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Abstract 

This thesis explored how humans process and form recursive hierarchical structures 

arising from temporally ordered sequences of stimuli, across the visual, auditory, 

and tactile sensory domains. As we will explain throughout this thesis, we posit that 

the ability to form recursive hierarchical abstract representations from temporally 

ordered stimuli is a cognitive ability involved in human syntax processing and 

acquisition. Language unfolds in a linear fashion. Words follow one another, 

creating sentences that, on the surface, appear as linear sequences of sounds or 

symbols. However, a purely sequential arrangement of words alone falls short in 

encompassing the complexities of human language syntax. It is evident that the 

syntax of human languages has a fundamental hierarchical dimension, where 

constituents are organized in a way that is intricately linked to their linear order. 

Among the various syntactic phenomena that depend on this hierarchical 

organization, recursion is one of the most fascinating and controversial in the study 

of language. Recursion in human syntax, understood as the characteristic of 

embedding constituents within constituents of the same kind, has long been 

considered a fundamental and distinctive feature of human language. Therefore, the 

cognitive ability to deal with recursion has been viewed as crucial for language 

capacity, possibly representing a uniquely human faculty at the core of language 

ability. However, this topic is highly controversial. Despite the importance 

attributed to recursion in linguistics, several questions remain open. What is the role 

of recursion in human language? Is the ability to handle recursion specifically tied 

to the human language faculty? What is the mechanism underlying the cognitive 

ability to form recursive abstract representations in language, considering both the 

linear and hierarchical nature of syntax? To analyze this topic, this thesis will delve 

into three critical issues at the core of theoretical and experimental linguistic 

debates. The first issue addresses the debated role of recursion in human language 

syntax. The second issue examines the contributions of recursive hierarchical 

abstract representation and statistical learning to the acquisition and processing of 

human syntax. The third issue, intimately connected to the second, examines the 

existence of domain-specific representational and learning constraints, alongside 

the influence of domain-general learning abilities on this process. Our research had 
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two main objectives: Firstly, we aimed to determine whether sequential statistical 

learning and the formation of recursive hierarchical abstract representation operate 

independently as distinct levels of language analysis or if they work together 

synergistically as complementary learning mechanisms. If they complement each 

other, we sought to understand the cognitive processes involved in transitioning 

from linear to recursive hierarchical dimensions. Secondly, we investigated whether 

the ability to form recursive hierarchical abstract structures from sequential stimuli 

is a language-specific ability or a domain-general ability, shared across different 

modalities and whether there are domain-specific differences in this ability between 

sensory domains. To address these inquiries, we employed the Artificial Grammar 

Learning paradigm, conducting three Serial Reaction Time tasks. Three distinct 

groups of adult participants were presented with a sequence of stimuli featuring the 

rules of a non-canonical binary grammar belonging to the Lindenmayer systems: 

The Fibonacci grammar (Fib). The choice to use this grammar was driven by its 

exceptional suitability for thoroughly investigating this research topic in all its 

various facets. On one hand, it allows for the investigation of the application of 

recursive algorithms for predicting points in the string, while simultaneously 

examining the relationship between sequential statistical learning and the creation 

of recursive hierarchical representations. On the other hand, this paradigm permits 

the examination and direct comparison of these cognitive abilities across different 

sensory modalities. In the three tasks, the symbols of Fib were encoded onto 

auditory tones, vibrotactile impulses, or colorful visual shapes. Through analysis of 

reaction times and accuracy data in response to perceived stimuli, we explored 

whether participants implicitly learned the regularities of Fib across all three 

sensory domains and potentially domain-specific learning differences. Our findings 

suggested a close linkage between the ability to form recursive hierarchical 

representations and the capacity to grasp low-level transitional regularities. With 

this regard, we introduced a cognitive parsing algorithm hypothesizing the 

cognitive mechanisms involved in transitioning from sequence to hierarchy. 

Furthermore, we observed that the cognitive ability to process and learn these 

structures, which underpin human language, is a domain-general ability present 

across diverse sensory domains. However, we also identified domain-specific 
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differences, with auditory and tactile modalities exhibiting a distinct advantage over 

the visual domain. In summary, our results indicated that sequential statistical 

learning and recursive hierarchical abstract representation synergize as 

complementary modes of learning, rather than operating as distinct levels of 

language analysis. Moreover, our findings suggest that the capability to from 

recursive hierarchical abstract structures arising from temporally ordered stimuli is 

not a language-specific ability but rather a domain-general capacity present across 

different sensory modalities, potentially interacting with language in specific ways.  
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General overview 
 

In this thesis, we embark on an exploration of the cognitive mechanisms underlying 

the processing and formation of recursive hierarchical abstract representations 

arising from temporally ordered stimuli, across the visual, auditory, and tactile 

sensory domains. These structures, as we will see, represent a particular structural 

phenomenon of human language. Despite the sequential nature of human language, 

it is widely acknowledged that the relationships between single words in a sentence 

are not based on rigid linear positions (Tettamanti et al., 2009). Phenomena such as 

long-distance dependencies, recursive sentence structure, movement, and sentence 

transformation constitute a hallmark of human natural language (Fitch, Friederici, 

2012). Among the many structural (i.e., hierarchical) phenomena present in 

language, our focus in this thesis will be on recursion, intended as the characteristic 

of human language to potentially have constituents embedded into constituents of 

the same kind (Pinker, Jackendoff, 2005, p.203). This phenomenon, in language, 

can occur multiple times, potentially giving rise to complex structures with multiple 

levels. Our journey is motivated by two fundamental inquiries: firstly, to elucidate 

the cognitive processes involved in transitioning from linear sequences to recursive 

hierarchical structures, and secondly, to ascertain whether this ability is domain-

general or domain-specific across sensory modalities. The decision to investigate 

this research topic arises from the recognition of two pivotal issues that lie at the 

heart of both theoretical debates and empirical inquiries in linguistics. The first 

revolves around the significance of abstract hierarchical representation and 

statistical learning in the intricate processes of human language acquisition and 

comprehension. The second issue, intricately intertwined with the first, delves into 

the existence of domain-specific constraints on representation and learning within 

language, juxtaposed with the broader influence of domain-general cognitive 

abilities in this multifaceted endeavor. The thesis unfolds across six chapters, each 

contributing to a comprehensive understanding of these phenomena. 

Our exploration into the mechanisms at the heart of language acquisition 

and processing begins with Chapter 1, where we delve into the longstanding debate 

between nativist and usage-based approaches on the topic of language acquisition. 
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In this chapter we explore the arguments supporting each viewpoint, with a 

particular focus on the topic of the acquisition of syntax. Importantly, we review 

psycholinguistic studies which provide evidence for the crucial role of both 

statistical learning and abstract structural representation in syntax processing and 

acquisition. In addition, we will also provide a brief overview of studies conducted 

using neural networks that have tested the potential to achieve high-level linguistic 

competence based on statistical learning mechanisms. The use of statistical learning 

mechanisms and the development of abstract structural representations are key 

points emphasized by usage-based and nativist theories, respectively. Rather than 

viewing these theories as opposites, we will challenge the notion that they are 

completely incompatible and demonstrate how they can partially complement each 

other. Therefore, we argue for a significant shift in perspective, urging modern 

theories of language acquisition to acknowledge and embrace the critical role of 

statistical learning operating within hierarchical boundaries and constraints in 

human cognition during the process of language learning. This perspective will 

guide us through our thesis.  

In Chapter 2, our primary focus will be on recursion, the specific type of 

structural phenomenon found in human language that will constitute the central 

topic of our study. Recursion refers to the capacity to create complex, multi-level 

hierarchical structures, where a part of the structure can reflect the same 

organizational pattern as the whole. A significant challenge in the current 

(psycho)linguistic literature is the lack of a universally agreed-upon and precise 

definition of recursion. Thus, our objective will be to provide a clear and detailed 

definition of this concept. We will examine the interplay between sequentiality and 

hierarchy in human language, underscoring the necessity of considering both 

aspects when studying syntactic recursion. Additionally, we will explore the shift 

from linear to hierarchical structures, focusing on the cognitive processes that 

underpin this ability. In the latter part of the chapter, we will discuss methodologies 

for experimentally investigating the formation of recursive hierarchical 

representations from sequential inputs. This will include an introduction to implicit 

statistical learning, followed by an in-depth analysis of the Artificial Grammar 

Learning (AGL) paradigm, which is highly effective for studying implicit statistical 
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learning. Furthermore, we will delve into Formal Language Theory (FLT) and the 

Chomsky hierarchy of grammars, frequently employed in AGL studies within 

psycholinguistic research to explore the computational capabilities underpinning 

human language. We will specifically review studies that have explored recursion 

using formal languages from the Chomsky hierarchy. Finally, we will address key 

issues in the study of recursion in psycholinguistics, laying the groundwork for our 

extensive investigation into how humans form recursive structures from temporally 

ordered sequences. 

In Chapter 3, we will review research on sequential implicit statistical 

learning and the ability to form recursive hierarchical structures across different 

sensory modalities. This includes examining the debate over whether implicit 

statistical learning is domain-specific or domain-general. We will also consider the 

effects of domain-specific spatiotemporal structures and qualitative differences 

between sensory modalities. 

Chapter 4 will introduce the Fibonacci grammar (Fib), a grammar belonging 

to the Lindenmayer systems (L-systems). Fib’s unique features, such as self-

similarity and aperiodicity, make it an ideal tool for studying the formation of 

recursive hierarchical representations from sequential stimuli. As we will discuss, 

to effectively study recursion with Fib, however, it is essential to develop 

experimental designs that address the challenges of investigating cognitive abilities 

related to recursive processes. We will propose a recursive parsing algorithm for 

processing Fibonacci strings and argue that it may be the only mechanism 

compatible with human cognitive resources for predicting points in Fibonacci 

sequences during a Serial Reaction Time task. The chapter will conclude with a 

summary of the main findings from studies which investigated the learnability of 

the Fibonacci grammar so far. 

In Chapter 5, we present the design and results of our experimental study, 

which consists of three Serial Reaction Time tasks in which we expose participants 

to string generated by the Fibonacci grammar, encoded onto different types of 

sensory stimuli. With this experimental study, we investigate the capacity form 

recursive hierarchical structures stemming from sequentially presented input across 

the visual, tactile, and auditory sensory domains. Our aim is twofold: (i) to ascertain 
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whether this capacity is domain-general and to illuminate any potential differences 

in learning specific to each modality; (ii) to elucidate the computational 

mechanisms involved in acquiring and processing these structures, with a particular 

focus on the interplay between sequential statistical learning and the formation of 

recursive hierarchical abstract representations.  

Finally, in Chapter 6, we expand the scope of our findings by examining 

their theoretical implications. We conclude by contextualizing our findings within 

the framework of language acquisition, illustrating how our results advance our 

understanding of the fundamental processes involved in language processing and 

acquisition. Moreover, we discuss limitations and propose avenues for future 

research. 
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1. Introduction 
 

Language is one of the most fascinating and, at the same time, controversial issues 

in the study of cognition and mind. Language is a universal human trait found in all 

known human societies. Crucially, despite there being great variability among 

human languages, several principles and commonalities are consistent across them 

(Chomsky, 1959; Pinker, 1994). In addition to the presence of linguistic universals, 

it is surprising to note the simplicity and similarity with which humans learn 

language. Children’s ability to attain complete mastery of language is simply 

astonishing, especially if considering the limited set of sentences to which they are 

exposed in a limited amount of time. How do they succeed in such a complex task, 

without effort, with no specific intent to learn, and without explicit teaching? 

Language is the hallmark of the human species, and its acquisition represents a 

natural developmental process. All children are up to the task, and curiously they 

manage to acquire it following the same steps, at a nearly similar pace, 

independently of the type of language to which they are exposed1 (Guasti, 2002). 

Children end up having an abstract representation of their language’s properties. 

All speakers intuitively know whether a sentence is well-formed or ill-formed just 

by listening to it, without conscious effort. Crucially, the linguistic input children 

receive is dramatically impoverished as compared to the full competence they 

develop. They come across a finite number of sentences, but they end up with the 

ability to produce a potentially infinite number of sentences (Guasti, 2002)2. Over 

the years, numerous theories have emerged to explain the enigma of language 

acquisition. Among these, the nativist theory and the usage-based theory stand out 

as the most prominent. Simplifying, the nativist theory posits that language is 

innate, domain-specific, and richly structured (cf. Chomsky, 1957), while the usage-

                                                       
1 We refer here to typically developing children. The natural process of language acquisition can be 

compromised in case of language impairments, hearing impairments, neurological damages, or 

intellectual disabilities. 

2 Infinity refers to the size or cardinality of a set. It has not been definitively established that 

languages are infinite, whether countably or uncountably so. (Langendoen and Postal, 1984).  
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based theory emphasizes that language acquisition occurs through domain-general 

statistical mechanisms applied to the linear sequence of children's utterances (cf. 

Tomasello, 2003). 

In this chapter, we will delve into the intriguing debate between the nativist and 

the usage-based approaches in the realm of language acquisition. We will explore 

both the arguments in favor of the former and those rooted in the latter, embarking 

on a journey through the most significant and recent studies in both strands of 

research, with a special focus on the acquisition of syntax. Along this path, clear 

evidence emerges, emphasizing the crucial role of both structural constraints and 

external experience in the process of language acquisition. In this exploration, we 

will observe that numerous studies have put forth proof of the existence of structure-

dependent abstract representation, along with the ability to utilize statistical 

learning mechanisms to acquire linguistic phenomena at the syntactic level, two key 

aspects that nativist and usage-based theories have respectively emphasized. This 

chapter aims not to present merely a dichotomy, but to serve as a bridge. Often, 

nativist and usage-based perspectives have been regarded as separate and 

conflicting theories. Despite this, we pave the way for a reconciliatory view 

between the two positions. We will challenge the notion that these theories are 

inherently incompatible and showcase the presence of some points of convergence 

between them. Indeed, in this chapter, we assert the paramount importance of 

experiential statistical learning in language acquisition and underscore the 

undeniable existence of hierarchical structures and constraints within this process. 

We effectively call for a paradigm shift, urging contemporary language theories to 

embrace the vital role of statistical learning operating within hierarchical 

boundaries and constraints. This perspective will serve as the guiding framework 

for the present thesis. Indeed, our research will delve into the intricate relationship 

between these two phenomena, specifically the acquisition and processing of 

sequential statistical information, and the formation of recursive hierarchical 

structures, in temporally ordered sequences.  
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1.1 Statistical learning or UG? 
 

1.1.1 Universal Grammar, domain-specific phenomena, and structure-dependent 

abstract representation 

 

The main point of the Poverty of the Stimulus (POS) argument is as follows: 

Because the knowledge required to develop linguistic ability far exceeds that 

provided by linguistic inputs in the environment, it is hard to believe that children 

could gain this knowledge by pure exposure to the linguistic stimuli in the 

environment. The POS argument still represents an important source of support for 

the nativist theory (Berwick et al. 2011). According to this hypothesis, language 

capacity is both richly structured and innate. Humans possess a set of domain-

specific, hard-wired rules and constraint mechanisms that form the foundation of 

language acquisition. This would explain why humans manage to acquire language 

in parallel fashion in the absence of a rich input. The genetic mechanisms posited 

to enable humans to acquire language is known as Universal Grammar (UG) 

(Chomsky 1975; 1986). “UG defines the range of possible variation, and in so doing 

it characterizes the notion of possible human language.” (Guasti, 2002, p.18). 

Linguists among the generativist framework have often stressed the relevance of 

structure-dependence in supporting the nativist theory. “Generative grammar 

proposes that the form for expressing rules is innately constrained, and one putative 

constraint is structure-dependence […]” (Crain & Nakayama, 1987, p.522).  

Compelling evidence for the presence of an abstract structure in language 

arises from studies on the creation of new creoles in sign languages and 

investigations into home-sign languages (Goldin-Meadow, 2005). Nicaraguan Sign 

Language (NSL) represents a tangible proof. In year 2004 there were around 800 

deaf signers of NSL, from 4 to 45 years old (Senghas et al., 2004). NSL is quite a 

recent language. Starting from the 1980s, a community of deaf Nicaraguans have 

created this new sign language which initially showed the properties of a pidgin. 

Indeed, individuals of this group had not previously encountered a fully developed 

language. This was due to the fact that until the 1970s, deaf individuals in 

Nicaragua, both children and adults, were predominantly isolated from each other, 

leading to limited interactions. Prevailing societal attitudes resulted in the majority 
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of deaf individuals remaining at home, while the educational institutions and clinics 

that did exist catered to only a small number of children. Consequently, a distinct 

sign language did not evolve within this context. This absence of a sign language is 

supported by the fact that the present-day adults who are over 45 years old lack 

linguistic abilities in this regard (Senghas et al., 2004). In that situation, deaf 

persons developed different home-sign languages, which allowed them to 

communicate with their family members. Only starting from the 1980s, deaf people 

had the opportunity to spend more time together, being more integrated in the 

society, being progressively enrolled in schools for special education, and they 

started to meet and socialize also outside school hours (Senghas et al., 2004). From 

that moment, based on their own home-sign language, children began to develop a 

new sign language to communicate with each other. Scholars have observed that 

the grammar of NSL changed over time. Specifically, the changes firstly appear 

among preadolescent; in a second moment they spread to younger children. 

Interestingly, however, they did not affect adult-signers’ language (Senghas, 2003). 

As a consequence, younger signers are more fluent as compared to older ones, who 

retained the original, less developed form of the language. This fact offers an 

interesting case of study for the exploration of the inception of the universal 

hallmarks of language, permitting to observe if these properties can emerge 

naturally during the process of language learning, even in the case of people who 

have never been exposed to them (Senghas et al., 2004). Senghas et al. (2004) 

conducted an experiment in which they observed and compared signs and gestures 

used to describe complex motion events3 among three groups of 30 NSL signers. 

The signers were divided into three cohorts, based on the year that they were first 

exposed to NSL: 10 before 1984, 10 between 1984 and 1993, 10 after 1993. The 

choice of observing gestures referring to complex motion events is not casual: “the 

description of motion offers a promising domain for detecting the introduction of 

segmented, linear, and hierarchical organization of information into a 

communication system. […] Signing that dissects motion events into separate 

manner and path elements, and assembles them into a sequence, would exhibit the 

segmentation and linearization typical of developed languages and unlike the 

                                                       
3 E.g. climbing up a wall; rolling down a hill; 
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experience of motion itself.” (Senghas et al., 2004, p.1780). Interestingly, scholars 

found that the older signer used a language that was closer to a gestural model, 

whereas the second and the third groups of younger signers preferentially used a 

more language-like communication system, using segmented and sequenced 

constructions. Hence, over the years, NSL underwent a transformation, from being 

a set of gestures through which complex expressions were holistically conveyed, 

becoming then discrete and combinatorial in nature, characteristics which constitute 

the hallmark of human language. Hence, with this experiment, scholars have proven 

the emergence of combinatorial patterning and discreteness in the new NSL. This 

confirms that even in situations where there is no presence of discrete elements and 

hierarchical combinations in the language context, human learning capabilities can 

generate these structural aspects anew (Senghas et al., 2004).  

In conclusion, generativist linguists claim that given the impoverishment of 

the stimulus as opposed to the rich linguistic abilities that children show to have 

and given the presence of universally shared traits in languages, there should be an 

endogenous, domain-specific, biologically grounded explanation for language 

emergence. 

 

1.1.2 Statistical learning, domain-general phenomena, and linear order 

 

Alongside the nativist theory, we find very different positions on the topic. Indeed, 

the issue concerning how language is processed and acquired has been taken into 

consideration both by psychologists and linguists, sometimes from rather different 

perspectives. “Traditionally, linguists have emphasized the role of innate 

knowledge in language, with the influence of the child’s environment playing a 

relatively minor role. In contrast, psychologists studying language development 

have to explain how the interaction of innate knowledge and the child’s 

environment account for the developmental progression of language ability” 

(Redington, Chater, 1998, p.129). Specifically, in the last two decades of the 1990s, 

we assisted in a series of influential publications which seemed to offer new, 

favorable opportunities in the exploration of language acquisition, renewing a 

serious interest in the investigation of the learning possibilities from linguistic 
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input, and opening new horizons for the range of opportunities that were taken into 

consideration by innate positions. Specifically, usage-based approaches started to 

seem a sustainable alternative, or at least, possible valid complementation to the 

UG theory. “Noam Chomsky, the founder of generative linguistics, has argued for 

40 years that language is unlearnable; he and his followers have generalized this 

belief to other cognitive domains, denying the existence of learning as a meaningful 

scientific construct […]” (Bates, Elman, 1996, p.1849). From various fields of 

study, in fact, scientific results began to arrive that would constitute an important 

alternative to the hitherto prevailing thesis that language ability is innate and 

domain specific. Among them, the Connectionist approach, often referred to also as 

Neural Networks or Parallel Distributed Processing (PDP) (Guasti, 2002; Ramsey, 

Stich, 1990), and the Statistical Learning approach to language acquisition (SL). 

Connectionism and SL have been developed in different research areas. However, 

both approaches are based on the idea that distributional information in the 

linguistic input, such as co-occurrence of elements, constitute a powerful cue that 

can be exploited during the learning process. For this reason, they have often 

gathered under the term Distributional learning mechanisms (Redington, Chater, 

1998). Connectionism aimed at developing computational models that process and 

learn language by exploiting statistical cues in the linguistic input they are fed with. 

SL aimed at investigating humans’ computational abilities to grasp and rely on the 

statistical information that is intrinsically present in language, during the process of 

language processing and acquisition. Both these fields of study brought important 

evidence of the presence of very powerful statistical mechanisms that can be used 

to process and learn linguistic material. These statistical mechanisms would appear 

to be domain-general, being exploitable in different domains to acquire complex 

information from external input. Contrary to the nativist perspective, which posits 

that language ability is largely innate and domain-specific, the Connectionist and 

Statistical Learning approaches challenge this notion by emphasizing the role of 

environmental input and statistical cues in language acquisition. While nativists 

emphasize the primacy of innate knowledge, these alternative theories suggest that 

learning from linguistic input, enriched with statistical information, plays a crucial 

role in language development. Rather than relying solely on pre-existing linguistic 
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structures encoded in the mind, these approaches highlight the ability of individuals 

to extract patterns and regularities from their linguistic environment through 

exposure and experience. This stands in stark contrast to Chomsky's assertion that 

language acquisition cannot be explained by learning mechanisms, underscoring a 

fundamental disagreement between nativist and usage-based perspectives.  

Hence, summarizing, influential studies coming from different fields provided new 

evidence for: (i) The possibility to develop neural networks which showed evidence 

for the potentiality to learn from the input: Several studies on neural networks have 

provided evidence for the possibility to extract regular patterns by simple exposure 

to impoverished output; (ii) the presence of a rich source of statistical information 

available in the linguistic input; (ii) children’s ability to grasp these regularities; 

(Christiansen, Allen, Seidenberg, 1998). The results obtained from Connectionism 

and SL contributed toward stealing the limelight from the nativist approach, which 

constituted one of the most accredited theories in language acquisition in those 

years, whereas usage-based approaches gained increasingly more credit.  

 

In the next section, we will see more in detail two of these important 

milestones that marked the history of the usage-based line of research: The 

development of Rumelhart and McClelland’s Neural Network for Past Tense (1986) 

and the publication of the article Statistical Learning by 8-Month-Old Infants by 

Saffran, Aslin, Newport in 1996. 

 

1.1.2.1 Connectionist models. 1986: Rumelhart and McClelland’s neural 

network for the English past tense 

 
In 1986, the two psychologists David Rumelhart and James McClelland 

announced to have created a neural network model for the past tense, which 

represented “a turning point in linguistics”, quoting the title of a review in the Times 

Literary Supplement (Sampson, 1987). The reviewer expressed his astonishment 

saying that the implications of Rumelhart and McClelland’s study were “awesome”. 

He stated: “To continue teaching [linguistics] in the orthodox style would be like 

keeping alchemy alive” (Pinker, 1999, p.104). Rumelhart and McClelland’s model 
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represents one of the milestones of a new research program in cognitive science: 

Connectionism, often referred to as Parallel Distributed Processing (PDP). 

Connectionist models are inspired by the neuronal brain architecture: these models 

consist of a relatively high number of very simple units that are connected in a net, 

dimly resembling the architecture of neurons in the brain (Pinker, 1999; Ramsey, 

Stich, 1990). Networks usually include layers of units (or nodes): one input layer, 

an output layer, and, between them, one or more hidden layers. The units are linked 

by weighted connections that transfer activation signals between them so that one 

unit can inhibit or excite another one. The activation signal consists of a function of 

the sending unit’s activation level and the connection weight. In feed-forward 

networks, the process goes only in one direction, whereas in more complex 

networks, as in the case of recurrent networks, the communication between nodes 

can be bi-directional and there might also be feedback loops (Ramsey & Stich, 

1990). Rumelhart and McClelland’s neural network represented a revolution as 

compared to the cognitive models available at that time among generativists. 

Indeed, this model was not anymore based on the idea of combinatorial rules and 

symbols manipulation but rather it was based on laws of resemblance (or 

association) and contiguity (Pinker, 1999). “[…] Pre-connectionist model builders 

have presupposed computational architectures that perform operations best 

described as 'symbol manipulations'. In such systems, information is generally 

stored in distinct locations separate from the structures performing computational 

operations. Information processing in such devices consists of the manipulation of 

discrete tokens or symbols, which are relocated, copied, and shuffled about, 

typically in accordance with rules or commands which are themselves encoded in 

a manner readily discernible by the system” (Ramsey, Stich, 1990, p.189). 

Rumelhart and McClelland developed a model for English past tense which 

involved a network capable of generating the past tense of a verb (output) starting 

from the sound of its stem (input). The model is based on statistical principles, 

specifically on distributional statistics (Redington, Chater, 1998). The mechanism 

of the model exploits the fact that in English past-tense forms are constructed 

incrementally from mini-regularities that are common across verbs (cf. Pinker, 

1999). At the input layer, verb stems are represented by 460 neuron-like units, each 
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capable of being activated or deactivated. These units encode various phonetic 

features present in English verbs, such as specific vowel and consonant 

combinations. Rather than having dedicated units for individual verbs, the 

activation of specific units corresponds to the sounds present in a given verb. 

Similarly, the output layer mirrors the structure of the input layer and contains the 

past-tense forms. Connections between the input and output layers are synapse-like 

and adjustable in strength, allowing for the encoding of associations between input 

verb stems and their corresponding past-tense forms (Pinker, 1999). “In effect each 

connection is a probabilistic microrule that states something like, If the stem 

contains a stop consonant followed by a high vowel, the past-tense form is likely to 

contain a nasal consonant at the end” (Pinker, 1999, p. 196). In the beginning, in a 

not yet trained network, the connections between nodes have the value of zero. This 

means that regardless of the input, the output would be absent. In the learning phase 

of the model, the connections between units undergo modification. This process 

occurs as the model is trained with a specific set of verbs paired with their correct 

past-tense forms, presented multiple times. As the model is exposed to positive 

evidence—instances where the input verb corresponds accurately with its past 

tense—the weights of connections between units are adjusted. This adjustment of 

connection weights enables the model to learn and encode associations between 

verbs and their respective past-tense forms more effectively. Rumelhart and 

McClelland trained their network using a dataset comprising 420 verbs, each 

presented 200 times. The model successfully computed the correct sound patterns 

for the majority of these verbs. Following this, the network was tested with 86 

previously unseen verbs. For approximately three-quarters of the new regular verbs, 

the model accurately generated the past-tense forms with '-ed'. Interestingly, when 

faced with new irregular verbs, it exhibited reasonable overgeneralization errors, 

producing forms like 'digged' and 'catched'. Additionally, the model displayed 

tendencies akin to language acquisition in children, making errors such as 'gived' 

for verbs it had previously produced correctly. It also demonstrated the tendency to 

analogize new irregular verbs to existing families of similar-sounding irregular 

verbs (Pinker, 1999). Hence, the essence of Rumelhart and McClelland's model lies 

in a clever approach: instead of directly linking one word to another, it connects the 
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phonological characteristics of a word to those of another word. This strategy 

facilitates automatic generalization through similarity. Importantly, these 

associations are overlaid across the various words in the training dataset (Pinker, 

1999). 

In conclusion, connectionist models4 represented a completely new and 

powerful alternative to Chomsky’s innatism. Indeed, these empirical models 

seemed to provide the early evidence for the fact that learning can take place even 

in the absence of pre-existing innate dispositions or knowledge (Ramsey & Stich, 

1990).  

 

1.1.2.2 Statistical Learning to extract statistical cues from linguistic input  

 

Besides Rumelhart and McClelland’s neural network, during the 80s and 90s, 

several studies on neural networks have provided evidence for the possibility to 

extract regular patterns by simple exposure to impoverished output. Moreover, as 

said above, there have been interesting discoveries concerning the rich source of 

statistical information available in the linguistic input. However, although there had 

been consistent evidence for the fact that neural networks can learn by simply 

exploiting statistical regularities available in the linguistic input, various scholars 

remained deeply skeptical about the hypothesis that humans might learn in the same 

way, being able to deal with the statistical regularities available in the speech stream 

they hear. One reason was that children’s memory and attention seemed too limited 

to support this kind of learning (Bates, Elman, 1996). It is only by taking into 

consideration the state of the art at that time that we can fully appreciate the 

centrality of the discovery made by Saffran, Aslin and Newport in 1996. Indeed, 

these scholars provided a completely revolutionary kind of evidence: They 

demonstrated that infants as young as eight months old could segment nonwords 

                                                       
4 Besides Rumelhart and McClelland’s model, other connectionist models have been developed in 

those years to simulate language processing. Among the others, PARSNIP, created by Hanson and 

Kegl in 1987; St. John and McClelland (1988); Fanty (1985); Cottrell (1985); Waltz and Pollack 

(1985); Selman and Hirst (1985); Charniak and Santos (1986); Elman (1990); Plunkett & 

Marchman, 1991; Seidenberg & McClelland, 1989; Zemel, 1993. 
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consisting of three-syllable sequences after being exposed to a continuous string of 

nonsense syllables for just 2 minutes. Remarkably, they achieved this segmentation 

solely by relying on statistical cues present within the string. “[…] The nature of 

this learning is surprising: a purely inductive, statistically driven process, based on 

only 2 min of incidental input, with no reward or punishment other than the pleasure 

of listening to a disembodied human voice. […] it contradicts the widespread belief 

that humans cannot and do not use generalized statistical procedures to acquire 

language” (Bates & Elman, 1996, p.1849). The relevance of the discovery is 

ensured by the fact that, in this study, Saffran and colleagues managed to investigate 

pure statistical learning by avoiding the presence of other possible acoustic cues in 

the string, which could have helped children in the segmentation process: the only 

cues in the artificial speech stream were transitional probabilities between syllables. 

To build their pseudowords, indeed, Saffran and colleagues exploited one property 

of natural language: “Within a language, the transitional probability from one sound 

to the next will generally be highest when the two sounds follow one another within 

a word, whereas transitional probabilities spanning a word boundary will be 

relatively low” (Saffran, Aslin and Newport, 1996, p.1927). For example, in 

English, given the two words pretty#cold, the transitional probability between pre 

and ty is higher than that between ty and co. To test whether babies might detect 

word boundaries by exploiting the sequential statistical information in a 

concatenated speech stream, Saffran and colleagues designed an experiment in 

which they exposed children to two types of auditory stimuli. Babies were tested 

through the familiarization-preference procedure (Jusczyk and Aslin, 1995). In the 

first part of the experiment, children were exposed to a 2-minutes continuous speech 

stream of three-syllable nonsense words, which were randomly repeated. No 

prosodic cues were provided. The speech stream sample comprises the orthographic 

sequence bidakupadotigolabubidaku… Word boundaries were discernible solely 

through transitional probabilities between syllable pairs, which were consistently 

higher within words (1.0 in all instances, such as bida) compared to between words 

(0.33 in all instances, such as kupa) (Saffran, Aslin and Newport, 1996, p.1927).  In 

a second moment, children were presented with two types of stimuli: items that 

were presented during the familiarization phase and items that were highly similar 
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to those previously presented but that have never been encountered before. Every 

baby was exposed to multiple repetitions of a particular three-syllable sequence in 

each testing session. Among these sequences, two were considered "words" from 

the artificial language used during the familiarization phase, while the other two 

were three-syllable "nonwords" containing the same syllables as heard during 

exposure but arranged differently from their presentation as words (Saffran, Aslin 

and Newport, 1996).  Children controlled the duration of the trials by fixating their 

gaze on a blinking light. If infants have successfully gathered the essential 

information from the familiarization materials, they might exhibit varying periods 

of focused attention (listening) in the two types of tests trials (Saffran, Aslin and 

Newport, 1996). Results showed that children succeeded in discriminating between 

the familiarization syllable order and the novel one, as confirmed by longer 

listening times for the latter. This indicates that the children exhibited a preference 

or heightened attention towards the novel sequence, suggesting their ability to 

detect and differentiate unfamiliar patterns or sequences from familiar ones 

(“novelty preference" or "dishabituation effect”, cf. Saffran, Aslin and Newport, 

1996, p.1927). Since the fact that children succeeded in detecting serial order 

information is not enough to prove that they detected word boundaries, a second 

experiment was carried out. The second experiment aimed at verifying if babies 

could distinguish recurrent syllable sequences from strings of syllables that spanned 

word boundaries, hence sequences of syllables occurring less frequently. To test if 

infants could differentiate between syllable pairs within words and those spanning 

word boundaries, an analogy was drawn to English, where 'pretty#baby' represents 

an internal syllable pair ('pretty') versus an external pair ('ty#ba') (Saffran, Aslin and 

Newport, 1996, p.1927).  As in the previous experiment, the first part consisted of 

a familiarization phase in which babies were exposed to three-syllable nonsense 

words in a continuous speech stream. However, the test phase consisted, this time, 

of two words and two “part-words”. The part-words were formed by combining the 

last syllable of one word with the initial two syllables of another. Consequently, 

these constructs comprised three-syllable sequences previously encountered by 

infants during familiarization but did not correspond to actual words within the 

dataset. Determining these part-words as new or unfamiliar relied on the infants' 
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ability to have learned the words robustly enough so that sequences spanning word 

boundaries appeared relatively unfamiliar (Saffran, Aslin and Newport, 1996). 

Surprisingly, children listened longer to part-words, suggesting that they correctly 

succeeded in discriminating between word and part-word items. This astonishing 

result represented a turning point in linguistics, and during the following year, 

further interesting results provided by other studies strengthened the statistical 

learning hypothesis, giving it increasingly more credit among scholars.  

 

1.1.2.3  Different types of statistical information: Conditional statistics and 

distributional statistics 

 

During the 1990s, the early years of statistical learning research, scholars 

primarily focused on investigating transitional probabilities between syllables, as 

exemplified by the study conducted by Saffran, Aslin, Newport, 1996). Statistical 

learning, indeed, emerged from the exploration of speech segmentation abilities in 

infants (Thiessen, 2017). These studies concentrated on transitional probabilities 

between syllables, which refer to the probability of co-occurrence between two 

syllables. Transitional probability indicates the likelihood that an element Y occurs 

given the presence of an element X. In other words, it represents the probability that 

X and Y occur together, as illustrated in Figure 1. 

 

 

 

Figure 1. Transitional probability between X and Y. (Saffran, Aslin and Newport, 1996, 

p.1928, note 12). 

 
 Regarding syllable boundaries, the transitional probability from one syllable to the 

next is higher when the two syllables occur within a word, whereas it is lower when 
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the two contiguous syllables span a word boundary (Saffran, Aslin, Newport, 1996). 

For example, as discussed in the previous section, given the sound sequence 

many#children, the transitional probability from 'ma' to 'ny' is greater than the 

transitional probability from 'ny' to 'chi'. 

Subsequent studies have extended statistical learning to other linguistic 

research areas, demonstrating the extensive range of opportunities within the field. 

Moreover, scholars have begun investigating the effect of statistical cues on 

different types of stimuli, such as visual or auditory ones. Statistical learning studies 

have also been conducted with adults and even with animals. Additionally, other 

statistical learning mechanisms have started to be explored (Thiessen, 2017). Some 

scholars have proposed a distinction between different statistical learning 

mechanisms that learners might employ when dealing with various structures 

(Thiessen, 2017). Thiessen and colleagues (2013) elucidate that individuals are 

attuned to a broader spectrum of statistical information that extends beyond 

conditional relations determined by transitional probabilities. Much of the research 

in statistical learning has focused on sensitivity to conditional relationships, mainly 

in the context of word segmentation abilities. However, individuals across various 

age groups and species also display sensitivity to other types of statistical patterns 

that cannot be fully explained by conditional relationships alone (Thiessen, 

Kronstein, Hufnagle, 2013). As these authors highlight, statistical learning can be 

categorized into three subcategories: conditional statistics, distributional statistics, 

and cue-based statistical learning. The term statistical learning has been utilized to 

describe various instances where learners acquire statistical information within the 

input structure. While these instances fall under the umbrella of statistical learning, 

a comprehensive explanatory mechanism that adequately addresses the complexity 

and diversity of all cases has been lacking for many years. Following Thiessen et 

al. (2013), we will delve more deeply into what conditional, distributional, and cue-

based statistics entail. 

Conditional statistics reflects the predictive relationship between two elements X 

and Y.  Transitional probability, the most investigated phenomenon within 

conditional statistics, quantifies the likelihood of event Y occurring given that event 

X has occurred. High transitional probabilities indicate that X frequently predicts 
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Y, while low transitional probabilities indicate that X rarely predicts Y. For instance, 

if event X occurs 100 times and the X-Y sequence happens 40 times, the transitional 

probability of Y following X is 40%. Unlike simple co-occurrence frequencies, 

conditional statistics provide a more accurate measure of the strength of the 

relationship between two events. This is because high co-occurrence frequencies 

can result from both events being common independently, rather than being 

predictive of each other. For example, the phrase "the dog" might occur often since 

both "the" and "dog" are frequent words. However, because "the" can precede many 

different words, the transitional probability between "the" and "dog" remains low 

(Thiessen et al., 2013). After Saffran, Aslin and Newport’s study (1996), other 

scholars have replicated the result that babies can discriminate between elements 

occurring with high transitional probabilities and those less coherent items (Aslin 

et al., 1998; Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003). Moreover, as 

Thiessen and colleagues (2013) elucidate, studies have demonstrated that humans 

can detect transitional probabilities also between non-adjacent elements, even if the 

task has proven to be more difficult as compared to the detection of transitional 

probability between adjacent elements (Creel, Newport, & Aslin, 2004; Newport & 

Aslin, 2004).  

Distributional statistics capture the central tendencies and characteristic features 

of a set of elements by considering both their frequency and variability. These 

statistics are termed "distributional" because they reflect how learners are attuned 

to the frequency and variability of examples in the input. A classic example of 

distributional statistical learning comes from the experiments by Maye et al. (2002), 

which investigated the impact of phonemic exemplar distributions on infants' 

discrimination abilities. The study found that infants' ability to differentiate between 

phonetic categories, such as /d/ and unaspirated /t/, could be influenced by the 

frequency distribution of these sounds. When infants were exposed to a bimodal 

distribution, where clear examples of /d/ and unaspirated /t/ were frequent, they 

were more likely to discriminate between these categories. Conversely, when 

exposed to a unimodal distribution, where an intermediate sound between /d/ and 

unaspirated /t/ was most common, infants showed less discrimination between the 

categories, despite the exemplars being equally present in both training scenarios. 
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This finding has been replicated for other phonetic distinctions (e.g., Maye et al., 

2008). This sensitivity to the frequency of phonemic examples helps explain how 

infants adapt to the phonemic structure of their native language during their first 

year (Werker & Tees, 1984). Typically, sounds that are central to a phonemic 

category occur more frequently than those near the category boundaries (Werker et 

al., 2007). Another important aspect of distributional statistics is variability. 

Learners exposed to high-variability distributions are more likely to accept a 

broader range of examples as belonging to a category, but they also show less 

certainty when judging stimuli near the category boundary (e.g., Clayards, 

Tanenhaus, Aslin, & Jacobs, 2008). Conversely, low variability in the input results 

in sharper category boundaries (Thiessen et al. 2013). Another distributional cue 

that humans can detect and exploit to form categorical distinctions is the context in 

which an element occurs. If two similar elements systematically appear in different 

contexts, humans have a proclivity to represent them as belonging to two different 

categories (Honey & Hall, 1989; James, 1890; cf. Thiessen, Kronstein, Hufnagle, 

2013). As Thiessen and colleagues (2013) discuss, besides phonetic discrimination, 

distributional statistics has been investigated also in word learning and in the 

discovery of syntactic structure (Reber & Lewis, 1977). In addition, as for 

conditional statistics, distributional statistics has proven to be effective in other 

processes besides language learning, as in auditory perception and object 

categorization (Rakison, 2004; Younger & Cohen, 1986). Moreover, this ability has 

been detected also in animals (Lotto et al., 1997).   

Cue-based statistics involve the ability of learners to identify perceptual features 

in the input that signal the presence of certain properties that are not directly 

observable. This type of statistical learning helps infants discern which perceivable 

attributes in their environment correspond to attributes that cannot be directly 

perceived, and how they prioritize certain cues over others. A prominent example 

of cue-based learning in the realm of statistical learning is the identification of 

acoustic cues to word boundaries, such as pauses, phonotactics, and lexical stress. 

For instance, in English, words typically start with a stressed syllable (Cutler & 

Carter, 1987). By the age of 8–9 months, infants learning English begin to use stress 

patterns as indicators of word beginnings (Johnson & Jusczyk, 2001). Learners not 
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only detect these cues but also generalize their knowledge to new contexts. Once 

an infant understands that stress can predict the onset of words, this knowledge is 

applied broadly. This generalization aspect of cue-based statistical learning is 

significant because it influences subsequent learning processes, a phenomenon 

often described as "learning how to learn" (Harlow, 1949; Thiessen & Saffran, 

2003; Yerkes, 1943). After learning which perceptual features cue underlying 

structures, these features shape how learners identify and understand new structures 

in the future (e.g., Curtin, Mintz, & Christiansen, 2005). Importantly, individuals 

are adept at recognizing these consistent patterns in cues when the cues operate with 

a degree of probability rather than absolute certainty (Gratton, Coles, & Donchin, 

1992; Thiessen & Saffran, 2007). Interestingly, this learning process is not limited 

to linguistic domains and extends to various contexts, such as visual and auditory 

tasks (Thiessen et al., 2013).  

While numerous studies have documented how learners are sensitive to 

various types of statistical relations in their input, these studies often isolate one 

specific phenomenon—be it conditional, distributional, or cue-based statistical 

learning. Thiessen et al. (2013) argue that a more holistic approach is necessary to 

fully understand statistical learning. They propose a memory-based framework that 

combines two crucial processes: extraction and integration. According to Thiessen 

et al. (2013), extraction involves identifying statistically coherent clusters of 

perceptual features, such as word forms, and storing them as discrete 

representations in memory. Integration, on the other hand, entails comparing these 

clusters to discern commonalities and the central tendency of the input. The authors 

argue that neither process alone suffices to explain the full range of statistical 

learning phenomena. Instead, a combined approach enables a comprehensive 

understanding of how learners process and utilize statistical information. 

Extraction, while effective at identifying conditional statistical relations, falls short 

in explaining distributional and cue-based statistical learning. For instance, 

clustering models can segment sequences into chunks but do not account for the 

similarities among these chunks, which is essential for category learning. Similarly, 

integration models that focus on distributional statistics fail to segment input into 

meaningful chunks, thus missing conditional relationships critical for language 
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learning. Thiessen et al. (2013) propose that combining extraction and integration 

processes addresses these shortcomings. Extraction provides a lexicon of candidate 

words, while integration allows learners to detect central tendencies and generalize 

across exemplars. This synergy not only enhances sensitivity to conditional 

relations but also improves the recognition of distributional and cue-based 

regularities. For example, models of long-term memory that integrate information 

across multiple exemplars can explain how learners generalize from specific 

instances to broader categories. This is vital for understanding how infants and 

adults alike identify phonological regularities and apply this knowledge to word 

segmentation and other tasks. By integrating extraction and integration, this unified 

framework accounts for a broader spectrum of statistical learning phenomena. It 

explains how learners detect conditional relations and leverage distributional 

information, thus providing a more complete picture of statistical learning 

processes. This approach suggests that learning is not merely about storing chunks 

of information but also about understanding the relationships and regularities within 

that information. Thiessen et al.'s approach also opens new avenues for modeling 

statistical learning beyond traditional boundaries. By recognizing that learners use 

both extraction and integration, researchers can better simulate complex learning 

tasks, including syntactic learning and other higher-order processes. This 

comprehensive model highlights the importance of considering multiple statistical 

learning processes in tandem, rather than in isolation, to capture the richness of 

human learning capabilities. In summary, Thiessen et al. (2013) advocate for a 

memory-based framework that combines extraction and integration to provide a 

holistic understanding of statistical learning. This approach not only addresses the 

limitations of focusing on a single type of statistical learning but also offers a 

unified explanation for how learners process a wide range of statistical information. 
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1.2 Evidence for structure-dependent abstract representation and statistical 

learning at the syntactic level 

 

Numerous studies have showcased the capacity to utilize statistical 

information in acquiring various linguistic phenomena. Nonetheless, limited 

attention has been given to the potential acquisition of syntactic-level information, 

such as phrase-structure grammar, through the application of statistical 

mechanisms. This point likely represents the main dividing line between nativists 

and proponents of the usage-based theory. Nativists argue that there is not much to 

be acquired regarding syntax. The operations Merge and Agree, according to this 

view, are provided by Universal Grammar (UG) (Chomsky, 1995), while the rest is 

attributed to external factors, i.e., the "third factor" (Chomsky, 2005). The concept 

of third factor refers to influences external to Universal Grammar, such as 

principles of cognitive economy or constraints arising from the structure of the 

human brain. However, there is no clear consensus on what the "third factor" 

includes. According to Johansson (2013), it may encompass principles of data 

processing, economy of derivation, interface conditions, general cognitive 

capacities, architectural and computational constraints, developmental constraints 

and canalization in embryology, physical and mathematical laws. These factors 

would contribute to the final shape of syntax without being an intrinsic part of innate 

grammar or specific linguistic experiences. On the other hand, proponents of the 

usage-based theory argue that exposure to linguistic material might bootstrap the 

development of phrase-structure grammar, rejecting the necessity of an innate 

universal grammar.  They acknowledge that grammar development can be 

influenced by various cues present in linguistic input, such as semantic, 

morphological, pragmatic, or phonological cues. Importantly, however, 

distributional information between words or word classes is also considered to play 

a significant role in grammar development (Redington, Chater, 1998). Despite these 

insights, the possibility to acquire phrase-structure grammar remained for several 

years one of the most contentious and controversial issues in language acquisition 

(Redington, Chater, 1998; Kidd, 2012). This is undoubtedly partly attributable to 

the scarcity of studies investigating this phenomenon, both in the field of 
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psycholinguistics and in connectionist studies. Indeed, initial psycholinguistic 

studies in Statistical Learning (SL) primarily explored speech segmentation abilities 

in infants. As discussed earlier, a notable work in SL by Saffran, Aslin, and Newport 

(1996) revealed the remarkable ability of 8-month-old children to detect transitional 

probabilities between syllables. Further studies have extended their focus beyond 

phonology to investigate phenomena like morphology and vocabulary acquisition. 

Additionally, apart from the initial studies involving infants, subsequent research 

has also explored the abilities of adults. However, the great majority of statistical 

learning studies have focused on the investigation of early-stage language 

acquisition phenomena (i.e., speech segmentation and lexicon formation). On the 

other hand, very few works have analyzed the role of statistical learning in the 

acquisition of syntax, even if, many scholars proposed that statistical regularities 

may play a role at this level as well.  

The same observation applies to investigations using neural networks. 

During the first years of research in the field of connectionism, apart from the early 

works by scholars in computational linguistics and machine learning aimed at 

solving various practical issues, particularly those involving linguistic corpora, very 

few studies focused on the acquisition of syntax. Only some years later, scholars 

within the field of cognitive science began to explore this issue by designing 

computational models based on distributional information to hypothesize how the 

child may acquire syntactic categories (Redington et al. 1998). Indeed, cognitive 

scientists started to see in neural networks an interesting tool for the investigation 

of language acquisition. That could have happened, certainly thanks to, on one side, 

the rapid development of computer technology in the previous years, which 

provided cognitive scientists with new powerful computational techniques and 

technological tools. On the other side, thanks to the important discoveries in 

neuroscience concerning brain structure and functioning. Indeed, with Parallel 

Distributed Processing, scientists aimed at creating computers that were directly 

inspired by the brain structure (Christiansen, Chater, 2001). Since the very 

beginning, connectionist approaches to the study of language acquisition have been 

sharply criticized and remained for several years highly controversial (Christiansen, 

Chater, 2001). Despite that, connectionist approaches have provided several 
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interesting results in the investigation of different subfields of language acquisition, 

from low-level acoustic discrimination to words segmentation, and even 

morphological processing, as we have seen with the well-known case of Rumelhart 

and McClelland’s neural network for past tense. By contrast, two areas have been 

less investigated: sentence processing and speech production, constituting for years 

a considerable challenge for the connectionist approach (Christiansen, Chater, 

2001). Despite the long-standing line of connectionist research, some issues have 

not been fully addressed for many years. This fact is a direct reflection of the 

complexity of human language. “[…] Progress in this area has been much slower 

than in most other learning tasks, undoubtedly due to the inherent complexity of 

natural language” (Langley, 1987, p.5). 

On the other hand, there has always been almost unanimous consensus on 

the fact that, at the syntactic level, all languages function in a structure-dependent 

way. “[…] a structure-dependent operation is one which is based on the abstract 

structural organizations of word sequences. By contrast, structure-independent 

operations apply to sequences of words themselves, and include operations like 

NEXT and CLOSEST which are contingent on linear order” (Crain & Nakayama, 

1987, p.522). Children never utter structure-independent sentences: phrase 

construction and movements do always respect structure-dependent rules. This is 

the case, for example, of auxiliary fronting in English polar interrogatives (Boeckx 

& Hornstein, 2004; Crain & Nakayama, 1987; Crain & Pietroski, 2001; Legate & 

Yang, 2002). Nevertheless, despite the significance of structure-dependence 

theories in language processing and acquisition, critical psycholinguistic 

experiments testing the role of structure-dependence in language were notably 

lacking until at least 1987. Indeed, the first study that thoroughly investigated this 

issue was carried out by Crain & Nakayama, in 1987, testing auxiliary fronting 

phenomena. 

Hence, it is intriguing to ascertain whether a bias toward structure indeed 

exists during the acquisition of syntactic-level phenomena. Additionally, it is crucial 

to comprehend whether statistical learning also plays a role in acquiring the 

fundamental mechanisms that underlie syntactic structure. In recent times, 

noteworthy psycholinguistic studies have presented significant evidence supporting 
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the existence of structure-dependent constraints in the acquisition of syntactic-level 

phenomena (Coopmans et al., 2022; Culbertson & Adger, 2014; Lidz et al., 2003; 

Martin et al., 2019; 2020), while also furnishing compelling evidence of the 

capability to process statistical information at the syntactic level (Gerken et al., 

2005; Gomez, 2002; Kidd, 2012; Saffran, 2001; Saffran, Wilson, 2003; Thompson 

and Newport, 2007). Moreover, significant and intriguing results concerning the 

possibility of acquiring syntax have emerged from computational language models, 

which have made tremendous strides, especially in recent years. In the following 

sections, we will provide an overview of the most important results obtained in 

recent years from these two different perspectives: the psycholinguistic and 

computational branches. 

 

1.2.1 Evidence for structure-dependent abstract representation  

 

Crain & Nakayama (1987) were the first to experimentally test auxiliary fronting 

phenomena by carrying out three experiments in which they investigated movement 

transformation, specifically the inversion between subject and AUX in sentences 

with relative clauses.5 In the first one, they elicited the production of yes/no 

questions from children (age: 3 to 5)6. The second one aimed at analyzing the type 

of errors children made in the first experiment. In the last one, they compared the 

acquisition of interrogatives based on a structurally-based account with the 

acquisition based on semantic generalization. The result of their experiment 

strongly supported the hypothesis according to which children learn and process a 

language by inferring structure-dependent rules, regardless of the computational 

complexity of sentences. In other words, the rules that children hypothesize do not 

                                                       
5 Example of sentences with relative clause (i), the relative structure-dependent (ii) and structure-

independent (iii) interrogative forms: 

(i) The man who is tall is in the other room. 

(ii) Is the man who is tall __ in the other room? 

(iii) *Is the man who __ tall is in the other room? 

(Crain & Nakayama, 1987 p.525) 

6 Example of sentences from Crain & Nakayama’s elicitation task: “Ask Jabba if the boy who is 

watching Mickey Mouse is happy”. 
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apply to sentences as linear strings of words. Children’s computational hypotheses 

are based on abstract structures, which can be detected by recognizing the internal 

structure of sentences in which words are seen as terminal symbols (Crain & 

Nakayama, 1987).  

Further confirmation that language processing occurs in a hierarchical 

manner has been proven by several recent psycholinguistics studies (Coopmans et 

al., 2022; Culbertson & Adger, 2014; Lidz et al., 2003; Martin et al., 2019; 2020). 

In addition to the case of AUX inversion, another interesting phenomenon to test 

the presence of structure-dependent rules is that related to word order. The 

arrangement of words within sentences could either be learned through linear 

statistical surface mechanisms or reflect the hierarchical structure in which words 

are organized. If the latter hypothesis is true, the linear word order would be the 

result of the linear one-dimensional transposition of an n-dimensional structure that 

encodes the relationships these words have with each other.  

A particularly interesting phenomenon is related to the ordering of nominal 

modifiers. Greenberg's Universal 20 (Greenberg, 1963), as restated in Cinque 

(2005) is as follows:  

 

In prenominal position the order of demonstrative, numeral, and adjective (or any 

subset thereof) conforms to the order Dem > Num > A; in postnominal position the 

order of the same elements (or any subset thereof) conforms either to the order Dem > 

Num > A or to the order A > Num > Dem. (Cinque, 2005) 

 

Universal 20 has been attested through various typological studies and supported 

by controlled samples of 576 languages (Dryer, 2018). However, little had been said 

about the reasons underlying this phenomenon. Indeed, this phenomenon could be 

dictated by historical, cultural causes, or instead reflect a cognitive constraint 

(Culberton, Adger, 2014).  

Culbertson & Adger (2014), by carrying out two experimental studies, tested an 

intriguing hypothesis, according to which Dem-Num-Adj-N and N-Adj-Num-Dem 

are most common orders because they maintain an isomorphism between scope and 

surface order. On the other hand, orders like N-Dem-Num-Adj and Adj-Num-Dem-

N are non-isomorphic, which may explain their rarity or absence in human 
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languages (Culbertson, Adger, 2014). In experiment 1, they presented participants 

with examples from an artificial language by randomly assigning them to four 

conditions: each condition consist of a specific type of postnominal noun-modifier 

(i.e., N-Adj; N-Dem; N-Num). Importantly, there were no phrases with more than 

one modifier. During the testing phase, they had to infer the relative ordering of 

noun phrases with more than one modifier, by choosing from binary option. In this 

way, they tested the two hypotheses: if participants infer the order relying on 

semantic scope relations, they should choose N-Adj-Dem, N-Num-Dem, and N-

Adj-Num. Indeed, these orders are isomorphic to the semantic scope. On the 

opposite, if they chose the order based on surface transitional probabilities, English 

participants should prefer N-Dem-Adj, N-Dem-Num, and N-Num-Adj, given that 

the order between the modifiers reflect the most frequent one in English. Results 

showed that participants choose the isomorphic order over the one that was more 

similar to English surface linear order, in all three conditions. Interestingly, 

however, the effect was more marked in the Dem-Adj case than Dem-Num or Num-

Adj. The authors suggest that this result might reflect the structural distance 

between modifiers: the semantic scope relation manifests itself more evidently 

when the structural distance between modifiers is greater. In experiment 2, the 

authors extended the investigation to the whole phrase. Indeed, according to the 

structure-dependent hypothesis of processing, participants should infer a scope-

isomorphic order in the noun phrases with all three modifiers as well. They trained 

hence participants with all three types of modifiers. Again, results showed a 

preference for scope-isomorphic order. In conclusion, Culbertson and Adger’s 

experiments showed that learners consistently preferred the order that maintained 

the semantic scope relation between modifiers over the one which was linearly 

more similar to English (the linear order of modifiers was identical to English, but 

in a postnominal position).  

Martin et al. (2020) wanted to go deeper and shed more light on the result found in 

Culbertson & Adger (2014). Indeed, these results could potentially have been 

caused by a metalinguistic strategy used by the participants that may have led them 

to choose sequences that complied with the semantic scope without, however, 

having access to an abstract representation of the constituent structure. In fact, the 
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participants may have arrived at the result by using a strategy of flipping the order 

of the modifiers from that of their L1 (Martin et al., 2020). Then, through three 

experimental studies they aimed at verifying whether the preference for orders 

respecting the hierarchy was still found when participants do not use metalinguistic 

strategy of flipping. In Experiment 1, to reduce the possibility that participants 

might visually flip the word order of their L1 by applying it to the artificial language 

they are learning, they used new stimuli that had no correspondences in the 

participants' L1. In addition, all words and phrases were presented both auditorily 

and orthographically. After conducting a noun training phase and a modifier 

training phase to ensure that the participants had learned the meanings of the words 

in the artificial language, the participants were taught phrases with a noun and a 

single modifier. Each of the participants then learned two types of modifiers, 

depending on the condition they were randomly assigned to (either Adj and Dem, 

or Num and Dem, or Adj and Num). In the testing phase, participants had to guess 

the order of the modifiers when both were present. In this phase, a picture appeared 

at each trial with two descriptions under it. Participants were asked to click on the 

corresponding description. Both descriptions always included the correct lexical 

items in post-nominal position. However, only one of them had homomorphic order 

(e.g., N-Adj-Dem vs. N-Dem-Adj). The results showed a preference for 

homomorphic order only in the Dem-Adj condition (e.g., N-Adj-Dem order 

preferred over N-Dem-Adj). However, no preference is found in the Dem-Num 

condition nor in Num-Adj (i.e., no preference between N-Adj-Num and N-Num-

Adj orders, nor between N-Num-Dem and N-Dem-Num orders). Among the 

possible causes for this result could have played a role (i) the type of the task: having 

to choose instead of producing the phrases, participants may have been less likely 

to fully acquire the lexical items and create a mental representation of the meanings. 

This would imply a weaker influence of the underlying structure or greater focus 

on linear order; (ii) having given participants both available options in the testing 

phase may have weakened what would otherwise have constituted a stronger bias. 

In Experiment 2, therefore, instead of using the forced-choice task in which 

participants must choose between two orthographically presented options, they 

chose to use a production task where participants were required to produce the 
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phrases verbally through a microphone. In addition, the stimuli, which were created 

using the same artificial language as in Experiment 1, are presented here only orally. 

The procedure is the same as in Experiment 1 but readjusted to oral production. 

Thus, in the testing phase, images representing nouns combined with two modifiers 

are presented and participants are asked to verbally produce the corresponding 

syntagma. The results are interesting: in line with what was found in Experiment 1, 

a preference toward homomorphic ordering in the Dem-Adj condition is 

reconfirmed. However, a preference toward homomorphic order is also found here 

in the Dem-Num and Num-Adj conditions. The hypothesis that the production task 

would have reinforced the preference toward homomorphism is thus confirmed: the 

fact that the participants had to orally produce the words would have led them to 

acquire the lexical meanings at a higher level and thus to have a better 

representation of the meaning or syntactic categories of the items. Having to 

verbally produce the phrases, moreover, might have encouraged the mental 

formation or activation of hierarchical representation, which in turn would have led 

to a stronger preference toward homomorphic structures. In Experiment 3, 

participants are asked to verbally produce phrases even during the training phase, 

unlike in Experiments 1 and 2. The results are in line with those of study 2: indeed, 

there is a preference for homomorphism in all three conditions. Wrapping up, the 

difference between the results of study 1, on the one hand, and those of studies 2 

and 3, on the other hand, would seem to be dictated by task type. Moreover, through 

post-hoc analysis it is reconfirmed that the preference for homomorphism is more 

pronounced for the Dem-Adj combination than for the other combinations. This 

result is again interpreted as evidence that Dem and Adj are structurally more distant 

from each other than Dem-Num or Num-Adj. This hypothesis is based on the 

assumption that the entire hierarchical structure of the nominal phrase is present or 

activated in the mind of the speaker/listener even when one of the categories is not 

expressed. This would be in line with what is assumed by the theory proposed by 

Cinque (2005). However, other explanations could underlie the phenomenon, which 

would not imply the abstract representation of the whole phrase structure every time 

a nominal sentence is produced: for example, the differences in the strength of 

associations found could be a reflection of the semantic or conceptual structure 
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underlying the syntactic hierarchical representation. In other words, a reflection of 

the way objects relate to their properties, numerosity, etc. in the world, not just in 

linguistic expressions, as proposed by Culbertson, Schouwstra & Kirby (2020). 

Coopmans et al. (2022) carried out an interesting experimental work on word order 

in noun phrases as well. They conducted two behavioral experiments to test whether 

participants interpreted noun phrases based on their internal abstract hierarchical 

structure rather than linear order. Then, they trained a neural network on the same 

task they used in the behavioral experiment to check if the network would have 

shown the same or a different behavior of participants. Experiment 1 aimed to 

investigate how participants interpret noun phrases containing ordinals, color 

adjectives, and nouns referring to the shape of a target object. Two conditions were 

used: convergent and divergent. In the convergent condition, the hierarchical 

(nonintersective) and linear (intersective) interpretations of the noun phrase led to 

the same answer. For example, "the second blue ball" could refer to both the second 

among blue balls (hierarchical) and the ball that is blue and in the second position 

(linear). In the divergent condition, the hierarchical and linear interpretations of the 

noun phrase led to different answers. For instance, "the second blue ball" might be 

blue (linear interpretation) but not the second among blue balls (hierarchical 

interpretation). Results showed that participants predominantly gave hierarchical 

answers in response to divergent trials. However, this result has to be taken 

carefully: indeed, an alternative interpretation that did not rely on constituent 

structure could have caused the result. This interpretation involved considering 

"second blue" as a complex adjective applied to the noun "ball" (e.g., a ball that is 

second among blue items). This alternative approach (left-branching) yielded the 

same target as the hierarchical interpretation, but it did not necessarily require 

hierarchy, as opposed to the right-branching interpretation. In the right-branching 

'hierarchical' structure depicted in Figure 2A, there exists a connection between the 

element 'second' and a constituent, indicating modification of the constituent. 

However, such a constituency-based relationship is unnecessary for representing 

the meaning of the left-branching structure illustrated in Figure 2B (Coopmans et 

al., 2022). 
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Figure 2. Representations of the phrase 'second blue ball' can be depicted in both right-

branching (A) and left-branching (B) structures. Figure taken from Coopmans et al., 2022, 

p. 425.  

Hence, to distinguish between the two interpretations, a second experiment was 

conducted. Experiment 2 was similar to Experiment 1, but with the addition of blue 

and green triangles to the array of items. This addition introduced two shapes, 

making the noun (ball or triangle) crucial for identifying the target. Each trial now 

contained two potential targets for phrases like "second blue ball." Both right-

branching and left-branching interpretations were always available in each trial but 

never converged on the same item. Results showed that participants were 

significantly more likely to use right-branching interpretations than left-branching 

interpretations. Hence, taken together the two experimental studies strongly support 

the significance of hierarchical constituent structure for semantic interpretation in 

the context of the given noun phrases. In Experiment 3 they trained and tested a 

long short-term memory (LSTM) model on a computational version of the 

behavioral experimental task involving noun phrases. Crucially, the model 

demonstrated the ability to give hierarchical answers when trained on 

unambiguously hierarchical datasets. However, when the training data contained 

both unambiguously hierarchical and ambiguous trials, the model strongly favored 

the linear interpretation, even though the hierarchical interpretation was a better fit 

for the overall data. Moreover, the model did not systematically generalize to novel 

items not seen during training, unlike human participants who showed a bias 

towards interpreting language hierarchically despite ambiguous input data. 

Summing up, Coopmans et al. (2022) found that the model's behavior differed 

significantly from that of humans, who seem to have a bias to interpret language in 

accordance with its underlying hierarchical structure, even when the input is 
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ambiguous. They concluded by suggesting that the model would require different 

inductive biases to achieve human-like generalization. 

 

1.2.2 Psycholinguistic evidence for the ability to track statistical regularities at 

the syntactical level  

 

In this section, we will examine several studies that have presented evidence 

regarding the capacity to process statistical information at the syntactic level. As 

we delve into the section, it becomes apparent that recent scholarly interest has 

turned towards investigating this matter, encompassing evaluations of sensitivity to 

both frequency and transitional data within the realm of syntax. Specifically, the 

studies have considered certain phenomena as indicative of statistical markers for 

syntax acquisition. These include the frequency of syntactic structure (Kidd, 2012), 

transitional probabilities between words to segment phrases (Thompson and 

Newport, 2007),  dependencies to discern phrase boundaries (Saffran, 2001) 

utilization of low-level statistical output (word segmentation) as input information 

for computing higher-level phenomena (syntax) (Saffran, Wilson, 2003), 

distributional cues for constructing syntactic categories (Gerken et al., 2005) and 

transitional probabilities between adjacent and nonadjacent dependencies (Gomez, 

2002). 

Saffran (2001) investigated if participants, adults, and children, would have 

succeeded in exploiting predictive relationships as a cue to have access to the 

hierarchical phrase structure of an artificial language. With this study, Saffran 

(2001) aimed at shedding light on the extraordinary human ability to access the 

hierarchical organization of language given linearly ordered sentences as an input. 

How do humans manage to move from linear order to hierarchical structure? Which 

cues might help them in this process?  It is possible that dependencies could act as 

a statistical hint for identifying phrase boundaries. Dependencies have not been 

thoroughly investigated as indicators for recognizing phrasal units that might not 

be explicitly indicated in the input. When learners encounter dependencies in the 

input, they might naturally combine related elements into phrases, even if there are 

no other clear indicators typically associated with phrase boundaries (Saffran, 

2001). Resting upon these observations, Saffran (2001) tested this hypothesis in two 
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artificial grammar learning experiments, the first one with adults, and the second 

one with children (from 6 to 9 years old). The first experiment aimed to investigate 

whether learners could discern phrase structure in language input solely based on 

predictive dependencies between form classes, without other cues. Participants 

were exposed to sentences from an artificial language, where phrase structure rules 

were governed by the distribution of words across categories, devoid of any 

semantic, prosodic or referential cues.  Hence, the artificial language used contained 

consistent predictive dependencies as the primary cue to phrasal units. One 

difference from natural language, however, is that the predictive dependencies 

crucial for uncovering phrases were conveyed simply through adjacent form 

categories. This simplicity contrasts with what is usually seen in natural languages. 

Participants were divided into two groups. The first group underwent intentional 

learning (i.e., intentional condition), hence they were explicitly instructed about the 

grammatical rules; the second group underwent incidental learning (i.e., incidental 

condition), meaning their exposure to the artificial language occurred passively 

while they performed an interfering task. This setup provided an opportunity to 

contrast the results of implicit and intentional learning, aiming to determine if the 

mechanisms supporting this statistical learning mechanism can function similarly 

to the exposure-driven learning seen in natural language development. Participants 

listened to a tape of multiple legal sentences for four times (30-minutes session). 

This training procedure was repeated two times, in separated sessions. 

Subsequently, they underwent three distinct forced-choice tests. One forced-choice 

test (i.e., Rule Test) was administered right after each of the two listening sessions 

to evaluate the participants' understanding of the generalizations over form classes 

that produced the input. Participants were presented with two new sentences: one 

adhering to the language's rules and the other violating them. Participants were 

instructed to designate which of the two sentences was more acceptable based on 

the language they were previously exposed to. The Rule Test offered insights into 

how well participants grasped the language's structure. However, understanding 

phrase structure was not necessary for them to perform well. For instance, 

participants could have scored above chance without needing to understand the 

phrase structure, but simply recognizing that a word belonging to a specific 
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category never followed a word belonging to another specific different category. 

Subsequently, another forced choice task (i.e., Fragment Test) was administered to 

directly evaluate learners' representation of input in terms of phrase groupings. Each 

trial presented two sentence fragments: one forming a phrase and the other spanning 

a phrase boundary. The hypothesis posited that successful grouping of input strings 

into phrases would render phrase fragments more natural than non-phrase 

fragments. A control group was included in the study, comprising participants who 

underwent the three forced choice tests without prior exposure to the language. This 

measure aimed to ascertain that any performance above chance among the 

experimental participants stemmed from learning, rather than potential biases in the 

test materials. Saffran (2001) carried out a second experiment to evaluate the 

existence of these learning mechanisms among children, using the same materials 

and procedure as that in the first experiment with adults. Results of the first 

experiment confirmed the ability among adult learners to identify phrasal units even 

when lacking explicit cues beyond predictive dependencies. Their performance on 

the rule tests suggests a comprehensive acquisition of information, not only 

regarding the occurrence of individual categories but also concerning the more 

complex conditional rules that dictate relationships between these categories. 

Moreover, the predictive relationships established between form classes within the 

experiment played a pivotal role in facilitating the statistical learning process 

associated with phrasal groupings. In addition, it is noteworthy that the 

experimental group exhibited superior performance compared to the control group 

in the Fragment Test. Remarkably, participants achieved these results within the 

incidental paradigm, indicating that learning occurred without them consciously 

intending to learn. This suggests that they were able to acquire the language 

structure even though their primary focus was not on learning it directly. In 

summary, the results of the first experiment provided strong evidence for the fact 

that adults managed to learn the hierarchical structure of the artificial language by 

relying on predictive dependencies, as these structures were the only one cue that 

had been inserted in the artificial language and that could have been exploited as a 

statistical cue by participants to detect phrasal units. Results from the second 

experiment indicated that children managed to acquire some rudimentary aspects 
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of the structure of the language as well, but the result was weaker as compared to 

adults’ performances. Overall, adults outperformed children on all the tests. In 

general, the results of Saffran’s study represent an important piece of evidence for 

the fact that linguistic input contains statistical information that represents a 

goldmine for learners. Indeed, the types of statistical cues that are present in 

language have been revealed to be strictly linked to the kind of statistical abilities 

that are in the faculty of humans’ computational possibilities. Saffran (2001) 

clarified that these findings uphold the idea that human learning mechanisms can 

derive hierarchical structures from statistical connections between form classes, 

through implicit learning processes. The extent to which these mechanisms are 

specifically adapted for language acquisition, or if they arise from broader cognitive 

and perceptual properties, poses an important question for further empirical 

investigation (Saffran, 2001). 

Saffran and Wilson (2003) carried out the first experiment in which they tested in a 

single experiment the abilities to track statistical information at different linguistic 

levels. Indeed, as Saffran and Wilson (2003) explained, up to that moment, 

experiments on statistical learning have focused on analyzing one single 

phenomenon at a time, investigating, for example, speech segmentation abilities, 

word category formation, lexical acquisition, or syntactic learning. No experiments, 

up to that moment, had investigated two or more phenomena at the same time, using 

a single paradigm. However, as Saffran and Wilson pointed out, in a natural 

language environment, learners manage to acquire and process different levels of 

the linguistic structure under the same circumstances. Hence, the question arose: do 

learners use the output of lower-level statistics as an input to access higher-level 

linguistics aspects? They tested this hypothesis in 12-month-old infants by exposing 

them to artificial utterances, whose words were ordered based on a finite-state 

grammar and were presented as a continuous stream. The results were impressive: 

children, after only a few minutes of exposure, first managed to segment words 

from the continuous stream, and subsequently, they also successfully discovered the 

ordering relationships between words. In other words, they managed to track, in a 

first moment, the transitional probabilities at syllables level and then, distributional 

statistics between words. From this result, the authors concluded that the learning 
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processes being examined are both highly effective and meticulously crafted to 

address the challenges encountered by individuals learning human language 

(Saffran, Wilson, 2003). 

Gomez (2002) investigated children’s and adults’ abilities to track nonadjacent 

dependencies. The ability to deal with nonadjacent dependencies is at the core of 

the faculty of language. Indeed, several linguistic phenomena, especially at the 

syntactic level, are expressed through relationships between linguistic elements that 

are not based on sequential proximity but on hierarchical dependencies. These 

phenomena manifest themselves through long-distance dependencies. Nonadjacent 

dependencies seem to be particularly challenging to learn and process, as they 

require tracking connections between non-contiguous elements, bypassing 

intervening nonrelevant linguistic material. Example of long-distance dependencies 

in natural language are provided by auxiliary-inflectional morphemes relationships 

(e.g., Laura is walking; Marc has arrived) and number agreements (e.g., the flowers 

in the garden are yellow; the girls in the picture are Sara and Mary) among the other 

(Gomez, 2002). The author exposed adults and infants to sets of artificial sentences 

composed of three non-words each, generated by two miniature artificial languages. 

The two languages contained the same adjacent dependencies but different 

dependencies between the first and the third elements. In other words, both 

languages shared identical adjacent dependencies, requiring learners to discern 

between them solely through acquiring nonadjacent dependencies, which related to 

the connection between the first and third elements. Each language generated 

sequences like "vot-kicey-rud or "pel-wadim-jic". Despite starting and ending with 

the same words and featuring identical pairwise adjacent transitions, the languages 

diverged in the dependencies between their first and third elements. Consequently, 

learners could solely discern between the languages by grasping the nonadjacent 

dependencies. To further explore this, Gomez (2002) manipulated the context 

variability by systematically expanding the pool from which the middle element 

was selected. This experimental setup allowed to examine two conflicting 

hypotheses: If learners incorporate lower-order dependencies within higher-order 

ones, exposure to smaller sets should enhance the learning of nonadjacent 

dependencies due to the higher transitional probabilities between adjacent elements 
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in smaller sets compared to larger ones. Conversely, if increasing variability 

prompts learners to concentrate on other sources of consistent structure, sensitivity 

to nonadjacent dependencies should increase with set size. In the adult experiment, 

participants underwent training sessions during which they listened to auditory 

sequences generated by one of two artificial languages. Throughout this training 

phase, learners were directed to focus on the sequences they heard. Before the 

testing phase, participants were informed that the sequences heard during training 

followed particular rules regarding word order. During the subsequent testing 

phase, participants were presented with new strings. Half of these strings adhered 

to the word order rules encountered during training, while the others did not. 

Participants were directed to press particular keys on a keyboard indicating whether 

they believed a string followed the word order rules from their training or not. In 

the experiment involving infants, the stimuli mirrored those used in the adult 

experiment, with the exception that infants were trained on two nonadjacent 

dependencies instead of three. Additionally, the head-turn preference procedure was 

employed. The duration an infant spent oriented toward the test stimulus was 

measured. A notable contrast in listening time between trained and untrained strings 

would suggest that infants developed some sensitivity to the nonadjacent 

dependencies outlined by their training language. Interestingly, Gomez (2002) 

found that neither adults nor infants showed evidence of integrating lower-order 

dependencies into higher ones. Similarly, there was no gradual improvement in 

discrimination as the set size increased. Instead, discrimination spiked notably only 

with the largest set size. The inability to discriminate among smaller set sizes, 

coupled with the sudden surge in discrimination with the largest set size, suggests 

that both infants and adults initially processed adjacent dependencies by default. 

They shifted their attention to nonadjacent dependencies only when the former 

proved unreliable enough. These findings are significant as they demonstrate that 

even very young learners can adapt to the informational demands of their learning 

environment, displaying a considerable level of adaptability in their learning 

process. Hence, this important result suggests that the statistical information that is 

present in the linguistic structure strongly influences learners’ behaviors. As Gomez 

(2002) elucidate, these findings highlight the fact that specific circumstances could 
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influence learners to prioritize nonadjacent rather than adjacent dependencies, 

shedding light on how learning might be influenced by statistical patterns 

dynamically. Learners are inclined to identify consistent patterns within the 

stimulus array. When transitional probabilities are high, adjacent elements are 

perceived as stable. However, in scenarios where high variability disrupts adjacent 

dependencies, learners will look for alternative sources of predictability. These 

results align with the perspective that humans are proactive and adaptable learners, 

eager to exploit any regularities they encounter (Gomez, 2002). 

Gerken et al. (2005) investigated children’s ability to form syntactic categories by 

relying on distributional cues in the input. As the authors clarify, the ability to 

understand and form an unlimited number of syntactically correct sentences is 

founded upon the ability to form discrete syntactic categories. With this experiment, 

Gerken and colleagues aimed to verify whether humans could accomplish this task 

by simply relying on distributional cues in the input. In natural language, several 

cues, such as morphological markers indicating the word's position in the sentence 

and phonological properties, could provide humans with useful statistical 

information, which can be exploited for correct syntactic categorization (Gerken et 

al., 2005). The idea that distributional cues alone are sufficient to form syntactic 

categories is called the distributionally-based category formation hypothesis. On 

the other hand, some scholars strongly believe that distributional cues alone are not 

sufficient, and that semantic information is necessary for correct categorization (i.e., 

semantic bootstrapping hypothesis). Gerken and colleagues explored the 

distributionally-based category formation hypothesis. They tested American infants 

(1.5 years old) in three experiments, in which they were exposed to a series of 

artificial words with gender morphological markers present in Russian. In the three 

studies, using the head-turn preference procedure, they investigated infants' ability 

to discriminate grammatical from ungrammatical test trials, with the final goal of 

testing children’s ability to form syntactic categories relying on morphological cues 

of gender. This paradigm was chosen for several reasons. Firstly, Russian gender is 

a rich and complex system that children actually acquire, making it intriguing to see 

if infants could grasp some of its complexities in a short lab session. Secondly, they 

aimed to introduce infants to a linguistic category absent in English. Lastly, 
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previous studies have shown that American adults can learn this paradigm when 

exposed to stimuli with partially correlated cues, providing a benchmark for 

comparison with infants' learning behavior. They developed a Russian gender 

paradigm featuring masculine and feminine lexical stems, each paired with two 

distinct case endings. Certain words in both genders were termed 'double marked' 

as both their stem endings and case inflections conveyed gender information. In 

contrast, other words were 'singly marked,' indicating that they were only 

distinguished by the case inflection. Experiment 1 involved two groups of infants: 

one group was exposed to the Russian gender paradigm before the test (i.e., 

familiarization phase), with the expectation that they would distinguish 

grammatical from ungrammatical test trials. The second group received no prior 

exposure and served as a control. During the test phase, both groups encountered 

grammatical and ungrammatical words, with the latter created by applying incorrect 

case endings while maintaining the same format as the grammatical trials. Results 

were in line with their hypothesis and indicated that only familiarized infants were 

able to distinguish grammatical from ungrammatical Russian words. Experiments 

2 and 3 followed the same procedure and were carried out to account for potential 

phonological artifacts that might have influenced the results (Experiment 2) and to 

shed more light on the difference between the double marked condition and the 

single marked condition (Experiment 3). Experiment 2 addressed two potential 

phonological issues identified in Experiment 1. Despite this, it still replicated the 

effect of infants being able to distinguish between grammatical and ungrammatical 

items, albeit to a lesser extent compared to what was found in Experiment 1. 

Experiment 3 involved testing two groups of infants. The first group underwent the 

same familiarization and testing procedure as the infants in Experiment 2, 

potentially enabling a replication of those findings. The second group underwent 

the same testing process but was exposed to stimuli lacking double marking of 

gender categories. Consequently, the only gender indication stemmed from the two 

feminine and two masculine case inflections. Based on prior findings indicating that 

adults rely on double marked stimuli to infer word category, Gerken and colleagues 

hypothesized that only infants exposed to the double marking condition would 

successfully differentiate between grammatical and ungrammatical test items. The 
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outcomes from Experiment 3's double marked condition strongly mirror the effect 

observed in Experiment 2. Conversely, infants in the single marked condition were 

unable to differentiate the same test stimuli that were successfully distinguished by 

infants in the double marked group. The complete absence of any hint of a 

grammaticality effect in the single marked condition underscores the idea that 

infants, similar to adults in prior studies, show a greater ability to grasp the 

categorical structure of a paradigm when multiple cues to that structure are available 

within a subset of the items they are exposed to during familiarization. In summary, 

Gerken et al. (2005) demonstrated that 1.5-year-old children can discriminate novel 

grammatical words from non-grammatical ones when exposed to a partial Russian 

gender paradigm for about two minutes. Importantly, however, children only 

showed the ability to discriminate grammatical words when some of the 

familiarization stimuli contained two category cues. This suggests that children may 

use a combination of distributional cues to learn the structure of syntactic 

categories. Their results are in line with previous findings exploring this ability in 

adults, which, when exposed to paradigms containing two category cues, exhibited 

similar behavior. Importantly, as the authors pointed out, the cues tested reflect 

genuine features found in the Russian language. Consequently, it suggests that 

infants may be able to utilize similar cues in real-world language acquisition 

settings. Overall, Gerken and colleagues’ results challenge the Semantic 

Bootstrapping hypothesis, arguing that referential information is not necessary to 

form syntactic categories, while, on the other hand, distributional information is 

enough. 

Thompson and Newport (2007) conducted an experiment with a miniature artificial 

language to test whether transitional probabilities between words play a role in the 

segmentation of phrases. Their goal was to verify whether this process would 

ultimately lead to the acquisition of grammar. As elucidated by the authors, up to 

that moment, transitional probabilities had already been found to play a role in the 

acquisition of phonology (Maye, Werker, & Gerken, 2002), in the segmentation of 

words (Newport & Aslin, 2000, 2004; Saffran, Newport, & Aslin, 1996), and even 

in the formation of word categories (Hunt, 2002; Mintz, Newport, & Bever, 2002). 

Thompson and Newport (2007) extended these investigations by exploring whether 
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transitional probabilities would be an exploitable cue even at the level of syntax 

acquisition. The hypothesis was that the same small range of statistical effects might 

be used by humans to deal with different aspects of language at different levels, 

from speech segmentation to syntax acquisition. To investigate the role of 

transitional statistics, they took into consideration all those phenomena that in 

natural language create peaks and dips within phrases and at their boundaries. They 

carried out 4 experiments with adults. In the first experiment, they investigated the 

role of optional phrases in determining transitional probabilities between phrases. 

