
Vol.:(0123456789)

https://doi.org/10.1007/s11075-022-01399-4

1 3

ORIGINAL PAPER

A μ‑mode BLAS approach for multidimensional
tensor‑structured problems

Marco Caliari1  · Fabio Cassini2  · Franco Zivcovich3 

Received: 27 December 2021 / Accepted: 17 August 2022 /
© The Author(s) 2022

Abstract
In this manuscript, we present a common tensor framework which can be used to
generalize one-dimensional numerical tasks to arbitrary dimension d by means of
tensor product formulas. This is useful, for example, in the context of multivari-
ate interpolation, multidimensional function approximation using pseudospectral
expansions and solution of stiff differential equations on tensor product domains.
The key point to obtain an efficient-to-implement BLAS formulation consists in the
suitable usage of the μ-mode product (also known as tensor-matrix product or mode-
n product) and related operations, such as the Tucker operator. Their MathWorks
MATLAB®/GNU Octave implementations are discussed in the paper, and collected
in the package KronPACK. We present numerical results on experiments up to
dimension six from different fields of numerical analysis, which show the effective-
ness of the approach.

Keywords  μ-mode product · Tensor-structured problems · Exponential of Kronecker
sum · ADI preconditioners · Multivariate interpolation · Multidimensional spectral
transforms

 *	 Marco Caliari
	 marco.caliari@univr.it

	 Fabio Cassini
	 fabio.cassini@unitn.it

	 Franco Zivcovich
	 franco.zivcovich@sorbonne-universite.fr

1	 Department of Computer Science, University of Verona, Verona, Italy
2	 Department of Mathematics, University of Trento, Trento, Italy
3	 Laboratoire Jacques–Louis Lions, Sorbonne University, Paris, France

Published online: 4 October 2022

Numerical Algorithms (2023) 92:2483–2508

http://orcid.org/0000-0002-1277-069X
http://orcid.org/0000-0001-7950-564X
http://orcid.org/0000-0002-6604-7878
http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01399-4&domain=pdf

1 3

1  Introduction

Many one-dimensional tasks in numerical analysis can be generalized to a two-
dimensional formulation by means of tensor product formulas. This is the case, for
example, in the context of spectral decomposition or interpolation of multivariate
functions. Indeed, the one-dimensional formula

where the values tj are linearly combined to obtain the values si (i.e., s = Lt, with
s = (si) ∈ ℂ

n , t = (tj) ∈ ℂ
m , and L = (�ij) ∈ ℂ

n×m ), can be easily extended to the
two-dimensional case as

The meaning of the involved scalar quantities depends on the specific example under
consideration. In any case, a straightforward implementation of formula (1) requires
four nested for-loops, with a resulting computational cost of O(n4) (if, for simplicity,
we consider m1 = m2 = n1 = n2 = n). On the other hand, formula (1) can be written
equivalently in matrix formulation as

where L1 = (�1
i1j1

) ∈ ℂ
n1×m1 , L2 = (�2

i2j2
) ∈ ℂ

n2×m2 , T = (tj1j2) ∈ ℂ
m1×m2 and

S = (si1i2) ∈ ℂ
n1×n2 . The usage of formula (2) requires two separate matrix-matrix

products as floating point operations, each of which can be implemented with three
nested for-loops: this approach reduces then the cost of computing the elements of S to
O(n3) . On the other hand, a more efficient way to realize formula (2) is to exploit opti-
mized Basic Linear Algebra Subprograms (BLAS) [1, 2, 3, 4], which are a set of
numerical linear algebra routines that perform the just mentioned matrix operations
with a level of efficiency close to the theoretical hardware limit. A performance

si =

m∑
j=1

tj�ij, 1 ≤ i ≤ n,

(1)si1i2 =

m2∑
j2=1

m1∑
j1=1

tj1j2�
1
i1j1

�
2
i2j2

, 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2.

(2)S = L1TL
�

2
,

Table 1   Wall-clock time (in seconds) for the computation of the values s
i
1
i
2

 in formula (1) with increas-
ing size m1 = m2 = n1 = n2 = n and different approaches, using MathWorks MATLAB® R2019a. The
input values are standard normal distributed random numbers

n = 50 n = 100 n = 200 n = 400

Nested for-loops 1.8e-2 2.8e-1 4.8e0 8.0e1
Matrix-matrix products (for-loops) 7.8e-4 5.5e-3 4.9e-2 3.9e-1
Matrix-matrix products (BLAS) 2.1e-5 5.6e-5 1.7e-4 1.2e-3

2484 Numerical Algorithms (2023) 92:2483–2508

1 3

comparison of the three approaches to compute the values si1i2 in matlab1 language,
for increasing size of the task, is given in Table 1. As expected, for all the values of n
under study, the most efficient way to compute the elements of S is realizing formula
(2) through the BLAS approach. Remark that the considerations on the complexity
cost and BLAS efficiency are basically language-independent, and apply for other
interpreted or compiled languages as well, like Python, Julia, R, Fortran, and C++.
For clarity of exposition and simplicity of presentation of the codes, we will use in this
manuscript, from now on, matlab programming language.

In other contexts, such as numerical solution of (stiff) differential equations on
two-dimensional tensor product domains by means of exponential integrators or pre-
conditioned iterative methods, it is required to compute quantities like

being again L1, L2, T and S matrices of suitable size whose meaning depends on
the specific example under consideration. Here ⊗ denotes the standard Kronecker
product of two matrices, while vec represents the vectorization operator, see Appen-
dix for their formal definitions. A straightforward implementation of formula (3)
would need to assemble the large-sized matrix L2 ⊗ L1. If, for simplicity, we con-
sider again m1 = m2 = n1 = n2 = n, this approach requires a storage and a compu-
tational cost of O(n4) , which is impractical. However, owing to the properties of
the Kronecker product (see Appendix), we can see that formula (3) is equivalent to
formula (2). Therefore, all the considerations made for the previous example on the
employment of optimized BLAS apply also in this case.

The aim of this work is to provide a common framework for generalizing formula
(2) in arbitrary dimension d, which will result in an efficient BLAS realization of
the underlying task. This is very useful in the context of solving tensor-structured
problems which may arise from different scientific and engineering fields. The pur-
sued approach is illustrated in detail in Section 2, in which we present the μ-mode
product and some associated operations (the Tucker operator, in particular), both
from a theoretical and a practical point of view. These operations are widely known
by the tensor algebra community, but their usage is mostly restricted in the context
of tensor decompositions (see [5, 6]). Then, we proceed in Section 3 by describ-
ing more precisely the one- and two-dimensional formulations of the problems
mentioned in this section, as well as their generalization to the d-dimensional case
in terms of μ-mode products. We collect in Section 4 the related numerical experi-
ments and we finally draw the conclusions in Section 5.

All the functions and the scripts needed to perform the relevant tensor operations
and to reproduce the numerical examples of this manuscript are contained in our
matlab package KronPACK.2

(3)vec(S) = (L2 ⊗ L1)vec(T),

1  We refer to matlab as the common language interpreted by the softwares MathWorks MATLAB® and
GNU Octave, for instance
2  The software is available from Netlib (http://​www.​netlib.​org/​numer​algo/) as the na58 package. A
maintained version, freely distributed under the MIT license, is available at https://​github.​com/​calia​rim/​
KronP​ACK

2485Numerical Algorithms (2023) 92:2483–2508

http://www.netlib.org/numeralgo/
https://github.com/caliarim/KronPACK
https://github.com/caliarim/KronPACK

1 3

2 � The μ‑mode product and its applications

In order to generalize formula (2) to the d-dimensional case, we rely on some con-
cepts from tensor algebra (see [5, 6] for more details). Throughout this section, we
assume that T ∈ ℂ

m1×⋯×md is an order-d tensor whose elements are either denoted by
tj1…jd

 or by T(j1,…,jd).

Definition 2.1  A μ-fiber of T is a vector in ℂm� obtained by fixing every index of
the tensor but the μth.

