
Towards a foundation of completion procedures as semidecision

procedures

Maria Paola Bonacina

Department of Computer Science

University of Iowa

Iowa City, IA 52242-1419, USA

Jieh Hsiang

Department of Computer Science

National Taiwan University

Taipei, Taiwan

“[Imam al-Mamun] has encouraged me to compose a short

work on calculating by Completion and Reduction, . . . ”

(al-Khwārizmī, The Compendious Book on Calculation

by al-jabr and al-muqabala, IX century)

Abstract

Completion procedures, originated from the seminal work of Knuth and Bendix, are well-

known as procedures for generating confluent rewrite systems, i.e. decision procedures for

equational theories. In this paper we present a new abstract framework for the utilization of

completion procedures as semidecision procedures for theorem proving. The key idea in our

approach is that a semidecision process should be target-oriented, i.e. keep into account the

target theorem to be proved. For the inference rules of a completion procedure, we present

target-oriented schemes of contraction inference rules, i.e. inference rules that delete sentences

which are redundant for proving the target. For the search plan, we give a target-oriented,

definition of fairness, according to which not all critical pairs need to be considered. We

prove that our notion of fairness, together with the refutational completeness of the inference

rules, is sufficient for a completion procedure to be a semidecision procedure. By relaxing the

requirement of considering all critical pairs, our target-oriented framework should be more

suitable for designing efficient procedures for theorem proving. The generation of decision

procedures is included as a special side-effect and all the results of the classical approach

to completion are re-obtained in our framework. The application of completion to disprove

inductive conjectures, i.e. the so called inductionless induction method, is also covered as

a semidecision process. Finally, we present according to our framework, some equational

completion procedures based on Unfailing Knuth-Bendix completion.

1 Introduction

The Knuth-Bendix completion procedure [51] computes a possibly infinite confluent rewrite system

equivalent to a given set of equations [41]. If a set of equations E and an equation s ' t are given,

it semidecides whether s ' t is a theorem of E, as first remarked in [53, 42]. These results hold if

the procedure does not fail on an unoriented equation. Unoriented equations can be handled by

adopting the Unfailing Knuth-Bendix method [38, 12], which produces a ground confluent set of

1



equations. Many completion procedures, related to Knuth-Bendix to different extents, have been

designed. They include procedures for equational theories with special sets of axioms [56, 44, 11],

Horn logic with equality [52, 29, 30], first order logic [34, 35, 48, 7], first order logic with equa-

lity [36, 37, 39, 40, 59, 62, 13, 15], inductive theorem proving in equational and Horn theories

[43, 32, 45, 52] and logic programming [22, 23, 26, 17]. Surveys have been given in [25, 27].

Completion procedures have usually been regarded as procedures for generating confluent

rewrite systems, which are by themselves decision procedures for the input theories. This view

imposes serious and unnecessary limitation on the applicability of completion procedures, since few

theories are decidable. In this paper we propose a different perspective, which treats completion

procedures as theorem proving methods, that is, as semidecision procedures. From an operational

point of view, they are used for proving individual target theorems rather than generating decision

procedures.

1.1 Overview

The interpretation of completion as semidecision procedure appeared first in [42], where it was

proved that if the procedure is fair, the limit of an unfailed Knuth-Bendix derivation is a confluent

rewrite system. As a side-effect, if a theorem s ' t is given to the procedure, it semidecides the

validity of s ' t. The same theorem was obtained in a more general framework in [6]. This view of

theorem proving as a side-effect is not satisfactory from a theorem proving perspective. Intuitively,

in a theorem proving application one only wants to concentrate on deducing consequences which

may contribute to a proof of the target theorem. Instead, a procedure which is guaranteed to

generate eventually a confluent system must take into account all critical pairs which may lead to

establishing the equivalence of any arbitrary theorems in the theory. Our motivation is to make

possible the design of completion-based theorem proving strategies, which gain efficiency by ge-

nerating fewer critical pairs. Thus, we reverse the traditional approach to completion procedures:

we regard them as semidecision procedures with the generation of confluent systems as a potential

side-effect.

The key idea in our approach is to consider a theorem proving derivation as a process of

target-oriented proof reduction. Given a target theorem ϕ and a presentation of a theory, i.e. a set

of axioms S, the process of proving ϕ from S can be characterized as a reduction, with respect

to a well-founded ordering, of a proof of ϕ in S. Success is reached when the proof is empty. The

intuition that proving a given theorem requires in most cases less work than generating a confluent

system can now be formulated in terms of proof reduction: reducing one proof is conceivably a

smaller task than reducing all the proofs. Therefore, a target-oriented completion procedure, i.e.

a strategy which focuses on reducing the proof of the given target, should be more efficient as a

theorem prover than a procedure which works blindly to reduce all the proofs. We investigate

how a procedure can be made target-oriented both at the level of the inference rules and at the

level of the search plan of a completion procedure.

The inference rules determine what can be derived from given data. They can be classified

as expansion inference rules, that derive new consequences, and contraction inference rules, that

delete or replace existing data. Expansion rules are generally sufficient for completeness, but con-

2



traction rules are critical for efficiency. Therefore we concentrate on contraction. We characterize

the contraction steps in terms of target-oriented proof reduction and target-oriented redundancy.

Then we define refutational completeness of the inference rules in terms of proof reduction: for

all unsatisfiable inputs, there exist derivations which reduce a proof of the target to the empty

proof.

The search plan chooses at each step of the derivation which inference rule to apply to which

data. Therefore it determines the unique derivation that the procedure computes from a given

input. A search plan is required to be fair. Our notion of fairness is radically different from

the previous ones. In [42] and in all the following work on completion [6, 14, 59, 15], fairness of

a derivation consists in eventually considering all critical pairs. We call this property uniform

fairness in order to distinguish it from fairness for theorem proving. Uniform fairness is necessary

for the limit of a derivation to be confluent, but it is not necessary for theorem proving, because

not all the critical pairs are necessary to prove a given theorem. In fact, the requirement of

uniform fairness clashes with the goal of having an efficient search plan for theorem proving. For

instance, we may have a problem where the target s ' t is an equation on a signature F1 and

the input presentation E is the union of a set E1 of equations on the signature F1 and a set

E2 of equations on another signature F2, disjoint from F1. Such a phenomenon often occur in

definitions of abstract data types, where the signature F1 contains the constructors and a set

of defined symbols, whereas the signature F2 is another set of defined symbols. Intuitively, a

derivation where no inference from E2 is performed is fair. On the other hand, uniform fairness

requires to compute critical pairs from the equations in E2 as well.

Clearly, theorem proving would benefit from a definition of fairness which is weaker than

uniform fairness. We provide such a new definition of fairness by using target-oriented proof

reduction as for refutational completeness. Fairness means that whenever successful derivations

exist, the search plan must ensure that the computed derivation is successful. We prove that

if the inference rules are complete and the search plan is fair according to our definitions, the

procedure is a semidecision procedure. By showing that fairness is sufficient for theorem proving,

we prove the classical result in [42] from weaker, strictly theorem proving oriented hypotheses.

No confluence property of the limit of the derivation is implied, since such properties are not

necessary for theorem proving. The interpretation of completion procedures as generators of

decision procedures, e.g. confluent systems, is also covered in our framework in the special case

where the search plan is uniformly fair.

The paper is organized as follows. In Section 2 we give the basic definitions; we introduce

expansion and contraction inference rules and search plans and we define proof orderings for

theorem proving. Section 3 is devoted to target-oriented proof reduction and redundancy. The

definition of completion procedure summarizes the concepts introduced so far. Section 4 contains

the notions of refutational completeness, fairness, uniform fairness and the theorem showing that

fairness, rather than uniform fairness, is sufficient for semidecision procedures. In Section 4.2,

we consider the generation of decision procedures by uniformly fair derivations. In Section 5, we

present some completion procedures for equational logic: we show that the basic Unfailing Knuth-

Bendix procedure [38, 12] and some of its extensions, such as the AC-UKB procedure [56, 44, 11, 2]

with Cancellation laws [39], the S-strategy [38] and the Inequality Ordered Saturation strategy [3]

3



fit nicely in our framework. To our knowledge, this is the first presentation of these extensions of

the UKB procedure as sets of inference rules. In the last technical section we show how the so

called inductionless induction method is covered by the semidecision concept as well: completion

for inductionless induction [43] is a semidecision procedure for disproving inductive theorems. We

conclude with some discussion and directions for future research.

Acknowledgements

The bulk of the work reported in this paper was done while both authors were with the Department

of Computer Science of the State University of New York at Stony Brook. In addition to the

support by the university and the department, research was also sponsored in part by grants

CCR-8805734, INT-8715231 and CCR-8901322, funded by the National Science Foundation. The

first author was also supported by Dottorato di ricerca in Informatica, Universitá degli Studi di

Milano, Italy. This paper is a revised and significantly extended version of “Completion procedures

as Semidecision procedures”, in M.Okada and S.Kaplan (eds.), Proceedings of the 2nd CTRS

Workshop, held in Montréal, in June 1990, and available in Springer Verlag, Lecture Notes in

Computer Science Vol. 516, pages 206–232, and “On fairness of completion-based theorem proving

strategies”, in R.V.Book (ed.), Proceedings of the 4th RTA Conference, held in Como, Italy, in

April 1991, and available in Springer Verlag, Lecture Notes in Computer Science Vol. 488, pages

348–360.

2 Preliminaries

In this section we present all the preliminary material for the construction of our framework.

Section 2.1 recalls basic definitions in term rewriting systems and completion procedures with the

notations of [27, 28]. Sections 2.2 and 2.3 covers inference rules, search plans, derivations and

proof orderings for theorem proving. The main contributions of this section are the distinction

between expansion and contraction inference rules, the role of the search plan, the notion of

derivation with a target and the application of proof orderings to derivations with target.

2.1 Basic definitions

Given a finite set F of constant symbols and function symbols with their arities and a denumerable

set X of variable symbols, T (F,X) is the set of terms on F and X and T (F ) is the set of ground

terms, i.e. without variables. V (t) denotes the set of variables occurring in the term t. A term s

is a subterm of a term t if s occurs in t. Subterm positions in a term are indicated by strings of

natural numbers: the empty string λ denotes the root position, i.e. t|λ = t, and the string i · u
denotes the position u in the i-th subterm of t, i.e. f(t1 . . . tn)|i · u = ti|u. We write t = c[s] to

indicate that s is a subterm of t in the context c, s = t|u to specify that s is the subterm of t at

position u and t[r]u represents the term obtained by replacing t|u by r.

A substitution σ is a set {x1 7→ s1 . . . xn 7→ sn} such that

4



• ∀i, j, i 6= j implies xi 6= xj and

• ∀i, j, xi 6∈ V (sj).

The domain and range of a substitution σ are the sets Dom(σ) = {x1 . . . xn} and Ran(σ) =⋃n
j=1 V (sj). A substitution σ is ground if Ran(σ) = ∅. A substitution σ applies to a term t as

follows:

• tσ = s if t = x and x 7→ s ∈ σ,

• tσ = t if t = x and x 6∈ Dom(σ) or t is a constant and

• tσ = f(t1σ . . . tnσ), if t = f(t1 . . . tn).

Given two substitutions σ = {x1 7→ s1 . . . xn 7→ sn} and ρ = {y1 7→ r1 . . . ym 7→ rm} such that

Dom(σ)∩Ran(ρ) = ∅, their composition is the substitution σρ = {x1 7→ s1ρ . . . xn 7→ snρ}∪{yj 7→
rj |yj 7→ rj ∈ ρ, yj 6∈ Dom(σ)}. A term t is an instance of a term s if t = sσ for some substitution

σ.

An ordering � is a transitive and irreflexive binary relation. An ordering is total if for every

two distinct elements s and t in the ordered set, either s � t or t � s; it is partial otherwise. An

ordering is well-founded if there is no infinite chain s1 � s2 � . . . sn � . . .. The basic orderings

on terms are the subterm ordering �, where t� s if t = c[s], the subsumption ordering •≥, where

t •≥ s if t is an instance of s, t = sσ, and the encompassment ordering •�, which is the composition

of the subterm ordering and the subsumption ordering: t •�s if t = c[sσ]. If t •≥ s and s •≥ t, we

say that s and t are variants or equal up to a renaming of variables, expressed as s
•
= t. We write

t •> s, if t •≥ s and t 6 •= s, and t •�s, if t •�s and s 6 •= t. They are called the proper subsumption

ordering and the encompassment ordering respectively.

The subsumption ordering is extended to substitutions: σ •≥ θ if ∀x ∈ Dom(σ), xσ = xθρ for

some substitution ρ. A substitution σ is a unifier of two terms s and t if sσ = tσ; it is a most

general unifier (mgu) of s and t if σ is a unifier of s and t and for all unifiers ρ of s and t, ρ •≥ σ.

The following properties of orderings on terms are often needed:

• monotonicity: s � t implies c[s] � c[t] for all contexts c,

• stability: s � t implies sσ � tσ for all substitutions σ and

• subterm property: c[s] � s for all terms s and contexts c.

A monotonic, stable and well-founded ordering is a reduction ordering. A monotonic and stable

ordering with the subterm property is a simplification ordering. A simplification ordering is well-

founded [21]. A simplification ordering which is total on the set of ground terms is called a

complete simplification ordering. Some well-known simplification orderings are the recursive path

ordering [20], the lexicographic path ordering [47] and the Knuth-Bendix ordering [51]. We refer to

[24] for a survey of orderings and we recall here two techniques for constructing orderings, which

will be used later. The lexicographic extension of given orderings �1 . . . �n is the ordering �lex

5



such that (t1 . . . tn)�lex(s1 . . . sn) if and only if there exists an i, 1 ≤ i ≤ n, such that tj = sj ,

∀j < i and ti �i si. The multiset extension of a given ordering � is the ordering �mul on multisets

of terms such that:

• {a} ∪M �mul ∅, where ∅ is the empty multiset.

• {a} ∪M �mul{a} ∪N if M �mulN .

• {a} ∪M �mul{b} ∪N if a � b and {a} ∪M �mulN .

The lexicographic and multiset extensions of well-founded orderings are well-founded [20].

An equation is an unordered pair of terms l ' r. A rewrite rule is an ordered pair of terms

l → r. A set of rewrite rules is called a term rewriting system or rewrite system. If l � r for a

reduction ordering �, then an equation l ' r may be oriented into a rewrite rule l→ r. A rewrite

system R defines a relation →R on terms as follows: s→R t if there are a rewrite rule l→ r ∈ R,

a substitution σ and a position u such that s|u = lσ and t is s[rσ]u. The relation ↔R is defined

as the union→R ∪←R, and→∗R and↔∗R are the transitive and reflexive closures of→R and↔R.

For a set of equations E, s↔E t if there are an equation l ' r ∈ E, a substitution σ and a position

u such that s|u = lσ and t is s[rσ]u; s→E t if s↔E t and s � t for a reduction ordering �. The

closure ↔∗E is the congruence defined by E on the set of terms. The equality ↔E = →E ∪←E

holds only if the ordering � is total in every congruence class defined by E.