Participants showed evidence of sensitivity towards this distributional information, 

and they succeed in learning the phrases and word order of the artificial language. 

In the following experiments, they added other phenomena that are naturally 

present in natural language and that would provide participants with additional 

distributional information: they tested whether participants would have been 

sensitive to the transitional probabilities generated by the presence of moved 

phrases, word classes of different sizes and repeated phrases. Moreover, in 

experiment 4, they pushed even further by increasing the complexity of the 

language used in experiments 1 and 2, and the result was that participants performed 

even better in this condition, demonstrating their ability to deal with complex 

statistical information at the level of syntax. Taken together, the results of these 

experiments show that humans can exploit transitional probabilities between words 

to form phrases. Importantly, this operation seems to lay at the basis of the discovery 

and learnability of the input structure. Hence, Thompson and Newport’s results 

provided brand-new evidence for the fact that the same kind of transitional 

probabilities that are at work during low-level language acquisition can be exploited 

to acquire higher-order levels of language. Furthermore, these results confirm the 

hypothesis that the rich complexity of natural language structure might facilitate 

learners during the non-trivial task of language learning by providing them with 

important, exploitable information. The authors concluded that further experiments 

should verify whether the statistical abilities deployed for the acquisition of syntax 

in artificial languages among adults are also those at work in the process of natural 

language acquisition by infants. Moreover, they underlined the fact that, despite 

having demonstrated that distributional information constitutes an important cue for 
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the acquisition of syntax, other kinds of computations might be necessary to handle 

the full richness of natural language structures, suggesting that future research 

should address this issue (Thompson, Newport, 2007). 

Kidd (2012), noticing the discrepancy between the number of theories according to 

which statistical learning would play a role in the acquisition of syntax and the 

number of studies that provided empirical evidence in favor of that, carried out a 

syntactic priming experiment to investigate children’s abilities to acquire grammar. 

The aim of the study was to examine the correlation between implicit statistical 

learning and the acquisition of syntax in children. The study investigated individual 

differences in various cognitive abilities, involving 100 children aged 4 to 6. The 

children completed tests of implicit statistical learning, explicit declarative learning, 

and standardized tests of verbal and non-verbal abilities testing vocabulary, 

nonverbal IQ, and declarative memory. Additionally, they participated in a syntactic 

priming task that provided a dynamic index of their ability to detect and respond to 

changes in the frequency of linguistic input. The final goal was to ascertain whether 

there were correlations between these abilities, specifically between implicit and 

explicit learning abilities and syntactic priming. Building on earlier research, Kidd 

(2012) predicted a direct connection between implicit learning skills and syntactic 

priming. Specifically, the author expected to find a direct relationship between 

implicit statistical learning and the long-term effects of priming. Conversely, no 

association between explicit learning abilities and syntactic priming were 

anticipated. Implicit statistical learning abilities were investigated through a Serial 

Reaction Time (SRT) task in which the ability to learn repeating 10-item sequence 

patterns was tested. In this task, children were presented with a single visual 

stimulus that moved between four spatial locations on a computer screen. The task 

required participants to press buttons corresponding to the location of the visual 

stimulus, and their reaction times were measured. The sequence was presented over 

four blocks, with the final block presenting the visual stimulus in a random order. 

The primary dependent variable of interest was the participants' reaction times, with 

decreases in reaction times in non-random blocks indicating implicit learning. The 

syntactic priming task aimed to assess the priming effect on the production of full 

be passive sentences in English. As the author explain, this construction was 
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selected because it has proven highly effective in language acquisition research and 

is relatively rare in spoken language, typically mastered only after formal 

instruction. This fact thus enhanced the likelihood of detecting a priming effect 

since children typically do not spontaneously produce passive constructions. It also 

raised the probability that any increase in the use of passives could be linked to 

learning. The task used different pictures depicting transitive scenes that could be 

described with either an active or a passive construction. The task consisted of three 

blocks: baseline, test, and posttest. In the baseline block, children were instructed 

to describe a picture without any input or guidance from the experimenter. In the 

subsequent test block, children underwent priming. They were informed that the 

experimenter would describe one picture, and they would then describe the next. 

Their task was to echo the experimenter's prime sentence, which consistently 

featured a full "be" passive structure with a "by" phrase. In the posttest phase, 

children described further pictures without priming, hence testing for potential 

long-term priming effects. The results aligned with Kidd’s hypothesis: Success on 

the implicit statistical learning task correlated with the persistence of the syntactic 

priming effect during the posttest phase, where no further primes were given. 

Conversely, explicit learning did not forecast priming. Overall, Kidd's findings 

indicate a direct link between children's performance on an independent statistical 

learning test and the sustained retention of primed syntactic structures over the long 

term. As the author suggest, these findings provide empirical evidence showcasing 

the direct relationship between implicit statistical learning and children's 

acquisition of syntax. 

 

1.2.3 Tracking statistical regularities at the syntactical level in computational 

language models 

Scholars that investigated the learnability of syntax through neural networks 

pursued the ambitious goal to demonstrate that the ability to correctly process and 

form syntactic structures can be gained by networks through learning, hence by 

pure exposure to language, without the need of prespecified symbolic rules 

(Chritiansen, Chater, 2001). However, among them, we find two rather different 

approaches to the investigation. In the less ambitious one, scholars have created 
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models designed to learn syntax based on input sentences in which each syntactic 

element has been previously tagged with the information concerning its syntactic 

role (e.g. dogs = plural, noun).7 Typically, the purpose of these network models is 

to identify the grammar (or a portion of it) that matches the example structures. This 

implies that the structural elements of language are not learned through observation, 

but are instead inherent (Chritiansen, Chater, 2001). The second class of model has 

a more ambitious aim: it provides evidence for the learnability of syntax by simply 

feeding the network with rough sentences, without any other information. In the 

1990s, these models started to provide the first empirical interesting results 

accounting for sentence processing phenomena.  Hence, several scholars in those 

years began to think that these models could hold significant potential for shedding 

light on crucial issues concerning the psychology of language, as they could reveal 

the possibility of language learning without pre-existing linguistic knowledge 

(Chritiansen, Chater, 2001). Here, we will focus on this second class, reviewing 

some of the most interesting models that have been developed over the years. 

Elman (1991) conducted one of the earliest and most influential studies aiming 

ambitiously to test whether a network could learn grammar solely through exposure 

to input sentences, without any prior information about the grammar. (Christiansen, 

Chater, 2001). In 1991, Elman trained a Simple Recurrent Network (SRN) 

intending to explore whether it would have succeeded in predicting words in simple 

sentences. The project of training an SRN to investigate sentence processing had 

already been undertaken by Elman one year before (Elman, 1990). Simple 

Recurrent Networks have revealed to be a revolutionary tool that, in the following 

years, have found interesting application, not only in sentence processing but also 

in different fields such as speech and handwriting recognition, music composition, 

robot control, machine translation, financial forecasting, etc. In general, these 

networks are particularly efficient in those tasks which require prediction. This is 

not surprising, because they have been designed with the specific goal of 

discovering and processing patterns among sequential data.  Sentences are 

                                                       
7 Among this class of models, we find: 

PARSNIP (Hanson & Kegl, 1987); VITAL (Howells, 1988); Pollack, 1988, 1990; 

Chalmers, 1990; Niklasson & van Gelder, 1994; Sopena, 1991; Stolcke, 1991.  
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sequences of temporally-ordered words, time is indissolubly tied to language, and 

it is starting precisely from these considerations that the Simple Recurrent Network 

has been conceived (Elman, 1990). Elman noticed, indeed, that one of the major 

problems with previous Parallel Distributed Processing (PDP) was the difficulty to 

represent time, an intrinsic issue dictated by the very nature of neural networks that 

are, as their name recall, parallel processors, as opposed to the serial nature of 

human language8. How the time factor has been included in the SRN network, and 

its consequence on the specific way in which the network works, represent a major 

difference from previous PDP networks. “In parallel distributed processing models, 

the processing of sequential inputs has been accomplished in several ways. The 

most common solution is to attempt to parallelize time by giving it a spatial 

representation. However, there are problems with this approach, and it is ultimately 

not a good solution. A better approach would be to represent time implicitly rather 

than explicitly. That is, we represent time by the effect it has on processing and not 

as an additional dimension of the input” (Elman, 1990, p. 180). This is precisely 

what Elman has achieved with SRN. The Simple Recurrent Network appeared to 

be a revolutionary tool. However, this approach was not completely new. The SRN 

designed by Elman is an implementation of the recurrent network described by 

Jordan (1986). The fundamental feature of this type of network is its possession of 

recurrent connections, which allow hidden nodes to access their preceding outputs. 

This capability enables these outputs to influence subsequent behaviors. Therefore, 

due to recurrent connections, the network exhibits memory (Elman, 1990). In other 

words, the processing system is dynamic, and its operations are influenced by 

temporal factors. In this manner, Elman successfully represented time through its 

effect on processing: the system's dynamic properties respond to temporal 

sequences, made feasible by the network's memory facilitated through recurrent 

connections (Elman, 1990). To delve deeper into the network's operation, we refer 

the reader to Elman (1990). Elman (1990) tested the SRN in various tasks, such as 

the learnability of the Exclusive-Or function (XOR) and more complex sequential 

                                                       
8 Elman does not negate the importance of hierarchical structure in human language; 

however, he argues that theoreticians have often uniquely focused on this aspect, with the 

result of neglecting the importance of serial order in language. 
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patterns where the duration of patterns was variable, thus challenging the networks 

with more intricate tasks. He fed the network structured sequences of letters and 

later exposed it to simple utterances composed of two or three-word sentences to 

assess its ability to predict words in a sequence. These sentences were generated 

using a sentence generator provided with 13 categories of nouns and verbs9, 29 

lexical items, and 15 sentence templates10, resulting in 10000 sentence frames of 

two or three words each. The frames were filled randomly with appropriate lexical 

items, and then the SRN was trained. Elman (1990) aimed to determine whether the 

SRN could predict subsequent words in a sentence. He did not expect the network 

to predict the exact lexical item but rather one belonging to the correct category. As 

Elman (1990) stated, “Successors cannot be predicted with absolute certainty; there 

is a built-in error which is inevitable. Nevertheless, although the prediction cannot 

be error-free, it is also true that word order is not random. For any given sequence 

of words, there are a limited number of possible successors. Under these 

circumstances, the network should learn the expected frequency of occurrence of 

each of the possible successor words; it should then activate the output nodes 

proportional to these expected frequencies” (Elman, 1990, p. 197). Surprisingly, the 

results showed that the SRN identified major categories of words and developed 

internal representations of input vectors that reflected information about their 

sequential order. While the network could not predict exact word sequences, it 

recognized that certain classes of inputs (such as verbs) typically followed others 

(such as nouns) within the corpus (Elman, 1990). Thus, the SRN can be viewed as 

a dynamic system capable of predicting word categories and subcategories. The 

error rate for predicting the correct lexical word was high but deemed acceptable 

given the nondeterministic nature of the task. Elman's SRN successfully built 

internal representations of input vectors that encoded important information about 

sequential order. Crucially, Elman suggested that these categorical representations 

                                                       
9 E.g. VERB-TRANSITIVE {chase, see, …}; NOUN-HUMAN {woman, girl, man, …}; 

VERB-PERCEPTION {hear, smell, …}. 
10E.g. WORD 1=NOUN-HUMAN + WORD 2=VERB-PERCEPTION + WORD 

3=NOUN-FOOD. 

 WORD 1=NOUN-ANIMAL + WORD 2=VERB-TRANSITIVE + WORD 3=NOUN-

ANIMAL. 
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were hierarchical in nature and emerged simply from the temporal distribution of 

sequential information. Importantly, this hierarchical structure emerged without 

predefined architectural constraints regarding the form or space of the hierarchy 

within the network. Elman's Simple Recurrent Network (1990) marked a significant 

milestone in connectionist studies, leading to further exploration of language 

learning using SRNs. Researchers have applied SRNs extensively to investigate 

syntactic structures, including the learnability of finite-state grammars (Giles et al., 

1992; Giles & Omlin, 1993; Servan-Schreiber et al., 1991). Moreover, SRNs have 

been tested on more complex grammatical structures, extending beyond the 

capabilities of finite-state devices, in simulations of formal language theory and 

language-like grammars (Christiansen & Chater, 1999). 

Elman (1991) delved deeper into the induction of grammatical structure in the 

learning process, examining whether SRNs could develop internal representations 

encoding hierarchical relationships between constituents. While previous findings 

showed SRNs could predict word categories based on lexical representation, critical 

issues regarding grammatical structure remained unresolved (Elman, 1991). To 

address these, Elman trained SRNs on sentences containing multiply-embedded 

relative clauses, testing their ability to discover and represent complex hierarchical 

and recursive structures. Importantly, the network received no explicit information 

about lexical categories, grammatical roles, or number, forcing it to autonomously 

discover these features. Interestingly, the results provided early evidence for the fact 

that the network succeeded in the task by developing distributional representations 

based on the hierarchical structure of constituents and their grammatical relations 

(Elman, 1991). Elman explained the centrality of his results with these words: “The 

important result of the current work is to suggest that the sensitivity to context 

which is characteristic of many connectionist models, and which is built-in to the 

architecture of the networks used here, does not preclude the ability to capture 

generalizations which are at a high level of abstraction. Nor is this a paradox. 

Sensitivity to context is precisely the mechanism which underlies the ability to 

abstract and generalize”. (Elman, 1991, p. 116). However, as Elman pointed out, 

these results were not conclusive. Despite providing new, interesting evidence, the 

work was preliminary, and some major issues remained. First, the investigation did 
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not take into account semantics aspects, focusing only on syntactic distributional 

properties. Second, it remained to be probed if the ability of the SRN to learn in a 

relatively simple syntactic environment was extendable to more complex sentence 

structures. Third, in a standard learning situation, human learners are exposed to 

more complex, rich, and diversified linguistic stimuli as compared to the limited 

linguistic phenomena that were taken into consideration in this experiment (Elman, 

1991). Hence, despite the important development they had undergone in those 

years, connectionist models were in 1991 still far from providing an ultimate tool 

for the study of human cognition. In addition to the point just discussed, another 

pending issue was the one concerning the difference in computational power 

between connectionist models and human cognitive resources.  “What is not 

currently known is effect of limited resources on computational power. Since 

human cognition is carried out in a system with relatively fixed and limited 

resources, this question is of paramount interest. These limitations provide critical 

constraints on the nature of the functions which can be mapped; it is an important 

empirical question whether these constraints explain the specific form of human 

cognition” (Elman, 1991, p. 115). Specifically, this last issue was subsequently 

taken into consideration by Elman (1993).  

Elman (1993) began with the observation that language acquisition occurs early in 

life, when cognitive resources are not fully developed and within a limited time 

window. He considered the hypothesis that these developmental constraints on 

cognitive resources are not a hindrance to language learnability but rather a 

prerequisite. This hypothesis emerged from an experiment where he trained 

connectionist networks with complex sentences to predict subsequent words. The 

experiment aimed to explore the networks’ capacity to learn and represent 

embedded structures. Surprisingly, Elman discovered that when the networks were 

provided with fully developed, “adult-like” resources, they failed in language 

learning. In contrast, when the networks had limited working memory capacity, 

they successfully learned language and managed complex syntactic structures. 

“There are circumstances in which these models work best (and in some cases, only 

work at all) when they are forced to start small and to undergo a developmental 

change which resembles the increase in working memory which also occurs over 
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time in children” (Elman, 1993, p. 72).  In addition to this, both children and neural 

networks seem to be more sensitive and open to learning during the early stages of 

the learning process. Hence, summarizing, Elman (1993) found early evidence for 

the fact that, in humans as in neural networks, there might be interesting parallelism 

between the development of computational resources and the learnability of 

complex tasks, such as language. Hence, Elman (1993) concluded highlighting the 

importance of taking into consideration developmental phenomena when 

investigating issues related to language learning.  

Elman’s work had a profound influence on connectionist research in 

subsequent years. His results provided crucial experimental confirmation of the 

potential of neural networks as tools for understanding the acquisition of syntax in 

humans. Early findings with neural networks highlighted intriguing parallels in 

learning processes between networks and humans, prompting scholars to pursue 

further investigations in this area. Additional support for the similarities between 

neural networks and the human brain in language learning was demonstrated by 

several researchers. Weckerly & Elman (1992) observed similar behaviors between 

SRNs and humans in processing center-embedded sentences. Building on Elman’s 

research, Christiansen (1994) explored cross-dependencies and extended the 

understanding of SRN capabilities. Notably, he found that trained SRNs could 

successfully learn complex constructions, revealing similarities in complexity 

between SRNs and human cognition. Christiansen and Chater (1999) investigated 

the learnability of complex recursive structures with SRNs, discovering qualitative 

parallels in processing center-embedding, right-branching recursion, and cross-

dependencies. Specifically, both SRNs and humans exhibited similar computational 

limitations when handling recursive depth. “Connectionist networks can learn to 

handle recursion with a comparable level of performance to the human language 

processor” (Chistiansen & Chater, 1999, p.199). This was the first time that a 

detailed comparative study had been carried out with different types of recursive 

structures, by comparing the neural networks’ results with a statistical benchmark 

based on n-grams (Chistiansen & Chater, 1999). Reali and Christiansen (2005) 

investigated the learnability of yes-no questions. They carried out experiments with 

bi-grams and tri-grams statistical models. The aim was to check if the models would 
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have learned to correctly front auxiliaries in polar interrogatives. After training 10 

SRNs with exposure to positive evidence (Bernstein corpus), they tested the SRNs 

by making them discriminate grammatical versus ungrammatical interrogatives. 

Interestingly, they found that the SRNs succeeded in the task by preferring 

grammatical forms over ungrammatical ones. 

However, while these earlier connectionist models achieved some success, 

it is important to recognize that they did not provide a definitive solution to the 

challenge of language acquisition. In the 1990s and early 2000s, connectionist 

approaches in syntactic studies were still in their infancy, and researchers 

acknowledged both the potential and limitations of this line of research. The use of 

Simple Recurrent Networks (SRNs) initially showed promise but faced criticism 

for their narrow scope and limited ability to represent input comprehensively. 

Christiansen and Chater (2001) acknowledged that these models often operated 

with simplified grammar fragments and small vocabularies, prompting concerns 

about their scalability to real-world language complexities. Critics argued that 

because connectionist models typically learn from finite and repetitive datasets, 

they struggled to demonstrate the capacity to develop full linguistic competence 

from the often sparse and incomplete input data encountered in natural language 

acquisition (Bickerton, 1996; Guasti, 2002; Berwick et al., 2011). One major 

critique from generativists was that connectionist models had not adequately 

addressed the Poverty of the Stimulus (POS) argument. Berwick et al. (2011) 

pointed out that results from Christiansen and Reali's (2005) study on auxiliary 

fronting could potentially be explained by basic statistical facts, such as simple 

bigram distributional statistics, rather than true syntactic comprehension. They 

questioned whether SRNs could effectively handle more complex interrogative 

structures, including those with embedded relatives, which were not explored in the 

2005 study. Another argument put forward by Berwick et al. (2011), not specifically 

targeting connectionist models but applicable to usage-based approaches in general, 

was that these approaches did not adequately address the structure-dependence of 

linguistic rules. Usage-based studies often failed to demonstrate that their models 

adhered strictly to structure-dependent rules. Even when these models successfully 

handled complex hierarchical structures, they might still operate in a structure-
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independent manner.  According to scholars in the generative stream, “[…] structure 

dependence of rules is an abstract property of certain grammars, and it is orthogonal 

to the property of generating expressions that exhibit hierarchical constituency” 

(Berwick et al., 2011, p. 1229). Thus, according to these scholars, usage-based 

approaches to language acquisition have not offered a valid answer to the poverty 

of stimulus argument. Despite the early successes of connectionist models, 

significant gaps remained. Connectionist researchers like Christiansen and Chater 

(1999) acknowledged the limitations of their small-scale simulations and stressed 

the need for more comprehensive evidence. The critical challenge was generalizing 

beyond the provided input. Critics such as Bickerton (1996) and Guasti (2002) 

emphasized that, unlike human learners who can generalize and develop robust 

linguistic competence from degenerate input, connectionist models will learn a 

degenerate language if the input they receive is degenerate. In summary, while 

connectionist approaches made promising strides in those years, they did not fully 

resolve the complexities of language acquisition. The need to demonstrate the 

ability to handle richer, more varied input and to provide evidence of mastering 

structure-dependent phenomena continued to drive further research and debate in 

the field in the following years. 

In recent years, advancements in neural networks for natural language 

processing have significantly pushed the state of the art, resulting in unprecedented 

achievements in human language learning. Key advancements have been made by 

models such as Long Short-Term Memory networks (LSTMs) (Hochreiter & 

Schmidhuber, 1997), Gated Recurrent Units (GRUs) (Cho et al., 2014), and 

Transformers (Vaswani et al., 2017). These models are classified as deep neural 

networks due to their incorporation of multiple layers within their architectures. 

LSTMs and GRUs have emerged as solutions to longstanding issues with traditional 

RNNs, particularly their struggle to learn effectively from sequences with long-

range dependencies. GRUs introduce gating mechanisms within the network 

architecture, enhancing their ability to manage long-term dependencies with fewer 

parameters. These gates regulate how information in the hidden state is updated 

across words, enabling precise tracking of dependencies spanning extensive 

sequences. LSTMs now dominate as the primary variant of RNNs in natural 
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language processing (NLP) (Linzen, Baroni, 2020). In contrast, transformers 

represent a significant departure from traditional RNNs, LSTMs, and GRUs. Built 

on self-attention mechanisms, transformers eliminate the need for recurrence. They 

feature deep architectures incorporating multiple layers of self-attention and feed-

forward networks, enabling efficient parallel processing of sequences. This design 

has underpinned breakthroughs such as BERT and GPT. BERT, introduced by 

Google AI in 2018, leverages transformers to generate context-aware word 

embeddings by considering both left and right contexts simultaneously, achieving 

state-of-the-art performance across various NLP tasks. Similarly, OpenAI's GPT, 

unveiled in 2018, utilizes transformer-based architectures to generate coherent and 

contextually appropriate text, highlighting the versatility and power of transformers 

in language generation tasks. The effectiveness of both gating mechanisms in GRUs 

and attention mechanisms in transformers is not predetermined but determined by 

weights learned during training. This adaptability, coupled with advancements in 

specialized hardware, enables transformers to be efficiently trained on vast corpora, 

enhancing their capabilities in handling complex natural language tasks (Linzen, 

Baroni, 2020). Certainly, these models were not created with the aim of testing 

linguistic hypotheses but for practical purposes. Indeed, they were not designed 

based on specific theories to test predictions derived from those theories. 

Nonetheless, this does not undermine their value as scientific models, as their 

origins do not affect their scientific validity (Cichy & Kaiser, 2019). For this reason, 

several cognitive scientists have started using DNNs as models of human behavior 

and brain responses. Various syntactic phenomena have been tested using DNNs. 

Linzen and Baroni (2020) provide an interesting overview of these studies, and we 

encourage readers to refer to their paper for further insights. Here, we only mention 

a few of the phenomena that have been tested. Linzen et al. (2016) trained an LSTM 

on English sentence prefixes to predict the number of the upcoming verb, achieving 

over 99% accuracy on new prefixes. However, this high accuracy does not 

necessarily show the network's ability to identify the subject's head noun, as the 

subject is often the noun closest to the verb. Even with sentences containing up to 

four attractors, the network maintained 82% accuracy, indicating it was not 

frequently misled by attractors. Bernardy and Lappin (2017) demonstrated that 
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other DNN architectures, such as GRUs and convolutional networks, can also 

successfully perform the number prediction task. This suggests that Linzen et al.'s 

(2016) findings are not specific to LSTMs. Gulordava et al. (2018) showed that 

LSTMs can learn long-distance agreement by predicting the next word in a corpus 

without focusing specifically on subject-verb agreement. They tested this by 

comparing the probabilities assigned to singular and plural verb forms after a 

sentence prefix. LSTMs trained this way showed high accuracy in agreement 

prediction across four languages (English, Hebrew, Italian, and Russian) and 

various dependency types. Additionally, LSTMs performed well on grammatically 

correct but semantically implausible sentences (e.g., colorless green ideas), 

indicating they can compute agreement without relying on lexical or semantic cues. 

This suggests that word prediction training alone can teach networks about long-

distance agreement and syntactic categories. Wilcox et al. (2018) examined how 

well LSTM language models detect English filler-gap dependencies. Additionally, 

McCoy et al. (2020) investigated the case of auxiliary fronting in English question 

formation (Linzen, Baroni, 2020).  

Overall, DNNs demonstrate remarkable efficiency in learning and 

producing language. Crucially, their language production capability resembles that 

of humans, with low error rates even when handling complex syntactic structures. 

They achieve this without relying on innate linguistic constraints such as abstract 

symbols and rules, traditionally deemed necessary by generative linguists for 

language acquisition. However, this does not mean these models are entirely 

unconstrained. As Linzen and Baroni (2020) argue, their biases stem from initial 

weights and the structure of their architectures, though these differ from constraints 

proposed by generative linguists. Of course, this does not rule out the possibility of 

innate biases like a universal grammar or cognitive biases of different nature in the 

human brain. Nonetheless, these models provide significant evidence that such 

innate mechanisms are not essential for developing complete linguistic competence. 

Regarding the influence that the constraints of models may have on how they 

process linguistic material, Matusevych and Culbertson (2022) conducted an 

intriguing study. These authors investigated whether different types of RNNs 

exhibit a "homomorphism bias," which refers to a transparent correspondence 
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between the underlying hierarchical structure of the noun phrase and the linear 

sequence of its elements. This bias is reflected in the tendency to preserve 

hierarchical relationships between words even when the linear order changes, a 

phenomenon supported by several studies (Culbertson & Adger, 2014; Martin et al., 

2019, 2020; Culbertson et al., 2020). Matusevych and Culbertson (2022) tested 

three computational models on their capacity to demonstrate this bias and mimic 

human-like preferences for noun phrase word order. Importantly, these models 

differed in their architecture: one was a linear RNN (LSTM), and the other two were 

hierarchical RNNs (an ON-LSTM and an RNNG). They pre-trained these models 

on English language data and then exposed them to an artificial language with a 

different word order for noun phrases. The models were subsequently tested on their 

ability to predict the order of modifiers in the artificial language. The findings 

revealed a clear distinction between the linear and hierarchical RNNs. Only the 

hierarchical models, ON-LSTM and RNNG, exhibited the homomorphism bias, 

successfully replicating the human-like preference for maintaining hierarchical 

relationships within noun phrases, although they displayed different behaviors for 

which the authors could not provide detailed explanations. In contrast, the linear 

LSTM failed to demonstrate this bias. This suggests two important points: first, that 

the human preference for specific word orders, even in unfamiliar languages, might 

stem from the inherent hierarchical nature of language processing; and second, the 

study highlights the importance of hierarchical representations in language 

modeling, providing evidence that hierarchical RNNs are better equipped to capture 

these complexities compared to linear models. 

Despite the great success that recent deep DNNs have been achieving in 

recent years, two fundamental issues arise when considering these models as 

cognitive tools for studying biological language. The first concerns the disparity in 

training on vast datasets compared to the more limited exposure during human 

learning. Moreover, they lack a real-world environment that supports language 

learning, unlike the interactive environment in which children learn (Linzen, 

Baroni, 2020; Piantadosi, 2023). Another challenge stems from the complexity of 

neural networks, as the exact mechanism leading to their extraordinary results 

remains incompletely understood. While it is possible to precisely measure the 
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activation of each unit after processing individual words (Linzen, Baroni, 2020), 

there is considerable interest in understanding how these activations arise from the 

network's internal dynamics described by vectors containing hundreds or thousands 

of real numbers manipulated through arithmetic operations guided by millions of 

parameters. Specific techniques are needed to make these complex vectors 

understandable to humans. Although this is a challenging task, some researchers 

have explored various methods to address it (Linzen, Baroni, 2020). For example, 

Manning et al. (2020) question whether these models can learn the hierarchical 

structure of language, despite lacking explicit representations of syntax in their 

input. By using 'structural probe' methods, they have developed a similarity metric 

for the internal word representations in DNNs that reflects their syntactic distance 

in a sentence analysis. Manning et al. (2020) suggest that a linear transformation of 

these learned embeddings effectively captures parsing tree distances, allowing for 

an approximate reconstruction of tree structures commonly used by linguists. 

However, as noted by Linzen and Baroni (2020), it is crucial to recognize that the 

ability to extract information from a network's representation does not necessarily 

mean the network actively uses such information to influence its behavior. This 

suggests that the production of hierarchical representations by the network does not 

necessarily imply the active use of hierarchical strategies. It may simply reflect the 

application of distributive statistics over a large dataset containing such structures. 

Speculatively, this could be a potential difference between the biological brain and 

artificial neural networks. As we have emphasized, recent psycholinguistic studies 

indicate that the human brain possesses not only statistical abilities but also a 

cognitive bias favoring structural preferences, as demonstrated by significant 

results from psycholinguistic studies presented in Section 1.2.1. On the other hand, 

given that human language is produced by the human brain, it would not be 

surprising if its form reflects the cognitive biases of the system from which it 

originated. To shed more light on these open issues, Piantadosi (2023) suggests the 

importance of introducing additional architectural constraints and principles 

inspired by the human brain into artificial neural networks. This could include 

constraints that improve optimization or reflect the cognitive limitations of human 

learners. These questions are central to cognitive sciences and drive the current 'The 
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BabyLM Challenge' (Warstadt et al., 2023), which aims to develop models capable 

of learning with data quantities that mirror human development. Finally, while some 

scholars criticize the utility of these models in the context of studying biological 

language (Chomsky, 2023), it is important to consider that continued study of these 

models could open numerous research opportunities. Although they do not provide 

immediate answers, they are essential for deepening our understanding of human 

language. Future studies could address these issues from different perspectives and 

refine investigative techniques, thereby contributing to improving our 

understanding of human language and formulating compelling theories about how 

structure and statistics interact, as also suggested by Piantadosi (2023). 

 
 

1.3 Reconciling the different positions: Statistical learning meets hierarchical 

structure-dependent constraints 

 

As observed in the preceding sections, psycholinguistic studies have provided 

evidence for the existence of structure-dependent abstract representations and the 

ability to use statistical learning mechanisms to understand phenomena at the 

syntactic level. Additionally, we have seen how recent developments in neural 

networks have demonstrated human-like linguistic capabilities, leveraging 

statistical computations on large datasets, notably without innate biases proposed 

by generativists such as Universal Grammar (UG). The existence of structure-

dependent phenomena within language and the potential for learning through 

statistical mechanisms represent focal points that nativist and usage-based theories 

have respectively emphasized. The former by advancing the idea that language 

ability is innate, domain-specific, and richly structured. The second by showing that 

language is learnable through a set of potentially domain-general statistical 

mechanisms computable on the linear sequence of utterances to which children are 

exposed. Frequently, nativist and usage-based approaches have been perceived as 

two distinct and incompatible theories. However, the reality differs. Indeed, within 

the two theories we find aspects that are in fact compatible and not mutually 

exclusive. First, within the two theories there is not necessarily a relation of 
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implication between different postulates. To illustrate, the richness of language's 

structure does not necessarily indicate its domain-specific nature. Moreover, the 

postulates of one theory are not necessarily irreconcilable with those of the other 

theory. For example, the presence of sequential statistical learning capability does 

not rule out the presence of hierarchical structural constraints. Several scholars 

support the prospect of reconciling the postulates formulated by these distinct 

theories. Scholars under the usage-based approach, both from Connectionism and 

SL, have often emphasized that distributional learning is completely compatible 

with UG theories of language acquisition. “Distributional analysis, as a way of 

learning aspects of language, is wholly compatible with generative grammar, 

cognitivism, and modern epistemology. Even if children are innately equipped with 

a universal grammar, there are still many aspects of the particular of their native 

language that must be picked up by experience. Distributional learning mechanisms 

provide a potentially useful means which might contribute to this process” 

(Redington, Chater, 1998, p.135). In fact, usage-based approaches to language 

acquisition do not represent a return to the Tabula Rasa Theory (Bates, Elman, 

1996). As Saffran, Aslin and Newport (1996) highlighted, commenting on the result 

they obtained, the discovery that eight-month-old infants, exposed for only 2 

minutes to a continuous string of nonsense syllables were able to segment nonwords 

by relying solely on statistical cues available in the string, does not have to be 

interpreted as a proof for the fact that all that children can linguistically achieve is 

due to general, unconstrained learning abilities. Saffran, Aslin and Newport (1996) 

do reject the nativist hypothesis according to which, language cannot be learnt; 

however, they do not exclude the possibility that the statistical learning mechanism 

at work during language acquisition might be innately biased, arguing that “[…] 

some aspects of early development may turn out to be best characterized as resulting 

from innately biased statistical learning mechanisms rather than innate knowledge” 

(Saffran, Aslin and Newport, 1996, p.1928). Several scholars adhering to the usage-

based approach emphasize the notion of innately driven learning, in essence, a 

constrained learning mechanism. “Even if we assume that a brain (real or artificial) 

contains no innate knowledge at all, we have to make crucial assumptions about the 

structure of the learning device, its rate, and style of learning, and the kinds of input 
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that it prefers to receive” (Bates, Elman, 1996 p. 1848- 1849). Ramsey and Stich 

(1990), taking into consideration Nativism and Connectionism, pointed out that the 

incompatibility between them has been much exaggerated (Ramsey, Stitch, 1990, 

p.20). “The task of the language acquisition mechanism is an inductive learning 

task. And […] any successful inductive learning strategy must be strongly biased” 

(Ramsey, Stitch, 1990, p.197). Therefore, it is undeniable that these distinct 

approaches have frequently exhibited notable divergences in their investigative 

perspectives, methods, and overarching research objectives. However, as numerous 

scholars have pointed out, the presence of innate structural biases and statistical 

learning abilities are not mutually exclusive. In this regard, we report Readington 

and Chater’s assertion: “The claim that some interesting aspects of language can be 

learnt does not imply the claim that all aspects of language can be learnt from 

scratch. Indeed, as discussed previously, empiricist and nativist positions alike are 

compatible with distributional learning mechanisms” (Readington and Chater, 

1998, p.135). In this vein, Yang proposed a reconciliation between the two 

approaches, highlighting potential advantages that could arise from their 

convergence: “Language acquisition can then be viewed as a form of ‘innately 

guided learning’, where UG instructs the learner ‘what cues it should attend to’. 

Both endowment and learning are important to language acquisition – and both 

linguists and psychologists can take comfort in this synthesis” (Yang, 2004 p.455). 

 

 

1.4 Conclusion 
 

In conclusion, recent advancements in psycholinguistic research have provided 

compelling evidence supporting the effectiveness of experiential learning in 

language acquisition. These studies highlight the specific types of statistical 

information that learners can track at different levels of linguistic analysis, from the 

phonological level to, importantly, the syntactic level. The crucial role of statistical 

learning has been highlighted by research with deep neural networks as well, which, 

as we have seen in this chapter, has led to surprising results in recent years. These 

results demonstrate the potential to create machines without “innate language 
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faculties” that can learn linguistic abilities purely through exposure to linguistic 

data, by tracking the statistical regularities in the data, with linguistic abilities that 

are almost entirely in line with those of humans. 

At the same time, recent psycholinguistics studies have also demonstrated 

that language is richly structured and constrained. Indeed, they provided compelling 

evidence of the presence of structural abstract representation during the acquisition 

and processing of syntactic phenomena. These findings highlight that language 

learners, when dealing with syntax, rely not only on surface-level statistics but also 

on the underlying structure of language. Nowadays it seems clear that adequate 

theories of language processing and acquisition investigating syntactic 

mechanisms, must acknowledge the crucial role of statistical learning, taking into 

account the evidence that this occurs within hierarchical boundaries and constraints 

(Coopmans et al., 2022).  

In this chapter, we have seen that recent studies provide compelling 

evidence that, when dealing with noun phrases, we develop abstract representations 

of their constituting elements based on hierarchical, rather than purely sequential, 

relations. Hierarchical structures are present at various levels in human language; 

besides the syntactic level, they are also found at the phonemic and morphological 

levels. However, it is important to emphasize that not all aspects of language are 

hierarchical. Some language processes are strictly local in a computational sense 

and involve only linear mechanisms, rather than hierarchical ones (Culicover, 

2013). One of the most extensively studied and debated phenomena in the syntactic 

domain is the presence of hierarchical structures. Within syntax, there are different 

types of hierarchical structures, ranging from "simple" hierarchical phenomena to 

the complex realm of recursive hierarchical phenomena. Recursive embedding is a 

notable feature of human syntax, where a sentence can be embedded within another 

sentence, and a portion of a structure can exhibit the same organization as the entire 

structure itself. This capability allows for the creation of multi-level complex 

structures in which constituents are embedded in constituents of the same category, 

a remarkable feature of human syntax, as we will see in Chapter 2. However, not 

all hierarchical structures in syntax are recursive; recursion is just one manifestation 

of structure-dependence phenomena (i.e., hierarchical relationships among 
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constituents) in language. The focus of this thesis is to shed light on the mechanisms 

underlying the formation of recursive hierarchical abstract representations. 

Specifically, given the sequential nature of language, we will explore how recursive 

hierarchical structures emerge from temporally ordered sequences of stimuli. 

Numerous studies have focused on the concept of recursion in human language, but 

many issues remain unresolved. Despite recursion being defined as the fundamental 

property and hallmark of human language, universally present across all human 

languages (Hauser, Chomsky, & Fitch, 2002; Moro, 2016) for several years, in the 

literature, there has been a lack of a precise and shared definition of "recursion" in 

the context of language. Additionally, there has been a scarcity of suitable tools for 

empirically investigating recursive cognitive abilities. 

In this thesis, following the approach outlined in this chapter, we will 

investigate the emergence of recursive hierarchical abstract representations from 

temporally ordered stimuli. As we will explain throughout this thesis, we posit that 

this ability plays a role in human syntax processing and acquisition. Specifically, 

we will investigate this ability in different sensory domains (i.e., visual, auditory, 

and tactile), shedding light on the potential domain-specific and domain-general 

components of this cognitive function. Additionally, we will focus on the statistical 

mechanisms and structural abstract representations involved in the process, thereby 

illuminating the complex relationship between linear order and hierarchy. This 

investigation will provide insights into how these two seemingly distinct aspects of 

language are intricately connected. Furthermore, it will help us better understand 

the ability to form recursive abstract representations from sequential stimuli. 

Traditionally, recursion has been considered a unique linguistic capacity, innate to 

the human linguistic system and not shared with other cognitive systems or species 

(Hauser et al., 2002). However, recent studies are challenging this view, revealing 

a more complex picture than previously assumed. The present thesis aims to further 

explore this phenomenon and investigate whether recursion is not solely a linguistic 

feature. It has been demonstrated that human language learning exhibits cognitive 

biases in terms of boundaries and constraints within which the acquisition process 

unfolds. Regarding the source of these cognitive biases, multiple hypotheses exist; 

they could pertain to either domain-general cognitive processes or be unique to 
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language (Culbertson, Smolensky, & Legendre, 2012). Our research seeks to shed 

light on the domain-specific and domain-general components of this ability, by 

exploring this capacity across various sensory domains. 

 In the upcoming chapter, we will focus on recursion, the specific type of 

structural phenomenon found in human language that will constitute the central 

topic of our work. Recursion refers to the capacity to create multi-layered 

hierarchical representations, in which part of a structure mirrors the organizational 

pattern of the whole. In this context, we will address a critical issue prevalent in the 

existing (psycho)linguistic literature: the absence of a universally accepted and 

precise definition of the term recursion. Hence, we will endeavor to offer a rigorous 

and explicit definition of the term. We will then analyze in detail the relationship 

between sequentiality and hierarchy in human language, emphasizing the 

importance of considering both these dimensions in the study of recursion in syntax. 

Moreover, we will focus on the issue concerning the transition from the linear to 

the hierarchical dimension, with a special emphasis on the cognitive mechanisms 

that underpin this ability. In the second part of the chapter, we will delve into the 

methodologies available for experimentally studying the ability to form recursive 

hierarchical abstract representations from sequentially fading input. We will start 

by presenting the research traditions which investigated the abilities to implicitly 

learn structured information from the environment. As we will see, the topic has 

captured the attention of several scholars over the years, and, interestingly, it has 

undergone a renewal in interest in more recent years. We begin this investigation 

by retracing the main stages in this study tradition and presenting the state of the art 

in the field. Importantly, we will show a recent contribution to the realignment of 

two different major lines of research that, over the years, investigated this ability 

despite remaining largely separated: Implicit Learning and Statistical Learning. 

Then, we will embark on an in-depth exploration of the Artificial Grammar 

Learning (AGL) paradigm, which is exceptionally well-suited for the investigation 

of implicit statistical learning. Additionally, we will introduce Formal Language 

Theory (FLT) and the grammars belonging to the Chomsky hierarchy. FLT, initiated 

by Noam Chomsky in the 1950s, aims to systematically study the computational 

basis of human language by describing the mathematical and computational 
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properties of various language classes. The Chomsky hierarchy proposes four 

nested levels of grammars ordered by complexity, each corresponding to a specific 

automaton that generates the strings of their respective languages. Automata, 

abstract representations of computational systems, can recognize or reject strings 

based on their computational power. Grammars belonging to the Chomsky 

hierarchy have been extensively used in AGL studies in psycholinguistic research 

to shed light on the computational abilities at the core of the human language 

faculty. Specifically, we will examine studies that have sought to investigate 

recursion through formal languages belonging to the Chomsky hierarchy. In the last 

part of the chapter, we will address some pivotal issues that characterize the study 

of recursion in psycholinguistic research. Firstly, we will note that numerous studies 

have struggled with a mismatch between their chosen methods and their study 

objectives. In other words, in several cases, the ability to process recursive 

hierarchical structures has been investigated using unsuitable tools, resulting in 

experiments that were unable to provide precise answers about the phenomenon, 

leading to misinterpretations. Secondly, we will argue that studying human 

language abilities using languages from the Chomsky hierarchy can be problematic 

if important factors related to the generative power of these systems are not taken 

into account, as we will discuss in the upcoming chapter. Recent psycholinguistic 

studies show that the complexity defined by the Chomsky hierarchy does not 

directly correspond to cognitive complexity. These two aspects are interconnected 

in ways that are not straightforward. Therefore, the topic is more nuanced and 

complex than it might initially appear and requires careful consideration. Finally, 

we will address another issue found in several studies: the confusion between the 

algorithmic properties and the representational abilities of recursion. We will 

emphasize the distinction between them, advocating for a focus on distinctive 

behavioral signatures as indicators of cognitive processes related to recursion. 

Specifically, we will explain that definitions of recursion primarily focused on 

algorithmic properties may not offer the most relevant framework for empirical 

research. To gain insights into how human cognition represents recursive structures 

in behavioral experimental tasks, it is crucial to focus on the distinctive signatures 

of recursion. Hence, we will explore the identification of behavioral indicators that 
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hold significant promise in facilitating the study of recursion. This chapter will 

serve as the foundational basis for our comprehensive examination of the 

mechanisms by which humans form recursive abstract structures from temporally 

ordered sequences, the central focus of this thesis. 
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2. From Sequence to Hierarchy: Exploring the 

Emergence of Recursive Hierarchical 

Representation Arising From Temporally Ordered 

Stimuli 

 
 

2.1. What is recursion? 
 

Human language possesses a remarkable feature that sets it apart from all 

other forms of expression: discrete infinity.  This concept, which is at the heart of 

the versatility and power of language, refers to the ability of a linguistic system to 

generate an unlimited number of expressions from a finite set of discrete elements. 

In other words, it enables us to create an endless array of sentences and meanings 

from a relatively small inventory of words, phrases, and rules. The characterization 

of language as a potentially limitless array of expressions achievable with limited 

resources has been recognized for a long time (van der Hulst, 2010). Already 

Descartes (Descartes, 2003 [1637]), suggested a significant distinction between 

humans and animals lies in the ability to organize speech in various ways, a skill 

that every human possesses. Similarly, Wilhelm von Humboldt (1999 [1836]) 

emphasized human language's capacity to achieve endless diversity using limited 

resources (Sauerland & Trotzke, 2011). However, none of these works have 

specifically mentioned the term recursion to account for this property of human 

language. In the 1950s, in his early work, Chomsky introduced the term recursion 

to account for this fundamental feature of human language that allows us to convey 

a virtually unlimited range of ideas, from the simplest statements to the most 

intricate narratives (Chomsky, 1956). “[…] the whole point of introducing recursion 

into linguistics was to account for the fact that speakers/hearers show a continuous 

novelty in linguistic behaviour — a novelty that does not appear to be capped in 

any meaningful respect. Further, since speakers/hearers cannot possibly store all the 

possible sentences they understand or utter, the cognitive state accounting for this 

linguistic behaviour must be underlain by a finite mechanical procedure — an 

algorithm.” (Lobina, 2011, p.155). In Chomsky’s work, recursion is taken as the 
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key to the generative power of language, enabling us to create new and meaningful 

expressions. Recursion, in essence, is the necessary ingredient that transforms 

language from a finite set of words and rules into a medium of boundless creativity, 

setting human language apart from other forms of communication. Recursion hence 

was a crucial element in Chomsky’s phrase structure based approach to language 

(Sauerland & Trotzke, 2011). In Syntactic Structures (Chomsky, 1957), recursive 

devices are described as to be essential to linguistic theory. Crucially, however, 

despite the importance that Chomsky attributed to recursion, he never offered a 

clear and precise definition of what recursion in human language is (van der Hulst, 

2010; Tomalin, 2011).  Moreover, over the years, Chomsky attributed different 

meanings to the term recursion, with a lack of consistency in the use of terminology. 

As Chomsky’s Generative Grammar theory progressed, also the definition of this 

property of human language changed (Coolidge et al., 2011; Lobina, 2011).  

Chomsky initially attributed the recursive property to the transformational system 

of the grammar (i.e., a component that transformed certain phrase markers into 

different phrase markers while maintaining the underlying structure) but later 

assigned it to the base component (i.e., rewriting rules that generated strings with 

linked phrase markers). Subsequently, most rewriting rules were eliminated from 

its syntactic theory. However, despite these changes, it is crucial to recognize that 

recursion, as a general property of generative systems, remained a central concept 

in Chomsky’s theory. This holds true whether we are talking about production 

systems with rewriting rules or the more recent concept of Merge (Lobina, 2011). 

A renewal of interest, which generated hype around the research on recursion, 

coincided with the publication of the influential paper The faculty of language: 

What is it, who has it, and how did it evolve? by Hauser, Chomsky, and Fitch 

(Hauser et al., 2002). “[The term recursion] seems to have gained a disproportionate 

amount of attention ever since Hauser et al. (2002) hypothesized (for that is what it 

was) that this property may be the central and unique feature of the faculty of 

language.” (Lobina, 2011, p.151). Hauser and colleagues (2002) formulated a new 

hypothesis on the faculty of language. Specifically, they proposed a distinction 

between the faculty of language in the broad sense (FLB) and the narrow sense 

(FLN). The former comprises various components, including sensory-motor and 
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conceptual-intentional systems, alongside computational mechanisms for 

recursion, which enable the creation of an unlimited range of expressions from a 

limited set of elements. Importantly, they suggested that FLN only comprehend 

recursion and is the unique human component of the human language faculty. 

Hauser et al.’s provocative article received several criticisms. However, what 

interests us is that even they did not offer a precise definition of what recursion is, 

merely echoing the definitions and concepts that linked it to the property of discrete 

infinity, much like other linguists did before them. “[…] a core property of FLN is 

recursion […] FLN takes a finite set of elements and yields a potentially infinite 

array of discrete expressions. This capacity of FLN yields discrete infinity (a 

property that also characterizes the natural numbers). Each of these discrete 

expressions is then passed to the sensory-motor and conceptual-intentional systems, 

which process and elaborate this information in the use of language. Each 

expression is, in this sense, a pairing of sound and meaning. […] The core property 

of discrete infinity is intuitively familiar to every language user. Sentences are built 

up of discrete units: There are 6-word sentences and 7-word sentences, but no 6.5-

word sentences. There is no longest sentence (any candidate sentence can be 

trumped by, for example, embedding it in “Mary thinks that . . .”), and there is no 

nonarbitrary upper bound to sentence length. In these respects, language is directly 

analogous to the natural numbers […]” (Hauser et al., 2002, p.1571). In this text, 

therefore, the authors did not shed light on the definition of recursion but rather 

speculated about the origins of FLN, the relationship there is between FLN and 

animal communication systems, and other human cognitive domains. In 2005, 

Pinker and Jackendoff offered a comprehensive critique of Hauser et al.'s arguments 

and introduced their own clear definition of recursion, since, as they claimed, 

Hauser and colleagues had not provided a precise one. Importantly, in their 

definition of recursion, Pinker and Jackendoff highlighted the crucial aspect of 

embeddedness. They described recursion as "a procedure that calls itself, or to a 

constituent that contains a constituent of the same kind." (Pinker, Jackendoff, 2005, 

p.203). Pinker and Jackendoff’s definition possibly altered Hauser et al.'s original 

notion of recursion, which emphasized the link with discrete infinity and its role in 

generating an infinite range of thoughts (Coolidge et al., 2011). Importantly, their 
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definition focused on two crucial aspects: embeddedness and constituent of the 

same kind. Besides Pinker and Jackendoff, other scholars have defined recursion 

based on these two concepts. Kirby (2002, p.1) defines recursion as "...a property 

of language with finite lexica and rule-sets in which some constituent of an 

expression can contain a constituent of the same category." As we will see later in 

this chapter, these two fundamental concepts have been considered more recently 

by other scholars in the effort to clarify, precisely, and ultimately define the concept 

of recursion in human language. 

After Hauser et al.'s work (2002), a great number of publications have 

extensively focused on the concept of recursion within human language. These 

publications have presented numerous and divergent definitions, ranging from the 

vague to the highly intricate, leading to a state of terminological confusion and 

further propagating conflicting interpretations.  The notion of recursion has long 

been a subject of contention in the field, and the diversity of definitions in use has 

complicated the interpretation of empirical results. In the realm of cognitive 

sciences, recursion remains a topic of extensive debate and disagreement, as 

Martins (2012) aptly noted, "Recursion is one of the most controversially discussed 

terms in the cognitive sciences. […] although recursion has been hypothesized to 

be a necessary capacity for the evolution of language, the multiplicity of definitions 

being used has undermined the broader interpretation of empirical results." 

(Martins, 2012, p.2055). As we have seen in this chapter, the state of confusion 

surrounding recursion's definition has deep historical roots. Watumull et al. (2014) 

underscored this confusion, describing how "the concept of recursion as articulated 

in the context of linguistic analysis has been perennially confused." (Watumull et 

al., 2014, p.1). As Tomalin (2011) observed, "there were profound ambiguities 

surrounding the notion of recursion in the 1950s, and this was partly due to the fact 

that influential texts such as Syntactic Structures neglected to define what exactly 

constituted a recursive device. As a result, uncertainties concerning the role of 

recursion in linguistic theory have prevailed until the present day." (Tomalin, 2011, 

p. 297). The ambiguity surrounding recursion is becoming a significant issue in the 

literature. The term has seldom been explicitly defined, leading to a situation where 

significant misunderstandings are at risk of spreading throughout the literature. 
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(Fitch, 2010). In general, we observe several problems related to the definitions of 

recursion found in linguistic literature. As Parker (2006) explains, some definitions 

equate recursion with discrete infinity (Adger, 2003; Carnie, 2002; Lobeck, 2000). 

Others confuse it with the concept of phrase structure rules (Christiansen, 1994; 

Horrocks, 1987; Lobeck, 2000; Pinker, 2003) or with the concept of iteration 

(Radford, 1997). Firstly, although the term recursion was introduced to explain the 

concept of discrete infinity in language, the two concepts should not be conflated 

and confused. Indeed, recursion is not equivalent to discrete infinity, but it can be 

understood as one of the various mechanisms available that instantiate this property 

of language (Parker, 2006). Moreover, we should be cautious when discussing 

infinity in relation to language. Indeed, infinity refers to the size or cardinality of a 

set. It has not been definitively established that languages are infinite, whether 

countably or uncountably so (Langendoen and Postal, 1984). Additionally, the 

concepts of recursion and iteration are quite different, as we will see in the 

upcoming section. However, it is important to note that in the literature there are 

also clear and correct definitions of recursion, which are based on the concept of 

embedding into elements of the same category (Kirby, 2002; Martins, 2012; Parker, 

2006; Pinker and Jackendoff, 2005; Trask, 1993), and which emphasize the 

difference between recursion and iteration (Hurford, 2003; Martins, 2012; Parker, 

2006; Pinker and Jackendoff, 2005) and between recursion and hierarchical 

embedding (Martins, 2012; Parker, 2006). We refer the reader to Parker (2006) for 

a detailed overview. We will briefly explain these concepts in the upcoming section. 

It should be noted, however, that the concept of recursion is not exclusively 

related to linguistics but is also present in computer science. Recursion is indeed 

eminently a formal notion (cf. Post, 1943; 1944). In computer science, more formal 

definitions are observed compared to those in linguistics. However, even here, the 

definitions lack a single common thread (Parker, 2006) and there are definitions 

that again confuse the concept of recursion with iteration, as observed in Loeper et 

al. (1996, p. 153): "[r]ecursion and iteration are two equivalent ways in 

programming for repeatedly performing a specific task." Moreover, it is interesting 

to note that in the computer science literature, some scholars refer to recursion in 

terms of a structural property of an object, while others in terms of a procedure or 
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algorithm. In other words, some refer to what has been defined as structural 

recursion, while others refer to procedural recursion (Parker, 2006). On one hand, 

structural recursion refers to the object’s structure and the possibility of an object 

to be defined in terms of itself. On the other hand, procedural recursion refers to the 

procedure, the algorithm, or the function that calls itself (Parker, 2006). Within the 

definitions of procedural recursion, the one by Liu & Stoller (1999) is particularly 

interesting as it emphasizes that a recursive algorithm requires a push-down stack 

to function. "Recursion refers to computations where the execution of a function or 

procedure calls itself and proceeds in a stack fashion" (Liu & Stoller, 1999, p. 73). 

Recursion, defined in these terms, are thus markedly different from iteration, which 

is generally carried out using loops (Liu & Stoller, 1999; Parker, 2006). Iteration, 

differently from recursion, does not need a stack. Iteration utilizes a loop structure 

to execute a set of instructions a certain number of times. Conversely, recursion 

employs a function to repeatedly call itself until it reaches a base case. In computer 

programming, a stack is a data structure that controls how data is accessed. Data 

can be added to the stack with a 'push' operation or removed with a 'pop' operation. 

The stack operates on a last-in, first-out (LIFO) principle. This means the most 

recently added element is the first to be removed. For recursion to work properly, it 

is essential to keep track of the current position in the procedure. When a recursive 

function calls itself, it needs to remember where to continue once the recursion is 

complete. A stack facilitates this by allowing data to be stored incrementally and 

then retrieved in reverse order, ensuring that each return point is correctly followed 

(Parker, 2006).  In the same vein, Loudon (1999) describes recursion as having two 

distinct phases: winding and unwinding. During the winding phase, each call to the 

recursive function triggers another call to itself, continuing the recursion. This 

phase ends when a call meets a specified termination condition. Afterward, the 

process shifts to the unwinding phase, where the function instances are resolved in 

the reverse sequence of their calls (Parker, 2006). This concept, although 

originating from computer science, is also very interesting for understanding a 

specific type of recursion found in language, namely, nested recursion.  We will 

revisit this concept in the upcoming section, when we will examine the different 

types of recursion present in language, providing linguistic examples for each.  
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It is crucial to note that any result achieved through a recursive algorithm 

can also be attained using an iterative algorithm (Parker, 2006). Both approaches 

can solve the same problem, but their efficiency and appropriateness may vary 

depending on specific contexts and constraints. For example, a classic instance of 

a recursive algorithm used in computer science is calculating the factorial of a non-

negative integer number (Parker, 2006). The factorial of a non-negative integer n, 

denoted as n!, is the product of all positive integers less than or equal to n. In (1) 

are some examples: 

 

 

(1) 0!= 1 (by definition);  

1!= 1;  

2!=2×1=2;  

3!=3×2×1=6 

4!=4×3×2×1=24; and so on… 

 

 

The algorithm in (2) computes the factorial of a non-negative integer n using 

recursion (Example adapted from Parker, 2006, pag. 180). 

(2) FUNCTION Factorial (num): 

    IF num = 0 THEN: 

        return 1 

    ELSE: 

        return num * Factorial(num - 1) 

 

Crucially, as shown in (3), an iterative algorithm can reach the same result (Parker, 

2006). (Adapted from Parker, 2006, p. 184). 
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(3) FUNCTION Factorial(num): 

     result = 1 

    FOR temp = num; temp > 0; temp-- 

          result = result * temp 

     return result 

 

Another frequently cited example in computer science of a recursive algorithm is 

the one used to solve the Towers of Hanoi problem, which can be stated as follows: 

You have three pegs (A, B, and C). Initially, all disks of different sizes are stacked 

on peg A in decreasing size (largest at the bottom, smallest at the top). The goal is 

to move all the disks to peg B using peg C as an auxiliary (spare) peg. You can only 

move one disk at a time. A larger disk cannot be placed on top of a smaller disk. 

The recursive algorithm in (4) is very suitable to solve the Towers of Hanoi 

problem. (Adapted from Parker, 2006, p. 180).  

 

 

 

(4) FUNCTION MoveTower(disc, source, dest, spare): 

    IF disc == 1 THEN: 

        move disc from source to dest 

    ELSE: 

        MoveTower(disc - 1, source, spare, dest) 

        move disc from source to dest 

        MoveTower(disc - 1, spare, dest, source) 

    ENDIF 

 

 

How does the algorithm work? When “disc == 1”, it means there is exactly one disk 

to move. In this case, simply move the disk from the source peg to the dest peg. If 

there are more than one disk (“disc > 1”), the function does the following: Move 

the top disc - 1 disks from the source peg to the spare peg, using the dest peg as an 

auxiliary. Then, move the bottom disk from the source peg to the dest peg. Finally, 

move the disc - 1 disks from the spare peg to the dest peg, using the source peg as 

an auxiliary.  
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In summary, the difference between a recursive and an iterative algorithm 

lies primarily in their approach to problem-solving. A recursive algorithm solves a 

problem by calling itself with a smaller instance of the same problem, whereas an 

iterative algorithm uses loops to repeat a set of instructions until a condition is met. 

While any problem that can be solved using a recursive algorithm can also be solved 

using an iterative algorithm, there are notable differences in terms of clarity, 

conciseness, and memory usage. Recursive algorithms are often more 

straightforward and easier to understand because they closely mirror the problem's 

structure. However, they can be less efficient in terms of memory usage, as each 

recursive call consumes stack space. Depending on the type of problem, one 

approach may be more effective than the other. For example, problems with a 

naturally recursive structure can be more elegantly solved using recursion. In 

contrast, problems that require simple repetition are better suited for iteration. 

In the upcoming section, we will explore the concept of recursion from a 

cognitive science perspective. Specifically, we will clarify the differences between 

various types of recursion found in language, such as tail recursion and nested 

recursion, as well as different types of iteration, such as iteration with embedding 

and iteration without embedding. 

 

 

2.1.1. Defining recursion in cognitive science: distinction between iteration 

without embedding, iteration with embedding, tail recursion and nested 

recursion  

 

Given the ongoing challenges in defining and understanding recursion in language, 

it is clear that a more precise and consistent conceptualization of this fundamental 

linguistic concept is necessary. We will provide a clear definition of recursion, 

distinguishing it from iteration and hierarchical embedding. Additionally, we will 

present examples of linguistic instances that fall under these categories and examine 

the different types of recursion found in language, specifically tail recursion and 

nested recursion. Following Martins (2012) definition, iteration in its most basic 

form (i.e. without embedding), involves a sequence of discrete iterative steps, with 
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each step being independent from all the others. Individual steps can be 

concatenated indefinitely, giving rise to a set of sequences with potentially no upper 

limit, but they lack the capacity to capture dependencies between them or create 

nested, hierarchical structures. Hence, the fundamental constraint of iteration 

without embedding lies in its inability to encode dependency relationships. Without 

the capacity for embedding, it cannot create new hierarchical structures where 

certain constituents are reliant on others (Martins, 2012).  

If we think about language, an example of iterative structure can be (5): 

 
(5)  Mary ate [NP1 an apple NP1] and [NP2 a yoghurt NP2] and [NP3 an egg NP3]. 

 

The NPs in (5) are organized in flat structure: the NPs are essentially independent 

of one another. To confirm that the structure is iterative, and that each NP is 

independent, we could invert the order of the NPS without changing the overall 

meaning as in (6). (Parker, 2006).  

 

(6)  Mary ate [NP1 an egg NP1] and [NP2 an apple NP2] and [NP3 a yoghurt NP3]. 

 

As Parker (2006) explains, (5) is semantically equivalent to (6), where equivalence 

is measured in terms of truth conditions. In other words, propositions a-d in (7) are 

true in both instances. 

 

(7)  a. ate (Mary, apple) 

b. ate (Mary, egg) 

c. ate (Mary, yoghurt) 

d. ate (Mary, egg) & ate (Mary, apple) & ate (Mary, yoghurt). 

 

 

Although iteration is an algorithm used in human language, it is clear that an 

iterative algorithm of this kind cannot fully accommodate all the sentences 

generated in human language; indeed, it inherently falls short of capturing the full 

spectrum of linguistic expressions. The presence of a two-dimensional space 

becomes evident when we consider language. Language unfolds in a linear fashion. 

Words follow one another, one after the next, creating sentences that are, on the 
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surface, linear sequences of sounds or symbols. This linearity is the vehicle of 

communication, allowing us to convey information step by step, from the beginning 

to the end of a sentence. Importantly, however, a rigidly linear arrangement of words 

alone falls short in encompassing the complexities of human language rules. The 

mere fact that a word placed far from others within the same sequence can exert an 

influence on them implies the necessity of introducing an additional dimension to 

accurately represent syntactic relationships (Moro, 2016). As a matter of fact, it is 

widely acknowledged that, in natural language grammar, we never find rules based 

on rigid linear positions (Tettamanti et al., 2009). Phenomena such as long-distance 

dependencies, hierarchical organization of phrase structure, movement and 

sentence transformation constitute a hallmark of human natural language (Fitch, 

Friederici, 2012). A purely sequential arrangement of words alone falls short in 

encapsulating the intricacies of human language's underlying rules. 

Differently from iteration (without embedding), iteration with embedding (i.e. 

hierarchical embedding) can generate hierarchical structures by generating 

dependencies and relationships among constituents. This algorithm is what 

accounts for what linguists refer to as "phrase structure", that is the organization of 

sentence structure based on constituent hierarchies (Chametzky, 2000; cf. Parker, 

2006). This well-established principle of language states that it consists of units that 

combine to form larger units. Lexical items combine to form phrases, and these 

phrases further combine to create larger phrases or sentences. Phrases are 

considered constituents, acting as unified units in specific ways (Parker, 2006). For 

instance, while we can transform sentence (8) into (9), we cannot transform it into 

(10); (example adapted from Parker, 2006, p. 209): 

 

(8)  Amy spoke to the waitress.  

(9)  It was the waitress that Amy spoke to.  

(10)  *It was waitress that Amy spoke to the. 

 

The reason behind this limitation is that only complete constituents can be moved; 

fragments of constituents cannot be displaced independently (Parker, 2006). Phrase 

structure describes how elements in a sentence are organized. A significant 

implication of this organizational principle is that sentences are not merely linear 
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sequences of words or phrases; instead, they are arranged hierarchically, as we can 

see in (11) (Parker, 2006). 

 

(11)  [1 Lora [2 saw [3 the girl [4 from Italy 4] 3] 2] 1] 

 

Unlike what we have seen in (6), in this case, we cannot freely rearrange the 

constituents in the sentence without affecting its semantic meaning. Indeed, (11) is 

not semantically equivalent to (12). 

 

(12) Lora from Italy saw the girl. 

 

As Martins (2012) interestingly pointed out, each hierarchical level can potentially 

contain a single or a multi-constituent. In this second case, the algorithm generates 

structures with long-distance dependencies. Within iterative processes featuring 

embedding, constituents can be nested within the same level to an infinite extent. 

Crucially, however, in iteration with embedding, each hierarchical level is 

represented individually. That is, the creation of entirely new hierarchical levels is 

contingent on predefined rules either explicitly incorporated into the algorithm or 

acquired through the input data. This limitation is where recursion emerges as a 

solution (Martins, 2012). 

Recursive embedding offers the possibility to construct hierarchical structures, and, 

crucially, it allows for the formation of new hierarchical levels, without the need for 

additional rules. Rules involve the embedding of one constituent from a specified 

set into another constituent belonging to the same set. Within the same set, all 

elements share common attributes, based on their membership in that set, even 

though they may differ in other characteristics. Recursive embedding is evidently 

an algorithm at works in human syntax. Indeed, within the realm of language, a 

sentence can be embedded within another sentence, and a portion of a structure can 

exhibit the same organization as the entire structure itself. Crucially, however, it is 

evident that not all structures within human syntax are recursive; some are purely 

hierarchical (embedded). Furthermore, not everything in language is structural 

(Culicover. 2013). Nonetheless, the presence of recursive hierarchical structures 

undoubtedly constitutes a feature of human syntax. Importantly, recursion can take 
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various forms in human language. There are at least two types of recursion: tail 

recursion and nested (i.e. embedded) recursion (Parker, 2006). Following Parker 

(2006), we define in these terms the two types of recursion. 

Tail recursion is a type of recursion where a phrase or sentence embeds within 

another of the same type, and this specifically happens at the beginning or end of a 

sentence. This phenomenon is frequently observed in natural language 

constructions. To further clarify, tail recursion can be categorized into two types: 

left-branching and right-branching. Left-branching recursion occurs when 

embedding is at the left end of a phrase or sentence, as exemplified in (13). On the 

other hand, right-branching recursion involves embedding at the right end, as shown 

in (14). The examples are adapted from Parker (2006). 

 

(13)  Johns's friend's brother's dog's bone 

(14)  The boy that kissed the woman that Mark met in the restaurant that Josh 

recommended.  

 

In (13), the entire noun phrase (NP) illustrates tail recursion where each nested NP 

is embedded successively towards the left edge of the sentence. Conversely, in (14), 

the embedding occurs towards the right edge of the sentence. 

Nested recursion, on the other hand, refers to embedding within a phrase or sentence 

where material exists on both sides of the embedding, rather than at the edges. An 

example of nested recursion is demonstrated in sentences like (15), which is taken 

from Parker (2006, p.174). 

 

(15)  The mouse the cat the dog chased bit ran. 

 

In (15), each subject noun phrase is paired with a verb located elsewhere in the 

sentence. Specifically, the first subject NP is connected to the final verb, the second 

subject NP to the penultimate verb, and the third subject NP to the initial verb. This 

arrangement ensures that each sentence embeds within another phrase at its center. 

For example, "the dog chased" is embedded within "the cat bit," which in turn is 

embedded within "the mouse ran." This nesting is surrounded by additional context 

on both sides, distinguishing it from tail recursion. One key distinction between tail 
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recursion and nested recursion lies in their handling of dependencies. Nested 

recursion introduces long-distance dependencies, where elements or positions 

within a phrase or sentence can be separated by significant distances. Long-distance 

dependency refers to a relationship where one element or position within a phrase 

or sentence is influenced by another, even if they are separated by intervening 

material. Nested recursion exemplifies such dependencies because embeddings 

occur centrally within a sentence or phrase. The phrase beginning before the 

embedded segment continues beyond it, indicating a dependency between the start 

and end of the phrase, mediated by intervening content. In contrast, tail recursion 

lacks such long-distance dependencies as the embedded phrase appears at the 

boundary, not affecting the rest of the sentence or phrase in the same way (Parker, 

2006).  

Some important aspects we would like to emphasize at the end of this 

section, before moving on to the next one;  

(i) recursion is not so tied to the concept of discrete infinity. Certainly, a 

recursive embedding algorithm can potentially generate set of sentences with no 

fixed upper bound or sentences with no fixed upper bound to their length, starting 

from and using a finite set of elements. However, it is important to note that other 

algorithms, such as iteration (with or without embedding), can also do the same. 

For example, we could create a sentence with no upper bound limit to its length by 

applying an iterative algorithm on a finite set of nouns: “I saw a cat and a dog and 

a mouse and a horse." "I saw a cat and a dog and a mouse and a horse and a fish." I 

saw a cat and a dog and a mouse and a horse and a fish and a chair," ... Thus, discrete 

infinity does not imply recursion. 

(ii) not all the structural phenomena that involve hierarchy are recursive. 

Thus, hierarchy does not imply implies recursiveness. Recursion, intended as 

recursive embedding, is only one of the many structural phenomena characterizing 

human syntax. 

(iii) long-distance dependencies do not necessarily indicate recursion. Only 

nested recursion produces sentences with long-distance dependencies, whereas tail 

recursion does not. Additionally, non-recursive algorithms, such as iterative 

embedding, can also create long-distance dependencies. Thus, the presence of long-
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distance dependencies alone does not imply recursion (Martins, 2012, Parker, 

2006). 

(iv) as Parker (2006) pointed out, while computer science literature 

acknowledges that recursive algorithms, like the factorial algorithm, can be 

implemented iteratively, in natural language this does not seems to be the case. 

“[…] in natural language, semantics forces tail recursion and iteration to be 

understood differently as it indicates a difference in structure which is not visible 

simply by considering the strings. The strict ordering requirement in tail recursion 

that is lacking in iteration can thus be used as a tool to differentiate these in natural 

language.” (Parker, 2006, p. 188). “An iterative description of the structure of the 

sentences is not true to the complex meaning they reflect. That is, in human 

language, semantics thus gives us the extra information required to identify the 

correct structure, where the string alone does not tell us if we are looking at iteration 

or tail recursion.” (Parker, 2006, p. 227). As Parker (2006) correctly notes, one 

could argue that a linguistic system lacking semantics would not require recursion. 

In other words, if there were no meaning to convey, then iteration would be 

adequate for the syntax of the communication system. 

 

2.1.2. Examining the Uniqueness of Recursion in Human Language  

 

In this section, we will discuss whether we can accept the hypothesis by 

Hauser, Chomsky, and Fitch (2002) according to which recursion is the unique 

property of human language. According to their perspective, recursion is an inherent 

aspect of human language. It is the only trait that is exclusively characteristic of 

human language. Recursion is unique to the language faculty and is found 

universally across all human languages. Additionally, according to them, recursion 

is a distinctive feature of the human mind (van der Hulst, 2010).  To check Hauser 

et al. (2002) hypothesis, we could pursue different lines of investigations. Among 

the others: (a) Is recursion unique to the human language faculty and absent in other 

cognitive domains? (b) Is recursion absent in animal cognition? (c) Is it possible for 

language to exist without recursion? (d) Is recursion the sole unique feature of 

human language?  “If recursion truly is unique to language, there are three places 



 86 

we should not find it: (i) human non-linguistic cognition, (ii) non-human non -

communicative cognition; (iii) non-human communicative cognition.” (Kinsella, 

2010, p.179). Of course, the aim of this thesis is not to pursue all these different 

lines of research. For an interesting overview of these various issues, we refer the 

reader to van der Hulst (2010). However, it is noteworthy that, although recursion 

has been defined as a fundamental and unique property of human language (Hauser, 

Fitch, Chomsky, 2002), several authors suggest that the situation is more complex 

and nuanced than these authors propose (van der Hulst, 2010). Firstly, recursion is 

not as abundantly present in human language. “If recursion is a defining feature of 

human language, as has been claimed, we would expect to find evidence of it in 

everyday talk, the primary form of language.” (van der Hulst, 2010, preface, xxxiii). 

In reality, the situation appears to be quite different. Karlsson (2010) asserts that in 

written language, complex nested syntactic recursion beyond three levels is absent. 

This applies to sentences, noun phrases, and prepositional phrases. Additionally, 

even two-level nesting is exceedingly uncommon in written text. In spoken 

language, nested recursion deeper than one level is virtually nonexistent. Verhagen 

(2010) also indicates that the significance of recursion in language is often 

overemphasized. Moreover, regarding question (c), Everett (1986, 2005) has 

proposed that a language without recursion may exist. The Pirahã language, for 

instance, does not utilize CP embeddings or recursive possessors. Nonetheless, 

Pirahã can convey these concepts through other methods (van der Hulst, 2010, 

Parker, 2006; Kinsella, 2010). Concerning (d), Kinsella 2010 has provided an 

interesting analysis. According to her, recursion alone cannot be the defining feature 

that makes language unique. It is merely one aspect among many. Indeed, a list of 

features unique to language, and notably independent of recursion, can be identified 

easily. Among the others, structure-dependence; also the duality of patterning is a 

core feature of human language: meaningful linguistic units can be decomposed 

into smaller, meaningless units which can be recombined to form different 

meaningful units (Hockett, 1960). This characteristic is absent in other 

communication systems and human cognitive processes and operates independently 

of recursion. Additionally, human language employs numerous syntactic devices—

such as case, agreement, pronouns, articles, quantifiers, auxiliaries, tense—that are 
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unique to language and do not rely on recursion. The lexicon itself exists 

independently from the realm of recursion and is not found in other cognitive 

domains or non-human communication systems (Kinsella, 2010). Regarding (b), 

the situation is confused. We refer to Parker (2006) for a comprehensive overview 

on the issue. As Parker (2006) suggests, evidence for recursion in the non-

communicative cognitive processes of other species is minimal and remains 

speculative. Hypotheses about recursion in areas such as kinship and dominance 

relations, and even more tenuously, in complex action sequences, are still largely 

unproven. Additionally, non-human communication systems present significant 

challenges when evaluated for recursive properties. Some interesting results 

regarding the hypothesis according to which recursion might be present in non-

human cognitive abilities have been achieved in a recent work by Ferrigno et al. 

(2020). These authors investigated recursive abilities using a cross-population 

design in which they conducted a nonlinguistic sequence generation task to 

determine if participants could learn to produce center-embedded structures and 

generalize to novel stimuli. The study included children, U.S. adults, adults from a 

Bolivian indigenous group, and three monkeys. All the three groups of humans 

naturally induced recursive structures from ambiguous training data. Monkeys, 

managed to do that, however, they required additional exposure to achieve similar 

results. The findings indicate that recursive hierarchical strategies are inherent in 

human cognition, evident early in development and across different cultures, though 

the capacity is not exclusive to humans. Nonhuman animals can represent and 

generate new sequences with recursive, hierarchical, and center-embedded 

structures. While abstract hierarchical structuring was not the initial strategy for 

monkeys, two out of three monkeys eventually learned to generalize and generate 

novel center-embedded sequences with more exposure. Regarding (a), it is 

interesting to explore whether recursion is a cognitive ability unique to the human 

language faculty or if it is also present in other cognitive domains. In this context, 

Hauser et al. (2002) propose that recursion may not have originally developed for 

linguistic purposes. Instead, its early evolution might have been a response to other 

challenges faced by our ancestors, such as navigation. Parker (2006) and Kinsella 

(2010) highlight that recursion appears in several areas of cognition beyond 
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language, including number, navigation, games, vision, social cognition, and music. 

For a thorough discussion of these domains, refer to Parker (2006). As Parker 

(2006) explains, numerical reasoning may be closely tied to language from an 

evolutionary standpoint (Hurford, 1987; Chomsky, 1988), making it challenging to 

distinguish between numerical and linguistic capacities. Indeed, it has been 

suggested that numerical ability might have evolved as a by-product of language 

(Pinker & Jackendoff, 2005; Chomsky, 1988) or that our numerical knowledge 

could stem from our linguistic skills (Hurford, 1987; Bloom, 1994). In the context 

of navigation, wayfinding can be viewed as a recursive process, similar to the 

divide-and-conquer algorithms used in computer science for searching and sorting 

(Parker, 2006). However, Parker (2006) also notes that humans might employ 

alternative strategies, such as iterative methods, for path creation tasks. To 

determine if recursion is essential for these tasks, further research is needed to 

explore the strategies people actually use (Parker, 2006). Thus, while recursion 

might be beneficial in navigation, it remains uncertain whether it is indispensable. 

Wayfinding represents a domain where recursive operations could be advantageous, 

yet recursion in navigation might be part of a broader cognitive technique rather 

than a fundamental characteristic of navigation itself (Parker, 2006; Pinker & 

Jackendoff, 2005). As explained in Parker (2006), Lerdahl and Jackendoff (1983) 

discuss recursion in music in terms of its grouping structure. They suggest that 

listeners perceive music as progressively larger units, where smaller units are 

contained within larger ones. However, this form of hierarchy (i.e. embedding) does 

not involve self-embedding, which is a key criterion for recursion discussed in this 

chapter.  As Parker (2006) explains, we can state with certainty that music is 

structured hierarchically, but identifying whether musical phrases are recursively 

embedded within each other is challenging when only considering strings without 

reference to the underlying structure. Determining if a musical piece contains 

nested phrases of the same type is problematic since musical phrases lack semantic 

content. Hence, it is difficult to ascertain whether musical phrases repeated in a 

musical piece is the result of tail recursion or simply iteration (Parker, 2006). 

Crucially, however, a very interesting case of recursion present in music is 

presented in Hofstadter (1980) when talking about key change modulation. In 
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simple musical pieces, it is proposed that listeners process key changes using a 

shallow memory stack, storing and resolving tonic keys as the music modulates. A 

piece of music might start in one key and then modulate to another key midway. 

During this modulation, the listener needs to remember the original tonic key 

throughout the section played in the new key. When the music eventually returns to 

the original key, the listener retrieves the stored tonic key from memory, by popping 

it from the stack. This process is analogous to the nesting of linguistic phrases, in 

the sense that a musical key is nested within another (Parker, 2006). In more 

complex compositions, such as Bach's Little Harmonic Labyrinth, key modulations 

are frequent and rapid, often leaving listeners disoriented regarding the tonic key 

(Parker, 2006). Hofstadter (1980) suggests that this indicates a limit to the level of 

recursive embedding humans can process in music, similar to the limits of 

processing deeply nested linguistic structures. Crucially, hence, unlike navigation, 

the complex key modulations in Bach's music appear to necessitate recursive 

processing, where simple iteration might not suffice (Parker, 2006).  Regarding 

vision, Pinker and Jackendoff (2005) suggest that the way we visually group objects 

and decompose them into parts might offer evidence for recursion beyond language. 

Object recognition involves comparing an object to a stored mental representation. 

When we encounter a scene, our visual system assigns meaning by recognizing each 

object within it. This is achieved by breaking down the objects into smaller parts 

through a bottom-up process, which continues until the parts cannot be further 

divided. We then mentally reconstruct these parts, assigning meaning to each one. 

Once all objects are recognized in this manner, the entire scene is understood. This 

procedure is undoubtedly recursive and specifically a case of nested recursion 

(Parker, 2006). 

Summing up, as Parker (2006) explains, in some cases, recursive interpretations of 

cognitive processes are not the only possible interpretations. In some domains 

outside language, recursion could be at work but is not necessary, suggesting that 

recursive strategies might have been a later addition, potentially evolving from 

capacities initially developed for language. Examples of optional recursion include 

navigation and games (Parker, 2006). Therefore, in these cases, the presence of 

optional recursion outside language would not negate the central role or distinct 
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relevance of linguistic recursion proposed by Hauser et al. (2002). However, as 

Parker (2006) explains, there are clear instances of necessary non-linguistic 

recursion in human cognition, such as in music (Bach's embedded key changes), 

visual perception, social cognition, and theory of mind. For further details on social 

cognition and theory of mind, refer to Parker (2006). 

In the next section, we will delve into a crucial aspect that characterizes 

syntactic recursion in human language: the indissoluble relationship between linear 

order and structural (i.e., hierarchical) dimensions. Indeed, a key characteristic of 

recursion in human syntax is that recursive hierarchical structures emerge from 

temporally ordered, fading sequences of stimuli. Crucially, as we will see, this 

feature links the recursion found in language to that of key change modulation in 

music: Both the two instances of recursive processes arise from sequentially, 

temporally fading sequences of elements. On the contrary, this is substantially 

different from the type of recursion observed in vision, which, as we will explore 

in detail in Chapter 3, arises from static (i.e., spatial) elements rather than sequential 

(i.e., temporal) ones. 

 

 

2.2. Linear order and hierarchical structure in human language 

 
 

Space and time are the framework within which the mind is constrained to construct 

its experience of reality.  

 Immanuel Kant. 

 

In this section, we will delve into the issue of linear order and hierarchy in syntax 

and how these two facets intertwine in the production and comprehension of human 

language. Syntax is a complex system that encompasses both sequential and 

hierarchical aspects within its structure. On one hand, a pure linear sequence of 

words, on its own, falls short in adequately capturing the intricacies of human 
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language11. Language, as a tool for expression and communication, is significantly 

more complex than a simple sequence of words arranged linearly. A purely linear 

order of words fails to capture the complexities of the principles underlying human 

language. The influence of a word on others, even when it appears far apart in the 

sequence, underscores the necessity of adding another dimension to accurately 

represent the intricate network of syntactic relationships. (Moro, 2016). Indeed, the 

general consensus is that rigid, linear positions do not constitute the foundation for 

syntactic rules. The attributes of human language extend beyond mere word order, 

encompassing phenomena like long-distance dependencies. In essence, it is widely 

accepted that a solely sequential arrangement of words falls short in capturing the 

nuanced and intricate underlying principles that govern the syntax of human 

language. On the other hand, however, the relevance of the linear order of human 

language cannot be denied either. Sequentiality, understood as the temporal 

unfolding of language, is a fundamental dimension of human language.  “[…] when 

looking at the structure of a sentence in a human language we may be struck by the 

strange analogy with snowflakes: minimal components, combined with simple rules 

that are recursively applied, give birth to geometric patterns of great complexity. 

The major difference with respect to snowflakes is that sentences must undergo a 

process of linearization that flattens out the hierarchical bidimensional structure 

into a linear one […]” (Moro, 2016, p. 28). The role of linear order in language has 

been a topic of diverse perspectives among scholars. Notably, some researchers 

argue that linear order should not be regarded as an intrinsic element of the 

language's core (Berwick and Chomsky, 2017; Chomsky, 2020). Instead, they claim 

that it functions as a distinct process, bridging the internal language system with 

sensory-motor systems. In this view, linear order is distinct from the fundamental 

essence of language. In other words, linear order does not significantly influence 

the conceptual-intentional level or contribute directly to semantic interpretation. 