A μ-fiber is nothing but a generalization of the concept of rows and columns of a
matrix. Indeed, for an order-2 tensor (i.e., a matrix), 1-fibers are the columns, while
2-fibers are the rows. On the other hand, for an order-3 tensor, 1-fibers are the col-
umn vectors, 2-fibers are the row vectors while 3-fibers are the so-called “page” or
“tube” vectors, which means vectors along the third dimension.

Definition 2.2  The μ-matricization of T, denoted by T (�) ∈ ℂ
m�×m1⋯m�−1m�+1⋯md , is

defined as the matrix whose columns are the μ-fibers of T.

Remark that for an order-2 tensor the 1- and 2-matricizations simply cor-
respond to the matrix itself and its transpose. In dimensions higher than two, the
μ-matricization requires the concept of generalized transpose of a tensor and
its unfolding into a matrix. The first operation is realized in matlab by the func-
tion permute, that we use to interchange μ-fibers with 1-fibers of the tensor T. The
second operation is performed by the reshape function, that we use to unfold the
“transposed” tensor into the matrix T(μ). In matlab, the anonymous function which
performs the μ-matricization of a tensor T, given

m = size(T);
d = length(m);

can be written as

mumat = @(T,mu) reshape(permute(T,[mu,1:mu-1,mu+1:d]),...
 m(mu),prod(m([1:mu-1,mu+1:d])));

By means of μ-fibers, it is possible to define the following operation.

Definition 2.3  Let L ∈ ℂ
n×m� be a matrix. The μ-mode product of T with L,

denoted by S = T ×μL, is the tensor S ∈ ℂ
m1×⋯×m�−1×n×m�+1×⋯×md obtained by multi-

plying the matrix L onto the μ-fibers of T.

From this definition, it appears clear that the μ-fiber S(j1,…,jμ− 1,⋅,jμ+ 1,…,jd)
of S can be computed as the matrix-vector product of L and the μ-fiber
T(j1,…,jμ− 1,⋅,jμ+ 1,…,jd). Therefore, the μ-mode product T ×μL might be performed
by calling m1⋯mμ− 1mμ+ 1⋯md times level 2 BLAS. However, owing to the concept

2486 Numerical Algorithms (2023) 92:2483–2508

1 3

of matricization of a tensor introduced in Definition 2.2, it is possible to perform the
same task more efficiently by using a single level 3 BLAS call. Indeed, the μ-mode
product of T with L is just the tensor S such that

In particular, in the two-dimensional setting, the 1-mode product corresponds to the
multiplication LT, while the 2-mode product corresponds to (LT� )� = TL�. In gen-
eral, we can compute the matrix S(μ) appearing in formula (4) as L*mumat(T,mu),
and in order to recover the tensor S from S(μ) we need to invert the operations
of unfolding and “transposing”. This can be done easily with the aid of the
matlab functions reshape and ipermute, respectively. All in all, given the
value n = size(L,1), the anonymous function that computes the μ-mode
product of an order-d tensor T with L by a single matrix-matrix product can be written as

mump = @(T,L,mu) ipermute(reshape(L*mumat(T,mu),...
 [n,m([1:mu-1,mu+1:d])]),[mu,1:mu-1,mu+1:d]);

Notice that from formula (4) it appears clear that the computational cost of the
μ-mode product, in terms of floating point operations, is O(nm1⋯md).

One of the main applications of the μ-mode product is the so-called Tucker oper-
ator, which is implemented in KronPACK in the function tucker.

Definition 2.4  Let L� ∈ ℂ
n�×m� be matrices, with μ = 1,…,d. The Tucker operator

of T with L1,…,Ld is the tensor S ∈ ℂ
n1×⋯×nd obtained by concatenating d consecu-

tive μ-mode products with matrices Lμ, that is

We notice that the single element si1…id
 of S in formula (5) turns out to be

provided that ��

i� j�
 are the elements of Lμ. Hence, as formula (6) is clearly the gener-

alization of formula (1) to the d-dimensional setting, formula (5) is the sought
d-dimensional generalization of formula (2). We also notice that the Tucker operator
(5) is invariant with respect to the ordering of the μ-mode products, and that the
implicit ordering given by Definition 2.4 is equivalent to performing the sums in
formula (6) starting from the innermost.

The Tucker operator is strictly connected with the Kronecker product of matrices
applied to a vector.

Lemma 2.1  Let L� ∈ ℂ
n�×m� be matrices, with μ = 1,…,d. Then, the elements of S

in formula (5) are equivalently given by

(4)S(�) = LT (�).

(5)S = T ×1 L1 ×2 ⋯ ×d Ld.

(6)si1…id
=

md∑
jd=1

⋯

m1∑
j1=1

tj1…jd

d∏
�=1

𝓁
�

i� j�
, 1 ≤ i� ≤ n�,

2487Numerical Algorithms (2023) 92:2483–2508

1 3

Proof   The μ-mode product satisfies the following property

see [6]. Then, with μ = 1 we obtain

By means of the properties of the Kronecker product (see Appendix) we have then

and finally, by definition of vec operator,

□

Notice that formula (7) is precisely the d-dimensional generalization of formula (3).
Hence, tasks written as in formula (7) can be equivalently stated and computed more
efficiently again by formula (5), without assembling the large-sized matrix Ld ⊗ ⋯ ⊗ L1.

We can then summarize as follows: the element-wise formulation (6), the tensor
formulation (5) and the vector formulation (7) can all be used to compute the entries
of the tensor S. However, in light of the considerations for the μ-mode product, only
the tensor formulation can be efficiently computed by d calls of level 3 BLAS, with
an overall computational cost of O(nd+1) for the case mμ = nμ = n. This is the reason
why the relevant functions of our package KronPACK are based on formulation (5).

Remark 1  The implementation of a single μ-mode product in the function mump
of KronPACK involves two explicit permutations of the tensor (except the 1-mode
and the d-mode products, which are realized without explicitly permuting, thanks to
the design of the function reshape in matlab). On the other hand, the function
tucker, which realizes the Tucker operator (5), performs a composition of any
pair of consecutive permutations, thus reducing their overall number. In fact, this is
important when dealing with large-sized tensors, because the cost of permuting is not
negligible due to the underlying alteration of the memory layout. For this reason, sev-
eral algorithms which further reduce or completely avoid permutations in an efficient
way have been developed (see, for instance, [7, 8, 9, 10]). In this context, for instance,
it is possible to use the function pagemtimes to efficiently realize a “Loops-over-
GEMMs” strategy. However, as this function has been recently introduced in Math-
Works MATLAB® R2020b and it is still not available in the latest stable GNU Octave
release 7.1.0, for compatibility reasons we do not follow this approach.

Notice that the definition of μ-mode product and its realization through the func-
tion mump can be easily extended to the case in which instead of a matrix L we have
a matrix-free operator L.

(7)vec(S) = (Ld ⊗⋯⊗ L1)vec(T).

S = T ×1 L1 ×2 ⋯ ×d Ld ⟺ S(𝜇) = L𝜇T
(𝜇)(Ld ⊗⋯⊗ L𝜇+1 ⊗ L𝜇−1 ⊗⋯⊗ L1)

�,

S = T ×1 L1 ×2 ⋯ ×d Ld ⟺ S(1) = L1T
(1)(Ld ⊗⋯⊗ L2)

�.

S(1) = L1T
(1)(Ld ⊗⋯⊗ L2)

�
⟺ vec(S(1)) = (Ld ⊗⋯⊗ L1)vec(T

(1))

vec(S(1)) = (Ld ⊗⋯⊗ L1)vec(T
(1)) ⟺ vec(S) = (Ld ⊗⋯⊗ L1)vec(T).

2488 Numerical Algorithms (2023) 92:2483–2508

1 3

Definition 2.5  Let L ∶ ℂ
m� → ℂ

n be an operator. Then the μ-mode action of T
with L , still denoted S = T ×� L , is the tensor S ∈ ℂ

m1×⋯×m�−1×n×m�+1×⋯×md obtained
by the action of the operator L on the μ-fibers of T.