All the following definitions apply to both a rewrite system R and a set of equations E. The

only difference is the way the relations →R and →E are defined, as shown above. A term s is

in E-normal form or E-irreducible, if there is no term t such that s→E t. A set of equations E

is Church-Rosser, if s↔∗E t implies s→∗E ◦←∗E t, confluent, if s←∗E ◦→∗E t implies s→∗E ◦←∗E t,
locally confluent, if s←E ◦→E t implies s→∗E ◦←∗E t, canonical, if it is both confluent and reduced,

that is for all l ' r ∈ E, l and r are in normal form with respect to E − {l ' r}.

If we add to the signature a finite set P of predicate symbols with their arities, we obtain

A(P, F,X) and A(P, F ), i.e. the sets of atoms and ground atoms on < P,F,X >. If P includes

the equality predicate, an equation is an atom. A literal is an atom or a negated atom, a clause is

a disjunction of literals, a unit clause is a clause made of one literal and a Horn clause is a clause

with at most one positive literal. All variables in a clause are implicitly universally quantified. The

definitions given for terms and substitutions extend to atoms, literals and clauses. In particular,

a (complete) simplification ordering � on terms and literals can be extended to equations, clauses

and sets of clauses, as shown for instance in [40].

2.2 Inference rules and search plans

In this section we introduce some basic concepts about theorem proving strategies. A theorem

proving strategy is a pair P =< I; Σ >, where I is a set of inference rules and Σ is a search

plan. Inference rules in I decide what consequences can be deduced from the available data and

Σ decides which inference rule and which data to choose next. The general form of an inference

rule f is:

6



f : S
S′

where S and S′ are sets of sentences. The rule says that given S, the set S′ can be inferred. We

distinguish between expansion inference rules and contraction inference rules, as they are called

in [29]. An expansion inference rule expands a given set S into a new set S′ by deriving new

sentences from sentences in S:

f : S
S′

where S ⊂ S′.

A contraction inference rule contracts a given set S into a new set S′ by either deleting some

sentences in S or replacing them by others:

f : S
S′

where S 6⊆ S′.

Alternative schemes for inference rules, called deduction and deletion, are given in [15]. We

further distinguish between inference rules which transform the presentation (forward reasoning)

and inference rules which transform the target1 (backward reasoning):

• Presentation inference rules:

– Expansion inference rules: f :
(S;ϕ)
(S′;ϕ)

where S ⊂ S′.

– Contraction inference rules: f :
(S;ϕ)
(S′;ϕ)

where S 6⊆ S′.

• Target inference rules:

– Expansion inference rules: f :
(S;ϕ)
(S;ϕ′)

where ϕ logically implies ϕ′.

– Contraction inference rules: f :
(S;ϕ)
(S;ϕ′)

where ϕ does not logically imply ϕ′.

Example 2.1 Deduction of a critical pair is an expansion inference rule on the presentation,

since it adds to the given set a new equation:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p ' q, l ' r, p[r]uσ ' qσ}; ŝ ' t̂)

p|u 6∈ X (p|u)σ = lσ

pσ 6� qσ, p[r]uσ
where E is a set of equations, σ is the most general unifier of the non-variable subterm p|u and

l, and � is the assumed complete simplification ordering on terms. The target is an equational

theorem ∀x̄s ' t, which we write as ŝ ' t̂ to denote that it contains only universally quantified

variables and therefore can be regarded as a ground equality.

Simplification of the target is a contraction inference rule:

(E ∪ {l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ[rσ]u ' t̂)

ŝ|u = lσ ŝ � ŝ[rσ]u

The inference rules are required to be sound:

1The target can be formulated as a set of sentences. For convenience of representation, we write the target as a

single sentence.

7



Definition 2.1 An inference step (S;ϕ) ` (S′;ϕ′) is sound if Th(S′) ⊆ Th(S), monotonic if

Th(S) ⊆ Th(S′). It is relevant if ϕ′ ∈ Th(S′) if and only if ϕ ∈ Th(S).

Soundness ensures that a presentation inference step does not create new elements which are not

true in the theory. Monotonicity guarantees that all theorems are preserved. Relevance ensures

that a target inference step replaces the target by a new target in such a way that proving the

latter is equivalent to proving the former. For instance, a simplification step which reduces a

target ϕ to ϕ′ satisfies the relevance requirement because if ϕ′ is true, ϕ is true as well. For an

interesting example of expansion inference rule for the target, we refer to Section 5.3.

A search plan Σ decides which inference rule should be applied to what data at any given step

during a derivation. It may set a precedence on the inference rules and a well-founded ordering

on data and proceed accordingly. For instance, a Simplification-first search plan [38] is a search

plan where Simplification has priority over expansion.

The inference rules and the search plan cooperate to generate a derivation from a given input.

The input for a theorem proving strategy is a pair (S;ϕ), where S is a presentation of the theory

Th(S) = {ϕ|S |= ϕ} and ϕ is the target. A theorem proving problem is to decide whether

ϕ ∈ Th(S) and a theorem proving derivation is a sequence of deductions

(S0;ϕ0) ` (S1;ϕ1) ` . . . ` (Si;ϕi) ` . . .,

where at each step the problem of deciding ϕi ∈ Th(Si) reduces to the problem of deciding

ϕi+1 ∈ Th(Si+1). Informally, the derivation halts successfully at stage k if ϕk ∈ Th(Sk) is

trivially true and therefore it can be asserted that ϕ0 ∈ Th(S0).

2.3 Proof orderings for theorem proving

In this section we apply proof orderings [6, 8] to describe a theorem proving derivation as a

target-oriented proof reduction process.

A proof ordering is a monotonic, stable and well-founded ordering on proofs [6]. Proof orderings

are defined in general starting from some ordering on the data involved in the proofs. Thus, we

assume to have a complete simplification ordering � on terms and literals. We prefer to have a

simplification ordering, although a well-founded, monotonic and stable ordering total on ground

terms would be sufficient. The following example [29] shows how to define a proof ordering starting

from an ordering on terms:

Example 2.2 Equational proofs can be represented as chains [6]

s1↔l1'r1 s2↔l2'r2 . . .↔ln−1'rn−1 sn,

where s1↔l1'r1 s2 means that the equality of s1 and s2 is established by the equation l1 ' r1,

because s1 and s2 are c[l1σ] and c[r1σ] for some context c and substitution σ. We write s→l'r t

if s � t is known a priori. A proof ordering to compare ground equational proofs can be defined as

follows. We associate to a ground equational step s↔l'r t the triple (s, l, t), if s � t. We compare

these triples by the lexicographic combination >e of the complete simplification ordering �, the

8



strict encompassment ordering •� and again the ordering �. Then we compare two proofs s↔∗E t
and s↔∗E′ t by the multiset extension >emul of >e.

Proof orderings were introduced in [6] to prove correctness of the Knuth-Bendix completion pro-

cedure as a procedure which generates confluent term rewriting systems. A derivation by Knuth-

Bendix completion in that context is a process of transforming a presentation

S0 ` S1 ` . . . ` Si ` . . ..

In other words, it is a purely forward derivation, with no target. A confluent rewrite system is

a presentation such that for all theorems s ' t there is a rewrite proof, i.e. a proof in the form

s→∗ ◦←∗ t. Therefore, correctness of Knuth-Bendix completion is proved by showing that all the

proofs in the theory are eventually reduced to rewrite proofs during the derivation. Since such

a derivation transforms only the presentation, with the purpose of reducing all the proofs, one

needs to compare the proof of ϕ in Si with the proof of ϕ in Si+1 for all the theorems ϕ in the

theory. For this reason, proof orderings are applied in [6] to compare only proofs of the same

theorem. A theorem proving derivation

(S0;ϕ0) ` (S1;ϕ1) ` . . . ` (Si;ϕi) ` . . .

also has the target and both the presentation and the target are transformed. In order to compare

the proof of ϕi in Si and the proof of ϕi+1 in Si+1, we need a proof ordering such that proofs

of different theorems may be comparable. Proof orderings with this property do exist and can

actually be obtained quite easily. For instance the proof ordering of the previous example can be

extended as follows:

Example 2.3 We can compare any two ground equational proofs s↔∗E t and s′↔∗E′ t′ by compar-

ing the pairs ({s, t}, s↔∗E t) and ({s′, t′}, s′↔∗E′ t′) by the lexicographic combination, >u, of the

multiset extension �mul of the ordering � on terms and the multiset extension >emul of >e.

Henceforth a proof ordering is a monotonic, stable, well-founded ordering on proofs such that

proofs of different theorems may be comparable. We assume that both the ordering on proofs

and the ordering on terms and literals have a bottom element. For proofs, the minimum is the

empty proof, which we denote by ε. For terms and literals, the minimum is a dummy element

true, which represents the theorem whose proof is ε. Given a proof ordering >p, we denote by

Π(S, ϕ) the set of all the minimal proofs of ϕ from S with respect to >p. By assuming a proof

ordering >p, we can regard a theorem proving derivation

(S0;ϕ0) ` (S1;ϕ1) ` . . . ` (Si;ϕi) ` . . .,

as a process of reducing a minimal proof of ϕ0 in S0 to the empty proof and ϕ0 to true. At

each step Π(Si, ϕi) is replaced by Π(Si+1, ϕi+1), and the derivation halts successfully at stage k

if Π(Sk, ϕk) = {ε} and ϕk is true. The introduction of the symbol true is not mere formality. For

instance, in equational logic a theorem s ' s is regarded as trivially true. However, it is not so in

equational theorem proving, since a procedure needs to check that the two sides of the equation

are identical before stating that the theorem is true. This requires an inference step and therefore

9



a derivation that has reached the state (S; s ' s) is not successful yet. Indeed, the proof of s ' s
is not empty. Thus we need the symbol true to indicate the success of a derivation.

3 Completion procedures

In this section we give the core of our framework. We start by characterizing the requirements for

a derivation to be a process of target-oriented proof reduction. All the inferences are assumed to

be monotonic and relevant. Intuitively, since the purpose of a derivation is to reach the bottom

element in the proof ordering, an inference should not increase the complexity of proofs:

Definition 3.1 An inference step (S;ϕ) ` (S′;ϕ′) is proof-reducing on ϕ if for all P ∈ Π(S, ϕ),

either P ∈ Π(S′, ϕ′) or there exists a Q ∈ Π(S′, ϕ′) such that P >p Q. If the latter holds for some

P ∈ Π(S, ϕ), then the step is strictly proof-reducing.

A target inference step (S;ϕ) ` (S;ϕ′) is (strictly) proof-reducing if it is (strictly) proof-reducing

on ϕ.

In other words, every proof which is minimal at a certain stage of the derivation can be replaced

only by a smaller proof.

Example 3.1 Simplification of the target as given in Example 2.1 is strictly proof-reducing. If

the target ŝ ' t̂ is replaced by the target ŝ′ ' t̂′ because ŝ is simplified to ŝ′, we have ŝ � ŝ′, t̂ = t̂′

and therefore {ŝ, t̂}�mul{ŝ′, t̂′}. If we assume the proof ordering >u introduced in Example 2.3,

it follows that ŝ↔∗E t̂ >u ŝ′↔∗E t̂′.

For a presentation inference step we allow more flexibility, because an inference step on the

presentation may not immediately reduce any proof of the target but still be necessary to decrease

it eventually. The proof reduction effect of a presentation inference step needs to be checked on

a larger set of theorems in the theory, not just on the given target. We call domain, denoted by

T , the set of sentences where the presentation inference rules are proof-reducing:

Definition 3.2 A presentation inference step (S;ϕ) ` (S′;ϕ) is proof-reducing on T if

1. either it is strictly proof-reducing on ϕ

2. or

(a) Π(S, ϕ) = Π(S′, ϕ),

(b) ∀ψ ∈ T , (S;ψ) ` (S′, ψ) is proof-reducing on ψ and

(c) ∃ψ ∈ T such that (S;ψ) ` (S′, ψ) is strictly proof-reducing on ψ.

The first condition dictates that an inference step which reduces a proof of the target is proof-

reducing, regardless of its effects on other theorems. On the other hand, an inference step which

does not affect any proof of the target is proof-reducing, if it does not increase any proof and

strictly decreases at least one. The domain T may vary according to individual completion

10



procedures. For instance, for the Knuth-Bendix completion procedure T is the set of all equations.

For the Unfailing Knuth-Bendix procedure, T is the set of all ground equations. In principle, a

procedure with a more restricted domain should be more efficient, because it would not spend

time in reducing proofs of theorems that are not related to the given target.

Example 3.2 Deduction of a critical pair as given in Example 2.1 is proof-reducing on the domain

T of all ground equations. We assume the proof ordering >u introduced in Example 2.3. Given two

equations l ' r and p ' q in E, a critical overlap of l ' r and p ' q is a proof s←l'r v→p'q t,

where v is c[pτ ] for some context c and substitution τ , t is c[qτ ], (p|u)τ = lτ for some non-

variable subterm p|u of p and s is c[p[r]uτ ]. The Deduction rule applied to l ' r and p ' q

generates the critical pair p[r]uσ ' qσ, where σ is the mgu of p|u and l and therefore τ = σρ

for some substitution ρ. The proof s↔p[r]uσ'qσ t, justified by the critical pair, is smaller than

the proof s←l'r v→p'q t: since v � s and v � t, and thus {(v, l, s), (v, p, t)}>emul{(s, p[r]uσ, t)}
(assuming, without loss of generality, that s � t). Therefore, every minimal proof which contains

s←l'r v→p'q t as a subproof is no longer minimal after the generation of the critical pair. Such

a proof is replaced by the smaller proof where all occurrences of s←l'r v→p'q t are replaced by

s↔p[r]uσ'qσ t: for all ψ ∈ T , Π(E ∪ {p[r]uσ ' qσ}, ψ) = Π(E,ψ) − {P [s←l'r v→p'q t]} ∪
{P [s↔p[r]uσ'qσ t]}. If a minimal proof of the target itself contains a critical overlap between l ' r
and p ' q, the Deduction step is strictly proof-reducing.

The notion of proof reduction defined so far applies to presentation inference steps which are

either expansion steps or contraction steps which replace some sentences by others. A contraction

step which deletes sentences without adding any cannot reduce any minimal proof. In order to

characterize these steps, we need a notion of redundancy:

Definition 3.3 A sentence ϕ is redundant in S on ψ if Π(S, ψ) = Π(S ∪{ϕ}, ψ); it is redundant

in S on domain T if it is redundant on all ψ ∈ T .

A sentence is redundant in a presentation on a specific target, if adding it to the presentation

does not affect any minimal proof of the target. If this holds on the entire domain, the sentence

is said to be redundant on the domain.

Example 3.3 An inference rule which deletes an equation without adding any is Functional sub-

sumption:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ ' t̂)

(p ' q) •�(l ' r)

An equation p ' q subsumed by l ' r is redundant according to the proof ordering >emul and there-

fore to the proof ordering >u as defined in Example 2.3. No minimal proof contains a step s↔p'q t

since the step s↔l'r t is smaller: either {(s, p, t)}>emul{(s, l, t)} or {(t, q, s)}>emul{(t, r, s)}, de-

pending on whether s � t or t � s, since p •�l and q •�r.

Definition 3.4 An inference step (S;ϕ) ` (S′;ϕ′) is reducing on T (on ϕ) if either it is proof-

reducing on T (on ϕ) or it deletes a sentence which is redundant in S on domain T (on ϕ).