Consequently, properties like linear order and other aspects tied to externalization 

are best understood as external to the internal language system, often denoted as I-

                                                       
11 Nonetheless, it is crucial to highlight that not all facets of language are hierarchical. Certain 

linguistic processes are strictly local from a computational perspective, relying solely on linear 

mechanisms instead of hierarchical structures (Culicover, 2013). 
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language. Chomsky (2020) further elucidates that while auditory perception 

adheres to linear order, the cognitive process responsible for constructing internal 

linguistic structures largely disregards this linear sequence. This prompts an 

essential question: Why does linear order persist in language at all? According to 

Chomsky (2020), the answer lies in the imperative dictated by the sensory-motor 

system, which has roots that date back millions of years before the emergence of 

language as we know it today. In summary, the presence of linear order in language 

is, in essence, a concession to the demands of the sensory-motor system. In contrast, 

the core of language, guided by the fundamental computational operation known as 

Merge, inherently produces linguistic structures without a strict requirement for 

linear order. Merge represents a theoretical process wherein a minimal binary tree 

is constructed by combining two conceptual entities, X and Y, to yield a novel object 

Z = {X, Y} (Chomsky, 2013). The resulting element Z, constituted of X and Y, can 

be the object of subsequent merge operations, thereby giving rise to more elaborate 

tree structures. Importantly, the result of the merge process is hypothesized to be an 

unordered pair (Chomsky, 2013)12. Consequently, this perspective on language 

posits that the internal representation of syntax abstracts away from the temporal 

aspect of word sequences. Thus, according to this view, at the deep syntactic level, 

there exists no temporal or ordinal information, but only structure (Dehaene et al., 

2015). This arrangement enables language to exhibit structure dependence while 

permitting flexibility in linear sequencing. 

Hence, summing up, in the realm of linguistic theory, there has been a long-

standing assumption that the relationship between hierarchy and linear order in 

language is highly flexible. According to this view, the two elements can be freely 

associated with one another, allowing for considerable variation in the way they 

interact. Importantly, however, not all scholars agree in attributing the sequential 

dimension of language a role of secondary importance, relegating it to the sole 

product of the interface effect with the sense-motor system. One of the most 

important works that challenged this view is that of Kayne (Kayne, 1994; 2022). 

                                                       
12 It is important to note, however, the presence of other theories where order is considered as part 

of the definition of Merge, such as Stabler’s formalization of minimalist grammars where linguistic 

expressions are defined as binary ordered trees (Stabler, 1997). 
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Kayne, indeed, questioned the prevailing notion that hierarchy and linear order in 

language can exist in a flexible, interchangeable manner. On the contrary, he 

asserted that there is a rigid connection between hierarchical structure and linear 

order, emphasizing the essential role of linear order in syntax and underscoring its 

influence on the human language faculty. As a matter of fact, the strong 

correspondence between phrase structure and linear order of terminals is most 

evident in the fundamental principle that heads must always precede their 

associated complement positions, whereas adjunctions must consistently occur to 

the left and never to the right. This principle applies not only to adjunctions within 

phrases but also to adjunctions to heads. The strict rules governing linear order 

extend to specifiers as well, which Kayne contends are a form of adjunction. 

Therefore, specifier positions must invariably appear to the left of their associated 

head, never to the right. Kayne (1994) introduced the Linear Correspondence 

Axiom (LCA), challenging the conventional view that X-bar theory is a primitive 

component of Universal Grammar (UG). As he explained, the source of all the 

major properties that have been attributed to X-bar theory is in fact the Linear 

Correspondence Axiom.  In other words, X-bar theory derives from the LCA, and 

what is primitive in UG is the LCA. Indeed, according to him, X-bar theory, at its 

core, embodies a collection of properties that exhibit antisymmetry. Crucially, this 

inherent antisymmetry is, essentially, derived from the foundational antisymmetry 

present in the linear ordering of terminal symbols, which has three defining 

properties: it is transitive, total, and antisymmetric. According to Kayne’s LCA, 

linear precedence of terminal symbols is strongly linked to asymmetric C-

command. In other words, A precedes B iff A asymmetrically c-commands B. 

Hence, in a nutshell, Kayne claims that linear/temporal order is part of the core 

syntax, as opposed to Chomsky’s view. Concerning the source of this fact, Kayne 

(2022) highlights the importance of Merge, which, crucially, would work differently 

from what has been assumed in previous works (cf. Chomsky, 2013).  “[…] Merge 

should always be taken to form the ordered pair <X,Y>, rather than the set {X,Y}”. 

(Kayne, 2022, p. 10). It is precisely through the concept of ordered pair in the 

algorithm of Merge that Kayne manages to explain how this mechanism plays a 

fundamental role in integrating linear, temporal order into core syntax. 
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“Antisymmetric linear/temporal order is part of core syntax. Temporal order is 

partly (though not fully) integrated into core syntax via Merge itself. When two 

elements X and Y are merged, a relative linear/temporal order is assigned to them.” 

(Kayne, 2022, p. 1). Hence, the distinction between forming ordered pairs <X, Y> 

versus sets {X, Y} is a critical aspect in the discussion of linear order within core 

syntax. Importantly, however, as he further explains, the process of forming ordered 

pairs via Merge creates a partial linear ordering within core syntax, signifying 

relationships between elements but not within their internal substructures. 

Specifically, it signifies that X is linearly ordered before Y. However, it does not 

explicitly convey information about the linear order of subconstituents within X or 

Y (Kayne, 2022).  

In summary, the debate surrounding the role of linear order in core syntax is 

complex and multifaceted. While some linguistic theories, such as Kayne's notion 

of antisymmetry, emphasize the inherent connection between hierarchical structure 

and linear order, others, like Chomsky's recent work, propose that linear order 

becomes relevant only during externalization. In this thesis, we will embrace the 

idea that linear order is an inner property of language. Specifically, we believe that, 

in order to understand and fully appreciate the uniqueness and intricacies of human 

language, it is fundamental to consider language as a whole, integrally in its 

manifestation, not focusing only on one part of its manifestation. Over the years, 

scholars have focused and given different weight to specific aspects of language, 

often taking into consideration, and focusing on a single aspect to explain the 

peculiarity of language. Conversely, we believe that the true peculiarity of human 

language cannot be reflected in a single feature but is the result of an interweaving 

of elements. As we explained, recursion constitutes a specific type of structural-

dependence phenomenon in human language. Rather than focusing on the recursive 

hierarchical structure itself, we believe that the unfolding and inexorable 

intertwining of recursive hierarchical structures with the linear, sequential, and 

temporal dimensions represent a distinctive feature of human language. Indeed, 

human language, being a cognitive phenomenon, would not exist apart from the 

temporal dimension of the reality in which we are immersed. The importance of 

integrating the temporal dimension has been taken into account by various scholars 
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dealing with language, in different fields of study, from neurophysiology, cognitive 

science, to natural language processing.  Elman (1990) addressed the issue of 

integrating the temporal dimension into the representation of human language. His 

aim was to create connectionist models capable of adequately processing human 

language. Elman supported the claim that temporal integration is a fundamental and 

intricate aspect of language and cognition. “Time underlies many interesting human 

behaviors. […] Time is clearly important in cognition. It is inextricably bound up 

with many behaviors (such as language) which express themselves as temporal 

sequences. Indeed, it is difficult to know how one might deal with such basic 

problems as goal-directed behavior, planning, or causation without some way of 

representing time.” (Elman, 1990, p.179). Despite the importance of the time 

dimension in language, Elman suggests that linguistic theorists may have 

overlooked the importance of representing and processing temporal aspects in 

utterances. They might have assumed that all the information in an utterance is 

instantly available in a syntactic tree. However, findings in natural language parsing 

indicate that solving this problem is not as straightforward as presumed. “[…] what 

is one of the most elementary facts about much of human activity -that it has 

temporal extend- is sometimes ignored and is often problematic.” (Elman, 1990, p. 

180). “There are many human behaviors which unfold over time. It would be folly 

to try to understand those behaviors without taking into account their temporal 

nature.” (Elman, 1990, p.207). In the same vein, already 30 years before Elman’s 

work, albeit with a different objective, the eminent US neuropsychologist Karl 

Lashley, pointed out the paramount role that temporality plays in language, such as 

in other cognitive domains, like music and complex motor actions, highlighting the 

primary importance of the problem of temporal integration. “I have chosen to 

discuss the problem of temporal integration here, not with the expectation of 

offering a satisfactory physiological theory to account for it, but because it seems 

to me to be both the most important and also the most neglected problem of cerebral 

physiology.” (Lashley, 1951, p. 114). Lashley proposed that the human ability to 

deal with actions that unfold in a sequential manner, be it language, music, or motor 

skills, poses significant challenges to our comprehension of brain function. 

Crucially, he pointed out a crucial flaw in existing models that relied on a simplistic 
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stimulus-response chain. While these models could capture the sequential nature of 

routine actions, they overlooked the essential role of sustained goals and subgoals 

in more intricate tasks. In complex actions, overarching goals must persist while 

subgoals are initiated and completed. Such action sequences deviate from a 

chaining model where each completed action triggers the next one, and any 

omission disrupts the entire sequence. Lashley argued that these observations 

highlight the necessity for models of complex action sequences. Thus, he 

emphasized the notion that cognitive functions, such as language and music, 

represent complex structured phenomena intricately intertwined with temporality, 

a concept widely accepted in contemporary discussions. (Lashley, 1951; Fitch, 

Martins, 2014). Indeed, his insights have been confirmed and expanded upon by 

subsequent studies. Interestingly, Fitch and Martins (2014) examined a broad range 

of contemporary data related to the processing of music, language, and other 

complex sequential actions, discovering that these findings align closely with a 

revised neuroanatomical interpretation of Lashley's hypotheses, thus confirming 

that hierarchy in language and music is constructed upon a foundational sequential 

action system. Specifically, Fitch and Martins (2014), revisiting Lashley's ideas, 

shed light on the hypothesis that the similarities in language, music, and complex 

actions are not coincidental but rooted in the hierarchical nature inherited from basic 

features of motor planning. In other words, the idea is that hierarchical structuring 

of temporal sequences is a fundamental ability supporting human music and 

language, originating from deeper evolutionary roots in action processing. Unlike 

Lashley, their review utilizes brain imaging and lesion data, particularly examining 

the role of Broca’s area in processing hierarchical structures in the temporal 

dimension. Key considerations included whether sequential hierarchy processing is 

a specific capability, distinct from other types of hierarchical processing, such as 

visuospatial static hierarchical processing. Moreover, they were interested in 

verifying which neural mechanisms support this cognitive ability. Importantly, their 

evaluation incorporated extensive behavioral, neuroanatomical, and brain-imaging 

data, which were not available during Lashley's era. Fitch and Martins started their 

investigation by first offering a terminological clarification of the terms hierarchy, 

set and sequence. “[…] a set is an unordered collection of distinct, unique objects; 
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while a sequence is a collection of objects, perhaps including duplicates, ordered 

by some rule. Although the set {a, b, c} is identical to the set {b,c,a},the sequences 

[abc] and [bca] are distinct and different. Furthermore, because sequences but not 

sets can contain duplicate items, sequences are not, strictly speaking, a type of set.” 

(Fitch and Martins, 2014, p. 88).  “Hierarchy denotes a set or sequence of elements 

connected in the form of a rooted tree (a connected acyclic graph, in which one 

element is singled out as the root element). Hierarchies thus possess the following 

key properties: (1) all elements are combined into one structure (connectedness); 

(2) one element (the root) is superior to all others; and (3) no element is superior to 

itself (that is, there are no cycles, direct or indirect).” (Fitch and Martins, 2014, p. 

89).  This terminological clarification is indeed crucial for investigating temporally 

ordered hierarchies, where order is significant, in contrast to static hierarchies, 

where order is typically irrelevant. Indeed, as they explained, the commonality 

identified across language, music, and action is the imperative to establish the 

correct temporal ordering on subelements. “[…] temporal hierarchies incorporate 

an additional ordering component, where at least some elements at any given level 

represent a sequence rather than a set.” (Fitch and Martins, 2014, p. 89).  Fitch and 

Martins (2014) explored whether there is evidence for abstract and modality 

independent hierarchical structuring in the brain. By searching the literature, they 

aimed to (i) find evidence supporting the neural distinction in the processing and 

representation of static hierarchical structures on one hand, and temporal structures 

on the other. Furthermore, (ii) they sought compelling evidence indicating common 

neural substrates involved in processing diverse types of hierarchical sequences, 

encompassing language, music, and action. Firstly, they observed that recent studies 

have delved into the brain regions involved in processing hierarchical sets in 

various domains (Kravitz et al., 2011; Kumaran et al., 2012). In the social domain, 

the hippocampus seems to encode dominance relationships, while also being active 

in encoding hierarchical ranks in nonsocial domains (Kumaran et al., 2012).  As a 

matter of fact, in the visuospatial domain, correct integration of landmarks recruits 

the parahippocampus (Aminoff et al. 2007), along with the medial temporal lobe 

(MTL) and the retrosplenial cortex (Kravitz et al., 2011). Crucially, The MTL 

system is proposed to encode high-order hierarchical associations in motor and 



 98 

linguistic domains as well (Meyer et al., 2005; Opitz & Friederici, 2003; 2007; 

Schendan et al., 2003). In contrast, temporal hierarchical processing, whether in 

music, language, or other tasks, consistently activates the posterior prefrontal 

cortex, particularly Broca's area (BA 44/45), in the left emisphere (Amunts et al., 

2010). Increased Broca's activation correlates with higher working memory 

demands, such as processing long-distance dependencies. Also in musical syntax, 

neuroimaging studies consistently reveal activation in BA 44/45, in both 

hemispheres, but in some cases the activation tends to lean toward the right side 

(Brown et al., 2006; Fadiga et al., 2009; Koelsch et al., 2000; Maess et al., 2001; 

Patel et al., 2008; Sammler et al., 2011). Further confirmation of the function of the 

Inferior frontal Gyrus (IFG), which includes Broca’s area, in music processing and 

memory have been reported by several studies (Herholz et al., 2012; Janata, 

Parsons, 2013; Koelsch, 2013; Patel, 2013). Moreover, as far as motor action is 

concerned, some studies presented supporting evidence indicating that Broca's area 

has a specific function in the planning of hierarchically structured action (Dehaene 

et al., 1997; Koechlin, Jubault, 2006). Interestingly, Fitch and Martins (2014) 

reported that, regardless of the input domain, whether auditory or visual patterns, 

even nonlinguistic visual symbols (Bahlmann et al., 2009) evoke Broca's activation 

when sequentially presented. Hence, they concluded that, (i) despite overlaps in the 

medial temporal lobe, the neural mechanisms for processing hierarchical sequences 

do not completely coincide with those for hierarchical sets (Fitch and Martins, 

2014); (ii) neuroimaging findings substantiate Lashley's hypothesis concerning a 

shared foundation for music, language, and certain action planning processes. 

Specifically, Broca's area is identified as a pivotal component in this interconnected 

system. This last evidence aligns with what Koelsch (2012) has referred to as the 

syntactic equivalence hypothesis (Fitch and Martins, 2014). In conclusion, building 

upon these pieces of evidence, Fitch and Martins (2014) put forth the following 

hypothesis: The cortical resources within the Inferior Frontal Gyrus (IFG), 

encompassing at least BA 44 and BA 45, act as a storage buffer that can be scanned 

by other cortical and subcortical circuits involved in sequential behavior. This 

buffer is essential for executing supra-regular hierarchical sequence processing, and 

the processing load intensifies with the depth and complexity of the hierarchy under 
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consideration. Regarding the origin of this exceptional human ability to process 

hierarchical sequences, Fitch and Martins (2014) proposed that it might have roots 

in a pre-existing form of action syntax, predating the development of human music 

and language. As they explained, Lashley's idea regarding structured phenomena 

intricately intertwined with temporality, viewed through a modern lens, is 

associated with widespread brain circuits, primarily located in prefrontal regions, 

notably Broca's region. These prefrontal areas play a foundational role in the 

hierarchical planning and sequencing of actions, a function likely shared with other 

primates, particularly chimpanzees, which are known for their intelligent use of 

tools (Fitch, Martins, 2014). However, as they explained, while this capability likely 

originated in primates, its scope would have expanded significantly during human 

evolution to encompass both perception and the production of various hierarchical 

sequences. According to their hypothesis, the substantial enhancements to this 

Broca-centered action sequencing capacity would have been instrumental in the 

emergence of both music and language. 

In this section, we have explored the debate surrounding the relationship 

between hierarchy and linear order in language. As we have seen, different 

linguistic theories present contrasting views on this issue. In particular, we focused 

on scholars who have considered the importance of the sequential, linear, and 

temporal dimension in language, in addition to the structural hierarchical 

dimension. We started with the work of Kayne, who challenged the commonly held 

belief that hierarchy and linear order in language are two separated levels. Instead, 

he argued for a rigid connection between hierarchical structure and linear order, 

asserting the crucial role of linear order in syntax and highlighting its profound 

impact on the human language faculty. Specifically, Kayne posited that 

linear/temporal order is an integral component of the core syntax, in contrast to 

Chomsky's perspective, who proposed that linear order becomes relevant only 

during externalization. Afterwards, we briefly reviewed the ideas of scholars who, 

in different fields of study, have advocated for the importance of integrating and 

taking into consideration the sequential, thus temporal dimension when dealing 

with the study of language. Specifically, we focused on Lashley’s work, who 

proposed that cognitive functions, like language, music, and certain types of motor 
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actions, are complex structured phenomena in which the temporal dimension plays 

a major role.  After that, we delved into the reexamination of Lashley's ideas by 

Fitch and Martins (2014). Interestingly, they validated Lashley's insights, by 

reviewing and examining contemporary data on music, language, and action 

processing. They proposed that the similarities in these domains stem from a shared 

ability to deal with sequential hierarchical structures, rooted in motor planning. 

Importantly, their study, reviewing brain imaging and lesion data, highlighted 

Broca's area as a key player in processing sequential hierarchies. Moreover, they 

concluded that neural mechanisms for processing sequential hierarchies differ from 

those for static hierarchies. Specifically, the Inferior Frontal Gyrus, particularly BA 

44 and BA 45, was suggested as a crucial cortical resource for executing 

hierarchical sequence processing, with the processing load increasing with 

hierarchy complexity. 

 

2.2.1. From sequence to hierarchy: Cognitive mechanisms at play 

 

At the core of language lies the essential capacity to process and hierarchical 

structures arising from sequentially ordered stimuli. As demonstrated in the 

preceding section, this cognitive skill is not only pivotal in the realm of language 

but also extends its influence on other cognitive domains, such as music and certain 

types of complex motor actions. Building upon the compelling evidence that 

underscores the significance of both hierarchical structure and temporal sequential 

order in language, as well as in other cognitive faculties, we want to shed light on 

how cognition derives hierarchical patterns from sequentially presented input. 

 Dehaene and colleagues (2015) introduced a taxonomy that classifies 

diverse forms of cognitive internal representations that can arise when processing a 

sequence of temporally distributed stimuli. As they explained, a sequence of 

stimuli, can be processed and stored in different ways, at different levels of detail. 

Specifically, they put forth a classification system outlining five distinct cerebral 

mechanisms for coding sequences, with increasing degree of abstraction: (i) 

transitions and timing knowledge; (ii) chunking; (iii) ordinal knowledge; (iv) 

algebraic patterns; and (v) nested tree structures. For each mechanism, they 
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examined existing experimental paradigms and outlined their behavioral and neural 

markers.  

(i) Transitions and timing knowledge refers to the knowledge of the shifts from 

one item to the next, encompassing the identification and approximate timing 

of the subsequent item in relation to the previous item; in other words, it refers 

to the capacity to depict the temporal gaps between sequential elements and 

utilize these temporal representations in basic computations. Several studies 

have reported that sensory circuits can internalize the temporal patterns of 

regular sequences, generating an endogenous response even in the absence of 

sensory input, solely in anticipation of an anticipated event. An additional 

notable trait of temporal sequence encoding is its automatic nature. Hence, 

transition and timing knowledge is an initial, basic stage of sequence 

representation, in which sequences are stored by recording the transitions 

between items and their approximate timing. At this stage, the processing 

mechanism operates at an item-specific, superficial level. 

(ii) Chunking involves grouping multiple consecutive items into a unified entity, 

which can then be manipulated as a cohesive unit at the subsequent hierarchical 

level; upon the recurrence of a sequence of elements, these elements can be 

represented as a cohesive entity referred to as a "chunk," consolidating them 

into a singular unit for storage. Hence, a "chunk" can be defined as a set of 

adjacent items that consistently reoccur together, allowing for subsequent 

manipulation of this element as a singular entity. 

(iii) Ordinal knowledge entails the knowledge of the elements’ order in the 

sequence, distinguishing the first item from the second and so forth, 

irrespective of their temporal arrangement; hence, this mechanism abstracts 

from precise timing details and focuses solely on the relative temporal order of 

elements, discerning which of them comes first, second, or third. As Dehaene 

et al. (2015) explain, having distinct mechanisms for timing and ordinal 

knowledge proves beneficial. In situations where event timing is fixed and 

predictable, timing mechanisms are essential. However, in scenarios where it 

is possible to predict that something will happen or how many events will occur 

without knowing when, the utility of ordinal knowledge becomes apparent. 

(iv) Algebraic patterns involve the mental representation of more abstract 

properties which capture the relationships between successive stimuli.  

Through this mechanism, an input sequence is internally coded by a 
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corresponding sequence of abstract relationships, concepts, or categories. 

Hence, this mechanism is characterized by the ability to abstract from the 

specific identity and timing of sequence items and grasp the pattern underlying 

them, assigning items to abstract categories. The categorization of stimuli can 

be based on concepts such as sameness and difference. For example, the word 

"papavero" can be represented through the abstract pattern schemas AABC 

that match the sequential regularities within syllables, consisting of the 

repetition of a syllable followed by two different ones. 

(v) Nested tree structures involve the embedding (or nesting) of groups of items 

(i.e., chunks) within each other, forming a hierarchical structure of any depth. 

This mechanism allows for an underlying mental representation forming tree 

structure, in which sequences of items (i.e., chunks) are linked together. 

Crucially, this process might involve the recursive utilization of the same 

elements at different levels; hence, recursive hierarchical structures are a 

specific type of nested structures.  

 

As Dehaene and colleagues (2015) explain, cognitive phenomena such as 

language, music, motor action, and mathematics cannot be accounted for by flat 

mechanisms such as (i) - (iii) but require the formation of algebraic patterns (iv) 

and nested tree structures (v). Indeed, as they observe, already in the 1970s, Restle 

and colleagues put forward the fact that, in these complex sequential cognitive 

phenomena, basic sequences are grouped and represented in ways which transcend 

a simple, flat associative chain, hypothesizing the necessity of the representation of 

abstract tree structure (Restle, 1970; Restle and Brown, 1970). An important point 

worth discussing is related to the mechanisms involved in the formation of nested 

tree structure. As we have seen, Dehaene et al. (2015) emphasize that the formation 

of hierarchical structures might potentially involve the recursive utilization of the 

same elements across different hierarchical levels. “[…] at this level, characteristic 

of human languages, a sequence can be ‘‘parsed’’ according to abstract grammatical 

rules into a set of groupings, possibly embedded within each other, forming a nested 

structure of arbitrary depth, and possibly involving the recursive use of the same 

elements at multiple levels.” (Dehaene et al., 2015, p.2). The application of 

recursive mechanisms in the formation of nested hierarchical structures is an  ability 

at play in the human language faculty, as discussed in this chapter. However, it is 
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important to highlight the fact that not every hierarchical phenomenon is recursive. 

In fact, the utilization of a recursive procedure is possible but not required for the 

formation of hierarchical structures. Indeed, as Fitch and Martins (2014) rightly 

emphasize, while every recursive tree is hierarchical, not all hierarchies are 

recursive. “For many types of hierarchy […], such as motor actions embedded 

within plans, it is unclear what self-embedding would even mean.” (Fitch and 

Martins, 2014, p.98). Crucially, however, language, like music in specific 

circumstances, such as the processing of key change modulation (Hofstadter, 1980; 

cf. Section 2.1.2.) entails the formation of a particular type of hierarchical structure 

arising from sequentially ordered stimuli, namely recursive hierarchical structures. 

Indeed, both syntactic structures and key change modulation in music can be not 

only hierarchical but also recursive, thus allowing for self-embedding (Chomsky, 

1995; Hofstadter, 1980; Karlsson, 2010; Mithun, 2010; Roeper, 2009). More 

specifically, considering that in both language and music, sequential order is 

intricately bound to hierarchical structure, as we have discussed in this chapter, we 

believe it is more accurate to refer to these structures as recursive structures arising 

from temporally ordered sequences of stimuli. This is indeed the terminology we 

adopt throughout the present investigation. 

 Taking these facts into consideration, the present thesis aims to delve deeper 

into the intricate relationship between sequence and hierarchy. Our specific goal is 

to elucidate the cognitive mechanisms underlying the transition from linear order 

to recursive hierarchical structure during the processing of sequences of stimuli 

featuring recursive hierarchies. How does cognition derive recursive hierarchical 

patterns from sequentially presented input? This investigation may provide insights 

into how our mental capabilities and constraints, operating within the constant 

framework of space and time, shape the way we acquire and process recursive 

hierarchical structures from a temporally ordered fading sequence. This process, 

serving as a cognitive mechanism underlying the human language faculty, could be 

a window that helps us understand more about the mechanisms and structures of 

language. Language, indeed, being a byproduct of the human mind, is inherently 

shaped and constrained by our cognitive boundaries. In Chapter 5, we will explore 

this cognitive ability in various sensory domains. This investigation could 
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illuminate the question we discussed in Section 2.1.2., specifically regarding the 

possibility of finding this ability outside language. It might suggest whether this 

ability is strictly linked to language or if it represents a domain-general cognitive 

skill. One possibility is that the ability to process recursive hierarchical structures 

from sequential stimuli evolved in other cognitive domains and was later exapted 

for use in language. In other words, the capacity to handle recursive hierarchical 

structures in temporally ordered stimuli may have initially developed for purposes 

outside language and was subsequently co-opted for linguistic use. 

In literature, numerous studies have provided evidence for the cognitive 

representations proposed by Dehaene et al. (2015) regarding the processing of 

temporally distributed stimuli. Several investigations, employing behavioral 

paradigms and neuroimaging techniques, have explored these cognitive 

mechanisms (i-v) individually (cf. Dehaene et al., 2015). Interestingly, some of 

these mechanisms (i.e., i; ii; iii; iv) have been observed in both animals and humans. 

However, when it comes to the formation of nested tree structure (v), Dehaene and 

colleagues explain that it necessitates a specific recursive neural code, which 

remains undiscovered through electrophysiological methods. Moreover, they 

suggest that (v) might be a cognitive mechanism exclusive to humans, providing 

insights into the unique nature of human language and cognition. Overall, these 

studies demonstrate the coexistence of multiple systems in different brain circuits 

for learning and processing sequential information at varying degrees of complexity 

and abstraction. However, while the existing body of research has predominantly 

provided evidence for these cognitive abilities when examined in isolation, only a 

limited number of studies directed their attention to the comprehensive exploration 

of the entire journey from sequence to hierarchy. Hence, there remains a notable 

gap in our understanding of how these intricate processes interact and unfold 

throughout the entire cognitive continuum. In essence, the current state of research 

has been more inclined toward dissecting these abilities individually rather than 

unraveling the dynamic interplay that occurs during the transition from sequence to 

hierarchy. With respect to this, Dehaene et al. (2015) express the need to 

comprehend how the brain determines the optimal mechanism model for processing 

a given sequence. They ponder whether these mechanisms engage in a competition 
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to minimize prediction errors in sensory input until one of them effectively succeeds 

in predicting it and blocks the others. Alternatively, all systems might operate 

independently, each striving to capture different aspects of the input sequence. The 

latter hypothesis gains support from experimental findings indicating that local 

transition probabilities are extracted independently of coexisting knowledge of the 

global sequence (Bekinschtein et al., 2009; Wacongne et al., 2011). Dehaene et al. 

(2015) acknowledge that future studies will be necessary to elucidate this aspect.  

Crucially, some recent studies have further explored the cognitive mechanisms 

at the core of the transition from sequence to hierarchy, investigating the 

relationship between different cognitive mechanisms at play in encoding sequential 

stimuli and addressing some relevant research questions (Radulescu et al., 2019; 

Planton et al., 2021; Schmid et al., 2023; Vender et al., 2023).  

Radulescu and colleagues (2019) investigated the factors that drive the shift from 

memorizing specific items and statistical patterns to forming more abstract 

representations when exposed to sequentially arranged stimuli, while also exploring 

the mechanisms that lies at the heart of this transition. Based on the work of Gomez 

and Gerken (2000), they identified two distinct forms of rule induction: item-bound 

generalizations and category-based generalizations. “An item-bound generalization 

is a relation between perceptual features of items, e.g. a relation based on physical 

identity, like ba-ba (ba follows ba), or “add – ed”. Category-based generalization 

operates beyond the physical items; it abstracts over categories (variables), e.g. Y 

follows X, where Y and X are variables taking different values. In natural language, 

the grammatical generalization that a sentence consists of a Noun-Verb-Noun 

sequence is based on recognizing an identity relation over the abstract linguistic 

category of noun (which can be construed as a variable that takes specific nouns as 

values).” (Radulescu et al. 2019, p. 109-110). Specifically, Radulescu and 

colleagues inquired whether these forms of encoding are different outcomes of a 

single mechanism or outcomes of two separate mechanisms. If they are indeed 

products of the same mechanism, do the two types of generalizations represent 

stages in a phased process that gradually shifts from lower-level item-bound 

generalization to a higher-order abstract generalization, or do they result from an 

abrupt switch between separated mechanisms? Additionally, what initiates this 
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change in the form of encoding? Based on the hypothesis put forward by Aslin and 

Newport (2012), which proposed that statistical learning serves as the underlying 

mechanism for both item-bound and category-based generalizations, Radulescu and 

colleagues (2019) introduced a novel entropy-based model, based on an 

information-theoretic perspective, to consistently explain how a single mechanism 

can produce two distinct forms of generalization, the type of context cue 

distribution that lead to the different forms, and the reasons why the same 

mechanism can yield different outcomes. These fundamental questions had not 

been addressed by previous research. The fundamental idea behind their model is 

that input complexity, measured by the information-theoretic concept of entropy, 

triggers the shift from item-bound to category-based generalizations. Essentially, 

entropy quantifies the complexity of a set of items, influenced by both the number 

of items and their frequency distribution: Entropy rises with an increase in the 

number of items and with a more uniform frequency distribution among them. In 

this context, entropy can also be understood as the uncertainty or surprise regarding 

the occurrence of specific items or their configurations. Both the number of items 

and their frequency distribution contribute to this uncertainty. An additional factor 

is crucial to their model, which posits that rule induction functions as an encoding 

mechanism: Channel capacity (Shannon, 1948). Channel capacity refers to the 

maximum amount of entropy that can be transmitted through a channel within a 

given time frame. Radulescu and colleagues hypothesized that cognitive channel 

capacity is modulated by factors such as attention, memory capacity, and pattern-

recognition capacities. Hence, according to them, the encoding mechanism 

governing sequence processing is naturally and gradually driven by the brain's 

sensitivity to input complexity (entropy) and interacts with the brain's limited 

encoding capacity (channel capacity) (Radulescu et al. 2019). Therefore, according 

to Radulescu and colleagues, based on the level of input complexity and the limited 

encoding capability (i.e., channel capacity), various methods of information 

encoding are required to handle the complexity of the input. Specifically, their 

model predicts that as the complexity of the input increases, the brain is more likely 

to move away from single item-bound computations and infer abstract rules to form 

category-based generalizations. To test their model, the researchers conducted two 
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artificial grammar learning (AGL) experiments with adults. These experiments 

focused on how input complexity affects rule induction. The results confirmed that 

as the complexity of the input increased, participants were more inclined to make 

category-based generalizations. In other words, Radulescu and colleagues’ finding 

supports the hypothesis that higher entropy in input data triggers a stronger 

inclination towards rule generalization: Their study demonstrated that the tendency 

to form abstract rules increases with the complexity of the input. This observation 

supports the notion that higher entropy prompts the brain to abstract and generalize 

rules more effectively. Importantly, moreover, the entropy model proposed by 

Radulescu and colleagues (2019) explains how both item-bound and category-

based generalizations can arise from the same cognitive process, driven by input 

complexity and the brain's encoding capacity. By modeling the gradual transition 

from item-bound to category-based generalizations as a function of input 

complexity and finite brain capacity, Radulescu and colleagues’ research provides 

a comprehensive understanding of the cognitive mechanisms underlying the 

transition from sequence to hierarchy, which, as they state, represents a fundamental 

ability at the core of language learning. 

Planton et al. (2021) aimed to shed light on the cognitive mechanism that lies at 

the heart of the capacity to build recursive nested structures in sequential stimuli. 

Indeed, as they explain, when dealing with linearly arranged stimuli, humans are 

not only able to detect sequential features by exploiting statistical learning 

mechanisms, but they are also able to create more abstract representations, such as 

nested recursive structures. In other words, humans possess the ability to organize 

sequences into a hierarchical structure of smaller chunks within larger chunks, in a 

recursive way (Planton et al., 2021). Based on this evidence, Planton and colleagues 

tested the hypothesis according to which human can form complex recursive 

abstract representation even when exposed to binary sequences, that is, sequences 

composed of only two different symbols (e.g., A and B). Specifically, according to 

them, they would manage to do that by exploiting a cognitive strategy based on an 

abstract internal language – i.e. language of thought (LoT) - featuring a recursive 

compression mechanism. Indeed, according to their hypothesis, participants, when 

exposed to sequences of stimuli, would spontaneously recode them in an abstract 
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form exploiting an internal LoT. Specifically, the proposed language is intended as 

a systematic framework capable of encoding any arbitrary combinations of nested 

repetition and alternation structures. In essence, this language consists solely of two 

basic commands – i.e, "same" and "change"- and their recursive embeddings. Such 

a language would enable the integration of simple primitives into intricate nested 

patterns or recursive rules (Planton et al. 2021). As the authors explain, creating a 

Language of Thought (LoT) model for sequence representation requires choosing a 

set of rules or operations that enable the (lossless) recoding of any sequence. This 

language would prioritize an abstract depiction of sequences by maximizing nested 

repetitions. It follows that sequence length and complexity clearly become two 

distinguished measures. Indeed, compressing the stored information into a more 

concise form would enhance working memory capabilities. Their hypothesis 

suggests that the mental complexity of a sequence is directly related to the length 

of its shortest representation in the proposed internal language. To test thus 

hypothesis, they carried out five experimental studies using binary sequences. As 

the authors explain, binary sequences, due to their simplicity, provide a controlled 

environment to study sequence memory without the confounding variables present 

in more complex sequences like language or music. Despite their simplicity, binary 

sequences can generate complex patterns that require complex mental encoding 

strategies. Understanding how these sequences are encoded can shed light on 

broader cognitive processes involved in memory and learning. In their experimental 

studies, Planton and colleagues presented participants with binary sequences of 

visual or auditory stimuli in a violation detection task. After an initial exposure 

phase where participants learned the sequences, they were tested with sequences 

that included single-item deviations. Participants were tasked with quickly 

identifying whether a presented sequence contained a violation. To systematically 

vary the complexity of these sequences, Planton and colleagues exploited the 

formal language they developed composed of a limited set of primitive instructions. 

These instructions allowed them to generate different binary sequences and measure 

their complexity in terms of Kolmogorov complexity, which is defined by the length 

of the shortest possible description (or program) that can produce the sequence. 

Hence, in their study, the complexity of each binary sequence was determined by 
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the minimal number of instructions required in the formal language to describe it. 

The study also aimed to determine whether participants' memory performance was 

better explained by this compression mechanism or by simpler statistical learning 

processes. Hence, to separate the effects of compression from statistical learning, 

the researchers measured the Shannon surprise of each deviant item in the 

sequences. Shannon surprise quantifies the uncertainty of observing a specific item 

given the history of previous items, reflecting the degree of statistical learning. 

Importantly, Shannon surprise is independent of the overall sequence complexity. 

The study found that both the complexity of the sequences (as defined by 

Kolmogorov complexity) and the Shannon surprise of the deviant items were 

significant predictors of participants' performance. This indicates that participants 

used both compression and statistical learning to process the sequences.  

Specifically, across five different experiments involving sequences of varying 

lengths in both auditory and visual modalities, consistent evidence was found that 

a significant portion of the variation in sequence encoding performance (measured 

by the ability to detect sequence violations) was explained by the length of the 

shortest possible description of the sequence in the proposed formal language (i.e., 

LoT complexity). Interestingly, however, this effect was not observed for very short 

sequences (6 items) but was most pronounced for longer sequences, in particular 

for the longest ones (16 items). The authors attribute this result to differences in 

working memory demands. Indeed, as they explain, the number 6 falls within the 

typical range for items that can be stored in working memory without compression, 

which is about 7±2 items (Miller, 1956; Mathy & Feldman, 2012). Therefore, 

participants could have solved the violation detection task by storing each 6-item 

sequence in working memory without compression. Similarly, 8-item sequences 

could have been stored as a flat series of "chunks," which are considered the units 

of encoding in working memory, without any recursive embedding. Overall, the 

increasing need for compression explains why the predictive power of LoT 

complexity grew with sequence length. Furthermore, follow-up analyses revealed 

that the complexity measure derived from the language they designed better 

predicted the degree of psychological complexity compared to other sophisticated 

approaches available in the literature. “Our results support the idea that the 



 110 

inclusion of such a feature is essential to explain human behavior when working 

memory capacity is exceeded and compression is most beneficial. The fact that we 

reached such a conclusion using the simplest type of temporal sequences (binary 

sequences) and a simple deviant detection task (rather than the more demanding 

recall, completion or production tasks using in the previous literature) is consistent 

with Fitch’s “dendrophilia hypothesis” [Fitch, 2014] which states that “humans 

have a multi-domain capacity and proclivity to infer tree structures from strings” 

even in the simplest cases” (Planton et al. 2021, p. 27). In conclusion, Planton et al. 

(2021) offer a compelling framework for understanding how humans encode and 

remember binary sequences. By demonstrating that both compression and statistical 

learning contribute to sequence memory, the study provides valuable insights into 

the cognitive processes underlying the processing of sequential sequences. 

However, as Schmid (2023) observed, while the study provided strong evidence for 

the use of compression in sequence memory, it did not measure the degree of 

compression achievable by participants. Sensitivity to sequence complexity, as 

indicated by performance, does not necessarily mean that participants compressed 

the sequences to the maximum possible extent or that the formal language used in 

the study perfectly mapped onto participants' mental operations (Schmid, 2023). 

With this regard, Planton and colleagues acknowledged a limitation in their study, 

noting that approximately half of the minimal expressions for the sequences they 

used involved only two hierarchical levels, i.e., a single level of recursive 

embedding. Hence, they explained that further research is required to determine 

whether human participants consistently find deeper levels of embedding 

advantageous, especially when processing short sequences. As they observed, 

increasing the hierarchical depth might entail an additional cognitive load, making 

it beneficial only in particular contexts, such as more complex learning tasks or 

longer sequences (Planton et al. 2021). Another open issue, as Planton et al. (2021) 

explained, is related to the domain-general or domain-specific nature of the 

cognitive mechanisms they explored. Indeed, Planton and colleagues proposed that 

mental compression of sequences occurs at an abstract level, focusing on 

relationships between items rather than at the sensory level. Their approach 

effectively predicted the psychological complexity of both tone and visual 
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sequences, implying an abstract symbolic representation. However, as the authors 

explained, it is debated whether temporal sequence encoding involves a universal 

mechanism or separate modality-specific systems. One hypothesis they put forward 

is the presence of an auditory-specific system. Visual sequences might be converted 

into auditory representations before compression. This would be in line with the 

results they observed in their study regarding the lower performance and slower 

responses in visual tasks compared to auditory ones. The authors hence concluded 

by stating that future research should explore and compare further this cognitive 

mechanism in different sensory modalities, or using cross-modal transfer, and brain 

imaging to better understand the sensory and cognitive mechanisms involved. 

Two other studies which investigated the cognitive mechanisms involved in the 

transition from sequence to hierarchy are Schmid et al. (2023) and Vender et al. 

(2023). These authors have thoroughly investigated the interplay between sequence 

and hierarchy through the Artificial Grammar Learning (AGL) paradigm. They 

exploited an artificial grammar that, for reasons detailed in Section 4.1., serves as 

an optimal tool for this investigation: the Fibonacci grammar (Fib). Anticipating 

what will be discussed in Section 4.1., Fib is a simple recursive rewrite system 

comprising just two symbols (0 and 1) and two rewriting rules (0→1; 1→01) 13. 

The recursive application of these rules generates strings of potentially infinite 

length14. Crucially, when Fib strings are parsed sequentially, from left to right, some 

points can be predicted through low-level transitional probabilities applied to the 

string. Notably, however, the distribution of points in the string is aperiodic.  This 

means there is no linear function capable of predicting when a point will occur, 

making it impossible to use simple strategies like detecting recurring patterns in 

order to predict all the points in the sequences (Schmid, 2023). Interestingly, 

however, different types of points can be potentially predicted through the 

formation of abstract recursive hierarchical representations. For the features 

discussed in detail in Section 4.1., Fib strings provide an optimal testing pool for 

sequential statistical learning and the formation of recursive hierarchical abstract 

representations. Importantly, moreover, they also offer the opportunity to 

                                                       
13 0 rewrites as 1; 1 rewrites as 01. 

14 An instance of Fib string: 0110110101101101011010110110101101. 
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disentangle these two mechanisms and check their possible interaction (cf. Section 

4.4).  

In light of the results from these interesting studies (Dehaene et al., 2015; 

Planton et al, 2021; Radulescu et al. 2019; Schmid et al., 2023; Vender et al., 2023) 

our goal will be to explore further the cognitive mechanisms underlying the 

processing of recursive structures arising from temporally ordered stimuli. 

Specifically, our investigation will pay particular attention to the mechanisms 

involved in sequential statistical learning and the associated formation of chunks, 

their categorization, and finally, the representation of recursive hierarchical 

structures. Crucially, we will seek to clarify their potential interactions. But that is 

not all. We also aim to investigate potential differences across various sensory 

domains, delving into the intricate relationship between these cognitive 

mechanisms and the realm of perception, seeking a comprehensive understanding 

of their interplay. As we have seen in section 2.2., the abilities to process sequential 

and static hierarchical structures rely on different neural circuits, as confirmed by 

Fitch and Martins (2014). Regarding the relationship between these types of 

cognitive mechanisms and perceptual reality in which we are immersed, we can 

observe that static hierarchical structures are primarily present in the visual domain. 

For example, when we see an image, our visual system organizes the static 

information in a hierarchical fashion, enabling us to perceive the entire image, 

which is composed of numerous hierarchically organized pixels, contributing to our 

comprehensive perception of the visual scene. “The eye is the only organ that gives 

simultaneous information concerning space in any detail.” (Lashley, 1951, p.128). 

Certainly, we cannot do the same in the auditory sphere since auditory stimuli 

require a temporal dimension for their unfolding. Hierarchical structures arising 

from sequential stimuli, on the other hand, are predominantly auditory or motoric, 

think of music, language, and complex motor actions. However, this type of 

structure can also regard the visual dimension. Consider, for example, the 

processing of a video. This certainly involves the representation of hierarchical 

structures from sequential stimuli in the visual sphere. Hence, unlike what occurs 

with static hierarchical structures, hierarchical structures arising from sequential 

stimuli can be conveyed through both the visual and auditory sensory domains. 
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Starting from this observation, the question arises spontaneously: What could be 

the case of recursive hierarchical structures arising from sequentially ordered 

stimuli? First of all, would we find evidence of learning and processing of these 

structures in different sensory domains (i.e. auditory, visual, and tactile domains)? 

Or are these structures domain-specific since linked to the cognitive domain of 

language and musical key tone processing (cf. Section 2.1.2.)? On the contrary, if 

we would find evidence of learning and processing these structures in different 

sensory domains, would we find differences between the visual and auditory 

sensory domains in processing this type of structures? Could it be that hearing has 

an advantage over sight at processing recursive hierarchical structures arising from 

sequential, temporally fading stimuli, given that hearing is the specialized domain 

for processing this type of structure, since we find these structures both in the syntax 

of language and the key change modulation in music? Vision might be stronger in 

processing recursive hierarchical structures arising from static, spatially distributed 

stimuli than the sequential counterpart. What can we say about touch, then? “The 

shape of an object impressed on the skin can scarcely be detected from simultaneous 

pressure, but the same shape can readily be distinguished by touch when traced on 

the skin with a moving point or when explored by tactile scanning. The temporal 

sequence is readily translated into a spatial concept.” (Lashley, 1951, p.128). As 

observed by Lahsley (1951), touch would thus appear to be more suitable for 

processing hierarchical structures arising from sequential (i.e. temporally ordered) 

stimuli compared to static (i.e. spatially distributed) ones.  

 

2.3. Establishing experimental foundations for empirical investigation of 

the ability to form recursive hierarchical abstract representation 

 

In the second part of this chapter, we will explore the methodologies for 

studying the formation of recursive hierarchical abstract representations from 

sequential fading input. We will begin with the concept of implicit learning, 

focusing on how structured information is implicitly acquired from the 

environment. Then, we will provide an overview of the main paradigms available 

for this investigation. 
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2.3.1. Implicit Learning 

In everyday life, we accomplish tasks and fulfill actions spontaneously, without 

effort, and unaware of the procedure and the subcomponents underlying them. 

Driving the car, riding the bike, practicing our favorite sport, playing an instrument, 

or, even more accessible, walking, …speaking! All these actions have been 

internalized so that we do not need to think about them during their repetitions. 

When driving our car, it is highly improbable that we think about every little 

movement to run it properly. We do not need to stay focused on the action. We could 

go through with it and at the same time listen to the radio, sing, or have a 

conversation with our passengers. Likewise, when having a conversation, we do not 

think about sentence constructions, verbs - nouns agreements, inversions… We 

convey ideas and thoughts naturally and spontaneously, with no effort. This is a 

different process from, for example, learning poetry, the musical scale, the list of 

European capitals, recalling the names of the wind roses, or the First World War 

event sequence. Some people would probably say to be better at the first kind of 

these tasks; on the contrary, others could feel stronger in the second type. These two 

types of actions are different. Firstly, they are acquired in different manners, and, 

interestingly, their learning process relies on (at least in part) different neural 

correlates in the brain. The first set of actions falls under the term implicit 

knowledge, whereas the second is representative of what is called explicit 

knowledge. Over the past 40 years, precisely with the publication of Ullman’s 

Declarative/Procedural Model Theory, also known as the DP Model (Ullman et al., 

1977), the term implicit learning has often been used interchangeably 

with procedural learning; on the opposite, explicit learning has become equivalent 

to declarative learning. Simplifying, we could say that we build up skills through 

implicit learning and end up (implicitly) knowing how to perform them. On the 

other hand, during the explicit learning process, we gain knowledge, and, to go on 

with the parallelism, we could say it is more like knowing that (Goldberg, 2014). To 

recapitulate, we have said that unawareness, unintentionality, and the inability to 

express the content verbally, are typical peculiarities of both the implicit learning 

process and the phase in which we use this knowledge to perform tasks. We end up 
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knowing more than what we can tell (Nisbett, Wilson, 1977). As we will see, the 

investigation of the capacity to implicitly acquire structured information from the 

environment has a long tradition. More recently, it has been exposed to a renewal 

of interest that has flourished in several studies. One of the reasons why the 

investigation of implicit learning is still an actual and live research field may be that 

even after decades of inquiry and the critical findings achieved by scholars during 

these years, it remains an open problem to precisely understand how implicit 

learning works. It is still beyond our knowledge which are the precise cognitive 

mechanisms that underly it. The recent renewed interest in the topic has indeed been 

reawakened after the development of Ullman’s Declarative/Procedural Model 

theory, which highlighted the importance of the procedural memory system in the 

acquisition of rule-based information and its fundamental role in the implicit 

acquisition of grammar in language as well as other sensorimotor and cognitive 

skills. More precise insight into the cognitive mechanisms and correlates 

underpinning implicit learning might bring numerous benefits in various research 

fields, among which linguistics. Indeed, it is widely believed that this cognitive 

ability is fundamental for the acquisition and processing of language. Notably, a 

better understanding of the mechanisms underlying implicit learning could be 

beneficial not only to shed light on the mechanisms that stand at the base of 

language acquisition and processing but also for a more precise insight into some 

of the possible causes at the base of developmental disorders, such as specific 

language impairments. A deeper understanding of implicit learning mechanisms 

constitutes a fascinating challenge, and the goal is not trivial at all.  

2.3.1.1. Same objectives, different research traditions:  Realigning Implicit 

Learning and Statistical Learning  

In the literature investigating the ability to implicitly acquire structured information 

from the input, we found many rifts. Too often, we came across bifurcations and 

divisions between different lines of investigations and between scholars. Over the 

years, several researchers have reached impressive results, adding new pieces to the 

complex research puzzle on language acquisition. However, the divisions we find 

in the literature have also produced a negative effect. We often see different lines 
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of research that, despite investigating very closely related issues, have never 

communicated with each other. Fifteen years ago, scholars started to notice a 

significant problem in the literature: the presence of two wholly separated lines of 

research, which use different terms and occupy different spaces but investigate the 

very same phenomena, although from different perspectives: Statistical 

Learning (SL) and Implicit Learning (IL). "Recent evolution of research on both 

IL, initially aimed at studying rule abstraction in complex situations, and SL, 

initially focused on word segmentation, suggests that the two lines of research 

explore the same domain-general incidental learning processes" (Perruchet and 

Pacton, 2006, p.237). Starting from these observations, Perruchet and Pacton (2006) 

first suggested that Implicit Learning and Statistical Learning are two approaches 

to virtually the same phenomenon, and, in the same year, Conway and Christiansen 

proposed to recombine them under the term Implicit Statistical 

Learning (Christiansen, 2019). This fact highlights the importance of the issue: in 

2019, some scholars dedicated a Special Issue to this topic15. "The aim of the special 

issue is to facilitate the development of a shared understanding of research 

questions and methodologies, to provide a platform for discussing similarities and 

differences between the two strands, and to encourage the formulation of joint 

research agendas. We then introduce the new contributions solicited for this special 

issue and provide our perspective on the agenda setting that results from combining 

these two approaches". With these words, the two editors opened the Special Issue 

(Rebuschat, Monaghan, 2019). One of the points on which all the scholars 

participating in the Special Issue agreed upon was the urgency of realigning the two 

approaches: only by developing a joint research agenda, integrating the two 

perspectives of investigation, and taking into consideration what has been 

discovered over the years by both IL and SL, the research on Implicit Statistical 

Learning will be prolific, and it could lead to a better understanding of the complex 

mechanisms that stand at the foundation of human language. 

                                                       
15 Topics in Cognitive Science (2019) Vol.11 Issue 3. https://doi.org/10.1111/tops.12438. 
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Where do Statistical Learning and Implicit Learning have their roots? 

Which are the divergences and the commonalities between these two fields of 

research? It is a common idea that Statistical Learning has a much younger tradition 

than Implicit Learning. On one side, the term Implicit Learning was introduced by 

Arthur Reber, who carried out Artificial Grammar Learning (AGL) experiments 

(Reber, 1967; 1969). On the other side, the Statistical Learning stream of research 

began in the 1980s, but the most influential and well-known experiment was the 

one conducted by Saffran and colleagues in 1996, which provided new evidence 

for babies' extraordinary abilities to deal with statistical information in the linguistic 

input. However, it is interesting to notice, as Christiansen pointed out, that the two 

traditions can be traced back to previous research, having a longer pedigree 

(Christiansen, 2019). Indeed, the precursor of Statistical Learning and Implicit 

Learning has been Erwin Allen Esper, in 1925, who carried out the first Artificial 

Grammar Learning experiment, intending to investigate the role of statistic 

information in forming grammatical categories. Esper was a real pioneer in the 

field. However, most of his work has gone unnoticed during those years; probably, 

this was partly due to the fact that Esper was a behaviorist (Christiansen, 2019). 

Later, in 1957, George Miller started to investigate rules formation in his project 

Grammarama, working within the Formal Language Theory (FLT) (Christiansen, 

2019). Subsequently, it happened that the literature split into two separate branches: 

on one side, Implicit Learning continued to investigate the role of implicitness and 

memory in this kind of learning process by using mainly the AGL paradigm 

introduced by Reber, but also other paradigms such as the Probability Learning 

task, and the Serial Reaction Time task. On the other, Statistical Learning focused 

more on investigating the ability to uncover the structure of the input by exploiting 

its distributional properties. Most of these works deployed artificial languages. 

Within the Statistical Learning approach, exciting experiments have been 

conducted with babies, and this constitutes an element of novelty with respect to 

previous research, which had mainly investigated adults' abilities.  

Despite their common origins and the similarities of their research agenda, 

the two approaches show some differences in the way they tackle the issue. Firstly, 

in their investigation, IL and SL focus on two slightly different computational 
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capacities: on one side, the Implicit Learning literature investigates the ability to 

select chunks, mainly focusing on rule abstraction and basic learning and memory 

processes. On the other side, Statistical Learning research focuses on the capacity 

to exploit transitional probabilities to determine chunk boundaries (Arnon, 2019; 

Christiansen, 2019; Perruchet, 2019; Perruchet, Pacton, 2006; Rebuschat, 

Monaghan, 2019). Statistical Learning has always been more focused on 

investigating the ability to track statistical information in the input. As we have seen 

in Chapter 1, at the level of syntax, SL has investigated phenomena such as the 

frequency of syntactic structures, transitional probabilities between words for the 

segmentation of phrases, dependencies for phrase boundary identification, 

distributional cues for the formation of syntactic categories, and transitional 

probabilities between adjacent and nonadjacent dependencies, among the others. 

Scholars belonging to the Implicit Learning stream investigate chunk-based 

learning, whereas scholars investigating Statistical Learning study probabilistic 

learning (Christiansen, 2019). In addition to this, we can notice a slight divergence 

in their research focus: while Implicit Learning focused more on what mechanisms 

are involved in the learning process, Statistical Learning focused on the kind of 

structure that can be learned (Christiansen, 2019). Secondly, from the point of view 

of syntax acquisition, the two streams of research have traditionally used different 

tools, and their research focused on slightly different aspects. The Implicit Learning 

paradigm has mainly employed the Artificial Grammar Learning paradigm (AGL), 

testing the learnability of formal grammars; hence its paradigm was strictly 

interconnected with the Formal Language Theory (FLT). Numerous experiments in 

IL have also combined the AGL paradigm with the Serial Reaction Time Task 

(SRT). On the other hand, experiments in SL have mainly been conducted by 

creating sets of artificial sentences, which were constructed in such a way to provide 

an optimal research environment for the investigation of a specific, circumscribed 

phenomenon. However, especially in the more recent years, several scholars 

belonging to the SL research field have started to use tools and methodologies 

employed initially by IL research (Perruchet, Pacton, 2006). Specifically, some 

experiments have been carried out using the AGL paradigm (cf. Saffran and 
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Wilson, 2003) or the Serial Reaction Time task (cf. Hunt, 2002; Hunt and Aslin, 

2001). 

However, as we said, besides the divergences, it is essential to note that 

these two approaches share several commonalities and that, in the end, they 

investigate the very same phenomena, despite analyzing them from different angles. 

Nevertheless, the two approaches never conflated into a unique line of research 

(Christiansen, 2019). In support of the fact that the two lines of research remained 

largely separated over the years, we can observe that Statistical Learning and 

Implicit Learning studies have always been presented at different international 

conferences and published in different journals16. 

To summarize, we have seen that in psycholinguistics research, besides the 

Statistical Learning approach, we find another stream of research that focused on 

the investigation of humans' abilities to extract information from complex stimuli 

in the environment implicitly: Implicit Learning. We have seen that these two 

investigations lines have always remained largely separated, despite studying 

closely related issues. Many scholars point out that this bifurcation in the literature 

constitutes a severe problem for science to progress. The problem might be solved 

by developing a joint research agenda between the two strands of SL and IL. As 

explained above, when trying to bring together SL and IL, we came across a 

significant divergence: the Implicit Learning line of research mainly focused on the 

formation of chunks, whereas Statistical Learning primarily investigated the 

computation of statistical information. However, as Perruchet and Pacton (2006) 

suggested, the divergence is not entirely insurmountable, and two solutions can be 

advanced: the first is that statistical computation and chunk formation might be seen 

                                                       
16 "Research on Implicit Learning […] tended to fall within the purview of cognitive psychology, 

appearing in journals such as Journal of Experimental Psychology: Learning, Memory and 

Cognition, Journal of Experimental Psychology: General, and Quarterly Journal of Experimental 

Psychology" (Christiansen, 2019, p.470). As opposed, studies within the field of statistical learning 

have been published in journals such as Cognitive Psychology, Journal of Memory and Language, 

and Cognition (Christiansen, 2019). 
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as two subsequent steps during the language acquisition process. Specifically, 

statistical computations might lead to the formation of chunks. In other words, 

according to this theory, chunk formation is based on preliminary statistical 

analyses. "Typically, chunk boundaries are defined as the points where the 

predictability of successive or spatially contiguous elements is the lowest" 

(Perruchet and Pacton, 2006, p.235). Next to this possibility, a different solution 

might be the following: "[…] chunking is a primitive process the result of which 

amounts to simulating statistical computations" (Perruchet and Pacton, 2006, 

p.235). In other words, "[…] the formation of chunks is the only effective process, 

with the sensitivity to statistical structure being a by-product of this process" 

(Perruchet and Pacton, 2006, p.235). As the authors explain, this last theory is 

observable in two computational models: the Competitive Chunking model 

(Servan-Schreiber and Anderson, 1990) and PARSER (Perruchet and Vinter, 

1998). "In PARSER, for instance, the chunks are formed from the outset on a 

random basis, as a natural consequence of the capacity-limited attentional 

processing of the incoming information. These chunks are then forgotten or 

strengthened according to the laws governing associative memory" (Perruchet and 

Pacton, 2006, p.235). 

In conclusion, future research should consider and explore these hypotheses 

further to bring together IL and SL research. The unification of these two lines of 

investigation will pave the way for novel research questions, which might lead us 

to a better understanding of the complex mechanisms that stand at the foundation 

of human language. Indeed, several exciting issues still await an explanation, and 

numerous research possibilities would arise from creating a joined research agenda 

between Implicit Learning and Statistical Learning. In the present work, we aim to 

consider and bring together the results and methodologies provided by different 

research approaches to investigate the ability to implicitly acquire recursive 

embedded structures in different sensory modalities. 

 In the next section, we will focus on the AGL paradigm, and the different 

type of tasks traditionally used within this research paradigm. Specifically, we will 
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dwell on the Serial Reaction Time task, which constitutes the methodology that we 

will exploit for our investigation, as can be seen in Chapter 5. 

 

2.3.2. Artificial Grammar Learning (AGL) 

 
Artificial Grammar Learning (AGL) is a commonly utilized paradigm in cognitive 

science. It has found widespread application in cognitive psychological research, 

primarily for assessing implicit learning and the acquisition of structural 

regularities. Furthermore, AGL has played a crucial role in psycholinguistic studies, 

offering a means to investigate the underlying mechanisms involved in human 

language acquisition and processing. The primary objective of AGL studies is to 

explore whether exposure to strings generated according to specific grammatical 

rules results in the implicit acquisition of those grammatical structures. Typically, 

in an AGL study, the symbols of the strings generated by the grammar are encoded 

onto stimuli that are presented to participants. The choice of the type of stimuli can 

vary, with some studies using tones, colors, geometric shapes, or letters. However, 

as noted by Pothos (2007), most studies tend to use letter strings. As anticipated in 

the previous section, experiments employing the AGL paradigm have been 

conducted since the 1920s in Esper’s work. In the late 1950s, George A. Miller 

(1967) also employed this approach, generating short strings using a simple 

artificial grammar to examine the learning process associated with rule-based 

strings in contrast to randomly generated ones. However, the modern incarnation of 

the AGL paradigm was first introduced in 1967, when the American cognitive 

psychologist Arthur S. Reber utilized AGL to investigate implicit learning. Over the 

last few decades, numerous researchers have embraced and applied this 

methodology extensively. 

The utilization of the Artificial Grammar Learning (AGL) paradigm in 

linguistic studies offers a multitude of advantages, as elucidated by Phillips (2017) 

and Compostella (2019). Firstly, AGL studies transcend the confines of human 

language, making it a versatile tool for investigating pattern learning abilities, even 
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in non-human animals17. Another significant advantage lies in its applicability for 

examining the behavior of non-verbal populations, such as individuals with non-

verbal autism, as well as infants who are yet to attain full linguistic competence18. 

Moreover, AGL studies prove well-suited for research involving speakers of diverse 

languages, obviating the need to design distinct protocols for each linguistic group. 

This uniformity in methodology facilitates cross-linguistic investigations. 

Furthermore, the use of an artificial grammar within AGL experiments enables the 

generation of strings that have not been previously encountered by the subjects 

under scrutiny. This eliminates potential interferences arising from semantics or 

pragmatics, fostering a controlled and rigorous research environment.  

Various paradigms can be used in AGL research. The selection of a 

particular task over another is closely tied to the research's objectives. Indeed, each 

paradigm comes with its own set of strengths and weaknesses, making it more or 

less appropriate depending on the research's goals. Researchers can modify a 

paradigm in several ways to address different research questions. The two most 

widely used tasks are the Forced Choice paradigm and the Serial Reaction Time 

task.  

In the Forced Choice paradigm, an experiment unfolds in two stages: initially, 

participants encounter a series of strings generated according to the rules of an 

artificial grammar (training phase). They are instructed to pay attention to these 

                                                       
17 One noteworthy study worth mentioning is "A Framework for the Comparative Study of 

Language" conducted by Uriagereka, Reggia, and Wilkinson in 2013. In this study, the researchers 

delved into the intriguing question of whether animals possess the capacity to identify complete 

recursion, a distinctive feature of context-free grammar. Their objective was to ascertain whether 

the ability to recognize full recursion is exclusive to human language or if it also exists within non-

human animals. 

18 Among the other, we find "Artificial grammar learning by 1-year-olds leads to specific and 

abstract knowledge," conducted by Gomez and Gerken in 1999. In this research, infants were 

exposed to artificial grammar sequences. The researchers assessed whether infants displayed 

sensitivity to the underlying patterns using the method known as head-turn preference procedure. 

Another relevant study is "Statistical Learning by 8-Month-Old Infants," conducted by Saffran, 

Aslin, and Newport in 1996. In this study, infants were exposed to artificial grammar sequences. 

Results showed that infants succeeded in segmenting words by applying statistical learning 

strategies. 
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strings and try to notice whether there are patterns or regularities in them. This 

exposure period is long enough to facilitate memorization. Subsequently (test 

phase), participants are presented with additional strings, previously unseen. Their 

task is to classify these strings as either grammatical or ungrammatical, based on 

what they have encountered in the training phase. Indeed, some of these test strings 

are generated using the same rules as the training phase (grammatical strings), while 

others are generated randomly (ungrammatical). During their choices, participants 

rely on a sense of whether the string "feels right" or "does not feel right." 

Experiments can slightly differ in their test phase. In some cases, participants are 

presented with two strings at a time and are asked to choose which one is 

grammatical or which one they prefer (dual forced choice paradigm). In other cases, 

instead, strings are presented one by one, and participants have to say whether the 

string is grammatical (single forced choice paradigm). One limitation of this 

paradigm, as pointed out by Phillips (2017) and Compostella (2019), is that 

determining whether a string is grammatical or not requires conscious thought. 

Indeed, participants need to recall and apply in the test phase the structures learned 

in the training phase. Thus, in the test phase, participants need to make their 

knowledge of the grammar explicit or consciously accessible for evaluation and 

classification of the strings. Additionally, even in the training phase, participants are 

aware that there may be regularities or patterns in the stimuli to which they are 

exposed, since they are specifically instructed to pay attention to that. This might 

lead to potential difficulties in assessing whether the eventual learning has an 

implicit nature. Determining whether knowledge is conscious, or unconscious is not 

always straightforward, and it can pose a significant challenge. Importantly, 

however, different possibilities are available to check whether participants have 

developed conscious strategies during the task. Dienes et al. (1995), investigated 

the extent to which participants in forced-choice AGL experiments were conscious 

of their acquired knowledge, considering two criteria: (1) whether participants had 

metaknowledge of the knowledge they have acquired, and (2) whether participants 

had intentional control over the knowledge they have acquired. Regarding the first 

criterion, they found that participants lacked metaknowledge of their knowledge. 

As observed in other experiments, when asked whether they had discovered a rule 
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or could explain the type of rule, participants were unable to provide satisfactory 

answers. In many cases, they reported making choices based on sensations or 

guessing, despite performing above chance levels on the task. Concerning the 

second criterion, they discovered that participants exercised conscious control in 

judgments and decisions. However, these findings should be interpreted critically, 

as the criteria for defining "consciousness" itself are not entirely clear (Compostella, 

2019; Dienes et al. 1995). In conclusion, Dienes et al. (1995) underscored the 

importance of selecting appropriate criteria for investigating consciousness. They 

noted that different criteria, such as those related to metaknowledge and intentional 

control, can yield varying results in studies. This variability arises because these 

criteria reveal different aspects of knowledge and its application. Since different 

criteria of consciousness provide different insights due to their focus on distinct 

facets of knowledge, it is crucial to thoughtfully choose criteria that align with the 

specific research goals (Dienes et al. 1995). 

The Serial Reaction Time task (SRT), introduced by Nissen and Bullemer (1987), 

is a widely adopted approach for investigating Implicit Statistical Learning (ISL) 

within the AGL paradigm. With this task, it is possible to tackle the capacity to 

subconsciously discern patterns and rules that are present in strings. More precisely, 

in this experimental framework, participants encounter sequences of stimuli that 

adhere to specific underlying rules, in other words, they are generated according to 

the rules of a specific artificial grammar. Being unaware of the presence of 

underlying rules, participants are instructed to respond to stimuli as swiftly and 

precisely as possible by pressing designated keys in response to the stimuli. If 

learning occurs, it is expected to find a reduction in reaction times (RTs) and/or an 

improvement in accuracy rates as the task unfolds. The Serial Reaction Times 

paradigm presents several advantages in contrast to the forced choice paradigm 

(Compostella, 2019; Phillips 2017).  In addition to the previously mentioned aspect, 

wherein participants remain unaware of the presence of an underlying grammar, 

there is a reduced likelihood of participants making arbitrary decisions, a scenario 

more plausible when evaluating whether a string adheres to a grammar in the forced 

choice paradigm. Phillips (2017) highlights that distinguishing between a 

participant randomly pressing buttons during a serial reaction time task and one 
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making random choices in a forced choice task is more straightforward. A 

participant displaying a high error rate coupled with low reaction times could signal 

a tendency toward random choices. In the forced choice paradigm, instead, there 

are no discernible cues to detect random selections. A high error rate in this context 

could be attributed to either random choices or a lack of implicit learning. However, 

despite the advantages just mentioned, it is important to remember that even during 

the SRT task, phenomena might take place that can interfere with the performance 

of RTs and accuracy, making it more complex to interpret the results in terms of 

effective implicit learning. For example, RTs might also decrease because of a 

habituation effect to the task. Conversely, they might increase because of a fatigue 

effect due to the prolonged duration of the task, perhaps accompanied by a lowering 

of accuracy. It is important to remember that RTs and accuracy rates observed in an 

SRT task may not solely indicate implicit learning; they may also be influenced by 

other factors (Compostella et al., under review). 

 

2.3.3. Formal Language Theory and the Chomsky hierarchy 

 

Formal language theory (FLT) is a field of study which was initiated by 

Noam Chomsky in the 1950s, with the goal of systematically studying the 

computational basis of human language. His framework has been very successful 

and over the years has come to play a key role not only in linguistics but also in 

other disciplines. In fact, to date, FLT still plays a major role in linguistics theories 

while also representing the basis of the theoretical foundations in computer science. 

Moreover, FLT has found application in neuroscience and cognitive science, and, 

more recently, also in biology (Fitch & Friederici, 2012; Jäger & Rogers, 2012). 

FLT describes the mathematical and computational properties of several classes of 

languages. In this framework, a language is understood as a set of expressions, 

which consist of finite strings of symbols. Strings are produced by the application 

of a set of rules, i.e., a grammar, over a finite set of symbols, i.e., an alphabet 

(Hopcroft & Ullman, 1969). More specifically, following Jäger & Rogers (2012), 

four elements must be specified in order to define a grammar (G): (i) a finite set of 

non-terminal symbols (NT); they are the symbols on which the rules of the grammar 
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are applied; (ii) a finite set of terminal symbols (); they appear in the strings of the 

language and are the result of the application of the rules of the grammar on the 

non-terminal symbols; (iii) a specific non-terminal symbol that is called a start 

symbol (S); (iv) a finite set of rules (R). Given two elements  and , belonging to 

 and/or NT, rules have the following form:  →  (i.e.,  can be replaced by ). 

Specifically, a grammar G is said to generate a string  if and only if it is possible 

to start from S and produce  through a finite set of rule applications. The set of 

sequences produced to go from S to  is called the derivation of . The set of all 

strings that can be generated by G is called language of G and is written as L(G) 

(Jäger & Rogers, 2012). As it was originally formulated (Chomsky, 1956), the 

Chomsky hierarchy proposes four nested levels of grammars ordered by their 

complexity. At every level correspond a specific automaton, which can generate the 

strings of their relative languages. Automata are abstract representations of 

computational system (Fitch & Friederici, 2012).  Automata can recognize certain 

strings taken as input and reject others, depending on their computational power.  

Starting from the higher level, where there are the most powerful grammar and 

automata, to the lower level, where we find the least powerful ones, at the higher 

stage of the hierarchy we find Type 0 languages, also called recursively enumerable 

languages. They are generated by the unrestricted grammar and the corresponding 

automaton is the Turing Machine. Immediately below (Type 1) are context-sensitive 

languages, generated by context-sensitive grammar (CSG), and the corresponding 

automaton is the linear bounded automaton. After that, we find context-free 

languages (Type 2) generated by context-free grammar (CFG), and the 

corresponding automaton is the pushdown automaton (PDA). Finally, we find (Type 

3) regular languages, generated by regular grammar (also called finite-state 

grammar, FSG), and the corresponding finite-state automaton (FSA)19. Every class 

in the Chomsky hierarchy can be effectively generated by the class above it, which 

means that Type-0 grammars encompass all grammars from Type-3 to Type-1 as 

well.  

                                                       
19 For a more detailed analysis, we refer to Chomsky (1956); Fitch & Friederici (2012); Hopcroft, 

Ullman (1969); Jäger & Rogers (2012).  
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Type 3 languages are too weak to describe human language. Indeed, regular 

languages are suitable for basic matching tasks, such as finding specific words in 

text. However, they cannot capture multiple long-distance dependencies and 

recursive structures, which are on the other hand present in natural languages 

(Chomsky 1956; 1957). Finite-state automata can recognize only simple, long-

distance dependency (e.g., ab*a) (Fitch & Friederici, 2012). At the opposite 

extreme, also recursively enumerable languages are inadequate for describing 

human language. Turing machines, as compared to finite-state automata, have a 

storage tape of unbounded length and thus an unlimited memory (Fitch & 

Friederici, 2012). They are extremely powerful and can describe a wide range of 

computational processes, but at the same time they are too flexible and unrestricted 

for modelling human language. As a matter of fact, they can generate both valid and 

invalid sentences. Moreover, their over flexibility may lead to ambiguity and lack 

of predictability in the sentence structure. Last but not least, they cannot model the 

hierarchical and compositional structure of human language, since they do not 

impose structured constraints.  

Hence, where do natural language and thus human computational powers 

fall within the Chomsky hierarchy? The prevailing consensus among researchers in 

this field is that human languages necessitate "mildly context-sensitive" grammars 

(MSCGs). Indeed, human language exhibits at least context-free complexity but 

does not exceed context-sensitive complexity. Empirical evidence shows that some 

languages display limited crossing dependencies, which surpass the weak 

generative power of context-free grammars (CFGs) but do not necessitate the full 

capabilities of context-sensitive grammars (CSGs). Specifically, crossing 

dependencies have been observed in Dutch (Figure 4) and Swiss German 

(Huybregts, 1976; 1984; Shieber, 1985). Hence, human language would require 

grammars possessing a level of computational power that extends just beyond what 

can be captured by context-free grammars (CFGs) (Fitch, Friederici, 2012). 

Prompted by the recognition that context-free grammars (CFGs) were insufficient 

to capture the full range of syntactic phenomena observed in natural languages, 

particularly those involving crossing dependencies, scholars in the mid-1980s 

started to propose the earlier mildly context-sensitive (MCS) grammar formalisms. 
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One of the pioneering formalisms to emerge during this period was the Tree 

Adjoining Grammar (TAG), introduced by Joshi (1985). Another influential 

formalism developed around the same time was the Combinatory Categorial 

Grammar (CCG), proposed by Steedman (1985). 

Context-free grammars (CFG) are commonly used for modelling human 

languages due to their balance of expressiveness and practicality. A fundamental 

difference between pushdown automaton (PDA) and finite-state automaton (FSA) 

lies in the fact that the latter have more memory than the former. Memory is defined 

as the number of symbols the automaton can rely on when determining the next 

symbol. In FSA, transitions between states are determined only by the current state 

and the input symbol. They operate in a sequential manner, processing input 

symbols one at a time. On the contrary, pushdown automata (PDA) have more 

memory, because they have got a pushdown stack that allows them to temporarily 

store and retrieve symbols. Indeed, a PDA can interact with the stack by popping 

and pushing symbols onto the stack as it reads the input. Hence, in a PDA, every 

transition is determined by the current state, the input symbol it reads, and the 

symbol it pops from the stack. The additional memory of the PDA enables it to 

recognize context-free languages, which have nested and hierarchical structures. 

Importantly, however, the stack follows a last-in, first-out (LIFO) principle. This 

means that it can push symbols onto the stack and pop symbols off the stack, but it 

cannot directly modify symbols that are already on the stack. The transitions in a 

PDA are primarily determined by the current state, the input symbol, and the symbol 

at the top of the stack. PDA are adept at recognizing languages described by 

context-free grammars (CFGs), which have greater expressive power compared to 

finite-state grammars (FSGs). In CFGs, non-terminal symbols can appear on both 

sides of a rule, allowing for the generation of nested recursive structures. This 

feature makes them suitable for representing various syntactic structures present in 

natural languages, such as nested dependencies (Figure 3). However, also CFGs do 

have limitations. Indeed, they struggle to capture certain intricate aspects of natural 

language syntax, such as cross-serial dependencies (Figure 4) and some long-

distance dependencies, while also movement and sentence transformation (e.g., 

from active to passive) present a level of complexity that is beyond what CFGs can 
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effectively handle (Fitch, Friederici, 2012). These more complex structures can, on 

the contrary, be generated by context-sensitive grammars (CSGs) and be recognized 

by linear bounded automata (LBA). The peculiarity of the LBA is that they have a 

tape on which they can move left or right. Moreover, during each transition, they 

can both read and write symbols on the tape. In a nutshell, the key distinction 

between PDA and LBA is that the latter can overwrite symbols on the tape, which 

means they can change the contents of the tape as they process the input. This ability 

to both read and write symbols on the tape, modifying the symbols on the tape in 

response to the current state and the input symbol as well as move the tape head in 

both directions, allows LBAs to recognize complex context-dependent rules and 

non-local dependencies typical of context-sensitive languages.  

 

 

 

Figure 3. Example of nested dependency in English. Taken from Jäger & Rogers (2012), p. 

1960. 

 

 

 

Figure 4. Example of cross-serial dependencies in Swiss German. Taken from Jäger & 

Rogers (2012), p. 1960. 
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Figure 5. The Chomsky hierarchy with languages, grammars, and automata. Taken from 

Fitch, Friederici, 2012).  
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2.3.4. Formal complexity vs. cognitive complexity  

 

In this section, a special focus will be laid on the concept of complexity, 

analyzing and confronting on one side computational complexity in formal 

grammars and automata and, on the other, computational complexity in the human 

brain. Several studies seem to suggest that it is important not to be misled by taking 

for granted a one-to-one correspondence between formal complexity as represented 

in the Chomsky hierarchy and cognitive complexity. Indeed, results of recent 

studies suggest that the position of grammar in the Chomsky hierarchy is not the 

only factor to consider when determining the complexity of processing by the 

human brain. (Chesi, Moro, 2014). Other factors might affect cognitive processing 

and first empirical pieces of evidence seem to confirm that cognitive and formal 

complexity are not two sides of the same coin (Bach et al., 1986; Christiansen, 

Chater, 1999; Christiansen, MacDonald, 2009; de Vries, Christiansen, Petersson, 

2011; Fitch, Friederici, 2012; Öttl et al., 2015; Uddén et al., 2012).  

Evidence suggesting that there is not a direct match between complexity as 

outlined in the Chomsky hierarchy and cognitive complexity stems from at least 

two sources. As we mentioned in the previous section, each level within the 

Chomsky hierarchy has the capability to generate the grammars of the lower levels. 

In other words, Type-0 grammars not only encompass Type-1 and Type-2 grammars 

but also include Type-3 grammars. The same is true for the respective automata. A 

Turing machine can accept both context-sensitive languages, context-free 

languages, and regular languages. On the opposite, grammars and automata that are 

at lower levels cannot generate and recognize those at higher levels. For example, 

a push-down automaton cannot recognize context-sensitive languages. As we have 

already explained, human language faculty are often found in the literature to 

correspond to “mildly context-sensitive" grammars. Crucially, however, the fact 

that we possess mildly context-sensitive capacities does not mean that our cognitive 

system is able to process all the languages that in the Chomsky hierarchy are 

generated at lower levels than the mildly context-sensitive grammars. In the same 

vein, each of these abstract categories of automata, even the less powerful class of 
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finite state automata (FSAs), includes a multitude of automata that surpass the 

capabilities of any human being (Fitch, Friederici, 2012). Hence, stating that human 

languages require grammatical structures with at least the capabilities of context-

free grammars does not necessarily imply that the human brain can encompass 

every conceivable context-free or finite-state grammar. For example, a phone book 

represents a finite list, which can be easily encapsulated by a simple finite-state 

automaton (FSA), with an assigned state for each name-number pair. Significantly, 

though, a phone book can be quite extensive. Take, for instance, the telephone 

directory of a large city such as Manhattan. Although the Manhattan phone book is 

a (long) finite list that can be captured by a simple finite state automaton (FSA), 

with one state for each name/number combination, this list is far too vast for any 

human to manage. (Fitch, Friederici, 2012). “Whatever class of computational 

systems natural language entails, it will always be some subset of the categories of 

automata described in FLT” (Fitch, Friederici, 2012, p. 1938). The second source 

of evidence that cognitive complexity does not reflect formal complexity as 

outlined in the Chomsky hierarchy comes from some interesting psycholinguistic 

studies in which learning of nested dependencies with that of cross-serial 

dependencies has been tested and compared. Nested dependencies are structures 

that can be generated by context-free grammars and recognized by push-down 

automata, whereas cross-serial dependencies by context-sensitive grammars and 

linear-bounded automata, respectively. Being context-sensitive grammars at a 

higher level in the Chomsky hierarchy than context-free grammars, cross-serial 

dependencies are therefore formally more complex than nested dependencies. The 

question is thus the following: are cross-serial dependencies perceived as more 

complex and therefore processed with more difficulty than nested dependencies by 

the human cognitive system? In the literature, it has been hypothesized that for both 

humans and animals, languages that are higher up in the Chomsky hierarchy are 

more complex to process than those at lower levels (Fitch, Hauser, 2004; Friederici 

et al., 2006). However, in reality, the correspondence between formal complexity 

and empirically testable cognitive complexity is far from obvious. Rather, it is at 

best suggestive (Öttl et al., 2015). To our knowledge, the first study that has 

addressed this issue is that of Bach and colleagues (Bach et al., 1986). They 
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examined and confronted, by means of acceptability judgments and accuracy in 

paraphrase comprehension, subjects’ performance on nested and cross-serial 

dependencies. Specifically, they tested linguistic performances on Dutch cross-

serial dependencies of the type in a, and German center-embedded (nested) 

constructions, of the type in b, with the same number of dependency levels.  

 

a. Jeanine heeft de mannen Hans de paarden helpen leren voeren. 

Joanna has the men Hans the horses helped teach feed.  

ENG: Joanna helped the men teach Hans to feed the horses. 

b. Johanna hat die Manner Hans die Pferde futtern lehren helfen. 

Joanna has the men Hans the horses feed teach helped.  

ENG: Joanna helped the men teach Hans to feed the horses.’ 

 

What they found was that natural language sentence of the type in a with cross-

serial dependencies were perceived as easier than sentences with structures of the 

type in b, with center-embedded dependencies. Thus, this result goes in the opposite 

direction from what was assumed by proponents of a parallelism between formal 

complexity and cognitive complexity. Bach and colleagues, however, did not 

formulate any hypothesis about what might have been the cause of their result: why 

did subjects perceive structures with nested center-embedded dependencies as more 

complex than those with cross-serial dependencies? Based on their findings, Bach 

et al. (1986) challenged the effectiveness of stack-based parsing algorithms; 

however, they did not propose a theory of linguistic complexity to account for the 

differences in complexity. Some years later, Joshi (1990) offered theory which 

showed that taking into account derivational generative power along with weak and 

strong generative power can be crucial for understanding why certain structures 

may not align with expected cognitive processing difficulties (Joshi, 1990). Weak 

generative power refers to the types of strings a grammar can generate, while strong 

generative power pertains to the types of structural descriptions a grammar can 

generate. Derivational generative power, on the other hand, concerns the 

complexity of the derivation process (i.e., the steps or rules needed to generate a 

structure). In his paper, Joshi (1990) investigates why crossed dependencies in 
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languages like Dutch are processed with less cognitive difficulty compared to 

nested dependencies in languages like German. He introduces the concept of the 

Embedded Push-Down Automaton (EPDA) to model these dependencies more 

effectively than the traditional Push-Down Automaton (PDA). The EPDA, aligned 

with the Tree Adjoining Grammar (TAG) framework, can handle both crossed and 

nested dependencies by allowing partial interpretations during the parsing process. 