In matlab, if the operator L is represented by the function Lfun which operates
on columns, we can implement the μ-mode action by

mumpfun = @(T,Lfun,mu) ipermute(reshape(Lfun(mumat(T,mu)),...
 [n,m([1:mu-1,mu+1:d])]),[mu,1:mu-1,mu+1:d]);

The corresponding generalization of the Tucker operator, denoted again by

and implemented in KronPACK in the function tuckerfun, follows straightforwardly.
Clearly, in this case, some properties of the Tucker operator (5), such as the aforemen-
tioned invariance with respect to the ordering of the μ-mode product operations, may not
hold anymore for generic operators L� . Generalization (8) is useful in some instances,
see Remark 3 and Section 4.2 for an example. We remark that such an extension is not
available in some other popular tensor algebra toolboxes, such as Tensor Toolbox for
MATLAB [11] — which does not have GNU Octave support, too — and Tensorlab [12],
both of which are more devoted to tensor decomposition and related topics.

The μ-mode product is also useful for computing the action of the Kronecker sum
(see Appendix for its definition) of the Lμ matrices to a vector v, that is

where v = vec(V). In fact, as it can be noticed from formula (4), the identity matrix
is the identity element of the μ-mode product. Combining this observation with
Lemma 2.1, we easily obtain formula (9). In our package KronPACK, the matrix
resulting from the Kronecker sum on the left hand side of equality (9) can be com-
puted as kronsum(L), where L is the cell array containing Lμ in L{mu}. On the
other hand, its action on v can be computed equivalently in tensor formulation, with-
out forming the matrix itself, by kronsumv(V,L).

3 � Problems formulation in d dimensions

In this section we discuss in more detail the problems that were briefly introduced
in Section 1. Their generalization to arbitrary dimension d is addressed thanks to the
common framework presented in Section 2.

3.1 � Pseudospectral decomposition

Suppose that a function f ∶ R → ℂ , with R ⊆ ℝ , can be expanded into a series

(8)S = T ×1 L1 ×2 ⋯ ×d Ld

(9)(Ld ⊕⋯⊕ L1)v = vec

(
d∑

𝜇=1

(V ×𝜇 L𝜇)

)
,

2489Numerical Algorithms (2023) 92:2483–2508

1 3

where fi are complex scalar coefficients and ϕi(x) are complex functions orthonor-
mal with respect to the standard L2(R) inner product, i.e.,

Then, the spectral coefficients fi are defined by

and can be approximated by a quadrature formula. Usually, in this context, specific
Gaussian quadrature formulas are employed, whose node and weights vary depend-
ing on the chosen family of basis functions. If we consider q quadrature nodes ξk and
weights wk, we can compute the first m pseudospectral coefficients by

By collecting the values �i(�
k) in position (i,k) of the matrix Ψ ∈ ℂ

m×q and the
values f(ξk)wk in the vector fw, we can compute the pseudospectral coefficients by
means of the single matrix-vector product

In the two-dimensional case, the coefficients of a pseudospectral expansion in a ten-
sor product basis (see, for instance, [13, Ch. 6.10]) are given by

which can be efficiently computed as

where Ψ� ∈ ℂ
m�×q� has element ��

i�
(�

k�
�) in position (iμ,kμ), with μ = 1,2, and FW is

the matrix with element f (�k1
1
, �

k2
2
)w

k1
1
w
k2
2

 in position (k1,k2).
In general, the coefficients of a d-dimensional pseudospectral expansion in a ten-

sor product basis are given by

In tensor formulation, the coefficients can be computed as (see formulas (5) and (6))

f (x) =

∞∑
i=1

fi�i(x),

∫R

�i(x)�j(x)dx = �ij, ∀i, j.

f
i
= ∫

R

f (x)�
i
(x)dx,

f̂i =

q∑
k=1

f (𝜉k)𝜙i(𝜉
k)wk ≈ fi, 1 ≤ i ≤ m.

f̂ = Ψfw.

f̂i1i2 =

q2∑
k2=1

q1∑
k1=1

f
(
𝜉
k1
1
, 𝜉

k2
2

)
𝜙1
i1
(𝜉

k1
1
)𝜙2

i2
(𝜉

k2
2
)w

k1
1
w
k2
2
,

F̂ = Ψ1FWΨ
�

2
,

f̂i
1
…id

=

qd∑
kd=1

⋯

q
1∑

k
1
=1

f (𝜉
k
1

1
,… , 𝜉

kd
d
)𝜙1

i
1

(𝜉
k
1

1
)⋯𝜙d

id
(𝜉

kd
d
)w

k
1

1
⋯w

kd
d
.

2490 Numerical Algorithms (2023) 92:2483–2508

1 3

where Ψμ is the transform matrix with element ��

i�
(�

k�
�) in position (iμ,kμ), and we

collect in the order-d tensors F̂ and FW the values f̂i1…id
 and f (�k1

1
,… , �

kd
d
)w

k1
1
⋯w

kd
d

 ,
respectively. The corresponding pseudospectral approximation of f(x) is

where x = (x1,…,xd). An application to Hermite–Laguerre–Fourier function decom-
position is given in Section 4.2.

3.2 � Function approximation

Suppose we are given an approximation of a univariate function f(x) in the form

where ci are scalar coefficients and ϕi(x) are generic (basis) functions. This is the
case, for example, in the context of function interpolation or pseudospectral expan-
sions. We are interested in the evaluation of formula (11) at given points xℓ, with
1 ≤ ℓ ≤ n. This can be easily realized in a single matrix-vector product: indeed, if
we collect the coefficients ci in the vector c ∈ ℂ

m and we form the matrix Φ ∈ ℂ
n×m

with element ϕi(xℓ) in position (ℓ,i), the sought evaluation is given by

being f̃ ∈ ℂ
n the vector containing the approximated function at the given set of

evaluation points.
The extension of formula (11) to the tensor product bivariate case is straightfor-

ward (see, for instance, [14, Ch. XVII]). Indeed, in this case the approximating func-
tion is given by

where ci1i2 represent scalar coefficients and ��

i�
(x�) the (univariate) basis function,

with 1 ≤ iμ ≤ mμ and μ = 1,2. Then, given a Cartesian grid of points (x�1

1
, x

�2

2
) , with

1 ≤ ℓμ ≤ nμ, the evaluation of approximation (12) can be computed efficiently in
matrix formulation by

F̂ = FW ×1 Ψ1 ×2 ⋯ ×d Ψd,

(10)f̂ (x) =

md∑
id=1

⋯

m1∑
i1=1

f̂i1…id
𝜙1
i1
(x1)⋯𝜙d

id
(xd),

(11)f̃ (x) =

m∑
i=1

ci𝜙i(x) ≈ f (x),

f̃ = Φc,

(12)f̃ (x1, x2) =

m2∑
i2=1

m1∑
i1=1

ci1i2𝜙
1
i1
(x1)𝜙

2
i2
(x2) ≈ f (x1, x2),

F̃ = Φ1CΦ
�

2
.

2491Numerical Algorithms (2023) 92:2483–2508

1 3

Here we collected the function evaluations f̃ (x�1

1
, x

�2

2
) in the matrix F̃ , we formed

the matrices Φ� ∈ ℂ
n�×m� of element ��

i�
(x

��

�) in position (ℓμ,iμ), and we let C be the
matrix of element ci1i2 in position (i1,i2).

In general, the approximation of a d-variate function f with tensor product basis
functions is given by

where ci1…id
 represent scalar coefficients while ��

i�
(x�) the (univariate) basis func-

tions, with 1 ≤ iμ ≤ mμ. Then, given a Cartesian grid of points (x�1

1
,… , x

�d

d
) , with

1 ≤ ℓμ ≤ nμ, the evaluation of approximation (13) can be expressed in tensor formu-
lation as

see formulas (5) and (6). Here we denote Φμ the matrix with element ��

i�
(x

��

�) in
position (ℓμ,iμ), and we collect in the order-d tensors C and F̃ the coefficients and
the resulting function approximation at the evaluation points, respectively. We pre-
sent an application to barycentric multivariate interpolation in Section 4.3.

