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Abstract
Background and purpose: Boxing is associated with a high risk of head injuries and in-
creases the likelihood of chronic traumatic encephalopathy. This study explores the ef-
fects of sub-concussive impacts on boxers by applying both linear and nonlinear analysis 
methods to electroencephalogram (EEG) data.
Methods: Twenty-one boxers were selected (mean ± SD, age 28.38 ± 5.5 years; weight 
67.55 ± 8.90 kg; years of activity 6.76 ± 5.45; education 14.19 ± 3.08 years) and divided into 
‘beginner’ and ‘advanced’ groups. The Montreal Cognitive Assessment and the Frontal 
Assessment Battery were administered; EEG data were collected in both eyes-open (EO) 
and eyes-closed (EC) conditions during resting states. Analyses of EEG data included nor-
malized power spectral density (nPSD), power law exponent (PLE), detrended fluctuation 
analysis and multiscale entropy. Statistical analyses were used to compare the groups.
Results: Significant differences in nPSD and PLE were observed between the beginner 
and advanced boxers, with advanced boxers showing decreased mean nPSD and PLE 
(nPSD 4–7 Hz, p = 0.013; 8–13 Hz, p = 0.003; PLE frontal lobe F3 EC, p = 0.010). Multiscale 
entropy analysis indicated increased entropy at lower frequencies and decreased en-
tropy at higher frequencies in advanced boxers (F3 EC, p = 0.024; occipital lobe O1 EO, 
p = 0.029; occipital lobe O2 EO, p = 0.036). These changes are similar to those seen in 
Alzheimer's disease.
Conclusion: Nonlinear analysis of EEG data shows potential as a neurophysiological bio-
marker for detecting the asymptomatic phase of chronic traumatic encephalopathy in 
boxers. This methodology could help monitor athletes' health and reduce the risk of fu-
ture neurological injuries in sports.

K E Y W O R D S
boxing concussion, chronic traumatic encephalopathy, dementia, nonlinear EEG, sub-concussion, 
traumatic brain injuries

https://doi.org/10.1111/ene.16411
www.wileyonlinelibrary.com/journal/ene
https://orcid.org/0000-0003-1983-0146
https://orcid.org/0000-0001-5109-9483
mailto:
https://orcid.org/0000-0002-1549-3851
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alberto.priori@unimi.it
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fene.16411&domain=pdf&date_stamp=2024-09-14


2 of 8  |     DE DONATO et al.

INTRODUC TION

Sports-related head injuries are prevalent across numerous sports 
[1]. Amongst these, athletes in contact sports such as American 
football, rugby, boxing, hockey and soccer face a disproportion-
ately high risk of brain damage and pathological disorders related to 
sports participation [2]. In particular, a study of high school athletes 
in the United States found that American football had the highest 
incidence of head injuries [3]. Boxing is also considered as a high-
risk sport, with an estimated 17% of former professional boxers 
showing signs of chronic brain injury due to repeated trauma [4]. 
Over the last century, growing economic interest in sports has led to 
increased institutional focus on the safety and public health of ath-
letes. This attention has coincided with a reported increase in brain 
trauma injuries [5,6]. Annually, over 1.5 million Americans suffer a 
traumatic brain injury, predominantly classified as a concussion or 
mild traumatic brain injury [7]. Of particular concern is brain damage 
caused by single traumatic events in a sports context (sports-related 
concussions).

In the area of sports-related concussions, repeated head impacts 
are a major concern for athletes [8–10] and are associated with the 
development of chronic traumatic encephalopathy (CTE) [11], a 
complex neurodegenerative disorder widely recognized as one of 
the major chronic diseases stemming from contact sports and mar-
tial arts [12]. The first acknowledgement of CTE dates back to 1928 
when Harrison Martland described a syndrome he called ‘punch 
drunk’, in which professional boxers exhibited behavioural problems 
and signs of mental deterioration [13]. Subsequently, the term ‘de-
mentia pugilistica’ (DP) was introduced by Millspaugh [14] in 1937 to 
extend the concept to other contexts beyond boxing.

Chronic traumatic encephalopathy encompasses a broad spec-
trum of neurological disorders, often characterized by cognitive 
decline, personality changes, behavioural changes, language deficits 
and motor impairments such as dysarthria, cerebellar ataxia, parkin-
sonism and hyperreflexia. Cognitive symptoms may include memory 
loss, attention deficits, slowed information processing, confusion 
and irritability [15]. Recent studies suggest that CTE shares clinical 
symptoms with Parkinson's disease, Alzheimer's disease (AD), and 
mild cognitive impairment (MCI) [16–19].