An inference rule f is reducing if all the inference steps (S;ϕ)`f (S′;ϕ′) where f is applied are

reducing.

11



We have finally all the elements to define a completion procedure:

Definition 3.5 A theorem proving strategy C =< I; Σ > is a completion procedure on domain

T if for all pairs (S0;ϕ0), where S0 is a presentation of a theory and ϕ0 ∈ T , the derivation

(S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . .

has the following properties:

• soundness: ∀i ≥ 0, Th(Si+1) ⊆ Th(Si),

• relevance: ∀i ≥ 0, ϕi ∈ T and ϕi+1 ∈ Th(Si+1) if and only if ϕi ∈ Th(Si) and

• reduction: ∀i ≥ 0, the step (Si;ϕi)`C(Si+1;ϕi+1) is reducing on T (on ϕi).

The definition requires soundness and not monotonicity, because soundness and relevance together

are sufficient for theorem proving. Monotonicity will be required only for the application of com-

pletion to the generation of confluent sets. Reduction is the fundamental property of completion

procedures. Clearly, if all the inference rules of a procedure are reducing, the procedure has the

reduction property. We shall see in the second part that the inference rules of the known equa-

tional completion procedures are reducing. Most inference rules are reducing because they are

suitably restricted by the complete simplification ordering � on terms. A complete simplification

ordering on data turns out to be a key element in characterizing a theorem proving strategy as a

completion procedure.

3.1 Redundancy

In this section we study further the notion of redundancy. The interest in redundancy of data in

a theorem proving derivation resides in the importance of contraction inference rules. Although

contraction inference rules are necessary to make theorem proving feasible, only a few of them

are known. The purpose of studying redundancy is to gain insight into how to design new and

powerful contraction rules. A notion of redundant clauses appeared in [59] and in [15]. We show

that redundant clauses according to these works are redundant in our sense. On the other hand,

there are clauses which are intuitively redundant and redundant according to our definition, but

not according to the definitions in [59] and [15].

Definition 3.6 (Rusinowitch 1988) [59] A clause ϕ is R-redundant in a set S if there exists a

clause ψ ∈ S such that ψ properly subsumes ϕ, i.e. ϕ •> ψ, where •> is the proper subsumption

ordering on clauses.

R-redundancy has been investigated in [60] in the context of proofs by resolution in first order

logic. Very high numbers of R-redundant clauses may be generated in such derivations, resulting

in waste of space to hold them and in waste of time to perform the subsumption test to detect

them. Two techniques to limit the generation of R-redundant clauses are proposed in [60].

Definition 3.7 (Bachmair and Ganzinger 1990) [15] A clause ϕ is B-redundant in a set S if

there exists an ordering >d on clauses, which is monotonic, stable, well-founded and total on

12



ground clauses, such that the following holds: for all ground instances ϕσ of ϕ, there are ground

instances ψ1 . . . ψn of clauses in S such that {ψ1 . . . ψn} |= ϕσ and ∀j, 1 ≤ j ≤ n, ϕσ >d ψj.

Lemma 3.1 (Bachmair and Ganzinger 1990) [15] R-redundant clauses are B-redundant.

In our view, the intuition behind the notion of redundancy is that a clause ϕ is redundant in S

if adding ϕ to S does not decrease any minimal proof in S (Definition 3.3). In fact our definition

captures the meaning of Definition 3.7:

Theorem 3.1 If a clause ϕ is B-redundant in S, then it is redundant on the domain of all ground

clauses.

Proof: for all ground clauses ψ, we regard any set {ψ1 . . . ψn} of ground instances of clauses

in S, such that {ψ1 . . . ψn} |= ψ, as a proof in S of ψ. Since the ordering >d assumed in the

definition of B-redundancy is well-founded and total on ground clauses, its multiset extension

>dmul is also well-founded and total on multisets of ground clauses. Let the proof ordering >p be

>dmul. Since >dmul is total, the minimal proof in S of a ground clause ψ is unique. By slightly

abusing our notation, we use Π(S, ψ) to denote the unique minimal proof of ψ in S. Let ϕ be

B-redundant in S. We show that Π(S ∪ {ϕ}, ψ) = Π(S, ψ) for all ground theorems ψ. Since

S ⊂ S ∪ {ϕ}, Π(S ∪ {ϕ}, ψ) ≤p Π(S, ψ) trivially holds and therefore we simply have to show that

Π(S∪{ϕ}, ψ) 6<p Π(S, ψ). The proof is done by way of contradiction: if Π(S∪{ϕ}, ψ) <p Π(S, ψ),

then the smallest set of ground instances of clauses in S∪{ϕ} which logically entails ψ has the form

S′∪{ϕσ1 . . . ϕσk} for some set S′ of ground instances of clauses in S and some ground substitutions

σ1 . . . σk. Since ϕ is B-redundant in S, for all ϕσi, 1 ≤ i ≤ k, there are ground instances

{ψi1 . . . ψini
} of clauses in S such that {ψi1 . . . ψini

} |= ϕσi and ϕσi >
d ψij , ∀j, 1 ≤ j ≤ ni. Therefore,

S′∪{ψi1 . . . ψini
}ki=1<

d
mul S

′∪{ϕσ1 . . . ϕσk} and S′∪{ψi1 . . . ψin}ki=1 |= ψ, that is S′∪{ϕσ1 . . . ϕσk}
cannot be the smallest set entailing ψ. It follows that Π(S ∪ {ϕ}, ψ) = Π(S, ψ). 2

On the other hand, there are cases where trivially redundant clauses are not B-redundant, whereas

they are redundant according to our definition:

Example 3.4 If S = {P,¬R,R}, where P and R are ground atoms, P is intuitively redundant

and it is redundant according to our Definition 3.3: the minimal proof of every ground theorem

is given by {¬R,R}, since {¬R,R} yields the empty clause and therefore any clause. However,

if R � P and thus R >d P , then P is not B-redundant.

This example shows that a notion of redundancy based on an ordering on clauses is not ideal, since

different precedences on predicate symbols may be needed in order to characterize as redundant

different clauses during a computation.

In our definition of completion, we have required that if a contraction step simply deletes a

sentence, then the sentence deleted must be redundant. The following lemma shows that if a

contraction step replaces a sentence by another, the replaced sentence must be redundant on the

specific target if the step is strictly proof-reducing, otherwise it must be redundant on the entire

domain:

13



Lemma 3.2 If a contraction inference step (S ∪ {ψ};ϕ) ` (S ∪ {ψ′};ϕ) is proof-reducing on T
by Condition 1 in Definition 3.2, then ψ is redundant in S ∪ {ψ′} on ϕ; if it is proof-reducing by

Condition 2 in Definition 3.2, then ψ is redundant in S ∪ {ψ′} on the domain T .

Proof: if ψ does not occur as an axiom in any proof P ∈ Π(S ∪ {ψ}, ϕ), then Π(S ∪ {ψ}, ϕ) =

Π(S, ϕ), i.e. ψ is redundant on ϕ in S and therefore also in S ∪ {ψ′}. If ψ is an axiom in some

proof P ∈ Π(S ∪ {ψ}, ϕ), then P 6∈ Π(S ∪ {ψ′}, ϕ), since ψ 6∈ S ∪ {ψ′}. By Condition 1 in

Definition 3.2, there exists a Q ∈ Π(S ∪{ψ′}, ϕ) such that P >p Q. In other words, all the proofs

of ϕ where ψ occurs as an axiom are replaced by smaller proofs in Π(S ∪ {ψ′}, ϕ). Adding ψ

to S ∪ {ψ′} would not reduce any proof in Π(S ∪ {ψ′}, ϕ) and therefore ψ is redundant on ϕ in

S ∪ {ψ′}. By applying the same argument to all theorems in the domain we obtain the second

part of the lemma. 2

It follows that all sentences deleted by contraction steps are redundant. A similar relationship

between deletion and B-redundancy holds according to the approach proposed in [15]. The main

difference between our approach and that of [15] is that we have a notion of redundancy on

the domain as well as one on the target. For derivations without target, e.g. derivations which

generate a confluent system, we have soundness, monotonicity, proof-reduction on the domain

and redundancy on the domain. For such derivations our approach is basically equivalent to

that in [15]. For derivations with target, e.g. theorem proving derivations, we require soundness

and relevance, but not monotonicity; we allow proof-reduction and redundancy on the target, in

addition to proof-reduction and redundancy on the domain. By proof reduction and redundancy

on the target, contraction steps may replace sentences which are not redundant on the whole

domain, provided they are redundant on the specific target. In this way our definitions allow in

principle very strong contraction inference rules.

4 Fairness and completeness

A theorem proving method is complete if, whenever ϕ0 is a theorem of S0, the derivation from

(S0;ϕ0) succeeds. Completeness involves both the inference rules and the search plan. First, it

requires that if ϕ0 ∈ Th(S0), there exist successful derivations by the inference rules of the pro-

cedure. Second, it requires that whenever successful derivations exist, the search plan guarantees

that the computed derivation is successful. We call these two properties refutational completeness

of the inference rules and fairness of the search plan respectively. In order to describe them,

we introduce a structure called I-tree. Given a theorem proving problem (S0;ϕ0) and a set of

inference rules I, the application of I to (S0;ϕ0) defines a tree, the I-tree rooted at (S0;ϕ0). The

nodes of the tree are labeled by pairs (S;ϕ). The root is labeled by the input pair (S0;ϕ0). A

node (S;ϕ) has a child (S′;ϕ′) if (S′;ϕ′) can be derived from (S;ϕ) in one step by an inference

rule in I. The I-tree rooted at (S0;ϕ0) represents all the possible derivations by the inference

rules in I starting from (S0;ϕ0).

Intuitively, a set I of inference rules is refutationally complete if whenever ϕ0 ∈ Th(S0), the

I-tree rooted at (S0;ϕ0) contains successful nodes, nodes of the form (S; true). We use the term

“refutational completeness” for the inference rules to differentiate it from the completeness of

14



the theorem proving strategy. Furthermore, “refutational” emphasizes that the goal is to prove

a specific theorem. The following definition is an equivalent characterization of this concept in

terms of proof reduction:

Definition 4.1 A set I of inference rules is refutationally complete if whenever ϕ ∈ Th(S)

and Π(S, ϕ) 6= {ε}, ∀P ∈ Π(S, ϕ) there exists a path (S;ϕ)`I(S1;ϕ1)`I . . .`I(S′;ϕ′) such that

P >p Q for some Q ∈ Π(S′, ϕ′).

A set of inference rules is refutationally complete if it can reduce any non-empty proof of the

target. Since a proof ordering is well-founded, it follows that if ϕ ∈ Th(S), the I-tree rooted at

(S;ϕ) contains successful nodes. An advantage of giving the definition of completeness in terms

of proof reduction is that the problem of proving completeness of I is reduced to the problem of

exhibiting a suitable proof ordering [14].

Given a completion procedure C =< I; Σ >, the I-tree rooted at (S0;ϕ0) represents the entire

search space that the procedure can potentially derive from the input (S0;ϕ0). The search plan Σ

selects a path in the I-tree: the derivation from input (S0;ϕ0) controlled by Σ is the path selected

by Σ in the I-tree rooted at (S0;ϕ0). Once both a set of inference rules and a search plan are

given, the derivation from (S0;ϕ0) is unique. A pair (Si;ϕi) reached at stage i of the derivation

is a visited node in the I-tree. Each visited node (Si;ϕi) may have many children, but the search

plan selects only one of them to be (Si+1;ϕi+1). A search plan Σ is fair if whenever the I-tree

rooted at (S0;ϕ0) contains successful nodes, the derivation controlled by Σ starting at (S0;ϕ0)

is guaranteed to reach a successful node. Similar to completeness, we formalize this concept in

terms of proof reduction:

Definition 4.2 A derivation (S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . . controlled by a search plan

Σ is fair if and only if ∀i ≥ 0, ∀P ∈ Π(Si, ϕi), if there exists a path (Si;ϕi)`I . . .`I(S′;ϕ′) in the

I-tree rooted at (S0;ϕ0) such that P >p Q, for some Q ∈ Π(S′, ϕ′), then there exists an (Sj ;ϕj),

for some j > i, and an R ∈ Π(Sj , ϕj) such that Q ≥p R.

A search plan Σ is fair if all the derivations controlled by Σ are fair.

In other words, if the inference rules can reduce a proof of the target at (Si;ϕi), a fair search plan

guarantees that such a proof will be reduced at a later stage (Sj ;ϕj). This definition is target-

oriented because it only requires that the proofs of the intended target are reduced. Actually it

only requires that one proof of the target is reduced. If a proof of ϕ is reduced to ε at stage j, the

set of minimal proofs of ϕ collapses to {ε} and P >p ε for every proof P considered at all stages

earlier than j. In theorem proving we are only interested in finding one proof of the target and

therefore a search plan may trim the search space considerably and still be fair as long as it does

not remove the possibility of finding any proof.

If the inference rules are refutationally complete and the search plan is fair, a completion

procedure on domain T is complete, i.e., it is a semidecision procedure for Th(S) ∩ T for all

presentations S:

Theorem 4.1 If a completion procedure C on domain T has refutationally complete inference

rules and fair search plan, then for all derivations

15



(S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . .,

where ϕ0 ∈ Th(S0), ∀i ≥ 0, if Π(Si, ϕi) 6= {ε}, then ∀P ∈ Π(Si, ϕi), there exists an (Sj , ϕj), for

some j > i, such that P >p R for some R ∈ Π(Sj , ϕj).

Proof: if Π(Si, ϕi) 6= {ε}, then by completeness of the inference rules, for all P ∈ Π(Si, ϕi) there

exists a path (Si;ϕi)`I . . .`I(S′;ϕ′) such that P >p Q for some Q ∈ Π(S′, ϕ′). By fairness of the

search plan, there exists an (Sj ;ϕj), for some j > i, and an R ∈ Π(Sj , ϕj) such that P >p Q ≥p R.

2

Corollary 4.1 If a completion procedure C on domain T has refutationally complete inference

rules and a fair search plan, then for all inputs (S0;ϕ0), if ϕ0 ∈ Th(S0), the derivation

(S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . .

reaches a stage k, k ≥ 0, such that ϕk is the clause true.

Proof: let P be any proof in Π(S0, ϕ0). By Theorem 4.1 and the well-foundedness of >p the

derivation reaches a stage k such that P has been reduced to ε. Then Π(Sk, ϕk) = {ε} and ϕk is

the clause true. 2

4.1 Uniform fairness and saturated sets

In this subsection and in the next one we show how the classical results on completion as generation

of confluent systems are incorporated in our framework.

We consider derivations without target and we assume that the monotonicity property (see

Definition 2.1) is added to our definition of completion. The key difference between derivations

with a theorem proving target and derivations without target is the fairness requirement. Our

definition of fairness (Definition 4.2) is sufficient for theorem proving (Theorem 4.1), but it is not

sufficient to guarantee that a confluent rewrite system is generated eventually, because it does

not guarantee that all critical pairs are considered eventually. This demands a stronger fairness

property, which we call uniform fairness. The first definition of uniform fairness appeared in

[42], where it is required that the search plan sorts the rewrite rules by a well-founded ordering,

in order to ensure that no rule is indefinitely postponed. We mention this very first notion of

(uniform) fairness, because it states explicitly that fairness is a property of the search plan. We

recall here a more recent definition. Let Ie(S) be the set of sentences which can be generated in

one expansion step from S and S∞ =
⋃
j≥0

⋂
i≥j Si be the limit of the derivation, i.e. the possibly

infinite set of all the persistent sentences [42, 8]:

Definition 4.3 (Rusinowitch 1988) [59], (Bachmair and Ganzinger 1990) [15] A derivation

S0 `C S1 `C . . . Si `C . . . is uniformly fair on domain T if ∀ϕ ∈ Ie(S∞) there exists an Sj such that

either ϕ ∈ Sj or ϕ is redundant in Sj on domain T .