Remark 2  Clearly, formula (14) can be employed to evaluate a pseudospectral
approximation (10) at a generic Cartesian grid of points, by properly defining the
involved tensor C and matrices Φμ. In the context of direct and inverse spectral trans-
forms, for example for the effective numerical solution of differential equations (see
[15]), one could be interested in the evaluation of pseudospectral decompositions
at the same grid of quadrature points (�k1

1
,… , �

kd
d
) used to approximate the spec-

tral coefficients. Under standard hypothesis, this can be done by applying formula
(14) with matrices Φ� = Ψ∗

�
 , where the symbol * denotes the conjugate transpose.

Without forming explicitly the matrices Φμ, the desired evaluation can be computed
using the matrices Ψμ by means of the KronPACK function cttucker.

Remark 3  Several functions which perform the whole one-dimensional proce-
dure of approximating a function and evaluating it on a set of points, given suit-
able inputs, are available. This is the case, for example in the interpolation context,
of the matlab built-in functions spline, interp1 (that performs different kinds
of one-dimensional interpolations), and interpft (which performs a resample of
the input values by means of FFT techniques), or of the functions provided by the
QIBSH++ library [16] in the approximation context. Yet, it is possible to extend the
usage of this kind of functions to the approximation in the d-dimensional tensor set-
ting by means of concatenations of μ-mode actions (see Definition 2.5), yielding the
generalization of the Tucker operator (8). In practice, we can perform this task with
the KronPACK function tuckerfun, see the numerical example in Section 4.2.

(13)f̃ (x) =

md∑
id=1

⋯

m1∑
i1=1

ci1…id
𝜙1
i1
(x1)⋯𝜙d

id
(xd) ≈ f (x),

(14)F̃ = C ×1 Φ1 ×2 ⋯ ×d Φd,

2492 Numerical Algorithms (2023) 92:2483–2508

1 3

3.3 � Action of the matrix exponential

Suppose we want to solve the linear Partial Differential Equation (PDE)

coupled with suitable boundary conditions, where A is a linear time-independent
spatial (integer or fractional) differential operator, typically stiff. The application of
the method of lines to equation (15), by discretizing first the spatial variable, e.g., by
finite differences or spectral differentiation, leads to the system of Ordinary Differ-
ential Equations (ODEs)

for the unknown vector u(t). Here, A ∈ ℂ
n×n is the matrix which approximates the

differential operator A on the grid points xℓ, with 1 ≤ ℓ ≤ n. The exact solution of
system (16) is obviously u(t) = exp(tA)u0 and, if the size of A allows, it can be effec-
tively computed by Padé or Taylor approximations (see [17, 18]). If the size of A is
too large, then one has to rely on algorithms to approximate the action of the matrix
exponential exp(tA) on the vector u0. Examples of such methods are [19, 20, 21, 22].

Suppose now we want to solve instead

coupled again with suitable boundary conditions. If PDE (17) admits a Kronecker
structure, such as for some linear Advection–Diffusion–Absorption (ADA) equa-
tions on tensor product domains or linear Schrödinger equations with a potential in
Kronecker form (see [15] for more details and examples), then the method of lines
yields the system of ODEs

Here Aμ, with μ = 1,2, represent the one-dimensional stencil matrices corresponding
to the discretization of the one-dimensional differential operators that constitute A
on the grid points x��

�  , with 1 ≤ ℓμ ≤ nμ. Moreover, the notation Iμ stands for identity
matrices of size nμ, and the component ℓ1 + (ℓ2 − 1)n1 of u corresponds to the grid
point (x�1

1
, x

�2

2
) , that is

This, in turn, is consistent with the linearization of the indexes of the vec operator
defined in Appendix.

Clearly, the solution of system (18) is given by

(15)
{

𝜕tu(t, x) = Au(t, x), t > 0, x ∈ Ω ⊂ ℝ,

u(0, x) = u0(x),

(16)
{

u�(t) = Au(t), t > 0,

u(0) = u0,

(17)
{

𝜕tu(t, x1, x2) = Au(t, x1, x2), t > 0, (x1, x2) ∈ Ω ⊂ ℝ
2,

u(0, x1, x2) = u0(x1, x2),

(18)

{
u�(t) =

(
I2 ⊗ A1 + A2 ⊗ I1

)
u(t), t > 0,

u(0) = u0.

u�1+(�2−1)n1
(t) ≈ u(t, x

�1

1
, x

�2

2
).

2493Numerical Algorithms (2023) 92:2483–2508

1 3

which again could be computed by any method to compute the action of the matrix
exponential on a vector. Remark that, since the matrices I2 ⊗ A1 and A2 ⊗ I1 commute
and using the properties of the Kronecker product (see Appendix), one could write eve-
rything in terms of the exponentials of the small-sized matrices Aμ. Indeed, we have

However, as in general the matrices exp(tA�) are full, their Kronecker product
results in a large and full matrix to be multiplied into u0, which is an extremely inef-
ficient approach. Nevertheless, if we fully exploit the tensor structure of the prob-
lem, we can still compute the solution of the system efficiently just in terms of the
exponentials exp(tA�) . Indeed, let U(t) be the n1 × n2 matrix whose stacked columns
form the vector u(t), that is

Then, using this matrix notation and by means of the properties of the Kronecker
product, problem (18) takes the form

and it is well-known (see [23]) that its solution can be computed in matrix formulation as

In general, the d-dimensional version of solution (19) is

which can be written in more compact notation as

Here, Aμ are square matrices of size nμ, and u0 is a vector of length N = n1 ⋯ nd.
Then, similarly to the two-dimensional case, we have

Finally, using Lemma 2.1, we have

where U(t) and U0 are d-dimensional tensors such that u(t) = vec(U(t)) and u0 =
vec(U0). Hence, the action of the large-sized matrix exponential appearing in

(19)u(t) = exp
(
t(I2 ⊗ A1 + A2 ⊗ I1)

)
u0,

u(t) = exp
(
t(I2 ⊗ A1 + A2 ⊗ I1)

)
u0 = exp(t(I2 ⊗ A1)) exp(t(A2 ⊗ I1))u0

=
(
I2 ⊗ exp(tA1)

)(
exp(tA2)⊗ I1

)
u0 = (exp(tA2)⊗ exp(tA1))u0.

vec(U(t)) = u(t).

{
U�(t) = A1U(t) + U(t)A�

2
, t > 0,

U(0) = U0,

U(t) = exp(tA1)U0 exp(tA2)
�.

u(t) = exp

(
t

d∑
𝜇=1

(
Id ⊗⋯⊗ I𝜇+1 ⊗ A𝜇 ⊗ I𝜇−1 ⊗⋯⊗ I1

))
u0,

(20)u(t) = exp
(
t
(
Ad ⊕⋯⊕ A1

))
u0.

u(t) = exp
(
t(Ad ⊕⋯⊕ A1)

)
u0 = (exp(tAd)⊗⋯⊗ exp(tA1))u0.

(21)U(t) = U0 ×1 exp(tA1) ×2 ⋯ ×d exp(tAd),

2494 Numerical Algorithms (2023) 92:2483–2508

1 3

formula (20) can be computed by the Tucker operator (21) which just involves the
small-sized matrix exponentials exp(tA�) . For an application in the context of solu-
tion of an ADA linear evolutionary equation with spatially variable coefficients, see
Section 4.4.

3.4 � Preconditioning of linear systems

Suppose we want to solve the semilinear PDE

coupled with suitable boundary conditions, where A is a linear time-independent
spatial differential operator and f is a nonlinear function. Using the method of lines,
similarly to what led to system (16), we obtain

A common approach to integrating system (23) in time involves the use of IMplicit
EXplicit (IMEX) schemes. For instance, the application of the well-known back-
ward-forward Euler method with constant time step size τ leads to the solution of the
linear system

at every time step, where M = (I − �A) ∈ ℂ
n×n and I is an identity matrix of suit-

able size. If the space discretization allows (second order centered finite differences,
for example), the system can then be solved by means of the very efficient Thomas
algorithm. If, on the other hand, this is not the case, a suitable direct or (precondi-
tioned) iterative method can be employed.