This model helps explain why crossed dependencies involve fewer intermediate 

steps in their derivational process: once an element and its dependent are processed, 

they can be directly linked without needing to revisit previously processed 

elements. In contrast, nested dependencies require the parser to manage multiple 

levels of embedding, increasing the number of intermediate steps as elements are 

pushed and popped from the stack more frequently. Therefore, by considering 

derivational generative power, researchers can gain a more nuanced understanding 

of the relationship between syntactic complexity and cognitive processing. This 

approach helps explain why certain structures that are more complex in terms of 

formal grammar may not necessarily be more difficult for the human brain to 

process, and vice versa.  An important study that builds on this direction and goes 

further by offering a cognitive theory that directly explains the computational 

differences observed by Bach et al. (1986), considering factors such as cognitive 

memory costs and more biologically tuned parameters, was proposed by Edward 

Gibson. In his paper Linguistic complexity: locality of syntactic dependencies, 

Gibson (1998) presents an original theory on the relationship between the 

mechanisms of sentence processing and available computational cognitive 

resources. The Syntactic Prediction Locality Theory (SPLT) comprises two key 

elements: an integration cost component and a component related to the memory 

cost incurred when keeping track of necessary syntactic elements. Memory cost can 

be measured in terms of the number of syntactic categories required for the input 

string to result in a grammatical sentence. Crucially, both memory costs and 

integration costs are significantly influenced by locality. Specifically: “(1) the 

longer a predicted category must be kept in memory before the prediction is 

satisfied, the greater is the cost for maintaining that prediction; and (2) the greater 

the distance between an incoming word and the most local head or dependent to 



 135 

which it attaches, the greater the integration cost” (Gibson, 1998, p.1). Gibson's 

theory provided explanations for numerous phenomena that had previously lacked 

adequate understanding or explanation. Among the other, the theory showed that 

processing nested center-embedded dependencies would require higher memory 

load than processing cross-serial dependencies, and this would account for the 

result indicating that the former are cognitively more demanding than the latter. 

Indeed, “[…] the categories that are predicted first are associated with the most 

memory cost, so satisfying these first results in lower complexity for cross-serial 

dependencies than for nested dependencies” (Gibson, 1998, p.50).  

It is important to highlight that Bach et al.'s (1986) results have been 

replicated and confirmed by numerous subsequent studies. Other interesting results 

that go in the same direction as those trumped by Bach and colleagues are those of 

Christiansen and Chater (1999), who tested both humans and artificial neural 

networks on nested and cross-serial dependencies, with three levels of dependency. 

Chesi and Moro (2014) also contended that formal complexity, as outlined in the 

Chomsky hierarchy, does not seamlessly translate into an indicator of cognitive 

complexity. They proposed that factors unrelated to a grammar's position in the 

hierarchy play a role in influencing the cognitive processing costs. With this regard, 

they proposed a definition and quantification of complexity based on two factors: 

time and space. Specifically, time complexity (i.e., hierarchy), is defined as the 

quantity of computational states traversed; in other words, it refers to the level of 

structural embedding. Space complexity (i.e., locality), instead, refers to the 

quantity of items stored and retrieved, in other words, it refers to the intervening 

elements within a filler-gap dependency that have to be stored in memory. 

Interestingly, they observed that these two factors can be differentiated not just in 

terms of computation but that the difference held also at the neurological level. 

Indeed, they reported that specific brain regions engaged in hierarchical syntactic 

processing and the formation of non-local dependencies exhibit increased activity 

as hierarchical depth increases, such as in the embedding of relative clauses. This 

heightened activity also occurs when dependencies necessitate additional working 

memory, as for long dependencies in which several constituents intervene in the 

structure between filler and gap. Further confirmation of the fact that formal 
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complexity as represented in the Chomsky hierarchy and cognitive complexity are 

not directly linked has been provided also by other recent AGL studies (de Vries et 

al., 2011; Öttl et al., 2015; Uddén at al., 2012). Uddén et al. (2012) repeatedly 

exposed participants over a period of nine days to strings of letters featuring cross-

serial or nested dependencies. Results showed that participants successfully learned 

both type of structures. Importantly, however, consistent with Bach et al. (1986), 

they found a processing advantage towards cross-serial over nested dependencies. 

As Öttl et al. (2015) pointed out, however, a possible limitation of Uddén and 

colleagues’ study lies in the fact that strings were visually presented, being thus the 

temporal sequential dimension absent, which is nevertheless an important feature 

in natural languages processing. Moreover, the set of stimuli they employed was 

rather limited (Öttl et al., 2015). De Vries et al. (2011) further investigated the issue 

by adopting a more natural experimental setting by testing participants in a SRT 

task in which they were exposed to sequences of auditory stimuli. Results 

confirmed those found by Uddén at al. (2012): subjects displayed better 

performances in processing cross-serial dependencies than nested dependencies. 

However, as Öttl et al., (2015) pointed out, although they created a more naturalistic 

setting than the one used by Uddén and colleagues, the set of stimuli they used was 

quite small. Taking these limitations into consideration, Öttl et al., (2015) wanted 

to investigate deeper in the issue, by increasing the size of stimuli and thus creating 

a more naturalistic setting. As in de Vries et al. (2011), they presented subjects with 

sequences of auditory stimuli. Results in this case did not support a processing 

advantage for the cross-serial dependencies over the nested dependencies: after 

only one hour of exposition to stimuli, participants learned both the two types of 

dependencies. Despite not having found any specific advantage, Öttl and 

colleagues’ result confirmed the hypothesis according to which cognitive 

complexity does not reflect formal complexity. Indeed, participants did not display 

greater cognitive difficulty when processing cross-serial dependencies compared to 

nested dependencies, as we should expect in case there was a one-to-one 

correspondence between formal complexity, as defined in the Chomsky hierarchy, 

and cognitive complexity. In conclusion, as we have seen in this section, 

considering derivational generative power alongside weak and strong generative 
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power can clarify why certain syntactic structures do not always align with 

anticipated cognitive processing difficulties (Joshi, 1990). Importantly, 

incorporating biological aspects of computation, such as cognitive memory 

limitations and constraints, offers further insight into these discrepancies (Gibson, 

1998). This approach underscores that formal complexity intended as weak and 

strong generative power alone does not fully capture cognitive processing 

challenges. 

 

 

 

2.3.5. AGL with grammars belonging to the Chomsky hierarchy 

 

In cognitive science and psycholinguistics, FLT has been extensively used to 

investigate the ability to implicitly acquire and process structures containing 

patterns and regularities, both in humans and animals. Indeed, numerous AGL 

studies have investigated the ability to process strings generated by grammars 

belonging to the Chomsky hierarchy.  Most AGL studies have focused on 

investigating the learnability of two types of grammars: finite-state grammars and 

context-free grammars (Fitch, Friederici, 2012). Finite-state grammars have been 

employed already in the pioneering work of Reber (1967), which to this day remains 

one of the most cited and famous works that used finite-state grammar. He 

demonstrated that adult subjects succeeded in learning the regularities of this 

grammar, without being previously informed of the presence of underlying rules. 

Reber’s work played a foundational role in the study of implicit learning and the 

investigation of cognitive processes involved in language acquisition and pattern 

recognition. Numerous works since Reber's have continued to investigate the 

learnability of finite-state grammars, testing different populations, such as children, 

adults, but also animals, and transmitting strings by means of different sensory 

stimuli (Christiansen, Conway, 2005; Gomez, Gerken, 1999; Saffran, Wilson, 2003, 

among the others). These works were primarily focused on testing statistical 

learning abilities. Indeed, as we saw in Chapter 1, statistical learning is a 
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fundamental cognitive skill that plays a crucial role in various cognitive activities, 

including but not limited to language acquisition.  

 

 

 

 

 

 

 

 

Figure 6. The finite-state grammar used in Reber (1967). Picture taken from Reber, 1967, 

p.856.20 

 

On the other hand, more recently, several studies in the domain of artificial grammar 

learning (AGL) have begun to utilize context-free languages to investigate the 

supra-regular hypothesis (Fitch, Friederici, 2012). Indeed, as we have seen in this 

chapter, finite-state grammars have proven insufficient for capturing many 

syntactical phenomena found in human natural languages, and it is thus widely 

believed that humans possess mildly context-sensitive computational capacities. 

Among different context-free languages, the primary focus of most studies has been 

on AnBn. In the next section, we will review some studies which have employed this 

language. Moreover, we will address the frequent misinterpretations of results 

related to AnBn stringsets, which have led to significant confusion in the literature, 

causing several problems. 

 

 

 

 

                                                       
20 Instances of grammatical strings are: VXVS, TPPTS, VXXVPS, …  

Instances of ungrammatical strings are: TPTPS, VXPS, … 
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2.3.5.1. Testing the learnability of the AnBn language 

 

To our knowledge, the first study which tested the learnability of the AnBn language 

is Fitch & Hauser (2004). In this study, the two scholars tested and compared the 

acquisition of two different languages in two species. Specifically, they exposed a 

group of college undergraduates and a group of cotton-top tamarins to auditory 

consonant-vowels syllables featuring the regularities of two artificial languages: the 

regular language (AB)n and the context-free language AnBn. Results were 

interesting: the group of students succeeded in learning the regularities of both two 

languages, while the cotton top tamarins group learned the regular language (AB)n 

without instead showing any signs of learning with respect to AnBn. From this result, 

Fitch & Hauser (2004) concluded that, being tamarins unable to process and learn 

the supra-regular language AnBn, this should count as evidence supporting the 

supra-regular distinctiveness hypothesis (Fitch, Friederici, Hagoort, 2012) and 

concluded that tamarins are thus unable to process simple phrase structures (Fitch 

& Hauser, 2004; Fitch, Friederici, 2012). While Fitch & Hauser (2004) intended 

phrase structure grammar as supra-regular grammar, some scholars, on the other 

hand, mistakenly made an association between phrase structure grammar as 

reported in Fitch & Hauser (2004), and recursive grammar, thus erroneously 

inferring that Fitch & Hauser's study carried evidence about the (in)ability to 

process and acquire recursive structures (Fitch, Friederici, 2012). This was a 

regrettable misinterpretation, as Fitch & Hauser’s paper neither made any 

conclusions about nor mentioned recursion. Their explicit focus was on the supra-

regular computational ability, which does not have association with recursion 

(Fitch, Friederici, 2012). “Fitch and Hauser […] report that tamarin monkeys are 

not capable of recursion. Although the monkeys learned a nonrecursive grammar, 

they failed to learn a grammar that is recursive. Humans readily learn both. The 

lack of recursion in tamarins may help to explain why animals did not evolve 

recursive language, but it leaves open the question of why they did not evolve 

nonrecursive language.” (Premack, 2004, p. 318). Also Corballis (2007) 

misinterprets Fitch & Hauser’s result, mistakenly interpreting it as evidence of 

recursive processing abilities. “Fitch and Hauser found that tamarins had little 
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difficulty distinguishing the FSG sequences, but could not master the CFG 

sequences, where n was either 2 or 3. They concluded that tamarins were therefore 

unable to process recursive sequences.” (Corballis, 2007, p.699). At top of that, in 

the literature we also find studies that having the specific goal of testing recursion 

have tested the learnability of AnBn, without creating an experimental design able 

to disentangle recursion from different parsing strategies. Gentner et al., (2006) 

carried out a study entitled Recursive syntactic pattern leaning by songbirds, in 

which they tested the learnability of AnBn in a group of starlings. “Here we show 

that European starlings (Sturnus vulgaris) accurately recognize acoustic patterns 

defined by a recursive, self-embedding, context-free grammar. They are also able 

to classify new patterns defined by the grammar and reliably exclude agrammatical 

patterns. Thus, the capacity to classify sequences from recursive, centre-embedded 

grammars is not uniquely human.” (Gentner et al., 2006, p.1). In general, the 

misinterpretation has become so widespread that we even find in the literature the 

statement that “The AnBn language […] is generally assumed to be recursive 

because new sentences can be formed by successive insertion into the frame AXB, 

for example AB, AABB, AAABBB and so on” (Marcus, 2006, p.1117).  

 In this subsection we will explain (i) why mastery of AnBn cannot be taken 

as evidence for recursion and (ii) what can we infer from mastery of AnBn. 

In the language AnBn, the number of instances of A matches precisely with the 

number of occurrences of B. Examples of strings belonging to this language include 

A1A2A3B1B2B3; A1A2A3A4A5B1B2B3B4B5; 

A1A2A3A4A5A6A7A8B1B2B3B4B5B6B7B8; …  

The first important point to consider is this: for every finite subset of strings of the 

type AnBn, there is a finite-state automaton (FSA) that can recognize these strings. 

Even if the underlying pattern suggests a context-free language, FSAs are capable 

of handling any finite set of strings (Chomsky, 1959; Langendoen, 1975). This 

means that simply recognizing a finite set of strings of the language AnBn does not 

prove that the system has supra-regular computational power. Chomsky (1959) 

showed that for finite sets of AnBn, the complexity of the language can be 

approximated by a regular grammar. This approximation works because the set of 

strings is finite, and FSAs are perfectly capable of handling finite sets. In other 



 141 

words, if the recognition of AnBn is limited to finite samples, an FSA could also 

perform this task. Hence, the true test of supra-regular computational power 

requires demonstrating the ability to generalize beyond finite examples (i.e., for all 

n). Interestingly, however, even in cases where the ability to generalize beyond 

finite examples is attested, we cannot be sure that this was achieved using a 

recursive procedure. Different strategies are available to fully process the language 

AnBn, recognizing and thus generalizing to non-finite sets of strings. All of these 

strategies require computational abilities beyond finite-state automata, but only 

some of them involve a recursive strategy. It remains to be shown which of the 

various supra-regular strategies subjects exploit in learning the grammar. 

Specifically, there are as many as three different cognitive strategies (Corballis, 

2007; Fitch & Friederici, 2012; O’Donnell et al., 2005). We can see these three 

strategies in Figure 7. Following Fitch and Friederici (2012), the most 

straightforward approach is (a): the 'tally-and-evaluate' method. This method 

ascertains the quantities of 'a's and 'b's within the string and approves it only if their 

counts match. This approach requires supra-regular computational abilities and 

produces a single hierarchical level (Figure 7a). An alternative possible strategy (b) 

produces a 'nested' or 'center-embedded' arrangement. This strategy can be carried 

out by a pushdown automaton because it associates each 'b' with the most recently 

encountered 'a' (Figure 7b). The third approach (c) involves the formation of crossed 

dependencies, and it cannot be executed using a single pushdown stack (Figure 7c) 

(Fitch & Friederici, 2012, p. 1941). Consequently, this necessitates a grammar 

beyond the capabilities of context-free grammars. However, contrary to the 

assertion by Fitch and Friederici (2012), it is not accurate to say that such structures 

require at least a context-sensitive grammar. A Tree Adjoining Grammar (TAG) can 

precisely handle these dependencies between two sets of elements without being as 

powerful as a context-sensitive grammar (CSG). 
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Figure 7. The three possible strategies to recognize the AnBn language, as explained in Fitch 

and Friederici, 2012. Taken from Fitch, Friederici, 2012, p.1941. 

 

In conclusion, if a system successfully recognizes the strings of AnBn by exploiting 

one of the three strategies presented above (a, b, or c), we can say that the system 

has supra-regular computational power. It follows that the system possesses an 

auxiliary working memory compared to that of a finite-state automaton, and this 

could be in the form of a counter tape or a pushdown stack. Importantly, this tells 

us nothing about whether it applies a recursive procedure or not. In other words, to 

fully recognize AnBn, which means applying the rules to an indefinite number of 

novel sequences and showing robust performance across a wide variety of new and 

increasingly complex sequences, different strategies are available. All of them 

require the automata to have computational abilities beyond finite-state, but this 

does not guarantee the use of a recursive strategy. Indeed, using a recursive strategy 

is only one of the possibilities (Fitch & Friederici, 2012). Specifically, the only 

approach that requires a recursive strategy is (b). Hence, it has to be shown which 

of the various supra-regular strategies the parser exploits in mastering.  

To more effectively and precisely study the ability of recursion, the first step 

would be to create an experimental design that establishes agreement dependencies 
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featuring embedded recursion between the As and Bs. One reason several studies, 

including those by Fitch and Hauser (2004) and Gentner et al. (2006), have not 

demonstrate that participants used a recursive ability when recognizing strings of 

AnBn language is that these studies did not incorporate an experimental design with 

agreement dependencies between the As and Bs (Ferrigno et al. 2020). This lack of 

dependency meant the experiments did not strongly test for recursion. As Ferrigno 

and colleagues (2020) explain, in a sentence like “The mouse[A1] the cat[A2] 

chased[B2] ran[B1],” each “A” phrase (such as “The mouse[A1]” and “the 

cat[A2]”) needs to be correctly paired with a corresponding “B” phrase (like 

“chased[B2]” and “ran[B1]”). Because such dependencies are absent in AnBn 

strings, participants might have used non-recursive strategies to judge 

grammaticality or differentiate stimuli that followed the rule from those that did 

not. Crucially, Perruchet and Rey (2005) as well as de Vries et al. (2008) have 

investigated the hypothesis that participants exposed to AnBn language may use 

strategies other than recursion. These studies included critical test trials necessary 

for demonstrating recursion. In these trials, participants were presented with 

violations of the AnBn language due to the dependency structure (e.g., 

A1A2A3A4B3B4B1B2) rather than the number or order of As and Bs. Using 

methods similar to those of Fitch and Hauser (2004), these studies found that 

humans did not identify these trials as grammar violations, suggesting that they 

were likely using alternative strategies such as tracking A-B switches or counting 

(Ferrigno et al. 2020). A recent interesting study by Ferrigno and colleagues (2020) 

tested recursion abilities using the AnBn language by creating an experimental 

design that effectively tested recursion abilities, disentangling it from other possible 

computational strategies, by inserting agreement dependencies between the As and 

Bs. Ferrigno et al. (2020) employed a cross-population design that included a 

nonlinguistic sequence generation task. This task aimed to see if participants could 

generalize item groupings exploiting a center-embedded, recursive strategy. The 

study comprised four groups of participants: children, U.S. adults, adults from a 

Bolivian indigenous group lacking reading skills and formal mathematics abilities, 

and monkeys. All human participants intuitively created recursive structures from 

ambiguous training data, whereas monkeys required extra training to reach 
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comparable outcomes. These results suggest that the capability to employ recursive 

hierarchical strategies is an inherent aspect of human cognition, emerging early in 

development and present across various cultures. Although this skill is not unique 

to humans, indicating that nonhuman animals can also produce and recognize new 

sequences with recursive, hierarchical, and center-embedded structures, monkeys 

did not initially apply abstract hierarchical organization. However, with additional 

exposure, two out of three monkeys eventually learned to generalize and construct 

new center-embedded sequences. 

In the next section, we will focus on a crucial aspect to consider in the 

empirical study of the ability to deal with recursion: the distinction between 

algorithmic properties and representational abilities. 

 

2.3.6. Understanding the empirical aspects of recursion: Algorithmic properties 

and representational abilities 

 

In the first part of this chapter, we addressed a longstanding problem in the field of 

linguistics: the absence of a definitive and unequivocal definition of recursion. We 

clarified the concept of recursion and discussed its role in the processing and 

acquisition of human language syntax. In this section, we turn our attention to 

another issue frequently encountered in the literature, one of paramount 

significance for empirical investigations into this phenomenon. 

One of the primary challenges in empirically studying the ability to handle recursive 

embedding lies in distinguishing between algorithmic properties and 

representational abilities (Martins, 2012; Lobina, 2011). Traditional definitions of 

recursion have sometimes focused on algorithmic characteristics, while at other 

times, they emphasized which structures could be categorized as recursive (Martins, 

2012). However, as Martins (2012) aptly notes, while definitions that emphasize 

the procedural (i.e., algorithmic) aspect can serve as an initial step in delineating 

the phenomena under investigation, they may not provide the most suitable 

framework for empirical research. “In spite of the pervasiveness of structures that 

can be modelled using recursive algorithms or rule sets, not all of them will be 

represented as such. This means that the amount of recursion in a structure will only 
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be relevant for an observer to the extent that he can decode it meaningfully. […] not 

all activities that can be synthesized with recursive processes are perceived as 

structurally meaningful by the observers. Hence, the ability to produce recursive 

structures and the ability to decode them do not necessarily come together […]” 

(Martins, 2012, p. 2057). In other words, a definition centered on algorithms does 

not guarantee that the cognitive process of representing and processing recursion 

aligns with it (Lobina, 2011; Martins, 2012). Furthermore, understanding how a 

computation is implemented, especially within the intricate realm of the human 

brain, often remains elusive to external observers until meaningful behavioral 

correlations emerge (Martins, 2012). Therefore, verifying whether a structure 

generated by a recursive algorithm is indeed represented recursively by human 

cognition presents an exceedingly complex challenge. Given our inability to peer 

inside this cognitive "black box," it follows that definitions primarily focused on 

algorithmic properties may not offer the most relevant framework for empirical 

research. While focusing on structures and outputs generated by recursive 

algorithms is a commendable starting point, it may not suffice. To gain insights into 

how human cognition represents recursive structures in behavioral experimental 

tasks, it is more prudent to focus on the distinctive signatures of recursion (Martins, 

2012). For this reason, Martins (2012) suggests that “[…] the key empirical test for 

recursion is the ability to represent dependency relationships that were not 

previously defined, or to represent information within hierarchical levels not 

previously ‘available’. What this ability presupposes is the knowledge (or 

expectation) that all nodes within a hierarchy can behave similarly and can display 

the same properties relatively to the way they interact with the nodes ‘above’ and 

‘below’.” (Martins, 2012, p. 2058). 

Hence, in conclusion, Martins (2012) proposes that a definition centered on 

representational abilities, such as the capacity to represent self-similarity across 

hierarchical levels, offers a more promising approach for investigating the cognitive 

ability to deal with recursive hierarchical structure. With this perspective, the focus 

shifts from mere process-oriented descriptions to the ability to represent different 

hierarchical dependencies within the same set of rules. Subjects capable of such 

representation demonstrate the potential to generalize and generate new levels of 
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embedding beyond what is specified a priori, whether in the algorithm or in the 

input. Hence, the presence of distinctive behavioral signatures becomes paramount, 

as they serve as indicators of the cognitive processes at play. 

 

2.4. Conclusion 

 

This chapter began by exploring the concept of recursion, a central idea in 

Chomsky’s theory of linguistics. Despite its significance, recursion was not clearly 

and universally defined for many years. Interest in recursion surged with the 

publication of the influential paper "The Faculty of Language: What is it, Who has 

it, and How did it Evolve?" by Hauser, Chomsky, and Fitch in 2002. This paper 

hypothesized that recursion might be the central and unique feature of the human 

language faculty, distinguishing between the faculty of language in the broad sense 

(FLB) and the narrow sense (FLN). The FLB includes various components like 

sensory-motor and conceptual-intentional systems, while the FLN, they proposed, 

is solely comprised of recursion and is unique to humans. Despite the impact of 

Hauser et al.'s work, their paper did not offer a precise definition of recursion, often 

linking it to the concept of discrete infinity. This has led to a proliferation of varied 

and sometimes conflicting definitions in subsequent research, causing considerable 

terminological confusion. In the chapter we aimed to providing a clear definition of 

recursion. We started by observing that recursion is eminently a formal notion. 

Indeed, the concept is used not only in linguistics but also in computer science. 

Hence, we clarified the definition of recursion in computer science, distinguishing 

it from iteration. We have seen that in computer science, a recursive algorithm 

solves a problem by calling itself with a smaller instance of the same problem, 

whereas an iterative algorithm uses loops to repeat a set of instructions until a 

condition is met. Although any problem solvable by a recursive algorithm can also 

be addressed with an iterative algorithm, there are significant distinctions regarding 

clarity, conciseness, and memory utilization. Recursive algorithms often mirror the 

problem's structure more closely, but they can be less efficient in terms of memory 

usage due to the stack space consumed by recursive calls. After that, we provided a 

clear definition of recursion in cognitive science and linguistics. Recursion is 
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intended as the embedding of elements within elements of the same type. The 

chapter made a clear distinction between iteration without embedding, iteration 

with embedding, and recursion. Iteration without embedding involves discrete steps 

that are independent of each other, while iteration with embedding can generate 

hierarchical structures by creating dependencies among constituents. Recursive 

embedding allows for the construction of new hierarchical levels without additional 

rules. Specifically, we also distinguished between different types of recursion: tail 

recursion and nested recursion. Importantly, we tailed back to linguistics 

phenomena each of these different concepts, providing linguistic example for the 

different types of recursion, as well as for the different types of iteration (with and 

without embedding).  In summary, the first part of the chapter provided a 

comprehensive overview of recursion, defining it clearly in both computer science 

and linguistics, and distinguishing it from iteration. We are convinced that the first 

fundamental step in proceeding to the investigation of the cognitive ability to form 

recursive hierarchical abstract representations is to be clear in mind what are the 

defining characteristics of a structure as such. This comprehensive overview of the 

concept of recursion allowed us to draw the following conclusions: Firstly, 

recursion is not exclusively tied to the concept of discrete infinity. While a recursive 

embedding algorithm can generate an unlimited number of sentences from a finite 

set of elements, other algorithms, like iteration (with or without embedding), can 

achieve the same. For instance, a sentence can be extended with no upper bound to 

its length by iterating a finite set of nouns. Secondly, not all hierarchical structures 

in human syntax are recursive. Hierarchy does not imply recursiveness. Recursive 

embedding is just one of the many structural phenomena in human syntax. Thirdly, 

the presence of long-distance dependencies does not necessarily indicate recursion. 

Only nested recursion produces sentences with long-distance dependencies, while 

tail recursion does not. Non-recursive algorithms, like iterative embedding, can also 

create long-distance dependencies. Lastly, there is a significant distinction between 

how recursive algorithms are treated in computer science versus natural language. 

In computer science, recursive algorithms can be transformed into iterative 

versions. That is, problems solved using recursive algorithms can be solved also 

using iterative algorithms. However, this parallelism does not translate well into 
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natural language (Parker, 2006). Indeed, in natural language, semantics provides 

the necessary information to build structure, which would not be apparent otherwise 

from the strings of sentences. Hence, in language, processing which require 

recursion cannot be correctly solved my means of iteration. The strict ordering 

required in recursion, absent in iteration, helps distinguish these forms in natural 

language. An iterative processing solution of sentence structures does not capture 

their complex meanings. Semantics provide the necessary information to identify 

the correct structure, which cannot be determined solely from the string. It follows 

that a linguistic system without semantics would not need recursion; if there is no 

meaning to convey, iteration would suffice for the syntax of the communication 

system (Parker, 2006). 

After this clarification of the concept of recursion, we have critically 

examined the hypothesis by Hauser, Chomsky, and Fitch (2002) that recursion is a 

unique feature of human language, not found in other cognitive domains or non-

human species. We explored various perspectives on this hypothesis, revealing a 

complex and nuanced understanding of recursion's role in human cognition. Firstly, 

the hypothesis posits that recursion is a defining and universal trait of human 

language, distinguishing it from other cognitive processes and non-human 

communication systems. However, our investigation has uncovered several 

challenges to this view. While recursion is a foundational aspect of linguistic theory, 

its presence and significance in everyday language usage may not be as pervasive 

as initially claimed. Evidence suggests that deeply nested recursive structures are 

rare in both spoken and written language. Authors like Karlsson (2010) and 

Verhagen (2010) argue that recursion might be less central to everyday linguistic 

practice than Hauser et al. (2002) proposed. Moreover, the possibility that 

languages exist without recursion, as illustrated by the Pirahã language, challenges 

the idea that recursion is essential for all linguistic systems. This language uses 

alternative methods to convey complex ideas without relying on recursive 

structures. Similarly, Kinsella (2010) argues that recursion is not the sole feature 

that defines human language. Other linguistic features, such as structure-

dependence and duality of patterning, also contribute to the uniqueness of human 

language and operate independently of recursion. In addition to linguistic 
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considerations, we examined the role of recursion in non-linguistic cognitive 

domains. Recursion appears in various cognitive processes such as numerical 

reasoning, navigation, and music. However, the extent to which recursion is 

necessary or optional in these domains remains debated. For instance, in navigation, 

recursive strategies could be beneficial but are not the only possible approaches. In 

other cognitive domains, however, there are clear instances of necessary non-

linguistic recursion, such as in music (Bach's embedded key changes), visual 

perception, social cognition, and theory of mind (Parker, 2006). Overall, our 

exploration suggests that while recursion is at play in human language, it is not 

necessarily unique to it. The presence of recursion in other cognitive domains and 

its optional nature in some contexts imply that recursion might have evolved from 

broader cognitive capacities rather than being a language-specific trait. 

After having clarified the concept of recursion, we offered a comprehensive 

exploration of the intricate relationship between linear order, hierarchy, and their 

interplay in human language. We began by delving into the historical debate within 

linguistic theory, specifically focusing on Kayne's work, which challenged the 

prevailing assumption and argued for a rigid connection between hierarchical 

structure and linear order, emphasizing the crucial role of linear order in syntax. 

Our discussion expanded to the broader cognitive implications of this debate, 

emphasizing the necessity of considering the linear, temporal dimension for a better 

understanding of the mechanisms at the core of human language. Combining the 

insights on the significance of sequentiality in language with our exploration of the 

role of recursion in human language, a fundamental claim emerged: the ability we 

want to investigate, which play a role in language as well in music, is the ability to 

process recursive hierarchical structures from sequential (i.e. temporally ordered) 

sequences of stimuli. Subsequently, we introduced Dehaene and colleagues' (2015) 

taxonomy, offering a framework to understand the diverse cognitive representations 

at play during the processing of sequential stimuli, with increasing complexity and 

abstraction. Moreover, we reviewed some studies which have investigated the 

cognitive mechanisms driving the processing of sequential sequences of stimuli, 

moving from low-level statistical computations to the formation of abstract 

structured representations.  
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The second part of the chapter started with an introduction into implicit 

learning and its distinction from explicit knowledge. As we have seen, implicit 

learning enables us to master various skills effortlessly, without conscious thought. 

We discussed the cognitive mechanisms underlying this process and their 

importance in fields such as language acquisition. The chapter also explored the 

division between Statistical Learning (SL) and Implicit Learning (IL) research, 

despite their commonalities. We emphasized the need for a shared research agenda 

to bridge this gap. After that, we have introduced the Artificial Grammar Learning 

(AGL) paradigm, a critical paradigm in cognitive science and psycholinguistics. 

AGL is used to assess implicit statistical learning and the acquisition of structural 

regularities. It offers a versatile approach for investigating pattern learning in 

various populations and languages. Specifically, we have covered two primary AGL 

paradigms: the Forced Choice paradigm and the Serial Reaction Time task, 

highlighting the advantages and challenges of both. Subsequently, we have 

explored Formal Language Theory (FLT) and the Chomsky hierarchy, a framework 

often used to investigate the computational foundations of human language. We 

have seen that regular languages are too simplistic for capturing human language 

intricacies, while recursively enumerable languages are overly flexible. The 

consensus is indeed that human languages fall within "mildly context-sensitive" 

grammars, just beyond context-free grammars. Then, we have explored the 

relationship between formal complexity, as defined in the Chomsky hierarchy, and 

cognitive complexity, shedding light on important distinctions. While it is 

commonly assumed that a direct match exists between the Chomsky hierarchy's 

formal complexity and cognitive complexity, recent studies challenge this notion. 

The evidence strongly suggests that cognitive processing capabilities are influenced 

by factors beyond formal grammatical hierarchy, challenging our assumptions 

about how the human brain manages linguistic structures. After that, we delved into 

AGL studies investigating the learnability of grammars within the Chomsky 

hierarchy. As we have seen, many of them focused on finite-state and context-free 

grammars, investigating the learnability of languages such as AnBn. Crucially, 

however, we have observed that results from studies on the learnability of AnBn 

stringsets have caused confusion in the literature, with some mistakenly inferring 
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recursion from these findings. Indeed, learning AnBn does not conclusively 

demonstrate recursion. Various cognitive strategies are involved in mastering AnBn 

making it challenging to determine the specific cognitive mechanism applied. In 

this vein, we have instead considered recent studies that have investigated recursion 

using AnBn language, effectively disentangling it from other possible strategies 

(Ferrigno et al. 2020). 

Lastly, in the chapter we differentiate between algorithmic properties and 

representational abilities of recursion. Indeed, it is not enough that the language 

being tested was generated through a recursive process. It is important to keep in 

mind that participants might process and learn the language in question by adopting 

techniques that do not involve recursive mechanisms (Martins, 2012). Identifying 

that a structure underwent recursive processing is demanding and entails the need 

to eliminate potential iterative and hierarchical explanations (Shirley, 2014).  

In conclusion, we can say that despite the numerous studies attempting to 

test recursive structure learning in AGL, both in humans and animals, there is still 

a lack of sufficient studies providing clear and irrefutable empirical evidence of the 

ability (or inability) to process structures recursively. Aside from the problem 

outlined above regarding the widespread lack of precision in defining and 

circumscribing the object of study, another problem often encountered is that related 

to the paucity of suitable tools for the study of recursion in non-linguistic domains 

(Martins, 2012). We therefore feel it is time to abandon the overrated AnBn 

language: There are numerous opportunities to study recursion outside of 

Chomsky's hierarchy. It is indeed important to note that Chomsky hierarchy is not 

the sole source from which grammars can be drawn for testing in AGL paradigms. 

There remain numerous exciting opportunities to investigate recursion in the AGL 

field, by using different types of grammars and by adopting new empirical 

approaches (Fitch, Friederici, 2012). 

 

In Chapter 4, we will delve toward the heart of this thesis by presenting a 

grammar outside the Chomsky hierarchy that, for the reasons we will outline, 

presents interesting features for the exploration of recursive learning and 

processing: the Fibonacci grammar. This grammar will form the object of study in 
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Chapter 5, where we will test its learnability in three different sensory modalities: 

the auditory, the visual, and the tactile sensory domains. 

 

In the upcoming chapter, our investigation will extend to the dynamic 

connection between cognition and perception, emphasizing both domain-specific 

and domain-general aspects of learning. Specifically, we will center our attention 

on sequential implicit statistical learning and the ability to form recursive abstract 

representations across various sensory domains. As we have explained, our interest 

in the present thesis is to shed light on a particular type of recursive hierarchical 

structure, that is, recursive hierarchical structures arising from temporally ordered 

stimuli, a cognitive architecture where elements are utilized recursively across 

various hierarchical levels, leading to the formation of nested structures during the 

sequential parsing of information. Given that this type of structure can potentially 

be conveyed through visual, tactile, and auditory stimuli, as we will see in Chapter 

5, we aim to investigate the possibility of processing and learning this type of 

structure across different modalities, shedding light on their similarities and 

differences. Is the ability to form recursive hierarchical abstract representations 

from sequentially ordered stimuli a stimulus-independent or modality-based 

process? Does it consist of a unitary, single mechanism shared across sensory 

domains, or are there different modality-constrained mechanisms? The 

investigation of the ability to learn and process this type of structures has not been 

fully addressed and constitutes an intriguing challenge. Hence, it is a question of 

significant interest to verify whether and how learning is affected by different 

modalities and to observe potential differences or similarities across these three 

sensory domains. Taking into consideration that recursive hierarchical structures 

arising from temporally ordered, fading stimuli are peculiar architectures which are 

present both in language and music (cf. Section 2.1.2.; 2.2.1.), and considering that 

music and language are preferentially conveyed through the auditory perceptual 

domain, the question arises: Is the ability to form recursive hierarchical abstract 

representations arising from sequential stimuli a modality-based capacity? Are we 

better at learning and processing these structures in the auditory domain? Does the 

acoustic domain have an advantage over the visual and the tactile ones? Indeed, 
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from our observations, it could be possible that recursive hierarchical learning from 

sequentially presented, fading stimuli is more robust in the auditory domain, 

whereas recursive hierarchical learning from spatially arranged, static stimuli is 

more robust in the visual domain. The alternative view is that this ability is 

stimulus-independent, and through it, we can equally process recursive hierarchical 

structures arising from sequentially presented stimuli in the visual, auditory, and 

tactile domains. But even before considering potential differences or similarities 

across the three domains, will we find evidence that we are capable of learning and 

processing these structures in the tactile domain? To our knowledge, no study has 

ever investigated this issue, which remains entirely unexplored to date. In fact, 

despite finding some studies which have investigated the ability to implicitly learn 

and process recursive structures in the visual and auditory domains (Martins, 2012; 

Martins et al; 2014; 2015; 2017), the few studies found in the literature on tactile 

implicit learning have been limited to investigating low-level statistical regularities 

in the tactile domain (Abrahamse et al., 2008; 2009; Conway and Christiansen, 

2005; Pavlidou & Bogaerts, 2019). We will present an overview of these studies in 

the following chapter. 
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3. A Multisensory Voyage through Time and Space 

Dimensions with Hearing, Sight, and Touch 
 

 

 

3.1. Learning through time and space dimensions with hearing, sight, and 

touch 

 

In the previous chapter, we outlined our objective, which is to thoroughly 

investigate the mechanisms underlying the learning of recursive hierarchical 

structures arising from temporally ordered sequences of stimuli. We aim to 

investigate whether and how the mechanisms outlined in Dehaene et al.'s (2015) 

taxonomy, which categorizes various cognitive internal representations during the 

processing of temporally distributed stimuli, interact with each other. Specifically, 

among these mechanisms, we are interested in focusing on the learning of 

sequential statistical regularities and the formation of chunks, their categorization, 

and the representation of these chunks in recursive hierarchical structures. 

Additionally, we want to investigate whether the process of learning recursive 

hierarchical structures from sequential sequences of stimuli is possible in three 

different sensory domains: auditory, visual, and tactile, examining potential 

similarities or differences in the process. No study has comprehensively explored 

this topic so far. To begin, we will review studies that have investigated, in different 

sensory modalities, (i) implicit sequential statistical learning, a fundamental step in 

the process of hierarchical structure formation, as confirmed by Planton et al. 

(2021); Schmid et al. (2023) and Vender et al. (2023); (ii) the ability to learn 

recursive hierarchical structures. 

Throughout this chapter, we will first examine studies on sequential implicit 

statistical learning in visual, auditory, and tactile domains, with a focus on results 

and insights. We will address whether sequential implicit statistical learning is a 

domain-specific or domain-general ability and if any sensory domain prevails on 

the others. Second, we will review studies on learning recursive hierarchical 
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structures in visual and auditory domains. Notably, no study has explored this in the 

tactile domain. We will assess if existing studies suggest a domain-general ability 

or reveal domain-specific nuances in acquiring these structures across sensory 

modalities. 

 

3.1.1. Implicit statistical learning: Domain-general or domain-specific ability? 

 

As discussed in Chapter 1 and 2, numerous studies have delved into implicit 

detection and acquisition of statistical information, exploring this ability across 

different sensory modalities and domains. These investigations consistently 

highlight the adaptability and universality of this cognitive capacity. In essence, this 

ability transcends sensory boundaries and stimulus variations, playing a significant 

role in various cognitive mechanisms, including language (cf. Chapter 1). Indeed, 

implicit statistical learning ability (ISL) has been identified in various sensory 

modalities and domains (cf. Frost et al., 2015). Notably, research has demonstrated 

ISL in auditory nonlinguistic input (Creel et al., 2004; Saffran, 2002; Saffran et al., 

1999), visual input (Baker et al., 2004; Chun & Jiang, 1999; Edelman, Hiles, Yang, 

& Intrator, 2002; Fiser & Aslin, 2001; Kirkham et al. 2002), and tactile input 

(Conway, Christiansen, 2005; Abrahamse et al. 2008; 2009; Pavlidou & Bogaerts, 

2019). As Frost et al. (2015) explain, in the field of cognitive science, theories on 

implicit statistical learning have arisen as possible domain-general cognitive 

mechanisms challenging the prevailing domain-specific Chomskyan model of 

language acquisition. “Rather than assuming an innate, modular, and 

neurobiologically hardwired human capacity for processing linguistic information, 

SL, as a theoretical construct, was offered as a general mechanism for learning and 

processing any type of sensory input that unfolds across time and space.” (Frost et 

al. 2015, p. 2). Initially, the concept of domain generality was introduced to counter 

the notion of language modularity. “[…] its definition therefore implicitly implied 

“something that is not language specific”. Consequently, within this context, 

“domain” implies a range of stimuli that share physical and structural properties 

(e.g., spoken words, musical tones, tactile input), whereas “generality” is taken to 

be “something that does not operate along principles restricted to language 
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learning.” (Frost et al, 2015, p.2). Crucially, as Frost et al. (2015) emphasize, this 

approach outlines what domain generality excludes rather than explicitly providing 

a definition or delineating its characteristics. Recent perspectives on implicit 

statistical learning, however, attribute domain generality to a unified learning 

system that performs consistent computations across stimuli, different domains, but 

also various species (Frost et al. 2015). Karuza (2014) conducted three experimental 

studies using functional magnetic resonance imaging (fMRI) to explore the 

commonalities and potential differences in the mechanisms of statistical learning 

across various domains. The aim was to distinguish between two possibilities: (i) 

whether domain-specific perceptual cortices (such as auditory and occipital 

regions) perform similar computations during learning, or (ii) if perceptual cortices 

transmit input to domain-general regions, which then execute these computations 

irrespective of the stimulus modality. The first experiment consisted of a word 

segmentation task. The second experiment shifted the input modality and 

spatiotemporal properties, investigating simultaneously presented visuospatial 

patterns. The third experiment combined sequential auditory and visual modalities. 

Participants were assigned to one of two matched scenarios. In the auditory 

scenario, they undertook a word segmentation task akin to the one in the first 

experimental study. In the visual scenario, participants took part in the same test, 

but with each syllable replaced by a corresponding shape. Overall, the findings 

indicated that both auditory and visual statistical learning involve a domain-general 

network of regions capable of extracting novel structures, regardless of the input 

modality. The observed activation was not confined to modality-specific perceptual 

cortices; instead, it engaged the prefrontal cortex, caudate, putamen, and 

hippocampal/parahippocampal regions, depending on the experimental context. 

Notably, however, evidence of spatiotemporal structure effects emerged. 

Specifically, amygdala activation was only observed in the simultaneous visual task 

in study 2, suggesting the specialization of the amygdala for spatial structure 

acquisition. According to Karuza (2014), when the brain encounters structured 

stimuli, it promptly activates a broad network involving frontal, subcortical, and 

hippocampal regions. As time progresses, this network becomes narrower and more 

specialized, with the substrates most adept at handling the specific computations 
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needed for the task taking on the processing load. More precisely, she proposes that 

the prefrontal cortex and basal ganglia collaborate as a circuit ideally suited for 

maintaining and updating internal representations. On the opposite, medial 

temporal regions are deemed most effective for calculating the rapid associations 

between elements, a crucial process in the initial phases of a statistical learning task. 

Crucially, however, despite studies attesting that statistical learning is 

performed in a “domain-general neural region”, which execute computations 

irrespective of the stimulus modality, we find contrasting evidence that raises 

concerns about this. Indeed, despite its consistent manifestation across diverse 

sensory modalities, studies comparing this ability across different domains or with 

varied stimuli very often suggest the existence of modality-specific constraints as 

well. “The pattern of results across these different studies is intriguingly consistent: 

contrary to the most intuitive predictions of domain-generality, the evidence 

persistently shows patterns of modality specificity and sometimes even stimulus 

specificity.” (Frost et al. 2015, p. 3). As highlighted by Frost et al. (2015), studies 

consistently indicate limited or no transfer of learning across different modalities 

(Abrahamse et al. 2008; Redington, Chater, 1996; Tunney, Altmann, 1999). 

Furthermore, there is no indication of correlation across individuals in their ability 

to detect conditional probabilities across different modalities and stimuli 

(Siegelman & Frost, 2015). Interesting, moreover, research indicates that alterations 

in stimulus presentation parameters affect different modalities in distinct ways 

(Emberson et al., 2011). Two key indicators of domain-specificity, which we find 

particularly relevant for the purposes of this thesis, are: (i) the presence of domain-

specific spatiotemporal structure effects. Multiple studies suggest that the visual 

system excels in processing statistical information in spatially distributed input, 

while the auditory system demonstrates an advantage in sequential input 

processing; (ii) the presence of qualitative differences in studies comparing 

sequential ISL across different sensory modalities (Conway, Christiansen, 2005). 

What is the process and rationale behind a hypothesized domain-general 

learning mechanism systematically producing such domain-specific effects? Frost 

et al. (2015) provide a novel theoretical approach to implicit statistical learning. 

According to them, implicit statistical learning is conceived as a process involving 
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domain-general neurobiological mechanisms dedicated to learning, representing, 

and processing diverse distributional properties within various input modalities. 

Unlike a singular learning system, these principles, crucially, are instantiated by 

separate neural networks situated in distinct cortical areas such as visual, auditory, 

and somatosensory cortex. Within their framework, domain generality arises 

primarily due to the instantiation of similar computational principles by neural 

networks across modalities. Furthermore, domain generality may also occur 

through the engagement of partially-shared neural networks that influence the 

encoding of the statistical structure to be learned, or if representations of stimulus 

inputs from a specific modality are channeled into a multi-modal region for further 

computation and learning. Consequently, the encoding of internal representations 

adheres to constraints determined by the unique properties of the input processed 

in each cortex, leading to modality-specific outcomes in computations despite the 

invocation of similar computational principles across multiple cortical and 

subcortical regions. As they explain, the current neurobiological evidence aligns 

with both of these latter possibilities (Frost et al. 2015). Indeed, taken together, 

recent neurobiological findings indicate that the recognition of statistical patterns 

arises from computations conducted within a specific sensory system, and via a 

neurocognitive system that spans multiple domains as well, influencing or acting 

upon inputs derived from representations specific to each sensory modality (cf. 

Frost et al., 2015). 

In the forthcoming sections, we will delve into a comprehensive 

examination of studies addressing two key aspects: the discernment of domain-

specific spatiotemporal structure effects. Our scrutiny will be particularly centered 

on visual and auditory implicit statistical learning within the framework of 

spatiotemporal constraints. Additionally, our exploration will extend to the analysis 

of qualitative differences in sequential implicit statistical learning across various 

modalities. Notably, we will primarily delve into studies probing this cognitive 

ability within the tactile domain, comparing findings with those in auditory and/or 

visual spheres.  
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3.1.2. Exploring domain-specific spatiotemporal structure effects in visual and 

auditory implicit statistical learning 

In the realm of cognitive perception, the human experience is intricately intertwined 

with temporal and spatial dimensions. As we navigate the intricate landscape of 

implicit statistical learning across sensory spheres, it becomes imperative to discern 

whether and how learning through distinct sensory domains is influenced when 

stimuli are arranged either spatially or temporally. Specifically, we are interested in 

shedding light on possible domain-specific spatiotemporal structure effects, 

exploring their impact on learning within the auditory and visual sensory domains. 

The contemplation of how space and time dimensions are related our experiences 

in the visual and auditory sensory domains has a rich history. The philosopher 

Schopenhauer, in particular, delved into this subject, focusing on the fundamental 

role that space and time play in shaping our perceptions. In his profound reflections, 

Schopenhauer highlighted the distinctive nature of sensory experiences in the 

auditory and visual domains. He proposed that perceptions through hearing unfold 

exclusively in the dimension of time. Conversely, perceptions through sight are 

primarily rooted in space, yet, intriguingly, they bear a secondary presence in the 

dimension of time, a temporal quality bestowed upon them through their duration 

(Kubovy, 1988). “Perceptions through hearing are exclusively in time; hence the 

whole nature of music consists in the measure of time, and on this depends not only 

the quality or pitch of tones by means of vibrations, but also their quantity or 

duration by means of the beat or time. The perceptions of sight, on the other hand, 

are primarily and predominantly in space; but secondarily, through their duration, 

they are in time also.” (Schopenhauer, 1969 [1859], p. 28). The nuanced 

relationship between space and time within the visual and auditory experiences was 

further considered by Goodfellow (1934) and Savin (1967), which have proposed 

that vision is particularly adept at comprehending spatial elements, whereas the 

perception of temporal duration may find clearer expression through auditory 

stimuli. (O’Connor, Hermelin, 1972). In the late 1980s, the subject reemerged, 

rekindling discussions regarding the interplay between visual and auditory 

perceptual domains and the dimensions of time and space. The analogy 

"space:time::vision:audition" began to permeate these debates. During this period, 
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numerous scholars deliberated on the legitimacy of a spatial:visual and 

auditory:temporal dichotomy (cf. Handel, 1988; Kubovy, 1988). On one hand, 

Handel (1988) refutes this dichotomy. In his examination, he contends that 

comparing the experiences of seeing and hearing necessitates adopting a more 

expansive and integrated conception of space and time. Handel argues that clinging 

to the spatial:visual and temporal:auditory dichotomy is counterproductive. 

According to his perspective, the auditory and visual realms are inherently 

characterized by both temporal and spatial dimensions. He emphasizes that events 

and objects perceived through these senses are likely embedded within a framework 

shaped by both spatial and temporal changes. Handel (1988) rejects the notion of 

parceling out space and time to different senses, asserting that it is a mistake to 

artificially segregate these fundamental elements of perception. Instead, he 

advocates for a holistic understanding that recognizes the interconnected nature of 

spatial and temporal aspects in shaping our experiences of both the auditory and 

visual worlds. On the other hand, Kubovy (1988) engages in a critical examination 

of Handel's assertion, challenging the notion that we cannot imagine a visual or 

auditory event that is nonspatial or atemporal, respectively. Kubovy (1988) 

contends that Handel's statement either begs the question or is fundamentally false. 

Delving into the distinction between visual events and visual objects or scenes, 

Kubovy (1988) posits that while the former, by definition, involves change and is 

therefore temporal, the latter does not necessarily presuppose time. Vision, 

according to Kubovy, is not inherently temporal; looking presupposes objects 

located in space but does not necessitate time. Similarly, seeing presupposes objects 

but not events, emphasizing the potential independence of vision from temporal 

constraints. Kubovy acknowledges that events may unfold in the visual field, but 

they are not indispensable for vision. Contrary to vision, Kubovy emphasizes that 

audition is intimately tied with time, underscoring the inherently temporal nature of 

auditory perception. He goes on to propose that the analogy rejected by Handel 

holds partial truth, offering insights derived from his “theory of indispensable 

attributes”: “a) Space is the province of vision, (b) Vision is not inherently temporal, 

(c) Audition is intimately tied to time, (d) Audition is not inherently spatial.” 

(Kubovy, 1988, p.318) However, he concludes that while the 
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space:time::vision:audition analogy is seductive, it is not fully matured. 

Nonetheless, Kubovy suggests that it is preferable to yield to the allure of this 

analogy than to succumb to potentially misleading alternative analogies. He 

contends that in the future, more nuanced analogies will be necessary to capture the 

intricate interplay of spatial and temporal dimensions in relation to hearing and 

sight. 

From the debate above, and based on phenomenological reasoning, we can 

conclude that it is indeed true that vision is more closely linked to the spatial 

domain, while for hearing time holds greater significance. However, this 

relationship is not "binding" in the sense that it does not exclude the possibility that 

vision can also process temporal information, just as hearing can process spatial 

information. Both vision and hearing can localize stimuli in space, detect 

movement, perceive rhythm and sequential patterns. Consider, for example, 

watching a video or discerning a sound source direction. Hence, we agree that it 

can be misleading to consider vision exclusively within a spatial framework and 

hearing solely within a temporal framework. "[…] all events, regardless of their 

sensory modality, contain temporal information that is registered by the brain [...] 

Time shares this supramodal nature with space [...]" (Repp, Penel, 2002, p. 1085). 

Crucially, however, we must not overlook the stronger association between the 

spatial dimension and vision on one hand, and the temporal dimension and hearing 

on the other. As a matter of fact, in spatial processing, the auditory system must 

calculate the location of sounds by considering differences in intensity and the 

arrival time of the sound at each ear. Conversely, the position of visual stimuli is 

directly mapped onto the retina and subsequently topographically projected into 

cortical areas. Moreover, it seems almost impossible to imagine a timeless sound or 

a non-spatial visual perception. On the other hand, it is easier to conceive of a sound 

without space or a visual scene without the passage of time (Conway, 2005). As 

noted by Repp and Penel (2002), the recognition that hearing and vision exhibit 

stronger associations with the temporal and spatial dimensions, respectively, has 

prompted the hypothesis that these sensory modalities are relatively specialized for 

temporal and spatial processing, respectively (cf. Freides, 1974; Geldard, 1970; 

Kubovy, 1988; Näätänen, Winkler, 1999; O’Connor & Hermelin, 1972). As Repp 
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and Penel (2002) correctly explain, empirical evidence to test this claim could come 

from two sources: "comparisons of the relative sensitivity of each modality to 

spatial and temporal information, and studies showing dominance of one modality 

over the other when conflicting spatial or temporal information is presented [...]" 

(Repp, Penel, 2002, p.1085).  

Below, we will review two compelling implicit statistical learning studies 

that corroborate this hypothesis (Saffran et al., 2002; Conway, Christiansen, 2009). 

Saffran's (2002) exploration delved into the acquisition of predictive dependencies, 

specifically examining conditional probabilities. This inquiry stemmed from the 

consistent observation of these dependencies in natural languages, prompting the 

question of whether their utilization is exclusive to language learning or extends to 

other domains. The study encompassed a series of six artificial grammar learning 

experiments using the forced-choice task paradigm, which were meticulously 

designed to probe various facets of the research queries. Two artificial languages 

were used: Language P, incorporating predictive dependencies, and Language N, 

lacking predictive dependencies21 (Figure 8). The participant pool included both 

adults and children, and the experiments covered linguistic and nonlinguistic 

auditory and visual learning tasks. The central hypothesis posited that learners 

exposed to the artificial language P, featuring predictive dependencies, would 

                                                       
21 In Language P, “[…] dependencies between word categories afforded predictive cues to phrases 

(e.g., if D is present, A must be present). Language P contains the type of predictive structure found 

in natural languages. In A phrases, A words can occur without D words, but D words perfectly 

predict the presence of A words; the same relationship obtains between C words and G words. 

Similarly, C phrases can occur without F words (as optional units at the ends of sentences; the 

optional CP was necessary to balance the languages in terms of sentence types), but if an F word is 

present, a C phrase must precede it. The conditional probability of A|D is 1.0; the same is true of the 

other within-phrase pairs in the language.”  Language P, instead, “[…] was characterized by 

overarching optionality: the presence of one word type never predicted the presence of another. 

Note, however, that Language N still possesses phrase structure of a sort—the absence of one word 

type within a phrasal unit predicts the presence of another (e.g., if A is not present, D must be 

present). Language N contained the same form classes and vocabulary as Language P”. (Saffran, 

2002, p. 175). 



 163 

demonstrate enhanced learning outcomes compared to those exposed to language 

N, without such dependencies. A related hypothesis explored the generalization of 

these effects, investigating whether the advantages extended beyond linguistic tasks 

to influence learning more broadly across different cognitive domains.  

 

 

Figure 8. Rules of the two artificial grammars used in the six experimental studies. Picture 

taken from Saffran, 2002, p. 175.  The grammars were adapted from those previously 

employed by Morgan and Newport (1981) and Saffran (2001). 

 

Experiment 1 involved adult learners. Thew were exposed to string generated by 

the two artificial languages N and P. Specifically, every letter of the grammar was 

matched to a range of two to four monosyllabic nonsense words (see Figure 9). 

Participants were exposed to either Language P or Language N. They listened to a 

7-minute recorded block featuring 100 sentences (from either Language P or 

Language N) repeated four times. After that, they underwent a testing phase. To 

investigate the impact of predictive dependencies on language learning, participants 

exposed to both Languages P and N underwent the same test format. Each test item 

comprised a pair of sentences: one novel grammatical sentence and one 

ungrammatical sentence. To differentiate between the two groups of language 

learners, the grammatical items were valid in both languages, and the 

ungrammatical items were invalid in both languages. This test format allowed for 

the assessment of rule acquisition in both languages. After listening to each 

sentence pair, participants were asked to express which sentence sounded more akin 
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to the exposure language. Results indicated that participants exhibited superior 

learning for Language P, indicating that predictive dependencies enhance the 

acquisition of sequential auditory language-like stimuli.  

 

 

 

 

Figure 9. Mapping between grammar letters and monosyllabic nonsense words. Picture 

taken from Saffran, 2002, p. 176. 

 

Experiment 2 replicated and expanded the findings of Experiment 1, testing the 

ability to acquire predictive dependencies in child participants. The methodology 

was the same as Experiment 1. Children demonstrated enhanced learning when 

exposed to the artificial language with predictive dependencies, thus replicating 

findings from Experiment 1, and suggesting that the impact of these dependencies 

might extend to the early stages of language acquisition. Experiment 3 delved into 

the exploration of the learnability of predictive dependencies in nonlinguistic 

contexts. The two languages were translated into nonlinguistic sounds, such as 

ascending buzz, chimes, a chord, ... Notably, participants consistently performed 

better on Language P than Language N also in this nonlinguistic auditory task. This 

observation replicated the trend seen in linguistic-like tasks, underscoring the 

broader influence of predictive dependencies beyond traditional linguistic contexts. 

Indeed, the findings suggested that predictive dependencies play a significant role 

in shaping learning outcomes across diverse cognitive domains. Experiment 4 

explored visual learning across two modalities, serving as a conceptual replication 

of Experiments 1 and 3 within the visual domain. Participants encountered either 

visual nonsense words or visual nonsense shapes during the study. For the 

nonlinguistic visual condition, Languages P and N were transformed into several 



 165 

shapes. Each "word" represented a unique nonsense shape, such as a red asymmetric 

oval with yellow dots. These shapes were sequentially presented on the monitor, 

one at a time. The linguistic visual condition mirrored this process, but instead of 

shapes, the nonsense words from Experiment 1 appeared in typed capital letters. In 

the test phase, participants viewed two sequences (made of shapes in the 

nonlinguistic visual condition or words in the linguistic visual condition) and 

determined which was more akin to the exposure language, responding through a 

key press. While predictive dependencies enhanced learning in the auditory 

domain, as found in Experiments 1-3, they did not exert the same influence in the 

visual domain. The results suggested that predictive dependencies play a role in 

auditory but not visual learning, at least within the parameters used in Experiment 

4. Interestingly, the absolute performance levels were similar between auditory and 

visual tasks, but the patterns of performance differed, indicating that predictive 

dependency cues have a more substantial effect on auditory learning. As Saffran 

(2002) suggested, this discrepancy might be attributed to the nature of the stimuli 

and the learners' interpretation. Specifically, the auditory nonlinguistic stimuli in 

Experiment 3, although devoid of linguistic content, may have been recoded as 

linguistic entities by the learners. This could not have happened, on the contrary, in 

the visual tasks in Experiment 4, featuring nonsense shapes without clear linguistic 

associations. Hence, the possibility remains that predictive dependencies may be 

operative only in processing language-like stimuli. Therefore, Saffran (2002) aimed 

to shed more light on the actual possibility that predictive dependencies play a role 

in learning stimuli outside of language, in other domains. To do so, in Experiment 

5, Saffran (2002) compared learning performances between auditory stimuli that 

would be challenging to verbally label and visual stimuli easy to label. Specifically, 

for the set of nonlinguistic sounds, stimuli such as drums and bells were used, 

whereas for visual nonlinguistic shapes stimuli included shapes such as circles, 

triangles, and hearts. This design aimed to test the influence of ease of verbalization 

on the modality difference observed in the earlier experiments. If the results from 

Experiments 1–4 were influenced by the ease of verbalization, we would expect a 

reversal of the pattern in Experiment 5, with the visual task now exhibiting the 

effects of predictive dependencies, while not the auditory task. On the other hand, 
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if the previously observed modality effect persisted with the new stimuli, it would 

suggest that predictive dependencies enhance the learning of sequential stimuli in 

auditory tasks but not in visual tasks. Result showed that subject showcased 

superior performances in acquiring language P than language N only in the auditory 

presentation, replicating the observed pattern of results in the initial four 

experiments. Crucially, the nature of the materials, whether linguistic or 

nonlinguistic, did not impact the outcomes. This supports the hypothesis that the 

constraint in detecting predictive dependencies is not exclusive to language 

learning. Based on the results observed in Experiment 1-5, the central question 

which remain to be answered is why predictive dependencies impact sequence 

learning in the auditory domain but not in the visual domain. Saffran (2002) 

suggested that the preferential processing of predictive relationships in audition is 

due to the inherently sequential nature of the auditory world, where sounds are 

transient and do not persist over time. This is particularly true for linguistic 

information, but also musical patterns and nonlinguistic sounds, which demand 

tracking sequences and discerning relationships between events separated in time. 

In contrast, processing visual scenes mostly require tracking relationships among 

objects in space, suggesting that visual information is inherently less sequential than 

auditory information, with exceptions such as signed languages and gestures. Based 

on these considerations, it is plausible that in a visual task involving simultaneously 

present predictive dependencies, learners might show an advantage in acquiring 

language P like in auditory experiments using sequential stimuli. Experiment 6 was 

designed to test this hypothesis. Experiment 6 served as a conceptual replication of 

Experiment 4. The same stimuli were used. Importantly, however, in contrast to the 

sequential presentation of shapes one by one, each "sentence" in Experiment 6 

involved simultaneous presentation, with all shapes from the sentence arranged 

spatially on the screen. The shapes consistently appeared in a specific position on 

the screen. For example, "A word" shapes were consistently positioned in the upper 

righthand corner, while "F word" shapes were consistently presented in the middle 

of the bottom of the screen. This layout, as opposed to a sequentially ordered one, 

aimed to reduce the likelihood of learners adopting a sequential left-to-right 

processing strategy. Crucially, learners trained on language P significantly 
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outperformed those trained on language N. This finding corroborated the hypothesis 

that the visual learning system is more finely tuned to track dependencies among 

elements simultaneously presented and arranged in space than among elements 

presented sequentially and arranged in time. Summing up, Saffran (2002) offered 

significant evidence supporting the idea that individuals can leverage predictive 

dependencies in AGL experiments across various sensory modalities, albeit with 

constraints related to the mode of stimulus presentation. Specifically, in the auditory 

modality, where information is typically sequential and fleeting, sequential 

presentation triggers effects of predictive dependencies. Similarly, learners can 

identify and use predictive dependencies in the visual modality, but only when the 

input is simultaneous, spatially arrayed. As Saffran (2002) explains, it remains 

uncertain whether these effects stem from inherent perceptual/processing 

differences or are shaped by experience in each modality. 

Conway and Christiansen (2009) investigated the impact of varying presentation 

formats and rates on implicit statistical learning abilities, focusing on visual and 

auditory modalities. Three presentation formats were explored: visual input 

distributed spatially, visual input distributed temporally, and auditory input 

distributed temporally. Concerning presentation rates, two formats were 

investigated: a slow and a fast one. To explore how presentation rates and 

temporal/spatial constraints interact with visual and auditory statistical learning, 

they employed the AGL paradigm. Participants were exposed to visually or 

auditorily governed input sequences generated from a finite-state artificial 

grammar. Based on previous discussions and findings on the topic (cf. Conway, 

Christiansen, 2009; Saffran, 2002), they predicted optimal learning for visual-

spatial and auditory (temporal) conditions, and poorer performance for visual-

temporal formats. Concerning the impact of presentation rate on learning, they 

consider it as an aspect insufficiently studied in statistical learning tasks (Conway, 

Christiansen, 2009). Despite the scarcity of evidence in the issue, faster presentation 

rates were expected to accentuate modality constraints, negatively influencing 

learning in the nonpreferred mode. Hence, they predicted that participants would 

perform worst in the visuo-temporal condition at a fast presentation rate. The 

experimental study included an acquisition and a test phase. During the acquisition 
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phase, legal sequences generated by the artificial grammar were utilized, while the 

test set included both legal and illegal sequences. Legal sequences adhered to the 

same finite-state grammar rules, while illegal sequences incorporated legal 

elements followed by illicit transitions and concluding with a legal element. The 

symbols of the sequences were mapped onto three types of stimuli: visual-temporal, 

visual-spatial, and auditory.  

 

 

 

 

 

 

Figure 10. Finite-state artificial grammar used in the experimental study. Figure taken from 

Conway and Christiansen, 2009, p. 565. 

 

Visual-temporal stimuli comprised sequentially appearing colored squares, each 

presented for 250 ms (slow) or 125 ms (fast). Visual-spatial stimuli displayed the 

same-colored squares simultaneously presented in a horizontal row. The temporal 

duration of the stimuli matched the combined presentation time of the single visual-

temporal stimuli. Therefore, the sequence comprised a simultaneous array of 

squares arranged horizontally from left to right, displayed for a total duration of 

1000 ms (250 X 4) in the slow mode, or 500 ms (125 X 4) in the fast mode. Auditory 

stimuli consisted of sequences of pure tones conveyed through headphones, in 

which each stimulus had a duration of 250 ms (slow) or 125 ms (fast). Participants 

were randomly assigned to 12 conditions (3X2 design, i.e., modality X presentation 

rate format), with six experimental groups undergoing both acquisition and test 

phases, and six control groups, serving as a baseline, participating in the test phase 
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only. During the acquisition phase, participants performed a match/mismatch task, 

deciding whether pairs of sequences were the same without giving information 

about the underlying structure. This was intended to maintain participants’ attention 

high. During the testing phase, participants were asked to categorize each novel 

sequence based on whether they believed it adhered to the same rules as those 

encountered earlier. Control participants, not involved in the acquisition phase, 

underwent an equivalent task. The timing presentation format mirrored that of the 

acquisition phase. Results for the acquisition phase revealed a notable disparity in 

performance between modalities, with both the auditory and visual-spatial groups 

exhibiting significantly superior results compared to the visual-temporal group. 

Despite this, all six groups performed better than chance level in the 

match/mismatch task. In this phase, the presentation rate did not influence task 

performance, in any of the three modalities. As for the testing phase, none of the 

six groups of control performed above chance levels. This suggests that any 

observed learning in the experimental groups is attributable to statistical learning 

taking place in the training phase. Within the experimental group, the auditory 

group performance was significantly greater than that of the visual-temporal group. 

Moreover, also the visual-spatial performance exceeded the visual-temporal one. 

Comparisons of performance between fast and slow rates for each modality/format 

condition yielded only one significant result for the visual-temporal group, 

indicating that visual-temporal performance significantly declined at the fast rate 

compared to the slow rate. Specifically, the visual-temporal group in the fast 

condition performed the test task at chance levels. Hence, only the auditory and 

visual-spatial groups exhibited learning at the fast rate, while the visual-temporal 

group performed no better than chance. Based on these results, the authors 

concluded that presentation rate affects in different ways statistical learning across 

modalities/formats. However, to address potential associations between acquisition 

and test-phase performance, they conducted correlation analyses. Indeed, as 

Conway and Christiansen (2009) noted, the observed quantitative learning 

differences across modalities may be explained by a potential association between 

acquisition-phase and test-phase performance. The superior test-phase performance 

in the auditory and visual-spatial conditions could be due to certain stimuli being 
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more easily perceived and remembered during the acquisition phase. More 

perceptible stimuli might have (positively) influenced the learnability of statistical 

regularities. On the other hand, however, the absence of performance decline in the 

match/mismatch task at a fast presentation rate for any input conditions, compared 

to a notable decrease in test performance for the visual-temporal condition, suggests 

that the test-phase results cannot be solely attributed to acquisition-phase 

performance. Correlation analyses clarified the various possibilities at play. Results 

indicated that only the visual-spatial condition showed a statistically significant 

correlation between acquisition and test-phases performances. This result implied 

quantitative learning differences between modalities, possibly influenced by 

differences in perceiving and remembering stimuli in the different conditions. 

Hence, the authors decided to explore potential qualitative modality effects. To do 

so, regression analyses were conducted to identify the sources of information 

extracted in each modality/format condition. They evaluated both legal and illegal 

test items based on their initial and final anchor strengths (IAS and FAS). These 

metrics indicates the relative frequencies of the initial and final fragment "chunks" 

(i.e., bi- and trigrams) that are present in analogous positions in the training items22. 

These analyses revealed notable differences between auditory and visual 

conditions: auditory learning relied heavily on fragment information at sequence 

endings, while visual learning was more sensitive to information at sequence 

beginnings. Overall, these findings suggested that statistical learning is constrained 

by factors related to presentation modality, rate, and format (spatial vs. temporal 

distribution). Participants in visual conditions exhibited superior performances 

related to the extraction of statistical patterns when presented in a spatial format 

rather than a temporal one. Moreover, visual learning relied more on statistical 

information at the beginning of input sequences. Conversely, the auditory modality 

excelled in encoding temporal input, showing heightened sensitivity to the 

statistical structure at the end of input sequences. Furthermore, modality constraints 

                                                       
22 “For example, the test item 1-2-1-3-5-2 has an IAS of 4.5 and an FAS of 2.0, indicating that the 

initial chunks 1-2, 2-1, and 1-2-1 occur frequently in the initial positions of the training set, whereas 

the final chunks 3-5, 5-2, and 3-5-2 occur slightly less frequently in the final positions of the training 

set.” (Conway and Christiansen, 2009, p. 572).  
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were magnified at the fastest presentation rate, notably negatively affecting visual-

temporal learning. This suggested that vision struggles to encode temporal 

regularities, particularly at high presentation rates. 

In this section, we have considered domain-specific spatiotemporal 

structure effects relative to visual and auditory implicit statistical learning. As we 

have seen, many scholars have explored both theoretically and empirically how 

learning in diverse sensory domains is affected based on whether stimuli are 

organized spatially or temporally and discern the nature of this influence. 

Importantly, we have presented findings from two studies that offer compelling 

evidence supporting the idea that the visual domain excels in processing spatially 

presented statistical information, as opposed to hearing that performs better in 

processing statistical information when stimuli are arranged sequentially (i.e., in the 

temporal dimension). Saffran (2002) provided convincing proof supporting the 

ability to acquire predictive dependencies in AGL tasks across various sensory 

modalities. Crucially, she identified constraints associated with the modality of 

stimulus presentation. This ability was observed in the auditory modality with 

sequentially arranged stimuli. In the visual domain, learners could discern 

predictive dependencies only when the input was simultaneously presented and 

spatially organized. Conway and Christiansen's study (2009) revealed constraints 

on statistical learning tied to presentation modality, rate, and format, aligning with 

Saffran's findings. According to their results, in the visual condition, participants 

demonstrated enhanced performance in extracting statistical patterns when 

information was presented spatially. Moreover, the visual domain was more adept 

at encoding statistical information at the beginning of sequences. In contrast, 

auditory learning showed superior performance in tracking statistical information 

in temporal input, being particularly sensitive to sequence endings. Modality 

constraints in the visual-temporal domain were magnified at faster rates, negatively 

impacting learning, thus highlighting increased challenges in encoding visual 

temporal regularities at high speeds. 

Crucially, we find no studies that have investigated domain-specific 

spatiotemporal constraints in the tactile modality. The issue of whether touch is 
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better at processing statistical information when presented in the spatial or temporal 

dimension has not been empirically addressed in the literature, as far as we know. 

Unlike the extensive research on implicit statistical learning in the visual and 

auditory domains, the tactile domain has been significantly underexplored. Only 

recently have some scholars started shedding light on the capacity to acquire 

statistical information through touch. As we will see, the few studies on implicit 

statistical learning in the tactile sphere have focused on learning statistical 

information from sequentially presented inputs, thus in the temporal dimension. 

Despite being limited in number, these studies have revealed intriguing results, 

especially when comparing tactile sequential learning with visual and/or auditory 

learning. In the next section, we will delve into statistical learning in the tactile 

domain. 

 

3.1.3. Sequential implicit statistical learning in the tactile sensory domain 

 

“Viewed from phylogenetic and ontogenetic perspectives, the sense of touch plays 

a central role relative to the other senses. Its fundamental significance to humans 

derives from its epistemological function, making possible an awareness of 

surroundings and the consciousness of self. In this way, the sense of touch is sine 

qua non for thought, action, and consciousness” (Grunwald, 2008, preface). The 

sense of touch has captured the attention of philosophers and scientists over the 

years. Back in ancient Greek, philosophers asserted the supremacy of the touch 

sense, which was often described as the basic sense, the sense prototype. 

Empedocles, with the word pagamai, which means gripper, or flat of the hand, 

generally referred to the senses (Grunwald, 2008). In the Middle Age, Aristotle, in 

his De Anima, praised the uniqueness qualities of touch sense, which, differently 

from the other senses, was described as the only one through which we establish a 

direct contact with the properties of the object of the perception. Hence, the 

emphasis is on the close contact between the object of the perception and the sense 

of touch, whose organ, according to the Greek philosopher, is not placed in the skin 

but in the heart (Grunwald, 2008). The interest in the haptic sense did not diminish 
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in the following years. In the Middle Ages, St. Thomas Aquinas, in his own De 

Anima, emphasized the centrality of touch by claiming that the other senses could 

not exist without it. From touch (radix fontalis), all the other senses originated and 

are related to (Grunwald, 2008) “[…] the most likely sense-faculty would seem to 

be touch, the first sense, the root and ground, as it were, of the other senses, the one 

which entitles a living thing to be called sensitive” (Aquinas, book III, Chapter II, 

lectio three, § 602, trad.1951). However, it is only with the advent of the 19th century 

that scientists started to systematically investigate the physiology of haptic 

perception. The German physiologist and anatomist Ernst Heinrich Weber (1795-

1878) carried out the first experiments on the haptic sensory threshold. 

Interestingly, Weber’s aim was not to exclusively focus on the haptic sphere: his 

studies in the somatosensory domain were intended to find basic principles of 

perception which could have been later extended to the study of other senses, such 

as vision (Grunwald, 2008). During the 19th and 20th centuries, the scientific 

progress permitted to understand the physiological mechanisms of the haptic sense 

and to identify its anatomy more precisely. Yet, several issues concerning the 

mechanisms involved in tactile perception remained unexplained. Much remain to 

be explored, as far as the psychological reality of tactile perception is concerned. 

This situation is probably due to two causes. Firstly, the complexity and the many 

facets of the tactile sensory domain has hampered the scientific knowledge to 

progress. “No other sense exhibits properties so variable in scope or remains so 

puzzling even today – understood only in terms of its principle features” (Grunwald, 

2008, preface). Moreover, the paucity of experimentation carried out by 

psychologists in the domain of haptic learning and perception, and the consequent 

shortage of available data, caused a delay in its understanding, as compared to the 

scientific advance reached in the study of visual and auditory perception and 

learning.  

Very little research has been devoted to implicit statistical learning in the 

tactile sensory domain. Although it is widely known that the tactile sense can be 

exploited to acquire information from the environment, and even though the 

psychophysical and perceptual attributes of the touch sense have been extensively 

investigated (cf. Craig, Rollman, 1999), surprisingly, very little attention has been 
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focused on exploring the ability to implicitly learn statistically organized 

information through the tactile sensory domain. (Conway, Christiansen, 2005). 

Most of the studies conducted so far, both in the research field of implicit learning 

and statistical learning, have focused primarily on the visual and auditory domains, 

which has been thoroughly investigated. On the contrary, the sense of touch has 

been almost completely ignored. Scholars have recently started to provide evidence 

that we can detect and acquire statistical information tactilely23. In the next section, 

we will focus on studies which have explored tactile implicit statistical learning 

comparing it with auditory and/or visual learning. 

 

 

3.1.4. Comparing sequential implicit statistical learning across the tactile, visual, 

and auditory domains 

 

Conway and Christiansen (2005) investigated whether statistical regularities 

between elements organized in a sequential input can be detected through touch, 

vision, and audition. Moreover, they were also interested in verifying which 

differences, if any, might have occurred in the learning process in the three 

modalities. They encoded the symbols generated by a finite-state grammar24 onto 

visual, tactile, and auditory stimuli, and they presented them to three groups of 

participants, respectively. Specifically, stimuli were vibrotactile pulses transmitted 

to the fingers of participants’ hands, tones of different frequencies, and black 

squares that appeared in specific locations on a computer screen. The grammar they 

employed can generate 23 different sequences of numbers, with a length ranging 

from three to six elements. The test was divided into two phases: a training phase, 

in which a total of 12 legal sequences were utilized, each employed twice to create 

a set of 12 training pairs. Among these pairs, six comprised identical training 

sequences presented twice (matched pairs), while the remaining six pairs featured 

two sequences with slight variations (mismatched pairs). Then, in a test phase, 

                                                       
23 To our knowledge, the only few implicit learning studies conducted in the tactile domain are the 

following: Abrahamse et al., 2008; 2009; Conway, Christiansen, 2005; Pavlidou, Bogaerts, 2019; 

24 They used the same grammar of Gomez and Gerken (1999).   
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participants were presented to 10 illegal and 10 novel legal sequences. Legal 

sequences adhered to the finite-state grammar’s rules, while illegal sequences 

deviated from the grammar's rules. Specifically, the illegal sequences commenced 

with legal elements and concluded with legal elements but included multiple illegal 

transitions within. Thus, the distinction between legal and illegal sequences layed 

in the statistical relationships among adjacent elements. Participants were divided 

into two groups: the experimental group, which took part both in the training and 

in the test phase, and a control group, which skipped the training phase, being 

exposed only to the test-phase strings. In the test phase, the experimental group was 

asked to judge pairs of legal and illegal sequences by pressing on “yes” - “no” 

buttons. Before the training phase, participants in the experimental group were 

briefed on their involvement in a sensory experiment where they would experience 

pairs of sequences. Their task was to determine whether each pair was identical and 

express their decision by pressing a yes/no button. The presentation of each pair 

occurred randomly and was repeated six times, resulting in a total of 72 exposures. 

Prior to the test phase, the experimental group participants were informed that the 

sequences were generated by a set of rules. They were then informed about the 

upcoming presentation of new sequences. They were informed that some of these 

would have followed the same generating rules as those in the previous session, 

while others would have not. The participants' task was to classify each new 

sequence based on whether it adhered to the same rules or not. The group of 

participants who did not undergo the training phase (control group) were assigned 

an identical task. In the tactile condition, the numbers of the sequences were 

transmitted through vibro-tactile stimuli (150 Hz), generated by five small motors 

(typically employed in handheld paging devices) which were placed on participants’ 

fingers. Each number of the grammar was linked to a specific finger stimulation. 

The duration of each finger pulse was 250 ms, with a 250 ms gap between pulses 

within a sequence. In the visual condition, black squares were presented on the 

computer monitor, each appearing in distinct locations denoted by elements 1 to 5, 

with 1 representing the leftmost and 5 the rightmost location. Hence, a visual 

stimulus comprised a spatiotemporal sequence of black squares appearing at 

different locations. Each element was visible for 250 ms, and there was a 250 ms 
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gap between each element. In the auditory condition, the stimuli were composed of 

pure tones, each representing musical notes such (i.e., C, C#, F, F#, and B). Also in 

this task, the duration of each element (tone) was 250 ms, with a 250 ms interval 

between consecutive tones. Results clearly indicated that learning occurred in all 

three domains, since the experimental outperformed the control groups, in all the 

three domains. Specifically, in the tactile task, the experimental group correctly 

classified 62% of sequences, whereas the control group 45% of them; in the 

auditory task, the experimental group correctly classified 75% of sequences, while 

the control group 44%; in the visual task, the experimental group correctly 

classified 63% of the sequences, while the control group the 47%. However, a 

quantitative difference was detected: participants in the auditory group significantly 

outperformed those assigned to the visual and tactile groups. Moreover, they also 

found a qualitative learning difference between the modalities: Tactile learning 

revealed itself to be more sensitive to the initial information in the strings, while 

auditory learning tended to be most sensitive to the final information within 

sequences. Nevertheless, a lingering question remained regarding whether the noted 

distinctions in learning outcomes stemmed solely from the low-level, perceptual 

characteristics of the specific stimulus elements employed in the three experiments. 

For example, auditory stimuli might have been perceptually more salient than 

tactile or visual stimuli. To investigate further this issue, they developed a second 

experiment. In this second experiment, they added a pretraining phase in which they 

assessed the perceptual comparability of stimuli in the three different modalities. 

Moreover, they modified the training phase to ensure that participants underwent 

comparable training in the three sensory domains. In addition to this, they also 

investigated more finely qualitative learning differences. In this experiment, they 

used the same apparatus as that used in the first experiment, however, a different, 

more complex finite-state grammar was employed, which generated a wider range 

of more complex sequences, thus enabling the creation of a more difficult task. 

Moreover, this grammar was symmetrical with respect to the possibility to have 

certain bigrams or trigrams in the initial or final position of the sequences. In other 

words, it contained no biases toward either the beginning or ending aspects of 

sequences in terms of chunk information availability. Tactile and visual stimuli were 
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identical to those used in the first experiment. Auditory stimuli, on the contrary, 

were slightly different: they used a set of different melodies to avoid familiar 

musical notes and to have a narrower frequency range (i.e., the tones had 

frequencies of 220 Hz; 246.9 Hz; 261.6 Hz; 277.2 Hz; 329.6 Hz). Six groups of 

participants took part in the experiment and were randomly assigned to 6 different 

tasks: visual, auditory, and tactile tasks; visual control, auditory control, and tactile 

control tasks. In the control condition, participants skipped the training phase, hence 

taking part only in the pretraining and test phases only. The pretraining phase was 

created to ensure that the stimuli used were suitable, clearly distinguishable, and 

perceptible. Moreover, in this phase, participants had the opportunity to familiarize 

with stimuli. A discrimination task was conducted, in which participants were 

presented with pairs of stimuli within each modality and were required to determine 

whether these stimuli were identical or different, rating their similitude on a scale 

from 1 to 7.  This test confirmed that stimuli were appropriate, in all three 

modalities. Indeed, they turned out to be both discriminable and psychologically 

perceived in comparable ways in the three modalities. In the training phase, 

participants were exposed to 24 grammatical sequences. Each sequence was paired 

with a specific bigram fragment. In half of the sequences, the bigram was present 

into the sequence itself (e.g., 3–5–4–1–2–3–1 and 1–2). For the remaining half, the 

bigram was not present in its entirety within the sequence, but its constituent 

elements were (e.g., 1–2–3–1–4–5–2 and 1–3). In all instances, the bigrams adhered 

to the rules of the finite-state grammar. Then, a test phase began, which comprised 

16 new grammatical sequences and 16 new illegal sequences. Among this last group 

of sequences, 8 were illegal-initial sequences, created by changing the second and 

third element from a grammatical sequence, whereas 8 were illegal-final sequences, 

and were created by changing the third-to-last or second-to-last element from a 

grammatical sequence. Every illegal sequence was matched with the grammatical 

sequence from which it originated, ensuring a balanced distribution where each 

sequence appeared both at the beginning and the end. This resulted in a total of 32 

test pairs. In this phase participants were asked to determine if the pair of elements 

had appeared consecutively within the sequence by pressing a yes/no key. The aim 

of the training phase was for participants to pay attention to the legal training 
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sequences without being explicitly informed about the statistical regularities present 

in the sequences. Results indicated that while tactile training performance was 

slightly lower compared to visual and auditory performances, overall, scores across 

the three modalities were approximately equal. The test phase aimed to evaluating 

participants' ability to grasp the statistical patterns within the training set and apply 

this knowledge to new stimuli during a classification task. Before starting the test 

phase, participants were informed that in the training phase they were exposed to 

sequences generated by grammatical rules. In this phase, they were presented with 

sequences generated by the same rules as those in the training phase, and sequences 

that were not generated by those rules. They had to indicate whether these 

sequences were or not generated by the same rules as those in the training phase.  

