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Abstract
Background and purpose: Boxing is associated with a high risk of head injuries and in-
creases the likelihood of chronic traumatic encephalopathy. This study explores the ef-
fects	of	sub-	concussive	impacts	on	boxers	by	applying	both	linear	and	nonlinear	analysis	
methods	to	electroencephalogram	(EEG)	data.
Methods: Twenty-	one	 boxers	 were	 selected	 (mean ± SD,	 age	 28.38 ± 5.5 years;	 weight	
67.55 ± 8.90 kg;	years	of	activity	6.76 ± 5.45;	education	14.19 ± 3.08 years)	and	divided	into	
‘beginner’	 and	 ‘advanced’	 groups.	The	Montreal	Cognitive	Assessment	and	 the	Frontal	
Assessment	Battery	were	administered;	EEG	data	were	collected	in	both	eyes-	open	(EO)	
and	eyes-	closed	(EC)	conditions	during	resting	states.	Analyses	of	EEG	data	included	nor-
malized	power	spectral	density	(nPSD),	power	law	exponent	(PLE),	detrended	fluctuation	
analysis	and	multiscale	entropy.	Statistical	analyses	were	used	to	compare	the	groups.
Results: Significant	differences	in	nPSD	and	PLE	were	observed	between	the	beginner	
and	 advanced	boxers,	with	 advanced	boxers	 showing	decreased	mean	nPSD	and	PLE	
(nPSD	4–7 Hz,	p = 0.013;	8–13 Hz,	p = 0.003;	PLE	frontal	lobe	F3	EC,	p = 0.010).	Multiscale	
entropy analysis indicated increased entropy at lower frequencies and decreased en-
tropy	at	higher	frequencies	in	advanced	boxers	(F3	EC,	p = 0.024;	occipital	lobe	O1	EO,	
p = 0.029;	occipital	 lobe	O2	EO,	p = 0.036).	These	changes	are	 similar	 to	 those	 seen	 in	
Alzheimer's	disease.
Conclusion: Nonlinear	analysis	of	EEG	data	shows	potential	as	a	neurophysiological	bio-
marker for detecting the asymptomatic phase of chronic traumatic encephalopathy in 
boxers.	This	methodology	could	help	monitor	athletes'	health	and	reduce	the	risk	of	fu-
ture neurological injuries in sports.

K E Y W O R D S
boxing	concussion,	chronic	traumatic	encephalopathy,	dementia,	nonlinear	EEG,	sub-	concussion,	
traumatic brain injuries
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INTRODUC TION

Sports-	related	head	 injuries	are	prevalent	across	numerous	sports	
[1].	 Amongst	 these,	 athletes	 in	 contact	 sports	 such	 as	 American	
football, rugby, boxing, hockey and soccer face a disproportion-
ately high risk of brain damage and pathological disorders related to 
sports participation [2]. In particular, a study of high school athletes 
in	 the	United	States	found	that	American	football	had	the	highest	
incidence of head injuries [3].	Boxing	 is	also	considered	as	a	high-	
risk sport, with an estimated 17% of former professional boxers 
showing signs of chronic brain injury due to repeated trauma [4]. 
Over the last century, growing economic interest in sports has led to 
increased institutional focus on the safety and public health of ath-
letes. This attention has coincided with a reported increase in brain 
trauma injuries [5,6].	Annually,	over	1.5	million	Americans	suffer	a	
traumatic brain injury, predominantly classified as a concussion or 
mild traumatic brain injury [7]. Of particular concern is brain damage 
caused	by	single	traumatic	events	in	a	sports	context	(sports-	related	
concussions).

