4.1. We denote by K[[PE
c ]] the K-vector space of all mappings from PE

c to K. Any element p in 
K[[PE

c ]] can be represented as a “PE
c -formal series”

p =
∑

μ∈PE
c

p(μ) · μ.

If p(μ) �= 0 only for a finite number of μ ∈ PE
c , then p belongs to the K vector space KPE

c generated by 
PE
c . Otherwise p is called a proper PE

c -formal series.

Definition 4.2. Let E be any finite graph, c a cycle in E, K any field, and f(x) a basic irreducible polynomial 
in K[x]. We define the K-vector space Ûf(c) by setting

Ûf(c) :=
⊕
j∈Ic

degc f(x)−1∑
h=0

K[[PE
c ]]xhαx

c,j .

Clearly Ûf(c) is an enlarged version of the Prüfer module

Uf(c) =
⊕
j∈Ic

degc f(x)−1∑
h=0

KPE
c xhαx

c,j .

Proposition 4.3. The K-vector space Ûf(c) is a left LK(E)-module.

Proof. The set of paths PE
c is a disjoint union

{μ ∈ PE
c : |μ| ≤ |c|} 
 {μ ∈ PE

c : |μ| = |c| + 1} 
 {μ ∈ PE
c : |μ| ≥ |c| + 2},

which we denote respectively by PE
≤|c|, PE

=|c|+1, and PE
≥|c|+2. This disjoint union induces a K-vector space 

decomposition Ûf(c) = A ⊕B ⊕ C, where

A :=
⊕
j∈Ic

degc f(x)−1∑
h=0

KPE
≤|c|x

hαx
c,j , B :=

⊕
j∈Ic

degc f(x)−1∑
h=0

KPE
=|c|+1x

hαx
c,j ,

and C :=
⊕
j∈Ic

degc f(x)−1∑
h=0

KPE
≥|c|+2x

hαx
c,j .

We note that A ⊕B ⊆ Uf(c). Additionally, for μ ∈ PE
=|c|+1 
PE

≥|c|+2 := PE
≥|c|+1 and e ∈ E1 we have either 

eμ = 0 or, having r(e) = s(μ), eμ ∈ PE
c , more specifically, eμ ∈ PE

≥|c|+2.
So each element of Ûf(c) is a finite sum of elements of the form

∑
μh,j∈PE

c

p(μh,j)μh,jx
hαx

c,j ∈ A⊕B ⊕ C, written as

∑
μh,j∈PE

≤|c|

p(μh,j)μh,jx
hαx

c,j +
∑

μh,j∈PE
=|c|+1

p(μh,j)μh,jx
hαx

c,j +
∑

μh,j∈PE
≥|c|+2

p(μh,j)μh,jx
hαx

c,j

where 0 ≤ h < deg f(x), j ∈ Fh,c for some finite subset Fh,c of Ic, and p(μh,j) ∈ K for all μh,j ∈ PE
c .
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For v ∈ E0 we define Pv : Ûf(c) → Ûf(c) by setting

Pv

⎛⎝ ∑
μh,j∈PE

c

p(μh,j)μh,jx
hαx

c,j

⎞⎠ =
∑

μh,j∈PE
c

s(μh,j)=v

p(μh,j)μh,jx
hαx

c,j .

Let · denote the left LK(E)-action on Uf(c), and let ι denote the inclusion map from Uf(c) to Ûf(c).
For e ∈ E1 we define Se : Ûf(c) → Ûf(c) as follows. We define two maps: first, Se,A⊕B : A ⊕ B → Ûf(c)

by setting

Se,A⊕B(a + b) = ι(e · (a + b)),

and second, Se,B⊕C : B ⊕ C → Ûf(c) by setting

Se,B⊕C

⎛⎜⎝ ∑
μh,j∈PE

≥|c|+1

p(μh,j)μh,jx
hαx

c,j

⎞⎟⎠ =
∑

μh,j∈PE
≥|c|+1

r(e)=s(μh,j)

p(μh,j)eμh,jx
hαx

c,j .

By Remark 3.15, Se,A⊕B and Se,B⊕C coincide on B. So taken together these two maps yield Se : Ûf(c) →
Ûf(c). We note that Se(A) ⊆ A ⊕B and Se(B ⊕ C) ⊆ C.

For f ∈ E1 we define Sf∗ : Ûf(c) → Ûf(c) as follows. Let PE
c (f) denote {μ ∈ PE

c | μ = fμ′} for some 
μ′ ∈ Path(E); note that in this case necessarily μ′ ∈ PE

c . We define two maps: first, Sf∗,A⊕B : A ⊕B → Ûf(c)
by setting

Sf∗,A⊕B(a + b) = ι(f∗ · (a + b)),

and second, Sf∗,B⊕C : B ⊕ C → Ûf(c) by setting

Sf∗,B⊕C

⎛⎜⎝ ∑
μh,j∈PE

≥|c|+1

p(μh,j)μh,jx
hαx

c,j

⎞⎟⎠ =
∑

μh,j∈PE
≥|c|+1(f)

μh,j=fμ′
h,j

p(μh,j)μ′
h,jx

hαx
c,j .