Results indicated that only the auditory experimental group outperformed the 

auditory control group, thus indicating that participants learned the statistical 

regularities only in the auditory task. Moreover, they found that participants in the 

auditory modality were better at discriminating statistical regularities in the final 

part of sequences that in the initial part.  Overall, the second experiment, confirmed 

the presence of both qualitative and quantitative learning differences across the 

three different sensory modalities. The absence of learning in the tactile and visual 

modality in the second experiment was attributed to the higher complexity of the 

second experiment compared to the first one. Indeed, according to the authors, the 

grammar was presumably too complex and the differences between grammatical 

and illegal sequences too subtle. Summing up, results from the first experiment 

confirmed that both the tactile, auditory, and visual modalities can track and acquire 

statistical regularities in sequentially presented input. Importantly, however, in both 

the two experiments, they found both quantitative and qualitative learning 

difference: the auditory modality is superior to both the visual and the tactile 

modalities in learning statistical regularities when sequentially presented. 

Moreover, the auditory modality is more sensitive to statistical regularities in the 

final part than in the initial part of the sequence.  

 

Abrahamse et al. (2008) investigated and compared sequential statistical learning 

in the visual and the tactile domains through a serial reaction time task. The aim of 
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their study was to verify whether implicit sequential learning is predominantly 

motor-based, hence independent from the specific modality through which stimuli 

are presented, or, if the associations between stimuli are formed in a specific 

perceptual domain, in other words, if the nature of the learning process is stimulus-

specific. To answer their research question, they developed a serial reaction time 

task in which they exposed two groups of participants to visual or tactile stimuli 

which were encoded onto the symbols of a 12-element sequence in which there 

were second-order conditional transitions. Participants in the visual condition were 

exposed to a sequence of rectangles appearing in one out of four possible locations 

on a computer screen and they had to press one of four specific keys on the keyboard 

as fast and accurately as they could when they saw the stimulus, based on its 

position. Participants assigned to the tactile group perceived a vibrotactile stimulus 

on one of four fingers and, as for the visual condition, they had to respond by 

pressing on one of four keys on the keyboard, based on the location of the received 

stimulation. The task consisted of two phases:  the first phase (learning phase) in 

which both groups of participants were exposed to one random block of tactile 

stimuli to familiarize participants with the task. Then, they were exposed to 11 

sequence blocks (where stimuli followed the rules of the grammar), one random 

block, and one final sequence block, transmitted though visual or tactile stimuli, 

depending on the group condition.  Then, they were exposed to a second phase 

(transfer phase) in which participants who trained in the tactile condition were 

switched to the visual condition, and vice versa. This phase was composed of one 

random block, one sequence block, and one final random block.  The authors were 

firstly interested in verifying whether participants in the two conditions would learn 

the statistical regularities contained in the sequence blocks. Moreover, they were 

interested in testing transfer abilities from one to the other modality. Are subjects 

who have been trained in the tactile condition able to transfer their implicit 

knowledge when they become tested in the visual domain? Does it also apply the 

other way around?  To assess the degree of sequence learning in the two groups, 

they compared the average reaction times (RTs) and error percentage in the 

combined blocks 11 and 13 with those in the random block 12. Transfer, instead, 

was assessed by comparing the average RTs of the combined random blocks 14 and 
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16 with the RTs of block 15. Analyzing the trend of RTs and accuracy rates from 

block 2 to 11, it was observed that the tactile group exhibited generally higher RTs 

compared to the visual group and lower accuracy rates. Despite this, the trend of 

RTs between blocks followed a similar pattern in both modalities, confirming the 

same sequence learning effect in both modalities. Moreover, the analysis 

confronting the mean RTs of Blocks 11 and 13 with the random block 12, showed 

that RTs in the random block 12 were significantly higher than those in blocks 11 

and 13, in both the visual and tactile groups. Importantly, however, they found 

group differences indicating that the difference was significantly more pronounced 

in the visual group. Overall, the researchers construed these findings to indicate 

successful acquisition of sequential regularities in both the tactile and visual 

conditions. Nevertheless, despite this achievement, they concluded that tactile 

sequence learning happened to a lesser degree when contrasted with visual 

sequence learning. Then, to verify transfer from one to the other modality, they 

confronted mean RTs of blocks 14 and 16 with those of block 15, in both the two 

groups. The results indicated that both groups exhibited similar transfer effects. 

However, they noticed that the visual group was significantly slower in 

transitioning to the tactile condition compared to the tactile group transitioning to 

the visual condition (i.e. passage from block 13 to block 14) (see Figure 11). To 

investigate deeper into this effect, the authors performed a more sophisticated 

analysis in which they calculated a learning score and a transfer score. The learning 

score consisted of the difference between the means of block 11 and 13 compared 

to block 12, while the transfer score was the difference between the means of block 

14 and 16 compared to block 11. They found that the learning score of the visual 

group was significantly higher than the transfer score of the visual to tactile 

modality. This difference was not found in the comparison between the tactile 

learning score and the tactile to visual transfer score (Figure 12). The authors 

interpreted this result as indication of a decrease in performances for the visual to 

tactile stimuli condition: while the tactile group showed perfect transfer in the visual 

modality, the visual group was only able to partly transfer sequence knowledge to 

the tactile modality. The authors commented on their results by claiming that, in 

contrast with what had been proposed by many scholars, implicit sequential 
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learning cannot be entirely motor-based. If this were the case, there should have 

been no differences neither in learning outcomes in the two different modalities nor 

when transferring from one to the other modalities. This was not found in their 

experiment. They concluded by supporting the idea according to which different 

components play a role in sequential implicit learning. Both motor-based and 

stimulus-specific abilities are involved in the process.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Mean RTs for the two phases (learning phase: block 1-13; and transfer phase: 

block 14-16) in the two groups (Figure taken from Abrahamse et al. 2008, p. 213). 

 

 

 

 

 



 182 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Learning effect and transfer effect for the two groups (Figure taken from 

Abrahamse et al. 2008, p. 215). 

 

Abrahamse et al. (2009) investigated further the results found in Abrahamse et al., 

2008. Firstly, they were interested in examining more in-depth the perfect transfer 

from the tactile to the visual domain and the partial one for the other way around. 

Secondly, they wanted to verify whether the presentation of congruent and 

temporally synchronized visual and tactile stimuli would have enhanced learning. 

Hence, they developed a new protocol in which they compared three groups: a 

visual, a tactile, and a bi-modal group. Their interest was verifying whether the bi-

modal group would have shown an advantage over the visual-only group.  The task 

consisted of a training phase and a transfer phase. In the training phase, the three 

groups of participants were exposed to a pseudo-random block of stimuli, 10 

sequence blocks, a pseudo-random block and at the end a final sequence block (tot. 

13 blocks). Every sequence block contained the same second-order conditional 

sequence25 that was repeated nine times. The random blocks contained nine 

                                                       
25 The SOC used was the following: 242134123143. One sequence block: (242134123143) repeated 

9 times.  

“An SOC sequence contains no predictive first-order information (all first-order transitions 12, 13, 

14, 21, 23, etc., occur equally often), but each first-order transition is followed by a unique position 

in the sequence (e.g., after transition 12 only position 1 can occur (e.g., after transition 12 only 
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different SOC sequences, with no repetitions. The training phase was followed by 

the transfer phase, in which participants in the three groups were tested on the 

transfer to each of the three conditions. Transfer phases consisted of one random 

block, one sequence block composed of the same SOC sequence used in the training 

phase repeated 4 times, and a final random block. As far as the training phase is 

concerned, results confirmed the previous findings according to which sequence 

statistical learning occurred in both the visual and the tactile conditions, but the 

tactile group was slower in general, both when compared to the visual and to the bi-

modal groups. Even accuracy rates were lower for the tactile group as compared to 

the visual one. Interestingly, the addition of the tactile stimuli to the visual ones did 

not enhance learning. Indeed, they did not find a significant difference between the 

visual-only and the bimodal groups. Importantly, however, the time course of 

learning has been revealed to be the same in the three groups (see Figure 13). By 

observing the results from the transfer phases, the authors verified whether the 

knowledge acquired during the training phases would have still been accessible 

when transferring to different sensory modalities. Results indicated that transfer 

occurred for all three modalities, with no significant differences between the visual-

only and the tactile-only transfer conditions, but with a reliable difference between 

the bimodal transfer condition and both the visual-only and the tactile-only 

conditions. Indeed, when switching to the bimodal condition, the tactile training 

group showed worse transfer scores as compared to the visual-only and the bimodal 

training groups. This result confirmed the one obtained in the training phase: the 

bimodal condition of stimuli presentation did not enhance learning. Based on these 

results, Abrahamse et al. (2009) concluded by claiming that, the differences found 

between visual and tactile groups do not reflect a difference in sequence learning 

abilities in the two sensory domains. In fact, there might be a difference in the 

                                                       
position 1 can occur), thus the sequence is only predictive on a second-order level. In comparison, 

learning of FOC sequences can be based on first-order information about the immediate preceding 

position. […] In an SOC sequence, an event t is predicted by the previous two events, in which P[t|(t-

2), (t-1)] is the same for all sequential events.” (Du & Kelly, 2013, p.157).  

An example of FOC (first-order transition) is: 13234213414. This sequence has been used in Deroost 

et al., 2010. 
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expression of the knowledge acquired, that does not correspond to a reduced 

sequence learning ability in the tactile group. “[…] rather than sequence learning it 

seems the expression of sequence learning that is impaired with single tactile 

stimuli compared to single visual stimuli” (Abrahanmse et al. 2009, p.182). As 

Abrahamse et al. (2009) pointed out, this interpretation is in line with the ideas of 

other scholars in the field (see Deroost et al. 2009; Frensch et al. 1998; Hoffmann 

and Koch 1997). The authors concluded by underlying the importance of taking 

into consideration the following observation when interpreting results from implicit 

learning studies: results should not be directly taken as an expression of sequence 

learning; in fact, they reflect the degree of sequence learning combined with the 

task-dependent constraints for the expression of those knowledge (Abrahamse et 

al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

Figure 13. RTs curves for the visual, tactile, and bimodal conditions across blocks in the 

training phase. Blocks 1 and 12 are random blocks. (Figure taken from Abrahamse et al., 

2009, p. 179). 

 
Pavlidou & Bogaerts (2019) have been the first who investigated implicit statistical 

learning abilities across the visual, auditory, and tactile sensory domains and their 

relationship with reading competencies in children, using the AGL paradigm. The 

aim of their study was twofold: on one side, they wanted to verify whether ISL 

would have occurred in all three sensory domains. Is ISL a unified ability? 
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Secondly, they aimed at verifying the relationship between ISL and reading and 

reading-related abilities in typically developing children (basic reading skills, 

reading fluency, and phonological awareness). For all three modalities, the tasks 

were composed of two phases. In the training phase, children were exposed to 

sequences of stimuli encoded onto the strings generated by an artificial grammar26. 

After the training phase, children were informed about the presence of rules in the 

strings they had just been presented with and, in the subsequent phase, that is the 

testing phase, they were presented with new strings and they were asked to judge 

them as grammatical or ungrammatical, based on their feelings concerning how 

familiar these strings looked to them. For the visual task, stimuli consisted of alien 

images. Interestingly, in Pavlidou & Bogaerts’s visual experiment, the strings were 

presented all at once, one at a time. In other words, visual sequences were presented 

simultaneously and spatially. This is a point of departure from the presentation 

modality that was adopted for the visual tasks in both Conway and Christiansen, 

2005 and Abrahamse et al., 2008; 2009. Indeed, in these last studies, the visual 

sequences were presented in a sequential, temporal manner, in line with the auditory 

and tactile stimuli presentations. In other words, the symbols of the visual 

sequences appeared one at a time, in different locations on the screen. Pavlidou & 

Bogaerts’s decision concerning the modality presentation of visual stimuli was 

based on the observation that the visual domain is more suited to deal with statistical 

information that is contained in spatially arranged elements, as opposed to the 

auditory domain, which is better at tracking statistical regularities that are 

sequentially presented (for further discussion and references see Conway and 

Christiansen, 2005). For the auditory task, stimuli consisted into 5 different pure 

tones (261.6 Hz; 277.2 Hz; 349.2 Hz; 370 Hz; 493.9 Hz). Each stimulus had a 

duration of 500 ms and within each stimulus 100 ms intercurred. Each sequence of 

stimuli was separated by an interval of 1700 ms after which appeared a fixation 

cross on the screen. As far as the tactile task is concerned, stimuli consisted of a 

vibration that was transmitted to one out of four possible fingers of one hand 

(thumb, index, middle, and ring fingers). The vibrations lasted 500 ms and were 

presented every 100 ms. Vibrations were produced and transmitted through an 

                                                       
26 They used the same grammar of Knowlton and Squire (1996). 
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innovative device composed of a main wireless body, silicon finger sensors, and a 

control panel (see Pavlidou & Bogaerts, 2019, p.6, Box 1). Surprisingly, results 

indicated that above-chance performance occurred in the visual and tactile but not 

in the auditory task. This result is in contrast with Conway and Christiansen’s 

results, which showed better learning performances in the auditory domain than in 

the tactile and visual domains. (Conway and Christiansen, 2005). The second 

important result is that they did not find correlations between learning performances 

in the three different sensory domains. They thus concluded by suggesting some 

degree of modality specificity in the learning process. Regarding the relationship 

between ISL abilities and reading skills, the authors found a statistically significant 

correlation only between phonological awareness and ISL in the visual domain. 

Other slight correlations that although did not reach any significance were found 

between ISL in the visual domain and fluent reading and basic reading skills as well 

as between ISL in the auditory domain and basic reading skills, reading fluency, 

and phonological awareness. Importantly, no performance correlations across 

modalities were found. This is another important piece of evidence that made the 

authors be more in favour of the existence of modality constraints.  

Summing up, few studies have been conducted so far in the realm of tactile 

implicit statistical learning. Yet, it is interesting to note that the few studies 

conducted in the field have provided evidence for the fact that both children and 

adults can learn sequential statistical information tactilely. However, sequential 

statistical learning performances in the tactile domains have revealed themselves as 

being worse as compared to those in the visual and auditory domain in adults 

(Conway and Christiansen, 2005; Abrahamse et al., 2008; 2009), whether in 

children tactile sequential statistical learning has turned out to be less effective than 

visual spatial statistical learning but more powerful than auditory sequential 

statistical learning (Pavlidou & Bogaerts, 2019).  
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3.1.5. Is the auditory domain superior in sequential implicit statistical learning? 

Evaluating the Auditory Scaffolding hypothesis 

 
In the previous sections, we have seen that various studies have focused on 

investigating implicit statistical learning abilities in different sensory domains. 

What emerges from the overall picture of these studies is that (i) this ability is 

present in the auditory, visual, and tactile domains; (ii) there are domain-specific 

differences. Specifically, regarding statistical learning in the temporal (i.e., 

sequential) dimension, several studies have found that the auditory domain excels, 

showing an advantage over the visual domain (Saffran, 2002; Conway, 

Christiansen, 2005; 2009). Crucially, however, when we examine studies that have 

compared this capacity in the tactile domain, we find two contrasting pieces of 

evidence. On one hand, Conway and Christiansen (2005) have found that hearing 

has an advantage over the tactile domain in acquiring sequential statistical 

information. On the contrary, Pavlidou & Bogaerts (2019) have found the opposite, 

namely that the tactile domain has an advantage over the auditory one. 

Based on the evidence that adult subjects perform most effectively 

sequential statistical learning through the auditory sensory domain, rather than with 

sight, and taking into consideration the fact that the nature of sound is 

fundamentally temporal and sequential, Conway et al. (2009) formulated the 

Auditory Scaffolding Hypothesis. According to this hypothesis, exposure to sound 

plays a crucial role in the development of cognitive abilities related to temporal and 

sequential patterns. The hypothesis suggests indeed that sound serves as a cognitive 

support or "scaffolding" for the development of general abilities related to recalling, 

producing, and learning sequential information. It follows that the absence of sound 

exposition during early development may disrupt the formation of sequencing 

skills. In other words, deafness may negatively impact the developments of 

cognitive functions related to sequential information. “Although it is common to 

consider deafness as affecting the sense of hearing alone, we argue that because 

sound is the primary gateway to understanding temporal and sequential events, 

auditory deprivation may result in significant disturbances on a wide range of other 

tasks.” (Conway et al., 2009, p. 276).  To test this hypothesis, Conway et al. (2009) 

examined sequencing skills in two distinct groups of children. One group was 



 188 

composed of deaf children with cochlear implants (CIs); the other one consisted in 

an age-matched hearing group. They evaluated children's motor sequencing 

abilities by means of a fingertip tapping task. In one variation of the task, children 

were instructed to rapidly tap their thumb and index finger together. In another 

version, they were asked to swiftly tap the tip of their thumb, after that the index, 

middle, ring, and pinky finger, following this specified order. Results indicated that 

deaf children with CIs performed less effectively than the control group. Notably, 

as they highlighted, the deaf children did not exhibit impairments in various non-

sequencing tasks, such as tactile perception and visual-spatial memory. In addition 

to the fingertip tapping task, they assessed children's visual sequential learning 

abilities though an AGL task, in which sequences of colored squares, generated by 

an artificial grammar, were sequentially displayed on a touch-sensitive screen. The 

task required the children to remember and reproduce the sequence of colors, by 

tapping in the right order the panels in which squared appeared.  After this initial 

phase, the test phase began, and children were exposed to some sequences generated 

by the same artificial grammar and other sequences generated by a different 

grammar. The task for participants was the same as that in the initial phase. As the 

authors explain, since each color corresponded uniquely to a specific position on 

the screen, a child might have recalled a sequence of locations, a sequence of colors, 

or both. The results indicated that normal-hearing children demonstrated a 

significantly higher sequence learning score compared to the deaf children, with the 

latter group showing limited improvement. Moreover, a smaller percentage of deaf 

children exhibited the effects of implicit sequence learning compared to their 

normal-hearing counterparts. Overall, both the fingertip tapping task and the 

sequential learning AGL tasks revealed that deaf children exhibit atypical motor 

and visual sequence learning compared to age-matched normal-hearing children. 

Based on these results, Conway et al. (2009) suggested that early deafness led to 

secondary disruptions in non-auditory sequencing skills, thus corroborating the 

auditory scaffolding hypothesis. The authors concluded by asserting that, while it 

is evident that the absence of sound impedes the acquisition of spoken language, 

auditory deprivation also hinders the proper development of non-auditory 

sequencing cognitive functions. Two possible mechanisms are suggested to account 
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for this phenomenon. One potential explanation is that exposure to sounds would 

offer an opportunity for automatic imitation (i.e., vocal rehearsal) of the auditory 

input, whether vocally or covertly. “Imitating what is heard gives a discrete verbal 

label to a continuous auditory signal, providing anchor points for learning 

associations among the discrete symbols (i.e., words). Under this ‘‘embodied’’ 

account, hearing thus recruits vocal rehearsal processes that presumably strengthen 

the development of domain-general implicit sequence learning abilities.” (Conway 

et al., 2009, p. 278). Alternatively, another possible mechanism would rely on the 

notion that all environmental input inherently contains "modality-neutral" 

information alongside the modality-specific signal itself. Unlike vision, sound may 

carry specific higher-level patterns of information associated with serial order and 

temporal change. “Under this view, hearing is the primary gateway for perceiving 

high-level sequential patterns of input that change over time (rather than over 

space). The development of fundamental sequence learning mechanisms would 

thus be delayed when this type of input is unavailable, as is the case in deafness.” 

(Conway et al., 2009, p. 278). Summing up, Conway et al. (2009) claim that sound 

is crucial for developing cognitive processes related to temporal and sequential 

behavior. According to them, exposure to sound aids in encoding and manipulating 

sequential information, while a lack of auditory stimulation hinders these skills. The 

study highlights the broader impact of sound on cognition beyond auditory 

perception, with implications for neurocognitive development across various 

populations. 

Crucially, as pointed out by Giustolisi et al. (2022), several studies have 

found evidence contrasting with the findings in Conway et al. (2009). (cf. Giustolisi 

& Emmorey, 2018; Hall et al., 2018; Terhune-Cotter et al., 2021; von Koss 

Torkildsen et al., 2018).  

Hall et al. (2018) contests two aspects of Conway et al.'s (2009) study. Firstly, as 

they rightly point out, in the population of deaf children tested by Conway and 

colleagues, the period of auditory deprivation largely overlaps with that of language 

deprivation. Indeed, they tested deaf children born to hearing parents who were 

exposed to sounds through cochlear implants. So, the effects found in Conway et 

al. (2009) could be attributable to the lack of exposure to sound, while also to the 
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lack of exposure to language. These two things should be disentangled. Secondly, 

as rightly pointed out by the authors, the task they used may not be the most suitable 

for investigating sequential statistical learning abilities. Indeed, in this task, children 

with a high working memory span are expected to exhibit no learning effects. This 

is because their performance would already be at its maximum for both familiar and 

unfamiliar sequences. In other words, they can accurately remember both familiar 

and unfamiliar sequences. Therefore, any detectable learning effects would likely 

be observed only in children who struggle to remember the unfamiliar sequences 

presented to them. Hall et al. (2018) expanded upon Conway and colleagues' study 

by conducting two experimental investigations. They not only tested the two groups 

of children examined in Conway et al. (2009) (i.e., hearing children and deaf 

children born to hearing parents) but also included a third group: Deaf children with 

no delay in language exposure (i.e., children born to deaf parents and exposed to 

sign language from birth). In the first experiment, they replicated Conway's AGL 

task and found no results in any of the three groups of children. In contrast, in the 

second experiment, when they tested children with a classic serial reaction time 

task, they found evidence of learning in all three populations.  

Results consistent with those of Hall et al. (2018) and contrasting with the auditory 

scaffolding hypothesis are provided by Terhune-Cotter et al. (2021) and von Koss 

Torkildsen et al. (2018). Both studies explored learning abilities in deaf children 

compared to hearing controls, demonstrating comparable performance between the 

two groups in implicit statistical learning tasks. 

Compelling evidence that contradicts the auditory scaffolding hypothesis emerges 

also from the study by Giustolisi et al. (2022), who carried out an experimental 

study to verify whether sequential rule learning is hindered in children with 

congenital deafness. Their study aimed to assess whether a lack of hearing 

experience impedes learning sequential patterns, as suggested by the auditory 

scaffolding hypothesis. However, unlike previously conducted studies on the topic, 

they tested this ability at a more complex and abstract level. Indeed, instead of 

investigating the ability to acquire finite-state grammar statistical information, they 

also investigated the acquisition of sequential nested and crossed dependencies. The 

research involved 15 deaf adult participants (Italian Sign Language signers) and 15 
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hearing adults. They took part in a visual artificial grammar learning task, 

comprising sequences of stimuli generated by grammars of increasing 

computational complexity (from finite-state to mildly context-sensitive grammars). 

Specifically, the grammar tested were the following: the regular grammar (ABnA); 

a context sensitive grammar (Mirror grammar); a mildly context-sensitive grammar 

(Copy grammar). The sequences of symbols generated by the grammars were 

encoded onto colorful decorated squares that were sequentially presented.  Every 

square remained visible on the screen till the complete sequence was presented. 

Then, the whole sequence disappeared, and participants were asked to give an 

answer before the appearing of a new sequence. Each participant was tested on the 

three target grammars in a randomly determined order. The procedure for each 

grammar comprised two distinct phases: exposure and testing phase. Throughout 

the exposure phase, participants were presented with 30 grammatical sequences 

with N values of 2, 3, and 5. In the testing phase, participants encountered a total of 

87 strings, comprising 36 grammatical ones (including N = 2 and N = 3, as well as 

extensions to N = 4 and N = 6) and 51 ungrammatical ones (N = 2, 3, 4, 6). Hence, 

test stimuli included sequences of the same length as those in the exposure phase 

and sequences of different lengths, enabling testing for rule generalization. 

Ungrammatical strings encompassed sequences featuring a missing element or 

incorrect category membership. Participants were tested on their ability to accept 

grammatical strings and reject ungrammatical foils in the testing phase (they were 

tasked with determining whether the sequence aligned with the same schema 

observed in the exposure phase. They conveyed their judgment by pressing a yes/no 

key on a keyboard).  
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Figure 14. Instances of grammatical sequences for the three grammars with N=5. Picture 

taken from Giustolisi et al., 2022, p.8. 

 
Results showed that both the deaf and hearing groups demonstrated proficiency in 

learning each of the three grammars, correctly accepting novel grammatical 

sequences and rejecting ungrammatical foils. The authors also focused on 

participants' ability to generalize rules to stimuli of novel lengths. As explained 

above, during the exposure phase, participants were exposed to sequences of N = 

2, 3, or 5. In the testing phase, sequences of N = 4 and sequences of N = 6 were 

introduced. Both groups exhibited the ability to generalize to N4 sequences across 

all three grammars. However, while both deaf and hearing participants 

demonstrated the ability to generalize to strings of N = 6 in the regular ABnA 

grammar, only the hearing participants displayed N = 6 generalization in the two 

supra-regular grammars. Moreover, comparing the hearing and the deaf groups, the 

former surpassed the latter in certain aspects: Better performances were found 

concerning the rejection of ungrammatical strings in the regular ABnA grammar and 

the supra-regular Copy grammar. As the author explained, however, it is important 

to note that both groups demonstrated mastery of the three grammars. Deaf 
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participants consistently performed equally well in generalization relative to 

recognition of grammatical sequences. Hence, the marginal decrease in 

performance observed among deaf participants, as opposed to their hearing 

counterparts, was not ascribed to differences in rule extraction abilities between the 

two groups. As a matter of fact, the authors conducted further Bayesian analyses to 

shed more light on the results. Importantly, these analyses confirmed that deaf 

participants’ results were caused by actual learning of the specific target grammar. 

In other words, participants did not adopt alternative strategies. As the authors 

proposed, the difficulty in generalizing to N = 6 might indicate that these sequences 

were too long for the deaf population to be tracked. Moreover, Giustolisi et al. 

(2022) proposed that difficulties could have stemmed from potential interference 

during the encoding of stimuli. Specifically, verbal rehearsal strategies may have 

impacted sequence learning task performance. “[…] verbal rehearsal strategies may 

have a relevant impact on sequence learning tasks performance. Sequence tracking 

may be more difficult for the deaf population due to visual stimulus interference 

with their verbal coding strategies. Hearing participants may have implemented 

some form of verbal (vocal) recoding to track the incoming sequence […] Deaf 

participants attempting to implement such verbal encoding would suffer from 

interference, since verbal recoding of the experimental stimuli would need to use 

the same visual channel as their signed language.” (Giustolisi et al. 2022, p. 18). 

The authors concluded by suggesting that future research could explore this 

hypothesis, potentially comparing hearing and deaf participants using nonvisual 

stimuli, such as tactile stimuli. Overall, Giustolisi and colleagues’ findings provided 

clear evidence against the auditory scaffolding hypothesis, especially considering 

that the deaf participants were all born deaf, with the majority never using a 

cochlear implant (Giustolisi et al., 2022).  

In this section, we have presented and discussed Conway et al.’s (2009) 

Auditory Scaffolding Hypothesis. This theory underscores the pivotal role of 

exposure to sound in shaping cognitive abilities related to temporal and sequential 

patterns. Specifically, it proposes that sound serves as a cognitive support or 

"scaffolding", fostering the development of general capacities involved in recalling, 

producing, and learning sequential information. Conway et al. (2009) explain that 
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the auditory scaffolding hypothesis finds support through two sets of evidence: (i) 

individuals congenitally deaf display non-auditory sequencing abilities; (ii) there 

are modality-specific constraints observed in hearing populations. Specifically, in 

support of (i), explain “[…] recent findings suggest that deaf children have 

disturbances on exactly these same kinds of tasks that involve learning and 

manipulation of serial-order information.” (Conway et al. 2009, p. 275). In support 

of (ii), on the other hand, they elaborate “[…] normal hearing adults do best on 

sequencing tasks when the sense of hearing, rather than sight, can be used.” 

(Conway et al. 2009, p.275).  

Crucially, however, as we have seen, many studies have refuted (i), 

providing evidence that deaf populations succeed in learning domain-general 

sequential information. This contrasts with what was hypothesized by Conway and 

colleagues. (cf. Giustolisi et al. 2022; Hall et al., 2018; von Koss Torkildsen et al., 

2018; Terhune-Cotter et al., 2021). Regarding (ii), which concerns modality 

constraints in hearing populations, we find confirmation that hearing has an 

advantage in processing sequential stimuli compared to vision, as evidenced by 

many studies (cf. Conway et al., 2009; Saffran, 2002). However, this is not the 

complete picture. Indeed, by introducing a third variable into the equation, we 

observe a change in perspective. Specifically, when comparing auditory and tactile 

domains in processing sequential statistical information, we find conflicting 

evidence (cf. Conway, Christiansen, 2005, for auditory superiority; Pavlidou, 

Bogaerts, 2019, for tactile superiority). In other words, while it is confirmed that 

the auditory domain has an advantage over the visual domain in processing 

sequential statistical information, the auditory superiority is not confirmed in the 

comparison with the tactile domain. In other words, it is still unclear whether 

hearing has superiority over touch in processing sequential statistical information. 

We believe that further studies should investigate this issue by comparing, through 

paradigms as similar and comparable as possible, this ability to acquire sequential 

statistical information in the tactile and auditory domains. Indeed, this will be one 

of the objectives of the present investigation, which will explore domain-specific 

constraints in the processing of sequential structures across different sensory 

domains (Chapter 5). 
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In the preceding sections, we delved into sequential implicit statistical 

learning across various sensory domains, elucidating both domain-general and 

domain-specific mechanisms at play. Our exploration encompassed studies in 

visual, auditory, and tactile domains, prompting us to question whether any specific 

domain holds an advantage in processing sequential statistical information. The 

auditory scaffolding hypothesis (Conway et al., 2009) was scrutinized, leading to 

the emergence of data problematic for the theory. Numerous studies demonstrated 

that exposure to sound might not be as pivotal as previously thought for the 

development of cognitive abilities tied to temporal and sequential patterns, 

particularly evident in deaf populations proficiently processing domain-general 

sequential statistical information (cf. Giustolisi et al, 2022). Despite this, 

uncertainties persist regarding whether the auditory domain excels above all others 

in processing sequential statistical information. Our conclusion rests on the 

confirmed advantage of the auditory domain over the visual domain in sequential 

processing (cf. Conway, Christiansen, 2009; Saffran, 2002), with the comparison to 

the tactile domain still to be verified. 

As explained in Chapter 2 of this thesis, our goal extends beyond 

investigating processes and mechanisms related to the processing and acquisition 

of low-level transitional regularities. We also aim to explore more abstract 

representations in the processing of sequential structures (cf. Dehaene et al., 2015). 

Specifically, we want to shed light on the mechanisms underpinning the cognitive 

ability to deal with recursive hierarchical structures arising from sequential input—

a mechanism at play in human language but also in music (cf. Section 2.1.2.; 2.2.1.). 

The overarching goal of this thesis is to illuminate the mechanisms involved in the 

formation of recursive hierarchical abstract structures arising from sequential, 

temporally ordered, fading stimuli.  

Turning our attention to the next section, we will specifically shift our focus 

to recursion. Specifically, we are interested in investigating the representational 

features of recursion, that is, the capacity to represent and apply self-similarity 

across hierarchical levels (cf. Section 2.3.6.). Having thoroughly explained the 

mechanisms of recursion in Chapter 2, our objective is now to determine whether 
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recursion is a domain-specific or domain-general ability. Do we possess the 

capacity to process and form recursive structures in different sensory domains? If 

so, are there differences across these domains? While the literature on this topic 

includes AGL studies conducted in the visual and auditory sensory domains, it is 

noteworthy that no study has explored recursion in the tactile domain. These studies 

will be reviewed in the upcoming section. 

 

3.1.6. Visual and auditory recursive hierarchical learning 

 

In this section, we review some interesting experimental studies which investigated 

recursion in the visual domain (Martins, 2012; Martins et al., 2014; 2015), and in 

the auditory domain (Martins et al., 2017). 

Martins (2012) devised a novel assessment task named the visual recursion task 

(VRT) to gauge individuals' proficiency in conceptualizing visuo-spatial hierarchies 

as recursive structures and applying these conceptualizations to generate 

subsequent levels of embedding. The VRT method draws inspiration from 

geometrical self-similar fractals, generated through recursive embedding rules over 

multiple iterations. In other words, they created self-similar visual patterns by 

iteratively applying the same rules across multiple hierarchical levels. In the task, 

participants were exposed to the initial three iterations of a fractal structure and 

were subsequently required to identify the correct fourth iteration from two options 

(Figure 15). As the authors explain, successful performance necessitated acquiring 

categorical knowledge about constituent elements, recognizing hierarchical 

structures, detecting similarities in the disposition between elements across levels, 

and applying abstract rules to extend one level beyond the given. To differentiate 

between recursion and embedded iteration, a non-recursive control task was 

introduced. This control task involved iterative processes that embedded 

constituents within fixed hierarchical levels without generating new levels.  The 

task procedure was the same as that in the VRT task (Figure 16). 
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Figure 15. Instances of trial from the visual recursion task27. (Figure taken from Martins, 

2012, p. 2061) 

 

 

 

 

 

 

 

 

 

 

Figure 16. Trial from the visual hierarchical task: The task procedure mirrors that of the 

visual recursion task. (Figure taken from Martins, 2012, p. 2061). 

 

Two groups of participants took part in the tasks. Fluid intelligence and working 

memory were also measured. The findings indicated that visual recursion had lower 

accuracy and longer response times compared to embedding iteration. Fluid 

intelligence emerged as the most reliable predictor for both tasks, but the predictive 

power of verbal working memory was higher for visual recursion, while spatial 

                                                       
27 The top row displays the initial three stages of a fractal creation process. Subsequently, the 

participant is tasked with identifying, from the images presented in the bottom row, the one that 

accurately represents the fourth iteration. 
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working memory was more influential for embedded iteration. Based on this result, 

the authors concludes that it remains to be verified whether verbal processing 

resources are essential for recursive representations in the visual domain or not. 

“[…] the next empirical question is whether verbal processing resources are a 

necessary condition for recursive representations in the visual domain or whether 

they are recruited when available, given that they enhance reasoning in non-

linguistic domains” (Martins, 2012, p. 2061). 

Martins et al. (2014) delved into the exploration of the human ability to discern 

well-formed visuospatial hierarchical structures. Their research centered on 

implementing rules that either carried out transformations within a hierarchical 

level or produced additional self-similar hierarchical levels. Two tasks, the Visual 

Recursion Task (VRT) and the Embedded Iteration Task (EIT), were employed to 

scrutinize the cognitive processes associated with the representation of visuospatial 

hierarchies. The tasks were adapted from those used in Martins (2012). Both tasks 

involved exposing participants to a set of figures constituting a generative process, 

followed by a forced-choice phase concerning subsequent further iterations (cf. 

Martins, 2012), necessitating the extraction of simple rules from initial iterations 

for predicting subsequent transformations. In VRT, each iterative step generated a 

new hierarchical level following a spatial rule analogous to previous levels. 

Conversely, in EIT, new elements were iteratively embedded within an existing 

hierarchical level without generating new levels. As a control measure, the 

researchers introduced a 'similarity task' (Positional Similarity Visual Task — 

PSVT), where participants matched a target visuospatial hierarchy with two 

alternatives. The correct alternative matched one of the three previously presented 

images. During four sessions inside a 3 Tesla MRI scanner, participants engaged in 

VRT, EIT, and PSVT stimuli, with an event-related design for randomizing stimuli 

across sessions. In the VRT, participants were informed that new elements would 

have been added at each step to create new hierarchical levels, following a spatial 

rule constant across levels. Conversely, in the EIT, they were instructed that new 

elements would have been added to an existing hierarchical level according to a 

predictable spatial rule. Martins et al. (2014) hypothesized that the brain utilizes 

distinct resources when processing hierarchies, depending on whether it employs a 
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"fractal" (recursive, generating new levels) or a "non-fractal" (hierarchical within 

level) cognitive strategy. Behavioral responses (reaction times and accuracy rates) 

and neural circuits activated by the tasks were analyzed and compared. Results 

indicated lower accuracy rates in EIT compared to VRT and PSVT, with faster 

responses observed in VRT. Brain imaging results unveiled key findings: Both the 

within and between levels rule processes activated a bilateral network (the dorsal 

stream) involving visual association areas, fronto-parietal circuits related to spatial 

reasoning, and regions like the inferior frontal gyrus (IFG). This supported the 

notion that Broca's area might be generally involved in maintaining online 

information or rules supporting iterative processes, rather than being specifically 

involved in recursive tasks. Recursive processes generating new hierarchical levels 

activated brain areas usually involved in the integration of categorical and spatial 

information. Specifically, it activated regions within the parieto-medial temporal 

pathway (PMT), including the posterior cingulate cortex (PCC) and retrosplenial 

cortex (RSC), along with projections to the medial temporal cortex (MTL). These 

regions are known for their roles in the formation of cohesive representations, 

integrating spatial and semantic information and are also associated with episodic 

memory. The importance of the MTL in processing spatial, linguistic, and social 

hierarchies has been underscored in prior research. Furthermore, activations were 

identified in the anterior portions of the superior and middle temporal gyri (STG 

and MTG, respectively), usually associated with the retrieval of abstract categories. 

Taken together, these findings emphasized the critical role of episodic memory and 

the integration of both spatial and categorical information. As the authors explained, 

the intriguing aspect lies in the fact that the visuo-spatial hierarchies used in the 

study did not inherently convey "semantic" information. Regarding this, the authors 

put forth the hypothesis that representing hierarchical dependencies may require the 

retrieval of "semantic" information of a more abstract nature. Within-level iterative 

rules showed more specific activation of brain areas involved in spatial domains, 

involving the dorsal stream, dorsal fronto-parietal network (FPN), IFG, and basal 

ganglia. Interestingly, Broca's area appeared more active in within-level 

computations than recursive ones. The results suggested that Broca's area does not 

exhibit specific activation in processing cross-level hierarchical integration. 
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Instead, it seems to play a broader role in the storage and maintenance of rule-based 

iterative information, possibly involving working memory processes. Additionally, 

these findings proposed that recursive embedding serves as a more memory-

efficient approach for generating complex hierarchies. In summary, Martins et al. 

(2014) proposed that the brain employs distinct resources for processing 

hierarchical structures, depending on whether a "fractal" (generating new levels) or 

a "non-fractal" (hierarchical within level) cognitive strategy is applied. Recursive 

mechanisms activated brain areas associated with the integration of abstract 

semantic and spatial information, while within-level iterative rules correlated more 

strongly with working memory abilities. The study concluded by suggesting future 

research across different domains to verify if domain-specific, localized 

computational processes are needed for the creation of hierarchical structures. 

Martins et al. (2015) aimed to investigate a widely held hypothesis suggesting that 

the capacity to form and utilize recursive representations in processing hierarchical 

structures is contingent upon language abilities. If this holds true, linguistic 

resources should inevitably come into play when representing recursion in non-

linguistic domains. Hence, the primary objective of Martins et al. (2015) was to 

directly explore whether verbal resources are essential for acquiring and applying 

recursive rules in the visual domain. As the authors explained, some scholars 

posited a close association between the evolution of language and the emergence of 

recursion. A notable hypothesis asserts that recursion constitutes a domain-specific 

linguistic computational system, independent from other interacting systems 

(Hauser et al., 2002). According to this view, while the use of recursive rules might 

be present in non-linguistic domains, such applications could hinge on a previously 

evolved system, relying on language faculties. Conversely, Pinker and Jackendoff 

(2005) proposed that recursion's utilization in certain domains, such as visual 

perception, can occur autonomously of language. Overall, regarding the 

relationship between human language and recursion, there are three logically 

plausible scenarios (Martins et al., 2015): 

 

- Hypothesis 1: The capacity for creating recursive representations is specific to 

language and is executed by a dedicated linguistic module for recursion. 
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Representation of recursion in the other domains relies on language and thus 

utilizes linguistic resources. 

- Hypothesis 2: The capacity for generating recursive representations is not language 

specific but domain general. There exists a unified cognitive system responsible 

for recursion that can be engaged by multiple domains, without language holding 

a primary role. 

- Hypothesis 3: The ability to construct recursive representations is specific to 

multiple domains but extends beyond language. In other words, each cognitive 

domain can access its own dedicated system for implementing recursive 

representations, independent of other domains. 

 

As Martins et al. (2015) pointed out, so far, most studies that have investigated 

recursion have done so in the linguistic domain. It is noteworthy, however, that 

some studies have started exploring this ability beyond the linguistic domain, such 

as in vision, as demonstrated in the studies conducted by Martins and colleagues 

mentioned earlier. As we have seen, Martins and colleagues discovered that, in 

contrast to non-recursive iterative processes, visual recursive abilities showed only 

a weak correlation with specifically visual resources, such as non-verbal 

intelligence, spatial short-term memory, and spatial working memory. However, 

they exhibited a strong correlation with recursive planning tasks (Martins et al., 

2014) and verbal working memory processing component (Martins, 2012). 

Nevertheless, Martins et al. (2015) clarified that this latter finding does not 

necessarily imply that visuo-spatial recursion relies on resources specific to verbal 

processing. Instead, this correlation may be influenced by a third variable shared by 

both domains, such as cognitive resources involving the central executive. 

Interestingly, moreover, Martins et al. (2014) showed that visual recursion does not 

selectively activate perisylvian language areas when compared to a simple iterative 

task. However, as Martins et al. (2015) explained, these findings were correlational 

and thus require confirmation through methods that manipulate the capacity to 

utilize linguistic resources in order to have a more accurate view. To shed more light 

on the issue, in Martins et al. (2015) participants were tasked with completing a 

Visual Recursion Task (VRT) amidst verbal interference. If verbal rehearsal of 

digits negatively impacts the processing of recursive hierarchies in the visual 
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domain, it would provide evidence supporting the hypothesis that language has a 

major role in the representation of recursion in non-linguistic contexts. On the other 

hand, if the ability to represent visual recursion remains unaltered when linguistic 

resources are restricted, it would bolster the notion that the visual domain can 

directly tap into the cognitive system of recursion, regardless of language. In their 

investigation, the authors employed a dual-task paradigm to examine whether the 

utilization of verbal resources is a prerequisite for representing recursion in the 

visual domain. The methodology comprised executing a primary task (specifically, 

a visual recursion task) either independently or concurrently with a secondary 

interference task. If the performance in the primary visual recursion task diminishes 

when a secondary verbal interference task is introduced, it implies that verbal 

resources are essential for solving visual recursion. However, as they explained, it 

is essential to consider that a decline in visual recursion task performance in 

concomitance of verbal interference could also be attributed to general attention 

constraints. To address this possibility, they incorporated a nonverbal motor 

interference task in their experimental study. Participants underwent four 

experimental sessions, with each session consisting of 12 trials: (i) Visual recursion 

task (VRT) in the absence of a secondary task; (ii) VRT with a motor task 

interference; (iii) VRT with low-load verbal task interference; (iv) VRT with high-

load verbal task interference. In the VRT task, the stimuli and methodology used 

were the same as those described in Martins (2012). Hence, it regarded visual 

fractals generation. As we have mentioned, participants engaged in the Visual 

Recursion Task (VRT) either in isolation or alongside one of three interference 

tasks: motor interference, low-load verbal interference, and high-load verbal 

interference. During the motor task, participants viewed a sequence of six 

simultaneously presented pictures representing finger-tapping movements. 

Participants were instructed to repeatedly perform the sequence tapping their own 

fingers and then to press a button when ready to transition to the VRT task. 

Throughout the VRT trial, participants were asked to continuously replicate the 

sequence using only their right hand, without utilizing other cognitive (e.g., verbal) 

or physical resources aside from their fingers. Following their response to the VRT 

trial, participants were then prompted to type the motor sequence they performed. 
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The verbal interference task utilized the digit span methodology (i.e., it tapped into 

verbal working memory). Participants were visually exposed to a series of digits 

and were required to verbally repeat the sequence while simultaneously undergoing 

a VRT trial. Following each trial, participants were prompted to type the sequence 

on the keyboard. Under the low-load verbal task condition, participants were tasked 

with memorizing a randomly generated sequence up to 6 digits, aligning with the 

content load in the motor task.  In the high-load verbal task condition, participants 

faced the challenge of memorizing a sequence up to 7 digits. The findings indicated 

that participants demonstrated the ability to acquire principles involved in the 

recursive generation of visuo-spatial hierarchies and apply this structural 

knowledge to various recursive instances.  Notably, performance exhibited 

improvement with practice and did so even in the absence of response feedback, 

strongly supporting the presence of rule induction or a generalization mechanism. 

Secondly, the study revealed comparable high-performance levels in the Visual 

Recursion Task (VRT) both without interference and when coupled with secondary 

verbal or motor tasks. In other words, a lack of interference from either motor or 

verbal secondary tasks on the visual recursion task was observed. As the authors 

explained, this strongly implies that the capacity to comprehend and apply 

principles governing the creation of recursive self-similar visual hierarchies in the 

spatial dimension remains unaffected by secondary motor or verbal tasks. 

Intriguingly, the correct rehearsal of concomitant verbal or motor material appeared 

to enhance, rather than diminish, performance in the visual recursion task. The 

authors postulated that the presence of a secondary task might compel participants 

to consciously focus on the primary task, potentially setting the stage for them to 

adopt a more rigorous and analytical cognitive approach. Overall, the authors 

concluded by suggesting that these findings cast doubt on the viability of 

Hypothesis 1. Instead, their results align more with the assertions of Hypotheses 2 

or 3, both of which posit that recursion can be conceptualized autonomously from 

language. The inquiry into whether recursion represents a unified, domain-general 

cognitive system (Hypothesis 2) or functions as a combination of multiple distinct, 

domain-specific modules (Hypothesis 3) emerges as an intriguing avenue for future 

research. 
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Martins et al. (2017) aimed to deepen our understanding of human cognitive 

recursion in non-linguistic domains: the auditory domain. To do so, they carried out 

two experimental studies, investigating the representation of musical fractals. The 

investigation had a twofold objective: firstly, to determine if adults, including both 

musicians and non-musicians, can portray hierarchical relationships in the auditory 

domain. This involved assessing and comparing their capacity to induce and 

implement iterative rules within the same level and recursive rules across different 

levels in structured tonal sequences (Experiment 1). Secondly, the study aimed to 

explore whether the ability to represent recursion in the auditory domain aligns with 

similar tasks in the action and visual domains. This investigation aimed to discern 

whether constructing recursive representations relies on domain-specific resources 

or a domain-general cognitive framework (Experiment 2). In Experiment 1, they 

explored whether humans possess the ability to represent recursion in the auditory 

domain. Similarly to prior research in vision (cf. Martins, 2012; Martins et al., 2014; 

2015), they implemented recursive rules on sequences of tones and assessed 

participants' capacity to discern these rules. In a two-alternative forced-choice 

paradigm, participants experienced three steps of a recursive process producing 

auditory fractals (pure tone sequences). Subsequently, they were tasked with 

distinguishing between a correctly generated fourth step in the same process and a 

foil (as in similar previous tasks in the visual domain). In addition to this task, 

referred to as the Auditory Recursion Task (ART), a control task, the Auditory 

Iteration Task (AIT), was devised. The methodology and stimuli employed in the 

AIT mirrored those utilized in the ART. In both tasks, participants were instructed 

to attentively listen to the initial three iterations and envision the sound of the fourth 

iteration. Subsequently, they were required to identify the correct fourth iteration 

from two options. The critical divergence between the two tasks laid in the 

procedure governing iteration generation. Indeed, while the AIT shared 

hierarchical, sequential, and iterative aspects with ART, it did not involve recursive 

procedures in generating hierarchical structures. In fact, in the ART, each iteration 

incorporated novel tonal elements recursively within distinct hierarchical levels, 

featuring varying tone durations at each step. Conversely, in the AIT, elements were 

integrated within a consistent, single hierarchical level (maintaining the same tone 



 205 

duration), and no additional levels were added to the structure. Notably, participants 

were not explicitly educated on the concepts of recursion or iteration. Instead, they 

had to implicitly discern these regularities while exposed to examples of stimuli. 

Both musicians and non-musicians were tested. Specifically, thirty non-musicians 

participated in the Auditory Recursion Task, and a distinct group of 24 non-

musicians engaged in the Auditory Iteration Task. Additionally, 20 musicians 

undertook the Auditory Recursion Task. Stimuli in the Auditory Recursion Task 

were constructed as an auditory equivalent to visual fractals, inspired by 

Mandelbrot (1977). As Martin et al. (2017) explain, in the visual domain, 

hierarchical levels are represented by constituent size, with larger constituents 

dominant and smaller subordinate ones. The transformation rule (generator) 

captures the spatial arrangement of subordinate elements relative to the dominant. 

Martins and colleagues’ (2017) auditory fractals were crafted using auditory 

features akin to these parameters: note duration and pitch indicated hierarchical 

level, with longer and lower-pitched notes signifying dominance over higher and 

shorter ones. Tone space was the parameter modulated by the generator. 

Specifically, for each dominant tone in one iteration, they introduced three new 

subordinate tones, shorter in duration and higher in pitch. These subordinate-note 

contours followed a particular pattern (ascending or descending) and were at a 

specific pitch distance from the dominant tone. This constituted the recursive rule 

operating over different hierarchical levels (Figure 17). The target stimulus was 

created through four iterations (Figure 18). The first iteration featured a low-pitch 

pure tone (i.e., the initiator). The second iteration retained the initiator tone and 

added three new tones based on a specific rule (i.e., the generator). This rule 

manipulated pitch contour (ascending or descending), pitch interval between 

successive tones (four or eight semitones), and pitch interval between consecutive 

levels (four or eight semitones). The same generator was applied across all 

hierarchical levels, ensuring constant pitch and rhythmical relations between 

dominant and subordinate elements, resulting in a hierarchical self-similar 

structure. They generated four successive iterations of 24 distinct types of auditory 

fractals. For each of them, they created (i) a well-formed fourth continuation of the 

first three iterative steps and (ii) an ill-formed continuation, that is, a 'foil' stimulus, 
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achieved by applying a different generator to the third iterative step. The foils fell 

into three categories: (i) positional, (ii) odd, and (iii) repetition (Figure 19).  

 

 
Figure 17. Illustrative instance of a tonal auditory fractal. (Figure taken from Martins et al., 

2017, p. 35)28. 

 
Figure 18. Recursive process creating an auditory fractal. (Figure taken from Martins et 

al., 2017, p. 35)29. 

                                                       
28 As explained by Martins et al. (2017), this auditory arrangement exhibits a hierarchy comprising 

four levels, distinguished by varying shades of gray. At the bottom is the dominant level (Level 1), 

featuring a protracted, low-pitch note lasting 7.3 seconds. The second level (Level 2) is crafted from 

three notes, each lasting slightly less than one-third of the duration of the dominant note (Level 1), 

interspersed with brief silent pauses. These three notes ascend sequentially, maintaining a fixed pitch 

interval between each pair. Level 3 is generated using the same principle, introducing sets of three 

notes at a specific pitch interval in relation to a dominant note (i.e., every note at Level 2).  

29 The process involves the addition of a new hierarchical level at each step in the process, illustrated 

by a lighter shade of gray in the figure. This new level consists of notes with shorter duration and 

higher pitch.  

 



 207 

 

 

Figure 19. Different categories of the fourth iteration (Figure taken from Martins et al., 

2017, p. 36)30. 

 

The results demonstrated that participants, irrespective of their musical background, 

successfully grasped recursive rules governing the creation of auditory fractals and 

applied these rules productively. This happened in the absence of feedback or 

explicit instructions. They consistently rejected incorrect continuations of recursive 

processes across the three different types of foil categories. As the authors 

explained, this implies that participants did not rely on a single, simple auditory 

heuristic to solve the task. When comparing performance between the two tasks, 

overall accuracy was similar, with participants performing well in both AIT and 

ART. However, interesting differences emerged as well: (i) the accuracy learning 

                                                       
30 The repetition foil (c) consists of a duplication of the third iteration. In both the odd (b) and 

positional (d) foils, a new hierarchical level is introduced, yet the contour of this level does not align 

with the pattern established in prior iterations. In the odd (b) foils, the final note in each set of three 

matches the pitch of the initial note in that set, disrupting the projected directional flow (whether 

ascending or descending). Conversely, in positional foils (d), the directionality remains consistent 

in every triplet, but it diverges from the directionality of other hierarchical levels.  
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curve was steeper in ART compared to AIT; (ii) while participants exhibited 

consistent rejection of all foil categories in ART, they struggled with rejecting odd 

foils in AIT. With respect to this, the authors explained that the principle inferred in 

ART enabled participants to equally reject all three foil types, whereas AIT 

performance showed less consistency across foil categories, hinting at a potentially 

larger role for heuristic strategies, though not exclusively, in dealing with this task. 

Considering musicians versus non-musicians, the authors found that, while non-

musicians demonstrated performance above chance in ART, their performance was 

relatively modest (71%), especially when compared to their ability to perform a 

similar task in the visuo-spatial domain (>84%). Notably, the musicians’ accuracy 

level (84%) closely resembled that in the visuo-spatial recursion task of the general 

population (Martins, 2012). Based on this finding, the authors suggested that 

expertise and practice effects may exert a more significant influence in the auditory 

domain than in the visual domain. In Experiment 2, the authors delved deeper into 

the nature of the rule induced in ART. In this pursuit, they explored the connection 

between accuracy in ART and that in other non-auditory recursive tasks: The Tower 

of Hanoi task (ToH) and the Visual Recursion Task (VRT). Establishing a strong 

correlation between ART, ToH and VRT would provide supporting evidence that 

ART engages with aspects specific to recursion. However, as the authors explained, 

it is important to take into consideration that, being ART an auditory task, the 

specific skill to perceive musical tone structure is expected to play a role as well. 

For this reason, to quantify the general effects of auditory and musical expertise, 

the authors incorporated in the experiment a control Auditory Iteration Task (AIT), 

a Visual Iteration Task (VIT), and a Melodic Memory Task (MMT). Additionally, 

they considered the number of years of musical training undergone by the 

participants. Hence, with Experiment 2, which included ART, AIT, ToH, VRT, VIT, 

MMT, and taking into account the number of years of musical training, the 

researchers examined whether, even after accounting for effects related to visual 

and auditory processing, ART exhibited a correlation with different recursive tasks. 

If such a correlation were established, it would substantiate the proposition that the 

ART task specifically engages the capacity to represent recursion in the auditory 

domain. Moreover, this finding would bear significance in addressing the broader 
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question of whether recursion is a domain-general or domain-specific cognitive 

function. A total of 40 participants took part in this experiment. Differing from the 

approach in Experiment 1, the inclusion criteria for participants in this study 

encompassed individuals with diverse levels of musical expertise, ranging from 

those with no musical training to others with up to 16 years of musical training. 

Each participant took part in all tasks. Concerning the individual tasks, they utilized 

the exact same versions of ART and AIT as employed in Experiment 1. As for the 

Visual Recursion Task (VRT) and Visual Iteration Task (VIT), these tasks were 

modified versions detailed elsewhere (cf. Martins, 2012). The foil categories 

mirrored those used in ART and AIT (i.e., odd, repetition, and positional). As for 

the Tower of Hanoi (ToH), it consists in a visuo-motor task that involves the 

hierarchical movement of disks across pegs to complete puzzles, adhering to well-

defined rules. Crucially, this task is optimally approached using a recursive strategy. 

Regarding the Melodic Memory Task (MMT), it aims to evaluate participants' 

memory for short melodies. In this task, participants listened to pairs of brief 

melodies (comprising 10 to 17 notes) and were tasked with determining whether 

the two melodies shared an identical pitch interval structure or not. Experiment 2 

replicated the earlier findings from Experiment 1, confirming that humans possess 

the capacity to represent recursion in the auditory cognitive domain. Furthermore, 

the study reiterated the influential role of musical training as a significant predictor 

of performance in both the Visual Recursion Task (VRT) and the Auditory 

Recursion Task (ART), alongside the ability to discern changes in melodic contour 

(MMT). The second key discovery unveiled two critical aspects: (i) performances 

in ART demonstrated to be correlated with those in VRT and the Tower of Hanoi 

(ToH) task. This strongly indicate that while performance in ART is contingent on 

general capacities for processing auditory stimuli, it crucially aligns with other 

recursive abilities as well; (ii) in contrast, there were no discernible specific 

correlations between the Auditory Iteration Task (AIT) and Visual Iteration Task 

(VIT). On the opposite, AIT exhibited a robust connection with other auditory 

measures, suggesting that the processing of simple iteration in the auditory domain 

depends more on resources specific to that modality, without extending across 

diverse cognitive domains. Hence, with these two experimental studies, Martins et 
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al. (2017) demonstrated that (i) human possess the ability to process and represent 

recursion in the non-linguistic auditory domain; and (ii) there is a strong correlation 

between this ability and the same ability in the action sequencing and visual 

domains. As the authors explained, it follows that, despite domain-specific 

constraints, the ability to construct recursive representations may be implemented 

through a more abstract mechanism. Cumulatively, Martins and colleagues’ (2017) 

results strongly indicate that recursion is a domain-general proficiency. 

Summing up, in this section, we have examined studies that investigated the 

representational capabilities of recursion – defined as the ability to depict self-

similarity across hierarchical levels - in both visual and auditory sensory domains 

(Martins, 2012; Martins et al., 2014; 2015; 2017). It is crucial to note the absence 

of research exploring recursion in the tactile domain. Experimental studies 

consistently demonstrated the ability to represent recursion in the visual domain 

(Martins, 2012; Martins et al., 2014; 2015). Martins et al. (2014) found that the 

brain employs distinct mechanisms for processing visual hierarchical structures 

depending on whether a "fractal" (recursive, generating new levels) or a "non-

fractal" (iterative, hierarchical within level) cognitive strategy is employed. 

Specifically, they observed that recursive mechanisms activate brain areas 

associated with abstract categorical and semantic integration, while within-level 

iterative rules are more strongly correlated with working memory abilities. Notably, 

within-level computations exhibited more pronounced activation in Broca's area, 

suggesting a broader role in storing and maintaining rule-based iterative 

information, possibly involving working memory processes. Furthermore, Martins 

and colleagues (2015) challenged the hypothesis that the capacity for creating 

recursive representations is specific to language and executed by a dedicated 

linguistic module. Their results suggested that recursion can be conceptualized 

autonomously from language. The auditory domain also exhibited the ability to 

depict recursive hierarchical structures, demonstrating that humans possess the 

capability to process and represent recursion in the non-linguistic auditory domain 

(Martins et al., 2017). Additionally, Martins and colleagues (2017) established a 

strong correlation between the ability to deal with recursion in the auditory domain 

and corresponding abilities in action sequencing and the visual domain. This 
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implies that, despite domain-specific constraints, the construction of recursive 

representations may be accomplished by a more abstract mechanism. As a whole, 

Martins and colleagues' findings in the auditory and visual spheres strongly support 

the notion that recursion is a domain-general proficiency. 

Importantly, however, we want to focus on a crucial difference that 

characterizes the paradigm that has investigated recursion in the auditory sphere 

compared to that in vision. The studies that have explored the ability to represent 

recursion in the visual domain seen in this section, utilized a paradigm in which 

fractal figures were presented. In these figures, the recursive hierarchical structure 

developed in space. The recursive hierarchical relationships between elements were 

thus perceived simultaneously by participants, that is, in the spatial dimension. 

Thus, we could say that these studies have explored the ability to process static 

recursive hierarchical structures in the visual domain. In contrast, studies that have 

investigated recursion in the auditory domain have explored the ability to process 

and represent recursive hierarchical structures that developed in the temporal 

dimension, not in space. Therefore, in this case, recursive hierarchical structures 

unfolded over time, during listening. The temporal dimension was thus crucial to 

understanding how elements connected and evolved in the context of a larger 

structure. Hence, in this case, the ability to process recursive hierarchical structures 

from sequential stimuli in the auditory modality has been investigated. 

 

 

3.2. Conclusion 

 

In this chapter, we reviewed studies which investigated sequential implicit 

statistical learning and the ability to form recursive hierarchical structures in 

different sensory modalities. Specifically, we have delved into the debate 

concerning domain-specific versus domain-general aspects of implicit statistical 

learning. Then, we focused on domain-specific spatiotemporal structure effects and 

qualitative differences across modalities. Notably, we noticed a lack of studies 

exploring domain-specific spatiotemporal constraints in the tactile modality. 

Regarding qualitative differences in sequential implicit statistical learning, we 
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observed that studies predominantly focused on the visual and auditory domains, 

with recent explorations in the tactile domain confirming the capacity for acquiring 

sequential statistical information. Overall, these studies revealed that, in the 

temporal dimension, the auditory domain excels, showing an advantage over the 

visual domain. However, contrasting evidence emerged when comparing the 

auditory and tactile domains in processing sequential (i.e. temporal) statistical 

information (cf. Conway, Christiansen, 2005, for auditory superiority; Pavlidou, 

Bogaerts, 2019, for tactile superiority). We then reviewed the Auditory Scaffolding 

Hypothesis (Conway et al. 2009). This theory highlights the crucial impact of sound 

exposure on shaping cognitive abilities related to temporal and sequential patterns. 

It suggests that sound acts as a cognitive support or "scaffolding," facilitating the 

development of general skills in recalling, producing, and learning sequential 

information. As explained by the authors, the theory is supported by evidence from 

congenitally deaf individuals displaying non-auditory sequencing abilities and the 

observation of modality-specific constraints in hearing populations. Crucially, 

however, we found studies providing evidence that contradict the hypothesis, 

highlighting deaf populations' success in learning domain-general sequential 

information (cf. Giustolisi et al. 2022; Hall et al., 2018; von Koss Torkildsen et al., 

2018; Terhune-Cotter et al., 2021). Regarding modality constraints in hearing 

populations, we have established that hearing exhibits an advantage in processing 

sequential stimuli compared to vision, as supported by consistent studies (cf. 

Conway et al., 2009; Saffran, 2002). However, introducing a third variable alters 

the perspective. Indeed, when examining the processing of sequential statistical 

information in the auditory and tactile domains, conflicting evidence arises (cf. 

Conway, Christiansen, 2005, for auditory superiority; Pavlidou, Bogaerts, 2019, for 

tactile superiority). In essence, while it is confirmed that the auditory domain 

surpasses the visual domain in processing sequential statistical information, this 

superiority is not consistently observed when comparing it with the tactile domain. 

Thus, it remains uncertain whether hearing holds an advantage over touch in 

processing sequential statistical information. Finally, we explored recursion in 

different sensory domains, finding consistent evidence confirming this ability in the 

visual and auditory domains. Martins et al.'s (2014) work demonstrated distinct 
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brain mechanisms for visual recursion, with recursive processes activating areas 

associated with abstract categorical and semantic integration, while within-level 

iterative rules correlated more strongly with working memory abilities. Notably, 

Martins et al. (2015) challenged the belief that recursion is a language-specific 

ability. Furthermore, Martins et al. (2017) broadened the scope by extending 

recursion's understanding to the auditory domain, establishing a correlation 

between auditory recursion abilities and corresponding skills in action sequencing 

and the visual domain. These findings support the notion that recursion is a domain-

general proficiency.  

However, regarding studies that have investigated recursion, we have 

highlighted two important aspects to take into consideration. The first concerns a 

difference in the paradigms utilized to investigate visual and auditory recursion. In 

visual studies, participants were tested on the ability to process and represent static 

recursive structures spatially arranged in fractal figures. In contrast, auditory 

studies focused on the ability to process and represent dynamic, sequential 

recursive structures unfolding over time during listening. Despite the evidence 

finding a correlation between these two abilities (Martins et al. 2017), it is important 

to consider that, although both tasks are of a recursive nature, they may partially 

involve different cognitive skills. As we observed in the case of sequential implicit 

statistical learning, we cannot exclude the presence of domain-specific 

spatiotemporal constraints in the ability to process recursion. Secondly, we 

emphasized the notable absence of research on recursion in the tactile domain. This 

represents a significant gap in our current comprehension of how recursion operates 

across different sensory modalities. In essence, we observe a lack of studies that 

have devised paradigms capable of directly testing and comparing the ability to 

process and represent recursive hierarchical structures arising from sequentially 

presented input across the auditory, visual, and tactile sensory domains. 
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4. A New Methodology for the Investigation of 

Recursive Structures in Temporally Ordered 

Fading Sequences 

 

Chapter 2 explored the challenges involved in experimentally investigating 

recursion from a cognitive perspective. Despite recursion being considered to play 

a role in several cognitive domains, among which language and music, studying 

this cognitive skill experimentally presents significant difficulties (cf. Section 

2.3.5.1.). Numerous attempts have been made, but many studies have encountered 

problems and failed to demonstrate this ability clearly and irrefutably. Finding the 

appropriate tools to investigate this cognitive ability is a significant challenge, far 

from trivial. The challenge is often attributable to a recurring issue—the lack of 

suitable tools for exploring recursion in non-linguistic domains, as observed by 

Martins (2012). In fact, multiple factors must be considered to design an experiment 

that can specifically test this ability, ensuring that the results can be attributed to 

this particular capacity and not to other cognitive mechanisms. Despite the scarcity 

of studies providing sufficiently clear and irrefutable empirical evidence regarding 

the ability to build abstract recursive representations, Chapters 2 and 3 have 

highlighted some recent studies that are interesting in this regard (Ferrigno et al., 

2020; Martins et al., 2014; 2015; 2017; Planton et al., 2021; Schmid et al., 2023). 

Although these studies had slightly different research objectives and questions, they 

collectively demonstrated that humans are equipped with the cognitive ability to 

form hierarchical recursive representations outside the language domain (cf. 

Chapters 2 and 3). 

However, considering that in both language and music, hierarchical 

recursive structures arise from sequentially ordered stimuli, the aim of this thesis is 

not to demonstrate general recursive ability, but to shed light on the ability to build 

recursive hierarchical abstract representations from temporally ordered sequences 

of stimuli. What are the cognitive mechanisms involved in the transition from the 
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sequential to the hierarchical dimension? In Section 2.2.1., we observed that while 

existing research has predominantly focused on analyzing these cognitive abilities 

individually, only a limited number of studies have explored the comprehensive 

journey from sequence to hierarchy. Consequently, a significant gap exists in our 

understanding of how these processes interact and unfold across the entire cognitive 

continuum (Dehaene et al., 2015). Despite this, recent studies have yielded 

interesting results on the mechanisms involved in the transition from low-level, 

item-based computational strategies to the formation of increasingly more compact 

and structured abstract representations in processing sequentially arranged stimuli. 

These studies highlighted the different mechanisms underlying this process, also 

offering hypotheses about why individuals process sequences of items by forming 

incrementally higher levels of abstraction. (Planton et al., 2021; Radulescu et al., 

2019; Schmid et al., 2023). As outlined in the previous chapters, the objective of 

this thesis is to further illuminate the cognitive mechanisms involved in processing 

sequential sequences. We aim to shed light on the cognitive mechanisms at work in 

processing linearly arranged stimuli at increasing degrees of abstraction. 

Specifically, our goal is to elucidate how cognition derives recursive hierarchical 

patterns from sequentially presented input and the different cognitive mechanisms 

involved in the process. This includes investigating how low-level implicit 

statistical learning relates to the formation of chunks, their categorical abstract 

representation, and the organization of these chunks into recursive hierarchical 

abstract representations. 

In Chapter 3, we delved into the relationship between cognition and 

perception, examining the ability to learn sequential statistical information and 

represent recursion in different sensory domains. Concerning implicit sequential 

learning, we have seen that it remains unclear whether the auditory domain holds 

an advantage over the visual and tactile domains. Regarding recursion, studies have 

demonstrated the ability to process recursion in the auditory and visual domains, 

with a correlation observed across different sensory spheres, suggesting a domain-

general characteristic of recursion. However, no study has investigated this ability 

in the tactile domain. Driven by concerns about the presumed specificity and 

uniqueness of this ability in human language (cf. Section 2.1.2) and the lack of 
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studies comprehensively investigating the ability to create abstract recursive 

hierarchical representations from sequential stimuli across different sensory 

domains (cf. Section 3.2.), we aim to shed light on the nature of this ability. 

Specifically, we will investigate whether it is a domain-specific or domain-general 

ability, thereby clarifying the relationship between this cognitive ability and 

perception. To achieve this, we will examine it across three sensory domains: 

auditory, visual, and tactile. Hence, in Chapter 5, we will experimentally explore 

whether and how the human parser derives recursive abstract representations from 

sequentially arranged fading sequences of visual, auditory, and tactile stimuli. To 

illuminate the entire process leading to the creation of abstract recursive 

hierarchical representations, starting from exposure to a simple linear arrangement 

of stimuli, we require a suitable experimental design that enables us to delve 

precisely into this process. Specifically, it should allow us to directly study and 

compare the ability to create recursive abstract representations from sequentially 

presented stimuli in the three sensory domains, using a task as similar as possible 

across all three domains. Moreover, it should enable us to further explore the 

relationship between sequentiality and hierarchy, shedding light on the connection 

between low-level statistical mechanisms and the formation of recursive abstract 

representations. By doing so, we aim to clarify both the qualitative and quantitative 

aspects of this cognitive mechanism, building on the results and unresolved issues 

from previous studies in this field. 

This chapter proposes a novel approach to address these challenges. We will 

explore the learnability of the Fibonacci grammar (Fib) using the AGL paradigm. 

Notably, Fib falls outside the Chomsky hierarchy, belonging to a different class of 

grammars known as Lindenmayer systems (L-systems). Initially developed by 

Aristid Lindenmayer in 1968 to model biological cell growth in plants, Fib serves 

as a valuable tool for examining the cognitive mechanisms at the heart of the 

creation of recursive abstract representation in sequentially ordered stimuli. It 

distinguishes itself from the typical rewrite grammars that are commonly used by 

offering intriguing characteristics like self-similarity and aperiodicity that make it 

ideal for our experimental purposes. The chapter also introduces a cognitive parsing 

algorithm designed for processing Fibonacci strings. This algorithm relies on 
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hierarchical reconstruction through the recursive application of deterministic 

transitions between progressively larger embedded chunks.  

 

4.1. AGL with Lindenmayer Systems: The Fibonacci Grammar 

 
Lindenmayer grammars (L-grammars), when considered as a framework to be 

learned within the AGL paradigm, offer multiple benefits as evaluation tools for 

recursive parsing. Aristid Lindenmayer introduced Lindemayer systems (L-

systems) in 1968 as a formal means to describe the growth of algae, building upon 

Chomsky's research on formal grammars. Subsequently, they have undergone 

extensive development to simulate real-world plant growth and cellular behavior, 

serving as a tool to generate fractals, among other applications that encompass the 

creation of complex structures through straightforward rules31 (Shirley, 2014). L-

systems are non-canonical grammar, they do not belong to the Chomsky hierarchy.  

As outlined by Krivochen and Saddy (2018), L-systems exhibit several key 

characteristics and differences in comparison to Chomsky-normal grammars: (i) in 

L-grammars, there exists no distinction between terminal and non-terminal 

symbols; all symbols undergo rewriting. Put differently, the rewriting process, 

governed by the application of grammar rules, does not terminate after a finite 

number of steps; (ii) rewriting rules are applied simultaneously in L-systems. This 

stands in contrast to Chomsky-normal grammars, where rules are applied 

sequentially, following a specific order outlined in the grammar; (iii) L-systems 

display the property of self-similarity: each generated string can be mapped onto 

the previous generation. " L-systems are essentially recurrence relations, which 

means that once the initial state is given, the state of the system at any point is 

defined as a function of the preceding states”. (Krivochen and Saddy, 2018, p.10).32 

Within the realm of L-systems, the Fibonacci grammar stands out as an interesting 

tool for assessing the creation of abstract recursive hierarchical representations 

                                                       
31 For more details on L-systems, see: Lindenmayer, 1968; Prusinkiewicz and Lindenmayer, 1990. 

32 For further details on the properties of L-grammars and their comparison with Chomsky-normal 

grammars, see Krivochen, Saddy, 2018. 
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arising from sequentially ordered stimuli in the AGL paradigm. It also sheds light 

on the possible interplay between low-level statistical learning mechanisms and the 

emergence of recursive hierarchical representations, illuminating the entire 

continuum from sequence to hierarchy. The Fibonacci grammar, often abbreviated 

as Fib, is a simple rewrite system in which the alphabet is composed of only two 

symbols: (0;1). Fib is characterized by the following rewrite rules: 0→1; 1→01; 

(0 rewrites as 1; 1 rewrites as 01). By the application of the rewrite rules, strings of 

0s and 1s are generated. Every generated string is called generationn of Fib. By 

applying the rules repeatedly, strings of potential infinite length can be generated. 

Given its generative rules, it follows that Fib is an asymmetric grammar. In each 

generation, the number of the 0s is different from the numbers of 1s. Specifically, 

the ratio between 1s and 0s approximates the golden ratio (1.618). Fib derives its 

name from a unique feature observed in its generation process, namely, the number 

of digits (1s and 0s) in each row corresponds to a number of the well-known 

Fibonacci sequence (Figure 20).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Representation of the Fibonacci grammar. Figure taken from Vender et al., 2023. 

 
The characteristics that make Fib particularly suitable for our research objectives 

are the following:  
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(i) as already anticipated, Fib display the property of self-similarity.  Due to 

the recursive nature of the generative process, each new generation results from the 

concatenation of the two preceding generations (Figure 21). “This means that any 

generation can be parsed with two consecutive smaller generations that are natural 

constituents of the grammar. For example, Generation 4 [01101] can be divided into 

Generations 2 and 3 [[01][101]], which can be further divided into Generations 1 

and 2 [[01][1][01]], which can (trivially) be further divided into Generations 0 and 

1 [[[0][1]][[1][[0][1]]]].” (Schmid et al., 2023, p.8). Crucially, every generation is a 

nested embedding of constituents, which mirror the hierarchical structure of Fib. 

This entails that transitions in Fib structure are preserved at different levels. In other 

words, the transitions exhibit a scale-free property, wherein the transitional 

probabilities between low level points remain consistent with those between larger 

constituents (Schmid et al., 2023). To illustrate, at every generation, there are first- 

and second-order transitional probabilities between the two symbols of the 

grammar 0 and 1. Specifically, the first-order transitional probability according to 

which after 0 there is always 1, that is p(1|0)=133; and the second-order transitional 

probability according to which after  the bigram 11 there is always 0, that is 

p(0|11)=134; however, after the bigram 01 there can be a 0 or a 1. This means that 

this transition is probabilistic. Specifically, p(1|01)= 0.62, whereas p(0|01)=0.38. 

Nevertheless, points that are probabilistic at the low levels, can be predicted, 

becoming hence deterministic, at higher levels. Crucially, indeed, the same type of 

first- and second-order transitional probabilities that are observable between the 

two symbols of the grammar hold also between bigger chunks, which can be formed 

by recursively merging lower-level chunks linked by deterministic transitions, as 

we will further elucidate in the upcoming section. Being Fib a recursive self-similar 

grammar in which there is no distinction between terminal and non-terminal 

symbols, it generates potentially very long sequences of (binary) symbols which 

can be progressively chunked and compressed through a recursive algorithmic 

procedure. This property allows us to present strings of varying lengths to 

                                                       
33 The probability of 1 following 0 is 100%. 

34 The probability of 0 following 11 is 100%. 
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participants, thereby providing different levels of possible embeddings. This is a 

particularly interesting feature. In fact, a point left unresolved by previous studies 

and analyzed only by Schmid et al. (2023) concerns the degree of recursive 

hierarchical compression that participants can achieve when processing a sequential 

structure. Planton et al. (2021) left this question open, as they did not analyze the 

degree of compression participants could reach (Schmid et al., 2023). In other 

words, they did not measure the extent to which participants can build recursive 

hierarchical structures by progressively compressing the sequence into abstract 

representations. In fact, Planton et al. (2021) investigated the ability to use recursive 

strategies with strings that allowed for a maximum of two hierarchical levels (one 

single level of embeddings). In contrast, using Fib, we can address this issue. Fib 

allows us to create binary sequences of symbols that can be compressed and 

processed into multi-level recursive hierarchical representations. Crucially, we can 

easily and precisely calibrate the maximum number of possible embeddings in a 

sequence. This enables us to investigate how many levels of recursive embeddings 

participants can actually achieve. 

(ii) in all strings, points are aperiodic. This means that a parser could not 

predict the occurrences of every point based on linear functions. In other words, 

there are no low-level strategies that could be exploited to predict all the points 

(Vender et al., 2019; 2020; 2023; Schmid et al., 2023). Because of this property, it 

can therefore be ruled out that a low-level statistical processing strategy could 

account for learning some type of points, which, on the other hand, might 

potentially be predicted by exploiting a recursive hierarchical processing strategy, 

as we will see in more detail below. 
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Figure 21. Self-similarity in the Fibonacci grammar. Taken from Vender et al., 2023, p.58. 

 
 

4.2. Fib’s parsing algorithm  

 
In the previous section, we have anticipated that different types of point can 

potentially be learned (i.e. predicted) by recursively forming increasingly larger 

hierarchical structures. The purpose of this section is to present a theoretical 

demonstration of how the hierarchical processing can take place at the cognitive 

level.   

The mechanism by which the parser (human cognition) can reconstruct the 

hierarchical structure of Fib, incrementally disambiguating and hence predicting 

points (i.e., disambiguated points, hence D points) that at lower hierarchical levels 

would not have been predictable (i.e., non-disambiguated points, hence ND points), 

is the recursive application of deterministic transitions between increasingly larger 

embedded chunks (Schmid et al., 2023). As explained above, since Fib is a self-

similar grammar, the deterministic transitions between chunks mirror those 

observed between the two symbols of the grammar 0 and 1. Crucially, in this parsing 

strategy, the same deterministic transitions are used both to predict the subset of 

disambiguated (D) points at each specific level and to form increasingly larger 

chunks. The fundamental step that is necessary for applying deterministic 

transitions at various levels is the categorization of chunks. Categorization takes 
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place based on two perceptual features: alternation and repetition. Let us now look 

in detail at how this mechanism works. 

The parser is exposed to a sequence of 0s and 1s35: The first feature of the 

sequence that the parser may notice is the following: the element 0 can never repeat 

itself. It is at this point that the parser learns to predict the D points at Level 0 (i.e., 

01). The next step is as follows: the parser notices that the element 1 can repeat 

itself, maximum once. This step coincides with the learning of D points at Level 1 

(i.e., 110). It is expected that the parser learns to predict chronologically earlier D 

points at Level 0 than D points at Level 1. In fact, to predict D points at Level 0, 

the parser needs to keep track in working memory of only one symbol (i.e., 0), to 

predict the next one (i.e., 1) in the sequence 01. D points at Level 0, indeed, 

correspond to a first-order transitional probability, where p(1|0)=1.  In the case of 

D points at Level 1, on the other hand, the parser needs to keep track of two symbols 

(i.e., 11), to predict the following 0, in the sequence 110. In other words, D points 

at Level 1 correspond to a second-order transitional probability. Indeed, p(0|11)=1. 

After having acquired the regularities corresponding to D points at Level 0 and 

Level 1, the parser has the necessary and sufficient information to create two 

categories: Category 0, which groups the elements that can never repeat 

themselves; Category 1, which contains the elements that can repeat themselves, 

maximum once. At this point, the parser creates the first chunk, combining 0 and 1: 

since p(1|0)=1, it forms the chunk [01] (Figure 22); once the chunk [01] is created, 

the parser is locked into the possibility of creating the chunk [110], which it could 

potentially form by exploiting the second-order transitional probability according 

to which p(0|11)=1. In fact, this would involve the creation of sequentially 

overlapping chunks. Given the impossibility to simultaneously processing the two 

overlapping chunks [01] and [110] on the string, the formation of the hypothetical 

chunk [110] is therefore blocked (Figure 23). At this point the parser learns the rule, 

which it will also apply to subsequent levels, for forming chunks: chunks, at each 

                                                       
35 In the three experimental studies that we will present in Chapter 5, subjects were exposed to 

perceptual stimuli (auditory, tactile, or visual) encoded onto the 0s and 1s of the Fibonacci grammar. 