In	the	area	of	sports-	related	concussions,	repeated	head	impacts	
are a major concern for athletes [8–10] and are associated with the 
development	 of	 chronic	 traumatic	 encephalopathy	 (CTE)	 [11], a 
complex neurodegenerative disorder widely recognized as one of 
the major chronic diseases stemming from contact sports and mar-
tial arts [12].	The	first	acknowledgement	of	CTE	dates	back	to	1928	
when Harrison Martland described a syndrome he called ‘punch 
drunk’, in which professional boxers exhibited behavioural problems 
and signs of mental deterioration [13].	Subsequently,	the	term	‘de-
mentia	pugilistica’	(DP)	was	introduced	by	Millspaugh	[14]	in	1937	to	
extend the concept to other contexts beyond boxing.

Chronic traumatic encephalopathy encompasses a broad spec-
trum of neurological disorders, often characterized by cognitive 
decline, personality changes, behavioural changes, language deficits 
and motor impairments such as dysarthria, cerebellar ataxia, parkin-
sonism and hyperreflexia. Cognitive symptoms may include memory 
loss, attention deficits, slowed information processing, confusion 
and irritability [15].	Recent	studies	suggest	that	CTE	shares	clinical	
symptoms	with	Parkinson's	 disease,	Alzheimer's	 disease	 (AD),	 and	
mild	cognitive	impairment	(MCI)	[16–19].

The	 epidemiological	 dimensions	 of	CTE	 remain	 largely	 unclear	
due	to	the	limitations	of	current	diagnostic	systems.	Nevertheless,	
the	influence	of	concussions	and	sub-	concussions	on	cognitive	and	
physiological decline is well established [20,21]; in fact, athletes ex-
posed to head impacts are at increased risk of developing neuro-
degenerative	 diseases	 such	 as	mild	 traumatic	 brain	 injury,	 CTE	 or	
DP [22].	A	quantitative	electroencephalogram	(EEG)	study	showed	
that	patients	with	a	history	of	traumatic	brain	injury	had	altered	EEG	
patterns compared to healthy subjects, with increased theta band 
power and decreased alpha band activity [23].

A	nonlinear	analysis	of	EEG	signals	in	American	football	athletes,	
conducted by Munia et al., examined the effects of concussions [24]. 
This	study	found	differences	 in	EEG	abnormalities	 in	athletes	with	
a history of concussion compared to those without, using nonlinear 

metrics such as approximate entropy and the Hurst exponent. These 
findings suggest that nonlinear data analysis could be an effective 
predictor of repeated head impact accumulation in asymptomatic 
subjects.

Consequently, our research aims to explore the effects of 
concussion	 in	 boxers	 using	 both	 linear	 and	 nonlinear	 EEG	 data	
analysis. Besides traditional frequency content analysis via nor-
malized	power	spectral	density	 (nPSD),	 three	different	nonlinear	
methods	were	used:	(i)	the	power	law	exponent	(PLE)	in	contrast	
to	 linear	 nPSD	 results;	 (ii)	 the	 detrended	 fluctuation	 analysis	
(DFA)	 alongside	 the	Hurst	 exponent;	 and	 (iii)	multiscale	 entropy	
(MSE)	compared	to	the	approximate	entropy	measure.	Comparing	
these nonlinear approaches with previously documented findings 
[23,24], the aim was to elucidate additional insights provided by 
nonlinear	 EEG	 analysis.	 These	 findings	 could	 lead	 to	 future	 de-
velopments that include potential cost reductions in clinical set-
tings,	enhanced	understanding	of	the	disease's	pathogenesis	and	
progression, and the ability to predict the onset of a malignant 
process, thus enabling early preventive interventions to halt pro-
gression or inform decisions regarding the continuation of an ath-
letic career.

METHODS

Subjects and study design

Twenty-	one	 boxers	 across	 different	weight	 classes	 and	 years	 of	
activity were selected for this study, with the following char-
acteristics	 (mean ± SD):	 age,	 28.38 ± 5.5 years;	 weight	 class,	
67.55 ± 8.90 kg;	 years	 of	 activity,	 6.76 ± 5.45 years;	 education	
level,	14.19 ± 3.08 years.