Again using Remark 3.15, Sf∗,A⊕B and Sf∗,B⊕C coincide on B. So taken together these two maps yield 
Sf∗ : Ûf(c) → Ûf(c). We note that Sf∗(A ⊕B) ⊆ A.

Claim: The subset {Pv, Se, Se∗ | v ∈ E0, e ∈ E1} forms a Cuntz Krieger E-family in EndK(Ûf(c)).
Proof of Claim: We suppress the composition operator ◦ in the following equations; δ denotes the Kro-

necker delta. By definition it must be checked that:

(1) PvPw = δv,wPv for all v, w ∈ E0;
(2) Ps(e)Se = Se = SePr(e) for all e ∈ E1;
(3) Pr(e)Se∗ = Se∗ = Se∗Ps(e) for all e ∈ E1;
(4) Sf∗Se = δe,fPr(e) for all e, f ∈ E1; and
(5)

∑
e∈s−1(v) SeSe∗ = Pv for all non-sink v ∈ E0.

Statements (1), (2), and (3) are straightforward to check. We give now the key details of the verification 
of statement (4). We use the decomposition of Ûf(c) given at the start of the proof of the proposition.
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Proof of (4). Let a ∈ A. Recall that Se(a) ∈ A ⊕B. Then

Sf∗Se(a) = Sf∗(e · a) = Sf∗,A⊕B(e · a) = f∗ · (e · a)

= (f∗e) · a = δe,fr(e) · a = δe,fPr(e)(a),

so that Sf∗Se = δe,fPr(e) on A.
Now let y ∈ B ⊕ C. Then y is a finite sum of terms of the form 

∑
μh,j∈PE

≥|c|+1
p(μh,j)μh,jx

hαx
c,j , where 

0 ≤ h < deg f(x), j ∈ Fh,c where Fh,c is some finite subset of Ic, and p(μh,j) ∈ K for all μh,j ∈ PE
≥|c|+1. 

Recall that Se(y) ∈ C. Then

Se(y) = Se,B⊕C(y) = Se,B⊕C

⎛⎜⎝ ∑
μh,j∈PE

≥|c|+1

p(μh,j)μh,jx
hαx

c,j

⎞⎟⎠
=

∑
μh,j∈PE

≥|c|+1
r(e)=s(μh,j)

p(μh,j)eμh,jx
hαx

c,j .

If f �= e, then {eμh,j | r(e) = s(μh,j)} ∩ PE
≥|c|+1(f) = ∅ by definition, so that

Sf∗(Se(y)) = Sf∗,B⊕C

⎛⎜⎜⎜⎝ ∑
μh,j∈PE

≥|c|+1
r(e)=s(μh,j)

p(μh,j)eμh,jx
hαx

c,j

⎞⎟⎟⎟⎠ = 0.

On the other hand, since Se(y) ∈ C, we have

Se∗(Se(y)) = Se∗,B⊕C

⎛⎜⎜⎜⎝ ∑
μh,j∈PE

≥|c|+1
r(e)=s(μh,j)

p(μh,j)eμh,jx
hαx

c,j

⎞⎟⎟⎟⎠
=

∑
μh,j∈PE

≥|c|+1
r(e)=s(μh,j)

p(μh,j)μh,jx
hαx

c,j = Pr(e)(y).

Thus we have that Sf∗Se = δe,fPr(e) on B ⊕C as well. We conclude that Sf∗Se = δe,fPr(e) on all of Ûf(c), 
as desired.

Proof of (5). This follows in a manner similar to the proof of (4), and is left to the reader. The key 
observation here is that for each non-sink v ∈ E0 we have {μ ∈ PE

c | s(μ) = v} = 
e∈s−1(v) PE
c (e). (Less 

formally: every path in E having source vertex v must have as its first edge one of the finitely many elements 
of s−1(v).)

With the Claim established, we invoke the universal property of LK(E) to conclude there exists a K-
algebra homomorphism

Φ : LK(E) → EndK(Ûf(c))

for which Φ(v) = Pv, Φ(e) = Se, and Φ(e∗) = Se∗ for all v ∈ E0, e ∈ E1.
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Since every path in E has source vertex in E0, it is clear that 1EndK(Ûf(c)) =
∑

v∈E0 Pv. Thus Φ(1LK(E)) =
Φ(

∑
v∈E0 v) = 1EndK(Ûf(c)).

