SUPPORTING INFORMATION

Synthesis and biological evaluation of pyrazole-pyrimidones as a new class of correctors of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

Christian Vaccarin^{1,2}, Guido Veit³, Tamas Hegedus^{4,5}, Odalys Torres⁴, Adriana Chilin¹, Gergely L Lukacs^{3*} and Giovanni Marzaro^{1*}

¹Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
²Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland.
³Department of Physiology and Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada.
⁴Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary.
⁵HUN-REN Biophysical Virology Research Group, Hungarian Research Network, Budapest, 1052, Hungary.

*Corresponding Authors: Giovanni Marzaro (giovanni.marzaro@unipd.it) and Gergely L. Lukacs (gergely.lukacs@mcgill.ca)

Table of Contents

Table S1	Lowest energy pose scores for compounds 4172, 1 and 10 against each wt-CFTR.	page S2
Figure S1	Superimposition of cryo-EM CTR structures	page S3
Figure S2	Results from molecular dynamics simulations	page S4
Figure S3	Commercially available compounds added to the training set for computing the 3D-QSAR model	page S5
Figure S4	Statistics of the computed 3D-QSAR model	page S5
Method S1	List of commands used to compute the 3D-QSAR model	page S6
Figure S5	Dose-response curves reporting the 3xHA-F508del-CFTR PM density of the indicated compounds (24 hours, 37°C incubation) in combination with 2C	page S7
Table S2	EC_{50} values for the measured CFTR plasma membrane density	page S7
Figure S6	Chronic and acute effect on the function of F508del-CFTR	page S8
Figure S7	Mutant CFTR mRNA expression in CFBE410-	page S8
Figure S8	Allosteric correction of CFTR rare mutations	page S9
Figure S9	Additive effect of VX-445 (2 μ M) on the dose-dependent corrector effect elicited by 1 (left) or 10 (right) on F508del-CFTR PM density (n=3).	page S10
Appendix	¹ H and ¹³ C NMR spectra for tested compounds	page S11

Wt-CFTR	Score of	Binding	Score of 1	Binding	Score of	Binding
conformation	4172	site of	best pose	site of 1	10 best	site of
	best pose	4172	(Kcal/mol)	best	pose	10 best
	(Kcal/mol)	best		pose	(Kcal/mol)	pose
		pose				
1	-9.8 (3) ^a	b	-9.7 (2)	а	-10.5 (7)	а
2	-9.1 (10)	а	-9.2 (6)	а	-9.9 (9)	а
3	-9.4 (7)	а	-9.0 (8)	а	-8.6 (10)	С
4	-9.8 (4)	С	-9.4 (4)	b	-11.9 (3)	b
5	-9.6 (6)	а	-9.5 (3)	b	-12.0 (2)	а
6	-10.0 (2)	b	-9.3 (5)	С	-11.8 (4)	b
7	-10.7 (1)	b	-10.5 (1)	b	-12.1 (1)	b
8	-9.3 (9)	b	-8.9 (9)	b	-10.9 (5)	а
9	-9.7 (5)	а	-9.2 (6)	а	-10.5 (7)	b
10	-9.4 (7)	С	-8.6 (10)	С	-10.7 (6)	b

Table S1. Lowest energy pose scores for compounds **4172**, **1** and **10** against each wt-CFTR. Protein conformations were derived from clusterization of all-atoms molecular dynamics. ^aThe numbers between brackets indicate the overall rank of the score against the 10 conformations.

Figure S1. Superimposition of cryo-EM CFTR structures. PDB IDs: 6msm (red), 7sv7 (green), 8eiq (blue). Bound correctors (extracted from 8eiq) are highlighted as spheres. Later panels show the details of residues (showed as lines) surrounding VX-770, VX-445 and VX-661 (showed as sticks). Pairwise C α -RMSD values calculated after superimposition of the three CFTR structures are also reported.

Figure S2. Results from molecular dynamics simulations. (A) The volume of the identified pocket "b" was increased in F508del compared to wild type. The pocket volume in the conformations merged from six trajectories (300-500 ns) was calculated using the MDpocket software. (B, C) The distance of NBD1 from NBD2 and CL4 is slightly increased upon F508del. The distance between the center of geometry of residues forming the pocket were calculated in frames from the sub-trajectories. The mean of the distance values were plotted. Residues within 4.5 Å from the docked molecule in the centroid structure were defined as pocket-forming residues (NBD1: 492, 494, 496, 497, 543, and 544; CL4: 1060, 1063, 1064, NBD2: 1293, 1343, 1344, 1351). (D, E) The increasing distance and pocket volume provides also space for amino acid side chains to flip into the pocket. While the distance observed between C α of W496 and K1060 is clearly increased in F508del-CFTR (D), a significant portion of F508del conformations exhibits a decreased distance between F494 and W1063 (E).