This definition of fairness generalizes previous definitions given in [42, 6, 8, 14]. As an example,

a Knuth-Bendix derivation such that all critical pairs from persisting equations are eventually

generated or subsumed or reduced to a common term is uniformly fair.

16



Fairness and uniform fairness are conceptually different. First, fairness is target-oriented,

whereas uniform fairness is defined for a derivation without a target. In [59, 15], Definition 4.3 is

applied to refutational theorem proving, where S0 contains the negation of the target. In this case

the only persisting clause is the empty clause 2 and Ie(
⋃
i≥0

⋂
j≥i Sj) = {2}. Then Definition 4.3

says that the limit of the derivation is the empty clause. A notion of fairness given in terms of

S∞ = {2} does not help the design of search plans, because it simply re-states that the derivation

should eventually succeed. It does not provide any hint on how a search plan should choose a

successor at any given stage of the derivation. Second, the intuitive meaning of uniform fairness

is to be fair to the inference rules, that is to apply all the inference rules to all the data. However,

this is impossible in the presence of contraction rules: if a clause ϕ is deleted by a contraction step

before an expansion rule f is applied to ϕ, the derivation is not fair to f . The problem was then

to define fairness in such a way that the application of contraction rules is fair. This problem has

been solved in the definition of uniform fairness by establishing that it is fair not to perform an

expansion inference step if its premises are not persistent and it is fair to replace a clause ϕ by

clauses which make it redundant. In theorem proving the idea of fairness is not to be fair to the

inference rules, but to the target. Therefore the interaction of expansion and contraction rules

is no longer an issue. All inference rules are treated uniformly by considering their effect with

respect to the goal of reducing the proof of the target.

The following example illustrates the conditions which were proved sufficient for uniform

fairness of an Unfailing Knuth-Bendix derivation in [8]. These conditions represent the most well

known definition of (uniform) fairness for a completion procedure:

Example 4.1 A derivation E0 `UKB E1 `UKB . . .`UKB Ei `UKB . . . is uniformly fair if for all

critical pairs g ' d ∈ Ie(E∞), g ' d ∈
⋃
i≥0Ei and E∞ is reduced. The first condition alone

is actually sufficient for uniform fairness: the application of contraction rules is allowed but not

required. Since at any stage of the computation it is not known which equations are going to persist

and which equations are going to be simplified, the above conditions for uniform fairness prescribe

in practice to apply exhaustively all the inference rules of Unfailing Knuth-Bendix completion until

none applies.

The concept of uniform fairness leads to the following notion of saturated presentation:

Definition 4.4 (Kounalis and Rusinowitch 1988) [52], (Bachmair and Ganzinger 1990) [15] A

presentation S is saturated on the domain T of a completion procedure if and only if ∀ψ ∈ Ie(S),

either ψ ∈ S or ψ is redundant in S on T .

In other words, no non-trivial consequences can be added to a saturated presentation. In the

equational case, as remarked in [52], a set of equations is saturated if no divergent critical pairs

can be deduced, or equivalently, the set is locally confluent. As in the definition of uniform fairness,

the application of contraction inference rules is allowed but not required: for instance, a locally

confluent equational presentation is not necessarily reduced.

If a derivation is uniformly fair, S∞ is saturated. Since uniform fairness is defined in terms of

redundancy and our notion of redundancy is more general than those in [59] and [15], we give a

new proof of this result. First we prove the following lemma:

17



Lemma 4.1 If a derivation S0 `C S1 `C . . . Si `C . . . is uniformly fair on T , then ∀ψ ∈ T , ∀i ≥ 0,

if ψ is redundant in Si on T , ψ is also redundant in S∞ on T .

Proof: if ψ is redundant in Si on T , ψ does not occur as an axiom in any minimal proof in

Si of theorems in T . This also holds for ψ itself. In other words there exists at least a proof

P ∈ Π(Si, ψ) which is smaller than the proof represented by ψ itself: ψ >p P . Since there is no

target, the derivation is proof-reducing by Condition 2 in Definition 3.2. It follows that either

P ∈ Π(S∞, ψ) or P is replaced by a proof Q ∈ Π(S∞, ψ) such that P >p Q. In both cases, there

is a proof R ∈ Π(S∞, ψ) such that ψ >p R. By monotonicity and stability of >p, C[ψσ] >p C[Rσ]

for all proof contexts C and substitutions σ. In other words, ψ is not involved in any minimal

proof in S∞ of a theorem in T , since any occurrence of ψ in a proof can be replaced by a proof

of ψ smaller than ψ itself. It follows that ψ is redundant in S∞ on T . 2

Theorem 4.2 (Kounalis and Rusinowitch 1988) [52], (Bachmair and Ganzinger 1990) [15] If a

derivation S0 `C S1 `C . . . Si `C . . . is uniformly fair on T , then S∞ is saturated on T .

Proof: we show that for all ϕ ∈ Ie(S∞), either ϕ ∈ S∞ or ϕ is redundant in S∞ on T . By uniform

fairness of the derivation, there exists an Sj , for some j ≥ 0, such that either ϕ ∈ Sj or ϕ is

redundant in Sj on T . If ϕ is redundant in Sj , it is also redundant in S∞ by Lemma 4.1. If

ϕ ∈ Sj , then either ϕ is not deleted afterwards, that is ϕ ∈ S∞, or ϕ is deleted at some stage

i > j. If ϕ is simply deleted, ϕ is redundant in Si on T by Definition 3.5 of completion. If ϕ

is replaced by another sentence, ϕ is redundant in Si+1 on T by Lemma 3.2. In both cases ϕ is

redundant in S∞ by Lemma 4.1. 2

This theorem generalizes the following classical results:

Theorem 4.3 (Knuth and Bendix 1970) [51], (Huet 1981) [42], (Bachmair, Dershowitz and

Hsiang 1986) [6] If a derivation E0 `KB E1 `KB . . . Ei `KB . . . by the Knuth-Bendix completion

procedure does not fail (on a persistent unoriented equation) and is uniformly fair on the domain

T of all equations, then E∞ is a confluent term rewriting system.

Theorem 4.4 (Hsiang and Rusinowitch 1987) [38], (Bachmair, Dershowitz and Plaisted 1989)

[12] If a derivation E0 `UKB E1 `UKB . . . Ei `UKB . . . by the Unfailing Knuth-Bendix completion

procedure is uniformly fair on the domain T of all ground equations, then E∞ is a ground confluent

set of equations.

If E is ground confluent, ŝ↔∗E t̂ if and only if ŝ→∗E ◦←∗E t̂ and therefore E |= ∀x̄s ' t can be

decided by well-founded reduction by E. This introduces us to the topic of the next section.

4.2 Decision procedures

In this section we study the properties of derivations in a finite, saturated presentation. We shall

show that, under appropriate hypotheses, a saturated presentation is a decision procedure for its

theory. First, we define under which conditions a presentation is a decision procedure:

18



Definition 4.5 Let C be complete on domain T . A finite presentation S is a decision procedure

for Th(S) ∩ T , if for all ϕ0 ∈ T the derivation (S;ϕ0)`C(S;ϕ1)`C . . .`C(S;ϕi)`C . . . halts at

some stage k, k > 0, and ϕk = true if and only if ϕ0 ∈ Th(S).

The presentation S can be regarded as an algorithm, which, if interpreted by the procedure

C, decides the validity of sentences in T in the theory of S. Clearly, once termination of the

derivation is ensured, the correctness of the result is a consequence of the completeness of the

completion procedure. Therefore, the key property of a decision procedure is that all derivations

are guaranteed to halt regardless of the truth of the given target. Sufficient conditions for the

termination of derivations can be given, if it is possible to exclude the application of expansion

inference rules. This is exactly where the assumption of having a saturated presentation plays a

role:

Lemma 4.2 If a presentation S is saturated on T , then no expansion inference rule which is

proof-reducing on T applies to S.

Proof: if a proof-reducing expansion inference rule derives S′ from S, then, there is a ψ ∈ T
such that P >p Q for some P ∈ Π(S, ψ) and Q ∈ Π(S′, ψ). Since S is saturated on T , this is

impossible. 2

In other words, if the presentation is saturated, all derivations are made only of target inference

steps and contraction steps on the presentation. Termination conditions for these kinds of infe-

rences can be given by using well-founded orderings:

Definition 4.6 A target inference step (S;ϕ) ` (S;ϕ′) is target-reducing if ϕ � ϕ′. A contraction

inference step (S;ϕ) ` (S′;ϕ) is data-reducing if either it deletes a redundant sentence or it

replaces a sentence ψ in S by a sentence ψ′ such that ψ � ψ′.

An inference rule is target-reducing (data-reducing) if all the steps where it is applied are target-

reducing (data-reducing). For instance, the Simplification inference rule is target-reducing (data-

reducing if applied to the presentation) as shown in Examples 2.1 and 3.1.

Lemma 4.3 A derivation (S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . . where every step is either

target-reducing or data-reducing is guaranteed to halt.

Proof: let >r be the lexicographic combination of the multiset extension �mul and of � itself.

By the definition of target-reducing and data-reducing steps, we have that ∀i ≥ 0, (Si;ϕi) >r
(Si+1;ϕi+1). Since the ordering >r is well-founded, the derivation is guaranteed to halt. 2

We can now prove that a saturated set is a decision procedure:

Theorem 4.5 Let C be a complete completion procedure on domain T , such that all its target infe-

rence rules are target-reducing and all its contraction inference rules on the presentation are data-

reducing. Then a presentation S which is saturated on T is a decision procedure for T ∩ Th(S).

19



Proof: by Lemma 4.2, for all ϕ0 ∈ T the derivation from (S;ϕ0) may contain only target inference

steps and contraction steps on the presentation. By the hypotheses on the inference rules and

Lemma 4.3, such a derivation is guaranteed to halt at some stage k. Either ϕk = true or ϕk 6= true.

By completeness of C, ϕk is true if and only if ϕ0 ∈ Th(S). Therefore, S is a decision procedure

for Th(S) ∩ T . 2

If we also assume that no contraction rule applies to the presentation, then all derivations from S

are made only of target-reducing inference steps. In equational logic this corresponds to assume

that S is not only confluent, but also reduced, i.e. canonical [27]. Derivations made only of

target inference steps are traditionally called linear [19]. Therefore, a saturated set such that no

contraction rule applies to the presentation yields only linear and terminating derivations.

Finally, we can characterize a completion procedure as a generator of decision procedures:

Theorem 4.6 Let C =< I; Σ > be a completion procedure on domain T such that

• the procedure satisfies the monotonicity property,

• I is refutationally complete,

• Σ is uniformly fair and

• all the target inference rules are target-reducing and all the contraction inference rules on

the presentation are data-reducing.

For all presentations S0, if the limit S∞ of the derivation S0 `C S1 `C . . .`C Si `C . . . is finite, then

S∞ is a decision procedure for T ∩ Th(S0).

Proof: by Theorem 4.2, S∞ is saturated on T . S∞ is a decision procedure for T ∩ Th(S∞) by

Theorem 4.5. By monotonicity, Th(S∞) = Th(S0) and therefore S∞ is a decision procedure for

T ∩ Th(S0). 2

This theorem generalizes the classical results for equational logic and their extensions to Horn logic

with equality. In equational logic, the (Unfailing) Knuth-Bendix completion procedure generates

a (ground) confluent presentation that can be used to decide the validity of theorems in the form

∀x̄s ' t by well-founded simplification. Extensions to Horn logic with equality have been studied

in [52, 15, 30]. Given a complete completion procedure for Horn logic with equality, such as

those in [52, 15, 30], the issue is how to guarantee that derivations in a saturated and reduced

presentation are target-reducing and therefore terminating. Targets have the form B1 ∧ . . .∧Bm,

where each Bi is a ground positive literal. In [52] and [15] the problem is solved by imposing

special restrictions on the clauses in the saturated set:

Definition 4.7 (Kounalis and Rusinowitch 1988) [52] A Horn clause A :−B1 . . . Bn is ground-

preserving if the following two conditions hold:

• all variables occurring in a negated literal also occur in A and

20



• if A is an equation s ' t, either it can be oriented into a rewrite rule or s and t have the

same set of variables.

The conditions given in [15] are slightly different, but the purpose is basically the same: the

ground-preserving condition is designed to ensure that whenever an inference step is applied

between a clause in the saturated set and a ground target, the newly generated target is ground

as well. The resolution and paramodulation inference rules in [52] and [15] are ordered, i.e. they

are restricted by a given complete simplification ordering on terms and literals in such a way that

at each step a ground literal in the target is replaced by a set of smaller ground literals. Therefore

ordered resolution and ordered paramodulation steps between a ground-preserving clause and a

ground target are target-reducing. A saturated presentation containing only ground-preserving

clauses is then a decision procedure by Lemma 4.2, Lemma 4.3 and Theorem 4.5:

Theorem 4.7 (Kounalis and Rusinowitch 1988) [52], (Bachmair and Ganzinger 1990) [15] Let

S be a presentation in Horn logic with equality such that S is saturated on the domain of ground

clauses and all clauses in S are ground-preserving. Then S is a decision procedure for targets in

the form B1 ∧ . . . ∧Bm, where each Bi is a ground positive literal.

The requirement that all clauses are ground-preserving is quite strong. For instance the Horn

clause T (x, y) ∨ ¬R(x, z) ∨ ¬R(z, y) in the definition of the transitive closure T of a relation R is

not ground-preserving, because of the variable z. The restriction to ground-preserving clauses is

resemblant of the restriction to oriented equations for Knuth-Bendix completion. This restriction

is lifted in the Unfailing Knuth-Bendix procedure by assuming a complete simplification ordering

on terms and by designing a simplification rule that applies oriented instances of equations as

simplifiers. In this way, a “static” requirement on the presentation, that it contains only oriented

equations, is replaced by a “dynamic” property of the inferences, that use only oriented instances

of equations. A similar result has been obtained for Horn logic with equality in [30] by assuming

a complete simplification ordering � on terms and literals. There is no restriction on the clauses

in the presentation, but the target inference rules are designed in such a way that only decreasing

instances of clauses are applied:

Definition 4.8 (Dershowitz 1991) [30] A Horn clause l ' r :−p1 ' q1 . . . pn ' qn is decreasing

if for all ground substitutions σ, lσ � rσ, lσ � piσ, lσ � qiσ, 1 ≤ i ≤ n.

Whenever a decreasing instance of a clause in the saturated presentation is applied to a ground

target, the newly generated ground target is smaller, i.e. the derivation is target-reducing:

Theorem 4.8 (Dershowitz 1991) [30] A presentation saturated on the domain of ground clauses

in Horn logic with equality is a decision procedure for targets in the form B1 ∧ . . . ∧ Bm, where

each Bi is a ground positive literal.