However, as a matter of convenience, in this section we will talk about 0s and 1s symbols, and not 

the specific stimuli that were used in the three sensory spheres.  
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level, can only be formed by applying the first-order transitional regularity 

according to which p(1|0)=1, on the elements belonging to the two categories. By 

applying the rule recursively, the parser can form increasingly larger embedded 

chunks. Hence, chunks, at each level, have characteristics of ordinal sets, in which 

the position of the sub-chunks mirrors that of the two symbols in [01] (i.e., the 

elements belonging to Category 0 always precedes the elements belonging to 

Category 1). Having created the chunk [01], the string is now decomposed into 

[01]s and [1]s (Figure 24). The parser notices that the chunk [01] can repeat itself, 

maximum once. In contrast, [1] can never repeat itself. Therefore, it assigns [01] to 

Category 1, and [1] to Category 0 (Figure 25).  At this point it will be clear to the 

reader the importance that the categorization of chunks (i.e., labeling) plays in this 

processing strategy: Categorizing is a necessary step that must be done at each level 

to proceed with the hierarchical reconstruction. In fact, as we have just seen, at 

Level 0, [1] was assigned to Category 1. Instead, at Level 1, [1] is assigned to 

Category 0, that is, it is labelled as 0. It follows, therefore, that chunks cannot 

remain categorized as they were at the previous level, but they need to be re-

categorized. At Level 2, the parser has the possibility to predict the [1] following 

[01][01], i.e., D points at Level 2, by applying the second-order transitional 

regularity according to which p(0|11)=1 (Figure 26).  Also at this level, it creates 

the new chunk [101], applying the first-order transitional probability according to 

which p(1|0)=1 (see Figure 27). The string is now decomposed into the following 

chunks: [01]s and [101]s (Figure 28). At Level 3, the parser notices that the chunk 

[101] can repeat itself, at most once, while the chunk [01] can never repeat itself. It 

therefore places [101] into Category 1, and [01] into Category 0 (Figure 29). At 

Level 3, the parser learns that after [101][101] there is always [01], applying the 

second-order transitional regularity according to which p(0|11)=1 (Figure 30). At 

this point it creates the chunk [01101], applying the first-order transitional 

probability according to which p(1|0)=1 (Figure 31). Now, at this level the string is 

decomposed into the chunks [01101] and [101] (Figure 32). At Level 4, the parser 

observes that the chunk [01101] can repeat itself, at most once, while chunk [101] 

can never repeat itself. Therefore, it assigns [01101] into Category 1 and [101] into 

Category 0 (Figure 33). At Level 4, the parser learns that after [01101] [01101] 
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there is always [101], applying the second-order transitional regularity according to 

which p(0|11)=1 (Figure 34). At this point, the parser can create the chunk 

[10101101], applying the first-order transitional probability according to which 

p(1|0)=1 (see Figure 35).  Hence, the string is decomposed into [10101101] and 

[01101] (Figure 36). At Level 5, the parser notices that [10101101] can repeat itself 

maximum once, while [01101] can never repeat. Therefore, it assigns the chunk 

[10101101] into Category 1 and the chunk [01101] into Category 0 (Figure 37). At 

Level 5, the parser learns that after [10101101] [10101101] there is always [01101], 

applying to second-order transitional regularity according to which p(0|11)=1 

(Figure 38). At this level the parser can create the chunk [01101101101], applying 

the first-order transitional probability according to which p(1|0)=1 (see Figure 39). 

For the sake of practicality, we have explained how the parser can predict D points 

up to Level 5. Of course, the same parsing strategy could be iterated to learn and 

hence predict D points at levels above 5 as well.  

Summing up, in this parsing strategy: (i) binary categorization (labeling) is 

required at each hierarchical level: The parser cannot proceed with hierarchical 

reconstruction without doing categorization at each level; (ii) binary categorization 

is possible due to the fact that the Fib grammar is self-similar: Categorization at 

Levels n > 1 is done based on the transitional probabilities between  chunks, which 

mirror those between the symbols 0 and 1;  (iii) the prediction of D points is possible 

by exploiting the transitional probabilities between chunks. Specifically, by 

applying the first-order transitional probability according to which p(x∈C1|y∈C0) 

=1 (i.e., the probability of an element x belonging to Category 1 following an 

element y belonging to Category 0 is 100%). It follows that to reconstruct the 

hierarchical structure and predict points at different levels of the Fib grammar, it is 

necessary for the parser to first acquire D points at Level 0 (01) and Level 1 (110).   
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Figure 22. Creation of the chunk [01]. 

 
 

 

Figure 23. Impossibility to create two overlapping chunks [01] and [110]. 

Figure 24. Chunking and parsing the string in [01] and [1]. 

Figure 25. Categorization of the chunk [1] as 0 and the chunk [01] as 1. 

 

 

 

Figure 26. Prediction of the [1] following [01][01], i.e., D points at Level 2. 

 

 

Figure 27. Creation of the chunk [101]. 

 

 
Figure 28. Chunking and parsing the strings in [101] and [01]. 

10101101011011010110101101101011011010110101101101



 226 

 

Figure 29. Categorization of the chunk [101] as 1 and the chunk [01] as 0. 

 

 

 

 

Figure 30. Prediction of the [0] following [101][101], i.e., D points at Level 3. 

 

 

 

Figure 31. Creation of the chunk [01101]. 

 

Figure 32. Chunking and parsing the strings in [101] and [01101]. 

 

Figure 33. Categorization of the chunk [101] as 0 and the chunk [01101] as 1. 

 

 

 

Figure 34. Prediction of the [1] following [01101][01101], i.e., D points at Level 4. 



 227 

 

 

 

Figure 35. Creation of the chunk [10101101]. 

 

Figure 36. Chunking and parsing the strings in [10101101] and [01101]. 

 

Figure 37. Categorization of the chunk [10101101] as 1 and the chunk [01101] as 0. 

 

 

 

 

Figure 38. Prediction of the [0] following [10101101][10101101], i.e., D points at Level 5. 

 

 

 

 

Figure 39. Creation of the chunk [0110110101101]. 
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Here, we think it is important to elaborate on the concept of ND points. In this 

section, we have emphasized that D points are the predictable points at each level 

by applying the cognitive parsing strategy explained above. On the contrary, by 

definition, NDs s are the points that are not predictable at each level considered. 

However, this does not mean that they are not predictable at all. In fact, the set of 

ND points at Level X corresponds to the totality of points (D + ND) at Level X+2. 

In other words, ND points at Level X contain both the points that at Level X +2 

could be predicted (D points at Level X+2) and those that cannot be predicted at 

Level X +2 (ND Level X+2). Similarly, ND points at Level X+2 encompass both 

points that are predictable at Level X+4 (D points at Level X+4) and points that are 

not predictable at Level X+4 (ND points at Level X+4). And so forth. (Figure 40).  

 

Figure 40. Representation of D and ND points at different hierarchical levels. 
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4.3. Are there alternative strategies to process and acquire the Fibonacci 

grammar? 

 

In the previous section, we outlined the cognitive parsing algorithm we proposed 

for processing and acquiring the regularities of the Fibonacci grammar. Specifically, 

we provided a theoretical illustration of how recursive hierarchical processing can 

occur at the cognitive level. The parser might use a recursive application of 

deterministic transitions between progressively larger embedded chunks. This 

mechanism enables the parser to reconstruct the hierarchical structure, gradually 

resolving ambiguity and predicting points that would not have been predictable at 

lower hierarchical levels. 

However, the question naturally arises: Is this the only mechanism available 

to predict points of increasing complexity in Fibonacci sequences? The answer is 

no. Theoretically, there exists another possible mechanism. However, it is unlikely 

that this alternative mechanism could be used if the parser were exposed to a single 

long sequence of Fib in a Serial Reaction Time task, which is the paradigm we use 

in the experimental studies presented in Chapter 5. This is due to the temporally 

fading nature of input stimuli inherent in the Serial Reaction Time task paradigm. 

Below, we will explain why.  

Iteration is the alternative strategy to applying a recursive hierarchical 

algorithm that could potentially be used to predict points in Fibonacci sequences. 

Crucially, however, we believe that this strategy could only be used if the 

experimental design had precise characteristics. This is a fundamental point to 

consider when preparing an experimental design to investigate recursive ability 

while excluding other possible strategies. As we have pointed out, it is essential to 

distinguish between algorithmic properties and representational abilities (cf. 

Section 2.3.6.). In an AGL task, it is not sufficient to use a recursive grammar; we 

must ensure that participants can process the sequences generated by the grammar 

recursively. More importantly, we must consider whether there are alternative 

strategies to process the sequence that could produce the same output as a recursive 

mechanism. As Lobina (2011) explains, all tasks that can be solved recursively can 

potentially also be solved iteratively. Summing up, adopting a recursive grammar, 
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in this case, the Fibonacci grammar, as an experimental tool does not guarantee that 

we are testing recursion. We must also choose an experimental design that ensures 

we are testing recursive ability while excluding other possible cognitive algorithmic 

mechanisms. As we will see in Chapter 5, we will create our experimental design 

by combining the Fibonacci grammar with the Serial Reaction Time task paradigm 

(cf. Section 2.3.2.). In this way, can we effectively and precisely verify whether 

participants adopt a recursive procedure in parsing the sequence, excluding other 

alternative parsing strategies such as iteration.  

Below, we will explain the iterative procedure that the parser could 

potentially adopt if an experimental paradigm, such as the forced-choice paradigm, 

is created to allow for this parsing strategy. As we explained above, it is implausible 

that this strategy could be used when participants are exposed to a single long 

sequence of Fib generation in a Serial Reaction Time task. Crucially, after outlining 

this formal mechanism, we will explain why we think the iterative strategy is not 

feasible in a Serial Reaction Time task and why we believe that the recursive 

cognitive parsing mechanism is the most plausible option. Specifically, we will 

present the reasons why we consider iteration to be cognitively implausible in our 

experimental protocol. This will reinforce our hypothesis that if participants 

succeed in learning points of increasing complexity in the Fib sequence, it would 

be through the application of the recursive hierarchical parsing mechanism we have 

proposed, excluding other possible parsing strategies. 

The alternative strategy to predict points of increasing complexity in Fib 

sequences is related to the use of a flat iterative statistical mechanism. In this 

mechanism, no hierarchical levels are created; instead, individual symbols of the 

sequence are processed through a purely sequential strategy. If we carefully observe 

the sequences generated by the Fibonacci grammar, we notice that, at each level, 

the Disambiguated (D) points are always preceded by a specific sequence of 

symbols, unlike the Non-Disambiguated (ND) points. Specifically, D points at 

Level 0 correspond to the 1s following 0; D points at Level 1 correspond to the 0s 

following 11; at Level 2, D points are the 1s following 0101; at Level 3, D points 

correspond to the 0s following 1101101; at Level 4, they are the 1s following 
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010110101101, and so on. In other words, p (1|010110101101) = 136. All D points 

at higher levels are similarly preceded by sequences of symbols, progressively 

longer as the level increases. It follows that the D points of the Fibonacci sequence 

could potentially be predicted based on incrementally longer preceding sequences. 

For example, an iterative algorithm that the parser could follow to predict the D 

points at Level 4, processing the sequence from left to right, is outlined in (16), 

where n refers to the specific position of the parser in the sequence at a given time 

0, and n+1 to the immediately adjacent position in the string proceeding from left 

to right. 

 

(16) If n= 0 and n+1= 1 and n+2= 0 and n+3= 1 and n+4= 1 and n+5= 0 

and n+6= 1 and n+7= 0 and n+8= 1 and n+9= 1 and n+10= 0 and 

n+11= 1, then n+12= 1. 

 

As we can see in (16), to predict D points at Level 4 by exploiting an iterative 

strategy, the parser would need to keep in mind 11 elements of the sequence to 

predict the twelfth element (i.e., D points at Level 4). However, could this strategy 

be applicable by the human parser when exposed to a Fib sequence? Aligning with 

what Schmid et al. (2023) argued, we assert that it may not be possible for several 

reasons. 

First of all, the iterative strategy would be implausible, regardless of the type 

of experimental paradigm used. The literature tells us that human working memory 

resources limit the number of items we can keep in mind without resorting to 

chunking strategies. While there are individual variations in working memory 

resources, despite these discrepancies, the literature agrees that the number of items 

is less than 10 (Miller, 1965 proposes 7±2 items; Baddeley et al., 1974 and Cowan, 

2001 propose 4 items; for issues on working memory capacities and limitations, see 

also Feigenson, 2011; Kane et al., 2004; Li et al., 2013). Therefore, the iterative 

strategy could be at work for predicting the D points from L0 to L3, but it seems 

implausible for predicting the D points at L>3 due to human working memory 

resource limitations. The exclusion of the possibility that participants use an 

                                                       
36 the probability of having a 1 after 010110101101 is 100%. 



 232 

iterative strategy, however, should be experimentally demonstrated rather than 

simply relying on what the literature says about working memory resources and 

limitations. For instance, we should conduct additional tests on participants' 

working memory abilities. Crucially, however, by using a Serial Reaction Time task 

where a single long sequence corresponding to a full generation of Fibonacci is 

presented to participants through fading sequences of items, we can disentangle the 

two possible strategies, recursive and iterative, thereby excluding the possibility of 

the latter. In fact, as Schmid et al. (2023) explain, in a Serial Reaction Time task, 

the sequences that would need to be remembered to use an iterative strategy would 

be overlapping (Figure 41). Therefore, to predict D points without resorting to a 

hierarchical strategy, the parser would need to simultaneously track different 

overlapping fading sequences of incrementally greater length (Schmid et al., 2023). 

Moreover, the parser must effectively manage the challenges posed by the similarity 

of the patterns to correctly identify and separate them. “[…] the sequence being 

binary, the patterns are distinguishable only by their positional order; the parser 

must therefore also be able to deal with the interference caused by the similarity in 

the patterns’ elements.” (Schmid et al. 2023, p. 23). Finally, the patterns that enables 

the prediction of D points would need to be retained in memory for a relatively long 

time, comprising the response-to-stimulus interval and the time frame required to 

respond to the trial (Schmid et al., 2023; cf. Section 5.1.3.). All of this would result 

in a strategy that is reasonably implausible to sustain for the human parser. 

 

 

 

 

 

 

 

Figure 41. Representations of the subsequences preceding disambiguated points at different 

hierarchical levels. Linear subsequences required to predict D points at each level overlaps. 

Figure taken from Schmid et al. 2023 p. 23. 
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 The hypothesis that the human parser might exploit this purely sequential strategy 

to learn the regularities of the Fibonacci generations is therefore implausible due to 

issues related the different concurring factors we have illustrated above. For this 

reason, we regard the recursive hierarchical parsing algorithm presented in the 

previous section as the only cognitively plausible mechanism that the human parser 

could leverage to predict originally indeterministic points in a Fibonacci string in a 

Serial Reaction Time task paradigm. Hence, if the human parser successfully 

predicts increasingly complex points in a Serial Reaction Time task, we can 

conclude that it has genuinely applied the recursive cognitive strategy detailed in 

the preceding section.  

 

 

4.4. Previous studies with the Fibonacci grammar 

In this section, we will briefly present in chronological order the AGL studies with 

the Fibonacci grammar that have been carried out so far. 

Shirley (2014) conducted a series of experiments to investigate the processing of 

complex sequences generated by two Lindenmayer grammars (L-grammars): the 

Fibonacci grammar and the XOR grammar. The aim of her research was to address 

the debate about the computational abilities of the human brain in supporting 

hierarchical cognitive systems like language and music, particularly the need for 

recursive processing. She carried out seven experimental studies within the 

Artificial Grammar Learning (AGL) paradigm, primarily using the two-alternate 

forced-choice task, while also recording electrical activity with the EEG method. 

Shirley's findings suggest that human adults can develop and retain a lasting 

representation of the Fibonacci L-grammar within the AGL paradigm. Crucially, 

her results indicate that participants were unlikely to rely solely on low-level 

mechanisms for accurate performance in the AGL experiments, and supported 

previous studies finding that context-free structures can be learned independently 

of semantics or contextual information. The EEG analyses did not provide clear 

evidence of participants' awareness of response errors, but spectral analysis 
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suggested that different cognitive mechanisms were at play for the processing of 

the Fibonacci grammar and the XOR grammar. 

Geambaşu et al. (2016) conducted two experiments using the Fibonacci grammar. 

The experiments aimed to test participants' ability to detect rhythms generated by 

these grammars using kick and snare drum sounds, encoding the symbols of the 

Fibonacci grammar. The experiments consisted of an exposure phase where 

participants listened to sequences following the grammar and a subsequent test 

phase where participants had to determine if test sequences matched the grammar. 

Two foils grammars were created: Swap and Mirror. The Swap foil was created by 

taking a sequence from the Fibonacci sequence and swapping two randomly 

adjacent symbols within the string. On the other hand, the Mirror foil was generated 

by cutting the Fibonacci sequence in half and then mirroring the first half to replace 

the original second half. In experiment 1, participants were instructed to listen to a 

3-minute-long rhythmic sequence carefully. In the test phase, participants listened 

to 36 test sounds, and their task was to determine whether each test sound followed 

the same rhythm as the one they heard during the listening phase. Participants were 

divided into two conditions: the Mirror condition and the Swap condition. In both 

conditions, participants listened to the sequences of the Fibonacci grammar for 3 

minutes. During the test phase, participants in both conditions had to discriminate 

between 10-second-long grammatical (Fib) and ungrammatical sequences (Mirror 

or Swap sequences, depending on their condition), deciding whether the sequences 

they heard in the test phase matched the rhythm of the sequences from the listening 

phase. In Experiment 2, participants received more detailed instructions, and the 

conditions remained the same. The participants listened to the same Fibonacci 

grammar sequence for 3 minutes during the exposure phase and then had to 

discriminate between grammatical and ungrammatical sequences in the test phase. 

At the group level, both experiments did not show clear evidence that participants 

were able to learn the Fibonacci grammars and discriminate them from the 

ungrammatical sequences (mirror and swap foil grammars). However, at an 

individual level, five participants in Experiment 2 were able to correctly identify 

grammatical and ungrammatical strings above chance level, especially those with 

musical training. The researchers suggested that the difficulty some participants had 
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in discriminating between grammatical and ungrammatical sequences might be due 

to the foil grammars being too similar to the target grammar. They recommended 

further research with optimized foil grammars and different paradigms like Serial 

Reaction Time or EEG to investigate participants' cues and error detection points. 

Additionally, they highlighted the importance of specific instructions and 

participant age as potential factors affecting performance in such tasks and 

proposed addressing these issues in future experiments to better understand the role 

of rhythm detection in learning complex grammatical structures. 

In Geambaşu et al. (2020), the primary objective was to explore whether adult 

participants could effectively learn and process sequences featuring the Fibonacci 

grammar. The experiment was similar to that carried out by Geambaşu et al. (2016). 

Sequences were composed of two distinct drum sounds, each lasting 200 

milliseconds - a kick sound and a snare sound. The experimental setup involved an 

exposure phase where participants were familiarized with the Fibonacci-

grammatical drumming sequence, followed by a test phase where participants were 

presented with various test sequences. These test sequences included both 

grammatical sequences that adhered to the Fibonacci grammar and ungrammatical 

sequences designed to share surface properties with the grammatical ones. The 

ungrammatical sequences were meticulously created so that both the test and foil 

sequences had the same number of elements, equal duration, and maintained similar 

surface properties. Hence, the construction of pseudo-Fib foil sequences aimed to 

maximize the similarity in surface properties between the grammatical and 

ungrammatical sequences while ensuring that discrimination between them was not 

overly obvious. The test sessions involved two different sets of instructions for 

participants, depending on the task paradigm employed - Yes/No or 2AFC. Results 

showed that, at the group level, participants were able to discern the grammar and 

distinguish between the grammatical and ungrammatical test sequences in both the 

Yes/No and a two-alternative forced choice task (2AFC). While their performance 

was significantly better than chance, it did not reach the high levels of accuracy 

seen in Shirley (2014), which transmitted the two symbols of the grammar through 

syllables-stimuli.  As the authors explain, several factors could potentially account 

for this discrepancy in performance. Specifically, they point to the potential greater 
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complexity of processing recursive grammars in a non-linguistic, musical context. 

Indeed, they propose that the speech stimuli used by Shirley (2014) might have 

facilitated the process of structural learning and recursive processing, as compared 

to musical stimuli. The researchers emphasized the need for future research to 

incorporate real-time measures, such as electrophysiological recordings or serial 

reaction time tasks, to gain a deeper understanding of how participants process 

complex grammars. In conclusion, this study demonstrated that adult participants 

were capable of detecting and discriminating the rules of the Fibonacci grammar, 

whose symbols were trasnmitted through drum sounds, though their performance 

was not as robust as in previous studies involving linguistic stimuli.  

In Vender et al. (2019), the researchers conducted an AGL study in monolingual 

and bilingual children, both with and without dyslexia. They used a modified Simon 

task, a modified version of the classic Serial Reaction Time task, where the order 

of stimuli followed the rules of a Fibonacci grammar. The stimuli consisted of blue 

and red squares encoding the two symbols of the grammars, which were visually 

presented on a screen. Specifically, red stimuli corresponding to the 0s of the 

grammar were presented on the left side of the screen, whereas blue square 

encoding the 1s of the grammars were presented to the right side. Participants were 

asked to press the 1 key on the keyboard to answer to the red square, and the 0 key 

for the blue square. Importantly, every sixth item, the stimulus appeared on the 

opposite side of the screen (i.e., incongruent item). This effect was intended to 

maintain children attention high and make the presence of grammatical rules in the 

stimuli more subliminal. The goal was to assess whether participants implicitly 

learned the grammar's low-level regularities of Fib (after 0 there is always 1; after 

11 there is always 0) and to examine group differences, particularly in the context 

of bilingualism and dyslexia. The study involved four groups of 10-year-old 

children: Italian monolingual typically developing children, bilingual typically 

developing children with Italian as a second language (L2), Italian monolingual 

dyslexic children, and bilingual dyslexic children with Italian L2. The results of the 

study revealed that all groups, including dyslexic children, showed evidence of 

implicit learning. They became increasingly sensitive to the grammar's regularities, 

leading to faster RTs and improved accuracy in predictable trials. However, group 
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differences were observed, with bilingual children performing better overall than 

monolinguals, and dyslexic children being less accurate than the control group. In 

conclusion, the study found that all groups, including dyslexic children, were 

capable of implicit learning of the grammar's low-level regularities. Bilingualism 

seemed to confer advantages even for dyslexic children, while dyslexia was 

associated with lower accuracy, likely due to processing limitations. Overall, the 

findings suggested that bilingualism could be beneficial for linguistically impaired 

individuals, emphasizing the importance of supporting bilingualism in such 

populations. The study also proposed avenues for further research to explore the 

precise nature of implicit learning and its relationship to hierarchical structure. 

Building on the research questions left open in Vender et al. (2019), Vender et al. 

(2020) tested a group of ten-year-old children with a modified Simon task, as in 

Vender et al. (2019), this time exposing them to sequences of stimuli governed by 

the rules of  the Fibonacci grammar and the foil Skip grammar. The stimuli were 

the same as those used in Vender et al. (2019), that is, blue and red squares appearing 

on the right or left side of the screen rispectively, with an incongruent item every 

six items. The study had two main objectives. Firstly, they wanted to ascertain 

whether the children could discern low-level statistical regularities within the 

sequences, confirming the results found in Vender et al. (2019). Secondly, beyond 

recognizing simple low-level regularities, they were interested in verifying whether 

children could detect more complex structural patterns. In order to do that, they 

observed how children responded to specific points, called k-points, which in Fib 

hold special significance, as they allow, from a purely formal perspective, full 

reconstruction of the hierarchical structure of Fib (Krivochen, Phillips, Saddy, 

2018). K-points are the 1s that follow the bi-gram 01 in Fib. Interestingly, as 

explained by the researchers, these points are not predictable by exploiting low-

level statistical computations, but they could be predicted if the parser had access 

to the hierarchical structure of the grammar. Crucially, however, in Skip, these 

points do not have any structural importance. Hence, if participants learned the 

hierarchical structure of Fib, they expected to find increasingly better performances 

on k-points in Fib, and then, moving to Skip, they expected 

participants’performance to abruptly decline. Children did manage to learn the 
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simplest low-level rule of the Fibonacci grammar (i.e., after 0 there is always 1), 

confirming what had been found in Vender et al. (2019).  However, they 

encountered difficulty with more complex sequential statistical regularities (i.e., the 

regularity according to which after 11 there is always 0). The researchers 

hypothesized that this might have been due to the experiment's fewer trials 

compared to previous ones and because this rule was less central to understanding 

the structure of the Fibonacci grammar. Interestingly, the study provided 

compelling evidence that the children were sensitive to the structure of the Fib 

sequences. They appeared to pay particular attention to k-points in the Fibonacci 

string. In fact, RTs on k-points in Fib became progressively lower, while a rise 

occurred in the transition to Skip, as expected. This suggested that the children were 

not merely discerning sequential statistical patterns; they were arguably basing their 

increased capacity of prediction of non-deterministic points on some sort of 

hierarchical processing. 

Schmid et al. (2023) explored whether participants could process binary sequences 

as nested structures. To investigate this, they tested adults' ability to learn the 

properties of sequences generated by the Fibonacci grammar through a Serial 

Reaction Time (SRT) task. They encoded the two symbols of the grammar onto blue 

and red squares, as in Vender et al. (2019; 2020). However, in contrast to previous 

studies, stimuli were always presented in the centre of the screen, to avoid the 

confounding congruency factor introduced by the Simon task. As Schmid et al. 

(2023)  explained, Fib is a recursive rewrite system that generates aperiodic self-

similar sequences with a hierarchical nature. Due to the self-similarity property, the 

transitions between elements at the lower level mirror those between elements at 

the higher level. Importantly, each level contains transitions that are either 

deterministic or probabilistic (i.e., disambiguated vs. non-disambiguated points). 

Crucially, however, the probabilistic transitions at one level are nested within 

deterministic transitions at the higher hierarchical level. This property, if exploited 

by participants, would allow for a reduction in the number of probabilistic 

transitions through the recursive embedding of deterministic ones. The researchers 

had two main predictions: First, they hypothesized that as participants engaged with 

the sequence, they would gradually reconstruct the underlying nested hierarchical 
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structure. This should manifest as an increasing ability to anticipate predictable 

points in the sequence (disambiguated points) that were ambiguous at a lower level 

as compared to non-disambiguated points that would, on the opposite, show higher 

RTs and/or lower accuracy. The study supported this prediction, showing that 

participants indeed displayed a progressive ability to anticipate disambiguated 

points, which showed a steeper reduction of RTs compared to non-disambiguated 

points at the same level. Specifically, at levels 0, 1, 2, and 3, participants showed a 

more pronounced reduction in RTs on disambiguated points compared to their non-

disambiguated counterparts at the same levels. At levels 0 and 1, participants 

became more accurate on disambiguated points, while the accuracy for non-

disambiguated points decreased. At levels 2 and 3, both disambiguated and non-

disambiguated points underwent a decrease in accuracy. Importantly, despite the 

decrease in accuracy at levels 2 and 3, the study's predictions were not invalidated. 

At level 2, indeed, the decrease in accuracy was significantly more pronounced for 

non-disambiguated points compared to disambiguated ones. Moreover, at level 3, 

the accuracy was overall higher for disambiguated points. The authors suggested 

that the decrease in accuracy rates at higher levels could potentially be attributed to 

factors like participant boredom due to the simplicity of the task. Nevertheless, the 

study's findings supported the notion that participants were progressively building 

and learning the hierarchical structure of the sequences, up to the third level. Indeed, 

at level 4, they found no significant results anymore. Schmid et al. (2023) carried 

out a second analysis in which they aimed to delve deeper into how participants 

processed the Fibonacci string. They wanted to verify whether participants became 

increasingly better at predicting disambiguated point by representing the nested 

structure of the grammar instead of exploiting a flat statistical learning process. To 

do so, they checked whether participants not only recognized disambiguated points 

at different levels but also were sensitive to the higher-level structure in which these 

points appeared. To investigate this, they examined what they termed "structural 

contexts" within the sequence. They distinguished between two conditions: one 

where a disambiguated point appeared at a higher level inside a constituent 

following a deterministic transition, which they termed a "non-ambiguous structural 

context," and the other where it appeared in a constituent following a probabilistic 
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transition, known as an "ambiguous structural context." Their hypothesis was that 

if participants truly grasped the hierarchical structure of the sequence, 

disambiguated points occurring within a non-ambiguous structural context should 

be processed faster than those within an ambiguous structural context. At Levels 1 

and 3, they observed that participants displayed a significant processing advantage 

for points occurring in non-ambiguous structural contexts compared to those in 

ambiguous structural contexts. This suggested that participants were progressively 

learning and processing the constituent structure. However, when they looked at 

level 2, they found no significant effect of structural context in either reaction times 

or accuracy.  They considered various explanations for this lack of effect at level 2, 

including the possibility that certain points at this level had already been learned 

very early in the experiment. They explained that these points might have reached 

a performance plateau, making it difficult to detect the influence of structural 

context. Summing up, the study's findings, especially those at levels 1 and 3, ruled 

out the possibility that participants were merely memorizing preceding 

subsequences. Instead, it suggested that participants were indeed organizing the 

input in a hierarchical manner representing nested constituents. Wrapping up, this 

second analysis provided further evidence that participants were processing the 

Fibonacci grammar as a nested structure through hierarchical processing. Self-

similarity played a crucial role in processing the Fibonacci sequence, by 

contributing to the reduction of unpredictability and guiding the human parser in 

the reconstruction of its hierarchical structure. 

Vender et al. (2023) aimed to shed light on the relationship between the cognitive 

development of hierarchical representations and their linearization that stands at the 

basis of language processing. The paper addressed the following questions: (i) To 

what extent is language processing based on sequential versus hierarchical 

learning? (ii) Can independent cognitive biases be identified for sequential and 

hierarchical learning, and how do they interact? The study explored whether these 

two modes of learning are independent or intertwined and sought to define the 

algorithm by which humans derive structure from linear order. The overarching goal 

was to uncover the link between sequential and hierarchical computations, 

suggesting a cognitive bias that shifts from the horizontal axis to the vertical one. 
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Vender et al. (2023) went beyond establishing a connection between linear and 

hierarchical representations, aiming to identify a potentially domain-general 

cognitive bias in humans for projecting sequentially-ordered symbol arrays into 

graph-like structures. In this study, they used a modified Simon Task with sequences 

generated by the Fibonacci grammar and its modifications (Skip and Bif) to 

investigate how participants implicitly learned the statistical regularities of these 

grammars and whether they exhibited hierarchical learning, with a special focus on 

those points that have structural significance in Fib (k-points), as in Vender et al., 

(2020). They carried out two experimental studies. In Study 1, they presented 

participants with a sequence of three Skip blocks followed by three Fibonacci (Fib) 

blocks. The main goal was to investigate whether learning k-points (i.e., the 1 

following 01) in Fib could be solely attributed to statistical distributional statistics 

or if it involved a hierarchical style of computation. The logic behind this design 

was to compare the learning effects of k-points (011) in Fib to the learning effects 

of the sequence "010" in Skip. Indeed, in Skip 010 are more frequent than 011, 

while the opposite holds for Fib. If learning k-points was solely based on statistical 

frequencies, one would expect similar learning effects for 011 in Fib and 010 in 

Skip. On the contrary, if participants succeeded in learning k-points in Fib while 

not showing an improvement on 010 in Skip, this would suggest that the parser's 

ability to predict k-points was not merely a result of statistical sampling from the 

string. In the second experiment, the researchers aimed to compare learning effects 

on 011 in Fib and Bif. The strings generated by these two grammars are superficially 

similar but have a different hierarchical structure. Importantly, in Fib, k-points are 

significant to reconstruct the hierarchical structure, while in Bif, they have no 

structural importance. Comparing learning of these two grammars allowed the 

researchers to gain insights into the nature of hierarchical learning and the strategies 

employed by the parser to predict k-points. Overall, the results of both experiments 

provided evidence not only for statistical sequential learning but also for 

hierarchical learning of the Fibonacci grammar, suggesting that the results observed 

were not due to low-level statistical effects and confirming the presence of 

hierarchical reconstruction in parsing the Fibonacci strings. With this study, the 

authors investigated the cognitive foundations of language, focusing on the ability 
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to group symbols into chunks, categorize them, and establish a linear order relation 

in a bidimensional space. They provided interesting insights on the nature of the 

interplay between the capacity to build hierarchical representations and sequential 

statistical learning, by exploring the intricate relationship between precedence and 

containment during the processing of Fib string. Specifically, the authors argued 

that precedence and containment are not opposing ways of processing a temporally 

ordered sequence; instead, they are interdependent implementations within a 

bidimensional computational space. They proposed that humans possess a possibly 

domain-general disposition to introduce a vertical computation axis while 

processing symbol sequences horizontally. This cognitive bias, labeled the 

Bootstrapping Principle, is seen as a cognitive source of the hierarchy-based 

computations in natural language. In this view, the vertical axis represents a distinct 

instantiation of the same abstract mathematical relation of linear ordering (i.e., 

reflexive, asymmetric, and transitive), interpreted as containment as well as 

precedence. The construction of this space was suggested to be primarily 

determined by the labeling requirements (i.e., the categorization of chunks 

emerging as output of statistical sequential learning). Specifically, they suggested 

that the parser reinterprets precedence as containment and applies a labeling 

algorithm based on this reinterpretation. “[…] once the parser has reached the 

knowledge that the natural chunks in a Fib-string are 01 and 1, there is a natural 

trigger for the parser to re-analyze the relation of precedence between subsequences 

of that string as a relation of containment between the sets corresponding to those 

subsequences. […] If x < y within a chunk, then x ⊆ y.” (Vender et al., 2023, p. 78). 

Hence, the labeling algorithm emerged as a solution for mapping precedence into 

containment. The authors suggested that formal properties of Fib-generations, 

particularly self-similarity, acted as triggers for associating precedence with 

containment. In summary, the study proposed that hierarchy is projected from linear 

order, with both relations being interpretations of the same abstract mathematical 

relation of linear ordering. 
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4.5. Conclusion 

 

In Section 2.3.5.1., we discussed the possible limitations of using AnBn stringsets 

as a measure of recursion and the scarcity of studies that have adequately 

demonstrated recursive capabilities. We emphasized the need for clearer definitions 

and suitable tools to study recursion across sensory domains. To address this 

challenge, in the present chapter we introduced the Fibonacci grammar (Fib), a 

grammar belonging to the Lindenmayer systems (L-systems). Fib's unique 

properties, including self-similarity and aperiodicity, make it a suitable tool for 

investigating the formation of recursive hierarchical abstract representations arising 

from sequential stimuli. However, we have emphasized that to study recursion using 

Fib and harness its unique properties, it is crucial to implement and tailor 

experimental designs that address the challenges inherent in studying the cognitive 

abilities to deal with recursive processes. We also proposed a recursive parsing 

algorithm for processing Fibonacci strings. Moreover, we outlined the reasons why 

we believe it might be the only mechanism compatible with human cognitive 

resources for predicting originally indeterministic points in Fibonacci sequences in 

a Serial Reaction Time task. We concluded the chapter by presenting the main 

results of the studies which have investigated the learnability of the Fibonacci 

grammar so far.  

 

In the following chapter, we will present our experimental studies, applying 

the AGL paradigm to test the learnability of the Fibonacci grammar, further 

exploring the cognitive mechanisms involved in processing these structures. 

Specifically, we will present an original methodology to investigate the ability to 

implicitly form recursive hierarchical abstract representations arising from 

sequentially arranged fading stimuli in three different sensory modalities: the 

visual, the auditory, and tactile domains. In our experimental studies, we will expose 

participants to sequences generated by the Fibonacci grammar, presenting the two 

symbols of Fib through different types of sensory stimuli, and testing their 

performances through SRT tasks. In all three studies, the stimuli will consist of 
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sequences of temporally ordered elements, with the sequential dimension being 

primary. The linear order of symbols is closely linked to the hierarchical structural 

representations participants may form to simplify processing and anticipate points 

of increasing complexity in the sequence. Given the fact that the ability to form 

recursive hierarchical abstract representations from sequentially ordered stimuli is 

a cognitive ability at work in both language and music (cf. Section 2.1.2.; 2.2.1.)  

and considering that music and language are preferentially conveyed through the 

auditory perceptual domain, the question arises whether this cognitive ability is 

modality based. Are we better at learning and processing these structures in the 

auditory domain? Does the auditory domain have an advantage over the visual and 

the tactile ones? Indeed, given the results in the literature that we presented in the 

preceding chapters, the ability to form recursive hierarchical abstract 

representations from sequential stimuli might be stronger in the auditory domain 

than in other sensory domains. The alternative hypothesis is that this ability is 

stimulus-independent, and, on these grounds, we could form recursive hierarchical 

abstract representations from sequential stimuli in the visual, auditory, and tactile 

domains in a very similar way. 
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5. The Present Study: AGL with the Fibonacci 

Grammar. Investigating the Formation of 

Recursive Hierarchical Abstract Representations 

Arising from Sequential Fading Stimuli in the 

Auditory, Tactile, and Visual Sensory Domains 

 

In this chapter, we present the results of three AGL studies that investigated the 

ability to process and represent recursive hierarchical structures arising from 

sequentially presented fading input in three different sensory modalities: auditory, 

tactile, and visual domains. We designed three Serial Reaction Time tasks in which 

three groups of participants were exposed to the same sequence of binary stimuli 

featuring Fib rules. The sequence was conveyed through different types of stimuli 

(i.e., two pure tones of different amplitude in the auditory condition; two colorful 

squares for the visual condition; and two vibrotactile stimuli for the tactile 

condition). For the reasons we explained in Section 4.1., the Fibonacci grammar is 

particularly well-suited for investigating the representation of recursive hierarchical 

abstract representations arising from sequential stimuli. Importantly, it allows us to 

study the transition from linear to recursive hierarchical processing, shedding light 

on the interaction of different mechanisms involved in the process, with varying 

degrees of abstraction, as detailed in previous chapters. Thus, the paradigm we used 

in these studies, enabled us to examine the interplay between sequential implicit 

statistical learning mechanisms and the formation of abstract recursive hierarchical 

representations in three different sensory domains. Crucially, to our knowledge, this 

is the first experimental study ever conducted that has explored this ability through 

a paradigm capable of directly comparing performances in all three sensory spheres. 

The goal of this study was to understand whether the ability to form recursive 

hierarchical abstract representations from sequential stimuli is present in all three 

sensory modalities and to identify any similarities or differences among them. 

Specifically, we wanted to verify whether participants exploited the cognitive 

parsing mechanism presented in Section 4.2. to acquire the regularities of the 

Fibonacci string in the three different sensory modalities. To do that, we measured 
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reaction times and accuracy rates in correspondence to every D (disambiguated) 

point and ND (non-disambiguated) point at each hierarchical level of the Fibonacci 

grammar. Specifically, D points are those points that can be predicted by acquiring 

low-level transitional regularities - as in the case of D points at level 0 and 1- or by 

tracking transitional regularities between increasingly larger chunks, hence forming 

recursive hierarchical representation - as in the case of D points at levels ≥ 2 - (cf. 

Section 4.2.). In case of learning, we expected to find better performances on D 

points than ND points within levels, in terms of increasingly shorter reaction times 

throughout the task. As explained in Section  4.2., by definition, ND points are those 

that elude predictability at each examined level. However, this does not imply 

absolute unpredictability. To clarify, the set of ND points at Level X encompasses 

all points (both D and ND) at Level X+2. In simpler terms, ND points at Level X 

include both those that could be predicted at Level X+2 (D points at Level X+2) 

and those that remain unpredictable at Level X+2 (ND at Level X+2). The same 

holds true for the higher levels (cf. Section 4.2.). For this reason, we did not rule 

out the possibility of finding signs of learning also for the category of ND points. 

However, we anticipated that if evidence of learning were to emerge within a level 

for both D and ND points, we would expect the latter to be characterized by 

generally higher reaction times (RTs) compared to D points. Additionally, we would 

expect the decrease in RTs for ND points to start later within the blocks compared 

to D points. 

Regarding accuracy, it will not be considered the primary indicator of 

learning. Instead, we will base the significance of our findings on reaction times, as 

we believe they are a more accurate measure in cases of learning effects compared 

to accuracy. As we will discuss in the following sections, due to the simplicity of 

the task, we expect response accuracy to be nearly at ceiling levels, as found in 

Schmid et al. (2023). Therefore, given the simplicity of the task, we will not rely on 

accuracy results to determine significance. However, we still consider it important 

to analyze accuracy, as it might provide relevant insights for the overall 

interpretation of the results. High rates of inaccuracy, for instance, could indicate 

that participants responded randomly or did not complete the task diligently, 

thereby highlighting potential outliers. Additionally, even if we expect accuracy 
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levels to be very high, they could still show trends that align with or diverge from 

the reaction time results. If both reaction time and accuracy results exhibit similar 

trends (e.g., increased accuracy alongside decreased reaction times in cases of 

learning), it would strengthen and confirm the findings based on reaction times. 

However, we must account for other factors that might affect accuracy levels, such 

as boredom or fatigue caused by the task's length. 

As explained in Section 4.2., in Fib strings, specific points can be predicted 

by leveraging low-level statistical information (Disambiguated points at Level 0 

and 1). Specifically, these points can be predicted by means of low-level conditional 

statistics applied to the sequence of symbols. As we have seen, D (disambiguated) 

points at Level 0 coincide with a first-order transitional regularity where p (1|0) = 

1, while D points at Level 1 represent a second-order transitional regularity where 

p (0|11) = 1. Consistent with previous studies exploring domain-specific differences 

in processing low-level sequential statistical learning (cf. Section 3.1.4.), we 

expected to find that D points at Level 0 and Level 1 were learned in all three 

sensory modalities. Indeed, previous studies have found evidence of this ability in 

both the auditory, tactile, and visual domains. However, differences have also been 

identified. Notably, there is agreement among studies that the auditory domain 

outperforms the visual domain in processing sequential statistical information, 

while evidence regarding the auditory-tactile comparison is inconclusive (cf. 

Section 3.1.4.). Consequently, we predicted better performance in learning these 

points in the auditory sphere compared to the visual sphere, but we did not have 

specific hypotheses for the tactile domain. Moreover, we were interested in 

investigating whether the tactile domain would have exhibited advantages or 

disadvantages compared to the other two sensory domains. Since D points at Level 

0 are computationally less complex than those at Level 1, we expected the former 

to be learned chronologically earlier than the latter. Indeed, as highlighted in 

Section 4.2., to predict D points at Level 0, the parser needs to keep track of only 

one element (0) to predict the next one (1) in the bigram 01, representing a first-

order transitional regularity where p (1|0) = 1. In contrast, for D points at Level 1, 

two symbols (11) need to be held in working memory to predict the next one (0) in 

the trigram 110, being a second-order transitional regularity where p (0|11) = 1.  
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As for the ability to predict D points at Levels  2, the cognitive parsing 

algorithm, outlined in Section 4.2., relies on the construction of increasingly larger 

hierarchical abstract representations formed through the application of a recursive 

algorithm. This mechanism, the only strategy deemed cognitively plausible to 

predict points of different complexity in Fib sequences, involves transitioning from 

the sequential dimension to the hierarchical one (cf. Section 4.3.). The transition is 

achieved by identifying and projecting low-level statistical regularities across 

different hierarchical levels. To elaborate, according to the Fib cognitive parsing 

algorithm proposed in Section 4.2., at each hierarchical level, the parser must chunk 

symbols, categorize them, and recursively form larger embedded chunks based on 

their distributional properties. Crucially, in this cognitive algorithm, the 

distributional properties between the two symbols of the grammar 0 and 1 are 

projected across the board due to the self-similarity property of Fib. As discussed 

in Section 3.1.6., in the literature we find studies that have explored and confirmed 

the ability to create recursive hierarchical representations in the auditory and visual 

spheres (Martins et al., 2014; 2015; 2017). The results of these studies suggest that 

the ability to represent recursive abstract structures is a domain-general cognitive 

skill. Indeed, a correlation has been found between auditory recursion abilities and 

corresponding skills in action sequencing and the visual domain (Martins et al., 

2017). However, as highlighted in Section 3.1.6., visual studies conducted so far 

have investigated the ability to represent recursive structures in fractal images, that 

is, in static figurative representations where recursion was spatially displayed. In 

contrast, given the temporal nature of sound, studies that have investigated 

recursion in the auditory domain have examined this ability in the context of 

sequential fading auditory sequences, thus in the temporal dimension. To our 

knowledge, no study has explored the ability to form recursive hierarchical abstract 

structures from sequentially arranged stimuli in the visual domain. Crucially, 

moreover, no study has ever investigated the ability to represent recursive 

hierarchical structures in the tactile domain. It follows that, at the moment of our 

investigation, we had no information about the potential ability to process and 

represent recursion through touch. Our study, therefore, is the first to aim at 

investigating the ability to process and represent recursive hierarchical structures 
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arising from sequentially presented fading input, through a directly comparable 

paradigm across the visual, auditory, and tactile sensory domains. The goal of our 

study was to shed light on possible domain-general and domain-specific constraints 

in the process. Regarding the auditory domain, in line with previous studies, we 

expected to find evidence of this ability. On the contrary, we had no specific 

expectations for the visual and tactile domains. We asked ourselves whether 

evidence of this ability would have been found in these two domains as well. And, 

if so, if there would have been domain-specific differences. Having observed that 

the auditory domain outperforms the visual domain in processing sequential 

implicit statistical information (cf. Section 3.1.2.) and considering that the ability 

to represent recursive hierarchical structures in our paradigm is closely intertwined 

with sequential implicit statistical learning abilities (cf. Section 4.2.), we 

hypothesized the auditory domain to have an advantage over the visual one in 

creating recursive hierarchical representations from sequentially arranged 

sequences of fading stimuli. The question remained, however: What would be the 

outcome in the tactile domain? 

Wrapping up, the final goal of our study was to shed light on the ability to 

form recursive hierarchical abstract representations from sequentially arranged 

fading stimuli in the auditory, tactile, and visual sensory domains. Specifically, we 

aimed to explore the relationship between sequential implicit statistical learning and 

the formation of recursive hierarchical representations. Moreover, we were 

interested in assessing possible domain-specific constraints in the process.  

 

5.1. Method 

 

5.1.1. Participants 

 
Thirty-one subjects took part in the Auditory Study (21 females and 10 males, mean 

age= 24.96 SD=6.21); thirty-five subjects took part in the Tactile Study (23 females 

and 12 males, mean age= 26.66 SD= 3.22); thirty-one subjects took part in the 
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Visual Study37 (7 male, 24 female). Their ages ranged from 21 to 37 years (M = 

24.76 SD = 6.27). Participants of all the three studies were volunteers recruited 

through announcements at the University of Verona. They had normal or corrected-

to-normal vision, and they did not suffer from any neurological, speech, learning, 

hearing disorder. They presented correct use and functioning of upper limbs. The 

three studies were approved by the local ethics committee at the University of 

Verona and conducted in accordance with the standards specified in the 2013 

Declaration of Helsinki. Informed written consent was obtained from all 

participants. Each participant was provided with a reimbursement of €5. 

 

5.1.2. Materials 

 
In all three experiments, participants were exposed to the same sequence of stimuli, 

whose pattern was determined by the rules of the Fibonacci grammar. Specifically, 

the string was composed of 534 stimuli generated by Fib (from generation 14) 

divided into 3 blocks of 178 stimuli each (blocks 1-3). 

In the Auditory Study, stimuli consisted of two pure tones (sine wave) of the 

same amplitude but of different frequencies generated by the Audacity® software 

version 3.0.0. Stimulus A had a frequency of 333 Hz, whereas Stimulus B of 286 

Hz (Conway & Christiansen, 2005). The stimuli were transmitted through 

Bluetooth V5.0 bone conduction headphones (Tayogo ® S2 14 x 4.5 x 13 cm; 35 

grams), whose ear hooks were correctly positioned around participants’ ears so that 

the transducers sat comfortably outside of their ear and just above their temple 

bones. Participants were asked whether the volume of stimuli was adequate. The 

[0]s of the Fib grammar were transmitted through Stimulus A (333 Hz), while the 

[1]s through Stimulus B (286 Hz). The task was conducted using the DMDX 

Automode software version 6.0.0.4. 

                                                       
37 Method and part of data from the Visual Study have already been presented in a different paper 

(Compostella et al., under review), in which we investigated the interaction between implicit 

statistical learning and the cognitive bias known as alternation advantage in serial reaction time 

tasks. In the present work, we analyze part of the same data to investigate a different issue, hence 

adopting a different approach in the analysis. 
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In the Tactile Study, stimuli were created using Audacity® software version 

3.0.0. and consisted of two pure tones (sine wave) with a frequency of 120 Hz, an 

amplitude of 0.8, and a duration of 1000 ms. The two tones were used to generate 

light vibro-tactile impulses which were transmitted to the participants' thumbs via 

the same pair of Bluetooth V5.0 bone conduction headphones used in the Auditory 

Study (Tayogo ® S2 14 x 4.5 x 13 cm; 35 grams). The headphones were placed in 

contact with the fingertips of participants’ thumbs and were held firmly by two 

elastic latex bands that wrapped the headphones around the fingers. The intensity 

of the impulses was modulated to be well perceived by participants, but at the same 

time light, not annoying, and not audible. Fib’s [0]s were transmitted through vibro-

tactile stimuli to the right thumb, the [1]s through vibro-tactile stimuli to the left 

thumb. The experiment was conducted using the DMDX Automode software 

version 6.0.0.4. (Forster & Forster, 2003). 

In the Visual Study, stimuli consisted of blue and red squares (dimensions 

1012x536 pixels, BMP files), sequentially presented one at a time, to the right or 

left of a computer screen. The pattern of stimuli was determined by the Fib 

grammar. Fib’s 1s and 0s were associated and transmitted as blue squares and red 

squares, respectively. Red squares always appeared to the left side of the computer 

screen, while blue squares to the right. The task was run in DMDX Automode 

version 6.3.1.4 software (Forster & Forster, 2003).  The methodology employed in 

the Visual Study mirrors that used in Schmid et al. (2023) and Vender et al. (2019; 

2020; 2023), with the exception that, unlike the studies by Vender and colleagues, 

this study did not include the presence of incongruent stimuli (See Section 4.4. for 

further details).  
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Figure 42. (A) Bone-conduction headphones used in both the tactile and auditory studies; 

(B) Apparatus of the Tactile Study: PC and bone-conduction headphones on participant’s 

thumbs; (C) Vibrotactile stimulus on participant’s thumbs and respective response buttons 

on the keyboard. 

 

5.1.3. Procedure 

 
In all three studies, participants were tested individually in the LaTeC (Language, 

Text and Cognition) Laboratory at the University of Verona, in a dimly lit and 

soundproof testing room. They were not informed that the sequence of stimuli 

followed the rules of an artificial grammar, as in Vender et al. (2019; 2020; 2023); 

and Schmid et al. (2023). Participants were informed that they would have been 

exposed to a binary sequence of stimuli and instructed to respond to the two stimuli 

by pressing specific keys on a computer keyboard as quickly and accurately as 

possible. Only at the end of the experiments, participants were informed that the 
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sequence of stimuli was not random, and they were asked if they had noticed any 

patterns. To get participants acquainted with the task, they started with a 

familiarization phase, which comprised eight trials that did not adhere to the Fib 

grammar rules. In this phase, they received on-screen feedback indicating whether 

their responses were correct or incorrect. After completing the familiarization 

phase, participants were given the opportunity to ask any questions they may have 

had. If no questions were asked, the testing phase started, and no feedback was 

provided to participants. The task lasted about 20 minutes for all three studies. 

In the Auditory Study, participants were informed that they would have been 

exposed to a sequence of two auditory stimuli of different frequency and were asked 

to respond to Stimulus A by pressing as fast and accurately as they could the [z] key 

button on the keyboard and to Stimulus B by pressing [m]. Each trial began with a 

fixation cross that appeared in the center of the screen for 500 ms, followed by a 

250 ms delay before the transmission of one of the two tones (Stimuls A, or 

Stimulus B). The tones were transmitted to both ears through headphones and had 

a duration of 1000 ms, regardless of participants’ response time. If participants did 

not provide a response within this time window, a new fixation cross appeared in 

the center of the screen. The timing started with the beginning of tone transmission 

and ended when the participant provided a response by pressing a key.  

In the Visual Study, participants were given instructions that they would 

have seen red and blue squares appearing on the screen and were asked to respond 

as fast as possible to stimuli by pressing on the computer keyboard the [z] key for 

red squares and the [m] key for blue squares. Each trial began with a fixation cross 

that appeared in the center of the screen for 500 ms, followed by a 250 ms delay 

before the appearance of the red or blue square. Red squares were always displayed 

on the left side of the screen, while blue squares were displayed on the right side. 

The squares remained visible for 1000 ms, regardless of participants’ response time. 

If participants did not respond within this time window, the stimulus disappeared, 

and a new fixation cross appeared in the center of the screen. The timing started 

with the square's appearance and ended when the participant gave an answer by 

pressing the key.  
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In the Tactile Study, participants were informed that they would have been 

exposed to a sequence of vibrotactile stimuli transmitted to the right or left thumb 

and were asked to respond to stimuli by pressing specific keys on the computer 

keyboard, trying to be as accurate and as fast as possible. Specifically, they were 

required to press the [z] key on the keyboard when they perceived the stimulus on 

their left thumb, whereas [m] key for the stimulus on their right thumb. Each trial 

began with a fixation cross that appeared in the center of the screen for 500 ms, 

followed by a 250 ms delay before the appearance of the vibrotactile stimulus to 

the left or to the right thumb. The stimulus lasted for 1000 ms, regardless of 

participants’ response time. If participants did not provide a response within this 

time window, the stimulus ended, and a new fixation cross appeared in the center 

of the screen. The timing started with the beginning of the vibrotactile stimulus and 

ended when the participant pressed the [z] or [m] on the keyboard.  

 

5.2. Data analysis  

 

We analyzed RTs and accuracy rates across blocks (1-3) comparing disambiguated 

(D) and non-disambiguated (ND) points at every level (1-6) in each modality 

(auditory, tactile, visual). As outlined in Chapter 4, D points are the points within 

Fib strings that can be predicted at each level of Fib’s hierarchical structure, if the 

parser exploited the cognitive parsing algorithm proposed in Section 4.2.  This 

cognitive parsing strategy specifically entails the recursive application of first- and 

second-order transitional regularities between progressively larger embedded 

chunks (cf. Section 4.2.). Comparing the two types of point (D vs. ND) allows us 

to finely evaluate the presence of learning, avoiding potential problems inherent in 

considering only D points. In fact, in the case where a progressive decrease in RTs 

on D points across blocks was observed would not guarantee us that learning has 

taken place. Other factors, such as habituation to the task effect, might have played 

a role.  The habituation to the task effect is a phenomenon that leads to a decrease 

in reaction times, irrespective of whether statistical learning is present in the task. 

In serial reaction time task protocols, participants may naturally adapt to the task 

over time. As they engage in the task, their reaction times may undergo changes. 

Initially, responses might be slower, but through practice, participants could 
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improve their speed as they become more familiar with the task. Likewise, potential 

differences in RTs and in the trends of accuracy rates on D points across modalities 

might be related to factors intrinsic to the individual modalities which may operate 

differently in the three sensory domains. Comparing learning in different modalities 

through different experimental tasks should be taken cautiously (Abrahamse et al., 

2009). Indeed, cross-modalities differences do not directly reflect learning 

differences but might be the result of a combination of learning and modality-

dependent constraints. In our protocol, instead, we can investigate and compare 

learning across three different sensory modalities through a task that is as similar 

and directly comparable as possible. In fact, the only variable among the three tasks 

lies in the nature of the stimuli used to transmit the sequences of Fib. Apart from 

this, everything else is identical. By comparing the differences in the trajectory of 

RTs curves for D points and ND points between blocks, we have an index of 

learning that we can then compare across the three modalities, assessing the 

magnitudes. This would serve as a clear and accurate indicator of potential learning 

and any differences across different sensory spheres. As for accuracy, as explained 

in Section 5.2., it will not be taken as our primary indicator of learning. Instead, we 

will focus on reaction times to determine significance, as we believe they provide 

a more precise measure of learning effects. Indeed, given the simplicity of the task, 

we expect accuracy to be at ceiling, as observed by Schmid et al. (2023). Thus, we 

will not use accuracy results to determine significance. However, analyzing 

accuracy remains important for a comprehensive understanding of the results. High 

levels of inaccuracy could suggest random responses or a lack of careful task 

completion, identifying potential outliers. Furthermore, even though we anticipate 

very high accuracy levels, they may still undergo changes throughout the task, 

possibly revealing trends that either match or differ from the reaction time results. 

Should both reaction times and accuracy exhibit parallel trends (such as increased 

accuracy and decreased reaction times in case of learning), it would reinforce and 

validate the conclusions drawn from reaction times data. However, we must 

consider that factors like boredom or fatigue from the length of the task could also 

affect accuracy levels. 
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5.2.1. Data analysis plan 

 
Considering the varying frequencies of 0s and 1s in the string (cf. Section 4.1.), our 

approach involved not directly comparing 0s and 1s. Instead, we chose to examine 

them individually, assessing differences in reaction times (RTs) and accuracy rates 

at each level. The comparison specifically looked at points that could be predicted 

at a specific level (D points) and those that could not be predicted (ND points). To 

verify if there were learning differences between disambiguated (D) and non-

disambiguated (ND) points at each level, we analyzed and compared RTs and 

accuracy rates in correspondence to every instance of these two points in each 

block, in the three modalities. Data were analyzed with a series of linear mixed 

effects regression models using lme4 and lmerTest (Bates et al., 2015; Kuznetsova 

et al., 2017) in R (R Core Team 2022).  

To check whether the decrease of RTs for D and ND points was statistically 

significant, whether there were significant differences in the trend across blocks 

between the two types of point, and whether these differences were modulated by 

the specific modalities, we ran a series of Linear Mixed Models with RTs as 

dependent variable, Block (1-3), Point_Leveln (1-6), and Modality (auditory, tactile, 

and visual) as independent variables, and Subject as random intercept. Point_Leveln 

is a discrete variable that contrasts disambiguated (D) and non-disambiguated (ND) 

points, differently operationalized depending on the level taken into consideration 

(1-6). As explained in Section 4.2., levels refer to the different hierarchical levels 

of Fib’s structure. In this analysis, only correct responses were taken into 

consideration. For accuracy, we conducted a series of Generalized Mixed Models 

based on binomial distribution (Jaeger 2008) with Accuracy as dependent variable, 

Block (1-3), Point_Leveln (1-6), and Modality (auditory, tactile, visual) as 

independent variable, and Subject as random intercept. Then, to unpack the 

significant interaction we found in both the analysis of RTs and accuracy rates, we 

ran post-hoc tests with Tukey correction of p-values (emmeans()-function in R). 

 

The present analysis allows us to: (i) observe whether there are differences 

in the trends of RTs and accuracy rates across blocks between disambiguated (D) 

and non-disambiguated (ND) points within levels, in the three sensory modalities; 
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if participants manage to predict D points by exploiting the cognitive parsing 

strategy explained in Section 4.2., we expect to find a significative difference in the 

trend of RTs, possibly accompanied by a difference in accuracy rates across blocks 

between D and ND points, within levels (i.e., level 0 D vs. ND; level 1 D vs. 

ND; …). Specifically, we expect D points to have a steeper and/or earlier decrease 

in RTs across blocks, and shorter RTs than ND ones as soon as they are predicted. 

As for accuracy, as we explained, we expect it to be at ceiling throughout the task 

for both D and ND points due to the test's simplicity. However, performance 

improvements might be reflected not only in decreased reaction times but also in a 

slight increase in accuracy rates or a more pronounced progressive increase across 

blocks for D points compared to ND points. However, it is important to consider 

that other factors, such as boredom or fatigue due to the length of the task, might 

impact accuracy levels. For this reason, as we have explained, we will primarily 

consider RTs to determine significance. 

Hence summing up, we expect the trend in RTs (and possibly accuracy rates) 

across blocks to be modulated by the type of point (D vs. ND); if this is the case, 

(ii) determine up to which level the difference holds; (iii) verify whether the 

different trend between D and ND points across blocks is modulated by the type of 

modality (auditory, visual, tactile), comparing their magnitudes. In other words, the 

present analysis will allow us to compare learning in the three sensory domains, by 

checking whether the changes in RTs (and possibly in accuracy rates) across blocks 

between D and ND points are modulated by the sensory modality and observing up 

to which level the potential difference holds. 

 

5.3. Results 

 
Analysis 1: Deterministic Vs. Non-Deterministic points within Level 0 in the 

Auditory, Tactile, and Visual studies 

At Level 0, we compared RTs and accuracy rates in correspondence to every 

instance of D and ND points in each block, in the three modalities. At this level, D 

points correspond to those 1 that follow 0 (01); ND points to those 1 that follow 01 

(011). Results are reported in Table 1 and 4, respectively. As observable in Figure 
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43, RTs in the visual modality are considerably lower than those in the auditory and 

tactile ones. In all three modalities RTs for D points are significantly shorter than 

those for ND points, in every block. However, both those for D points and ND 

points decreased across blocks. Specifically, the slope for the former is steeper than 

that of the latter in the auditory and visual modalities, whereas, in the tactile 

modality, RTs for D and ND points diminished across blocks in a similar way. From 

the LMM analysis, we found a main effect of Block (χ2 =792.32, df = 2, p < .001), 

indicating that RTs became shorter across blocks. We also found a main effect of 

Point_Level_0 (χ2 =359.70, df = 1, p < .001), with participants being faster on 

disambiguated (D) than non-disambiguated (ND) points.  Modality was significant 

(χ2 =500.05, df = 2, p < .001), indicating that there were significant differences in 

RTs between modalities. The Point_Level_0*Block interaction was significant (χ2 

=103.78, df = 2, p = < .001), indicating that RTs across blocks were modulated by 

the type of point (D vs. ND). Point_Level_0*Modality was significant χ2 =10.55, df 

= 2, p = < .01), meaning that the differences in RTs between D and ND points were 

modulated by the modality. Block*Modality was significant (χ2 =232.90, df = 4, p 

= < .001), meaning that RTs across blocks were modulated by the type of modality. 

The interaction Point_Level_0*Block*Modality was also significant (χ2 =40.70, df 

= 4, p = < .001): The difference in the trend of RTs between D and ND points across 

blocks were modulated by the modality.  Post-hoc comparisons revealed a 

significant decrease in RTs for D points in the auditory modality from Block 1 to 

Block 2; from Block 1 to Block 3; from Block 2 to Block 3; RTs for ND points 

decreased significantly from Block 1 to Block 2, and from Block 1 to Block 3. RTs 

on D points were significantly faster than those on ND points in all three blocks. In 

the tactile modality, a significant decrease in RTs was found on both D and ND 

points from Block 1 to Block 2, from Block 1 to Block 3, from Block 2 to Block 3. 

RTs on D points were significantly shorter than those on ND points in all three 

blocks. In the visual modality, we found a significant decrease in RTs on D points 

from Block 1 to Block 2; from Block 1 to Block 3; from Block 2 to Block 3; On the 

contrary, ND points did not decrease significantly across blocks. Overall, these 

results indicate that, in line with our expectations, at Level 0 RTs for D points 

decreased along the blocks in all three modalities. The decrease occurred as early 
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as the transition between Block 1 and Block 2 and then continued in Block 3, in all 

three modalities. Interestingly, in the auditory and tactile studies, the decrease in 

RTs also occurred for ND points (the decrease began already in the transition 

between the first and second block and continued in the third block), as opposed to 

the visual sphere, where ND points did not decrease. Crucially, however, in both 

the auditory and tactile spheres, from the pairwise comparison in post-hoc analyses 

between Block 1 and Block 3, we observed that ND points decreased to a lesser 

extent than D points. Moreover, RTs on D points were significantly faster than those 

on ND points in all three blocks, in all three modalities (see Table 2). These results 

clearly confirm the acquisition of the first-order transitional regularity according to 

which p(0|1)=1, excluding the hypothesis that the observed decrease in RTs on D 

points is attributable to an effect of habituation to the task (see Data Analysis 

Section). Indeed, not only D points displayed a decrease of RTs along the blocks, 

but we also found a difference in the trend of RTs between the set of D and ND 

points. Specifically, since we found significant lower RTs on D points than ND 

ones already in Block 1, we confirm that this regularity has been learnt within the 

first block of the task, in all three modalities. Crucially, moreover, it is important to 

highlight that we also found learning differences among modalities: As observed 

by comparing D points between Block 1 and Block 3 within modalities, the decrease 

was more pronounced in the auditory sphere (β=85.11; SE=3.12) than in the tactile 

(β=45.29; SE=2.92) and visual (β=27.14; SE=3.08) ones. Moreover, from pairwise 

comparisons between D and ND points in the third block (i.e., at the end of the 

task), we observe a greater difference between the two types of points in the 

auditory sphere (β=-122.90; SE=3.64) than in the tactile (β=-66.7; SE=3.43) and 

visual sphere (β=-73.85; SE=3.58). These findings are in line with our hypotheses: 

as observed in previous studies, the auditory domain displayed an advantage over 

the visual one in sequential statistical learning. In addition to this, our findings also 

suggest an advantage for the tactile sphere over the visual one.  Despite these 

domain-specific learning differences, we observed that RTs in the visual study were 

overall lower than those in the auditory and tactile ones, in each block, for both D 

points and ND points (see Table 3). A potential explanation for this result may be 

attributed to a general processing advantage for the visual sphere, independent from 
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learning, possibly linked to domain-internal factors such as faster communication 

channels connecting visual input processing and motor output. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Mean (SDs) RTs of each block for Disambiguates (D) and Non-disambiguated 

(ND) points at Level 0 in each Modality (Analysis 1). 

 
 
 
 

 Block 1  Block 2  Block 3  

RTs Disambiguated Points Auditory 
622.17 560.38 538.84 

(148.59) (156.90) (154.51) 

RTs Non-Disambiguated Points Auditory 

695.70 671.41 664.69 

(117.56) (135.64) (129.40) 

RTs Disambiguated Points Tactile 
638.20 622.17 594.37 

(108.52) (119.78) (110.80) 

RTs Non-Disambiguated Points Tactile 
695.51 682.07 660.90 

(100.49) (107.69) (101.05) 

RTs Disambiguated Points Visual 
282.26 266.21 255.70 

(108.52) (103.30) (114.99) 

RTs Non-Disambiguated Points Visual 
338.55 336.11 330.12 

(98.21) (96.17) (100.57) 
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Figure 43. Mean RTs for D and ND points by block at Level 0 in the three studies (Analysis 

X). Error bars denote the 95% confidence interval. D_0 = Disambiguated points at Level 

0; ND_0 = Non-Disambiguated points at Level 0; AUD = Auditory modality; TAC = Tactile 

modality; VIS = Visual modality).  
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Table 2. Summary of significant LMM coefficients and contrasts on RTs (Point_Level_0 * 

Block | Modality) (Analysis 1). 

 

 

  

 β SE t p 

 

 

 

 

Point_Level_0*Block| 

Auditory 

Block 1 D – Block 2 D 61.75  3.13 19.73 <.0001 

Block 1 D – Block 3 D  85.11  3.12    27.30   <.0001 

Block 2 D – Block 3 D 23.36  3.11 7.52 <.0001 

Block 1 ND - block 2 ND 26.09  4.16 6.27 <.0001 

Block 1 ND – Block 3 ND 33.04  4.18 7.90 <.0001 

Block 1 D – Block 1 ND -70.83  3.73 -18.97 <.0001 

Block 2 D – Block 2 ND -106.49  3.63 -29.36 <.0001 

Block 3 D – Block 3 ND -122.90  3.64 -33.78 <.0001 

Point_Level_0*Block| 

Tactile 

Block 1 D – Block 2 D 15.51  2.93   5.29    <.0001 

Block 1 D - Block 3 D 45.29  2.92  15.53   <.0001 

Block 2 D – Block 3 D 29.78  2.93    10.18   <.0001 

Block 1 ND – Block 2 ND 10.97  3.90  2.812   0.0136 

Block 1 ND - Block 3 ND 35.41  3.91    9.05   <.0001 

Block 2 ND – Block 3 ND 24.44  3.86   6.33   <.0001 

Block 1 D - block 1 ND -56.9  3.47  -16.37   <.0001 

Block 2 D – Block 2 ND -61.4  3.43   -17.92   <.0001 

Block 3 D - Block3 ND -66.7  3.43  -19.48 <.0001 

Point_Level_0*Block| 

Visual 

Block 1 D – Block 2 D 16.81 3.07 5.47 <.0001 

Block 1 D - Block 3 D 27.14 3.08 8.80 <.0001 

Block 2 D – Block 3 D 10.33  3.09 3.34 0.0024 

Block 1 D - block 1 ND -55.63 3.61 -15.42 <.0001 

Block 2 D – Block 2 ND -68.72 3.56 -19.32 <.0001 

Block 3 D - Block3 ND -73.85 3.58 -20.61 <.0001 
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Modality*Block*Point_Level_0 

Block 1 D  

 

AUD - VIS 

342.75  18.4   18.67  <.0001 

Block 1 D 

TAC - VIS 

359.15  

 

98.3   20.16   <.0001 

Block 2 D 

AUD – TAC 

-62.64   17.8   -3.51  0.0019 

Block 2 D 

AUD - VIS 

297.80 

 

18.4   16.23 <.0001 

Block 2 D 

TAC - VIS 

360.44 

 

17.8   20.23 <.0001 

Block 3 D 

AUD – TAC 

-56.22  

 

17.8   -3.15   0.0060 

Block 3 D 

AUD - VIS 

284.78 

 

18.4   15.52  <.0001 

Block 3 D 

TAC - VIS 

341.00  17.8   19.14 <.0001 

Block 1 ND 

AUD - VIS 

357.94 

 

18.6  19.28  <.0001 

Block 1 ND 

TAC - VIS 

360.38 

 

18.0  20.00   <.0001 

Block 2 ND 

AUD - VIS 

335.58 

 

18.5  18.11  <.0001 

Block 2 ND 

TAC - VIS 

353.13 

 

18.0  19.62  <.0001 

Block 3 ND 

AUD - VIS 

333.83 

 

18.5  18.01 <.0001 

Block 3 ND 

TAC - VIS 

333.90  18.0  18.55  <.0001 

Table 3. Summary of significant LMM coefficients and contrasts on RTs (Modality * Block 

* Point_Level_0) (Analysis 1). 

Summarizing, at Level 0, from the analysis of RTs we found that D points were 

learned in all three modalities, already in Block 1. Moreover, we found a domain-

specific distinction in learning: in the auditory domain we found a significantly 

higher performance in learning compared to the tactile and visual domains. In turn, 
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the tactile sphere proved to be superior to the visual sphere. Despite this learning 

advantage, we found that reaction times were consistently faster in the visual 

domain compared to auditory and tactile domains. This suggests a general 

processing advantage for visual information, independent from learning, possibly 

due to faster communication pathways between visual input and motor responses. 

 As for accuracy, as observable in Figure 44, D points were more accurate 

than ND points, in every block, in all the three modalities. In the auditory and tactile 

studies, the accuracy of D points increases across blocks, while that of ND ones 

decreases. In the visual study, on the other hand, that of both D and ND points 

decreases along the task, but the latter to a greater extent. The GLMM analysis 

revealed a main effect of Block (χ2 = 24.91, df = 2, p < .001), indicating the presence 

of significantly different accuracy rates between blocks. Point_Level_0 was also 

significant (χ2 = 23.94, df = 1, p < .001), meaning that D points were significantly 

more accurate than ND points. Modality was significant (χ2 = 32.15, df = 2, p < 

.001), meaning that there were significant differences in accuracy rates in the three 

modalities. The Point_Level_0*Block interaction was significant (χ2 = 19.40, df = 

2, p < .001), indicating that the trend for accuracy rates across blocks was modulated 

by the type of point. The Block*Modality interaction was significant (χ2 =62.58, df 

= 4, p < .001) too, meaning that the trend for accuracy rates across blocks was 

modulated by the modality. The interaction Point_Level_0*Block*Modality was 

significant (χ2 =13.75, df = 4, p < .01): the difference in the trend of accuracy rates 

between D and ND points across blocks was modulated by the modality. In the 

auditory modality, post-hoc comparisons showed a significant increase in accuracy 

on D points from Block 1 to Block 3; from Block 2 to Block 3. On the contrary, 

accuracy rates on ND points did not change significantly across blocks. In the tactile 

modality, post-hoc comparisons reported a decrease in accuracy rates on D points 

from Block 1 to Block 2, followed by a significant increase from Block 2 to Block 

3. On the contrary, accuracy on ND points decreased significantly from Block 1 to 

Block 3. In the visual domain, results indicated a significant decrease in accuracy 

rates on both D and ND points from Block 1 to Block 2, from Block 1 to Block 3. 

This could have been caused by a fatigue effect, linked to increased cognitive effort 

associated with learning this regularity in the visual sphere. Crucially, however, in 
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both the auditory, tactile, and visual studies, we found that accuracy rates on D 

points were higher than those on ND points in all three blocks (see Table 5). Overall, 

these results are in line with our hypothesis and confirm what we have found for 

RTs: at Level 0, D points are processed differently from ND points. Specifically, 

concerning accuracy, an advantage of D points over ND points is observed. This 

advantage is evident both in terms of an increase in the accuracy rates of the former 

in the presence of a decrease (as in the tactile modality) or a stable trend (as in the 

auditory modality) in the latter's accuracy, and in the overall higher accuracy rates 

of D points compared to ND points in all blocks and across all three modalities. 

Despite this, post-hoc comparisons also indicated differences between modalities. 

Specifically, accuracy rates in the tactile domain were higher than those in the 

auditory domain on D points in Block 1. Accuracy rates in the visual modality were 

higher than those in the auditory and tactile ones on D points in Block 1 and on ND 

points in Block 1 and 2. They were higher than those in the auditory modality on D 

points in Block 2 and on ND points in Block 3 (see Table 6). Hence, overall, these 

results do confirm the presence of domain-specific differences in sequential 

statistical learning abilities. Specifically, the auditory and tactile domain proved to 

be superior to the visual sphere. Crucially, moreover, the fact that accuracy rates on 

D points were higher in the visual sphere than tactile and auditory ones in the first 

block, is also in line with results on RTs. Specifically, it reinforces the hypothesis 

of a general processing advantage (e.g., superior communication channels 

connecting visual input processing and motor output), independent from learning, 

for the visual sphere. Indeed, in this specific case, the visual sphere turned out to be 

more accurate than the auditory and tactile ones only at the beginning of the task, 

when the learning effects were still in their early stages and had not yet become 

prominently evident.  
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 Block 

1  

Block 2  Block 3  

Accuracy Disambiguated Points Auditory 
0.94 0.96 0.97 

(0.23) (0.19) (0.15) 

Accuracy Non-Disambiguated Points 

Auditory 

0.90 0.91 0.89 

(0.30) (0.29) (0.31) 

Accuracy Disambiguated Points Tactile 
0.97 0.95 0.97 

(0.17) (0.21) (0.16) 

Accuracy Non-Disambiguated Points 

Tactile 

0.92 0.90 0.90 

(0.26) (0.30) (0.31) 

Accuracy Disambiguated Points Visual 
0.99 0.98 0.97 

(0.08) (0.14) (0.17) 

Accuracy Non-Disambiguated Points Visual 
0.98 0.96 0.94 

(0.14) (0.20) (0.23) 

Table 4. Mean (SDs) accuracy rates of each block for Disambiguates (D) and Non-

disambiguated (ND) points at Level 0 in each Modality (Analysis 1). 

 

Figure 44. Mean accuracy rates for D and ND points by block at Level 0 in the three studies 

(Analysis 1). Error bars denote the 95% confidence interval. D_0 = Disambiguated points 

at Level 0; ND_0 = Non-Disambiguated points at Level 0; AUD = Auditory modality; TAC 

= Tactile modality; VIS = Visual modality).  
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 β SE t p 

 

 

Point_Level_0*Block| 

Auditory 

Block 1 D – Block 3 D -0.85  0.17 -4.96 <.0001 

Block 2 D – Block 3 D -0.50 0.18 -2.77 0.0155 

Block 1 D - block 1 ND 0.69  0.14 4.89 <.0001 

Block 2 D – Block 2 ND 0.94  0.15 6.20 <.0001 

Block 3 D - Block3 ND 1.64  0.17 9.68 <.0001 

Point_Level_0*Block| 

Tactile 

Block 1 D – Block 2 D  0.40 0.16 2.53 0.0304 

Block 2 D – Block 3 D -0.63  0.17 -3.75 0.0005 

Block 1 ND – Block 3 ND     0.45  0.14 3.19 0.004 

Block 1 D - block 1 ND 1.02  0.16 6.30 <.0001 

Block 2 D – Block 2 ND 0.95  0.14 6.82 <.0001 

Block 3 D - Block3 ND 1.70  0.16 10.54 <.0001 

Point_Level_0*Block| 

Visual 

Block 1 D – Block 2 D 1.01 0.30 3.36 0.0022 

Block 1 D - Block 3 D 1.49 0.28 5.22 <.0001 

Block 2 D – Block 3 D 0.48 0.20 2.36 0.0484 

Block 1 ND – Block 2 ND 0.74 0.24 3.09 0.0056 

Block 1 ND - Block 3 ND 1.10 0.23 4.77 <.0001 

Block 1 D - block 1 ND 1.14 0.32 3.54 0.0004 

Block 2 D – Block 2 ND 0.88 0.21 4.17 <.0001 

Block 3 D – Block 3 ND 0.75 0.17 4.29 <.0001 

 
Table 5. Summary of significant GLMM coefficients and contrasts on Accuracy 

(Point_Level_0 * Block | Modality) (Analysis 1). 
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Modality*Block*Point_Level_0 

Block 1 D 

 

AUD – TAC 

-0.86  0.31  -2.72   0.0177 

Block 1 D  

 

AUD - VIS 

-2.22 0.39  

 

-5.64   <.0001 

Block 1 D 

TAC - VIS 

-1.37 

 

0.40  

  

-3.45  0.0016 

Block 2 D 

AUD - VIS 

-0.86 

 

0.34  

 

-2.51   0.0327 

Block 1 ND 

AUD - VIS 

-1.77  

 

0.36  

 

-4.93  <.0001 

Block 1 ND 

TAC - VIS 

-1.25  

 

0.36  

 

-3.50   0.0013 

Block 2 ND 

AUD - VIS 

-0.92  

 

0.33 

 

-2.81   0.0139 

Block 2 ND 

TAC - VIS 

-0.83  

 

0.32  

 

-2.58   0.0265 

Block 3 ND 

AUD - VIS 

-0.77  

 

0.32  

 

-2.40  0.0428 

Table 6. Summary of significant GLMM coefficients and contrasts on Accuracy 

(Modality * Block * Point_Level_0) (Analysis 1). 

 

Summarizing, at Level 0, the analysis of accuracy rates confirmed what has been 

found for RTs. D points have been processed differently than ND points, in all three 

modalities, and the difference was observable already in Block 1. Overall, these 

results confirm the acquisition of D points at Level 0 already within the first block. 

Furthermore, we confirm the disadvantage of the visual sphere in acquiring this 

sequential statistical regularity compared to the auditory and tactile spheres.  
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Analysis 2: Deterministic Vs. Non-Deterministic points within Level 1 in the 

Auditory, Tactile, and Visual studies 

 

At Level 1, we compared RTs and accuracy rates in correspondence to every 

instance of D and ND points in each block, in the three modalities. At this level, D 

points correspond to those 0 that follow 11 (110); ND points to those 0 that follow 

01 (010). Results are reported in Table 7 and 10, respectively. As observable in 

Figure 45, RTs in the visual modality are considerably shorter than those in the 

auditory and tactile ones. In all three modalities, RTs for D points are shorter than 

those for ND points, in every block, except in Block 1 in the visual modality, where 

the RTs for D points are slightly higher than those for ND points. In the auditory 

and tactile modalities, RTs for both D and ND points decrease across blocks. 

Despite this, the slope for the former is steeper than that of the latter, especially in 

the auditory modality. Instead, in the visual mode, only RTs for D points descend 

along blocks, as opposed to those for NDs, for which no substantial descent occurs. 

From the LMM analysis, we found a main effect of Block (χ2 =582.59, df = 2, p < 

.001), indicating that RTs became shorter across blocks. We also found a main 

effect of Point_Level_1 (χ2 =165.0, df = 1, p < .001), with participants being faster 

on disambiguated (D) than non-disambiguated (ND) points.  Modality was 

significant (χ2 =466.31, df = 2, p < .001), indicating that there were significant 

differences in RTs between modalities. The Point_Level_1*Block interaction was 

significant (χ2 =76.38, df = 2, p = < .001), indicating that RTs across blocks were 

modulated by the type of point (D vs. ND). Point_Level_1*Modality was significant 

(χ2 =111.16, df = 2, p = < .001), meaning that the differences in RTs between D and 

ND points were modulated by the modality. Block*Modality was significant (χ2 

=214.69, df = 4, p = < .001), meaning that RTs across blocks were modulated by 

the type of modality. The interaction Point_Level_1*Block*Modality was 

significant (χ2 =22.23, df = 4, p = < .001), meaning that the differences in the trend 

of RTs between D and ND points across blocks were modulated by the modality.  

In the auditory modality, post-hoc comparisons revealed a significant decrease in 

RTs for D points from Block 1 to Block 2; from Block 1 to Block 3; from Block 2 

to Block 3. In the tactile modality, we found a significant decrease in RTs on D 
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points from Block 1 to Block 2, from Block 1 to Block 3, from Block 2 to Block 3. 

In the visual modality, we found a significant decrease in RTs on D points from 

Block 1 to Block 2; from Block 1 to Block 3 (see Table 8). Crucially, however, as 

observable from pairwise comparisons between Block 1 and Block 3, the decrease 

was sharper in the auditory modality than the tactile and visual one (Table 8), 

confirming a learning advantage for this sensory domain over the tactile and visual 

ones. In the auditory and tactile studies, RTs on ND points decreased as well. 