With the above discussion and computations in hand, by a standard ring-theory argument we conclude 
that Ûf(c) admits a left LK(E)-module action (which we appropriately denote by ·) by setting

r · u = Φ(r)(u)

for all r ∈ LK(E) and all u ∈ Ûf(c). Finally, by again using Remark 3.15, we have that this LK(E)-action 
on Ûf(c) extends the LK(E)-action on Uf(c), i.e., that Uf(c) is an LK(E)-submodule of Ûf(c). �

Referring to the Fig. 1, the modules Ûw−1, Ûf(g1g2g3), and Ûf(�) contain proper formal series (and thus 
properly contain Uw−1, Uf(g1g2g3), and Uf(�), respectively). On the other hand, Ûf(d1d2d3d4) = Uf(d1d2d3d4).

Modules of the form Ûf(c) will play a central role in our analysis, as these will be shown to be the injective 
envelopes of the Chen simple modules of the form V f

[c∞]. We first check that Ûf(c) is an essential extension 

of V f
[c∞].

Proposition 4.4. Let E be a finite graph with disjoint cycles. For any cycle c, the simple left LK(E)-module 
V f

[c∞] is essential in Ûf(c).

Proof. We establish that Uf(c) is essential in Ûf(c); the result will then follow directly from Proposition 3.14, 
which in particular implies that V f

[c∞] is essential in Uf(c).
By definition, any element in Ûf(c) is of the form

∑
j∈F1

degc f(x)−1∑
h=0

⎛⎝ ∑
γ∈PE

c

kj,γ,hγ

⎞⎠xhαx
c,j

for a suitable (finite) subset F1 of Ic. Assume this element is not equal to zero. Then there exist j0 ∈ F1, 
γ0 ∈ PE

c , and 0 ≤ h0 < degc f(x) such that kj0,γ0,h0 �= 0. By Remark 3.3, the paths in PE
c do not end in 

any closed path. So by Lemma 2.2 we have

γ∗
0
∑
j∈F1

degc f(x)−1∑
h=0

∑
γ∈PE

c

kj,γγx
hαx

c,j =
∑
j∈F1

degc f(x)−1∑
h=0

kj,γ0,hx
hαx

c,j .

The latter is a nonzero element in Uf(c) since by Lemma 3.13 the set {xhαx
c,j | j ∈ F1, 0 ≤ h < degc f(x)}

is K-linearly independent, and kj0,γ0,h0 �= 0. �
5. The main result

The aim of this paper is to explicitly construct the injective envelope of all simple modules over any 
Leavitt path algebra LK(E) associated to a finite graph E with disjoint cycles. A first important step has 
already been established. Using a number of powerful tools (e.g., pure injectivity, and the Bézout property 
of Leavitt path algebras), the three authors proved the following.

Theorem 5.1. [3, Theorem 6.4] Let E be any finite graph, and let c be a proper cycle in E. Then the Prüfer 
module UE,c−1 is injective if and only if c is a maximal cycle (i.e., there are no cycles in E other than cyclic 
shifts of c which connect to s(c)).
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Referring to the Fig. 1, UE,c−1 is injective if and only if c = d1d2d3d4.
With Theorem 5.1 and the results established in the previous sections in hand, we are now in position 

to state the main theorem of the article.

Theorem 5.2. Let K be any field, and let E be any finite graph with disjoint cycles. Let c be a cycle in E, 
and let f(x) ∈ K[x] be a basic irreducible polynomial in K[x]. Then the injective envelope of V f

[c∞] is the 

left LK(E)-module Ûf(c).
In particular, if c = w is a sink, then the injective envelope of V[w∞] = LK(E)w is the left LK(E)-module 

Ûw−1 = K[[E]]w.

Observe that for a proper cycle c, PE
c is finite if and only if c is a maximal cycle. In such a situation we 

get Uf(c) = Ûf(c). Thus Theorem 5.2 may be viewed as a significant extension of Theorem 5.1 for graphs 
with disjoint cycles, as it provides the injective envelopes of simples associated to all sinks, and to all cycles 
(not only the maximal ones) together with appropriate irreducible polynomials of K[x].

Remark 5.3. As mentioned in the Introduction, by [7, Theorem 1.1], when E has disjoint cycles then the Chen 
simple modules represent all the simple LK(E)-modules. So, once the proof of Theorem 5.2 is completed, 
we will get as a consequence an explicit description of an injective cogenerator for LK(E)-Mod, namely, the 
direct product of the injective envelopes of all the simple modules.