The practical importance of the interpretation of completion procedures as generators of decision

procedures is limited by the observation that few theories have a finite saturated presentation.

For instance, the Maximal Unit Strategy of [29] is a complete method for Horn logic with equality.

21



(The name derives from the restriction that a unit clause resolves/paramodulates into a negative

literal which is maximal among all the negative literals in the clause.) The method is strongly

oriented toward forward reasoning, since it basically works by inferring facts from the given facts

and implications. Therefore, the saturated set is infinite in most cases, since it contains all the

true facts in the theory:

Theorem 4.9 If S∞ is the saturated limit of a derivation by the Maximal Unit Strategy, then

every non-unit clause is redundant in S∞.

Proof: the assumed domain is the domain of ground clauses. The proof is done by way of

contradiction. We assume that there are a ground target B1 ∧ . . . ∧ Bm and a minimal proof

P ∈ Π(S∞, B1 ∧ . . . ∧ Bm) where non-unit clauses occur as axioms. Without loss of generality,

we can assume that m = 1 and that a non unit clause A :−C1 . . . Cn is the first clause applied

in P , i.e. B1 = Aσ for some ground substitution σ. Let A :−C1 . . . Cn be the shortest clause

that can be applied to B1. This step generates the subgoal C1σ . . . Cnσ. Let C1σ be maximal in

C1σ . . . Cnσ. By completeness of the unit strategy, there exists a unit clause G ∈ S∞ such that

Gρ = C1σρ for some substitution ρ. The literals G and C1 have a common instance and therefore

there is an mgu ρ′ such that Gρ′ = C1ρ
′. Thus, the clause Aρ′ :−C2ρ

′ . . . Cnρ
′ can be generated in

one unit resolution step from G and A :−C1 . . . Cn. Since S∞ has been saturated by the Maximal

Unit Strategy, Aρ′ :−C2ρ
′ . . . Cnρ

′ is in S∞. Furthermore, there exists a substitution τ such that

Aρ′τ = B1, since ρ′ •≤ σρ. It follows that Aρ′ : −C2ρ
′ . . . Cnρ

′ can be applied at the place of

A :−C1 . . . Cn in P , contradicting the hypothesis that A :−C1 . . . Cn is the shortest applicable

clause. 2

The Maximal Unit Strategy represents a rather extreme case. But it remains that most theories

have infinite saturated presentations under most completion procedures. Therefore, the interpre-

tation of completion procedures as semidecision procedures is the most useful one in practice.

5 Completion procedures in equational logic

In the second part of this work we present in the framework developed so far some Knuth-

Bendix type completion procedures for equational logic: UKB, AC-UKB, UKB with Cancellation

Laws, Inequality Ordered-Saturation strategy and S-strategy. This presentation is new, because

these procedures had not been described before as procedures for theorem proving in a unified

framework based on target-oriented proof reduction. For instance, the Cancellation Laws [39] and

the S-strategy [38] appeared first in the transfinite-trees approach of [40], so that proof reduction

was not applied to them. Similarly, this is the first presentation in terms of target-oriented proof

reduction of the Inequality Ordered-Saturation strategy (IOS) [3, 4]. The latter is especially

relevant, because IOS is a refinement of UKB based on the target-oriented philosophy.

22



5.1 Unfailing Knuth-Bendix completion

The Unfailing Knuth-Bendix procedure [38, 12] is a semidecision procedure for equational theories.

A derivation by UKB has the form

(E0; ŝ0 ' t̂0)`UKB(E1; ŝ1 ' t̂1)`UKB . . . (Ei; ŝi ' t̂i)`UKB . . .

and it succeeds at stage k if ŝk and t̂k are identical. At each step of the completion process the

pair (Ei+1; ŝi+1 ' t̂i+1) is derived from the pair (Ei; ŝi ' t̂i) by applying one of the following

inference rules:

• Presentation inference rules:

– Simplification:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p[rσ]u ' q, l ' r}; ŝ ' t̂)

p|u = lσ p � p[rσ]u
p •�l ∨ q � p[rσ]u

– Deduction:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p ' q, l ' r, p[r]uσ ' qσ}; ŝ ' t̂)

p|u 6∈ X (p|u)σ = lσ

pσ 6� qσ, p[r]uσ
– Deletion:

(E ∪ {l ' l}; ŝ ' t̂)
(E; ŝ ' t̂)

– Functional subsumption:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ ' t̂)

(p ' q) •�(l ' r)

• Target inference rules:

– Simplification:

(E ∪ {l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ[rσ]u ' t̂)

ŝ|u = lσ ŝ � ŝ[rσ]u

– Deletion:
(E; ŝ ' ŝ})
(E; true)

We have already presented some of these inference rules in Examples 2.1, 3.1, 3.2 and 3.3. In

Simplification, the conditions p � p[rσ]u and ŝ � ŝ[rσ]u ensure that simplification is well-founded

and together with p •�l ∨ q � p[rσ]u that it is proof-reducing (see Lemma 5.1). In Deduction,

a critical pair p[r]uσ ' qσ is generated only if pσ 6� qσ, p[r]uσ, that is the two equations are

applied according to the simplification ordering. This makes Deduction proof-reducing (see Ex-

ample 3.2). Simplification is the most important among the above inference rules, because it

reduces dramatically the number and the size of the generated equations. If Simplification is not

applied, Deduction may rapidly saturates the memory space with equations, making impossible

to reach a proof in reasonable time. Thus, a search plan for UKB should be a Simplification-first

plan.

We characterize the UKB procedure as a completion procedure by using the ordering >u
introduced in Example 2.3:

23



Lemma 5.1 The presentation inference rules of the UKB procedure are reducing.

Proof: we show that Deduction and Simplification are proof-reducing, Deletion and Functional

subsumption delete redundant equations:

• the proof for Deduction was given in Example 3.2.

• A Simplification step where an equation p ' q is simplified to p[rσ]u ' q by an equation

l ' r, affects a minimal proof by replacing a step s↔p'q t by two steps s→l'r v↔p[rσ]u'q t.

– If t � s, we have {(t, q, s)}>emul{(s, l, v), (t, q, v)} since t � s and s � v.

– If s � t,
∗ if p •�l, we have

· if t � v, {(s, p, t)}>emul{(s, l, v), (t, q, v)} since p •�l and s � t,
· if v � t, {(s, p, t)}>emul{(s, l, v), (v, p[rσ]u, t)} since p •�l and s � v;

∗ if p
•
= l and q � p[rσ]u, t � v follows from q � p[rσ]u by stability and monotonicity

of � and we have {(s, p, t)}>emul{(s, l, v), (t, q, v)} since t � v and s � t.

• A trivial equation l ' l is redundant: no minimal proof contains a step s↔l'l s since the

subproof given by the single term s is smaller: {(s, l, s)}>emul{ε}, where the empty triple

ε is the proof complexity of s.

• The proof for Functional subsumption was given in Example 3.3. 2

Lemma 5.2 The target inference rules of the UKB procedure are strictly proof-reducing.

Proof: the proof for Simplification was given in Example 3.1. For a Deletion step we have

{ŝ, ŝ}�mul{true}, since true is smaller than any term. 2

We can then show that UKB is a completion procedure:

Theorem 5.1 The Unfailing Knuth-Bendix procedure is a completion procedure on the domain

T of all ground equations.

Proof: for all equational presentations E0 and for all ground targets ŝ0 ' t̂0 the derivation

(E0; ŝ0 ' t̂0)`UKB(E1; ŝ1 ' t̂1)`UKB . . . (Ei; ŝi ' t̂i)`UKB . . .

has the soundness, relevance and reduction properties. Soundness and relevance were proved

among others in [42, 6, 8]. Reduction follows from Lemma 5.1 and Lemma 5.2. 2

If a fair search plan is provided, the UKB procedure is a semidecision procedure for equational

theories:

Theorem 5.2 (Hsiang and Rusinowitch 1987) [38], (Bachmair, Dershowitz and Plaisted 1989)

[12] An equation ∀x̄s ' t is a theorem of an equational theory E if and only if the Unfailing

Knuth-Bendix procedure derives true from (E; ŝ ' t̂).

24



5.2 Extensions: AC-UKB and cancellation laws

Many equational problems involve associative and commutative (AC) operators. An AC func-

tion f satisfies the equations f(f(x, y), z) ' f(x, f(y, z)) (associativity) and f(x, y) ' f(y, x)

(commutativity). Handling associativity and commutativity as any other equation turns out to

be very inefficient, since commutativity may generate a very high number of equations through

the Deduction inference rule. Also, many instances of commutativity may not be ordered by the

chosen simplification ordering, so that Simplification does not apply as often as it is desirable.

The efficiency of the UKB strategy can be greatly improved if associativity and commutativity

are built in the inference rules. The UKB procedure with associativity and commutativity built-

in is called AC-UKB [2, 61, 56, 31, 44, 11, 27, 46]. If AC denotes a set of associativity and

commutativity axioms, two terms s and t are equal modulo AC if s ' t is a theorem of AC,

written s =AC t. In the AC-UKB procedure, the inference rules of UKB are modified in such

a way that any two terms which are equal modulo AC are regarded as identical. The first

modification is to require that the complete simplification ordering on terms � commutes with

=AC : for any two terms s and t, if there is a third term r such that s =AC r and r � t, there is

also a term r′ such that s � r′ and r′ =AC t. Secondly, matching and unification are replaced by

AC-matching and AC-unification: s matches a term t modulo AC if there is a substitution σ such

that sσ =AC t and s and t unify modulo AC if there is a substitution σ such that sσ =AC tσ.

Finally, the strict encompassment ordering •� is replaced by the ordering •�AC , that is s •�ACt if

and only if s •�r and r =AC t for some term r. The set of inference rules of the UKB procedure

is then modified as follows:

• Presentation inference rules:

– Simplification:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p[rσ]u ' q, l ' r}; ŝ ' t̂)

p|u =AC lσ p � p[rσ]u
p •�AC l ∨ q � p[rσ]u

– Deduction:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p ' q, l ' r, p[r]uσ ' qσ}; ŝ ' t̂)

p|u 6∈ X (p|u)σ =AC lσ

pσ 6� qσ, p[r]uσ
– Extension:

(E ∪ {f(p, q) ' r}; ŝ ' t̂)
(E ∪ {f(p, q) ' r, f(p, q, z) ' f(r, z)}; ŝ ' t̂) f is AC f(p, q) 6� r

– Deletion:
(E ∪ {l ' l}; ŝ ' t̂)

(E; ŝ ' t̂)
– Functional subsumption:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ ' t̂)

(p ' q) •�AC(l ' r)

• Target inference rules:

– Simplification:

(E ∪ {l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ[rσ]u ' t̂)

ŝ|u =AC lσ ŝ � ŝ[rσ]u

25



– Deletion:
(E; ŝ ' ŝ)
(E; true)

This set of inference rules is obtained from the set of inference rules of the UKB procedure by

replacing identity by equality modulo AC as explained above and by adding a new inference

rule, called Extension [56]. The Extension inference rule is a specialized version of the Deduction

inference rule, designed to compute superpositions of equations in E onto associativity axioms.

Namely, if f(p, q) ' r is an equation in E, f is AC and f(p, q) 6� r, the equation f(p, q) ' r

trivially superposes onto the associativity axiom f(f(x, y), z) ' f(x, f(y, z)), yielding the critical

pair f(p, f(q, z)) ' f(r, z), written in flattened form as f(p, q, z) ' f(r, z). These critical pairs

are called extended rules. Computing the extended rules is sufficient to ensure completeness of

the AC-UKB procedure: no other critical pairs between E and AC need to be computed [56].

The UKB or AC-UKB procedure can be further improved by adding inference rules for the

cancellation laws. A function f is right cancellable if it satisfies the right cancellation law

∀x, y, z f(x, y) = f(z, y) ⊃ x = z

The left cancellation law is defined symmetrically. Cancellation laws may reduce considerably the

size of the equations. They are implemented as inference rules as follows [39]:

Cancellation 1:

(E ∪ {f(p, u) ' f(q, v)}; ŝ ' t̂)
(E ∪ {f(p, u) ' f(q, v), pσ ' qσ}; ŝ ' t̂)

uσ = vσ

Cancellation 2:

(E ∪ {f(d1, d2) ' y}; ŝ ' t̂)
(E ∪ {f(d1, d2) ' y, d1σ ' x}; ŝ ' t̂)

y ∈ V (d1) σ = {y 7→ f(x, d2)}
y 6∈ V (d2) x is a new variable

Cancellation 3:

(E ∪ {f(p1, q1) ' r1, f(p2, q2) ' r2}; ŝ ' t̂)
(E ∪ {f(p1, q1) ' r1, f(p2, q2) ' r2, p1σ ' p2σ}; ŝ ' t̂)

q1σ = q2σ r1σ = r2σ

Cancellation 4:

(E ∪ {f(p, u) ' f(q, u)}; ŝ ' t̂)
(E ∪ {p ' q}; ŝ ' t̂)

where the function f is right cancellable. In Cancellation 2, if the substitution σ = {y 7→ f(x, d2)}
is applied to the given equation, it becomes f(d1σ, d2) ' f(x, d2), since y does not occur in d2.

The cancellation law reduces this equation to d1σ ' x. Cancellation 4 is not necessary for the

purpose of completeness, since the same effect can be obtained by a step of Cancellation 1 with

empty mgu followed by a step of Functional subsumption. It is added to improve the efficiency.

In order to prove that the UKB procedure with the cancellation inference rules is a completion

procedure, we need to prove that the Cancellation inference rules are proof-reducing. We adopt

as proof ordering a slight modification of >u, which we call >uc: a ground equational step s ' t

26



justified by an equation l ' r has complexity measure (s, lσ, l, t), if s is c[lσ], t is c[rσ] and s � t.
Complexity measures are compared by the lexicographic combination >ec of the orderings �, •�,
•� and �. Proofs are compared by the lexicographic combination >uc of the multiset extensions

�mul and >ecmul. The proof of Lemma 5.1 is unaffected if >UKBC replaces >UKB.

Lemma 5.3 The Cancellation inference rules are proof-reducing.

Proof: we assume that (Ei; ŝi ' t̂i)`UKB(Ei+1; ŝi ' t̂i) is a Cancellation step:

1. An application of the rule Cancellation 1 to an equation f(p, u) ' f(q, v) affects any minimal

proof in Ei which contains a step s↔ t such that s = c[f(p, u)τ ], t = c[f(q, v)τ ] and τ •≥ σ,

where •≥ is the subsumption ordering and σ is the mgu such that uσ = vσ of the application

of Cancellation 1. The step s↔f(p,u)'f(q,v) t has complexity (s, f(p, u)τ, f(p, u), t), if s � t.
In the minimal proofs in Ei+1 the step s↔f(p,u)'f(q,v) t is replaced by a step s↔pσ'qσ t

justified by the new equation pσ ' qσ generated by the application of Cancellation 1. The

step s↔pσ'qσ t has complexity (s, pτ, pσ, t). Since f(p, u)τ •�pτ , (s, f(p, u)τ, f(p, u), t) >ec

(s, pτ, pσ, t) follows. A symmetric argument applies if t � s.

