
KBlab: an equational theorem prover for the Macintosh

Maria Paola Bonacina Giancarlo Sanna

Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano

KBlab is a Completion based theorem prover for equational logic, written in the language

C and developed on the Macintosh in the MPW (Macintosh Programmer Workshop) program-

ming environment. The core of KBlab is the Knuth–Bendix Completion Procedure (KB) [9,7,1],

extended to Unfailing Knuth–Bendix (UKB) [5], S–strategy [5] and inductive theorem proving

(IKB). IKB implements the Huet–Hullot method for inductionless induction [8] and the Fribourg

linear strategy [3]. The Knuth–Bendix ordering [9] and both the multiset extension and the

lexicographic extension of the recursive path ordering are available.

KBlab couples ease of use, portability and low cost of a small Macintosh application with

advanced features for experimenting in automated reasoning. It is possible to edit theories,

execute the Completion procedures, store the proof traces and even modify the search strategy,

all within the same environment.

Experimentation with search strategies is one of the new features of KBlab. The user chooses

the search strategy for selecting axioms during the Completion process. Strategy selection is a

key feature for a Completion based theorem prover, since it affects termination and the number

of critical pairs generated.

KBlab also allows the user to modify the strategy during a proof session, to direct it towards

a positive result. Nine different strategies are available: FIFO , LIFO , smallest components +

FIFO or LIFO , by size + FIFO or LIFO , ordered axioms + FIFO or LIFO , linear . The smallest

components and by size strategies are based on counting the number of symbols in the axiom

terms. The ordered axioms strategy extends to axioms the selected simplification ordering on

terms. The FIFO or LIFO strategy solves possible conflicts.

The results of the experimentation performed with KBlab are collected in a small data base

of solved problems. We have extensively tested KBlab on problems in combinatorial logic taken

from [12]. So far we have succeded in proving about 23% of them, including some rather large

examples. The availability of several strategies turned out to be a key feature in solving these

problems, since many of them could be solved, or solved in shorter time, by modifying the selected

strategy during the run (e.g. es.6 p.97, es.1 p.118, es.13 p.132, es.1 p.151, es.2 p.182). Search

strategies interaction allowed also to prove that Grau’s three axioms are sufficient to define a

ternary Boolean algebra (example 6, page 158 in [2]).

The following table shows results obtained from running KBlab on some problems with dif-

ferent search strategies.

Problem A: completion of the abstract loop axioms [9] by KB.

1



Problem B: completion of the central groupoid axioms ((X ∗Y )∗ (Y ∗Z) = Y, (X ∗ (X ∗X))∗Y =

X ∗ Y ) by UKB.

Problem C: proving by UKB that in group theory x2 = e implies commutativity.

Problem D: proving by S–strategy that in group theory x3 = e implies h(h(X,Y ), Y ) = e where

the commutator h is defined by h(X,Y ) = XYX−1Y −1.

Problem E: proving by S–strategy that given combinators t, tXY = Y X, and q, qXY Z = Y (XZ),

there exists a combinator b such that bXY Z = X(Y Z) [12].

Problem F: proving by S–strategy that given combinators b, bXY Z = X(Y Z) and m, mX = XX,

for all X exists Y such that XY = Y , i.e. a fixed point [12,11].

Problem G: proving by S–strategy that given combinators b, bXY Z = X(Y Z) and s2, s2XY Z =

XZ(Y Y ), for all X exists Y such that XY = Y , i.e. a fixed point [12,10].

2



Experiments with search strategies in KBlab

smallest smallest by by ordered ordered

FIFO LIFO compo- compo- size size axioms axioms

nents nents FIFO LIFO FIFO LIFO

FIFO LIFO

6 6 6 6 6 6 6 6

A 40 40 41 41 41 41 41 41

KB 9 10 10 10 10 10 10 10

14 14 14 14 14 14 14 14

1.20 1.20 1.20 1.20 1.20 1.20 1.35 1.32

2 2 2 2 2 2 2 2

B 891 320 342 320 342 709 318

UKB 43 ↑ 29 37 29 37 40 25

6 6 6 6 6 6 6

101.92 22.13 24.25 23.28 26.98 78.67 26.93

5 5 5 5 5 5 5 5

C 89 24 33 30 33 30 30 30

UKB 15 10 11 10 11 10 10 10

13 11 11 11 11 11 11 11

4.80 1.12 1.42 1.25 1.42 1.22 1.03 1.02

5 5 5 5 5 5 5 5

D 405 401 248 401 248

S 65 ↑ 76 51 76 51 ↑ ↑
36 55 37 55 37

102.53 136.05 41.28 135.93 41.35

3 3 3 3 3 3 3 3

E 119 55 35

S 101 ↑ 49 35 ↑ ↑ ↑ ↑
105 53 39

352.17 51.58 25.28

3 3 3 3 3 3 3 3

F 9 22 21 22 22

S 9 ↑ 20 ↑ 19 ↑ 20 20

12 20 19 20 20

1.33 6.78 6.65 6.87 6.90

3 3 3 3 3 3 3 3

G 18 2 2 2 2

S 16 2 2 2 ↑ 2 ↑ ↑
19 5 5 5 5

7.38 0.13 0.20 0.15 0.13

Each entry gives, in order, the number of axioms in the input, the number of critical pairs