We will present the proof of Theorem 5.2 below. Here is an overview of how we will proceed. In Proposi-
tion 4.4 we have already checked that V f

[c∞] is an essential submodule of Ûf(c). In Proposition 5.4 we reduce 

the task of proving the injectivity of Ûf(c) for any basic irreducible f(x) ∈ K[x] to the specific polynomial 
f(x) = x −1. To do so, we will use that Ûf(c) is obtained from the left LK′(E)-module Ûx−1c−1 by applying 
the functor U which restricts the scalars from K ′ to K.

Then, to prove the injectivity of Ûc−1, for any cycle c in E, we reduce first to connected graphs, then 
reduce to graphs which contain no source vertices, and finally reduce to graphs in which every source cycle 
is a loop.

After these four reductions, the core of the proof is based on an induction argument on the number of 
cycles in the graph E. It is here that the main ideas come to light.

Proposition 5.4. Let c be a proper cycle in E and f(x) ∈ K[x] a basic irreducible polynomial. Denote by 
K ′ the field K[x]/〈f(x)〉. If Ûc−1 is an injective left LK′(E)-module, then Ûf(c) is an injective left LK(E)-
module.

Proof. Given 0 �= a ∈ K, we first consider the case f(x) = a−1x −1. In this situation, since deg(f(x)) = 1 we 
get K = K ′. Then Ûf(c) is the LK(E)-module Ûa−1c−1, which is the twisted version of the LK(E)-module 
Ûc−1. Since twisting is an autoequivalence of LK(E)-Mod, Ûa−1c−1 is injective.

If f(x) is a basic irreducible polynomial of degree > 1, writing f(x) = xg(x) − 1 we get from the 
previous paragraph that Ûg(x)c−1 is an injective left LK′(E)-module. Now consider the left LK(E)-module 

Ûf(c) = U
(
Ûg(x)c−1

)
. By [14, Lemma 12.29.1], since U is right adjoint to

−⊗K K ′ : LK(E)-Mod → LK′(E)-Mod,

and the latter is exact, U transforms injectives into injectives. �
The next three lemmas will permit us to reduce our study to connected graphs having no source vertices 

and in which the source cycles are loops.
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Lemma 5.5. Let E be a finite graph and Ei, i = 1, 2, ..., m, its connected components. The Leavitt path 
algebra associated to E decomposes as the direct sum of two-sided ideals, each of which is the Leavitt path 
algebra associated to a connected component of E:

LK(E) =
m⊕
i=1

LK(Ei).

For any cycle c in E1, we have

ÛE,c−1 = ÛE1,c−1.

Moreover, let J be an ideal of LK(E) and ρ1 be the sum of all vertices in E1. We have J = ρ1J ⊕ (1 − ρ1)J
and ϕ ((1 − ρ1)J) = 0 for each morphism ϕ : J → ÛE,c−1 = ÛE1,c−1.

Proof. For the decomposition LK(E) =
⊕m

i=1 LK(Ei) see [2, Proposition 1.2.14]. Clearly PE
c = PE1

c . 
Therefore we get ÛE,c−1 = ÛE1,c−1. Finally, for any

ϕ : J → ÛE,c−1 = ÛE1,c−1

we have

ϕ ((1 − ρ1)J) = (1 − ρ1)ϕ(J) ⊆ (1 − ρ1)ÛE1,c−1.

Since (1 − ρ1)PE1
c = 0 we get ϕ ((1 − ρ1)J) = 0. �

The reduction to graphs having no source vertices and in which the source cycles are loops will be 
achieved using relatively standard equivalence functors between categories of modules over Leavitt path 
algebras associated to general graphs, and categories of modules over Leavitt path algebras associated to 
graphs having no source vertices and all source cycles being loops. Of course such equivalences will preserve 
various homological properties, including injectivity.

However, we need more. The modules ÛE,c−1 are built in a specific way from the data corresponding to 
the graph E and cycle c. So if, for example, F is a subgraph of E (or F is otherwise built from E) which 
contains the cycle c, and if T : LK(F )-Mod → LK(E)-Mod is an equivalence of categories, and if ÛF,c−1 has 
been shown to be injective as an LK(F )-module, then certainly T (ÛF,c−1) is an injective LK(E)-module. 
But it is not at all immediate from purely categorical considerations that

T (ÛF,c−1) ∼= ÛE,c−1.

Fortunately, the displayed isomorphism does indeed hold for each of the equivalence functors that we will 
utilise.

Lemma 5.6. Let E be a finite graph with disjoint cycles, and u a source vertex in E (see Fig. 2). Let H
denote the hereditary subset E0 \ {u} of E0. Setting ε =

∑
u∈E0,u �=u u, there is a Morita equivalence

LK(E)-Mod
εLK(E)⊗LK (E)−

LK(EH)-Mod = εLK(E)ε-Mod
LK(E)ε⊗εLK (E)ε−

.