However, in the former, the decrease was significant already in the passage from 

Block 1 to Block 2, whereas in the latter we found a significant decrease only from 

Block 1 to Block 3. Moreover, as observable from pairwise comparisons between 

Block 1 and Block 3, the decrease occurred to a greater extent in the auditory 

domain than in the tactile one (Table 8). In contrast, ND points did not decrease in 

the visual domain. RTs for D points were lower than those for ND points in all three 

blocks in the auditory and tactile spheres, while in the visual sphere the difference 

occurred only in blocks 2 and 3. Moreover, as we observed from pairwise 

comparison between D and ND points in the third block, the difference between the 

two types of point was greater in the auditory sphere than in the tactile and visual 

spheres (Table 8). Overall, these results are in line with our predictions and with 

results observed at Level 0. Specifically, they indicate that D points at Level 1 were 

learned in all three sensory domains, but with domain-specific differences:  from 

the trend of RTs on D points, we observed that the auditory modality displayed an 

advantage over the tactile and visual ones. Moreover, the tactile domain displayed 

better performances compared to the visual one. Importantly, D points were learned 

earlier in the auditory and tactile modalities (Block 1) than the visual modality 

(Block 2), as observed comparing D and ND points within blocks. Comparing the 

three modalities, we also found that RTs in the auditory modality were significantly 

faster than those in the tactile modality on D points in Block 2 and 3. RTs in the 

tactile modality were faster than those in the auditory modality on ND points in 

Block 1. Moreover, as observed at the previous level, RTs in the visual study were 

overall shorter than those in the auditory and tactile study, for both D and ND 

points, in all blocks (see Table 9). This suggests a general processing advantage, 

independent from learning, for the visual sphere.   
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 Block 1  Block 2  Block 3  

RTs Disambiguated Points Auditory 
654.91 583.23 567.32 

(145.48) (153.46) (150.81) 

RTs Non-Disambiguated Points Auditory 

715.29 700.65 677.96 

(118.79) (120.79) (122.47) 

RTs Disambiguated Points Tactile 
653.59 635.53 617.09 

(102.12) (107.39) (110.45) 

RTs Non-Disambiguated Points Tactile 
665.79 662.94 654.00 

(98.02) (99.49) (102.08) 

RTs Disambiguated Points Visual 
315.54 301.46 296.42 

(103.54) (106.25) (117.65) 

RTs Non-Disambiguated Points Visual  
309.57 317.14 309.85 

(97.48) (106.11) (104.70) 

 

Table 7. Mean (SDs) RTs of each block for Disambiguates (D) and Non-disambiguated 

(ND) points at Level 1 in each Modality (Analysis 2). 

 

Figure 45. Mean RTs for D and ND points by block at Level 1 in the three studies (Analysis 

2). Error bars denote the 95% confidence interval. D_1 = Disambiguated points at Level 1; 

ND_1 = Non-Disambiguated points at Level 1; AUD = Auditory modality; TAC = Tactile 

modality; VIS = Visual modality).  
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Point_Level_1*Block| 

Auditory 

Block 1 D – Block 2 D 70.65 3.84 18.38 <.0001 

Block 1 D – Block 3 D  87.17 3.82 22.80 <.0001 

Block 2 D – Block 3 D 16.51 3.81 4.34 <.0001 

Block 1 ND - block 2 ND 19.71 5.32 3.71 0.0006 

Block 1 ND – Block 3 ND 39.20 5.22 7.51 <.0001 

Block 2 ND – Block 3 ND 19.49 5.21 3.74 0.0005 

Block 1 D – Block 1 ND -59.92 4.65 -12.88 <.0001 

Block 2 D – Block 2 ND -110.87 4.63 -23.96 <.0001 

Block 3 D – Block 3 ND -107.90 4.50 -24.00 <.0001 

Point_Level_1*Block| 

Tactile 

Block 1 D – Block 2 D 17.28 3.59 4.82 <.0001 

Block 1 D - Block 3 D 36.02 3.58 10.05 <.0001 

Block 2 D – Block 3 D 18.74 3.60 5.21 <.0001 

Block 1 ND - Block 3 ND 12.99 4.66 2.79 0.0147 

Block 1 D - block 1 ND -12.15 4.16 -2.92 0.0035 

Block 2 D – Block 2 ND -27.24 4.16 -6.54 <.0001 

Block 3 D - Block3 ND -35.18 4.15 -8.47 <.0001 

Point_Level_1*Block| 

Visual 

Block 1 D – Block 2 D 14.21 3.76 3.78 0.0005 

Block 1 D - Block 3 D 19.04 3.77 5.05 <.0001 

Block 2 D – Block 2 ND -14.51 4.33 -3-35 0.0008 

Block 3 D - Block3 ND -12.44 4.33 -2.87 0.0041 

 
Table 8. Summary of significant LMM coefficients and contrasts on RTs (Point_Level_1 * 

Block | Modality) (Analysis 2). 
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Modality*Block*Point_

Level_1 

Block 1 D  

 

AUD - VIS 

339.60 18.4 18.49 <.0001 

Block 1 D 

TAC - VIS 

340.00 17.8 19.07 <.0001 

Block 2 D 

AUD – TAC 

-53.77 17.8 -3.01 0.0090 

Block 2 D 

AUD - VIS 

288.16 18.4 15.42 <.0001 

Block 2 D 

TAC - VIS 

336.94 17.8 18.90 <.0001 

Block 3 D 

AUD – TAC 

-51.55 17.8 -2.89 0.0129 

Block 3 D 

AUD - VIS 

271.47 18.4 14.79 <.0001 

Block 3 D 

TAC - VIS 

323.03 17.8 18.12 <.0001 

Block 1 ND 

AUD - TAC 

47.37 18.1 2.61 0.0277 

Block 1 ND 

AUD - VIS 

405.01 18.7 21.68 <.0001 

Block 1 ND 

TAC - VIS 

357.65 18.1 19.77 <.0001 

Block 2 ND 

AUD - VIS 

379.51 18.7 20.33 <.0001 

Block 2 ND 

TAC - VIS 

349.66 18.1 19.34 <.0001 

Block 3 ND 

AUD - VIS 

366.93 18.6 19.69 <.0001 

Block 3 ND 

TAC - VIS 

345.77 18.1 19.13 <.0001 

 

Table 9. Summary of significant LMM coefficients and contrasts on RTs (Modality * Block 

* Point_Level_1) (Analysis 2). 

Summarizing, at Level 1, we found that RTs for D points decreased across blocks 

in all modalities. The decrease was already observable in the transition from the 

first to the second block and then continued in the third block, indicating that the 
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second-order transitional regularity according to which p(0|11)=1 was learnt in the 

initial blocks of the task.  Specifically, as observed comparing D and ND points 

within modalities, D points at Level 1 were learnt already in Block 1 in the auditory 

and tactile modalities, whereas in Block 2 in the visual modality. The combination 

of this observation with the trends observed in the RTs curve for D points in all 

three modalities confirms that the auditory sphere outperformed the tactile and 

visual spheres. Additionally, the tactile sphere surpassed the visual sphere in 

learning this sequential statistical regularity. This is in line with what has been 

found at Level 0. However, as observed at L0, also at L1 we consistently observed 

overall faster reaction times in the visual domain than in the auditory and tactile 

domains. This suggests a broader processing advantage for visual information, 

unrelated to learning, possibly stemming from quicker communication pathways 

between visual input and motor responses. 

As for accuracy, as observable in Figure 46, D points were more accurate 

than ND points, in every block, in all the three modalities. In the auditory study, the 

accuracy of both D and ND points increases across blocks. On the contrary, in the 

tactile and visual studies, accuracy rates slightly decrease along the task. The 

GLMM model failed to converge, indicating difficulties in obtaining a satisfactory 

estimation of the model parameters. The inability to achieve convergence implies 

that the estimated parameter values may not be reliable or reflective of the true 

underlying relationships within the data. The present convergence issue may stem 

from the complexity of the model. For this reason, we proceeded by (i) investigating 

the interaction between type of point and modality to verify whether the differences 

in accuracy rates between modalities were modulated by the type of point. Then, 

(ii) we investigated the interaction between type of point and block within the 

individual modalities, to check whether the trend of accuracy rates across blocks 

were modulated by the type of point, within each modality. For analysis (i) we ran 

a GLMM model with Accuracy as dependent variable, Point_Level_1 

(Disambiguated at level 1 vs. Non-disambiguated at Level 1) and Modality 

(Auditory, Tactile, Visual) as independent variables with full interaction, and 

Subject as random intercept. The analysis revealed a main effect of Modality (χ2 

=16.67, df = 2, p < .001), indicating the presence of significantly different accuracy 
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rates between modalities. Point_Level_1 was also significant (χ2 =255.67, df = 1, p 

< .001), meaning that D points were significantly more accurate than ND points. 

The Point_Level_1*Modality interaction was significant (χ2 =41.57, df = 2, p 

<.001): the difference in accuracy rates between modalities was modulated by the 

type of point. Post-hoc comparisons showed that D points in the visual modality 

were more accurate than D points in the auditory modality. ND points in the visual 

modality were more accurate than ND points in the tactile and auditory modalities. 

ND points in the tactile modality were more accurate than ND points in the auditory 

modality (see Table 12). For analysis (ii), we ran separated models, splitting data 

according to Modality. Hence, the effect of Point_Level_1 and Block was 

investigated in the three separated datasets (Auditory, Tactile, Visual). To check 

whether there were differences in accuracy rates between disambiguated and non-

disambiguated points at level 1 within the three modalities, we conducted three 

GLMM models (one in each modality) with Accuracy as dependent variable, Block 

(1-3) and Point_Level_1 (Disambiguated at level 1 vs. Non-disambiguated at Level 

1) as independent variables with full interaction, and Subject as random intercept.  

In the auditory modality, the GLMM model revealed a main effect of Block (χ2 

=22.093, df = 2, p < .001), indicating the presence of significantly different 

accuracy rates between blocks. Point_Level_1 was also significant (χ2 =63.417, df 

= 1, p < .001), meaning that D points were significantly more accurate than ND 

points (96% vs. 83%). The Point_Level_1*Block interaction was significant (χ2 

=8.994, df = 2, p <.05). Post-hoc comparisons reported a significant increase in 

accuracy on D points from Block 1 to Block 3; from Block 2 to Block 3. Accuracy 

rates on ND points increased significantly from Block 2 to Block 3. Accuracy rates 

on D points were significantly higher than those on ND points in all three blocks 

(See Table 11).  

In the tactile modality, the analysis revealed a main effect of Block (χ2 =6.27, df = 

2, p < .05), indicating the presence of significantly different accuracy rates between 

blocks.  Point_Level_1 was also significant (χ2 = 5.32, df = 1, p < .05), meaning that 

D points were significantly more accurate than ND points (96% vs. 93%). The 

Point_Level_1*Block interaction was not significant, indicating that the trend of 

accuracy rates across blocks was not modulated by the type of point. Being the 
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interaction not significant, we ran a second GLMM with accuracy as dependent 

variable, Block (1-3) and Point_Level_1 (Disambiguated at level 1 vs. Non-

disambiguated at Level 1) as independent predictors, and Subject as random 

intercept. We found a main effect of Block (χ2 =16.48, df = 2, p < .001), indicating 

the presence of significantly different accuracy rates between blocks. 

Point_Level_1 was significant (χ2 = 33.217, df = 1, p< .001), indicating that D 

points were significantly more accurate than ND ones. We then compared the two 

models with the anova()-function in R, without finding any significant result. 

Therefore, we failed to reject the null hypothesis, meaning that the two models did 

not differ. We ran post-hoc tests on the simpler model ((accuracy ~ 

Point_Level_1+Block + (1 |Subject)). Results indicated a significant decrease in 

accuracy rates from Block 1 to Block 2, and from Block 1 to Block 3. Accuracy on 

D points was higher than that on ND points (see Table 11).  

In the visual modality, the analysis revealed a main effect of Block (χ2 =14.43, df = 

2, p < .001), indicating that accuracy decreased across blocks. Point_Level_1 was 

significant (χ2 = 9.61, df = 1, p < .01), indicating that D points were significantly 

more accurate than ND points (98% vs. 97%). The Point_Level_1*Block interaction 

was also significant (χ2 = 8.26, df = 2, p < .05):  accuracy rates across blocks were 

modulated by the type of point. Post-hoc comparisons showed that accuracy rates 

for D points decreased significantly from Block 1 to Block 3, whereas those for ND 

points did not change significantly across blocks. Accuracy rates on D points were 

significantly higher than those on ND points in Block 1 and Block 2 (See Table 11). 
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 Block 

1  

Block 2  Block 3  

Accuracy Disambiguated Points Auditory 
0.94 0.95 0.98 

(0.24) (0.21) (0.15) 

Accuracy Non-Disambiguated Points 

Auditory 

0.83 0.80 0.87 

(0.38) (0.40) (0.34) 

Accuracy Disambiguated Points Tactile 
0.97 0.95 0.96 

(0.17) (0.21) (0.19) 

Accuracy Non-Disambiguated Points 

Tactile 

0.95 0.92 0.93 

(0.21) (0.27) (0.26) 

Accuracy Disambiguated Points Visual 
0.99 0.99 0.97 

(0.09) (0.12) (0.16) 

Accuracy Non-Disambiguated Points Visual 
0.97 0.97 0.97 

(0.145 (0.18) (0.16) 

Table 10. Mean (SDs) accuracy rates of each block for Disambiguates (D) and Non-

disambiguated (ND) points at Level 1 in each Modality (Analysis 2). 

 

Figure 46. Mean accuracy rates for D and ND points by block at Level 1 in the three studies 

(Analysis 2). Error bars denote the 95% confidence interval. D_1 = Disambiguated points 

at Level 1; ND_1 = Non-Disambiguated points at Level 1; AUD = Auditory modality; TAC 

= Tactile modality; VIS = Visual modality). 
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 β SE t p 

 

 

Point_Level_1*Block| 

Auditory 

Block 1 D – Block 

3 D 

-1.02 0.22 -4.69 <.0001 

Block 2 D – Block 

3 D 

-0.69 0.23 -3.03 0.0070 

Block 2 ND – 

Block 3 ND 

-0.49 0.14 -3.53 0.0012 

Block 1 D - block 

1 ND 

1.21 0.15 7.96 <.0001 

Block 2 D – Block 

2 ND 

1.72 0.16 10.55 <.0001 

Block 3 D - Block3 

ND 

1.92 0.21 9.02 <.0001 

Point_Level_1+Block| 

Tactile 

Block 1 – Block 2 0.62 0.15 3.98 0.0002 

Block 1 – Block 3 0.47 0.16 3.02 0.0071 

D - ND 0.7 0.12 5.76 <.0001 

Point_Level_1*Block| 

Visual 

Block 1 D – Block 

3 D 

1.26 0.35 3.56 0.0011 

Block 1 D - block 

1 ND 

1.19 0.38 3.10 0.0019 

Block 2 D – Block 

2 ND 

0.92 0.30 3.05 0.0022 

 

Table 11. Summary of significant GLMM coefficients and contrasts on Accuracy 

(Point_Level_1 * Block |Auditory; Point_Level_1 + Block |Tactile; Point_Level_1 * Block 

|Visual;) (Analysis 2). 

 

 β SE z p 

 

 

Modality *Point_Level_1 

D  

AUD - VIS 

-1.21 0.30 -4.07 0.0001 

ND 

TAC - AUD 

-1.45 0.26 -5.48 <.0001 

ND 

AUD - VIS 

-2.17 0.29 -7.51 <.0001 

ND 

TAC - VIS 

-0.72 0.29 -2.45 0.0379 

Table 12. Summary of significant GLMM coefficients and contrasts on Accuracy (Modality 

* Point_Level_1) (Analysis 2). 
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Summarizing, regarding accuracy, at Level 1 we observed that only in the 

auditory sphere accuracy rates on both D points and ND ones increase along blocks. 

In contrast, in the tactile and visual studies, accuracy on D points decreased. Once 

again, in line with previous analyses, this supports the primacy of the auditory 

sphere in sequential statistical learning. Interestingly, however, in all three 

modalities we found that accuracy rates on D points were overall higher than those 

on ND ones, confirming that the two types of points were processed differently.  

 

 

Analysis 3: Deterministic Vs. Non-Deterministic points within Level 2 in the 

Auditory, Tactile, and Visual studies 

At Level 2, we compared RTs and accuracy rates in correspondence to every 

instance of D and ND points in each block, in the three modalities. At this level, D 

points correspond to those 1 that follow the chunks [01][01]; ND points to those 1 

that follow [1][01]. According to the cognitive parsing strategy outlined in Section 

4.2., in order to predict D points at Level 2, it is necessary to have first learned the 

first- and second-order regularities corresponding to D points at Level 0 and Level 

1. In fact, as we have explained, the parser must first form two categories of points, 

create chunks by leveraging the first-order transitional regularity acquired at Level 

0, and track distributional information between chunks by exploiting the second-

order regularity acquired at Level 1. Therefore, learning to predict D points at Level 

2 is computationally more complex than learning sequential statistical information 

at previous levels. It requires a higher degree of abstraction and the projection of 

the acquired sequential statistical information (D points at Level 0 and Level 1) 

onto the hierarchical axis (cf. Section 4.2.). Having acquired both D points at Level 

0 and Level 1 in all three modalities, the parser potentially possesses the necessary 

information to proceed with hierarchical learning at Level 2. Consistent with 

previous studies (cf. Section 3.1.6.), we anticipate that D points at Level 2 will be 

learned in the auditory domain. Conversely, we do not have specific expectations 

regarding the tactile and visual domains. To our knowledge, no study has 

investigated the learning of recursive hierarchical structures in the tactile domain. 

Furthermore, studies examining hierarchical recursive learning in the visual domain 

have focused on the acquisition of recursive structures arising from spatially 
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distributed stimuli. In contrast, we lack information on the ability to acquire 

recursive hierarchical structures arising from sequential input in the visual domain 

(cf. Section 3.1.6.; 3.2.). However, since this ability is closely tied to sequential 

statistical learning, and considering that previous studies have demonstrated the 

auditory domain to outperform the visual domain in this regard, we expect that if D 

points are learned in the visual domain as well, the learning performance will be 

superior in the auditory domain (in terms of steeper RTs curves decreasing along 

blocks and/or early acquisition of the regularity within blocks). 

Results are reported in Table 13 (RTs) and Table 16 (accuracy). As observable in 

Figure 47, RTs in the visual modality are considerably shorter than those in the 

auditory and tactile ones. Moreover, we can observe that in all three modalities, RTs 

for D points decrease across the blocks. From the LMM model, we found a main 

effect of Block (χ2 =95.54, df = 2, p < .001), indicating that RTs became shorter 

across blocks. We also found a main effect of Point_Level_2 (χ2 =4.38, df = 1, p < 

.05), with participants being faster on disambiguated (D) than non-disambiguated 

(ND) points.  Modality was significant (χ2 =552.38, df = 2, p < .001), indicating that 

there were significant differences in RTs between modalities. The 

Point_Level_2*Block interaction was significant (χ2 =18.90, df = 2, p = < .001), 

indicating that RTs across blocks were modulated by the type of point (D vs. ND). 

Block*Modality was significant (χ2 =34.76, df = 4, p = < .001), meaning that RTs 

across blocks were modulated by the type of modality. However, the interaction 

Point_Level_2*Block*Modality was not significant, meaning that the differences in 

the trend of RTs between D and ND points across blocks were not modulated by the 

modality. To explore the nature of the interactions more finely, first (i) we assessed 

the interaction between type of point and modality to verify whether the differences 

in RTs between modalities were modulated by the type of point. Then, (ii) we 

investigated the interaction between type of point and block within the individual 

modalities, to check whether the trend of RTs across blocks were modulated by the 

type of point, within each modality. For analysis (i) we ran a LMM model with RTs 

as dependent variable, Point_Level_2 (Disambiguated at level 2 vs. Non-

disambiguated at Level 2) and Modality (Auditory, Tactile, Visual) as independent 

variables with full interaction, and Subject as random intercept. The analysis 
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revealed a main effect of Modality (χ2 =538.10, df = 2, p < .001), indicating the 

presence of significantly different RTs between modalities. Point_Level_2 was also 

significant (χ2 =6.64, df = 1, p < .01), meaning that D points were significantly 

faster than ND points. The Point_Level_2*Modality interaction was significant (χ2 

=9.54, df = 2, p <.01): The difference in RTs between modalities was modulated by 

the type of point. Post-hoc comparisons showed that both D and ND points were 

faster in the visual modality than in the auditory and tactile ones (Table 15). This 

result is in line with previous findings (analyses at Level 0 and Level 1), indicating 

a general processing advantage, independent from learning, for the visual modality 

over the auditory and tactile modalities. To conduct analysis (ii), we subsequently 

splitted data according to Modality. The effect of Point_Level_2 and Block was 

investigated in the three separated datasets (Auditory, Tactile, Visual). To verify if 

there were learning differences between disambiguated and non-disambiguated 

points at level 2 in each modality, we ran three (one for each modality) LMM 

models with RTs as dependent variable, Block (1-3) and Point_Level_2 

(Disambiguated at level 2 vs. Non-disambiguated at Level 2) as independent 

variables with full interaction, and Subject as random intercept.  

In the auditory modality, we found a main effect of Block (χ2 = 68.34, df = 2, p < 

.001), indicating that RTs became shorter across blocks. Point_Level_2 was not 

significant (χ2 = 3.20, df = 1, p =0.073), indicating the absence of significant 

differences between disambiguated points (D) and non-disambiguated (ND) points 

(672.38ms vs. 684.67ms, respectively). The Point_Level_2*Block interaction was 

significant (χ2 = 13.81, df = 2, p = < .01), indicating that RTs across blocks were 

modulated by the type of point (D vs. ND). Post-hoc comparisons reported a 

significant decrease in RTs for D points from Block 1 to Block 2; from Block 1 to 

Block 3. On the contrary, RTs for ND points did not significantly decrease. RTs on 

D points were significantly faster than those on ND points in Block 2 and Block 3 

(see Table 14). Since RTs on D points decreased in the passage from Block 1 and 

Block 2 and the difference between D and ND points became evident in Block 2, 

we conclude that D points at Level 2 were learnt within Block 2. This is in line with 

our hypothesis: Being D points at Level 2 computationally more complex than D 

points at Level 0 and Level 1, they were learned later in the task. Moreover, this 
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result is also in line with our cognitive parsing algorithm hypothesis. Indeed, as 

discussed in Section 4.2., in order to predict D points at Level 2, the parser would 

need to have previously acquired the first- and second-order regularities 

corresponding to D points at Level 0 and 1, respectively.  

From the LMM analysis in the tactile modality, we found a main effect of Block (χ2 

=103.86, df = 2, p < .001), indicating that RTs became shorter across blocks. We 

also found a main effect of Point_Level_2 (χ2 =5.05, df = 1, p < .05), with 

participants being faster on non-disambiguated (ND) than disambiguated (D) points 

(675.68 ms vs. 681.40 ms, respectively). The Point_Level_2*Block interaction was 

not significant, indicating that RTs across blocks were not modulated by the type of 

point (D vs. ND). Being the interaction not significant, we ran a second LMM with 

RTs as dependent variable, Block (1-3) and Point_Level_2 (Disambiguated at level 

2 vs. Non-disambiguated at Level 2) as independent predictors, and Subject as 

random intercept. We found a main effect of Block (χ2 =129.514, df = 2, p < .001), 

indicating a significant decrease in RTs across blocks. Point_Level_2 was 

marginally significant (χ2 =3.856, df = 1, p= .049), indicating that ND points were 

faster than D ones. We then compared the two models with the anova()-function in 

R, without finding any significant result. Therefore, we failed to reject the null 

hypothesis, meaning that the two models did not differ. We ran post-hoc tests on the 

simpler model ((RTs~ Point_Level_2+Block + (1 |Subject)). Results indicated a 

significant decrease in RTs from Block 1 to Block 2, from Block 1 to Block 3, and 

from Block 2 to Block 3 (see Table 14). From this result, we conclude that D (and 

ND) points were learned in the tactile modality, specifically, in Block 2.  

From the LMM analysis in the visual modality, we found a main effect of Block (χ2 

=16.28, df = 2, p < .001), indicating that RTs significantly decreased across blocks. 

Point_Level_2 was also significant (χ2 =4.58, df = 1, p < .05), indicating that D 

points were overall faster than ND ones (334.08 ms vs. 336.25 ms). The 

Point_Level_2*Block interaction was significant (χ2 =10.83, df = 2, p < .01), 

indicating that RTs across blocks were modulated by the type of point (D vs. ND). 

Post-hoc comparisons reported a significant decrease in RTs on D points from Block 

1 to Block 3. On the contrary, ND points did not decrease significantly across 

blocks. RTs for ND points were faster than D points in Block 1, whereas the 
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opposite was observed in Block 3, where RTs for D points were significantly shorter 

than those for ND points (Table 14). Hence, from these results, we confirm that D 

points at Level 2 were acquired in the visual modality, specifically in Block 3.  

Overall, at Level 2, we found that D points were learned in all three modalities. 

However, notable domain-specific differences emerged: in the auditory and tactile 

modalities, acquisition occurred in Block 2, while in the visual modality, it took 

place in Block 3. Furthermore, when comparing the magnitude of the decrease in 

reaction times (RTs) from Block 1 to Block 3 across the sensory domains, we noted 

that the decline in RTs on D points was more pronounced in the auditory sphere 

compared to the tactile and visual spheres (Table 14). Upon closer examination of 

the graph and RTs data for D points in the tactile and auditory domains, it becomes 

evident that RTs decreased to a similar extent across the blocks, showing 

comparable trends in Block 1 and Block 3. The key distinction lies in the fact that 

in the auditory domain, the decrease is more substantial already from Block 1 to 

Block 2, while in the tactile domain, it occurs more prominently from Block 2 to 

Block 3. These results align with our initial hypotheses regarding the auditory 

domain's superiority over the visual one. Interestingly, we also discovered that the 

tactile domain exhibits an advantage over the visual one in sequential hierarchical 

learning, displaying a trend similar to that observed in the auditory domain. 
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 Block 1  Block 2  Block 3  

RTs Disambiguated Points Auditory 699.74 661.05 657.91 

(122.80) (147.43) (136.74) 

RTs Non-Disambiguated Points Auditory 688.38 689.03 676.70 

(107.19) (110.78) (114.43) 

RTs Disambiguated Points Tactile 699.14 684.89 660.58 

(102.30) (113.04) (101.30) 

RTs Non-Disambiguated Points Tactile 688.94 677.56 661.35 

(96.91) (98.46) (100.73) 

RTs Disambiguated Points Visual 342.29 335.04 325.03 

(100.3) (90.41) (96.60) 

RTs Non-Disambiguated Points Visual 331.84 337.81 338.71 

(93.95) (104.78) (106.50) 

 
Table 13. Mean (SDs) RTs of each block for Disambiguates (D) and Non-disambiguated 

(ND) points at Level 2 in each Modality (Analysis 3). 

 

Figure 47. Mean RTs for D and ND points by block at Level 2 in the three studies (Analysis 

3). Error bars denote the 95% confidence interval. D_2 = Disambiguated points at Level 2; 

ND_2 = Non-Disambiguated points at Level 2; AUD = Auditory modality; TAC = Tactile 

modality; VIS = Visual modality). 
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 β SE t p 

 

Point_Level_2*Block| 

Auditory 

Block 1 D – Block 2 D 36.82 5.52    6.67   <.0001 

Block 1 D – Block 3 D  42.10 5.52     7.62   <.0001 

Block 2 D – Block 2 ND -18.69 6.32   -2.96   0.0367 

Block 3 D – Block 3 ND -17.06 6.41 -2.66 0.0078 

Point_Level_2+Block| 

Tactile 

Block 1 – Block 2  10.7  3.12     3.42   0.0019 

Block 1 - Block 3  34.6  3.13 11.09   <.0001 

Block 2 – Block 3  24.0 3.09    7.76 <.0001 

Point_Level_2*Block| 

Visual 

Block 1 D – Block 3 D 17.43 4.32 4.03 0.0002 

Block 1 D - Block 1 ND 10.96 5.12 2.14 0.0323 

Block 3 D - Block 3 ND -12.54 4.99 -2.51 0.0121 

 
Table 14. Summary of significant LMM coefficients and contrasts on RTs (Point_Level_2 

* Block | Auditory; Point_Level_2 * Block | Tactile; Point_Level_2 * Block | Visual) 

(Analysis 3). 
 
 

 β SE t p 

 

 

Modality 

*Point_Level_2 

D  

AUD - VIS 

340.52 17.4 19.52 <.0001 

D 

TAC - VIS 

352.11 16.9 20.80 <.0001 

ND 

AUD - VIS 

347.38 17.6 19.74 <.0001 

ND 

TAC - VIS 

345.40 17.1 20.22 <.0001 

Table 15. Summary of significant LMM coefficients and contrasts on RTs (Modality * 

Point_Level_2) (Analysis 3). 

In summary, at Level 2, we observed the acquisition of D points in all three 

modalities, revealing domain-specific differences. The auditory and tactile domains 

exhibited significantly higher proficiency in learning D points at this level 

compared to the visual domain. Specifically, D points were acquired in Block 2 in 

the auditory and tactile domains, while in Block 3 in the visual domain. Upon 

examining the trend in reaction times (RTs) across blocks, we observed a similar 

RTs curve for D points in the auditory and tactile domains. These findings 

collectively indicate the superiority of the auditory and tactile domains over the 

visual domain in sequential hierarchical learning. However, in line with results at 
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previous levels, despite this learning advantage, we consistently noted overall 

quicker reaction times in the visual domain compared to the auditory and tactile 

domains. This hints at a general processing superiority for visual information, 

irrespective of learning, potentially due to faster communication channels between 

visual input and motor responses. 

 As for accuracy, as observable in Figure 48, D points are more accurate 

than ND points in the third and final block, in all the three modalities. In the auditory 

study, the accuracy of D points is higher than that of ND points in all the three 

blocks. Moreover, the former increasingly increases across Block, whereas the 

opposite trend is observable for the latter. In the tactile and visual studies, despite 

the general lowering of accuracy rates along the task, it is observed that D and ND 

points have opposite and mirror-like behavior in the transition from the second to 

the third block. The former become more accurate, while the opposite happens for 

the latter. The GLMM model failed to converge, indicating difficulties in obtaining 

a satisfactory estimation of the model parameters. Since the present convergence 

issue may stem from the complexity of the model, we reduced it and proceeded by 

(i) investigating the interaction between type of point and modality to verify 

whether the differences in accuracy rates between modalities were modulated by 

the type of point; (ii) investigating the interaction between type of point and block 

within the individual modalities, to check whether the trend of accuracy rates across 

blocks were modulated by the type of point, within each modality. In analysis (i) 

we ran a GLMM model with Accuracy as dependent variable, Point_Level_2 

(Disambiguated at level 2 vs. Non-disambiguated at Level 2) and Modality 

(Auditory, Tactile, Visual) as independent variables with full interaction, and 

Subject as random intercept. The analysis revealed a main effect of Modality (χ2 

=12.31, df = 2, p < .01), indicating the presence of significantly different accuracy 

rates between modalities. Point_Level_2 was also significant (χ2 =21.38, df = 1, p 

< .001), meaning that D points were significantly more accurate than ND points. 

However, the Point_Level_2*Modality interaction was not significant, meaning 

that the difference in accuracy rates between modalities was not modulated by the 

type of point. Hence, we ran a second model with Accuracy as dependent variable, 

Modality (Auditory, Tactile, Visual) as independent variables, and Subject as 
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random intercept. Since Modality was significant (χ2 =16.57, df = 2, p < .001), we 

ran on this model post-hoc comparisons, which showed that accuracy rates in the 

visual modality were higher than those in the auditory modality (β =-1.023; SE 

=0.27; z =-3.86; p =0.0003), and tactile modality (β =-0.842; SE = 0.26; z =-3.24; 

p=0.0034). This result is in line with what has been found at previous levels, 

indicating a general processing advantage, independent from learning, for the visual 

modality. For analysis (ii), we splitted data according to Modality and investigated 

the effect of Point_Level_2 and Block in the three separated datasets (Auditory, 

Tactile, Visual). To check whether there were differences in accuracy rates between 

disambiguated and non-disambiguated points at level 2 in the three modalities, we 

conducted three GLMM models (one in each modality) with Accuracy as dependent 

variable, Block (1-3) and Point_Level_2 (Disambiguated at level 2 vs. Non-

disambiguated at Level 2) as independent variables with full interaction, and 

Subject as random intercept.  

In the auditory domain, the analysis revealed no significant effects for Block, 

indicating the absence of significant differences in accuracy rates between blocks. 

Point_Level_2 was also not significant, meaning that there were no significant 

differences for D and ND points (92% vs. 87%). The Point_Level_2*Block 

interaction was instead significant, indicating that the trend of accuracy rates across 

blocks was modulated by the type of point (D vs. ND). Post-hoc comparisons 

reveled significantly higher accuracy rates on D than ND points in Block 2 (β =0.51; 

SE = 0.199; z = 2.567; p =0.0103), and Block 3 (β = 0.8331; SE = 0.187; z = 4.465; 

p <.0001). This result confirms what has been observed for RTs: In the auditory 

domain, D points at Level 2 have been acquired in Block 2. 

In the tactile domain, the analysis revealed a main effect of Block (χ2 =6.17, df = 2, 

p < .05), indicating the presence of significantly different accuracy rates between 

blocks. Point_Level_2 was not significant, indicating that there were no significant 

differences in accuracy rates between D and ND points (91% vs. 90%, 

respectively). The Point_Level_2*Block interaction was significant (χ2 =7.97, df = 

2, p < .05), indicating that the trend of accuracy rates across blocks was modulated 

by the type of point. Post-hoc comparisons showed a significant decrease in 

accuracy for D points from Block 1 to Block 2, and on ND points from Block 1 to 
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Block 3 and from Block 2 to Block 3; accuracy rates for ND points were 

significantly lower than those for D points in Block 3 (Table 17). This last result is 

in line with what has been found for RTs, confirming that D points have been 

learned in the tactile modality. 

In the visual modality, the analysis revealed a main effect of Block (χ2 =10.80, df 

= 2, p < .01), indicating that accuracy decreased across blocks. Point_Level_2 was 

not significant, indicating that the difference between D and ND points was not 

significant (96% vs. 95%). The Point_Level_2*Block interaction was significant (χ2 

= 8.42, df = 2, p < .05). This means that accuracy rates across blocks were 

modulated by the type of point. Post-hoc comparisons showed that accuracy rates 

for D points decreased significantly from Block 1 to Block 2, and from Block 1 to 

Block 3, whereas for ND points they decreased from Block 1 to Block 3 and from 

Block 2 to Block 3.  Accuracy rates for ND points were significantly lower than 

those for D points in Block 3 (Table 17). We hypothesize that the overall decrease 

in accuracy rates is a result of the high cognitive load demand required for the 

acquisition of this regularity. Importantly, the confirmation of D points being more 

accurate than ND points in Block 3 confirms their acquisition, in line with the 

analysis of reaction times (RTs). 

 Block 

1  

Block 2  Block 3  

Accuracy Disambiguated Points Auditory 
0.91 0.92 0.92 

(0.29) (0.26) (0.27) 

Accuracy Non-Disambiguated Points 

Auditory 

0.89 0.88 0.85 

(0.31) (0.32) (0.36) 

Accuracy Disambiguated Points Tactile 
0.93 0.90 0.91 

(0.26) (0.30) (0.28) 

Accuracy Non-Disambiguated Points 

Tactile 

0.92 0.91 0.86 

(0.27) (0.28) (0.34) 

Accuracy Disambiguated Points Visual 
0.98 0.95 0.95 

(0.14) (0.22) (0.21) 

Accuracy Non-Disambiguated Points Visual 
0.98 0.97 0.92 

(0.15) (0.18) (0.30) 

Table 16. Mean (SDs) accuracy rates of each block for Disambiguates (D) and Non-

disambiguated (ND) points at Level 2 in each Modality (Analysis 3). 
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Figure 48. Mean accuracy rates for D and ND points by block at Level 2 in the three studies 

(Analysis 3). Error bars denote the 95% confidence interval. D_2 = Disambiguated points 

at Level 2; ND_2 = Non-Disambiguated points at Level 2; AUD = Auditory modality; TAC 

= Tactile modality; VIS = Visual modality).  

 

 

 β SE z p 

 

Point_Level_2*Blo

ck| Tactile 

Block 1 D – Block 2 D  0.44 0.18 2.48 0.0346 

Block 1 ND – Block 3 ND 0.66 0.22  3.069   0.0061 

Block 2 ND – Block 3 ND 0.55 0.20 2.73 0.0173 

Block 3 D – Block 3 ND 0.56 0.18  3.12   0.0018 

 

Point_Level_2*Blo

ck| Visual 

Block 1 D – Block 2 D 0.94  0.30    3.16   0.0045 

Block 1 D – Block 3 D 0.86 0.30 2.84 0.0124 

Block 1 ND – Block 3 ND 1.38  0.36  3.85   0.0003 

Block 2 ND – Block 3 ND 1.0247  0.304  3.371   0.0022 

Block 3 D – Block 3 ND 0.64 0.24 2.69 0.0071 

Table 17. Summary of significant GLMM coefficients and contrasts on Accuracy 

(Point_Level_2 * Block |Tactile; Point_Level_1 * Block |Visual;) (Analysis 3). 
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Summarizing, result on accuracy rates at Level 2 confirmed what has been found 

for RTs. Indeed, accuracy rates on D points were higher than those on ND points in 

Block 2 and Block 3 in the auditory sphere, and in Block 3 in the tactile and visual 

spheres. As found at the lower levels, we observed that accuracy rates in the visual 

modality were higher than those in the auditory and tactile modalities. This can be 

attributable to a general processing advantage, independent from learning, for the 

visual sphere. Moreover, we observed that accuracy rates in the visual modality 

decreased along the task on both types of point. This result could be indicative of a 

higher cognitive effort to learn this regularity in the visual domain compared to the 

other two domains. 

 

 

 

Analysis 4: Deterministic Vs. Non-Deterministic points within Level 3 in the 

Auditory, Tactile, and Visual studies 

At Level 3, we compared RTs and accuracy rates in correspondence to every 

instance of D and ND points in each block, in the three modalities. At this Level, D 

points correspond to those 0 that follow the chunks [101][101]; ND points to those 

0 that follow [01][101]. Results are reported in Table 18 and 21, respectively. As 

observable in Figure 49, RTs in the visual modality are considerably lower than 

those in the auditory and tactile ones. In the auditory modality, the curve of RTs for 

D points is much steeper than that for ND points. In addition, RTs for D points 

already drop starting from the transition between Block 1 and Block 2, and then 

drop further in Block 3. RTs for ND points, on the other hand, only decrease in the 

transition between Block 2 and Block 3, and still to a lesser extent than for D points. 

In the tactile modality, RTs for both types of point diminish across blocks, 

following a similar trend. In the visual modality, instead, neither RTs for D points 

nor those for NDs seem to decrease along the task. From the LMM model, we found 

a main effect of Block (χ2 =67.81, df = 2, p < .001), indicating that RTs became 

shorter across blocks. We also found a main effect of Point_Level_3 (χ2 =4.48, df 

= 1, p < .05). Modality was significant (χ2 =689.55, df = 2, p < .001), indicating that 

there were significant differences in RTs between modalities. The 
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Point_Level_3*Block interaction was significant (χ2 =9.72, df = 2, p = < .01), 

indicating that RTs across blocks were modulated by the type of point (D vs. ND). 

Block*Modality was significant (χ2 =43.13, df = 4, p = < .001), meaning that RTs 

across blocks were modulated by the type of modality. The interaction 

Point_Level_3*Block*Modality was also significant (χ2 =10.49, df = 4, p = < .05): 

The difference in the trend of RTs between D and ND points across blocks were 

modulated by the modality. We ran post-hoc tests.  In the auditory modality, we 

found a significant decrease in RTs for D points from Block 1 to Block 2; from 

Block 1 to Block 3; from Block 2 to Block 3; RTs for ND points decreased as well. 

Importantly, however, RTs for ND points decreased only from Block 1 to Block 3 

and to a lesser extent than D points, as seen by comparing the magnitude of the 

difference between Block 1 and Block 3 in the two types of point (Table 19). RTs 

on D points were significantly higher than those on ND points in Block 1, whereas 

they were significantly shorter in Block 3 (Table 19). In the tactile modality, a 

significant decrease in RTs on D points was observed from Block 1 to Block 3 (β 

=13.85; SE =5.47; t =2.53; p =0.0306), whereas RTs for ND points did not change 

significantly across blocks. However, no significant differences between D and ND 

points were found in any of the three blocks. In the visual modality, no change was 

observed across the blocks, either on D or ND points. RTs for D points were 

significantly higher than those for ND points in Block 3 (β =14.16; SE =6.47; t 

=2.19; p =0.0286). Despite this, as observed at previous levels, RTs in the visual 

modality were significantly faster than those in the auditory and tactile modalities 

in all three blocks, both on D and ND points. As explained before, this might be 

due to a general processing advantage, independent from learning, for the visual 

sensory domain over the auditory and tactile ones. In addition to this, comparing 

modalities, we also observed that RTs in the tactile modality were significantly 

faster than those in the auditory modality on both D and ND points in Block 1 (Table 

20).  

Overall, these results indicated that D points at Level 3 were learned in the auditory 

and tactile modalities, while not in the visual modality. Crucially, however, 

comparing the auditory and tactile modalities, we observed that RTs on D points in 

the former modality decreased already in the passage from Block 1 to Block 2, 
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while in the latter modality only in the comparison between Block 1 and Block 3; 

moreover, comparing the magnitude of the difference between Block 1 and Block 

3 in the two sensory spheres, we observed that they decreased to a wider extent in 

the auditory (β=50.54; SE=6.14; t= 8.23; p<.0001) than in the tactile modality (β 

=13.85; SE =5.47; t =2.53; p =0.0306). Crucially, however, it is important to note 

that these results are linked to the fact that RTs on D points in the auditory modality 

were significantly higher than those in the tactile modality in Block 1. We conclude 

that D points at Level 3 were learned in both the auditory and tactile modalities in 

Block 3, while confirming the absence of learning in the visual modality this level.   

 

 

 

 

 Block 1  Block 2  Block 3  

RTs Disambiguated Points Auditory 721.69 697.75 670.56 

(120.35) (124.07) (134.46) 

RTs Non-Disambiguated Points Auditory 704.41 705.09 689.57 

(115.55) (115.68) (99.95) 

RTs Disambiguated Points Tactile 669.05 666.65 656.60 

(101.50) (100.20) (105.16) 

RTs Non-Disambiguated Points Tactile 659.97 657.13 650.03 

(91.37) (98.24) (97.19) 

RTs Disambiguated Points Visual 310.66 317.19 315.56 

(100.90) (104.81) (105.82) 

RTs Non-Disambiguated Points Visual 307.63 317.05 300.82 

(91.27) (108.31) (102.42) 

 

Table 18. Mean (SDs) RTs of each block for Disambiguates (D) and Non-disambiguated 

(ND) points at Level 3 in each Modality (Analysis 4). 
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Figure 49. Mean RTs for D and ND points by block at Level 3 in the three studies (Analysis 

4). Error bars denote the 95% confidence interval. D_3 = Disambiguated points at Level 3; 

ND_3 = Non-Disambiguated points at Level 3; AUD = Auditory modality; TAC = Tactile 

modality; VIS = Visual modality).  

 β SE t p 

 

 

Point_Level_3*Block| 

Auditory 

Block 1 D – Block 

2 D 

25.00 6.27 3.99 0.0002 

Block 1 D – Block 

3 D 

50.54 6.14 8.23 <.0001 

Block 2 D – Block 

3 D 

25.54 6.18 4.13 0.0001 

Block 1 ND – 

Block 3 ND 

19.49 7.85 2.48 0.0348 

Block 1 D – Block 

1 ND  

15.29 7.22 2.12 0.034 

Block 3 D – Block 

3 ND 

-15.76 6.86 -2.30 0.0216 

 

Table 19. Summary of significant LMM coefficients and contrasts on RTs (Point_Level_3 

* Block | Auditory) (Analysis 4). 
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 β SE t p 

 

 

 

 

 

 

 

 

 

 

Modality*Block*Point_

Level_3 

Block 1 D 

AUD - TAC 

50.9 16.7 3.05 0.0080 

Block 1 D  

AUD - VIS 

410.5 17.2 23.86 <.0001 

Block 1 D 

TAC - VIS 

359.6 16.6 21.63 <.0001 

Block 2 D 

AUD - VIS 

380.5 17.2 22.08 <.0001 

Block 2 D 

TAC - VIS 

352.2 16.7 21.15 <.0001 

Block 3 D 

AUD - VIS 

356.5 17.2 20.76 <.0001 

Block 3 D 

TAC - VIS 

342.3 16.6 20.56 <.0001 

Block 1 ND 

AUD - TAC 

44.7 17.4 2.56 0.0306 

Block 1 ND 

AUD - VIS 

399.1 17.9 22.25 <.0001 

Block 1 ND 

TAC - VIS 

354.4 17.3 20.46 <.0001 

Block 2 ND 

AUD – VIS 

382.0 

 

17.8 21.45 <.0001 

Block 2 ND 

TAC - VIS 

343.4 17.2 19.98 <.0001 

Block 3 ND 

AUD - VIS 

386.5 17.7 21.78 <.0001 

Block 3 ND 

TAC - VIS 

349.9 17.2 20.39 <.0001 

Table 20. Summary of significant LMM coefficients and contrasts on RTs (Modality * 

Block * Point_Level_3) (Analysis 4). 

 

Summarizing, at Level 3 we found that learning occurred in the auditory and tactile 

modalities. Specifically, D points at Level 3 were learned in Block 3 in both 

modalities. On the contrary, we did not find evidence of learning in the visual 

modality.  Despite these learning differences, we consistently observed faster RTs 

in the visual domain than in the auditory and tactile domains. This result is in line 
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with what has been observed at previous levels and might indicate a general 

processing advantage for visual information, independent from learning, possibly 

stemming from quicker communication channels between visual input and motor 

responses. 

 

As for accuracy, as observable in Figure 50, in the auditory modality, we 

observe a similar trend between the two types of point. For both D and ND points 

accuracy rates slightly decrease from Block 1 to Block 2 and then increase from 

Block 2 to Block 3. In the tactile, accuracy rates for both D and ND points decrease 

from Block 1 to Block 2. Accuracy for ND points then increase in the passage from 

Block 2 to Block 3. In the visual modality, accuracy rates slightly decrease from 

Block 1 to Block 2 and then increase in Block 3, on both D and ND points. The 

GLMM model failed to converge. Hence, we reduced the complexity of the model. 

First, (i) we checked the interaction between type of point and modality to verify 

whether the differences in accuracy rates between modalities were modulated by 

the type of point. Then, (ii) we investigated the interaction between type of point 

and block within the individual modalities, to see whether the trend of accuracy 

rates across blocks were modulated by the type of point, within each modality. For 

analysis (i) we ran a GLMM model with Accuracy as dependent variable, 

Point_Level_3 (Disambiguated at level 3 vs. Non-disambiguated at Level 3) and 

Modality (Auditory, Tactile, Visual) as independent variables with full interaction, 

and Subject as random intercept. The analysis revealed a main effect of Modality 

(χ2 =58.54, df = 2, p < .001), indicating the presence of significantly different 

accuracy rates between modalities. Point_Level_3 was also significant (χ2 =3.95, 

df = 1, p < .05), meaning that ND points were significantly more accurate than D 

points. The Point_Level_3*Modality interaction was not significant; this means that 

the difference in accuracy rates between modalities was not modulated by the type 

of point. Hence, we subsequently ran a model with Accuracy as dependent variable, 

Modality (Auditory, Tactile, Visual) and Point_Level_3 as independent variables, 

and Subject as random intercept. Modality was significant (χ2 =67.52, df = 2, p < 

.001), and Point_Level_3 as well (χ2 =9.85, df = 1, p < .01). Hence, we ran on this 

second model post-hoc, which showed that accuracy rates in the visual modality 
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were higher than those in the auditory (β=-2.10; SE=0.26; z=-7.96; p =<.0001) and 

tactile modalities (β=-0.84; SE=0.27; z=-3.15; p =0.0046). Accuracy rates in the 

tactile modality were higher than those in the auditory one (β=-1.26; SE=0.24; z=-

5.31; p =<.0001). For analysis (ii), we splitted data according to Modality. Hence, 

we investigated the effect of Point_Level_3 and Block in the three separated datasets 

(Auditory, Tactile, Visual). To check whether there were differences in accuracy 

rates between disambiguated and non-disambiguated points at level 3 in the three 

modalities, we conducted three separated GLMM models (one for each modality) 

with Accuracy as dependent variable, Block (1-3) and Point_Level_3 

(Disambiguated at level 3 vs. Non-disambiguated at Level 3) as independent 

variables with full interaction, and Subject as random intercept.  

In the auditory domain, the analysis revealed a main effect of Block (χ2 = 9.29, df 

= 2, p < .01), indicating the presence of significantly different accuracy rates 

between blocks. Neither Point_Level_3, nor the interaction Point_Level_3*Block 

were significant. Being the interaction not significant, we ran a second GLMM with 

accuracy as dependent variable, Block and Point_Level_3 as independent 

predictors, and Subject as random intercept. We found a main effect of Block (χ2 

=12.56, df = 2, p < .01), indicating that RTs became shorter across blocks. 

Point_Level_3 was significant (χ2 =3.91, df = 2, p < .05). We then compared the 

two models with the anova()-function in R, without finding any significant result. 

Therefore, we failed to reject the null hypothesis, meaning that the two models did 

not differ. We ran post-hoc tests on the simpler model ((accuracy ~ Block + 

Point_Level_3 + (1 |Subject)). Results indicated a significant increase in accuracy 

rates from Block 2 to Block 3 (β= -0.49; SE= 0.14; z= -3.53; p = 0.0012). ND points 

were marginally more accurate than D ones (β= -0.23; SE= 0.12; z= -1.98; p = 

0.0480).  

In the tactile modality, the analysis revealed a main effect of Block (χ2 =11.08, df = 

2, p < .01), indicating the presence of significantly different accuracy rates between 

blocks. Point_Level_3 was not significant, indicating that there were no significant 

differences in accuracy rates between D and ND points (93% vs. 95%, 

respectively). The Point_Level_3*Block interaction was not significant, indicating 

that the trend of accuracy rates across blocks was not modulated by the type of 
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point. Being the interaction not significant, we ran a second GLMM with Accuracy 

as dependent variable, Block (1-3) and Point_Level_3 as independent predictors, 

and Subject as random intercept. We found a main effect of Block (χ2 =10.00, df = 

2, p < .01), indicating a significant change in accuracy rates across blocks. 

Point_Level_3 was significant (χ2 =4.86, df = 1, p < .05). We then compared the 

two models with the anova()-function in R, without finding any significant result. 

Therefore, we failed to reject the null hypothesis, meaning that the two models did 

not differ. We ran post-hocs tests on the simpler model ((accuracy~ Block + 

Point_Level_3+ (1 |Subject)). Results indicated a significant decrease in accuracy 

rates from Block 1 to Block 2 (β=0.64; SE= 0.21; z= 3.06; p = 0.0062), and from 

Block 1 to Block 3(β= 0.53; SE= 0.21; z= 2.51; p = 0.0319). D points were less 

accurate than ND ones (β=-0.38; SE= 0.17; z= 2.20; p = 0.0274).  

In the visual domain, the analysis reported no significant results.  

Comparing the three modalities, we found that accuracy rates in the visual modality 

were higher than those in the auditory and tactile modalities. Moreover, accuracy 

rates in the tactile modality were higher than those in the auditory one. Overall, at 

Level 3, the analysis of accuracy rates did not provide any interesting result 

regarding learning.  
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 Block 

1  

Block 2  Block 3  

Accuracy Disambiguated Points Auditory 
0.81 0.79 0.86 

(0.39) (0.41) (0.35) 

Accuracy Non-Disambiguated Points 

Auditory 

0.85 0.82 0.88 

(0.35) (0.38) (0.33) 

Accuracy Disambiguated Points Tactile 
0.95 0.91 0.91 

(0.21) (0.28) (0.28) 

Accuracy Non-Disambiguated Points 

Tactile 

0.95 0.93 0.95 

(0.21) (0.25) (0.21) 

Accuracy Disambiguated Points Visual 
0.97 0.96 0.97 

(0.16) (0.19) (0.17) 

Accuracy Non-Disambiguated Points Visual 
0.98 0.97 0.98 

(0.14) (0.16) (0.14) 

 

Table 21. Mean (SDs) accuracy rates of each block for Disambiguates (D) and Non-

disambiguated (ND) points at Level 3 in each Modality (Analysis 4). 
 

 

Figure 50. Accuracy rates for D and ND points by block at Level 3 in the three studies 

(Analysis 4). Error bars denote the 95% confidence interval. D_3 = Disambiguated points 

at Level 3; ND_3 = Non-Disambiguated points at Level 3; AUD = Auditory modality; TAC 

= Tactile modality; VIS = Visual modality).  
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Analysis 5: Deterministic Vs. Non-Deterministic points within Level 4 in the 

Auditory, Tactile, and Visual studies 

At Level 4, we compared RTs and accuracy rates in correspondence to every 

instance of D and ND points in each block, in the three modalities. At this level, D 

points correspond to those 1 that follow the chunks [01101][01101], ND points to 

those 1 that follow [101] [01101]. Results are reported in Table 22 and 23, 

respectively. As observable in Figure 51, RTs in the visual modality are 

considerably lower than those in the auditory and tactile ones. In the auditory and 

tactile modalities, RTs for D points increasingly decrease across the three blocks, 

following a similar trend in the two modalities. On the contrary, RTs for ND points 

do not decrease, either in the auditory or tactile modality. In the visual modality, 

instead, RTs for D points do not decrease along the task. Those for ND points 

increase, especially in the transition from Block 2 to Block 3. From the LMM 

model, we found a main effect of Block (χ2 =15.79, df = 2, p < .001), indicating 

that RTs became shorter across blocks. We also found a main effect of Modality (χ2 

=555.28, df = 2, p < .001), indicating that there were significant differences in RTs 

between modalities. The Point_Level_4*Block interaction was significant (χ2 

=13.56, df = 2, p = < .01), indicating that RTs across blocks were modulated by the 

type of point (D vs. ND). Block*Modality was significant (χ2 =10.85, df = 4, p = < 

.05), meaning that RTs across blocks were modulated by the type of modality. The 

interaction Point_Level_3*Block*Modality was not significant: The difference in 

the trend of RTs between D and ND points across blocks were not modulated by 

the modality. To further investigate the nature of the interactions, (i) we assessed 

the interaction between type of point and modality to verify whether the differences 

in RTs between modalities were modulated by the type of point. Secondly, (ii) we 

explored the interaction between type of point and block within the individual 

modalities, to verify whether the trend of RTs across blocks were modulated by the 

type of point, within the single modalities. For analysis (i) we ran a LMM model 

with RTs as dependent variable, Point_Level_4 (Disambiguated at level 4 vs. Non-

disambiguated at Level 4) and Modality (Auditory, Tactile, Visual) as independent 

variables with full interaction, and Subject as random intercept. The analysis 
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revealed a main effect of Modality (χ2 =579.82, df = 2, p < .001), indicating the 

presence of significantly different RTs between modalities. Neither Point_Level_4 

nor the interaction Point_Level_4*Modality were significant. Hence, we ran a 

simpler LMM model with RTs as dependent variable, Modality as independent 

variable, and Subject as random intercept. The analysis revealed a main effect of 

Modality (χ2 =585.43, df = 2, p < .001). Post-hoc comparisons showed that RTs in 

the visual modality were faster than those in the auditory (β=348.35; SE=16.7; 

t=20.82; p<.0001) and tactile modalities (β=345.40; SE=16.2; t=21.27; p<.0001). 

This is in line with wat has been found at previous levels and could be attributed to 

a general processing advantage, independent from learning for the visual modality. 

To conduct analysis (ii), we subsequently splitted data according to Modality. 

Hence, the effect of Point_Level_4 and Block was investigated in the three 

separated datasets (Auditory, Tactile, Visual). To verify if there were learning 

differences between disambiguated and non-disambiguated points at level 4 in the 

three modalities, we ran three LMM models (one for each modality) with RTs as 

dependent variable, Block (1-3) and Point_Level_4 (Disambiguated at level 4 vs. 

Non-disambiguated at Level 4) as independent variables with full interaction, and 

Subject as random intercept.  

In the auditory modality, we found a main effect of Block (χ2 = 13.48, df = 2, p < 

.01), indicating that RTs significantly changed across blocks.  The 

Point_Level_4*Block interaction was significant (χ2 = 11.57, df = 2, p = < .01), 

indicating that RTs across blocks were modulated by the type of point (D vs. ND). 

Post-hoc comparisons reported a significant decrease in RTs for D points from 

Block 1 to Block 3 (β= 28.17; SE= 8.04; t= 3.504; p = 0.0014), and from Block 2 

to Block 3 (β= 20.53; SE= 7.78; t= 2.64; p = 0.0229). RTs on D points were 

significantly shorter than those on ND points in Block 3 (β= -29.56; SE= 9.58; t= 

-3.09; p = 0.0021).  

In the tactile modality, we found a main effect of Block (χ2 = 44.80, df = 2, p < 

.001), indicating that RTs became shorter across blocks. The Point_Level_4*Block 

interaction was significant (χ2 = 12.93, df = 2, p < .01), indicating that RTs across 

blocks were modulated by the type of point (D vs. ND). Post-hoc comparisons 

reported a significant decrease in RTs on D points from Block 1 to Block 3 
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(β=38.28; SE= 6.05; t= 6.32; p = <.0001), and from Block 2 to Block 3 (β=29.59; 

SE= 5.91; t= 5.01; p = <.0001). RTs on ND points did not decrease significantly. 

The difference between D and ND points was significant in Block 3 (β=-24.26; SE= 

7.10; t= -3.41; p = 0.0007).  

In the visual modality, we ran a LMM with RTs as dependent variable, Block (1-3) 

and Point_Level_4 (Disambiguated at level 4 vs. Non-disambiguated at Level 4) as 

independent variables with full interaction, and Subject as random intercept. The 

Point_Level_4*Block interaction was significant (χ2 = 10.02, df = 2, p < .01), 

indicating that RTs across blocks were modulated by the type of point (D vs. ND). 

Post-hoc comparisons reported a significant increase in RTs for ND points from 

Block 1 to Block 3 (β=-27.60; SE=9.93; t=-2.78; p = 0.0153). RTs for D points 

were significantly shorter than ND points in Block 3 (β=-32.03; SE=8.65; t=-3.70; 

p = 0.0002). 

Overall, we found that RTs on D points decreased along the task in both the auditory 

and tactile spheres following a similar trend along the blocks: the decrease became 

significant in the transition from Block 2 to Block 3. In contrast, ND points did not 

decrease. In both modalities, we found a difference in RTs between D points and 

ND points in Block 3. Hence, we conclude that D points at Level 4 were learned in 

both the auditory and tactile modalities in Block 3. In the visual study, on the other 

hand, RTs on D points did not decrease, while those on ND points increased, and 

the difference between the two types of point was significant in block 3. Hence, we 

confirm that learning in the visual modality stopped at Level 2. Despite this, we 

observed, in line with previous level, that RTs in the visual modality were faster 

than those in the auditory and tactile modalities, suggesting a general processing 

advantage, independent from learning, for the visual sphere.  
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 Block 1  Block 2  Block 3  

RTs Disambiguated Points Auditory 
693.97 691.22 666.06 

(105.57) (107.67) (115.45) 

RTs Non-Disambiguated Points Auditory 

678.79 685.29 698.69 

(109.60) (116.15) (109.45) 

RTs Disambiguated Points Tactile 
692.56 680.23 653.00 

(100.77) (99.23) (91.98) 

RTs Non-Disambiguated Points Tactile 
682.44 673.13 677.02 

(89.50) (97.25) (114.00) 

RTs Disambiguated Points Visual 
332.76 338.87 327.45 

(102.27) (108.43) (92.92) 

RTs Non-Disambiguated Visual 
330.23 336.09 358.01 

(77.52) (98.77) (124.37) 

Table 22. Mean (SDs) RTs of each block for Disambiguates (D) and Non-Disambiguated 

(ND) points at Level 4 in each Modality (Analysis 5). 

 

Figure 51. Mean RTs for D and ND points by block at Level 4 in the three studies (Analysis 

5). Error bars denote the 95% confidence interval. D_4 = Disambiguated points at Level 4; 

ND_4 = Non-Disambiguated points at Level 4; AUD = Auditory modality; TAC = Tactile 

modality; VIS = Visual modality).  
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Summarizing, at Level 4 we found that D points were learned in Block 3 in both 

the auditory and tactile modalities. On the contrary, we did not find any evidence 

of learning in the visual modality, thus confirming that learning stopped at Level 2. 

However, in line with findings at previous levels, we found that RTs were 

consistently faster in the visual domain compared to auditory and tactile domains. 

This suggests a general processing advantage for the visual domain, independent 

from learning, possibly due to faster communication channels between visual input 

and motor responses. 

 

As for accuracy, as observable in Figure 52, in the auditory modality, we 

observe an increase on D points and a decrease on ND points across blocks. A 

similar decrease in accuracy rates on ND points is observable also in the tactile and 

visual modalities. In these latter modalities, accuracy rates on D points decrease as 

well, albeit to a smaller extent than ND points. The GLMM model failed to 

converge. Hence, we reduced the complexity of the model. First, (i) we checked the 

interaction between type of point and modality to verify whether the differences in 

accuracy rates between modalities were modulated by the type of point. Then, (ii) 

we investigated the interaction between type of point and block within the 

individual modalities, to see whether the trend of accuracy rates across blocks were 

modulated by the type of point, within each modality. For analysis (i) we ran a 

GLMM model with Accuracy as dependent variable, Point_Level_4 

(Disambiguated at level 4 vs. Non-disambiguated at Level 4) and Modality 

(Auditory, Tactile, Visual) as independent variables with full interaction, and 

Subject as random intercept. The analysis revealed a main effect of Modality (χ2 

=9.53, df = 2, p < .01), indicating the presence of significantly different accuracy 

rates between modalities. Point_Level_4 was also significant (χ2 =10.88, df = 1, p 

< .001), meaning that D points were significantly more accurate than ND ones. The 

Point_Level_4*Modality interaction was not significant; this means that the 

difference in accuracy rates between modalities was not modulated by the type of 

point. Hence, we subsequently ran a model with Accuracy as dependent variable, 

Modality (Auditory, Tactile, Visual) and Point_Level_4 as independent variables, 

and Subject as random intercept. Modality was significant (χ2 =18.39, df = 2, p < 
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.001), and Point_Level_4 as well (χ2 =11.63, df = 1, p < .001). Hence, we ran on 

this second model post-hoc comparisons, which showed that accuracy rates in the 

visual modality were higher than those in the auditory (β=-1.20; SE=0.29; z=-4.19; 

p =.0001) and tactile modalities (β=-0.90; SE=0.28; z=-3.19; p =0.0040). This result 

is in line with previous results, suggesting a processing advantage for the visual 

modality over the other two modalities, independent from learning. For analysis 

(ii), we splitted data according to Modality and investigated the effect of 

Point_Level_4 and Block in the three separated datasets (Auditory, Tactile, Visual). 

To check whether there were differences in accuracy rates between disambiguated 

and non-disambiguated points at level 4 in the three modalities, we conducted three 

GLMM models (one in each modality) with Accuracy as dependent variable, Block 

(1-3) and Point_Level_4 (Disambiguated at level 4 vs. Non-disambiguated at Level 

4) as independent variables with full interaction, and Subject as random intercept.  

In the auditory modality, we did not find any effect for Block, indicating the absence 

of significantly different accuracy rates between blocks. Point_Level_4 was also 

not significant, meaning that there were no significant differences between D and 

ND points. The Point_Level_4*Block interaction was instead significant (χ2 = 

21.64, df = 2, p= < .001). Post-hoc comparisons reveled a significant decrease in 

accuracy for ND points between Block 1 and Block 3 (β=1.60; SE=0.35; z= 4.52; 

p< .0001), and between Block 2 and Block 3 (β=0.99; SE= 0.29; z=3.44; p 

=0.0017). Accuracy for D points was significantly higher than that for ND points in 

Block 3 (β= 1.47; SE= 0.27; z=5.38; p =<.0001). 

In the tactile modality, we found that Block was not significant, indicating that 

accuracy rates did not change across blocks. Point_Level_4 was not significant, 

indicating that there were no significant differences in accuracy rates between D 

and ND points (91% vs. 87%, respectively). The Point_Level_4*Block interaction 

was significant (χ2 =7.92, df = 2, p < .05), indicating that the trend of accuracy rates 

across blocks was modulated by the type of point. Post-hoc comparisons showed a 

significant decrease in accuracy for ND points between Block 1 and Block 3 (β= 

1.21; SE=0.34; z=3.53; p =0.0012); between Block 2 and Block 3 (β=1.12; 

SE=0.31; z=3.57; p =0.0011). D points were significantly more accurate than ND 



 305 

points in Block 3 (β=0.93; SE=0.26; z=3.57; p =0.0004). In the visual modality, we 

did not find any significant interaction.  

Hence, at Level 4 we found a similar trend in accuracy rates in the auditory and 

tactile modalities: in both two modalities, we found a decrease on ND points along 

the task. Accuracy on D points was higher than that on ND points in Block 3. This 

result is in line with what we found on RTs, confirming that D points at Level 4 

were learned in Block 3 in both modalities. In line with results on RTs, in the visual 

modality no significant interactions were found. As at previous levels, we found 

that accuracy rates in the visual modality were higher than those in the auditory and 

tactile ones, suggesting a general processing advantage independent from learning 

for the visual sensory domain.  

 

 Block 

1  

Block 2  Block 3  

Accuracy Disambiguated Points Auditory 
0.88 0.89 0.91 

(0.33) (0.31) (0.28) 

Accuracy Non-Disambiguated Points 

Auditory 

0.92 0.87 0.74 

(0.27) (0.34) (0.44) 

Accuracy Disambiguated Points Tactile 
0.92 0.91 0.90 

(0.27) (0.29) (0.30) 

Accuracy Non-Disambiguated Points 

Tactile 

0.92 0.91 0.80 

(0.27) (0.28) (0.40) 

Accuracy Disambiguated Points Visual 
0.97 0.96 0.93 

(0.18) (0.19) (0.26) 

Accuracy Non-Disambiguated Points Visual 
0.99 0.98 0.90 

(0.08) (0.14) (0.30) 

Table 23. Mean (SDs) accuracy rates of each block for Disambiguates (D) and Non-

disambiguated (ND) points at Level 4 in each Modality (Analysis 5). 
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Figure 52. Mean accuracy rates for D and ND points by block at Level 4 in the three studies 

(Analysis 5). Error bars denote the 95% confidence interval. D_4 = Disambiguated points 

at Level 4; ND_4 = Non-Disambiguated points at Level 4; AUD = Auditory modality; TAC 

= Tactile modality; VIS = Visual modality).  

 
 

Summarizing, results on accuracy rates confirm what has been found for RTs: D 

points at Level 4 were learned in the auditory and tactile modalities in Block 3, 

while we did not find any significant effect in the visual modality, confirming that 

learning in this sphere stopped at Level 2. Despite this, accuracy rates in the visual 

modality were higher than those in the auditory and tactile modalities. This result 

is in line with previous findings, indicating a general processing advantage for the 

visual domain, independent from learning.  
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Analysis 6: Deterministic Vs. Non-Deterministic points within Level 5 in the 

Auditory, Tactile, and Visual studies 

At level 5, we compared RTs and accuracy rates in correspondence to every 

instance of D and ND points in each block, in the three modalities. At this Level, D 

points correspond to those 0 that follow the chunks [10101101][10101101]; ND 

points to those 0 that follow [01101] [10101101]. Results are reported in Table 24 

and 25, respectively. As observable in Figure 53, RTs in the visual modality are 

considerably shorter than those in the auditory and tactile ones, while those in the 

tactile modality are slightly lower than those in the auditory modality. In the 

auditory and tactile studies, RTs for D points start to decrease in the passage from 

Block 2 and Block 3. However, only in the tactile modality we observe a difference 

between D and ND points: RTs for the former are higher than the latter in Block 1 

and Block 2, while in Block 3 we observe an inverse pattern. From the LMM model, 

we found that the factor Block was not statistically significant, indicating no 

difference in RTs between blocks. We found a main effect of Modality (χ2 =653.50, 

df = 2, p < .001), indicating that there were significant differences in RTs between 

modalities. The Point_Level_5*Block interaction was not significant, indicating 

that RTs across blocks were not modulated by the type of point (D vs. ND). 

Block*Modality was not significant, meaning that RTs across blocks were not 

modulated by the type of modality. The interaction Point_Level_5*Block*Modality 

was not significant: The difference in the trend of RTs between D and ND points 

across blocks were not modulated by the modality. To further investigate the nature 

of the interactions, (i) we assessed the interaction between type of point and 

modality to verify whether the differences in RTs between modalities were 

modulated by the type of point. Secondly, (ii) we explored the interaction between 

type of point and block within the individual modalities, to verify whether the trend 

of RTs across blocks were modulated by the type of point, within the single 

modalities. For analysis (i) we ran a LMM model with RTs as dependent variable, 

Point_Level_5 (Disambiguated at level 5 vs. Non-disambiguated at Level 5) and 

Modality (Auditory, Tactile, Visual) as independent variables with full interaction, 

and Subject as random intercept. The analysis revealed a main effect of Modality 

(χ2 =762.59, df = 2, p < .001), indicating the presence of significantly different RTs 
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between modalities. Neither Point_Level_5 nor the interaction between 

Point_Level_5*Modality were significant. Hence, we ran a simpler LMM model 

with RTs as dependent variable, Modality as independent variable, and Subject as 

random intercept. The analysis revealed a main effect of Modality (χ2 =793.01, df 

= 2, p < .001). Post-hoc comparisons showed that RTs in the visual modality were 

faster than those in the auditory (β=390.1; SE=15.3; t=25.42; p<.0001) and tactile 

modalities (β=348.5; SE=14.9; t=93.3; p<.0001). This result is in line with result at 

previous level, suggesting a general processing advantage independent from 

learning for the visual sphere. RTs in the tactile modality were shorter than those in 

the auditory one (β=41.6; SE=14.9; t=2.792; p=0.0173). To conduct analysis (ii), 

we splitted data according to Modality, exploring the effect of Point_Level_5 and 

Block in the three separated datasets (Auditory, Tactile, Visual). In the tree 

modalities, we ran a LMM with RTs as dependent variable, Block (1-3) and 

Point_Level_5 (Disambiguated at level 5 vs. Non-disambiguated at Level 5) as 

independent variables with full interaction, and Subject as random intercept.  

In the auditory modality, the analysis revealed no significance.  

In the tactile modality, we found a main effect of Block (χ2 =12.09, df = 2, p < .01), 

indicating that RTs became shorter across blocks. The Point_Level_5*Block 

interaction was significant (χ2 = 9.03, df = 2, p < .05), indicating that RTs across 

blocks were modulated by the type of point (D vs. ND). Post-hoc comparisons 

reported a significant decrease in RTs on D points from Block 1 to Block 3 

(β=21.79; SE= 7.17; t= 3.04; p = 0.0069), and from Block 2 to Block 3 (β=21.41; 

SE= 7.21; t= 2.97; p = 0.0086). RTs on ND points did not change significantly 

across blocks. The difference between D and ND points was significant in Block 3 

(β=-17.70; SE= 8.01; t= -2.21; p = 0.0273).  

As expected, we found no significance in the LMM in the visual modality.  

Overall, the only significant effect we found at this level was in the tactile modality. 

Specifically, we found a significant decrease in RTs on D points in the transition 

from second to third block, and from the first to the third block. Moreover, RTs on 

D points were faster than those on NDs in Block 3. Neither in the auditory study 

nor in the visual one did we find significant interactions. These results suggest that 

D points were acquired in the tactile modality in Block 3. On the contrary, no 
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learning effects were found in neither the auditory nor the visual modality, 

confirming thus that learning in the auditory modality stopped at Level 4, while 

learning in the visual modality stopped at Level 2. However, looking at the graph, 

we noted that the trend of RTs on D points in the auditory and tactile modalities 

were similar. Indeed, in the auditory modality there was a decrease in RTs from 

Block 2 to Block 3 as well, although not significant. Thus, we do not rule out the 

possibility that the absence of learning effects in the auditory modality was due to 

insufficient exposure to the string. At this level, as at previous levels, RTs in the 

visual modality were faster than those in the auditory and tactile modalities, 

suggesting a general processing advantage for the visual modality, independent 

from learning. Furthermore, we found that RTs in the tactile modality were lower 

than those in the auditory modality.  

 

 

 Block 1  Block 2  Block 3  

RTs Disambiguated Points Auditory 
705.14 705.4 686.39 

(117.98) (119.49) (102.97) 

RTs Non-Disambiguated Points Auditory 

704.50 694.47 653.30 

(110.17) (95.38) (81.00) 

RTs Disambiguated Points Tactile 
663.35 663.12 643.85 

(96.22) (103.10) (97.43) 

RTs Non-Disambiguated Points Tactile 
653.30 648.28 659.36 

(81.00) (90.26) (96.44) 

RTs Disambiguated Points Visual 
306.55 315.37 301.35 

(86.31) (109.61) (104.05) 

RTs Non-Disambiguated Points Visual 
309.82 319.54 300.02 

(101.09) (106.76) (100.35) 

 

Table 24. Mean (SDs) RTs of each block for Disambiguates (D) and Non-disambiguated 

(ND) points at Level 5 in each Modality (Analysis 6). 
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Figure 53. Mean RTs for D and ND points by block at Level 5 in the three studies (Analysis 

6). Error bars denote the 95% confidence interval. D_5 = Disambiguated points at Level 5; 

ND_5 = Non-Disambiguated points at Level 5; AUD = Auditory modality; TAC = Tactile 

modality; VIS = Visual modality).  

 

Summarizing, at Level 5 we found that D points were learned in Block 3 in the 

tactile modality. On the contrary, we did not find significant effects neither in the 

auditory nor visual modalities, meaning that learning stopped at Level 4 in the 

auditory modality and at Level 2 in the visual modality. Crucially, however, 

examining the RTs graph, it became evident that the patterns of response times 

(RTs) for D points in both auditory and tactile modalities shared similarities. 

Specifically, the auditory modality exhibited a decrease in RTs from Block 2 to 

Block 3, although this reduction did not reach statistical significance. Consequently, 

we cannot dismiss the possibility that the lack of discernible learning effects in the 

auditory modality may be attributed to insufficient exposure to the string. Again, as 

found at previous levels, RTs in the visual modality were overall shorter than those 

in the tactile and auditory modalities, suggesting a general processing advantage, 

independent from learning.  
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As for accuracy rates at Level 5, as observable in Figure 54, accuracy in the 

auditory modality is lower than that in the tactile modality, which in turn is lower 

than that in the visual modality. In the auditory modality, we observe an increase in 

accuracy for both D and ND points in the transition from Block 2 to Block 3. The 

same trend can be observed for D points in the tactile study. The GLMM model 

failed to converge. Hence, we reduced the complexity of the model. First, (i) we 

checked the interaction between type of point and modality to verify whether the 

differences in accuracy rates between modalities were modulated by the type of 

point. Then, (ii) we investigated the interaction between type of point and block 

within the individual modalities, to see whether the trend of accuracy rates across 

blocks were modulated by the type of point, within each modality. For analysis (i) 

we ran a GLMM model with Accuracy as dependent variable, Point_Level_5 

(Disambiguated at level 5 vs. Non-disambiguated at Level 5) and Modality 

(Auditory, Tactile, Visual) as independent variables with full interaction, and 

Subject as random intercept. The analysis revealed a main effect of Modality (χ2 

=30.59, df = 2, p < .001), indicating the presence of significantly different accuracy 

rates between modalities. Neither Point_Level_5 or the Point_Level_5*Modality 

were significant. Hence, we ran a model with Accuracy as dependent variable, 

Modality (Auditory, Tactile, Visual) as independent variable, and Subject as random 

intercept. Modality was significant (χ2 =43.72, df = 2, p < .001). We ran on this 

second model post-hoc comparisons, which showed that accuracy rates in the visual 

modality were higher than those in the auditory (β=-2.18; SE=0.35; z=-6.23; p 

<.0001) and tactile modalities (β=-0.92; SE=0.36; z=-2.54; p = 0.0298). This result 

is in line with those found at previous levels. Moreover, accuracy rates in the tactile 

modality were higher than those in the auditory one (β=-1.26; SE=0.29; z=-4.37; p 

<.0001). For analysis (ii), we splitted data according to Modality, investigating the 

effect of Point_Level_5 and Block in the three separated datasets (Auditory, Tactile, 

Visual). We did not find any significant interaction, in any of the three modalities.  
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 Block 

1  

Block 2  Block 3  

Accuracy Disambiguated Points Auditory 
0.86 0.83 0.89 

(0.35) (0.37) (0.32) 

Accuracy Non-Disambiguated Points 

Auditory 

0.81 0.86 0.96 

(0.39) (0.34) (0.19) 

Accuracy Disambiguated Points Tactile 
0.95 0.93 0.96 

(0.22) (0.26) (0.20) 

Accuracy Non-Disambiguated Points 

Tactile 

0.96 0.94 0.95 

(0.19) (0.23) (0.22) 

Accuracy Disambiguated Points Visual 
0.98 0.97 0.98 

(0.13) (0.18) (0.14) 

Accuracy Non-Disambiguated Points Visual 
0.97 0.98 0.98 

(0.18) (0.13) (0.13) 

Table 25. Mean (SDs) accuracy rates of each block for Disambiguates (D) and Non-

disambiguated (ND) points at Level 5 in each Modality (Analysis 6). 

 

 

Figure 54. Mean accuracy rates for D and ND points by block at Level 5 in the three studies 

(Analysis 6). Error bars denote the 95% confidence interval. D_5 = Disambiguated points 

at Level 5; ND_5 = Non-Disambiguated points at Level 5; AUD = Auditory modality; TAC 

= Tactile modality; VIS = Visual modality).  
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Summarizing, at Level 5, in the analysis of accuracy rates we did not find any 

significant interaction, within any of the three modalities. The only significant 

effect found was in the comparison between modalities: accuracy rates in the visual 

modality were higher than those in the auditory and tactile modalities. This result 

is in line with previous findings, indicating a general processing advantage for the 

visual domain, independent from learning.  

 

Analysis 7: Deterministic Vs. Non-Deterministic points within Level 6 in the 

Auditory, Tactile, and Visual studies 

We controlled for possible learning differences between disambiguated and non-

disambiguated points at Level 6, by analyzing and comparing RTs and accuracy 

rates in correspondence to every instance of disambiguated and non-disambiguated 

point at Level 6, in each block, in the three modalities. At this level, D points 

correspond to the 1s which follow the chunks [0110110101101] [0110110101101]; 

ND points at Level 6 are the 1s that follow the chunks [10101101] 

[0110110101101]. Results are reported in Table 26 (RTs) and 27 (accuracy). From 

Figure 55, we do not observe any interesting trend in the trend of RTs across the 

blocks: no correlation appears between type of point (D vs. ND) and block. Instead, 

the difference in RTs in the three modalities is evident: RTs in the visual modality 

are overall shorter than both those in the auditory and tactile modalities, while we 

do not observe any differences among the latter. From the LMM model, we 

observed the following results: Factor Block was not statistically significant, 

indicating no difference in RTs between blocks. We found a main effect of Modality 

(χ2 =402.98, df = 2, p < .001), indicating that there were significant differences in 

RTs between modalities. The Point_Level_6*Block interaction was not significant, 

indicating that RTs across blocks were not modulated by the type of point (D vs. 

ND). Block*Modality was not significant, meaning that RTs across blocks were not 

modulated by the type of modality. The interaction Point_Level_6*Block*Modality 

was not significant, meaning that the difference in the trend of RTs between D and 

ND points across blocks were not modulated by the modality. To have 

reconfirmation of the absence of correlations within individual modalities, we 

splitted data according to Modality, exploring the effect of Point_Level_6 and Block 
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in the three separated datasets (Auditory, Tactile, Visual). As expected, we found 

no significance, in any of the three modalities, except for the Block factor in the 

visual modality, which was found to be significant: RTs increased significantly 

along the task (χ2 =9.86, df = 2, p=0.007208). We then assessed the interaction 

between type of point and modality to verify whether the differences in RTs 

between modalities were modulated by the type of point. To do this, we ran a LMM 

model with RTs as dependent variable, Point_Level_6 (Disambiguated at level 6 vs. 

Non-disambiguated at Level 6) and Modality (Auditory, Tactile, Visual) as 

independent variables with full interaction, and Subject as random intercept. The 

analysis revealed a main effect of Modality (χ2 =529.69, df = 2, p < .001), indicating 

the presence of significantly different RTs between modalities. Neither 

Point_Level_6 nor the interaction between Point_Level_6*Modality were 

significant. Hence, we ran a simpler LMM model with RTs as dependent variable, 

Modality as independent variable, and Subject as random intercept. The analysis 

revealed a main effect of Modality (χ2 =590.65, df = 2, p < .001).  

Post-hoc comparisons showed that RTs in the visual modality were faster than those 

in the auditory (β=345.41; SE=16.5; t=20.93; p<.0001) and tactile modalities 

(β=341.05; SE=16.0; t=21.32; p<.0001). This result is in line with previous 

findings, indicating a general processing advantage for the visual modality, 

independent from learning.  
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 Block 1  Block 2  Block 3  

RTs Disambiguated Points Auditory 
670.33 693.12 692.48 

(120.94) (137.39) (113.94) 

RTs Non-Disambiguated Points Auditory 

691.18 667.45 708.53 

(90.05) (90.28) (102.21) 

RTs Disambiguated Points Tactile 
678.40 679.39 681.76 

(84.47) (106.20) (125.46) 

RTs Non-Disambiguated Points Tactile 
688.42 666.61 669.88 

(96.81) (87.04) (94.60) 

RTs Disambiguated Points Visual 
332.46 336.65 369.02 

(81.15) (98.31) (130.39) 

RTs Non-Disambiguated Points Visual 
326.92 335.53 337.68 

(72.31) (99.77) (110.57) 

Table 26. Mean (SDs) RTs of each block for Disambiguates (D) and Non-disambiguated 

(ND) points at Level 6 in each Modality (Analysis 7). 

 

Figure 55. Mean RTs for D and ND points by block at Level 6 in the three studies (Analysis 

7). Error bars denote the 95% confidence interval. D_6 = Disambiguated points at Level 6; 

ND_0 = Non-Disambiguated points at Level 6; AUD = Auditory modality; TAC = Tactile 

modality; VIS = Visual modality).  
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Summarizing, at Level 6, we did not find any significant result concerning learning. 

The only significant result found concerned the fact that RTs in the visual modality 

were overall shorter than those in the tactile and auditory modalities, indicating the 

presence of a processing advantage, independent from learning.  