Let us consider now the two-dimensional version of the semilinear PDE (22), i.e.,

again with suitable boundary conditions, A a linear time-independent spatial differ-
ential operator and f a nonlinear function. As for equation (17), if the PDE admits a
Kronecker sum structure, the application of the method of lines leads to

which can be integrated in time again by means of the backward-forward Euler
method. The matrix of the resulting linear system to be solved at every time step is
now

(22)
{

𝜕tu(t, x) = Au(t, x) + f (t, u(t, x)), t > 0, x ∈ Ω ⊂ ℝ,

u(0, x) = u0(x),

(23)
{

u�(t) = Au(t) + f (t, u(t)), t > 0,

u(0) = u0.

Muk+1 = uk + �f (tk, uk)

(24)

{
𝜕tu(t, x1, x2) = Au(t, x1, x2) + f (t, u(t, x1, x2)), t > 0, (x1, x2) ∈ Ω ⊂ ℝ

2,

u(0, x1, x2) = u0(x1, x2),

(25)
{

u�(t) = (I2 ⊗ A1 + A2 ⊗ I1)u(t) + f (t, u(t)), t > 0,

u(0) = u0,

2495Numerical Algorithms (2023) 92:2483–2508

1 3

If we use an iterative method, we can obtain the action of the matrix M to a vector v as

by observing that

Moreover, examples of effective preconditioners for this kind of linear systems
are the ones of Alternating Direction Implicit (ADI) type (see [24]). In this case, we
can use the product of the matrices arising from the discretization of equation (24)
after neglecting all the spatial variables but one in the operator A . We obtain then
the preconditioner

which is expected to be effective since P = M +O(�2) . In addition, the action of
P− 1 to a vector v can be efficiently obtained as

by noticing that

Remark 4  Another approach of solution to equation (25) would be to write the
equivalent matrix formulation of the problem, i.e.,

and then apply appropriate algorithms to integrate it numerically, mainly based on
the solution of Sylvester equations. This is the approach pursued, for example, in
[25].

In general, for a d-dimensional semilinear problem with a Kronecker sum struc-
ture, the linear system to be solved at every time step has now matrix

Again, the action of the matrix M on a vector v can be computed without assembling
the matrix (see equivalence (9)). Finally, an effective preconditioner for the linear
system is a straightforward generalization of formula (26), i.e.,

M = I2 ⊗M1 +M2 ⊗ I1 = I2 ⊗
(
1

2
I1 − 𝜏A1

)
+
(
1

2
I2 − 𝜏A2

)
⊗ I1.

M1V + VM�

2
= VM , vec(V) = v,

Mv = vec(VM).

(26)(I2 − 𝜏A2)⊗ (I1 − 𝜏A1) = P2 ⊗ P1 = P,

P−1
1
VP−�

2
= VP−1 ,

P−1v = (P−1
2

⊗ P−1
1
)v = vec(VP−1).

{
U�(t) = A1U(t) + U(t)A�

2
+ F(t,U(t)), t > 0,

U(0) = U0,

M = Md ⊕⋯⊕M1, M𝜇 =
(
1

d
I𝜇 − 𝜏A𝜇

)
.

(Id − 𝜏Ad)⊗⋯⊗ (I1 − 𝜏A1) = Pd ⊗⋯⊗ P1 = P.

2496 Numerical Algorithms (2023) 92:2483–2508

1 3

Similarly to the two-dimensional case, its inverse action to a vector v can be com-
puted efficiently as

see Lemma 2.1. In our package KronPACK, formula (27) can be realized without
explicitly inverting the matrices Pμ by using the function itucker. We notice that
this is another feature not available in the tensor algebra toolboxes mentioned in
Section 2. For an example of application of these techniques, in the context of solu-
tion of evolutionary diffusion–reaction equations, see Section 4.5.

We finally notice that there exist also specific techniques to solve linear systems
in Kronecker form, usually arising in the discretization of time-independent differ-
ential equation, see for instance [26, 27].

4 � Numerical experiments

We present in this section some numerical experiments of the proposed μ-mode
approach for tensor-structured problems, which make extensively use of the func-
tions contained in our package KronPACK. We remark that, when we employ Carte-
sian grids of points, they have been produced by the matlab command ndgrid. If
instead one would prefer to use the ordering induced by the meshgrid command
(which, however, works only up to dimension three), it is enough to interchange the
first and the second matrix in the Tucker operator (5). The resulting tensor is then
the (2,1,3)-permutation of S in Definition 2.4.

All the numerical experiments have been performed with MathWorks
MATLAB® R2019a on an Intel® Core™ i7-8750H CPU with 16 GB of RAM. The
degrees of freedom of the problems have been kept at a moderate size, in order to
be reproducible with the package KronPACK in a few seconds on a personal laptop.

4.1 � Code validation

In this section we validate the tucker function of KronPACK, by comparing it
to the corresponding functions of the toolboxes mentioned in Section 2, i.e., ttm
and tmprod of Tensor Toolbox for MATLAB and Tensorlab, respectively. We per-
formed several tests on tensors of different orders and sizes and the three functions
always produced the same output (up to round-off unit) at comparable computational
times. For simplicity of exposition, we report in Fig. 1 just the wall-clock times of
the experiments with tensors of order d = 3 and d = 6. For each selected value of d,
we take as tensors and matrices sizes mμ = nμ = n, μ = 1,…,d, for different values of
n, in such a way that the number of degrees of freedom nd ranges from Nmin = 126 to
Nmax = 186 . The input tensors and matrices have normal distributed random values,
and the complete code can be found in the script code_validation.m.

(27)V ×1 P
−1
1

×2 ⋯ ×d P
−1
d

= VP−1 ,

2497Numerical Algorithms (2023) 92:2483–2508

1 3

4.2 � Hermite–Laguerre–Fourier function decomposition

We are interested in the approximation, by means of a pseudospectral decomposi-
tion, of the trivariate function

where Ω = [−b1,b1] × [0,b2] × [a3,b3]. The decays in the first and second directions
and the periodicity in the third direction suggest the use of a Hermite–Laguerre–Fou-
rier (HLF) expansion. This mixed transform is useful, for instance, for the solution
of differential equations with cylindrical coordinates by spectral methods, see [28].
We then introduce the normalized and scaled Hermite functions (orthonormal in
L2(ℝ))

where Hi1
 is the (physicist’s) Hermite polynomial of degree i1 − 1. We consider the

m1 scaled Gauss–Hermite quadrature points {�k1
1
}k1 and define Ψ1 ∈ ℝ

m1×m1 to be the
corresponding transform matrix with element H�1

i1
(�

k1
1
) in position (i1,k1). The

parameter β1 is chosen so that the quadrature points are contained in [−b1,b1] (see
[29]). This is possible by estimating the largest quadrature point for the unscaled
functions by

√
2m1 + 1 (see [30, Ch. 6]) and setting

f (x) =
x2
2
sin(20x1) sin(10x2) exp(−x

2
1
− 2x2)

sin(2�x3) + 2
, x = (x1, x2, x3) ∈ Ω,

H
�1
i1
(x1) =

�
�1√

�2i1−1(i1 − 1)!
Hi1

(�1x1)e
−�2

1
x2
1
∕2,

Fig. 1   Wall-clock times for different realizations of the Tucker operator (5) with the functions ttm,
tmprod, and tucker. The left plot refers to the case d = 3, while the right plot refers to the case d = 6.
Each test has been repeated several times in order to avoid fluctuations

2498 Numerical Algorithms (2023) 92:2483–2508

1 3

Moreover, we consider the normalized and scaled generalized Laguerre functions
(orthonormal in L2(ℝ+))

where L�
i2
 is the generalized Laguerre polynomial of degree i2 − 1. We define Ψ2 to

be the corresponding transform matrix with element L�,�2
i2

(�
k2
2
) in position (i2,k2),

where {�k2
2
}k2 are the m2 scaled generalized Gauss–Laguerre quadrature points. The

parameter β2 is chosen, similarly to the Hermite case, as

see [30, Ch. 6] for the asymptotic estimate which holds for |�| ≥ 1∕4 and α > − 1.
Finally, for the Fourier decomposition, we obviously do not construct the transform
matrix, but we rely on a Fast Fourier Transform (FFT) implementation provided by
the matlab function interpft, which performs a resample of the given input val-
ues by means of FFT techniques. We measure the approximation error, for varying
values of nμ, μ = 1,2,3, by evaluating the pseudospectral decomposition at a Car-
tesian grid of points (x�1