Moreover, for any cycle c of E, necessarily c is in EH , and we have

ÛE,c−1 ∼= LK(E)ε⊗εLK(E)ε ÛEH ,c−1.
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Fig. 2. Eliminating source vertices.

Proof. That the indicated functors give a Morita equivalence has been proved in [7, Lemma 4.3]. Let c be 
a cycle in E. So

PE
c = εPE

c ∪ uPE
c = PEH

c ∪ uPE
c .

Any element γ in uPE
c has the form γ = γ1εγ2 · · · γ�, where s(γ1) = u and r(γ1) ∈ H. The map

KPE
c αc,j → LK(E)ε⊗εLK(E)ε KεPE

c αc,j = LK(E)ε⊗εLK(E)ε KPEH
c αc,j

defined by γαc,j �→ ε ⊗γαc,j for each γ ∈ εPE
c , and γαc,j �→ γ1⊗γ2 · · · γ�αc,j for each γ = γ1εγ2 · · · γ� ∈ uPE

c , 
induces an isomorphism

ÛE,c−1 LK(E)ε⊗εLK(E)ε ÛEH ,c−1

⊕
j∈Ic K[[PE

c ]]αc,j LK(E)ε⊗εLK(E)ε

(⊕
j∈Ic K[[PEH

c ]]αc,j

)
(where the direct sums are as K-vector spaces), thus establishing the result. �

Assume now that E contains a source cycle d = d1 · · · dr which is not a loop. By [7, Lemma 4.4] a finite 
graph FE,d can be constructed from E in which the cycle d (and all its vertices) is replaced by a loop 
in such a way that LK(E) and LK(FE,d) are Morita equivalent. More precisely, let d0 denote the set of 
vertices {s(d1), . . . , s(dr)}, and define F 0

E,d = {v} ∪ (E0 \ d0) where v is a new vertex. Then to define F 1
E,d, 

we first set s−1
FE,d

(u) = s−1
E (u) for each u ∈ E0 \ d0; for each edge f with s(f) ∈ d0 and r(f) ∈ E0 \ d0, 

define an edge ϕ(f) with sFE,d
(ϕ(f)) = v and rFE,d

(ϕ(f)) = rE(f). Finally, we define a loop d′ at v so that 
sFE,d

(d′) = v = rFE,d
(d′). Observe that there are no edges connecting any pair of vertices in d0 other than 

the edges d1,..., dr.

Lemma 5.7. Let d = d1 · · · dr be a source cycle in the graph E with r ≥ 2. Let FE,d be the graph described 
in the previous paragraph, in which d is replaced by the loop d′. Then there are inverse equivalence functors

LK(E)-Mod
G1

LK(FE,d)-Mod
G2

.

Moreover, ÛE,c−1 ∼= G2

(
ÛFE,d,c−1

)
for any cycle c in E.

Proof. We describe how the functors G1 and G2 work. (The details are given in [7, Lemma 4.4].) Consider 
the map θ : LK(FE,d) → LK(E) defined on vertices by:

θ(u) = u for u ∈ F 0
E,d \ {v};
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θ(v) = sE(d);

and defined on edges by:

θ(e) = e for e having sFE,d
(e) ∈ F 0

E,d \ {v};
θ(ϕ(f)) = d1 · · · di−1f for f having sE(f) = s(di) and rE(f) ∈ E0 \ d0;
θ(d′) = d = d1 · · · dr.

By [7, Lemma 4.4] the map θ extends to a well-defined K-algebra isomorphism

θ : LK(FE,d) → ωLK(E)ω,

where ω := s(d1) +
∑

u∈E0\d0 u. We denote by θ̂ the induced natural isomorphism of categories

θ̂ : LK(FE,d)-Mod → ωLK(E)ω-Mod.

The ring ωLK(E)ω is easily seen to be a full corner of LK(E) and so is Morita equivalent to LK(E). The 
functors G1 and G2 which realise the Morita equivalence between LK(E)-Mod and LK(FE,d)-Mod are given 
by the following compositions

LK(E)-Mod
ωLK(E)⊗LK (E)−

ωLK(E)ω-Mod
θ̂−1

LK(E)ω⊗ωLK (E)ω−
LK(FE,d)-Mod

θ̂

.

Now let c be a cycle in E (possibly equal to d). Then

PE
c = ωPE

c ∪ (1 − ω)PE
c .