3



generated, the number of non trivial critical pairs generated, the number of axioms in the output

and the running time in seconds on the Macintosh II. The ↑ entry means that the prover was

interrupted after running without yielding an answer for a much longer time than that required

by the same problem with other strategies. The KBO ordering was selected on problems A, C,

D, E, F and the RPO ordering on problems B and G.

All but the first problem in the table above turned out to be strongly sensitive to the different

strategies. Problem E was the hardest one: only three search strategies lead KBlab to find

the solution in a reasonable time. The smallest components with LIFO strategy gave a very

good result, whereas the FIFO strategy required a much longer time. The running time of the

FIFO strategy on this problem was higher than that on problems B and D although in these

two examples KBlab generated many more critical pairs, because equations generated in solving

problem E involved very long terms.

The FIFO strategy yielded a result on all the listed problems, but it was always slower than

the others strategies with the exception of problem F. The LIFO strategy halted only on problems

A, C and G. Both strategies are very useful for experimentation: the former is a safe, exhaustive

strategy; the latter is certainly not fair, but when it works it can yield very good results, as shown

by examples C and G, where it yielded the fastest running time.

The ordered axioms strategy worked very well on example C but not in cases D, E, F. Moreover

its behaviour on problem B was affected by the choice between FIFO and LIFO as strategy to solve

conflicts among axioms having the same position in the ordering. The four smallest components

and by size strategies behaved very similarly on examples A, B and C. The choice of FIFO or

LIFO made a significant difference in problems D and F. Strategies in the LIFO family were faster

on problem D, but they did not halt on problem F, because they are not fair. It is interesting to

note that, the ordered axioms strategy, the only strategy which orders the terms and the axioms

coherently, did not fare as well as we had expected.

Acknowledgements

KBlab has been developed at Dipartimento di Scienze dell’Informazione, Università degli Studi

di Milano. Jieh Hsiang suggested several improvements to KBlab and its presentation and gave

many interesting problems for testing. The experimentation done with KBlab while the first

author was visiting Laboratoire de Recherche en Informatique, Université de Paris Sud at Orsay,

contributed to improve it significantly: we thank Jean Pierre Jouannaud and Emmanuel Kounalis.

References

[1] L.Bachmair, N.Dershowitz, J.Hsiang – Orderings for Equational Proofs

In Proceedings 1st Annual IEEE Symp. on Logic in Computer Science, 346–357, Cambridge, MA,

June 1986

[2] L. Fribourg – A superposition oriented theorem prover

J. of Theoretical Computer Science, Vol. 35, 129–164, 1985

[3] L.Fribourg – A Strong Restriction to The Inductive Completion Procedure

4



In Proceedings 13th Int. Conf. on Automata, Languages and Programming, Rennes, France, July

1986, Lecture Notes in Computer Science 226, 1986

[4] Glickfield, R.Overbeek – A Foray Into Combinatory Logic

J. of Automated Reasoning, Vol. 2, No. 4, Dec. 1986

[5] J.Hsiang, M.Rusinowitch – On Word Problems in Equational Theories

In Th.Ottman ed., Proceedings 14th Int. Conf. on Automata, Languages and Programming,

Karlsrhue, W.Germany, July 1987, Lecture Notes in Computer Science 267, 1987

[6] J.Hsiang, J.Mzali – SbREVE User’s Guide

To appear as Technical Report L.R.I. Universitè de Paris Sud, Orsay, France

[7] G.Huet – A Complete Proof of Correctness of Knuth–Bendix Completion Algorithm

J. of Computer and System Sciences, Vol. 23, 11–21, 1981

[8] G.Huet, J.M.Hullot – Proofs by Induction in Equational Theories with Constructors

J. of Computer and System Sciences, Vol. 25, 239–266, 1982

[9] D.E.Knuth, P.Bendix – Simple Word Problems in Universal Algebras

In J.Leech ed., Proceedings of the Conf. on Computational Problems in Abstract Algebras,

Oxford, 1967, Pergamon Press, Oxford, 263–298, 1970

[10] B.McCune, L.Wos – Some Fixed Points Problems in Combinatory Logic

AAR Newsletter

[11] A.Ohsuga, K.Sakai – Refutational Theorem Proving for Equational Systems Based on Term

Rewriting

Technical Report COMP86–40, ICOT, 1986

[12] R.Smullyan – How to mock a mocking bird

Alfred A. Knopf, New York 1985

5