 

As observable in Figure 56, accuracy in the visual modality is higher than 

that in the auditory and tactile modalities. In general, we observe a decrease in 

accuracy rates in all three modalities, which is most noticeable for D points. The 

GLMM model failed to converge. For this reason, we reduced the complexity of 

the model. First, (i) we checked the interaction between type of point and modality 

to verify whether the differences in accuracy rates between modalities were 

modulated by the type of point. Then, (ii) we investigated the interaction between 

type of point and block within the individual modalities, to see whether the trend of 

accuracy rates across blocks were modulated by the type of point, within each 

modality. For analysis (i) we ran a GLMM model with Accuracy as dependent 

variable, Point_Level_6 (Disambiguated at level 6 vs. Non-disambiguated at Level 

6) and Modality (Auditory, Tactile, Visual) as independent variables with full 

interaction, and Subject as random intercept. The analysis revealed a main effect of 

Modality (χ2 =17.62, df = 2, p < .001), indicating the presence of significantly 

different accuracy rates between modalities. Point_Level_6 was significant (χ2 

=6.08, df = 1, p < .05. However, the Point_Level_6*Modality interaction was not 

significant. Hence, we ran a model with Accuracy as dependent variable, Modality 

(Auditory, Tactile, Visual) and Point_Level_6 as independent variables, and Subject 

as random intercept. Modality was significant (χ2 =23.40, df = 2, p < .001), and 

Point_Level_6 was significant as well (χ2 =18.07, df = 1, p < .001). We ran on this 

second model post-hoc comparisons, which showed that accuracy rates in the visual 

modality were higher than those in the auditory (β=-1.56; SE=0.32; z=-4.79; p 

<.0001) and tactile modalities (β=-1.20; SE=0.32; z=-3.72; p = 0.0006). This result 

is, again, in line with previous findings. In analysis (ii), we splitted data according 

to Modality, investigating the effect of Point_Level_6 and Block in the three 

separated datasets (Auditory, Tactile, Visual). In the auditory study, we found a 

significant effect of Block (χ2 =22.10, df = 2, p=<.001): accuracy rates decreased 
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from Block 1 to Block 3 (β=1.53; SE= 0.35; z= 4.38; p <.001), and from Block 2 

to Block 3 (β=0.94; SE=0.28; z= 3.33; p = 0.0025). In the tactile study, we found a 

significant effect of Block (χ2=25.10, df =2, p=<.001) and Block*Point_Level_6 (χ2 

=12.57, df = 2, p=<.01):  accuracy rates decreased on D points from Block 1 to 

Block 3 (β=1.59; SE=0.42 ; z= 3.78; p=0.0005), and from Block 2 to Block 3 (β= 

1.88; SE= 0.46; z= 4.10; p = 0.0001). D points were statistically less accurate than 

ND ones in Block 3 (β= -2.37; SE= 0.64; z= -3.69; p = 0.0002). In the visual study, 

we found a significant effect of Block (χ2=11.36, df =2, p=<.01):  accuracy rates 

decreased from Block 1 to Block 3 (β=2.93; SE= 1.05; z= 2.80; p=0.0142), and 

from Block 2 to Block 3 (β=1.68; SE=0.58; z=2.90; p =0.0104).  

Overall, results on accuracy rates indicated a decrease in accuracy in all the 

modalities. Moreover, as at previous levels, accuracy rates in the visual modality 

were higher than those in the tactile and auditory modalities, confirming the 

presence of a general processing advantage independent from learning.  

 

 Block 

1  

Block 2  Block 3  

Accuracy Disambiguated Points Auditory 
0.91 0.87 0.68 

(0.28) (0.34) (0.47) 

Accuracy Non-Disambiguated Points 

Auditory 

0.93 0.87 0.85 

(0.25) (0.34) (0.35) 

Accuracy Disambiguated Points Tactile 
0.91 0.93 0.72 

(0.28) (0.25) (0.45) 

Accuracy Non-Disambiguated Points 

Tactile 

0.93 0.89 0.96 

(0.26) (0.31) (0.20) 

Accuracy Disambiguated Points Visual 
0.99 0.98 0.88 

(0.10) (0.14) (0.33) 

Accuracy Non-Disambiguated Points Visual 
1.00 0.98 0.95 

(0.00) (1.14) (0.22) 

Table 27. Mean (SDs) accuracy rates of each block for Disambiguates (D) and Non-

disambiguated (ND) points at Level 6 in each Modality (Analysis 7). 
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Figure 56. Mean accuracy rates for D and ND points by block at Level 6 in the three studies 

(Analysis 7). Error bars denote the 95% confidence interval. D_6 = Disambiguated points 

at Level 6; ND_6 = Non-Disambiguated points at Level 6; AUD = Auditory modality; TAC 

= Tactile modality; VIS = Visual modality).  

 

Analysis 8: Deterministic Vs. Non-Deterministic points within Level 7 in the 

Auditory, Tactile, and Visual studies 

After conducting the analysis at Level 6, we went on to conduct the same analyses 

at Level 7. From the LMM model, we found that, at this level, the only significant 

effect was Modality (χ2 =420.68, df = 2, p < .001), indicating that there were 

significant differences in RTs between modalities. As observable in Figure 57, in 

line with what has been observed at previous levels, the visual modality displayed 

lower RTs than the auditory and tactile modalities. To delve deeper into this effect, 

we ran a simpler LMM model with RTs as dependent variable, Modality as 

independent variable, and Subject as random intercept. We ran post-hoc tests on 

this simpler model, which showed that RTs in the visual modality were faster than 

those in the auditory (β=389.6; SE=15.3; t=25.43; p<.0001) and tactile modalities 

(β=345.05; SE=16.0; t=21.32; p<.0001). Moreover, RTs in the tactile modality 

were faster than those in the auditory (β=43.8; SE=14.9; t=2.93; p<.05). To have 

reconfirmation of the absence of correlations within individual modalities, we 



 319 

splitted data according to Modality, exploring the effect of Point_Level_7 and Block 

in the three separated datasets (Auditory, Tactile, Visual). As expected, we found 

no significance, in any of the three modalities. Hence, we confirm that learning 

effects stopped at Level 5. 

 

 

 

Figure 57. Mean accuracy rates for D and ND points by block at Level 7 in the three studies 

(Analysis 8). Error bars denote the 95% confidence interval. D_7 = Disambiguated points 

at Level 7; ND_7 = Non-Disambiguated points at Level 7; AUD = Auditory modality; TAC 

= Tactile modality; VIS = Visual modality).  

In summary, our findings at Level 6 did not reveal any significant learning effect. 

However, we observed consistently faster RTs in the visual domain compared to 

both the auditory and tactile domains. This outcome aligns with previous findings 

and suggests a general processing advantage for the visual sphere, independent 

from learning, over the auditory and tactile spheres.  
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5.4. General discussion 

In this chapter, we presented the findings from three AGL studies investigating the 

formation of recursive hierarchical abstract representations that emerge from 

sequentially presented, temporally fading input across auditory, tactile, and visual 

domains. Employing three distinct Serial Reaction Time tasks, participants across 

three groups were exposed to an identical sequence of binary stimuli governed by 

Fib rules. The stimuli varied across modalities: two pure tones for auditory, two 

colorful squares for visual, and two vibrotactile stimuli for tactile conditions. Our 

objective was to ascertain participants' proficiency in capturing Fibonacci string’s 

regularities across sensory modalities, leveraging the cognitive parsing mechanism 

detailed in Section 4.2. Reaction times and accuracy rates were measured in 

correspondence to each D (disambiguated) and ND (non-disambiguated) point at 

every level (cf. Section 4.2.). In all three studies the string corresponded to Fib 

generation 14, divided into 3 blocks of 178 stimuli each. Given the different 

frequency of the 0s and 1s in the string (cf. Section 4.1.), we did not compare 0s 

and 1s directly, but rather focused on the 0s and 1s separately, going to see at each 

level whether and what the differences in RTs and accuracy rates were between the 

points that could be predicted at that level (D points) and those that could not be 

(ND points). 

Hypothesizing learning, we expected to find a more pronounced decrease of 

reaction times on D points than ND points, throughout the task, possibly 

accompanied by increased accuracy rates. As explained in the data analysis section, 

we relied principally on RTs to determine significance, considering accuracy as a 

secondary measure to ensure comprehensive results and validate trends observed in 

reaction times. While hypothesizing a difference in the trend of RTs between D and 

ND points within levels, we did not rule out the possibility to find a decrease of 

RTs on ND points as well. Indeed, as we explained in Section 4.2., by definition, 

NDs are the points that are not predictable at each considered level. Crucially, 

however, this does not mean that they are not predictable at all. In fact, the set of 

ND points at Level X corresponds to the totality of points (D + ND) that are analyzed 

at Level X+2. In other words, ND points at Level X contain both the points that at 
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Level X +2 could be predicted (D points at Level X+2) and those that cannot be 

predicted at Level X +2 (ND Level X+2). It therefore follows that the decrease in 

RTs on ND points at Level X may be attributable to the fact that part of these points 

(i.e., D points at Level X +2), are actually predicted. As we explained at the 

beginning of this chapter, if that were the case, we would expect to find D points at 

Level X displaying generally lower RTs than ND points at Level X, as the set of 

NDs include points that are potentially predictable at higher levels, being thus 

computationally more difficult to predict. Additionally, for the same reason, we 

would expect ND points started decreasing later in the task compared to D points. 

Fib strings are particularly well-suited for probing the formation of recursive 

hierarchical structures, exploring the shift from linear to recursive processing, and 

unraveling interactions among distinct mechanisms at varying abstraction levels (as 

elaborated in Chapter 4). This paradigm enabled us to shed light on the interplay 

between sequential implicit statistical learning and the formation of abstract 

recursive hierarchical representations in diverse sensory realms, directly comparing 

participants’ performances across three different sensory domains. Building on 

Chapter 4's explanation, Fib strings allow the prediction of specific points by 

exploiting low-level statistical information: D points at Level 0 and D points at 

Level 1. In line with previous findings, which demonstrated low-level sequential 

statistical abilities in all three domains (cf. Section 3.1.4.), we expected to find 

acquisition of D points at both Level 0 and 1 across the three sensory modalities via 

sequential implicit statistical learning. Specifically, since D points at Level 0 

correspond to a fist-order transitional regularity (p (1|0) =1), while D points at Level 

1 correspond to a second-order transitional regularity (p (0|11) =1), we predicted 

the former to be learned earlier than the latter. Based on the demonstrated auditory 

superiority in processing sequential statistical information over the visual domain 

(Saffran, 2002; Conway, Christiansen, 2005; 2009; cf. Section 3.1.2.), we 

anticipated better auditory performance for these points than in the auditory 

domain. On the contrary, hypotheses for the tactile domain were open, since we 

found contrasting evidence concerning the comparison of this ability between the 

auditory and tactile domains (Conway, Christiansen, 2005; Pavlidou & Bogaerts, 

2019; cf. Section 3.1.4.). Concerning the prediction of D points at Levels ≥ 2, our 
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investigation centered on participants' ability to predict these points by exploiting 

the cognitive parsing strategy detailed in Section 4.2. This strategy necessitates 

constructing recursive hierarchical representations, transitioning from the 

sequential to the hierarchical dimension. The goal of our investigation was to 

illuminate potentially domain-general and domain-specific aspects involved in this 

cognitive process. Aligned with prior studies (Martins et al., 2017; cf. Section 

3.1.6.), we expected to find evidence of this ability in the auditory domain. On the 

contrary, no specific expectations were set for the visual and tactile domains. 

Indeed, in the visual domain, previous studies focused on the investigation of the 

ability to represent recursion in static fractal images, with no exploration of the 

cognitive ability to form recursive hierarchical abstract representations from 

sequential stimuli (Martins, 2012; Martins et al., 2014; 2015; cf. Section 3.1.6.). 

Similarly, the tactile domain lacked prior investigation into recursive (hierarchical) 

learning. Despite this, given the observed auditory advantage in processing 

sequential implicit statistical information over the visual sphere (cf. section 3.1.2.) 

and considering that the ability to represent recursive hierarchical structures in our 

paradigm is intricately linked with the proficiency in sequential implicit statistical 

learning (cf. Section 4.2.), we hypothesized to find auditory superiority over the 

visual domain in forming recursive hierarchical structures from sequential stimuli. 

However, we had no specific hypothesis concerning the tactile outcome. In 

summary, our study aimed to investigate the formation of recursive hierarchical 

structures from sequentially arranged stimuli in the auditory, tactile, and visual 

sensory domains. Specifically, we sought to unravel the relationship between 

sequential implicit statistical learning and the formation of recursive hierarchical 

representations, while also exploring potential domain-specific constraints in the 

process.  

Overall, results indicated that our predictions have proven to be accurate: in 

line with our hypotheses, we found that the two low-level statistical regularities (D 

points at Level 0 and 1) were learned in all three modalities. Additionally, we 

observed domain-specific differences: as expected, the auditory domain proved to 

be superior to the visual domain, confirming findings from Saffran (2002), Conway, 

Christiansen (2005; 2009). Furthermore, an advantage of the auditory domain over 
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the tactile domain was observed. Indeed, both at L0 and L1, the reaction times (RTs) 

for D points in the auditory domain decreased more steeply across blocks compared 

to the tactile and visual domains (i.e., the auditory learning curve was steeper). The 

comparison of D points between Block 1 and Block 3 within modalities at Level 0 

and Level 1 revealed a more significant decrease in the auditory sphere, followed 

by the tactile sphere, and lastly, the visual spheres. This confirms a sequential 

statistical learning advantage for the auditory sensory domain over tactile and visual 

ones in acquiring both first- and second-order transitional regularities (D points at 

Level 0 and D points at Level 1, respectively). Additionally, it highlights a tactile 

domain advantage over the visual one. In addition to this, we also observed that D 

points at L1 were acquired later in the blocks in the visual modality (Block 2) as 

compared to the tactile and auditory modalities (Block 1). Our results align with 

findings from Saffran (2002), Conway, Christiansen (2005; 2009), demonstrating 

that the auditory domain is better at processing low-level sequential statistical 

information compared to the visual domain, which, in turn, is more suited for 

processing spatially arranged statistical information rather than temporally arranged 

(sequentially) information. As for the superiority of the tactile domain over the 

visual domain in processing first- and second-order transitional regularities in 

sequential input, our result is interesting, and novel compared to previous literature. 

In the face of contrasting results (Conway, Christiansen, 2005; Abrahamse, 2008; 

2009; Pavlidou & Bogaerts, 2019), this is the first time we find a clear advantage 

of the tactile domain over the visual one. Regarding low-level statistical regularities 

(D points at Level 0 and 1), we also expected to observe that those at Level 0 would 

be learned before those at Level 1. In the auditory and tactile domains, we observed 

that both D points at Level 0 and Level 1 were learned within the first block. 

Therefore, from the conducted analysis, we cannot confirm whether D points at 

Level 0 were indeed learned before D points at Level 1. However, this is evident in 

the visual domain, where D points at L0 were learned in Block 1, while those at 

Level 1 were learned in Block 2.  

Even regarding D points at levels ≥ 2, we have identified domain-specific 

learning differences. Specifically, we found similar learning performances between 

the auditory and tactile domains, while the visual domain demonstrated less 
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proficiency in processing these regularities. Indeed, while we observed learning up 

to levels 4 and 5 in the auditory and tactile domains, respectively, in the visual 

domain learning stopped at Level 2. Additionally, at this level, we noted that 

learning occurred earlier in the auditory and tactile domains compared to the visual 

domain: in the second block in the auditory and tactile spheres, while in the visual 

domain only in the third block. In addition to this, the RTs curves of D points were 

steeper in the tactile and auditory modalities compared to the visual modality. As 

for D points at Level 3, we observed no learning effects in the visual modality, thus 

confirming that learning stopped at Level 2. On the contrary, in the auditory and 

tactile modalities, D points at Level 2 were learned in Block 2. D points at Level 3 

were learned in Block 2 in the auditory modality, while in Block 3 in the tactile one. 

D points at Level 4 were learned in Block 3 both in the auditory and tactile 

modalities. At Level 5, we found no learning effects in the auditory modality, while 

in the tactile modality, D points were learned in Block 3. However, looking at the 

auditory RTs graph, we noted that there was a decrease in RTs from Block 2 to 

Block 3, although not significant. Thus, we do not rule out the possibility that the 

absence of learning effects at this level in the auditory modality was due to 

insufficient exposure to the string.  

All in all, our results confirmed the ability to form recursive hierarchical 

abstract representations in the auditory domain, in line with what was found by 

Martins et al., 2017 (cf. Section 3.1.6.). Crucially, our study also provided the first 

evidence that the visual and tactile domains are also able to form recursive 

hierarchical structures arising from sequentially presented input. Previous studies 

demonstrated the visual domain's ability to represent recursion (Martins, 2012; 

Martins et al., 2014; 2015), but they used paradigms that investigated this ability 

arising from static fractal images, rather than fading sequentially presented input. 

In other words, previously employed paradigms used fractal images, where 

recursive hierarchical structures unfolded in space, rather than in time. These 

studies showed that participants succeeded in tracking the interwoven hierarchical 

relationships between elements persisting in time, distributed in the spatial 

dimension, and to recursively apply these regularities across different hierarchical 

levels (cf. Section 3.1.6.). In contrast, our study is the first to investigate the ability 
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to form recursive hierarchical representation arising from sequentially presented 

input in the visual domain. Regarding the tactile domain, our study revealed 

pioneering results on the ability as well. Indeed, as we explained, to our knowledge, 

no study has ever investigated the ability to form recursive abstract representations 

in the tactile domain until now (cf. Section 3.2.). Specifically, by designing a 

paradigm allowing direct comparison between the three sensory modalities, we 

were able to investigate possible domain-specific effects in the ability to form 

recursive hierarchical abstract structures from sequential stimuli, finding a clear 

advantage in the auditory and tactile domains over the visual domain. Overall, the 

obtained results corroborated our hypothesis that the auditory domain would 

outperform the visual domain in this particular skill. As we clarified earlier, the task 

at hand involves closely intertwining the ability to process recursive hierarchical 

structures with the proficiency in handling low-level transitional regularities. 

Hence, consistent with existing literature highlighting the auditory system's 

superior performance over vision in processing low-level transitional regularities 

within sequential input, we expected to find an advantage of the auditory over the 

visual domain also in forming recursive hierarchical structures from sequentially 

arranged stimuli. When it comes to the tactile domain, the absence of previous 

studies on this topic hindered us from forming specific predictions. However, 

aligning with the observed tactile learning advantage over the visual sphere in our 

study regarding the acquisition of first- and second-order transitional regularities, 

the tactile domain has proven to excel over the visual domain in the formation of 

recursive hierarchical structures as well.  

Although, as explained, accuracy was not used to determine significance, 

the accuracy results still confirmed that there are learning differences between the 

three modalities. Despite the accuracy being high in this task, as expected, the 

interesting findings generally support the conclusions drawn from the RTs analysis. 

Just as RTs in the visual sphere were overall lower than those in the tactile and 

auditory spheres, we noted a specular trend in terms of accuracy rates as well: 

accuracy rates in the visual sphere were generally higher than those in the tactile 

and auditory spheres. Despite this general processing advantage of the visual 

sphere, going to observe the trend between blocks of accuracy rates on the two types 
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of points (D and ND points), within the individual modalities, we found that it was 

the auditory sphere that performed best. In fact, in the tactile and visual spheres, 

apart from D points at L0 in the tactile sphere, in all other cases we observed that 

accuracy rates overall decreased along the task. This occurred on both D points and 

ND points. In contrast, in the auditory sphere, we observed an increase in accuracy 

rates on D points along the blocks at levels 0, 1, 2, and 3. The decrease in accuracy 

rates observed in the tactile and visual sphere might be linked to a fatigue effect due 

to the cognitive load required from the task, especially at higher levels. Crucially, 

however, despite the decrease, even in the tactile and visual spheres, the accuracy 

data have overall confirmed what was observed in the analysis of RTs. Specifically, 

in the tactile sphere, at levels 0, 1, 2, and 4, D points proved to be more accurate 

than ND points (at Level 0 and 1 from the first block, at Level 2 and 4 in the third 

block). The same pattern was observed in the visual sphere: At Level 0, D points 

were more accurate than ND points starting from the first block; at Level 1 in the 

first and second blocks; at Level 2 in the third block. Hence, overall, the results on 

accuracy rates generally supported the findings from the reaction time trends.  

Regarding D points at levels ≥ 2, it is interesting to note that the observed 

learning effects align with the hypothesis that the human parser utilizes the Fib's 

cognitive parsing algorithm presented in Section 4.2. As mentioned earlier, it is 

reasonably implausible to predict D points at level ≥ 2 in a SRT task using a flat 

statistical learning strategy (cf. Section 4.3.). In order to predict points at different 

levels in a SRT task through a flat statistical learning strategy, the parser would 

need to simultaneously process multiple fading sequences, which overlap and 

progressively increase in length. This would impose a substantial workload, placing 

a considerable strain on human working memory resources and presenting a 

challenge to sustain effectively (cf. Section 4.3.). On the contrary, the proposed 

Fib’s cognitive parsing algorithm aims to be a more efficient cognitive strategy, 

reducing the workload on working memory. This strategy involves the formation 

of abstract hierarchical representations. Specifically, at levels ≥ 2, the mechanism 

by which the parser (human cognition) can incrementally predict points (i.e., D 

points) that would not have been predictable (i.e., ND points) at lower hierarchical 

levels is the recursive application of transitional regularities learned at levels 0 and 
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1, between increasingly larger embedded chunks (cf. Section 4.2.). From the results 

obtained in our study, we have evidence that the parser applied the Fib's cognitive 

parsing algorithm. Indeed, we found confirmation that: 

(i) The human parser processed D points differently than ND points at 

various levels. The former were generally learned earlier across the 

blocks than the latter and generally showed lower reaction times (RTs).  

(ii) In every sensory modality, D points were processed differently across 

various levels, reflecting their computational complexity: D points at 

higher levels were learned later across the blocks compared to those at 

higher levels (or at most in the same block, but in any case, never 

earlier). Additionally, we noted that learning occurred incrementally, 

from lower to higher levels, with no cases of learning occurring at level 

n+1 in the absence of learning at level n. In other words, there were no 

learning jumps between levels. This result aligns with the Fib's cognitive 

parsing algorithm hypothesis. Indeed, we theorized that the prediction 

of D points at lower levels occurs before that of D points at higher levels 

- as it is computationally less complex – and, crucially, it is necessary 

for predicting D points at higher levels (cf. Section 4.2.). 

In conclusion, in our study, we found that all three sensory spheres can process both 

low-level sequential statistical information (i.e., D points at Level 0 and 1) and form 

abstract hierarchical representation to predict points that could not be predicted by 

exploiting a flat statistical learning strategy (i.e., D points at Level ≥ 2). Crucially, 

moreover, our results highlighted the presence of domain-specific differences. 

Specifically, participants showed much better learning performances in the tactile 

and auditory studies than in the visual one, in learning both low-level transitional 

regularities (D points at level 0 and 1) and higher-order transitional regularities 

which require the formation of recursive hierarchical representations (D points at 

levels ≥ 2). In particular, the auditory modality showed a major advantage over the 

tactile and visual spheres especially in tracking sequential low-level statistical 

information (i.e., D points at Level 0 and level 1). However, it was in the tactile 

sphere that we observed significant effects at the highest level, that is, up to Level 
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5. The result observed at L5 in the tactile study, however, should be interpreted with 

caution. In fact, as we have discussed, comparing the RTs graphs of the tactile and 

auditory studies at Level 5, we observe that in fact, RTs curves on D points in the 

two modalities show a very similar trend. Keeping in mind the fact that the higher 

we go with the levels, the fewer the points are, we do not rule out the possibility 

that the absence of learning found at specific levels might be related to the fact that 

subjects did not receive sufficient exposure to the regularities analyzed at those 

levels. It remains an open question as to whether a significant decrease in RTs could 

also be found at higher levels if participants were exposed to a longer Fib sequence. 

The visual modality, instead, while showing overall significantly lower RTs 

and higher accuracy rates than the tactile and visual ones, turned out to be the least 

adept sensory modality at processing both sequential statistical information and 

abstract hierarchical representations arising from sequential stimuli. We attributed 

this result to a general processing advantage for the visual modality, independent 

from learning, over the auditory and tactile ones (cf. Abrahamse et al., 2009). This 

advantage is possibly linked to domain-internal factors such as more efficient 

communication channels connecting visual input processing and motor output, 

resulting in superior speed and accuracy.  However, these are just speculations. 

Indeed, it is currently unclear to what this general processing advantage, 

independent of learning effects, can be attributed. One possibility might be related 

to our experimental design. In the visual task, the perceptual cues that participants 

could use to differentiate the two types of stimuli were twofold: color (blue square 

or red square) and spatial location (square presented on the right or square presented 

on the left). Specifically, the '0' of the grammar was presented as a red square that 

always appeared on the left side of the screen, while the '1' was a blue square that 

appeared on the right side of the screen. Thus, participants could rely on two visual 

perceptual cues to distinguish the stimuli: one related to color and the other to 

position on the screen. This contrasts with the tactile and auditory tasks, where only 

one cue was available to distinguish the stimuli. In the auditory task, the only cue 

was the different frequencies of the two stimuli ('0' of the grammar presented as a 

tone with a frequency of 333 Hz, while '1' was a tone of 286 Hz). There was no 

spatial cue, as both tones were presented to both ears. Similarly, in the tactile task, 
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participants had only one perceptual cue to differentiate the stimuli. However, 

unlike the auditory task, the tactile task involved only a spatial discrimination. 

Participants felt the same vibration (120 Hz) either on the right thumb (for '1' of the 

grammar) or the left thumb (for '0' of the grammar). Thus, participants could only 

rely on a spatial perceptual cue (and not different intensities) for differentiation. In 

any case, participants could discriminate the stimuli based on a single cue in the 

tactile and auditory tasks, whereas they had two cues available in the visual task. 

Therefore, one possibility is that the presence of two simultaneous cues made the 

difference between the stimuli more salient, resulting in faster and more accurate 

overall performance. Future studies could focus on shedding more light on this 

point. 

Another point we believe is worth highlighting concerns the results at L2 

and L3 in the tactile experiment. In this case, we found that both at L2 and L3, D 

points decreased significantly across the blocks, confirming the occurrence of 

learning. However, at these levels, we did not find significant differences between 

D points and ND points. This partially contradicts our expectations. As we 

explained in Section 5.2, if learning occurred using the cognitive parsing strategies 

proposed in Section 4.2., we would expect to see lower RTs or a more pronounced 

decrease, possibly occurring earlier across the blocks, for D points compared to ND 

points. Nevertheless, as we have discussed, finding a decrease in RTs for ND points 

is still consistent with the cognitive parsing strategies we proposed. Indeed, within 

the ND points at each level, we find the group of D points and ND points from level 

n+2 (cf. Section 4.2.). Therefore, the fact that we found a decrease in RTs for ND 

points at both L2 and L3 is consistent with the fact that we found evidence of 

learning for D points at L4 and L5. Indeed, among the set of ND points at L2, there 

are the set of D points (plus the set of ND points) of L4. Similarly, among ND points 

of L3, we find the set of D points (and ND points) of level 5 (cf. Section 4.2.). 

Another interesting observation we believe is important to discuss is related 

to an effect found in the literature known as the alternation advantage (Bertelson, 

1961; Fecteau et al., 2003; 2004; Gao et al., 2009; Williams, 1966). The alternation 

advantage is a cognitive phenomenon that can occur in Serial Reaction Time tasks 
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with binary stimuli. It has been found that in these tasks, RTs might be influenced 

by cognitive biases unrelated to learning statistical regularities. For example, 

studies have shown that participants in a two-choice SRT task with randomized 

stimulus sequences tend to respond more quickly to alternating patterns (e.g., 

ABAB) compared to repeated patterns (e.g., AABB) (Soetens et al., 1985; Kirby, 

1976). Interestingly, a recent study investigated the interaction between the 

alternation advantage and implicit statistical learning, shedding light on the 

cognitive sources underlying this phenomenon (Compostella et al., under review). 

This study provided evidence for the hypothesis that the alternation advantage can 

interfere with implicit statistical learning, further elucidating the cognitive sources 

of this effect. Specifically, it was proposed that shifts in (visuo)spatial attention play 

a role in the occurrence of the alternation advantage, and the perceptual dimension 

driving this mechanism is the spatial location of the stimulus. In other words, it has 

been found that the alternation advantage is related to the spatial characteristics of 

the stimuli that trigger shifts in (visuo)spatial attention before the stimulus onset. 

We propose that the alternation advantage may also have occurred in our study, 

specifically in the visual and tactile tasks. At first glance, our results seem to support 

this hypothesis. Indeed, in the tactile and visual studies, we observe that 0s have an 

advantage over 1s in terms of faster reaction times, in cases where the former 

corresponds to an alternation (i.e., 0 following 1; i.e., 10) and in cases where the 

latter corresponds to a repetition (i.e., 1 following 1; i.e., 11). This advantage 

appears to be independent of the learning of statistical regularities and the formation 

of recursive hierarchical representations, as it is present from the beginning of the 

task, being particularly pronounced in the first block, and then diminishing in 

subsequent blocks, where implicit statistical learning and the related formation of 

recursive abstract representations become more evident. Specifically, observing our 

data, we notice that in both the visual and tactile tasks, at L3, where D and ND 

points correspond to 0s following a preceding 1, i.e., an alternating stimulus (10), 

the RTs are globally lower from the beginning of the task compared to the D points 

of L2 and L4, where D and ND points correspond to 1s following a previous 1, i.e. 

a repeating stimulus (11). Crucially, this effect is observed in both the tactile and 

visual experiments, where the spatial dimension is an available perceptual feature 
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that can be used to distinguish the two stimuli. Conversely, this effect is not present 

in the auditory task, where there is no spatial element to differentiate the two 

stimuli. Based on these observations, we believe it is important and interesting to 

further investigate this phenomenon in the future, conducting accurate and detailed 

statistical analyses to explore the phenomenon that, from initial observations, seems 

to align with and confirm the hypothesis put forward by Compostella et al. (under 

review). This hypothesis suggests that the alternation advantage arises from shifts 

in (visuo)spatial attention, triggered by the spatial arrangement of the two stimuli 

appearing in lateralized and opposite positions. Furthermore, the alternation 

advantage appears to be orthogonal implicit learning. Importantly, however, despite 

this cognitive bias, we observed that learning at various levels, following the 

proposed cognitive parsing algorithm, is confirmed. Summing up, on one hand, the 

tactile and visual tasks had spatial cues to distinguish between the two stimuli (for 

the tactile task, 0s in the grammar were presented on the left thumb, 1s on the right 

thumb; for the visual task, 0s were presented on the left side of the screen, 1s on the 

right side). In contrast, the auditory task lacked spatial cues, as both stimuli were 

presented to both ears. The presence or absence of a spatial perceptual cue seems 

to have influenced the overall RT results, giving an advantage in terms of shorter 

RTs to points corresponding to alternating stimuli (0 following 1) compared to 

stimuli featuring a repetition (1 following 1). Future studies could further explore 

this phenomenon. It would be interesting to replicate this study with experimental 

designs that remove the spatial dimension from the visual and tactile tasks, creating 

more comparable protocols across sensory modalities. This approach would 

provide a clearer measure of learning and comparison between the three sensory 

dimensions by eliminating the influence of the alternation advantage. 

In conclusion, our study found results that strongly suggest participants 

processed the Fibonacci sequences and acquired regularities at different levels of 

complexity by using the cognitive parsing algorithm presented in Section 4.1. As 

previously explained, it seems unlikely that the parser could have learned these 

regularities using a simple statistical learning strategy. The observed results align 

with the proposed patterns and hypotheses presented in our Fibonacci cognitive 

parsing algorithm (cf. Section 4.1.). Importantly, the proposed cognitive 
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mechanism has been shown to operate across various sensory domains, indicating 

it is a domain-general cognitive learning algorithm. However, as we have noted, we 

also identified domain-specific differences in how this cognitive algorithm is 

utilized. 

An open problem, considered by Schmid (2023) but not analyzed in this 

thesis, concerns the nature of the hierarchical representations that the parser forms 

to predict points of increasing complexity at different levels. What happens to the 

parser's abstract hierarchical representation as it forms increasingly larger, 

recursively embedded chunks? Does the parser only retain the representation of the 

highest-level constituents while discarding the abstract hierarchical representation 

of the embedded sub-chunks? In other words, does the internal hierarchical 

structure of the constituents break down as hierarchical construction continues? Or, 

conversely, is the abstract representation of the sub-chunks maintained even when 

the parser embeds these chunks into larger chunks? As reported by Schmid (2023), 

several studies in the literature have assumed the hypothesis that during the abstract 

formation of chunks, the sequential steps taken to reach the chunks are erased, 

hence there is no record. This hypothesis is supported by several chunking models 

found in the literature (French et al., 2011; Goldwater et al., 2009; McCauley & 

Christiansen, 2014; Perruchet & Vinter, 1998; Robinet et al., 2011). Additionally, 

Schmid (2023) explains that according to the subunit effect hypothesis, once a 

chunk is learned, its subunits become less accessible. (Fiser & Aslin, 2005; Giroux 

& Rey, 2009; Orbán et al., 2008; Slone & Johnson, 2015; 2018). As Schmid 

correctly observes, an interesting analysis that could shed light on the nature of 

chunk representations would be to examine the trend of RTs within the 

hypothesized chunks, at different levels. Specifically, if the parser retains sub-

chunks in memory, we should observe a deceleration in reaction times in 

correspondence to points immediately following the boundary of a chunk, as the 

sequence is processed from left to right (Schmid, 2023). This is undoubtedly an 

intriguing analysis that could be pursued in the future. Based on the results of our 

experiments, we are inclined to believe that the parser does retain sub-chunks in 

memory, even when creating embedded chunks. Indeed, in our analysis of D and 

ND points at various levels, we found that the RTs for D points at lower levels 
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progressively decreased throughout the task, generally remaining lower than those 

for D points at higher levels. Importantly, the RTs for lower-level D points 

continued to decrease even after the higher-level D points had been learned. This 

might suggest that sub-chunks are maintained in memory. If this were not the case, 

we would expect to see that once higher-level D points are learned, the RTs for 

lower-level D points would progressively homogenize across different levels, 

eventually stabilizing at some point during the task. This hypothesis aligns with 

Schmid's observations (2023). However, it remains speculative, and future analyses 

could address this open issue.  

In the next chapter, we will provide a broader context for our findings. We 

will explore the theoretical implications of uncovering a domain-general ability to 

form recursive hierarchical abstract representations from sequentially presented 

stimuli, and its close link to the ability to process low-level transitional regularities. 

Simultaneously, we will assess the potential causes of the observed domain-specific 

learning effects. Most importantly, we will conclude by discussing our findings 

within the framework of language acquisition, elucidating how our results 

contribute to understanding the fundamental mechanisms of language processing 

and acquisition.  
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6. Conclusion 

In this thesis, we explored the ability to implicitly learn low-level statistical 

regularities and form recursive hierarchical abstract representations in sequentially 

arranged fading sequences of stimuli across three sensory domains: visual, auditory, 

and tactile. Our objective was twofold. Firstly, we aimed to elucidate the cognitive 

mechanisms involved in this process, with a specific focus on the transition from 

the linear to hierarchical dimension. Secondly, we sought to determine whether this 

ability is domain-general, present across all three sensory domains, and to explore 

any potential domain-specific differences. The choice to delve into this research 

topic stemmed from the observation of three crucial issues central to both 

theoretical and experimental linguistic discussions. The first concerns the role of 

recursion in the human language faculty. The second pertains to the role of abstract 

hierarchical representation and statistical learning in the acquisition and processing 

of human language, and their possible interplay. The third, closely linked, concerns 

the presence of domain-specific representational and learning constraints in 

language, alongside the role of domain-general learning abilities. Our journey into 

the exploration of this topic began with a comprehensive theoretical introduction to 

the linguistic debate, encompassing various theories and experimental findings in 

the current context. This literature review allowed us to clearly outline our research 

focus and develop a structured experimental design for investigating this research 

topic in the most effective manner. 

In Chapter 1, we delved into the longstanding debate between nativist and 

usage-based approaches in the field of language acquisition. We examined 

arguments supporting both perspectives, with a particular emphasis on syntax 

acquisition. Then, we reviewed recent psycholinguistic studies that offered valuable 

insights into the role of implicit statistical learning in the acquisition and processing 

of syntactic phenomena. We also discussed findings from neural networks in the 

context of language acquisition, focusing particularly on recent deep neural 

networks that have achieved remarkable results in recent years. These results 

demonstrated the potential to create machines without innate language faculties that 

can learn linguistic abilities purely through exposure to linguistic data, by tracking 
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statistical regularities in the data, with abilities almost on par with those of humans. 

Additionally, we presented studies providing compelling evidence of the richly 

structured and constrained nature of language, highlighting the existence of abstract 

structural representations during the complex processes of acquiring and processing 

syntax. Specifically, these abstract representations are hierarchical in nature. 

Crucially, these studies provided evidence for the fact that a purely sequential based 

model of learning fall short in capturing the core structure of human language 

syntax. Collectively, these findings suggested that language learners intricately rely 

on both surface-level statistical information and abstract representations of 

language structure. Consequently, we argued for the imperative acknowledgment, 

within contemporary language theories, of the pivotal role played by statistical 

learning, alongside the recognition of hierarchical boundaries and constraints. 

Importantly, we emphasized that there are various hierarchical phenomena within 

human syntax. Among these hierarchical phenomena, we explained that one of the 

most studied, debated, and yet controversial is recursion. Recursive embedding is 

thought to be a distinctive feature of human syntax, where a sentence can be 

embedded within another sentence, and a part of a structure can reflect the same 

organization as the entire structure. This capability allows for the creation of multi-

level complex structures in which constituents are embedded within constituents of 

the same category, a remarkable feature of human syntax. As explained, this ability 

is considered by many scholars to be a unique aspect of human language syntax. 

Therefore, in this chapter, we outlined our research objective: to gain further insight 

into the role of recursion in human language syntax. Specifically, we aimed to 

investigate the mechanisms underlying this particular type of abstract hierarchical 

representation—namely, recursive hierarchical structures.  

In Chapter 2, we focused on the concept of recursion. As discussed, despite 

the importance attributed to this phenomenon in linguistics, recursion was not 

clearly and universally defined for many years, leading to a proliferation of varied 

and sometimes conflicting definitions and causing significant terminological 

confusion. In this chapter, we aimed to provide a clear definition of recursion in 

cognitive science and linguistics. We defined recursion as the embedding of 

elements within other elements of the same type. We also made a clear distinction 
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between iteration without embedding, iteration with embedding, and recursion. 

Specifically, we differentiated between types of recursion, including tail recursion 

and nested recursion. Importantly, we related each of these concepts back to 

linguistic phenomena, offering examples of different types of recursion as well as 

different types of iteration (both with and without embedding). Following our 

clarification of the concept of recursion, we critically examined the hypothesis by 

Hauser, Chomsky, and Fitch (2002) that recursion is a distinctive feature of human 

language, possibly absent in other cognitive domains and non-human species. This 

hypothesis asserts that recursion is a defining and universal trait of human language, 

setting it apart from other cognitive processes and non-human communication 

systems. However, our investigation uncovered several challenges to this view. 

While recursion is a key aspect of linguistic theory, we have seen that its prevalence 

in everyday language may not be as widespread as initially claimed (Karlsson, 

2010; Verhagen, 2010). Indeed, studies suggest that complex recursive structures 

are uncommon in both spoken and written language. Additionally, the existence of 

languages like Pirahã, which convey complex ideas without recursion, questions 

the notion that recursion is essential to all linguistic systems. Moreover, other 

features of language, such as structure-dependence and duality of patterning, also 

contribute to the uniqueness of human language and can function independently of 

recursion (Kinsella, 2010). We also provided an overview of studies that explored 

recursion's role in non-linguistic cognitive domains. Recursion appears in processes 

such as numerical reasoning, navigation, and music, though its necessity is debated. 

For instance, while recursive strategies can be useful in navigation, they are not the 

only possible methods (Parker, 2006). Conversely, some non-linguistic domains, 

like music, visual perception, social cognition, and theory of mind, show clear 

instances of necessary recursion (Parker, 2006). Overall, our analysis suggested that 

while recursion is an important feature of human language, it is not uniquely 

linguistic and may stem from broader cognitive capacities. In summary, this chapter 

has shown that while recursion has traditionally been considered a unique and 

innate feature of human language, recent studies challenge this view, suggesting a 

more nuanced perspective. Building on these observations, this thesis aimed to 

investigate whether recursion is solely a linguistic trait or if it extends beyond 
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language. Evidence indicates that human language learning involves cognitive 

biases related to the boundaries and constraints of the acquisition process. Various 

hypotheses propose that these biases may stem from either domain-general 

cognitive processes or be specific to language. Hence, we specified that our research 

seeks to clarify the extent to which recursion is domain-specific or domain-general 

by examining this ability across different sensory domains. After discussing the 

concept of recursion, we explored the intricate relationship between linear order, 

hierarchy, and their interaction in human language. We emphasized the importance 

of understanding the linear, temporal dimension to fully grasp the mechanisms of 

human language. We examined the historical debate within linguistic theory about 

the role of linear order, particularly focusing on Kayne's (1994) work, which 

highlights the close connection between linear order and hierarchical structure in 

syntax. Our discussion also addressed the broader cognitive implications of Kayne's 

theory, underscoring how crucial it is to consider both linear and hierarchical 

aspects to fully understand language processing and acquisition. By integrating 

insights on the importance of sequentiality with our study of recursion, we clarified 

the central focus of this thesis: the ability to process and generate recursive 

hierarchical abstract representations from sequential arrays of symbols. We posit 

that this cognitive ability is a key feature of human language syntax. In this context, 

we reviewed studies on cognitive mechanisms involved in processing sequential 

stimuli, from basic statistical computations to complex hierarchical representations, 

which explored the relationship between the different mechanisms at work in the 

process. We concluded by distinguishing between two types of recursion: one 

arising from temporally ordered sequences, typical of language and music, where 

the temporal dimension is primary, and another from spatially arranged stimuli, 

relevant to image processing, where the spatial dimension dominates. Therefore, a 

key focus of this thesis is to investigate how recursive hierarchical structures 

develop from temporally ordered sequences of stimuli.  

In the second part of the chapter, we introduced the Artificial Grammar 

Learning (AGL) paradigm, a valuable tool for investigating implicit statistical 

learning. We found this tool particularly useful for exploring the research topics of 

this thesis and have thus employed it in our investigation, as detailed in Chapter 5. 
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Firstly, we explored various types of grammar within the Chomsky Hierarchy, 

which are commonly used in Artificial Grammar Learning (AGL) studies. We then 

reviewed studies on the ability to form recursive hierarchical abstract 

representations and identified a significant issue in the literature. In addition to 

considerable confusion about the concept of recursion—characterized by a lack of 

a clear, unified definition—we noted frequent misuse of artificial languages for 

studying recursive hierarchical structures. A notable example is the frequent use of 

the AnBn artificial language in recursion studies. However, as discussed, many of 

these studies only demonstrated supra-regular computational abilities without 

conclusively proving recursive capability. As a result, despite numerous attempts 

to test recursive abilities in AGL, there is a shortage of clear, irrefutable empirical 

evidence demonstrating this ability. We highlighted several crucial considerations 

to take into account for designing studies aimed at examining recursion. First, it is 

not enough for the tested language to be generated through a recursive process; 

participants may use non-recursive methods to process and learn the language. We 

emphasized the need to distinguish between algorithmic properties and the 

representational aspects of recursion, including what Martins (2012) refers to as 

distinctive signatures of recursion—such as depicting previously undefined 

dependency relationships or representing information within new hierarchical 

levels. Furthermore, we stressed the need for appropriate tools to study recursion in 

non-linguistic domains, acknowledging the challenge of the current shortage of 

suitable tools. We concluded the chapter by highlighting the potential of exploring 

recursion using grammars beyond the Chomsky Hierarchy. This introduction set 

the stage for our experimental study (Chapter 5), where we employed a grammar 

from the Lindenmayer Systems: the Fibonacci grammar. 

In Chapter 3, we examined the relationship between the cognitive ability to 

form recursive hierarchical abstract representations and perception. Indeed, one of 

the key aims of this thesis is to determine whether the ability to generate recursive 

hierarchical abstract representations from sequential stimuli is domain-general or 

modality-dependent. Is the ability to form recursive hierarchical abstract 

representations from sequential stimuli a stimulus-dependent or a modality-based 

skill? Does it involve a single mechanism shared across domains, or are there 
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modality-constrained mechanisms? Given that recursive hierarchical abstract 

representations might be formed from sequential stimuli of different sensory 

modalities—such as visual, auditory, or tactile—we aimed to investigate whether 

there are differences in the process across these three sensory domains. Could 

hearing excel over touch and vision in forming recursive hierarchical abstract 

representations arising from sequentially ordered stimuli, considering its crucial 

role in language and music processing, which are primarily conveyed through the 

auditory channel? Are we more proficient at learning and processing these 

structures in the auditory domain? Conversely, vision might demonstrate inferior 

abilities in handling these structures, having on the opposite greater proficiency 

forming recursive hierarchical abstract representation arising from static, spatially 

arranged stimuli, compared to sequential ones, since static hierarchical structures 

are primarily formed in the visual domain, as in the case of image processing. 

Indeed, when viewing an image, our visual system organizes static information 

hierarchically, allowing us to perceive the entire image composed of numerous 

hierarchically organized pixels, contributing to our comprehensive perception of 

the visual scene. And what about touch? Touch may excel in processing sequential 

rather than static hierarchical information. Indeed, detecting the shape of an object 

solely through simultaneous pressure on the skin is challenging, yet when the object 

is touched with a moving point or explored through tactile scanning, its shape 

becomes distinguishable (Lashley, 1951). As we explained, our phenomenological 

observations would lead us to hypothesize that the ability to form recursive 

hierarchical abstract representations from sequential (i.e., temporally ordered) 

stimuli might be more robust in the auditory or tactile domains, while the formation 

of recursive hierarchical abstract representations from static (i.e., spatially 

arranged) stimuli could be more robust in the visual domain. Alternatively, this 

ability might be stimulus-independent, allowing us to process these structures 

equally across visual, auditory, and tactile domains. However, in formulating our 

hypotheses, we did not solely rely on phenomenological discussions and 

speculations. We delved into the literature to explore whether previously conducted 

studies could provide further insights into the ability to form recursive hierarchical 

abstract representations in these three different sensory domains. This was our aim 
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in Chapter 3. However, we found that no study has comprehensively explored this 

topic so far. Therefore, we dissected the phenomenon by conducting a review of 

studies that have investigated domain-specific spatiotemporal structure effects in 

implicit statistical learning of low-level transitional regularities in different sensory 

domains. Indeed, we believe that the ability to acquire low-level transitional 

regularities is a fundamental step in processing sequential stimuli, essential for 

subsequently creating recursive hierarchical abstract representations. Importantly, 

we did not find any studies that have investigated the presence of spatiotemporally 

domain-specific constraints in the tactile domain, while we found studies that have 

explored this question in the visual and auditory domains. This allowed us to verify 

whether previous studies had found evidence regarding the possible superiority of 

the visual domain over the auditory domain in the implicit statistical processing of 

spatially arranged stimuli and/or the superiority of the auditory domain over the 

visual domain for temporally, sequentially arranged stimuli. While no studies have 

examined the presence of spatiotemporal constraints in the tactile domain, we came 

across several recent and intriguing studies that delved into tactile sequential 

implicit statistical learning. These studies compared this ability with implicit 

statistical learning in the visual and/or auditory domains. Finally, we also examined 

studies exploring the ability to form recursive hierarchical abstract representations 

across different sensory domains. Crucially, we did not find any study investigating 

recursion in the tactile sensory domain. Conversely, we did find intriguing studies 

exploring this ability in the visual and auditory domains. Regarding low-level 

implicit statistical learning, research findings have indicated the presence of 

spatiotemporal domain-specific constraints: the auditory modality has been found 

to be superior to the visual modality in processing statistical information when 

stimuli were sequentially arranged (i.e., in the temporal dimension). Conversely, 

the visual modality demonstrated greater proficiency in learning when information 

was presented spatially rather than sequentially (Conway, Christiansen, 2005; 2009; 

Saffran, 2002). Hence, overall, results indicated that, concerning the processing of 

sequential statistical information, the auditory domain outperforms the visual 

domain.  These results, as we have seen, contributed to the formulation of the 

Auditory Scaffolding Hypothesis (Conway et al., 2009). According to the theory, 
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sound acts as a cognitive support or "scaffolding," aiding the development of 

general capacities for recalling, producing, and learning sequential information. 

Hence, Conway and colleagues’ theory emphasizes the significant role of sound 

exposure in shaping cognitive abilities related to temporal and sequential patterns. 

The authors provided two sets of evidence supporting the theory: (i) congenitally 

deaf individuals show non-auditory sequencing abilities, and (ii) hearing 

populations exhibit modality-specific constraints, with better performance in 

sequencing tasks when the sense of hearing is involved rather than sight. However, 

recent studies, as discussed in Chapter 3, contradicted the first point, showing that 

deaf populations can successfully learn domain-general sequential information 

(Giustolisi et al., 2022; Giustolisi & Emmorey, 2018; Hall et al., 2018; von Koss 

Torkildsen et al., 2018 and Terhune-Cotter et al., 2021). Regarding the second 

point, we have pointed out that, while it has been demonstrated that hearing has an 

advantage in acquiring statistical sequential regularities compared to vision 

(Conway, Christiansen, 2005; 2009, Saffran, 2002), introducing a third variable 

changes the perspective on this advantage. Indeed, we have seen that contrasting 

results have emerged when comparing the auditory and tactile domains in 

processing sequential statistical information: Some studies suggested auditory 

superiority (Conway, Christiansen, 2005), while others suggested tactile superiority 

(Pavlidou, Bogaerts, 2019). Regarding the ability to form recursive hierarchical 

abstract representations, we found consistent evidence confirming this capacity in 

both the visual (Martins et al., 2014; 2015) and auditory domains (Martins et al., 

2017). Overall, these findings suggest that recursion is a domain-general cognitive 

skill. However, upon examining these studies, we highlighted two critical 

considerations. Firstly, there is a distinction in the paradigms used to study 

recursion in the visual and auditory domains. Visual studies focused on static 

recursive structures presented spatially in fractal figures, while auditory studies 

centered on dynamic, sequential recursive structures heard over time. Despite 

evidence linking these abilities (Martins et al., 2017), it is crucial to acknowledge 

that they may involve different cognitive skills to some extent. Secondly, we 

underscored the significant gap in research on recursion in the tactile domain. This 

gap hampered our understanding of how recursion functions across various sensory 
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modalities. In conclusion, we noted a shortage of studies that have developed 

methods to directly assess and compare the capacity to form recursive hierarchical 

abstract representations arising from sequentially presented input in the auditory, 

visual, and tactile sensory realms.  

In Chapter 4, therefore, we introduced a grammar that is well-suited for 

developing a framework capable of directly comparing the three sensory domains 

in this ability: the Fibonacci grammar (Fib). Fib is a simple recursive rewrite system 

which is composed of only two symbols (0 and 1) and two rewriting rules (0→ 1; 

1→01, i.e. 0 rewrites as 1; 1 rewrites as 01). By repeatedly applying these rewriting 

rules, we generate strings of 0s and 1s, potentially of infinite length. Fib binary 

sequences can be encoded onto different types of perceptual stimuli, allowing for 

the creation of directly comparable paradigms across different sensory modalities. 

Moreover, as we explained, the peculiar features of the Fibonacci sequence, such 

as self-similarity and aperiodicity, make it an optimal tool for studying how we 

form recursive hierarchical abstract representation arising from sequential stimuli, 

illuminating the entire process from sequence to hierarchy. To make the best use of 

these properties of Fib and accurately investigate recursion, we explained that it is 

crucial to choose an appropriate experimental paradigm and design. In our case, as 

we discussed, this is possible by adopting the Serial Reaction Time (SRT) task, 

which we introduced in Section 2.3.2. Crucially, in SRT task where a sequence 

corresponding to a full generation of Fib is sequentially presented, we explained 

that participants can disambiguate (i.e., predict) specific points in the sequence by 

tracking low-level transitional regularities. However, for the reasons we have 

explained, there are points that we believe are implausible for the human parser to 

predict using a flat statistical strategy. Instead, these points require the creation of 

abstract hierarchical representations to be accurately predicted. In this context, we 

proposed a cognitive parsing algorithm specifically designed to process Fibonacci 

strings in an SRT task. This algorithm suggests how the human parser can learn 

points of varying cognitive complexity, starting from those hypothesized as 

simpler, which involve acquiring two low-level (first- and second-order) 

transitional regularities, to more complex ones, which involve forming increasingly 

larger embedded chunks and tracking conditional statistical information between 
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these chunks. Importantly, we clarified how this could occur, namely through a 

recursive cognitive strategy, where the two low-level transitional regularities are 

applied across different hierarchical levels to incrementally form larger chunks and 

tracking transitional regularities between them. We also discussed why we think 

this algorithm may be the most compatible with human cognitive abilities when it 

comes to predicting points of increased complexity within Fibonacci sequences in 

a SRT task, discounting other potential mechanisms. In conclusion, we summarized 

the key findings from existing AGL studies with the Fibonacci grammar. 

In Chapter 5 we presented the experimental design and results of our AGL 

study. Our study is the first to provide evidence and directly compare the ability to 

form recursive hierarchical abstract representations arising from sequentially 

presented input across the visual, tactile, and auditory sensory domains. 

Specifically, our dual objective was to (i) ascertain whether this ability is domain-

general and shed light on any potential modality-specific learning differences; (ii) 

elucidate the computational mechanisms underlying the acquisition and processing 

of these structures, with particular attention to the relationship between sequential 

statistical learning and the formation of recursive hierarchical abstract 

representations. Three groups of adults participated in the study, each engaging in 

either a visual, auditory, or tactile experiment. In all three experiments, participants 

were exposed to the same sequence of stimuli, determined by the rules of the 

Fibonacci grammar. The grammar's symbols (0 and 1) were transmitted through 

different types of stimuli. In the auditory experiment, participants listened to two 

pure tones of equal amplitude but different frequencies via Bluetooth bone 

conduction headphones. In the tactile experiment, participants felt two gentle vibro-

tactile impulses transmitted to their thumbs through the same headphones. In the 

visual experiment, participants observed sequential presentation of two colorful 

squares (blue or red) on a computer screen, appearing either to the right (for red 

squares) or left (for blue squares) of the screen. Participants underwent individual 

testing sessions. They were briefed that they would encounter a binary sequence of 

stimuli and were directed to respond to these stimuli by pressing designated keys 

on a computer keyboard swiftly and accurately. Not until the conclusion of the 

experiments were participants apprised that the stimulus sequence followed a non-
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random pattern. They were then queried about whether they had discerned any 

patterns during the task. In all three tasks, we measured participants' reaction times 

(RTs) and accuracy rates of responses on every point along the sequence. This 

included points we predicted could be anticipated through the proposed cognitive 

parsing algorithm, as well as those that could not be predicted, at each level of 

increasing hierarchical complexity as hypothesized by us. We then compared these 

data between predictable (referred to as disambiguated, D Points) and unpredictable 

(referred to as non-disambiguated, ND Points) points within each level. Our aim 

was to observe if there was an improvement in performance –specifically, a 

decrease in RTs, possibly accompanied by an increase in accuracy rates - by 

participants on predictable points throughout the task, or if they exhibited better 

performance compared to unpredictable points. This improvement would suggest 

learning of the predictable points. 

Overall, our findings indicated that: 

(i) The ability to form recursive hierarchical abstract representations 

arising from sequential stimuli is closely associated with the ability to 

grasp low-level transitional regularities. 

(ii) Additionally, we showed that the cognitive capacity to form recursive 

hierarchical abstract representations from temporally ordered (i.e., 

sequential) stimuli is a domain-general ability. However, we also 

discovered domain-specific differences. While we found evidence of 

this ability across all three sensory domains, we observed a distinct 

advantage in the auditory and tactile domains compared to the visual 

domain.  

In the next sections, we will thoroughly examine these two primary findings, 

striving to contextualize them within a broader perspective and discuss the 

theoretical implications of our results. 

 



 345 

Processing and forming recursive hierarchical abstract representations from 

sequential fading stimuli. From linear order to hierarchical dimension: 

Statistical learning bootstraps hierarchical structure 

The aim of our study was to uncover the cognitive foundations underlying human 

language faculty. Specifically, we sought to elucidate the mechanisms that enable 

the formation of recursive hierarchical abstract representations from sequentially 

arranged stimuli. The formation of such structures is believed to underpin complex 

cognitive phenomena in domains such as language (e.g., recursive syntactic 

phenomena) and music (e.g., key change modulation) (see Sections 2.1.2.; 2.2.; 

3.2.). Thus, we aimed to shed light on the cognitive mechanism behind this ability, 

observed across various cognitive domains. What are the foundations of the ability 

to build recursive hierarchy from sequential stimuli? Can we illuminate the 

mechanisms underlying the transition from the linear to the hierarchical dimension? 

Is this ability strictly linguistic or domain-general? By developing an AGL study 

with the Fibonacci grammar, we had the opportunity to investigate this ability in 

the absence of other characteristic features of language. Our paradigm excluded 

prosody, morphology, and semantics, allowing us to explore the deeper, possibly 

domain-general mechanisms of this cognitive ability. In our study, we demonstrated 

that humans possess the cognitive ability to create recursive hierarchical abstract 

representations from sequences of fading symbols, even in a non-linguistic context. 

Importantly, since this context was devoid of meaning, the ability to form recursive 

hierarchical abstract representations from sequential stimuli was shown to be 

independent of semantics and instead emerged purely from statistical learning 

phenomena and categorization. The fact that we achieved this result using the 

simplest type of temporal sequences, namely binary sequences, aligns with the 

findings of Planton et al. (2021) and supports Fitch's "dendrophilia hypothesis." 

This hypothesis posits that humans possess a multi-domain capacity and a natural 

inclination to infer tree structures from strings, even in the most straightforward 

scenarios (Fitch, 2014). 

In our study, we have elucidated how sequential implicit statistical learning, 

and the formation of recursive hierarchical abstract representations arising from 
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sequentially arranged stimuli are integral components of a unified cognitive 

process, representing a continuum from sequential to more abstract hierarchical 

processing, transitioning from the linear to the hierarchical dimension. Within our 

cognitive parsing algorithm (cf. Section 4.2.), we posited that the cognitive 

mechanisms outlined in Dehaene et al.'s taxonomy (2015) are interlinked abilities 

in the formation of recursive hierarchical structures. Specifically, we proposed that 

sequential statistical learning, chunk formation, categorization, and the formation 

of abstract (recursive) hierarchical representation are computationally intertwined 

procedures, with each outcome serving as input for the next, progressing from 

simpler sequential mechanisms to more complex abstract hierarchical ones. Our 

experimental findings substantiated this (cf. Section 5.4.), being in line with what 

has been found by Planton et al. (2021) and Radulescu et al. (2019). Indeed, we 

found evidence that the human parser processed the Fib sequence in this manner, 

predicting points of increasing complexity incrementally using our proposed 

cognitive parsing algorithm. Thus, in our study, we found that sequential statistical 

learning and the formation of recursive hierarchical representations can coexist; one 

does not preclude the other. On the contrary, our study sheds light on how sequential 

statistical learning (i.e., the acquisition of low-level transitional regularities) 

underpins the formation of recursive hierarchical abstract representations. In other 

words, sequential statistical learning serves as the foundation for the formation of 

recursive hierarchical abstract representations. Summing up, our experimental 

study revealed that statistical learning is essential for forming nested recursive 

structures. It is crucial for segmenting, chunking, and categorizing sequences, 

which then allows for the formation of recursive hierarchical structures of chunks. 

This leads us to suggest that these processes occur in language as well. We think 

that the human cognitive bias towards hierarchy and categorization observed in our 

study reflects a fundamental aspect of language. Our results illuminate the cognitive 

mechanisms underlying the domain-general, not exclusive to language ability to 

create recursive hierarchical abstract representations from sequentially arranged 

stimuli. Crucially, we posit this ability to be at work across various cognitive 

domains, including language and music.  
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However, it is important to highlight that language is inherently more complex than 

the sequences we used in our AGL study. In language, the formation of recursive 

hierarchical abstract representations is influenced by other language-specific 

factors such as semantics and prosody, which play major roles in the cognitive 

mechanism that transitions from sequence to hierarchy, such as chunking, 

categorization, and forming nested structures. Despite this, a fundamental aspect 

we believe to be language-independent, and shared between language and music, is 

the various mechanisms we demonstrated to be active in the transition from 

linearity to the formation of recursive hierarchical structures. We assert that, 

regardless of the cognitive domain (e.g., music or language), low-level statistical 

learning, as well as the formation of chunks and their categorization are closely 

linked and necessary steps for the formation of recursive hierarchical structures. 

Importantly, as we explained in Section 4.2., this process could not occur without 

categorization. Indeed, we believe categorization is an essential step for creating 

(recursive) hierarchical structures. In our experiment, categorization was based on 

perceptual attributes such as repetition, alternation, and distributive phenomena. 

Similarly, we think that in language, statistical distributive phenomena play a major 

role in chunking and categorizing, but these mechanisms rely on the presence of 

other factors, such as semantics, prosody, and morphology. Specifically, we think 

that categorization in language is inherently more complex due to its heavy reliance 

on semantics. Therefore, semantics plays a fundamental role in the formation of 

nested recursive structures in language. Semantics in language is undoubtedly a 

foundational element of recursive hierarchical structures. Crucially, we assert that 

without semantics, recursion in language might neither be necessary nor possible. 

The fundamental role played by semantics in the existence of recursive hierarchical 

structures in language has also been emphasized by Parker (2006). In this vein, 

Parker (2006) highlighted that while computer science acknowledges the iterative 

implementation of recursive algorithms, natural language processing does not 

function similarly. In natural language, semantics differentiates tail recursion from 

iteration, indicating a structural complexity not visible from the string alone. Tail 

recursion’s strict ordering requirement, absent in iteration, underscores the 

importance of semantics in identifying the correct structure. An iterative description 
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of sentence structure fails to capture the complex meanings they convey, 

demonstrating that semantics provides the necessary information to distinguish 

between iteration and recursion (cf. Section 2.1.1.). However, differently from 

Parker (2006), which suggested that recursion in natural language might stem from 

the need to communicate recursive thought, we propose that the underlying cause 

is more aligned with efficiency and simplicity mechanism, driven by 

communicative needs, as we will discuss in more detail in the next section. Thus, 

in our hypothesis, recursion in language arises from a force driven by 

communicative needs, where a complex conceptual system must be channeled into 

the sequential and temporal nature of communication through the powerful yet 

finite cognitive capacities we possess as humans. Exploiting a recursive hierarchical 

mechanism, though seemingly complex, would be more efficient than using a flat, 

iterative algorithm, given the possibilities and limitations of human cognition. 

Regarding the question posed by Dehaene and colleagues (2015) concerning how 

the brain determines the optimal processing mechanism for a sequence, we believe 

that the parser employs increasingly complex and abstract mechanisms until it 

reaches the point where it finds the mechanism that allows for the elimination - or 

at least minimization- of prediction errors. In our case, the parser continued until it 

reached the final mechanism proposed by the taxonomy, namely the formation of 

recursive hierarchical representations, as this mechanism, given the properties of 

the Fib sequence, is the one that allows for the prediction of the greatest number of 

points and minimizes prediction errors. Overall, our hypotheses are fully aligned 

with the findings of Planton et al. (2021), who concluded that chunking and creating 

recursively embedded representations are essential for explaining human behavior 

when working memory capacity is exceeded and compression is most beneficial. 

They also align with Radulescu et al.’s hypothesis (2019), according to which the 

shift from low-level item-bound computations to rule induction and the formation 

of abstract categorization is an encoding mechanism gradually driven as an 

automatic response by the brain's sensitivity to input complexity (entropy) 

interacting with the limited encoding capacity of the human brain (channel 

capacity) (cf. Section 2.2.1.). 
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The point raised by Radulescu and colleagues concerning the role of cognitive 

limitations (i.e. channel capacity) is particularly intriguing. We believe it would be 

both valuable and crucial for future research to focus on these aspects to gain further 

insights. Specifically, we think that exploring cognitive limitations and their 

relationship with the creation of recursive hierarchies in language is of significant 

interest. This exploration could also illuminate potential differences between the 

functioning of human language and the operations of modern large language 

models, as discussed in Section 1.2.3. In light of Piantadosi's viewpoint, a key 

challenge for future research is to enhance models by incorporating architectural 

biases and principles that align more closely with human cognitive constraints. 

According to Piantadosi (2023) this might involve developing learning models that 

mimic the cognitive limitations observed in human learners. This approach is 

reflected in initiatives such as “The BabyLM Challenge” (Warstadt et al., 2023), 

which seeks to create models that can learn effectively from a developmentally 

realistic amount of data. As suggested by Piantadosi (2023), investigating the 

feasibility of efficient learning with limited resources and data, potentially through 

minor architectural adjustments, remains a compelling scientific question. 

Another intriguing avenue for future research could be conducting 

experiments with Fibonacci sequences using modern large language models (cf. 

Section 1.2.3.). Exposing modern large language models to Fibonacci grammar 

sequences could provide insights into the fundamental mechanisms behind these 

models. Specifically, if these models are designed to mimic human learning 

processes, their ability to learn from Fibonacci sequences should be comparable to 

human performance. This means that, while they might initially require exposure 

to longer sequences or more extensive training, they should ultimately achieve 

similar learning outcomes as humans. If the models do not perform comparably, it 

would suggest that their learning mechanisms differ from human cognition. Given 

the parallels between processing Fibonacci sequences and human syntax, such 

experiments could reveal whether large language models generate language through 

mechanisms distinct from those of human cognition. This could help us understand 

if these models truly replicate human-like learning or operate using different 

strategies. 
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To conclude, we think our findings can offer intriguing insights relevant to 

linguistic theories. Firstly, our results align with what we discussed in Sections 

1.2.1.; 1.2.2., namely that recent psycholinguistic experiments demonstrate both 

statistical learning and the formation of abstract hierarchical representations to be 

crucial in the acquisition of syntactic linguistic phenomena. Furthermore, our 

findings are consistent with Kayne's (1994) assertion that linear order and 

hierarchical dimension are closely intertwined. Therefore, our study aligns with and 

contributes to these perspectives by not only confirming the presence of these two 

abilities but also demonstrating their close connection and shedding light on the 

cognitive mechanisms involved in the transition and projection from linear to 

hierarchical dimensions. In essence, we believe our study provides interesting 

insights on the cognitive foundations of language. Regarding the AGL studies 

previously conducted with the Fibonacci grammar, our results are consistent with 

observations made by Schmid et al. (2023) and Vender et al. (2023). Specifically, 

our finding that statistical learning bootstraps the formation of hierarchical 

representations aligns with the proposals put forth by both studies, albeit these two 

studies proposed different underlying mechanisms for the projection from linear to 

hierarchical dimension (i.e., Bootstrapping Principle in Vender et al. 2023; merge 

of recursively deterministic transitions in Schmid et al. 2023; cf. Section 4.4.). 

Moreover, our study serves as an intriguing follow-up to these previous studies. 

Indeed, we investigated how Fib sequences are processed in sensory domains 

beyond the visual domain (which was the sole domain investigated by Schmid et 

al., 2023, and Vender et al., 2023; cf. Section 4.4.). Our investigation comprised the 

auditory and tactile modalities as well, where we observed learning at higher 

hierarchical levels than those found in Schmid et al. (2023) and Vender et al. (2023). 

By doing so, we shed light on domain-specific and domain-general aspects of 

learning, as discussed in further detail in the following section.  
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Processing and forming recursive hierarchical abstract representations from 

sequential fading stimuli: Domain-general ability with domain-specific 

learning differences 

“On theoretical grounds we could expect complex systems to be hierarchies in a 

world in which complexity had to evolve from simplicity.”  

Simon Herbert – The Architecture of Complexity 

 

Going into more detail, regarding (ii) (p.344), in our study, we found that 

the auditory domain displayed an advantage over both the visual and tactile 

domains concerning the acquisition of low-level sequential regularities. In turn, the 

tactile domain demonstrated superiority over the visual domain. However, when we 

moved to more complex and abstract levels of sequential processing requiring the 

formation of recursive hierarchical abstract representations, we found interesting 

results: the auditory sphere maintained a learning advantage over the visual sphere. 

Crucially, however, the tactile sphere turned out to be as efficient as the auditory 

sphere, showing similar learning trends across reaction times (RTs) data. As for the 

tactile sphere, we observe that it displayed a clear learning advantage over the visual 

sphere, both regarding the acquisition of low-level statistical regularities and the 

acquisition of more complex sequential regularities that require the formation of 

recursive hierarchical abstract representations. However, while the auditory and 

tactile domains demonstrated a clear learning advantage over the visual domain, we 

noted that the visual domain exhibited lower reaction times and higher accuracy 

rates overall. We ascribed this outcome to two possibilities. The first is a general 

processing advantage for the visual modality, independent of learning, over the 

auditory and tactile modalities. This advantage may stem from internal factors 

within the domain, such as more efficient communication pathways linking visual 

input processing and motor output, leading to superior speed and accuracy. The 

second possible cause of this effect could be related to our experimental design. 

Indeed, to discriminate between the two visual stimuli, two perceptual cues 

(different color and different location on the screen) were available. In contrast, for 
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the auditory and tactile modalities, only one perceptual feature was available to 

distinguish between the stimuli (different frequency for the auditory domain and 

different spatial locations for the tactile domain). This might have made the visual 

stimuli more salient compared to the auditory or tactile stimuli, resulting in faster 

reaction times and higher accuracy rates in the visual task. For a detailed discussion, 

see Section 5.4. Future studies are necessary to shed more light on this result. 

Overall, we believe that our results do not entirely align with the assertions 

made by Conway et al. (2009). Indeed, we have observed that the tactile sphere has 

also proven to be particularly adept at processing sequential statistical information, 

showing a clear advantage over the visual sphere and furthermore demonstrating 

abilities comparable to those of hearing in acquiring sequential statistical 

information that necessitate the formation of recursive hierarchical abstract 

structural representations. In general, these findings do not entirely align with 

Conway's and colleagues' Auditory Scaffolding Hypothesis. The reason why touch, 

along with hearing, demonstrates such proficiency in this cognitive ability, and why 

they collectively outperform the visual sphere, remains unexplained. One possible 

explanation could be derived from evolutionary considerations. Touch may have 

developed a greater sensitivity to sequential information due to the evolutionary 

need to perceive the world in low-light conditions or absence of light. Sequential 

and temporal perception of an object's features through touch allows us to gather 

information about its three-dimensional shape. By exploring the surface of an 

object, for example, we can identify facets, detect subtle details, and form an 

abstract representation of its overall spatial structure. Sequential processing in the 

tactile domain might thus contribute to the construction of richer and more detailed 

mental representations of touched objects, with significant implications in object 

manipulation, navigation, and interaction with the surrounding environment. 

Similarly, the specialization of hearing in processing complex sequentially 

distributed information over time is evident. Hearing plays a fundamental role in 

processing complex sequential systems, such as language and music, contributing 

significantly to our ability to communicate, socialize, and interpret the surrounding 

world. In contrast, vision may have developed a stronger ability in processing 

spatially arranged stimuli during visual processing, at the expense of the ability to 
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process sequentially presented stimuli. This is primarily what occurs during visual 

processing, where details, colors, and shapes are captured simultaneously, offering 

an immediate and comprehensive view of a scene. This ability is crucial for 

engaging with spatially distributed information, enabling a rapid and global visual 

exploration of the surrounding environment. Overall, our hypotheses are consistent 

with those formulated by Lashley (1951).  

But now the question arises spontaneously: If our hypotheses were to be 

correct, is the human predisposition to process sensory information in specific ways 

the result of evolutionary adaptation or rather the acquisition of skills over the 

course of life? What can we expect in terms of the acquisition of tactile and visual 

sequential statistical information (at different levels of complexity and abstraction) 

in deaf individuals? From an evolutionary standpoint, we could consider that the 

advantage in sequential statistical processing observed in hearing and touch has 

been shaped over millennia to adapt to environmental and survival needs. On the 

other hand, it is possible that part of this predisposition is linked to individual 

development. Life experience and training could influence this ability in various 

ways across sensory domains, with individuals refining their skills based on the 

specific demands of the surrounding environment. If this were the case, deaf 

individuals might experience a heightened development of this ability in other 

sensory modalities, such as vision and touch, due to the absence of auditory stimuli. 

Brain plasticity could play a crucial role in adapting the available sensory 

modalities, allowing for greater specialization in response to individual and 

environmental needs. We believe that a future research direction to address this 

question could involve testing deaf people using our paradigm, comparing two 

groups of deaf individuals in our tactile and visual tasks, and then comparing the 

results with those obtained in our study with the typical population. This exploration 

could provide valuable insights into how sequential statistical learning – at different 

levels of abstraction and complexity, from low-level transitional regularities to 

recursive hierarchical abstract representations - operates in atypical populations. 

Deaf individuals, having deprived themselves of one of the primary senses, namely 

hearing, could serve as a particularly intriguing population to understand whether 

and how brain plasticity adapts to such conditions. Their capacity to form recursive 
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hierarchical abstract representations could be analyzed and compared with that of 

the typical population to ascertain whether this ability is primarily innate, 

evolutionary, or influenced by individual experience. Delving into these dynamics 

could lead to new discoveries about the relationship between brain plasticity and 

implicit statistical learning. Furthermore, exploring how deaf individuals develop 

specific skills in sequential statistical processing could have important implications 

for education and rehabilitation. It might be possible to design targeted 

interventions to further enhance these skills adaptively, considering brain plasticity 

as a modifiable resource throughout life. Ultimately, exploring whether this 

predisposition is innate and evolutionary or influenced by experience offers 

interesting insights both to understand the complexity of the ability to form 

recursive hierarchical abstract representations across different sensory domains and 

to better comprehend the underlying mechanisms of statistical learning and brain 

plasticity. Furthermore, this could serve as a test for the Auditory Scaffolding 

Hypothesis. If Conway and colleagues' hypothesis holds true, we would expect to 

find limited evidence of learning among deaf individuals in our tactile and visual 

paradigms, or at least significantly lower learning effects compared to those 

observed in our study with the typical population. 

The domain-specific differences we observed in our experimental study also 

tell us something interesting about the nature of implicit learning that took place. In 

the field of implicit statistical learning, two distinct perspectives exist regarding the 

nature of learning. The perceptual learning viewpoint suggests that individuals 

primarily gain knowledge of the stimulus sequence through forming associations 

between consecutive stimuli (known as stimulus-to-stimulus learning; see 

Remillard, 2003). Conversely, the motor learning perspective argues that learning 

predominantly occurs through associations between successive responses (referred 

to as response-to-response learning; see Nattkemper & Prinz, 1997). The results 

obtained in our study lead us to support the idea that the learning that took place 

was perceptual in nature, pertaining to specific stimuli rather than being entirely 

motor-based (see Abrahamse et al., 2008). In fact, if the learning were purely motor-

based, we would not expect to find differences in learning across the three tasks 

(i.e. visual, tactile, and auditory) in our experimental study. This is because in all 
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three tasks, participants were required to press the same keys - the z and m keys on 

the keyboard - in response to the perceived stimuli. 

However, it is important to note that despite the domain-specific differences 

we found, all three sensory domains demonstrated the ability to represent sequential 

recursive nested structures, albeit with noticeable differences. In this thesis, we 

argued that the ability to form recursive hierarchical abstract representations from 

sequentially arranged stimuli is a key cognitive ability at work in human language, 

generating one of the various possible forms of hierarchical structures in language: 

syntactic recursive phenomena (cf. Sections 2.1; 2.1.1.). The discovery of the ability 

to process these structures across various sensory domains leads us to reject the 

hypothesis that the cognitive ability to process these structures are domain-specific 

to language (cf. Sections 1.1.1.; 2.1.2.), suggesting instead that they are domain-

general in nature.  

Taken together, our experimental findings suggest that the ability to form 

recursive hierarchical abstract representations from sequentially arranged stimuli is 

a domain-general phenomenon, in the sense that it is not a language-specific ability, 

but it can occur across different sensory domains. However, we did observe 

domain-specific differences. Indeed, different sensory domains exhibited varying 

levels of proficiency in dealing with the formation of these abstract structures. 

Consequently, there could be two plausible hypotheses regarding how this domain-

general ability, which displays domain-specific differences, operates: either there 

are separate neural networks located in distinct cortical areas such as the visual, 

auditory, and somatosensory cortex that implement similar computational 

principles, or there exists a multi-modal region or partially-shared neural networks 

accessed by representations of stimulus inputs from specific modalities for further 

computation. These two hypotheses have been proposed by both Martins et al. 

(2017), regarding the ability to represent recursion, and Frost et al. (2015), 

concerning the ability of implicit statistical learning (cf. Sections 3.1.1.; 3.1.6.). In 

this vein, we think that another promising avenue for future research would be to 

shed light on the neural correlates of the ability to form recursive hierarchical 

abstract representations from sequential stimuli.  Comparing the neural correlates 
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activated in our paradigm across the three sensory domains could be particularly 

intriguing. This approach could reveal which common areas are involved in 

processing these structures across the three domains, while also identifying areas 

that are uniquely activated in specific sensory tasks. Crucially, it is important to 

consider, as we mentioned in Section 5.4., that differences in accuracy and learning 

rates across modalities do not necessarily imply distinct mechanisms. To delve 

deeper into this, future studies could explore several additional factors and 

methodologies. One such factor could be investigating transfer effects. For instance, 

creating a modified version of our serial reaction time task with Fib, where 

participants are exposed to visual stimuli in the first part and then switch to auditory 

or tactile stimuli in the second part, might reveal whether skills in recursive 

hierarchical representation transfer across domains. Another aspect worth 

examining is how the mode and speed of stimulus presentation impact each 

modality. By varying the speed and mode of presentation in the different modalities, 

we could determine if there are optimal conditions for each sensory domain, thereby 

refining our understanding of domain-specific processing capabilities (cf. 

Emberson et al., 2011). By pursuing these research directions, we could further 

unravel the complexities of how recursive hierarchical abstract representations are 

formed and processed across various sensory modalities, providing deeper insights 

into the underlying neural and cognitive mechanisms. 

In any case, setting aside the open questions about the nature of the domain-

specific differences observed, it is extremely interesting to note, for the research 

objectives and questions that motivated this thesis, that the ability to form recursive 

hierarchical abstract representations from sequential stimuli has been observed 

beyond language, across various sensory domains. This finding leads us to exclude 

it as a strongly domain-specific ability solely dedicated to language. In other words, 

it suggests that this characteristic did not emerge through the process of natural 

selection, driven by the demands of its linguistic purpose (Culbertson and Kirby, 

2016). This hypothesis aligns with findings from computational modeling, which 

suggest that it is improbable for language learning to develop domain-specific hard 

constraints. This is mainly due to the fact that cultural evolution tends to magnify 

the influence of weak biases, as demonstrated by Kirby et al. (2007). Additionally, 
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the rapid pace of language change, as noted by Chater et al. (2009), further 

undermines the likelihood of such constraints evolving (cf. Culbertson, Kirby, 

2016). Instead, it seems more plausible that the capacity to form recursive 

hierarchical abstract representations evolved for purposes other than language. In 

this case, it would fall under what are termed strong-domain general biases 

(Culbertson and Kirby, 2016). Alternatively, this ability could be an outcome of 

broad architectural or computational principles governing how cognition operates, 

aligning with what Chomsky termed the third factor of language design (Chomsky, 

2005). Crucially, however, these biases might still engage with language and its 

representations in domain-specific ways (Culbertson and Kirby, 2016). Indeed, 

according to Culbertson and Kirby (2016), domain-specificity in language can 

occur when domain-general biases interact with language in specific ways. 

Regarding why we possess this domain-general tendency or cognitive 

ability to form recursive hierarchical abstract representations from sequential input, 

which is particularly prominent in language, one could speculate. In his work from 

1962, Herbert sought to identify common properties among various types of 

complex systems. He noted that complexity often adopts the form of hierarchy. 

"[…] complexity frequently takes the form of hierarchy, and […] hierarchic 

systems have some common properties that are independent of their specific 

content. Hierarchy, I shall argue, is one of the central structural schemes that the 

architect of complexity uses." (Herbert, 1962, p.468). Herbert further explains that, 

on theoretical grounds, we could anticipate complex systems to exhibit hierarchical 

structures in a world where complexity evolves from simplicity. He argues that 

systems structured hierarchically possess evolutionary advantages. The time 

required for the evolution of a complex form, he contends, critically depends on the 

number and distribution of potential intermediate stable forms. Moreover, Herbert 

suggests that, at a cognitive level, hierarchical organization of information offers 

benefits. It facilitates efficient representation in memory and enhances information 

transmission by reducing the amount of information that, on the contrary, would be 

lost in the absence of hierarchical organization (Herbert, 1962). Similarly, we could 

argue that recursive hierarchical structures are present in various natural 

phenomena, both in organic forms in nature and in various cognitive phenomena. 



 358 

For instance, consider the intricate patterns found in broccoli or the spiral 

arrangement of a sunflower, reflecting recursive organization at the biological level. 

In the realm of cognition, examples abound in music and in language, among the 

others (cf. Sections 2.1.2.; 2.2.). Hypothesizing about the evolutionary advantages 

of such structures, we might suggest that recursive hierarchical patterns allow for 

efficient utilization of resources and adaptation to environmental challenges. In 

biological systems, recursive structures could facilitate efficient resource allocation 

and energy conservation, contributing to the organism's survival and reproduction. 

Turning to cognitive phenomena, our hypothesis is that recursive hierarchical 

structures reduce computational load in terms of working memory. For example, in 

information transmission, it seems advantageous to group information into chunks, 

organize them hierarchically, and utilize algorithms that incorporate self-similarity. 

This approach would be more economical in terms of computational load. This 

hypothesis is in line with what has been proposed by both Planton and colleagues 

(2021) and Radulescu and colleagues (2019) (cf. Section 2.2.1.). Overall, our 

hypotheses suggest that recursive hierarchical structures offer evolutionary and 

cognitive advantages by promoting efficiency and reducing computational costs. 

However, it is important to note that these are merely our speculations, and further 

insight could be gained through computational modeling studies. By simulating the 

dynamics of complex systems and analyzing the emergence and evolution of 

recursive hierarchical structures, modeling studies could shed light on the validity 

of these hypotheses.  
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