The map

UE,c−1 =
⊕
j∈Ic

KPE
c αc,j → LK(E)ω ⊗ωLK(E)ω

⎛⎝⊕
j∈Ic

KωPE
c αc,j

⎞⎠
defined by

ραc,j �→ ω ⊗ ραc,j for each ρ ∈ ωPE
c

and by

s(di)pαc,j �→ d∗i−1 · · · d∗1 ⊗ d1 · · · di−1s(di)pαc,j for each s(di)p ∈ (1 − ω)PE
c

extends to an isomorphism

ÛE,c−1 =
⊕
j∈Ic

K[[PE
c ]]αc,j → LK(E)ω ⊗ωLK(E)ω

⎛⎝⊕
j∈Ic

K[[ωPE
c ]]αc,j

⎞⎠ .

Since θ(PFE,d
c ) = ωPE

c , we have θ̂(ÛFE,d,c−1) ∼=
⊕

j∈Ic K[[ωPE
c ]]αc,j , and hence

G2

(
ÛFE,d,c−1

)
= LK(E)ω ⊗ωLK(E)ω θ̂(ÛFE,d,c−1) ∼= ÛE,c−1,

as desired. �
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In the following example we clarify in a concrete situation how the isomorphisms described in Lemma 5.7
work.

Example 5.8. Let E′ be the graph
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the graph in which the cycle d1d2d3d4 is substituted by the loop d′. Denote by ω the idempotent s1 +∑
u∈E′0\d0 u of LK(E′), and by c either one of the cycles g1g2g3 and �, or the sink w. In the isomorphism

ÛE′,c−1 ∼= LK(E′)ω ⊗ωLK(E′)ω θ̂(ÛFE′,d,c−1),

for any j ∈ Ic the element

∞∑
i=0

d4d
id1bγiαc,j

of ÛE′,c−1 corresponds to the element

d∗3d
∗
2d

∗
1 ⊗

∞∑
i=0

θ
(
(d′)i+1ϕ(b)γi

)
αc,j = d∗3d

∗
2d

∗
1 ⊗

∞∑
i=0

di+1d1bγiαc,j

of LK(E′)ω ⊗ωLK(E′)ω

(⊕
j≥1 K[[ωPE′

c ]]αc,j

)
.

We are now ready to give the

Proof of Theorem 5.2. Recall that we consider any sink w ∈ E0 as a cycle of length 0.
The essentiality of V f

[c∞] in Ûf(c) has been shown in Proposition 4.4. So we need only demonstrate that 
Ûf(c) is injective for each cycle c and each basic irreducible polynomial f(x) ∈ K[x].

Given any cycle c, by Lemma 5.5 we can establish the injectivity of Ûf(c) in the Leavitt path algebra 
associated to the connected component containing c. By Lemmas 5.6 and 5.7, we can assume that the 
connected component containing c has no source vertices, and that all its source cycles are source loops. 
Moreover by Proposition 5.4, it suffices to show the result in the case f(x) = x − 1, and hence we may 
assume Ûf(c) = Ûc−1.

We proceed by induction on the number N of cycles in the connected component of E containing the 
cycle c. We continue to call this connected component E.
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Fig. 3. Graph with disjoint cycles, without source vertices, whose source cycle is a loop.

If N = 0, then by the reduction assumptions the graph E has one vertex and no edges. So LK(E) ∼= K, 
and therefore all left LK(E)-modules are injective.

If N = 1, either E consists of one vertex u and one loop at u or, invoking Remark 2.4 and the assumption 
that N = 1 the graph E contains a source loop τ and at least two vertices. In the first case by Theorem 5.1
we conclude that Uc−1 = Ûc−1 is injective. In the second case, since τ is a maximal cycle, by Theorem 5.1
the Prüfer module UE,τ−1 = ÛE,τ−1 is injective.

Now let N > 1. If τ is a maximal cycle, then again by Theorem 5.1 the Prüfer module UE,τ−1 = ÛE,τ−1
is injective. So we have to prove that ÛE,c−1 is injective for any non-maximal cycle c. Denote s(τ) by t. 
Denote by I the two sided ideal of LK(E) generated by the hereditary set of vertices H = E0 \ {t}, and by 
ρ ∈ I the idempotent 

∑
u∈H u= 1LK(E) − t. Moreover, let s−1(t) = {ε1, ..., εn} (see, e.g., Fig. 3).

By Proposition 2.1, I is isomorphic to a Leavitt path algebra, and there is an equivalence between the 
category I-Mod of (unitary) I-modules and the category ρLK(E)ρ-Mod= ρIρ-Mod, induced by the functors

ρI ⊗I − : I-Mod → ρLK(E)ρ-Mod and

Iρ⊗ρLK(E)ρ − : ρLK(E)ρ-Mod → I-Mod.

Moreover, the K-algebra ρLK(E)ρ is isomorphic to the Leavitt path K-algebra LK(EH).
Now let c be any cycle in E, c �= τ . Then c lives also in EH . Since each of the connected components of 

the graph EH (there might be more than one such component) has fewer cycles than does E, we can apply 
the inductive hypothesis to conclude that ÛEH ,c−1 is an injective LK(EH)-module.