Figure S3. Commercially available compounds added to the training set for computing the 3D-QSAR model.

Figure S4. Statistics of the computed 3D-QSAR model. (A) correlation in training (r^2) and in internal validation (q^2) as a function of the number of principal components (PCs). The optimal number of PCs (5) has been chosen basing on the first maximum value of q^2 . (B) correlation between actual and predicted PM density for the model with 5 PCs. Blue dots indicate the training set. Red dots indicate the 4 new compounds (**37-40**) not included in the training set.

Method S1: List of commands used to compute the 3D-QSAR model

box outgap=2

calc_field type=vdw

calc_field type=mm_ele diel_dep=DIST diel_const=4 smooth_probe=YES

cutoff type=min level=-10

cutoff type=max level=10

zero type=all level=0.05

sdcut level=0.1

scale_x_vars type=BUW

pls pc=10

cv pc=10 type=loo

```
cv pc=10 type=lmo groups=8 runs=20
```

srd pc=5 collapse=YES critical_distance=1 collapse_distance=2 type=WEIGHTS

ffdsel pc=5 type=lmo runs=20 percent_dummies=20 use_srd_groups=YES combination_variable_ratio=2 fold_over=NO

remove_x_vars type=FFDSEL

nlevel

remove_x_vars type=NLEVEL

scale_x_vars type=BUW

Figure S5. Dose-response curves reporting the 3xHA-F508del-CFTR PM density of the indicated compounds (24 hours, 37° C incubation) in combination with 2C (VX-809 and 3151, 3µM and 10µM, respectively) determined by PM-ELISA assay.

Compound	PM density	EC_{50}	Function EC ₅₀ (µM)
	(µM)		
1	1.79 ± 0.32		0.73 ± 0.38
10	6.03 ± 3.12		6.18 ± 3.21
38	6.16 ± 3.69		4.07 ± 2.28
39	3.05 ± 0.82		2.15 ± 1.01
4172	6.83 ± 0.86		1.85 ± 0.21

Table S2. EC_{50} values for the measured CFTR plasma membrane density (ELISA assay) and CFTR function (YFP quenching kinetic) curves. Data are reported as means \pm s.e.m. of at least three independent experiments.

Figure S6. Chronic and acute effect on the function of F508del-CFTR. (A) Traces for the effect of indicated corrector combinations (10µM compounds + 2C; 2µM VX-445 / 3µM VX-661) on the Isc of F508del CFTR in CFBE410 - cells. CFTR-mediated short circuit currents (Isc) were induced by sequential acute addition of increasing concentrations of forskolin (Fsk) and VX-770 (10 µM each), followed by CFTR inhibition with CFTR inh-172 (20 µM) in the presence of a basolateral to apical chloride gradient after basolateral permeabilization with amphotericin B. (B) Traces for acute effect of correctors to the 20 µM forskolin activated and 10 µM VX-770 potentiated Isc of 2C rescued F508del-CFTR.

Figure S7. Mutant CFTR mRNA expression in CFBE41o- determined by qPCR and expressed as percent of wt-CFTR mRNA level (n = 3). Data in are means \pm s.e.m. of three independent experiments

Figure S8. Allosteric correction of CFTR rare mutations. S13F (top), S492F (middle), and F508del (bottom) -CFTR PM density, measured by cell surface ELISA in CFBE41o- cells upon exposure to the reported dual corrector combinations (24 h, VX-445 = 2 μ M; VX-809 and VX-661 = 3 μ M; novel compounds and **3151** = 10 μ M,) in comparison to the calculated additivity of single corrector effects (n=3). Data are means ± s.e.m. of three independent experiments. *p <0.05, **p < 0.01 by two-tailed Student's t-test between experiments pairs.

Figure S9. Additive effect of VX-445 (2 μ M) on the dose-dependent corrector effect elicited by 1 (left) or 10 (right) on F508del-CFTR PM density (n=3). The maximum effects (% if the wt) as well as the EC50 values are reported in the graphs.

Appendix: ¹H and ¹³C NMR spectra for tested compounds

S12