2. An application of the rule Cancellation 2 to an equation f(d1, d2) ' y affects any mini-

mal proof in Ei which contains a step s↔ t such that s = c[f(d1, d2)τ ], t = c[yτ ] and

τ •≥ σ, where σ is {y 7→ f(x, d2)}. Since y ∈ V (d1), we have f(d1, d2)τ � yτ by the

subterm property and therefore s � t by monotonicity, so that the step s↔ t has complex-

ity (s, f(d1, d2)τ, f(d1, d2), t). In the minimal proofs in Ei+1 the step s↔ t is replaced by

a step s↔d1σ'x t justified by the new equation d1σ ' x generated by the application of

Cancellation 2. The step s↔d1σ'x t has complexity (s, d1τ, d1σ, t). Since f(d1, d2)τ •�d1τ ,

(s, f(d1, d2)τ, f(d1, d2), t) >ec (s, d1τ, d1σ, t) follows.

3. An application of the rule Cancellation 3 to two equations f(p1, q1) ' r1 and f(p2, q2) '
r2 affects any minimal proof in Ei which contains a subproof s↔ u↔ t such that s =

c[f(p1, q1)τ ], u = c[r1τ ], t = c[f(p2, q2)τ ] and τ •≥ σ, where σ is the mgu such that q1σ = q2σ

and r1σ = r2σ of the application of Cancellation 3. It follows that q1τ = q2τ and r1τ = r2τ .

The subproof s↔ u↔ t is replaced in any minimal proof in Ei+1 by a single step s↔p1σ'p2σ t

justified by the new equation p1σ ' p2σ generated by the application of Cancellation 3.

(a) If s � t � u, the subproof s↔ u↔ t has complexity {(s, f(p1, q1)τ, f(p1, q1), u), (t, f(p2,

q2)τ, f(p2, q2), u)} and the step s↔p1σ'p2σ t has complexity (s, p1τ, p1σ, t). Since f(p1,

q1)τ •�p1τ , the result follows. A symmetric argument applies if t � s � u.

(b) If s � u � t, the subproof s↔ u↔ t has complexity {(s, f(p1, q1)τ, f(p1, q1), u), (u, r1τ,

r1, t)} and the step s↔p1σ'p2σ t has complexity (s, p1τ, p1σ, t). Since f(p1, q1)τ •�p1τ ,

the result follows. A symmetric argument applies if t � u � s.
(c) If u � s � t, the subproof s↔ u↔ t has complexity {(u, r1τ, r1, s), (u, r1τ, r1, t)} and

the step s↔p1σ'p2σ t has complexity (s, p1τ, p1σ, t). Since u � s, the result trivially

follows. A symmetric argument applies if u � t � s. 2

Completeness of the inference rules for cancellation is proved in [39]. Most of the experimental

results reported in [2, 1, 16, 3, 5] are obtained by AC-UKB with the inference rules for cancellation.

27



5.3 The Inequality Ordered-Saturation strategy

The UKB procedure is complete, but sometimes it is not sufficiently efficient. The main cause

of inefficiency of UKB, from a theorem proving point of view, is that it often computes many

critical pairs which do not help in proving the target. Therefore, our goal is to reduce the number

of critical pairs generated or, equivalently, to perform less forward reasoning and more backward

reasoning. For the forward reasoning part, a possible approach to the problem consists in designing

search plans which generate first the critical pairs that are estimated to be likely to reduce the

proof of the target. Such search plans are based on heuristical criteria that measure how useful

a critical pair is expected to be with respect to the task of simplifying the goal. Some examples

are given in [3, 4].

For the backward reasoning part, we observe that if the target ŝi ' t̂i is fully simplified

with respect to Ei, ŝi ' t̂i is minimal in the ordering �mul among all the ground equations

E-equivalent to the input target s0 ' t0, where E =
⋃

0≤j≤iEj . If a Simplification-first plan is

adopted, UKB always maintains a minimal target. Therefore, it would seem that no improvement

can be obtained on the target side. However, this is not the case. The notion of a minimal target

is relative to the assumed partially ordered set (poset) of targets. If we assume that the poset

of ground equalities is ordered by �mul, then ŝi ' t̂i is minimal among the ground equations

E-equivalent to the input target s0 ' t0. The situation changes if we assume as poset of targets

the poset of disjunctions of ground equalities ordered by an ordering �′mul defined as follows:

N1�′mulN2 if min(N1)�mulmin(N2), where N1 and N2 are disjunctions of ground equalities and

min(N) is the smallest equality in N according to �mul.

We show why the backward reasoning part of UKB is not guaranteed to compute a minimal

target if the poset of disjunctions is used. Let (Ei; ŝi ' t̂i) be the current stage in an UKB

derivation and l ' r be an un-orientable equation in Ei, such that ŝi|u = lσ for some position u

and substitution σ, but ŝi ≺ ŝi[rσ]u. In other words, l matches a subterm of ŝi but Simplification

does not apply because ŝi would not be replaced by a smaller term. However, we assume that the

target ŝi[rσ]u ' t̂i is generated nonetheless and that by simplification it reduces to an equation

which is smaller than ŝi ' t̂i, that is ŝi[rσ]u→∗Ei
ŝ′, t̂i→∗Ei

t̂′ and {ŝ′, t̂′}≺mul{ŝi, t̂i}. If these

conditions hold, we have that the disjunction ŝi ' t̂i∨ ŝ′ ' t̂′ is smaller than the disjunction given

by ŝi ' t̂i alone in the poset of disjunctions defined above. Therefore, if we assume the poset of

disjunctions as posets of targets, it is not true that UKB maintains a minimal target.

The intuition behind the choice of considering disjunctions of equalities rather than equalities

is that if we consider more than one target equality, we have a greater chance to find a short

proof. In order to work on disjunctions of equalities, we need to add to the UKB procedure an

expansion inference rule, so that the target is eventually expanded into a disjunction of ground

equalities. Such an expansion inference rule must satisfy the relevance requirement, so that

proving the validity of any of the equalities in the disjunction is equivalent to proving the input

target s0 ' t0. Also, the application of such a rule must be restricted, in order to avoid the

generation of too many target equalities, which may slow down the search for a solution. This

new inference rule is superposition of an un-orientable equation onto a target equality ŝ ' t̂ to

generate a new target equality. A newly generated target equality is first simplified as much as

28



possible and then it is kept only if it is not greater than any already existing target:

Ordered saturation:

(E ∪ {l ' r};N ∪ {ŝ ' t̂})
(E ∪ {l ' r};N ∪ {ŝ ' t̂, ŝ′ ' t̂′})

ŝ|u = lσ ŝ[rσ]u→∗E ŝ′, t̂→∗E t̂′

{ŝ′, t̂′} 6 �mul{ĝ, d̂}, ∀ĝ ' d̂ ∈ N ∪ {ŝ ' t̂}

Ordered saturation applies if ŝ ≺ ŝ[rσ]u, since if ŝ � ŝ[rσ]u holds, simplification would apply. If

the ordering � is total on ground terms, the condition {ŝ′, t̂′} 6 �mul{ĝ, d̂}, ∀ĝ ' d̂ ∈ N ∪ {ŝ ' t̂}
becomes {ŝ′, t̂′}≺mul{ĝ, d̂}, ∀ĝ ' d̂ ∈ N ∪ {ŝ ' t̂}. We have given the inference rule for the

more general case: in fact, the ordering is not assumed to be total in [3], where a version of this

inference rule first appeared. The target equality ŝ′ ' t̂′ might have a shorter proof than the

other target equalities. We do not know which one has the shortest proof. We keep all of them

to broaden our chance of reaching the proof as soon as possible.

In addition, we need to modify the Deletion inference rule, since the computation halts suc-

cessfully as soon as an equality in the disjunction is reduced to a trivial equality:

Deletion:
(E;N ∪ {ŝ ' ŝ})

(E; true)

The procedure obtained by adding Ordered saturation to UKB and by modifying Deletion as

above, is called the Inequality Ordered-Saturation strategy (IOS) [3]. A derivation by the IOS

strategy has the form

(E0;N0)`IOS(E1;N1)`IOS . . .`IOS(Ei;Ni)`IOS . . . ,

where the set N0 contains the initial goal ŝ0 ' t̂0 and at stage i, Ni is the current set of target

equalities. The derivation succeeds at stage k if Nk contains a target ŝi ' t̂i such that ŝi and t̂i
are identical and the clause in Nk reduces to true.

In order to show that the IOS strategy is a completion procedure, we assume that the ordering

� is total on ground terms, coherently with the treatment of the other completion procedures for

equational logic. Then, we order proofs as follows: the proof of a disjunction N is represented by

the proof of the smallest equality in N , i.e. min(N), and proofs of equalities are ordered by >u.

Lemma 5.4 The Ordered saturation inference rule under a total ordering on terms is strictly

proof-reducing.

Proof: if (Ei;Ni)`IOS(Ei;Ni+1) is an Ordered saturation step, then Ni ⊂ Ni+1 and therefore

min(Ni)�mulmin(Ni+1). Since the ordering � is total on ground terms, we have min(Ni)�mul
min(Ni+1) and Ordered saturation is strictly proof-reducing. 2

Theorem 5.3 The Inequality Ordered-Saturation strategy is a completion procedure.

Proof: it follows from Theorem 5.1 and Lemma 5.4. 2

The IOS strategy has been implemented and observed to perform better than the UKB procedure

29



[3]. In practice, few target equalities are kept, so that the overhead of handling them is negligible

with respect to the advantage of keeping more than one target.

5.4 The S-strategy

The S-strategy [38] is an extension of the UKB procedure to the logic of equality and inequality.

A presentation is a set of equations E0 and a theorem ϕ is a sentence Q̄x̄ s0 ' t0 ∨ . . . ∨ sn ' tn,

where Q̄x̄ is any sequence of quantifier-variable pairs. A theorem ϕ in this form is transformed

into a target N0 = s0 ' t0∨ . . .∨sn ' tn, where all variables are implicitly existentially quantified,

by replacing all the universally quantified variables by constants and by dropping the quantifiers.

If ϕ is ∀x̄s0 ' t0, N0 is ŝ0 ' t̂0 and the S-strategy reduces to the UKB procedure. A computation

has the form

(E0;N0)`S(E1;N1)`S . . .`S(Ei;Ni)`S . . . ,

where ∀i ≥ 0, Ei is a set of equalities and Ni is a disjunction of target equalities with existentially

quantified variables. A derivation succeeds at stage k if Nk contains a target si ' ti whose sides

are unifiable. The set of inference rules of UKB is modified as follows:

• Presentation inference rules:

– Simplification:

(E ∪ {p ' q, l ' r};N)
(E ∪ {p[rσ]u ' q, l ' r};N)

p|u = lσ p � p[rσ]u
p •�l ∨ q � p[rσ]u

– Deduction:

(E ∪ {p ' q, l ' r};N)
(E ∪ {p ' q, l ' r, p[r]uσ ' qσ};N)

p|u 6∈ X (p|u)σ = lσ

pσ 6� qσ, p[r]uσ
– Deletion:

(E ∪ {l ' l};N)
(E;N)

– Functional subsumption:
(E ∪ {p ' q, l ' r};N)

(E ∪ {l ' r};N)
(p ' q) •�(l ' r)

• Target inference rules:

– Simplification:
(E ∪ {l ' r};N ∪ {s ' t})

(E ∪ {l ' r};N ∪ {s[rσ]u ' t}) s|u = lσ s � s[rσ]u

– Deduction:

(E ∪ {l ' r};N ∪ {s ' t})
(E ∪ {l ' r};N ∪ {s ' t, s[r]uσ ' tσ})

s|u 6∈ X (s|u)σ = lσ

sσ 6� s[r]uσ
– Deletion:

(E;N ∪ {s ' t})
(E; true)

sσ = tσ

30



The Deduction inference rule applies also to target inequalities. In the second case no ordering

based condition applies to the inequality. The Deletion rule for the target is modified because

the target contains variables: a contradiction is detected when the two sides of a target equality

unify.

In order to measure the complexity of proofs of disjunctions, we observe the following: a target

N is a theorem of E if and only if E ∪ ¬N is unsatisfiable, where N is a disjunction of equations

s0 ' t0 ∨ . . .∨ sn ' tn with existentially quantified variables and therefore ¬N is a conjunction of

inequalities s0 6= t0∧. . .∧sn 6= tn with universally quantified variables. By the Herbrand Theorem

[19], the set E∪¬N is unsatisfiable if and only if there is a finite set of ground instances of clauses

in E ∪ ¬N which is unsatisfiable. Since ¬N is a set of inequalities with universally quantified

variables, an unsatisfiable set of ground instances of clauses in E ∪ ¬N needs to contain just one

ground inequality: let Ê ∪ {ŝ 6= t̂} be the smallest such set with respect to the ordering �mul.
Since � is total on ground terms, there exists a smallest set. Then the minimal proof of N in E

is represented by the minimal ground equational proof of ŝ ' t̂ in Ê. Ground equational proofs

are ordered by the ordering >u. This approach is correct if to every inference step on (Êi; ŝi ' t̂i)
corresponds an inference steps on (Ei;Ni). This is proved by the Paramodulation Lifting Lemma

for S-strategy. We recall that a ground substitution is E-irreducible if it does not contain any

pair {x 7→ t} such that t can be simplified by an equation in E:

Lemma 5.5 (Peterson 1983) [57], (Hsiang and Rusinowitch 1987) [40] If σ is a ground, E-

irreducible substitution, then for all inference rules f of S-strategy, if (Eσ; sσ ' tσ)`f (E′; s′ ' t′),
then (E; s ' t)`f (E′′; s′′ ' t′′), where E′ and s′ ' t′ are ground instances of E′′ and s′′ ' t′′,

respectively.

Since Ê ∪ {ŝ ' t̂} is the smallest unsatisfiable set, Ê ⊆ Eσ and ŝ ' t̂ ∈ Nσ for an E-irreducible

substitution σ. Therefore, Lemma 5.5 applies and to every inference step on (Ê; ŝ ' t̂) corresponds

an inference step on (E;N). We can finally state the following theorem:

Theorem 5.4 The S-strategy is a completion procedure on the domain T of all ground equalities.

Proof: soundness and relevance were proved in [38]. By the above discussion on the complexity of

proofs of disjunctions, an inference step on (E;N) is proof-reducing if it is proof-reducing on the

minimal proof of ŝ ' t̂ in Ê. Thus, the inference rules of S-strategy are proof-reducing if they are

proof-reducing on ground equational proofs with respect to the ordering >u. This follows from

Lemma 5.1 and Lemma 5.2, since Deduction on the target is just Simplification if the target is

ground. 2

If a fair search plan is provided, the S-strategy is is a semidecision procedure for theories in the

logic of equality and inequality:

Theorem 5.5 (Hsiang and Rusinowitch 1987) [38] A sentence Q̄x̄ s0 ' t0 ∨ . . . ∨ sn ' tn is

a theorem of an equational theory E if and only if the S-strategy derives true from (E; s0 '
t0 ∨ . . . ∨ sn ' tn).