The epidemiological dimensions of CTE remain largely unclear 
due to the limitations of current diagnostic systems. Nevertheless, 
the influence of concussions and sub-concussions on cognitive and 
physiological decline is well established [20,21]; in fact, athletes ex-
posed to head impacts are at increased risk of developing neuro-
degenerative diseases such as mild traumatic brain injury, CTE or 
DP [22]. A quantitative electroencephalogram (EEG) study showed 
that patients with a history of traumatic brain injury had altered EEG 
patterns compared to healthy subjects, with increased theta band 
power and decreased alpha band activity [23].

A nonlinear analysis of EEG signals in American football athletes, 
conducted by Munia et al., examined the effects of concussions [24]. 
This study found differences in EEG abnormalities in athletes with 
a history of concussion compared to those without, using nonlinear 

metrics such as approximate entropy and the Hurst exponent. These 
findings suggest that nonlinear data analysis could be an effective 
predictor of repeated head impact accumulation in asymptomatic 
subjects.

Consequently, our research aims to explore the effects of 
concussion in boxers using both linear and nonlinear EEG data 
analysis. Besides traditional frequency content analysis via nor-
malized power spectral density (nPSD), three different nonlinear 
methods were used: (i) the power law exponent (PLE) in contrast 
to linear nPSD results; (ii) the detrended fluctuation analysis 
(DFA) alongside the Hurst exponent; and (iii) multiscale entropy 
(MSE) compared to the approximate entropy measure. Comparing 
these nonlinear approaches with previously documented findings 
[23,24], the aim was to elucidate additional insights provided by 
nonlinear EEG analysis. These findings could lead to future de-
velopments that include potential cost reductions in clinical set-
tings, enhanced understanding of the disease's pathogenesis and 
progression, and the ability to predict the onset of a malignant 
process, thus enabling early preventive interventions to halt pro-
gression or inform decisions regarding the continuation of an ath-
letic career.

METHODS

Subjects and study design

Twenty-one boxers across different weight classes and years of 
activity were selected for this study, with the following char-
acteristics (mean ± SD): age, 28.38 ± 5.5 years; weight class, 
67.55 ± 8.90 kg; years of activity, 6.76 ± 5.45 years; education 
level, 14.19 ± 3.08 years.

The participants were divided into two groups. The advanced 
group comprised boxers who had participated in at least 25 fights 
and had a minimum of 5 years of boxing experience (mean ± SD): 
age, 30.60 ± 5.02 years; weight class, 66.25 ± 8.19 kg; years of 
activity, 10.55 ± 5.78 years; education level, 14.50 ± 4.12 years. 
The beginners group comprised individuals with (mean ± SD) age, 
26.36 ± 5.33 years; weight class, 66.73 ± 9.73 kg; years of activity, 
3.32 ± 1.38 years; education level, 13.91 ± 1.87 years.

An interview was conducted to document the number of concus-
sions sustained during their careers (concussion count 0.91 ± 0.83). 
Cognitive assessments were also administered to confirm that the 
boxers were cognitively asymptomatic, using the Montreal Cognitive 
Assessment (MoCA) (24.46 ± 2.30) and the Frontal Assessment 
Battery (FAB) (16.37 ± 1.77); the scores were corrected according to 
age and education [25,26].

EEG recordings

The EEG signals were recorded using the International 10–20 
System, with 19 electrodes placed on the subject's scalp. Two 
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sessions of resting state EEG were recorded: a 7-min eyes-closed 
(EC) session and another 7-min eyes-open (EO) session. The 
ground electrode was positioned at the frontal central channel 
(FCz), and a mastoid electrode served as a reference. At the same 
time, electrooculogram activity was collected using a bipolar elec-
trode to mitigate EEG artefacts caused by eye movements. The 
contact impedance of each electrode was kept below 10 kΩ and 
balanced across channels (time constant 0.3 s). The EEG data were 
collected at a sampling rate of 2048 Hz and digitized using a 16-bit 
analogue-to-digital converter.