We prove that ÛE,c−1 is injective in LK(E)-Mod. To do so we use the version of Baer’s Criterion presented 
in Lemma 1.2, with respect to the ideal I.

So first, let J be a left ideal of LK(E) contained in I. Since I has local units, we have IJ = J and hence 
J belongs to I-Mod. Consider an arbitrary LK(E)-homomorphism

ϕ : J → ÛE,c−1.

Since IJ = J , ϕ factors through

ϕ : J → IÛE,c−1.

We show that it is possible to extend ϕ to I. Clearly IÛE,c−1 is also a left I-module and ϕ is an I-linear 
map. Applying the functor ρI ⊗I − we get the ρLK(E)ρ-homomorphism

ρI ⊗I ϕ : ρI ⊗I J → ρI ⊗I IÛE,c−1.

Claim: ρI ⊗I IÛE,c−1 ∼= ÛEH ,c−1 as left ρLK(E)ρ ∼= LK(EH)-modules. Proof. Any element in ρI ⊗I

IÛE,c−1 is of the form ρι1 ⊗ ι2z where ι1, ι2 ∈ I and z ∈ ÛE,c−1. Denoting by ι the product ι1ι2 we have

ρι1 ⊗ ι2z = ρ2ι1 ⊗ ι2z = ρ⊗ ρι1ι2z = ρ⊗ ριz,
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and ριz has the form

∑
j∈F1

∑
γ∈PEH

c

kj,γριγαc,j +
∑
j∈F2

∑
γ∈PEH

c

n∑
y=1

∞∑
x=0

kj,γ,x,yριτ
xεyγαc,j .

We establish now the key point, which is that if ι ∈ I and z ∈ IÛE,c−1 then ριz ∈ ÛEH ,c−1. Note that for 
each μ ∈ PE

c we have

ρμ =
{
μ if μ is a path in PEH

c ,

0 if s(μ) = t.

Separating the paths in PE
c starting from the vertex t and those starting from a vertex in H, any element 

z of ÛE,c−1 has the form (see, e.g., Fig. 3)

z =
∑
j∈F1

∑
γ∈PEH

c

kj,γγαc,j +
∑
j∈F2

∑
γ∈PEH

c

n∑
y=1

∞∑
x=0

kj,γ,x,yτ
xεyγαc,j

for suitable finite subsets F1 and F2 of Ic and kj,γ , kj,γ,x,y ∈ K. Then

ριz =
∑
j∈F1

∑
γ∈PEH

c

kj,γριγαc,j +
∑
j∈F2

∑
γ∈PEH

c

n∑
y=1

∞∑
x=0

kj,γ,x,yριτ
xεyγαc,j .

The left hand double summand is an element of ÛEH ,c−1. In the right hand quadruple summand consider 
each ριτxεyγαc,j . The term ρι is a linear combination of monomials in LK(E) starting from vertices in H, 
and γ is an element of PEH

c . In the linear combination of monomials ρι, let ρι′x,yε∗y(τ∗)x be the sub-linear 
combination of those monomials ending with ε∗y(τ∗)x. Since ι is fixed, we have ι′x,y �= 0 for a finite number 
of (x, y) ∈ N × {1, ..., n}, and, in particular, ι′x,y = 0 for x greater than a suitable � ∈ N. Therefore

∑
j∈F2

∑
γ∈PEH

c

n∑
y=1

∞∑
x=0

kj,γ,x,yριτ
xεyγαc,j =

∑
j∈F2

∑
γ∈PEH

c

n∑
y=1

�∑
x=0

kj,γ,x,yρι
′
x,yργαc,j ,

which is an element of ÛEH ,c−1. Thus ριz ∈ ÛEH ,c−1 as desired.
Now consider the map (ρι1, ι2z) �→ ρι1ι2z where ι1, ι2 ∈ I and z ∈ ÛE,c−1. Clearly this is an I-balanced 

linear map, which with the previously established key point yields a left ρLK(E)ρ-module map ψ : ρI ⊗I

IÛE,c−1 → ÛEH ,c−1. But by the induction hypothesis, since EH has fewer cycles than does E, ÛEH ,c−1 is 
an injective module over the ring ρIρ = ρLK(E)ρ ∼= LK(EH).

Since J ≤ I and IJ = J , applying the exact functor ρI ⊗I − we get the solid part of the following 
commutative diagram of left ρLK(E)ρ-modules:

0 ρI ⊗I J

ρI⊗ϕ

ρI ⊗I I

ψ

ρI ⊗I IÛE,c−1 ∼= ÛEH ,c−1

.