31



6 Semidecision procedures for disproving inductive theorems

The Knuth-Bendix completion procedure has also been applied to disprove inductive theorems in

equational theories. This method has been called inductionless induction, proof by consistency

or proof by the lack of inconsistency [55, 33, 43, 54, 32, 49, 50, 9, 45] and extensions to Horn

logic with equality are explored in [52]. This application of completion has also been viewed

traditionally as a special side-effect of the generation of confluent systems. In this section we

show that a completion procedure for disproving inductive theorems is a semidecision procedure.

This adds to the generality of our approach based on the semidecision concept, by showing that

it covers also inductionless induction. Furthermore, it gives to inductionless induction first class

status, showing that it is a semidecision procedure like all other completion procedures, rather

than an almost accidental side-effect of generating confluent systems.

From a technical point of view, this section has two new contributions. The first one is

the construction of the target of an inductionless induction derivation. Identifying the target is

necessary to describe inductionless induction as a semidecision process. While it is not technically

difficult, this task is not trivial, because the given inductive conjecture is being disproved, not

proved, and therefore it is not the target. The second technical contribution is related to the

concept of fairness. The classical results on inductionless induction assumed uniform fairness, so

that proof reduction was applied to all the ground proofs. We identify the set of minimal ground

proofs of the target in an inductionless induction derivation: such set is smaller than the set of all

the ground proofs. Similar to refutational theorem proving, also inductionless induction simply

requires that one of the proofs of the target be reduced. Therefore, fairness replaces uniform

fairness and not all critical pairs need to be generated when disproving inductive theorems. A

completion procedure for inductionless induction which does not compute all critical pairs was

proposed in [32]. We conclude this section by re-formulating the result of [32] as a concrete

instance of our general approach.

A clause ϕ is an inductive theorem of S, written S |=Ind ϕ, if and only if for all ground

substitutions σ, ϕσ ∈ Th(S). We denote by Ind(S) the set of all the inductive theorems of S,

Ind(S) = {ϕ| S |=Ind ϕ}, by GTh(S) the set of all the ground theorems of S, GTh(S) = {ϕ| ϕ ∈
Th(S), ϕ ground} and by G(ϕ) the set of all the ground instances of ϕ, G(ϕ) = {ϕσ| σ ground}.
The set Ind(S) is not semidecidable. Even if we have a decision procedure for G(ϕ)∩GTh(S), we

still cannot prove that ϕ is an inductive theorem, because the set G(ϕ) is infinite. However, the

complement problem, that is proving that ϕ is not an inductive theorem of S, is semidecidable

in certain theories. If ϕ 6∈ Ind(S), then there is a ground instance ϕσ such that ϕσ 6∈ GTh(S).

Therefore GTh(S∪{ϕ}) 6= GTh(S), since ϕσ ∈ GTh(S∪{ϕ}) for all ground instances ϕσ. Thus,

we can prove that ϕ is not an inductive theorem of S by proving the following target:

Φ0 = ∃σ ground ∃ψ ∈ S ∪ {ϕ} such that ψσ ∈ GTh(S ∪ {ϕ})−GTh(S).

If there exists an oracle O to decide such target, a completion procedure C =< I; Σ;O > equipped

with the oracle O will be a semidecision procedure for disproving inductive theorems. A derivation

has the form

(S ∪ {ϕ}; Φ0)`C(S1; Φ1)`C . . . (Si; Φi)`C . . .,

32



where at each step the target is

Φi = ∃σ ground ∃ψ ∈ Si such that ψσ ∈ GTh(Si)−GTh(S).

No inference step applies to the target: the procedure takes as input the presentation S∪{ϕ} given

by the original presentation and the inductive conjecture and it proceeds by applying inference

rules to the presentation until it obtains a presentation Sk such that the oracle applied to Sk
answers positively and replaces Φk by true. In the equational case, the target is

Φi = ∃σ ground ∃si ' ti ∈ Ei such that (si ' ti)σ ∈ GTh(Ei)−GTh(E).

Oracles to decide Φi are known if the input set of equations E is ground confluent. Under this

hypothesis, (si ' ti)σ ∈ GTh(Ei) −GTh(E) if and only if there are E-irreducible terms s and t

such that siσ→∗E s, tiσ→∗E t and s ' t ∈ GTh(Ei). Therefore, we can restrict our attention to

ground E-irreducible terms.

A first oracle was given in [43] for equational presentations satisfying the principle of definition.

The signature F of E is given by the disjoint union of a set C of constructors and a set D of

defined symbols. The set T (C) of all ground constructor terms is free and all function symbols

in D are completely defined on C, that is for all ground term t ∈ T (F ), there exists a unique

ground constructor term t′ ∈ T (C) such that t↔∗E t′. If a presentation E satisfies the principle of

definition, the ground E-irreducible terms are the ground terms made only of constructor symbols.

Therefore, Φi is true if and only if there are two ground constructor terms t1 and t2 such that

t1↔∗Ei
t2. The following inference rules implement this test [43]:

• Disproof 1:

(E ∪ {f(t1 . . . tn) ' g(s1 . . . sn)}; Φ)
(E ∪ {f(t1 . . . tn) ' g(s1 . . . sn)}; true) f, g ∈ C, f 6= g

• Disproof 2:

(E ∪ {f(t1 . . . tn) ' x}; Φ)
(E ∪ {f(t1 . . . tn) ' x}; true) f ∈ C

• Decompose:

(E ∪ {f(t1 . . . tn) ' f(s1 . . . sn)}; Φ)
(E ∪ {t1 ' s1 . . . tn ' sn}; Φ′)

f ∈ C

where Φ′ is Φi for Ei = E ∪ {t1 ' s1 . . . tn ' sn}. The two Disproof inference rules detect that

equalities between constructor terms have been derived. By the principle of definition, the theory

of E0 does not include such equalities. They are a consequence of adding the inductive conjecture

s ' t, which is therefore disproved. The Decompose rule is added for the purpose of efficiency.

It replaces an equation f(t1 . . . tn) ' f(s1 . . . sn), where f is a constructor, by the equations

t1 ' s1 . . . tn ' sn: since f is a constructor, by the principle of definition two terms f(t1 . . . tn)

and f(s1 . . . sn) may be equal only if their arguments are equal.

Theorem 6.1 (Huet and Hullot 1982) [43], (Bachmair 1988) [9] If E is a ground confluent equa-

tional presentation, satisfying the principle of definition, the Unfailing Knuth-Bendix completion

procedure enriched with the inference rules Decompose, Disproof 1 and Disproof 2 is a semideci-

sion procedure for the complement of Ind(E).

33



A more general oracle was proposed in [45] for the Knuth-Bendix completion procedure and

extended to the UKB procedure in [9]. This test is based on ground reducibility: a term t is

ground E-reducible if for all ground substitutions σ, tσ is E-reducible. Ground E-reducibility is

decidable [58] only if E is a ground confluent rewrite system. Therefore, the test in [45, 9] applies

only if the input presentation E is ground confluent and all the input equations can be oriented

into rewrite rules. We assume that E has these properties and we call it R. An equation l ' r

is ground R-reducible if for all ground substitutions σ, such that lσ and rσ are distinct, either

lσ or rσ is R-reducible. If an equation l ' r which is not ground R-reducible is derived from

R∪{s ' t} at stage i, there is a ground instance lσ ' rσ of the equation such that lσ and rσ are

distinct and R-irreducible, but lσ ' rσ ∈ GTh(Ei). This means that Φi is true and the inductive

conjecture is disproved. The following inference rule implements this test [9]:

Disproof 3:

(E ∪ {l ' r}; Φ)
(E ∪ {l ' r}; true) l ' r is not ground R− reducible

Theorem 6.2 (Jouannaud and Kounalis 1986) [45], (Bachmair 1988) [9] If R is a ground conflu-

ent rewrite system, the Unfailing Knuth-Bendix completion procedure enriched with the inference

rule Disproof 3 is a semidecision procedure for the complement of Ind(R).

Both Theorem 6.1 and Theorem 6.2 assume a uniformly fair search plan on the domain of all

ground equations. The ground reducibility test is not a practical solution to the problem of

inductive theorem proving, because its complexity is very high. Furthermore, most results about

the UKB procedure for disproving inductive conjectures have been obtained in contexts where

completion was considered a generator of confluent systems and the capability of disproving

inductive conjectures was regarded as a side effect. This explains why a uniformly fair search

plan was assumed. On the other hand, disproving an inductive conjecture is a semidecision

process of a specific target. Therefore, only a proof of the target needs to be reduced. We define

the set of the minimal proofs of the target Φi as follows:

Π(Si,Φi) = Π(Si,min{ψσ| ψ ∈ Si, ψσ ∈ GTh(Si)−GTh(S)}),

that is a minimal proof of Φi is given by a minimal proof of the smallest ground instance of some

clause in Si which is a theorem in Si but not in S. In the equational case, a completion procedure

which eventually generates a ground confluent set of equations, is able to reduce the proofs of all

ground theorems and therefore the proof of the target. However, this is not necessary. Since a

proof of the target is a proof of the smallest ground theorem which is not a theorem of the original

presentation, we can restrict our attention to a smaller set of ground theorems:

Definition 6.1 (Fribourg 1986) [32] Given a ground confluent presentation E, a set of substi-

tutions H is E-inductively complete if for all ground substitutions ρ, there exist a substitution

σ ∈ H and a ground substitution τ such that ρ→∗E στ .

For instance, if E includes the axioms 0+x ' x and succ(x)+y ' succ(x+y), a set of substitutions

H is E-inductively complete if it contains two substitutions σ1 and σ2 such that {x 7→ 0} ∈ σ1

34



and {x 7→ succ(y)} ∈ σ2. Indeed, all ground terms reduce either to 0 or to some term succn(0), so

that a set of substitutions which covers the instances x 7→ 0 and x 7→ succ(y) cover all instances.

We are interested in minimal E-inductively complete sets of substitutions. All such sets are

equivalent for our purposes, since they all have the property of covering all the ground substitu-

tions. We denote by HE one such set and by IT E the domain of all the ground equations which

are instances of substitutions in HE , that is IT E = {(l ' r)στ | σ ∈ HE , (l ' r)στ is ground}.
A minimal proof of the target is a minimal proof of the smallest ground theorem which is not

a theorem of the original presentation. This smallest ground theorem is in IT E and therefore

reducing the proofs of the theorems in IT E is sufficient to guarantee that the proof of the target

is reduced. This result was first proved in [32] for the application of Knuth-Bendix completion to

disprove inductive theorems in equational theories:

Theorem 6.3 (Fribourg 1986) [32] A completion procedure C =< I; Σ;O > on the domain IT E,

with complete inference rules and fair search plan is a semidecision procedure for the complement

of Ind(E) for all equational presentations E, for which the oracle O is computable.

As a consequence, the Deduction inference rule of UKB can be restricted considerably, while still

preserving the completeness of UKB as semidecision procedure to disprove inductive conjectures

[32]. At stage i of the derivation, superpositions on p ' q at position u are performed only

if the set of mgus {σ|lσ = (p|u)σ, l ' r ∈ Ei} is E-inductively complete. A position u with

this property is called completely superposable in [32]. Furthermore, for all equations p ' q,

generated during the derivation, it is sufficient to perform superpositions on just one completely

superposable position in p ' q. In other words, a search plan which selects just one completely

superposable position in every equation is fair. These modifcations require an algorithm to detect

the completely superposable positions. An equivalent characterization is the following: a position

u in p is completely superposable if for all ground instances (p|u)ρ there is an equation l ' r in E

such that (p|u)ρ = lσ and lσ � rσ. The problem of detecting completely superposable positions

reduces to the ground reducibility problem. However, if the presentation satisfies the principle of

definition, a position u is completely superposable if p|u is a term which has a defined symbol at

the root and only constructor symbols and variables at the positions below the root. Therefore,

the restriction to completely superposable positions can be applied in practice to presentations

satisfying the principle of definition.

7 Conclusions

We described an abstract framework for the study of Knuth-Bendix type completion procedures,

which are regarded as semidecision procedures for theorem proving. All the fundamental concepts

are uniformly defined in terms of target-oriented proof reduction with respect to a well-founded

proof ordering.

A completion procedure is given by a set of inference rules and a search plan. The role of

the search plan is often overlooked in the literature, where most theorem proving strategies are

presented by giving a set of non-deterministic inference rules only and leaving the task of designing

35



a suitable search plan to the implementation phase. This is not satisfactory, since the search plan

is what ultimately turns a set of inference rules into a procedure. The actual performance of the

prover depends heavily on the search plan. We tried to emphasize the role of the search plan

throughout our work.

The key property of a search plan is fairness. Intuitively, fairness of a search strategy

means that every inference step which needs to be considered will eventually be considered. In

completion-based methods, this usually means resolving all potential critical pairs. In theorem

proving, on the other hand, one is not interested in critical pairs which do not contribute to prov-

ing the target theorem. Thus, in theorem proving applications fairness does not require resolving

all possibile conflicts but only those which may lead to a proof. Our definition of fairness is the

first definition of fairness for completion procedures which incorporates this idea. By focusing on

the given target, it makes possible to design fair search strategies which ignore the majority of

possible critical pairs.

Correspondingly, at the inference rules level, we gave target-oriented notions of contraction,

redundancy and refutational completeness. If the inference rules are refutationally complete and the

search plan is fair, a completion procedure is a semidecision procedure for theorem proving. This

result makes the interpretation of completion procedures as semidecision procedures independent

from the interpretation as generators of confluent systems: a completion procedure can be a

semidecision procedure without being a generator of confluent systems.

If the search plan is uniformly fair, a completion procedure generates a saturated presentation

which, under additional hypotheses, may act as a decision procedure for the validity of the theorems

in the theory. We provided a new, general formulation for these results, covering the classical

theorems in equational logic and their extensions to Horn logic with equality in [52, 15, 30]. Most

authors conceived completion as a compilation process to generate decision procedures. Theorem

proving is then regarded as a two-phase process: first compile the given presentation into a finite

saturated one and next prove theorems in the saturated presentation. We feel that this approach

is not adequate in practice, since in most cases the saturated presentation is infinite. We prefer

to interpret completion as a semidecision procedure, focusing on theorem proving as its main

application.

We presented some equational completion procedures based on Unfailing Knuth-Bendix com-

pletion, which include the AC-UKB procedure with Cancellation laws, the S-strategy and the

Inequality Ordered Saturation strategy. These extensions of UKB had not been presented in a

unified framework for completion before. We also showed that the process of disproving inductive

theorems by the so called inductionless induction method is a semidecision process.

This work raises several open problems, which may be pursued by further research. At the

logic level, one possible direction is the full extension of our approach to completion procedures for

first order logic with equality. This would require the study of the structure of proofs and proof

orderings in such larger logics. The most important challenge, however, is the design of search

plans that are fair, but not uniformly fair. We posed the question of theorem proving without

saturation and we provided a theoretical framework where theorem proving without saturation is

possible, but we did not exhibit a new, concrete strategy which realizes our idea. Borrowing the

terminology of algorithm analysis, replacing uniform fairness by fairness is analogous to lowering

36



the known lower bound for a problem: the notion of fairness says how much work is necessary

(and sufficient) to do theorem proving. Exhibiting a new, more efficient strategy is analogous to

the complementary task of lowering the known upper bound for the problem.