All data underwent off-line analysis in MATLAB (version 9.1, 
The Mathworks, Natick, MA, USA), where they were preprocessed 
to eliminate movement and power-line artefacts, thereby enhanc-
ing the signal's informative portions and minimizing the influence of 
electrocardiographic and electrooculogram activities. Additionally, 
a fourth-order Butterworth notch filter described as zero-phase 
was employed using the ‘filtfilt’ MATLAB function to prevent phase 
distortion and remove line noise at 50 Hz. A normalization proce-
dure was implemented to reduce the variability of the EEG signals. 
Specifically, the signals were band-pass filtered using a fourth-order 
Butterworth filter with cut-off frequencies from 0.5 to 120 Hz, and 
artefacts were removed using independent components analysis.

Linear and nonlinear analyses

The preprocessed EEGs were divided into 60-s epochs and both lin-
ear and nonlinear measures were computed independently for all 
electrodes and averaged across the epochs. To facilitate the inter-
pretation of the results, for each selected parameter consideration 
was given to (i) the average value on the whole electrodes and (ii) 
the average value on the electrodes divided into cortical regions: left 
frontal (LF: Fp1–F3–F7), right frontal (RF: Fp2–F4–F8), left temporal 
(LT: T3–T5), right temporal (RT: T4–T6), left centro-temporal (LCT: 
C3–T3), right centro-temporal (RCT: C4–T4), left parieto-occipital 
(LPO: P3–O1), right parieto-occipital (RPO: P4–02), left fronto-
temporal (LFT: F3–F7–T3–T5), right fronto-temporal (RFT: F4–F8–
T4–T6) and z-axis (Z: Fz–Cz–Pz).

The nPSD was estimated within the � (2–4 Hz), � (4–8 Hz), � 
(8–13 Hz) and � (13–30 Hz) frequency ranges. In detail, the power 
spectrum (PSD) was computed in the 1–45 Hz frequency band by 
applying the modified Welch periodogram [27] on 1-s Hamming 
windowed segments with 50% overlap, and the nPSD measure was 
obtained as follows:

where F2 − F1 represents the frequency range over which the total 
spectrum was computed, that is, 1–45 Hz, f1 and f2 are the boundary 
frequencies over which the specific nPSD measure was estimated, and 
PSD(f) is the PSD at the frequency f  [28].

On the other hand, the selected nonlinear algorithms considered 
are the following.

	 (i)	PLE describes changes in the scale-free behaviour of the signal. 
The measure is obtained from the slope of the regression line 
computed on the PSD of the EEGs in log–log coordinates in the 
frequency bands 1–3.5 Hz, 4–7 Hz, 8–12 Hz and 13–35 Hz and 
goes beyond the classic linear measurement. Indeed, the PLE 
represents the contribution of the non-oscillatory components 
in the EEGs, usually not highlighted by the linear spectral analy-
sis performed through the PSD. In order to highlight such com-
ponents and to avoid the influence of those characterized by 
rhythmic behaviour, a peak removal operation was performed 
as suggested by the work of Colombo et al. [29].

	(ii)	 DFA describes the degree of signal self-similarity expressed as 
the slope of a regression line calculated from the root-mean-
square fluctuations of the signals in log–log coordinates. The 
fluctuations are extracted from the integrated and detrended 
signals at different observation windows [30]. The regression 
line is then computed by considering in log–log coordinates how 
the fluctuations change against the increasing size of the obser-
vation windows.

	(iii)	 It is worth underlining that, from an applicative point of view, 
what seems to reflect neuronal activity in its dynamic nature are 
the so-called long range temporal correlations (LRTC) present in 
the time series [31]. For this reason, it was decided to estimate 
the LRTC measure, which consists of applying the DFA proce-
dure to the amplitude envelopes of the EEG oscillatory activity, 
extracted by applying the band-pass filter (finite impulse re-
sponse filter, order 2000 and Hamming window) in the specific 
frequency band of interest and then the Hilbert transform [31]. 
In this case, the considered frequency ranges were � (4–8 Hz), � 
(8–13 Hz), low-� (13–20 Hz) and high-� (20–30 Hz).

	(iv)	MSE estimates the sample entropy index (SampEn) on different 
scales to quantify the degree of intrinsic randomness in the sig-
nals. The SampEn computes the conditional probability that two 
similar sequences of m points remain similar at point m + 1 [32]. 
Thus, by considering different EEG sequences and by comput-
ing SampEn for each of them [33], the MSE curve is obtained 
and can be evaluated in terms of slopes. In detail, the sequences 
result through the coarse-grained procedure [33], a method that 
generates a new time series by considering the average of � con-
secutive samples of the original signal, where � is defined as a 
scale factor. As the � value increases, different sequences are 
obtained. In this work, the number of scale factors considered 
is 30 and the MSE parameter was evaluated both at low (l-MSE 
with 𝜏 < 8) and at high (h-MSE with 𝜏 > 8) scale factors, whilst 
the parameters for the SampEn application are set to m = 2 and 
r = 0.2 times the standard deviation of the given signals.