1
, x

�2

2
, x

�3

3
) , with 1 ≤ ℓμ ≤ nμ. In order to do that, we con-

struct the matrices Φ1 and Φ2 containing the values of the Hermite and general-
ized Laguerre functions at the points {x�1

1
}�1

 and {x�2

2
}�2

 , respectively. The relevant
code for the approximation of f and its evaluation, by using the KronPACK function
tuckerfun, can be written as

PSIFUN{1} = @(f) PSI{1}*f;
PSIFUN{2} = @(f) PSI{2}*f;
PSIFUN{3} = @(f) f;
Fhat = tuckerfun(FW,PSIFUN);
PHIFUN{1} = @(f) PHI{1}*f;
PHIFUN{2} = @(f) PHI{2}*f;
PHIFUN{3} = @(f) interpft(f,n(3));
Ftilde = tuckerfun(Fhat,PHIFUN);

where FW is the three-dimensional array containing the values f (�k1

1
, �

k2
2
, �

k3
3
)w

k1
1
w
k2
2

 ,
where {�k3

3
}k3 are the m3 equispaced Fourier quadrature points in [a3,b3) and {wk�

� }k� ,
with μ = 1,2, are the scaled weights of the Gauss–Hermite and generalized
Gauss–Laguerre quadrature rules, respectively. The values {�k�� }k� and {wk�

� }k� , for
μ = 1,2, have been computed by the relevant functions available, for instance, in Chebfun
[31]. The complete example can be found in the script example_spectral.m.

�1 =

√
2m1 + 1

b1
.

L
�,�2
i2

(x2) =

√
�2(i2 − 1)!

Γ(i2 + �)
L�
i2
(�2x2)(�2x2)

�∕2e−�2x2∕2,

�2 =
4m2 + 2� + 2

b2
,

2499Numerical Algorithms (2023) 92:2483–2508

1 3

Given a prescribed accuracy, we look for the smallest number of basis functions
(m1,m2,m3) that achieve it, and we measure the computational time needed to per-
form the approximation of f and its evaluation with the HLF method. As a term
of comparison, we consider the same experiment with a three-dimensional Fou-
rier spectral approximation (FFF method): in fact, for the size of the computational
domain and the exponential decays along the first and second directions of the func-
tion f we are considering, it appears reasonable to approximate f by a periodic func-
tion in Ω and take advantage of the efficiency of a three-dimensional FFT.

The results with α = 4, b1 = 4, b2 = 11, b3 = −a3 = 1, and n1 = n2 = n3 = 301 eval-
uation points uniformly distributed in Ω are displayed in Fig. 2. As we can observe,
the total number of degrees of freedom needed by the HLF approach is always
smaller than the corresponding FFF one. In particular, despite the exponential decay
along the second direction, the FFF method requires a very large number of Fourier
coefficients along that direction in order to reach the most stringent accuracies. In
these situations, the HLF method implemented with the μ-mode approach is prefer-
able in terms of computational time to the well-established implementation by the
FFT technique of the FFF method.

4.3 � Multivariate interpolation

Let us consider the approximation of a function f(x) through a five-variate interpo-
lating polynomial in Lagrange form

Here Li� (x�) is the Lagrange polynomial of degree mμ − 1 on a set {�k�� }k� of mμ
interpolation points written in the second barycentric form, with μ = 1,…,5, i.e.,

while fi1…i5
= f (�

i1
1
,… , �

i5
5
).

For our numerical example, we consider the five-dimensional Runge function

in the domain [− 1,1]5. We choose as interpolation points a Cartesian grid of Cheby-
shev nodes

(28)p(x) =

m5∑
i5=1

⋯

m1∑
i1=1

fi1…i5
Li1 (x1)⋯Li5 (x5).

Li� (x�) =

w
i�
�

x�−�
i�
�

∑
k�

w
k�
�

x�−�
k�
�

, w
i�
� =

1
∏

k�≠i� (�
i�
� − �

k�
�)

,

f (x1,… , x5) =
1

1 + 16
∑

�x
2
�

�
k�
� = cos

(
(2k� − 1)�

2m�

)
, k� = 1,… ,m�,

2500 Numerical Algorithms (2023) 92:2483–2508

1 3

whose barycentric weights are

This is the five-dimensional version of one of the examples presented in [32, Sec.
6]. We evaluate the polynomial at a uniformly spaced Cartesian grid of points
(x

�1

1
,… , x

�5

5
) , with 1 ≤ ℓμ ≤ nμ. Then, approximation (28) at the just mentioned grid

can be computed as

where we collected the function evaluations at the interpolation points in the tensor
F and Lμ contains the element Li� (x

��

�) in position (ℓμ,iμ). If we store the matrices Lμ
in a cell L, the corresponding matlab command for computing the desired approxi-
mation is

P = tucker(F,L);

The results, for a number of evaluation points fixed to nμ = n = 35 and varying num-
ber of interpolation points mμ = m, are reported in Fig. 3, and the complete code can
be found in the script example_interpolation.m.

As expected, the error decreases according to the estimate

see [32, 33].

w
k�
� = (−1)k�+1 sin

(
(2k� − 1)�

2m�

)
, k� = 1,… ,m�.

(29)P = F ×1 L1 ×2 ⋯ ×5 L5,

‖f (x) − p(x)‖∞≈ K−m, K =
1

4
+

�
17

16
,

Fig. 2   Achieved accuracies versus wall-clock times (in seconds, averaged over 20 runs) for the Hermite–
Laguerre–Fourier (HLF) and the Fourier–Fourier–Fourier (FFF) approaches. The label of the marks in
the plot indicates the number of basis functions used in each direction

2501Numerical Algorithms (2023) 92:2483–2508

1 3

4.4 � Linear evolutionary equation

Let us consider the following three-dimensional Advection–Diffusion–Absorption
evolutionary equation, written in conservative form, for a concentration u(t,x) (see
[34])

where βμ, μ = 1,2,3, and α > 0 are advection and diffusion coefficients and γ ≥ 0 is
a coefficient governing the decay of u(t,x). After a space discretization by second
order centered finite differences on a Cartesian grid, we end up with a system of
ODEs

where A� ∈ ℝ
n�×n� is the one-dimensional discretization of the operator

If we denote by U0 = vec(u0) and U(t) = vec(u(t)) the tensors associated to the vectors
u0 and u(t), respectively, then we have

(30)

⎧⎪⎨⎪⎩

�tu(t, x) +

3�
�=1

���x� (x�u(t, x)) = �

3�
�=1

�2
�
�x� (x

2
�
�x�u(t, x)) − �u(t, x),

u(0, x) = u0(x) = x1(2 − x1)
2x2(2 − x2)

2x3(2 − x3)
2,

(31)
{

u�(t) = (A3 ⊕ A2 ⊕ A1)u(t),

u(0) = u0,

(2��2
�
x� − ��x�)�x� + ��2

�
x2
�
�x2

�
−
(
�� +

�

3

)
.

Fig. 3   Results for approximation (29) with an increasing number mμ = m of interpolation points. The rel-
ative error (blue circles) is computed in maximum norm at the evaluation points. For reference, a dashed
line representing the theoretical decay estimate is added

2502 Numerical Algorithms (2023) 92:2483–2508

1 3

We consider equation (30) for x ∈ [0,2]3, coupled with homogeneous Dirichlet–Neu-
mann conditions (u(t,x) = 0 at xμ = 0 and �x�u(t, x) = 0 at xμ = 2, μ = 1,2,3). The
coefficients are fixed to

Then, if we compute the needed matrix exponentials by the function expm in matlab
and define

E{mu} = expm(tstar*A{mu});

the solution U(t*) at final time t* = 0.5 can be computed as

U = tucker(U0,E);

since the matrix exponential is the exact solution and thus no substep-
ping strategy is needed. The complete example is reported in the script
example_exponential.m.