After designing a fair but not uniformly fair search plan, one would like to be able to compare

it to a uniformly fair search plan and show that the former is more efficient. Thus, another open

problem is to find ways of analyzing and comparing different theorem proving strategies, or more

precisely different search plans for a given inference system, a priori of implementation. This

leads to the even broader question of providing a theory of strategy analysis. Classical algorithm

analysis is not appropriate for analyzing theorem proving strategies such as those we considered.

Indeed, algorithms analysis is for algorithms, whereas theorem proving strategies are semidecision

procedures for a semidecidable problem.

Furthermore, even if we could restrict the analysis to a set of input theorems where a theorem

proving strategy is guaranteed to halt, the application of algorithm analysis techniques would be

far from obvious. Roughly speaking, classical algorithm analysis techniques compute the number

of steps of an algorithm based on knowledge of the initial state of the data set, the final state

of the data set and the algorithm. For instance, when analyzing a sorting algorithm, one knows

that the final state is a sorted list. One difficulty in applying step counting techniques to theorem

proving strategies is that the final state of the data set is unknown. Saying that the final state of

the data set for a successful theorem proving derivation is the set containing only the empty clause

does not help, because such final state is the same for all inputs, it is not related to any property

of the input, e.g. size. From the point of view of logic, all unsatisfiable sets are equivalent and

equivalent to the set containing only the empty clause, but they are not equivalent from the point

of view of computational complexity. In theorem proving, the final state of the data set cannot be

known a priori of execution; because if it were known, a proof would be known and the theorem

proving problem would be solved already. Techniques designed for algorithms transforming data

do not apply directly to strategies searching for solutions. The entire field of complexity of search

is largely unexplored.

References

[1] S.Anantharaman, J.Hsiang and J.Mzali, SbReve2: A Term Rewriting Laboratory with

(AC)-Unfailing Completion, in N.Dershowitz (ed.), Proceedings of the Third International

Conference on Rewriting Techniques and Applications, Chapel Hill, NC, USA, April 1989,

Springer Verlag, Lecture Notes in Computer Science 355, 533–537, 1989.

[2] S.Anantharaman and J.Mzali, Unfailing Completion modulo a set of equations, Technical

Report, LRI, Université de Paris Sud, 1989.

[3] S.Anantharaman, J.Hsiang, Automated Proofs of the Moufang Identities in Alternative

Rings, Journal of Automated Reasoning, Vol. 6, No. 1, 76–109, 1990.

[4] S.Anantharaman, N.Andrianarivelo, Heuristical Criteria in Refutational Theorem Proving,

in A.Miola (ed.), Proceedings of the Symposium on the Design and Implementation of Sys-

37



tems for Symbolic Computation, Capri, Italy, April 1990, Springer Verlag, Lecture Notes in

Computer Science 429, 184–193, 1990.

[5] S.Anantharaman, M.P.Bonacina, An Application of the Theorem Prover SBR3 to Many-

valued Logic, in M.Okada and S.Kaplan (eds.), Proceedings of the Second International

Workshop on Conditional and Typed Term Rewriting Systems, Montréal, Canada, June

1990, Springer Verlag, Lecture Notes in Computer Science 516, 156–161, 1991.

[6] L.Bachmair, N.Dershowitz and J.Hsiang, Orderings for Equational Proofs, in Proceedings

of the First Annual IEEE Symposium on Logic in Computer Science, 346–357, Cambridge,

Massachussets, June 1986.

[7] L.Bachmair, N.Dershowitz, Inference Rules for Rewrite-Based First-Order Theorem Prov-

ing, in Proceedings of the Second Annual IEEE Symposium on Logic in Computer Science,

Ithaca, New York, June 1987.

[8] L.Bachmair, Proofs Methods for Equational Theories, Ph.D. thesis, Department of Com-

puter Science, University of Illinois, Urbana, Illinois, 1987.

[9] L.Bachmair, Proof by consistency in equational theories, in Proceedings of the Third Annual

IEEE Symposium on Logic in Computer Science, 228–233, Edinburgh, Scotland, July 1988.

[10] L.Bachmair, N.Dershowitz, Critical Pair Criteria for Completion, Journal of Symbolic Com-

putation, Vol. 6, No. 1, 1–18, August 1988.

[11] L.Bachmair, N.Dershowitz, Completion for rewriting modulo a congruence, Theoretical

Computer Science, Vol. 67, No. 2 & 3, 173–202, October 1989.

[12] L.Bachmair, N.Dershowitz and D.A.Plaisted, Completion without failure, in H.Ait-Kaci,

M.Nivat (eds.), Resolution of Equations in Algebraic Structures, Vol. II: Rewriting Tech-

niques, 1–30, Academic Press, New York, 1989.

[13] L.Bachmair, H.Ganzinger, On Restrictions of Ordered Paramodulation with Simplification,

in M.E.Stickel (ed.), Proceedings of the Tenth International Conference on Automated De-

duction, Kaiserslautern, Germany, July 1990, Springer Verlag, Lecture Notes in Artificial

Intelligence 449, 427–441, 1990.

[14] L.Bachmair, N.Dershowitz, Equational inference, canonical proofs and proof orderings,

Journal of the ACM, Vol. 41, No. 2, 236–276, March 1994.

[15] L.Bachmair, H.Ganzinger, Completion of First-Order Clauses with Equality by Strict Super-

position, in M.Okada and S.Kaplan (eds.), Proceedings of the Second International Work-

shop on Conditional and Typed Term Rewriting Systems, Montréal, Canada, June 1990,

Springer Verlag, Lecture Notes in Computer Science 516, 162–180, 1991.

[16] M.P.Bonacina, G.Sanna, KBlab: An Equational Theorem Prover for the Macintosh, in

N.Dershowitz (ed.), Proceedings of the Third International Conference on Rewriting Tech-

niques and Applications, Chapel Hill, NC, USA, April 1989, Springer Verlag, Lecture Notes

in Computer Science 355, 548–550, 1989.

38



[17] M.P.Bonacina, J.Hsiang, On Rewrite Programs: Semantics and Relationship with Prolog,

Journal of Logic Programming, Vol. 14, No. 1&2, 155-180, October 1992.

[18] M.P.Bonacina, Sulla dimostrazione di teoremi per completamento, (in Italian, English ver-

sion: On completion theorem proving), Thesis of “Dottorato di Ricerca”, Dipartimento di

Scienze dell’Informazione, Università degli Studi di Milano, Milano, Italy, January 1991.

[19] C.L.Chang, R.C.Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press,

New York, 1973.

[20] N.Dershowitz, Z.Manna, Proving termination with multisets orderings, Communications of

the ACM, Vol. 22, No. 8, 465–476, August 1979.

[21] N.Dershowitz, Orderings for term-rewriting systems, Theoretical Computer Science, Vol.

17, 279–301, 1982.

[22] N.Dershowitz, N.A.Josephson, Logic Programming by Completion, in Proceedings of the

Second International Conference on Logic Programming, 313–320, Uppsala, Sweden, 1984.

[23] N.Dershowitz, Computing with Rewrite Systems, Information and Control, Vol. 65, 122–

157, 1985.

[24] N.Dershowitz, Termination of Rewriting, Journal of Symbolic Computation, Vol. 3, No. 1

& 2, 69–116, February/April 1987.

[25] N.Dershowitz, Completion and its Applications, in H.Aı̈t-Kaci, M.Nivat (eds.), Resolution

of Equations in Algebraic Structures, Vol. II: Rewriting Techniques, 31–86, Academic Press,

New York, 1989.

[26] N.Dershowitz, D.A.Plaisted, Equational Programming, in J.E.Hayes, D.Michie and J.Ri-

chards (eds.), Machine Intelligence 11: The logic and acquisition of knowledge, Chapter 2,

21-56, Oxford Press, 1988.

[27] N.Dershowitz, J.-P.Jouannaud, Rewrite Systems, Chapter 15, Volume B, Handbook of Theo-

retical Computer Science, North-Holland, 1989.

[28] N.Dershowitz, J.-P.Jouannaud, Notations for Rewriting, Technical Report 478, LRI, Uni-

versité de Paris Sud, January 1990.

[29] N.Dershowitz, A Maximal-Literal Unit Strategy for Horn Clauses, in M.Okada, S.Kaplan

(eds.), Proceedings of the Second International Workshop on Conditional and Typed Rewrit-

ing Systems, Montréal, Canada, June 1990, Springer Verlag, Lecture Notes in Computer

Science 516, 14–25, 1991.

[30] N.Dershowitz, Canonical Sets of Horn Clauses, in Proceedings of the Eighteenth Interna-

tional Conference on Automata, Languages and Programming, Madrid, Spain, July 1991,

Springer Verlag, Lecture Notes in Computer Science, 1991.

39



[31] F.Fages, Associative-commutative unification, in R.Shostak (ed.), Proceedings of the Seventh

International Conference on Automated Deduction, Napa Valley, CA, USA, 1984, Springer

Verlag, Lecture Notes in Computer Science 170, 1984.

[32] L.Fribourg, A Strong Restriction to the Inductive Completion Procedure, Journal of Sym-

bolic Computation, Vol. 8, No. 3, 253–276, September 1989.

[33] J.A.Goguen, How to prove algebraic inductive hypotheses without induction, in W.Bibel

and R.Kowalski (eds.), Proceedings of the Fifth International Conference on Automated

Deduction, Les Arcs, France, 1980, Springer Verlag, Lecture Notes in Computer Science 87,

356–373, 1980.

[34] J.Hsiang, N.Dershowitz, Rewrite Methods for Clausal and Nonclausal Theorem Proving, in

Proceedings of the Tenth International Conference on Automata, Languages and Program-

ming, Barcelona, Spain, July 1983, Springer Verlag, Lecture Notes in Computer Science

154, 1983.

[35] J.Hsiang, Refutational Theorem Proving Using Term Rewriting Systems, Artificial Intelli-

gence, Vol. 25, 255–300, 1985.

[36] J.Hsiang, M.Rusinowitch, A New Method for Establishing Refutational Completeness in

Theorem Proving, in J.Siekmann (ed.), Proceedings of the Eighth Conference on Automated

Deduction, Oxford, England, July 1986, Springer Verlag, Lecture Notes in Computer Science

230, 141–152, 1986.

[37] J.Hsiang, Rewrite Method for Theorem Proving in First Order Theories with Equality,

Journal of Symbolic Computation, Vol. 3, 133–151, 1987.

[38] J.Hsiang, M.Rusinowitch, On word problems in equational theories, in Th.Ottman (ed.),

Proceedings of the Fourteenth International Conference on Automata, Languages and Pro-

gramming, Karlsruhe, Germany, July 1987, Springer Verlag, Lecture Notes in Computer

Science 267, 54–71, 1987.

[39] J.Hsiang, M.Rusinowitch and K. Sakai, Complete Inference Rules for the Cancellation Laws,

in Proceedings of the Tenth International Joint Conference on Artificial Intelligence, Milano,

Italy, August 1987, 990–992, 1987.

[40] J.Hsiang, M.Rusinowitch, Proving Refutational Completeness of Theorem Proving Strate-

gies: the Transfinite Semantic Tree Method, Journal of the ACM, Vol. 38, No. 3, 559–587,

July 1991.

[41] G.Huet, Confluent reductions: abstract properties and applications to term rewriting sys-

tems, Journal of the ACM, Vol. 27, 797–821, 1980.

[42] G.Huet, A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm,

Journal of Computer and System Sciences, Vol. 23, 11–21, 1981.

[43] G.Huet, J.M.Hullot, Proofs by Induction in Equational Theories with Constructors, Journal

of Computer and System Sciences, Vol. 25, 239–266, 1982.

40



[44] J.-P.Jouannaud, H.Kirchner, Completion of a set of rules modulo a set of equations, SIAM

Journal of Computing, Vol. 15, 1155–1194, November 1986.

[45] J.-P.Jouannaud, E.Kounalis, Automatic proofs by induction in equational theories without

constructors, Information and Computation, Vol. 82, No. 1, 1–33, July 1989.

[46] J.-P.Jouannaud, C.Kirchner, Solving Equations in Abstract Algebras: A Rule-Based Survey

of Unification, Technical Report, LRI, Université de Paris Sud, November 1989.

[47] S.Kamin, J.-J.Lévy, Two generalizations of the recursive path ordering, Unpublished note,

Department of Computer Science, University of Illinois, Urbana, Illinois, February 1980.

[48] D.Kapur, P.Narendran, An equational approach to theorem proving in first order predicate

calculus, in Proceedings of the Ninth International Joint Conference on Artificial Intelli-

gence, 1146–1153, Los Angeles, California, August 1985.

[49] D.Kapur, D.R.Musser, Proof by consistency, Artificial Intelligence, Vol. 31, No. 2, 125–157,

February 1987.

[50] D.Kapur, P.Narendran and H.Zhang, Proof by induction using test sets, in J.Siekmann

(ed.), Proceedings of the Eighth Conference on Automated Deduction, Oxford, England,

July 1986, Springer Verlag, Lecture Notes in Computer Science 230, 99–117, 1986.

[51] D.E.Knuth, P.Bendix, Simple Word Problems in Universal Algebras, in J.Leech (ed.), Pro-

ceedings of the Conference on Computational Problems in Abstract Algebras, Oxford, Eng-

land, 1967, Pergamon Press, Oxford, 263–298, 1970.

[52] E.Kounalis, M.Rusinowitch, On Word Problems in Horn Theories, Journal of Symbolic

Computation, Vol. 11, No. 1 & 2, 113–128, January/February 1991.

[53] D.S.Lankford, Canonical inference, Memo ATP-32, Automatic Theorem Proving Project,

University of Texas, Austin, Texas, May 1975.

[54] D.S.Lankford, A simple explanation of inductionless induction, Technical report MTP-14,

Mathematics Department, Louisiana Technical University, Ruston, Louisiana, 1981.

[55] D.Musser, On proving inductive properties of abstract data types, in Proceedings of the

Seventh ACM Symposium on Principles of Programming Languages, 154–162, Las Vegas,

Nevada, 1980.

[56] G.E.Peterson, M.E.Stickel, Complete sets of reductions for some equational theories, Jour-

nal of the ACM, Vol. 28, No. 2, 233–264, 1981.

[57] G.E.Peterson, A Technique for Establishing Completeness Results in Theorem proving with

Equality, SIAM Journal of Computing, Vol. 12, No. 1, 82–100, 1983.

[58] D.A.Plaisted, Semantic confluence tests and completion methods, Information and Control,

Vol. 65, 182–215, 1985.

41



[59] M.Rusinowitch, Theorem-proving with Resolution and Superposition, Journal of Symbolic

Computation, Vol. 11, No. 1 & 2, 21–50, January/February 1991.

[60] R.Socher-Ambrosius, How to Avoid the Derivation of Redundant Clauses in Reasoning

Systems, Journal of Automated Reasoning, Vol. 9, No. 1, 77–98, August 1992.

[61] M.E.Stickel, A unification algorithm for associative-commutative functions, Journal of the

ACM, Vol. 28, No. 3, 423–434, 1981.

[62] H.Zhang, D.Kapur, First Order Theorem Proving Using Conditional Rewrite Rules, in

E.Lusk, R.Overbeek (eds.), Proceedings of the Ninth International Conference on Automated

Deduction, 1–20, Argonne, Illinois, May 1988, Springer Verlag, Lecture Notes in Computer

Science 310, 1988.

42