Statistical analysis

First, an analysis was conducted to determine whether there were 
differences between groups based on neuropsychological data and 
level of expertise. In this context, an independent samples t test 

nPSD =
1

F2 − F1 ∫
f2

f1

PSD(f)df
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(Mann–Whitney U) was used for the nonparametric distribution 
(Shapiro–Wilk, p < 0.05). The Mann–Whitney U test was used to 
compare the two groups: beginners and advanced.

A nonlinear analysis was applied using LRTC within the frequency 
bands 4–7 Hz, 8–12 Hz, 13–20 Hz and 21–30 Hz for both EO and EC 
conditions. Each channel (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, 
T4, T5, P3, Pz, P4, T6, O1, O2) was analysed and the Mann–Whitney 
U test was applied. The same methods were used to analyse MSE at 
low frequencies (l-MSE) and high frequencies (h-MSE), as well as in 
PLE. Statistical significance was set at α = 0.05.

RESULTS

No significant differences were found in cognitive tests between 
the two groups (MoCA p = 0.287; FAB p = 0.911). However, signifi-
cant differences between groups were observed in the nPSD in 
the frequency ranges 2–4 Hz, 4–7 Hz and 8–13 Hz during the EC 
condition. The mean PSD decreased in advanced boxers across all 
channels within the 4–7 Hz and 8–13 Hz frequency bands (p = 0.013, 
p = 0.003) (Figure  1) and in LF (p = 0.038), LFT (p = 0.023) and Z 
(p = 0.028) in the 1–3.5 Hz frequency band (Figure 2). No significant 
differences in nPSD were found during the EO condition, whilst PLE 
in the F3 channel decreased during the EC condition in advanced 
boxers compared to beginners (F3 p = 0.010) (Figure 3). No correla-
tion was found between the FAB test and the F3 channel in the PLE 
EC condition (Spearman's rho 0.260, p value 0.866). Regarding LRTC, 
a significant decrease was observed in the 4–7 Hz and 13–20 Hz fre-
quency bands in advanced boxers, especially in the F3 channel dur-
ing the EO condition (4–7 Hz, F3 p = 0.036; 13–20 Hz, F3 p = 0.036) 

(Figure 4). No significant differences were observed in LRTC during 
EC EEG recording. Analysis of the MSE for each channel revealed a 
significant increase in low frequencies within the advanced group, 
which was particularly evident at the F3 and Fp1 electrodes during 
the EC condition (F3 p = 0.024; Fp1 p = 0.043) (Figure 5). Conversely, 
in the advanced group a decrease in high frequencies was observed 
at the O1 and O2 electrodes during the EO condition (O1 p = 0.029; 
O2 p = 0.036) (Figure 6).

DISCUSSION

The goal of our research was to investigate the effects of concussion 
in boxers using linear and nonlinear EEG data analysis. It was found 
that mean PSD and PLE significantly decreased in advanced boxers, 
whilst MSE increased at low frequencies and decreased at high fre-
quencies compared to beginner boxers.

Nonlinear analysis of brain signals showed similar changes to 
those observed in the early stages of AD [34], which may have simi-
lar brain signals to asymptomatic boxers. AD is a neurodegenerative 
dementia and includes many symptoms common to DP [30]. In AD 
patients, local synaptic disruptions, due to the aggregation of patho-
logical proteins in the brain, form amyloid plaques and neurofibrillary 
tangles [35,36], which can lead to impaired information processing 
between neurons. Vyšata et al. found that an overall EEG decrease in 
the power law exponent was associated with AD [37]. Furthermore, 
Stam et al. observed a decrease in synchronization and spontaneous 
fluctuations in the lower alpha and beta bands in AD patients [38].

The decrease in LRTC in the frequency bands 4–7 Hz and 
13–20 Hz in channel F3 of advanced boxers could represent greater 

F I G U R E  1 nPSD, all channels, 4–7 Hz 
and 8–13 Hz (p = 0.013, p = 0.003).