The existence of the dashed arrow ψ follows by the injectivity of ÛEH ,c−1 in ρLK(E)ρ-Mod established 
above. Applying the equivalence functor Iρ ⊗ρLK(E)ρ −, we get the following commutative diagram of 
I-modules:



G. Abrams et al. / Journal of Pure and Applied Algebra 228 (2024) 107646 25
Iρ⊗ρLK(E)ρ (ρI ⊗I J) ∼= J

Iρ⊗(ρI⊗ϕ)∼=ϕ

Iρ⊗ρLK(E)ρ (ρI ⊗I I) ∼= I

ψ

Iρ⊗ρLK(E)ρ (ρI ⊗I IÛE,c−1) ∼= IÛE,c−1

Moreover, the I-linear map ψ is in fact LK(E)-linear. Indeed, since I has local units, for each ι ∈ I there 
exists ζ ∈ I such that ζι = ι. Then for each λ ∈ LK(E), since λζ belongs to I, we have

ψ(λι) = ψ((λζ)ι) = (λζ)ψ(ι) = λ · ψ(ζι) = λ · ψ(ι).

Composing ψ with the inclusion of IÛE,c−1 inside ÛE,c−1 we get the desired extension of ϕ. This completes 
the first step of the application of Baer’s Criterion Lemma 1.2.

To complete the second step required to apply Lemma 1.2, we have to prove that any morphism of 
left LK(E)-modules from a left ideal J ′ containing I extends to LK(E). As before, we denote s−1(t) by 
{τ, ε1, ..., εn}.

We first assume J ′ = I. Let

χ : I → ÛE,c−1

be a morphism of LK(E)-modules. We have to extend χ to a morphism χ̂ : LK(E) = I+LK(E)t → ÛE,c−1. 
The elements of the intersection I ∩ LK(E)t have the following form:∑

i,j

�i,j(εi)∗(τ∗)j with �i,j ∈ LK(E).

In particular the restriction of χ to I∩LK(E)t is determined by χ
(
(εi)∗(τ∗)j

)
, i ∈ {1, ..., n}, j ∈ N. Observe 

that

zi,j := χ
(
(εi)∗(τ∗)j

)
= χ

(
ρ(εi)∗(τ∗)j

)
= ρχ

(
(εi)∗(τ∗)j

)
∈ ρÛE,c−1.

Setting

t �→
∞∑
i=0

n∑
j=1

tτ iεjzi,j =
∞∑
i=0

n∑
j=1

τ iεjzi,j ,

we define a map χ : LK(E)t → ÛE,c−1 whose restriction to I ∩ LK(E)t coincides with χ. Specifically,

χ
(
(εi0)∗(τ∗)j0

)
= χ

(
(εi0)∗(τ∗)j0t

)
=

(
(εi0)∗(τ∗)j0

)
χ(t)

=
(
(εi0)∗(τ∗)j0

) ∞∑
i=0

n∑
j=1

τ iεjzi,j = zi0,j0 .

Thus we can define

χ̂ : I + LK(E)t = LK(E) → ÛE,c−1

by setting χ̂(ι + λt) := χ(ι) + χ(λt). This completes the verification of the second step, in the specific case 
J ′ = I.
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Assume now J ′ is a left ideal of LK(E) properly containing I. By Proposition 2.1, J ′ is equal to LK(E)p(τ)
for a suitable polynomial p(x) ∈ K[x] with p(0) = 1. Consider a map θ : J ′ = LK(E)p(τ) → ÛE,c−1.

Denote by P (x) the formal series in K[[x]] such that p(x)P (x) = 1, and write P (x) =
∑∞

i=0 hix
i. As 

observed previously, any element z of ÛE,c−1 has the form

z =
∑
j∈F1

∑
γ∈ρPE

c

kj,γγαc,j +
∑
j∈F2

∑
γ∈ρPE

c

n∑
y=1

∞∑
x=0

kj,γ,x,yτ
xεyγαc,j .

Therefore

P (τ)z =
( ∞∑
i=0

hiτ
i
)
z =

=
∞∑
i=0

∑
j∈F1

∑
γ∈ρPE

c

kikj,γτ
iγαc,j +

∞∑
i=0

∑
j∈F2

∑
γ∈ρPE

c

n∑
y=1

∞∑
x=0

kikj,γ,x,yτ
x+iεyγαc,j

is again an element of ÛE,c−1.
Setting π(1) = P (τ)θ(p(τ)) we get a map π : LK(E) → ÛE,c−1 which extends θ. This completes the 

verification of the second step, in the case I � J ′.

Therefore, by Lemma 1.2, we conclude that ÛE,c−1 is an injective LK(E)-module, thereby completing 
the proof of Theorem 5.2. �
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