In Table 2 we show the results with a discretization in space of n = (50,55,60)
grid points. Since the problem is moderately stiff, we consider for comparison
the solution of system (31) by the ode23 matlab function (which implements an
explicit adaptive Runge–Kutta method of order (2)3) and by a standard implementa-
tion of the explicit Runge–Kutta method of order four (RK4). For the Runge–Kutta
methods, we consider both the tensor and the vector implementations, using the
functions kronsumv and kronsum, respectively (see equivalence (9)). The num-
ber of uniform time steps for RK4 has been chosen in order to obtain a comparable
error with respect to the result of the variable time step solver ode23. As we can
see, the tensor formulation (32) implemented using the function tucker is much
faster than any other considered approach. Indeed, this is due to the fact that formula
(32) requires a single time step and calls a level 3 BLAS only three times. For other
experiments involving the approximation of the action of the matrix exponential in
tensor-structured problems, we invite the reader to check [15].

4.5 � Semilinear evolutionary equation

We consider the following three-dimensional semilinear evolutionary equation

(32)U(t) = U0 ×1 exp(tA1) ×2 exp(tA2) ×3 exp(tA3).

�1 = �2 = �3 =
2

3
, � =

1

2
, � =

1

100
.

(33)

⎧⎪⎨⎪⎩

�tu(t, x) = Δu(t, x) +
1

1 + u(t, x)2
+ Φ(t, x),

u(0, x) = u0(x) = x1(1 − x1)x2(1 − x2)x3(1 − x3),

2503Numerical Algorithms (2023) 92:2483–2508

1 3

for x ∈ [0,1]3, where the function Φ(t,x) is chosen so that the exact solution is
u(t, x) = etu0(x) . We complete the equation with homogeneous Dirichlet boundary
conditions in all the directions. This is the three-dimensional generalization of the
example presented in [35].

We discretize the problem in space by means of second order centered finite dif-
ferences on a Cartesian grid, with nμ grid points for the spatial variable xμ, μ = 1,2,3.
Then, the application of the backward-forward Euler method leads to the following
marching scheme

where uk ≈ u(tk,x), τ is the time step size, tk is the current time and

The matrix of the linear system (34) is given by

where Aμ is the discretization of the partial differential operator �x2
�
 and Iμ is the iden-

tity matrix of size nμ. One could solve the linear system (34) using a direct method,
in particular by computing the Cholesky factors of the matrix M once and for all (if
the step size τ is constant). Another approach would be to use the Conjugate Gradi-
ent (CG) method for the single marching step (34). In matlab, the latter can be per-
formed as

pcg(M,uk+tau*f(tk,uk),tol,maxit,[],[],uk);

or

pcg(Mfun,uk+tau*f(tk,uk),tol,maxit,[],[],uk);

where M is the matrix assembled using kronsum (vector approach), while Mfun is
implemented by means of the function kronsumv (tensor approach). As described
in Section 3.4, an effective preconditioner for system (34) is the one of ADI-type

(34)Muk+1 = uk + �f (tk, uk),

f (tk, uk) =
1

1 + u2
k

+ Φ(tk, x).

M = M3 ⊕M2 ⊕M1, M𝜇 =
(
1

3
I𝜇 − 𝜏A𝜇

)
,

Table 2   Summary of the results for solving the ODEs system (31) with the three described approaches.
We report the number of time steps, the wall-clock times in seconds for both the tensor and the vector
formulations (when feasible) and the relative error in infinity norm of the final solution with respect to
the solution given by the tucker approach

Time steps Elapsed time vector Elapsed time tensor Error

tucker 1 – 0.03 –
ode23 1496 14.0 11.2 1.0e-4
RK4 1351 9.14 6.33 3.7e-5

2504 Numerical Algorithms (2023) 92:2483–2508

1 3

The action of the inverse of this preconditioner on a vector v can be easily performed
in tensor formulation, see formula (27), and the resulting Preconditioned Conjugate
Gradient (PCG) method is

pcg(Mfun,uk+tau*f(tk,uk),tol,maxit,Pfun,[],uk);

where Pfun is implemented through the KronPACK function itucker. The com-
plete example is reported in the file example_imex.m.

In Table 3 we report the results obtained for a space discretization of n =
(40,44,48) grid points. The time step size τ of the marching scheme (34) is 0.01 and
the final time of integration is t* = 1. For all the methods, the final relative error in
infinity norm with respect to the exact solution is 9.7 ⋅ 10− 3. As it is clearly shown,
the ADI-type preconditioner is really effective in reducing the number of iterations
of the CG method. Moreover, the resulting method is the fastest among all the con-
sidered approaches.

5 � Conclusions

In this work, we presented how it is possible to state d-dimensional tensor-structured
problems by means of composition of one-dimensional rules, in such a way that
the resulting μ-mode BLAS formulation can be efficiently implemented on modern
computer hardware. The common thread consists in the suitable employment of ten-
sor product operations, with special emphasis on the Tucker operator and its vari-
ants. After validating our package KronPACK against other commonly used tensor
operation toolboxes, the effectiveness of the μ-mode approach compared to other
well-established techniques is shown on several examples from different fields of
numerical analysis. More in detail, we employed this approach for a pseudospectral
Hermite–Laguerre–Fourier trivariate function decomposition, for the barycentric
Lagrange interpolation of a five-variate function and for the numerical solution of
three-dimensional stiff linear and semilinear evolutionary differential equations by
means of exponential techniques and a (preconditioned) IMEX method, respectively.

P3 ⊗ P2 ⊗ P1, P𝜇 = (I𝜇 − 𝜏A𝜇).

Table 3   Summary of the results
for solving the semilinear
equation (33) by the method of
lines and the backward-forward
Euler method. The elapsed time
is the wall-clock time measured
in seconds

Avg. iterations Elapsed time
per time step

Direct – 6.7
CG vector 30 3.3
CG tensor 30 2.2
PCG tensor 2 0.5

2505Numerical Algorithms (2023) 92:2483–2508

1 3

Appendix

Throughout the manuscript, the symbol ⊗ denotes the standard Kronecker product
of two matrices. In particular, given A ∈ ℂ

m×n and B ∈ ℂ
p×q , we have

Moreover, we define the Kronecker sum of two matrices A ∈ ℂ
m×m and B ∈ ℂ

p×p ,
denoted by the symbol ⊕, as

where IA and IB are identity matrices of size m and p, respectively.
We define also the vectorization operator, denoted by vec, which stacks a given

tensor T ∈ ℂ
m1×⋯×md in a vector v ∈ ℂ

m1⋯md in such a way that

where 1 ≤jμ ≤mμ and 1 ≤μ ≤d.
The Kronecker product satisfies many properties, see [36] for a comprehensive

review. For convenience of the reader, we list here the relevant ones in our context

1.	 A ⊗ (B1 + B2) = A ⊗ B1 + A ⊗ B2 for every A ∈ ℂ
m×n and B1,B2 ∈ ℂ

p×q;
2.	 (B1 + B2) ⊗A = B1 ⊗ A + B2 ⊗ A for every B1,B2 ∈ ℂ

p×q and A ∈ ℂ
m×n;

3.	 (λA) ⊗ B = A ⊗ (λB) = λ(A ⊗ B) for every � ∈ ℂ , A ∈ ℂ
m×n and B ∈ ℂ

p×q;
4.	 (A ⊗ B) ⊗C = A ⊗ (B ⊗ C) for every A ∈ ℂ

m×n , B ∈ ℂ
p×q and C ∈ ℂ

r×s;
5.	 (A ⊗ B)� = A� ⊗ B� for every A ∈ ℂ

m×n and B ∈ ℂ
p×q;

6.	 (A ⊗ B)− 1 = A− 1 ⊗ B− 1 for every invertible matrix A ∈ ℂ
m×m and B ∈ ℂ

p×p;
7.	 (A ⊗ B)(D ⊗ E) = (AD) ⊗ (BE) for every A ∈ ℂ

m×n , B ∈ ℂ
p×q , D ∈ ℂ

n×r and E ∈ ℂ
q×s;

8.	 vec(ADC) = (C� ⊗ A)vec(D) for every A ∈ ℂ
m×n , D ∈ ℂ

n×r and C ∈ ℂ
r×s.