F I G U R E  2 nPSD, 3.5 Hz frequency band LF (p = 0.038), LFT (p = 0.023) and Z (p = 0.028).
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regularity of the signal. A loss of complexity in the biological signal 
may represent less information transmission between neurons in AD 
[35,36].

During the linear analysis of the nPSD, decreased mean power 
was found in the advanced group during the EC condition at the 
2–4 Hz (LF, LFT, Z), 4–7 Hz and 8–13 Hz frequency bands (all chan-
nels). These results are comparable to the decreases in spectral den-
sity observed in AD. Changes in the 8–13 Hz band, observed during 
the EC condition, can be explained, at least in part, by the well-
known desynchronization of alpha power upon opening the eyes. 
However, in this study, two different groups of boxers with different 
experiences were compared, and some of the nonlinear analyses 
performed are not influenced by PSD at all.

Multiscale entropy methods have been used as potential bio-
markers of AD pathology and cognitive decline [39,40]. Entropy in 
EEG signals from AD patients was observed to decrease on short 
scales but increase on long scales compared to healthy subjects. The 
lower entropy values in AD and MCI showed a relative conservation 
of coarse-grained entropy and a selective loss in fine-grained en-
tropy [39]. These multiscale temporal features could be related to 
the functional interaction and neural structural limitations observed 
in individuals with dementia [41].F I G U R E  3 PLE, eyes closed F3 (p = 0.010).

F I G U R E  4 LRTC, F3 eyes open, 4–7 Hz 
(p = 0.036); 13–20 Hz (p = 0.036).

F I G U R E  5 MSE low frequencies, eyes 
closed Fp1 (p = 0.043); F3 (p = 0.024).

F I G U R E  6 MSE high frequencies, eyes 
open O2 (p = 0.029); O1 (p = 0.036).
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Two weighted scales were created to measure the low frequen-
cies (1–8 short scales) and the high frequencies (9–20 long scales). 
The l-MSE in advanced boxers increased the flattening of the fine-
grained entropy slope, whilst in h-MSE the coarse-grained entropy 
in advanced boxers decreased the steepness and complexity; these 
results are consistent with those of Mizuno et al. [39].

In advanced boxers, a significant increase in l-MSE was found, 
especially in the frontal lobe F3, and a decrease in h-MSE in the oc-
cipital lobes O1 and O2, whilst in AD the affected area is mostly 
in the temporal regions. Exact similarities with the predementia 
stage could not be determined. In the MCI stage, short-term mem-
ory associated with the medial temporal lobe is reduced, but the 
lateral temporal and parietal lobes are also affected. In the mod-
erate stage of AD, the similarities increase compared to boxers in 
advanced stage. In fact, there is a loss of complexity of the frontal 
lobe in moderate AD, and the occipital lobe also deteriorates in sev-
eral AD cases [42,43]. The greatest regularity and loss of complexity 
were associated with a decrease in brain dynamic complexity and, 
as expected, with a decrease in EEG signal complexity from sub-
jective cognitive impairment to MCI to AD [44]. Changes in these 
EEG signals originating from frontal areas can also be explained by 
the pathophysiology of the so-called DP, in which the frontal white 
matter showed signs of glial tau inclusions, involving both astrocytes 
and oligodendrocytes that were involved and secondarily spread to 
other brain regions [45,46].

From a neuropsychological perspective, no significant differ-
ences in cognitive tests between the two groups were found; the 
lack of differences could be due to a ceiling effect. Furthermore, it 
was interesting that the athletes in our study were asymptomatic, 
and no correlation was found between the F3 channels in the PLE 
EC condition and the FAB test. Previous imaging and neurophysio-
logical studies have shown that white matter and neurophysiological 
changes occur in tackle football players in the absence of cognitive 
and neuromotor impairments, suggesting that clinical neuropsy-
chological deficits are more difficult to detect [47]. In addition, the 
FAB test is sensitive to the progression of the disease and is there-
fore suitable for monitoring the clinical progression of dementia. 
However, it may not be sensitive for detecting CTE in asymptomatic 
athletes. Therefore, more sophisticated neuropsychological testing 
should be used. In conclusion, our data suggest that nonlinear EEG 
data analysis could be a potential neurophysiological biomarker for 
the asymptomatic phase of CTE and could be useful for monitoring 
health status during the career of athletes, to reduce the risk of fu-
ture neurological injuries.
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