Funding  Open access funding provided by Università degli Studi di Verona within the CRUI-CARE
Agreement. The authors have received partial support from the Program Ricerca di Base 2019 of the Uni-
versity of Verona entitled “Geometric Evolution of Multi Agent Systems”. Franco Zivcovich has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 850941).

Data availability  Data sharing not applicable to this article as no datasets were generated or analyzed dur-
ing the current study.

Declarations 

Conflict of interest  The authors declare no competing interests.

A⊗ B =

⎡
⎢⎢⎣

a11B ⋯ a1nB

⋮ ⋱ ⋮

am1B ⋯ amnB

⎤
⎥⎥⎦
∈ ℂ

mp×nq.

A⊕ B = A⊗ IB + IA ⊗ B ∈ ℂ
mp×mp,

vec(T) = v, with vj = T(j1,… , jd), j = j1 +

d∑
�=2

(j� − 1)

�−1∏
k=1

mk,

2506 Numerical Algorithms (2023) 92:2483–2508

1 3

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.S.: A set of level 3 basic linear algebra subpro-
grams. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

	 2.	 Intel Corporation: Intel Math Kernel Library. https://​softw​are.​intel.​com/​conte​nt/​www/​us/​en/​devel​
op/​tools/​oneapi/​compo​nents/​onemkl.​html (2021). Accessed 27 Dec 2021

	 3.	 Xianyi, Z., Qian, W., Yunquan, Z.: Model-driven level 3 BLAS performance optimization on
Loongson 3A processor. In: 2012 IEEE 18th International Conference on Parallel and Distributed
Systems, pp 684–691 (2012). Accessed 27 Dec 2021

	 4.	 NVIDIA Corporation: cuBLAS documentation. https://​docs.​nvidia.​com/​cuda/​cublas/​index.​html
(2021). Accessed 27 Dec 2021

	 5.	 Kolda, T.G.: Multilinear operators for higher-order decompositions. Technical Report SAND2006-
2081 Sandia National Laboratories (2006)

	 6.	 Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500
(2009)

	 7.	 Li, J., Battaglino, C., Perros, I., Sun, J., Vuduc, R.: An input-adaptive and in-place approach to
dense tensor-times-matrix multiply. In: SC ’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. Association for Computing
Machinery, New York (2015)

	 8.	 Rogers, D.M.: Efficient primitives for standard tensor linear algebra. In: XSEDE16: Proceedings of
the XSEDE16 Conference on Diversity, Big Data, and Science at Scale. Association for Computing
Machinery, New York (2016)

	 9.	 Springer, P., Bientinesi, P.: Design of a high-performance GEMM-like tensor–tensor multiplication.
ACM Trans. Math. Softw. 44(3), 1–29 (2018)

	10.	 Matthews, D.A.: High-performance tensor contraction without transposition. SIAM J. Sci. Comput.
40(1), 1–24 (2018)

	11.	 Bader, B.W., Kolda, T.G., et al.: Tensor Toolbox for MATLAB, Version 3.2.1. https://​www.​tenso​
rtool​box.​org (2021). Accessed 27 Dec 2021

	12.	 Vervilet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0. https://​tenso​
rlab.​net. Available online (2016). Accessed 27 Dec 2021

	13.	 Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. DOVER Publications Inc., New
York (2000)

	14.	 de Boor, C.: A Practical Guide to Splines, Revised edn. Applied Mathematical Sciences, vol. 27.
Springer, New York (2001)

	15.	 Caliari, M., Cassini, F., Einkemmer, L., Ostermann, A., Zivcovich, F.: A μ-mode integrator for solv-
ing evolution equations in Kronecker form. J. Comput. Phys. 455, 110989 (2022)

	16.	 Bertolazzi, E., Falini, A., Mazzia, F.: The object oriented C++ library QIBSH++ for Hermite spline
quasi interpolation. arXiv:2208.​03260 (2022)

	17.	 Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix exponential.
SIAM J. Matrix Anal. Appl. 31(3), 970–989 (2009)

	18.	 Caliari, M., Zivcovich, F.: On-the-fly backward error estimate for matrix exponential approximation
by Taylor algorithm. J. Comput. Appl. Math. 346, 532–548 (2019)

	19.	 Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential with an application
to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)

2507Numerical Algorithms (2023) 92:2483–2508

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://docs.nvidia.com/cuda/cublas/index.html
https://www.tensortoolbox.org
https://www.tensortoolbox.org
https://tensorlab.net
https://tensorlab.net
http://arxiv.org/abs/2208.03260

1 3

	20.	 Niesen, J., Wright, W.M.: Algorithm 919: A Krylov subspace algorithm for evaluating the
ϕ-functions appearing in exponential integrators. ACM Trans. Math. Softw. 38(3), 1–19 (2012)

	21.	 Gaudreault, S., Rainwater, G., Tokman, M.: KIOPS: A fast adaptive Krylov subspace solver for
exponential integrators. J. Comput. Phys. 372, 236–255 (2018)

	22.	 Caliari, M., Cassini, F., Zivcovich, F.: Approximation of the matrix exponential for matrices with a
skinny field of values. BIT Numer. Math. 60(4), 1113–1131 (2020)

	23.	 Neudecker, H.: A Note on Kronecker matrix products and matrix equation systems. SIAM J. Appl.
Math. 17(3), 603–606 (1969)

	24.	 Arbenz, P., Říha, L.: Batched transpose-free ADI-type preconditioners for a Poisson solver on GPG-
PUs. J. Parallel Distrib. Comput. 137, 148–159 (2020)

	25.	 Kirsten, G., Simoncini, V.: A matrix-oriented POD-DEIM algorithm applied to nonlinear differen-
tial matrix equations. arXiv:2006.​13289 (2020)

	26.	 Palitta, D., Simoncini, V.: Matrix-equation-based strategies for convection–diffusion equations. BIT
Numer. Math. 56(2), 751–776 (2016)

	27.	 Chen, M., Kressner, D.: Recursive blocked algorithms for linear systems with Kronecker product
structure. Numer. Algorithms 84(3), 1199–1216 (2020)

	28.	 Bao, W., Li, H., Shen, J.: A generalized-Laguerre–Fourier–Hermite pseudospectral method for com-
puting the dynamics of rotating Bose–Einstein condensates. SIAM J. Sci. Comput. 31(5), 3685–
3711 (2009)

	29.	 Tang, T.: The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14(3),
594–606 (1993)

	30.	 Szegö, G.: Orthogonal Polynomials, 4th edn., vol. 23. Colloquium Publications, American Math-
ematical Society, Providence (1975)

	31.	 Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun Guide. Pafnuty Publications, Oxford
(2014)

	32.	 Berrut, J.-P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517
(2004)

	33.	 Trefethen, L.N.: Multivariate polynomial approximation in the hypercube. Proc. Am. Math. Soc.
145(11), 4837–4844 (2017)

	34.	 Zoppou, C., Knight, J.H.: Analytical solution of a spatially variable coefficient advection–diffusion
equation in up to three dimensions. Appl. Math. Model. 23(9), 667–685 (1999)

	35.	 Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear parabolic
problems. SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)

	36.	 Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100
(2000)

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

2508 Numerical Algorithms (2023) 92:2483–2508

http://arxiv.org/abs/2006.13289

	A μ-mode BLAS approach for multidimensional tensor-structured problems
	Abstract
	1 Introduction
	2 The μ-mode product and its applications
	3 Problems formulation in d dimensions
	3.1 Pseudospectral decomposition
	3.2 Function approximation
	3.3 Action of the matrix exponential
	3.4 Preconditioning of linear systems

	4 Numerical experiments
	4.1 Code validation
	4.2 Hermite–Laguerre–Fourier function decomposition
	4.3 Multivariate interpolation
	4.4 Linear evolutionary equation
	4.5 Semilinear evolutionary equation

	5 Conclusions
	References