The participants were divided into two groups. The advanced 
group comprised boxers who had participated in at least 25 fights 
and	 had	 a	 minimum	 of	 5 years	 of	 boxing	 experience	 (mean ± SD):	
age,	 30.60 ± 5.02 years;	 weight	 class,	 66.25 ± 8.19 kg;	 years	 of	
activity,	 10.55 ± 5.78 years;	 education	 level,	 14.50 ± 4.12 years.	
The	 beginners	 group	 comprised	 individuals	 with	 (mean ± SD)	 age,	
26.36 ± 5.33 years;	 weight	 class,	 66.73 ± 9.73 kg;	 years	 of	 activity,	
3.32 ± 1.38 years;	education	level,	13.91 ± 1.87 years.

An	interview	was	conducted	to	document	the	number	of	concus-
sions	sustained	during	their	careers	(concussion	count	0.91 ± 0.83).	
Cognitive assessments were also administered to confirm that the 
boxers were cognitively asymptomatic, using the Montreal Cognitive 
Assessment	 (MoCA)	 (24.46 ± 2.30)	 and	 the	 Frontal	 Assessment	
Battery	(FAB)	(16.37 ± 1.77);	the	scores	were	corrected	according	to	
age and education [25,26].

EEG recordings

The	 EEG	 signals	 were	 recorded	 using	 the	 International	 10–20	
System,	 with	 19	 electrodes	 placed	 on	 the	 subject's	 scalp.	 Two	
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sessions	of	resting	state	EEG	were	recorded:	a	7-	min	eyes-	closed	
(EC)	 session	 and	 another	 7-	min	 eyes-	open	 (EO)	 session.	 The	
ground electrode was positioned at the frontal central channel 
(FCz),	and	a	mastoid	electrode	served	as	a	reference.	At	the	same	
time, electrooculogram activity was collected using a bipolar elec-
trode	 to	mitigate	 EEG	 artefacts	 caused	 by	 eye	movements.	 The	
contact impedance of each electrode was kept below 10 kΩ and 
balanced	across	channels	(time	constant	0.3 s).	The	EEG	data	were	
collected	at	a	sampling	rate	of	2048 Hz	and	digitized	using	a	16-	bit	
analogue-	to-	digital	converter.

All	 data	 underwent	 off-	line	 analysis	 in	 MATLAB	 (version	 9.1,	
The	Mathworks,	Natick,	MA,	USA),	where	they	were	preprocessed	
to	 eliminate	movement	 and	power-	line	 artefacts,	 thereby	 enhanc-
ing	the	signal's	informative	portions	and	minimizing	the	influence	of	
electrocardiographic	 and	 electrooculogram	 activities.	 Additionally,	
a	 fourth-	order	 Butterworth	 notch	 filter	 described	 as	 zero-	phase	
was	employed	using	the	‘filtfilt’	MATLAB	function	to	prevent	phase	
distortion	 and	 remove	 line	 noise	 at	 50 Hz.	A	 normalization	 proce-
dure	was	implemented	to	reduce	the	variability	of	the	EEG	signals.	
Specifically,	the	signals	were	band-	pass	filtered	using	a	fourth-	order	
Butterworth	filter	with	cut-	off	frequencies	from	0.5	to	120 Hz,	and	
artefacts were removed using independent components analysis.

Linear and nonlinear analyses

The	preprocessed	EEGs	were	divided	into	60-	s	epochs	and	both	lin-
ear and nonlinear measures were computed independently for all 
electrodes and averaged across the epochs. To facilitate the inter-
pretation of the results, for each selected parameter consideration 
was	given	to	 (i)	 the	average	value	on	the	whole	electrodes	and	 (ii)	
the average value on the electrodes divided into cortical regions: left 
frontal	(LF:	Fp1–F3–F7),	right	frontal	(RF:	Fp2–F4–F8),	left	temporal	
(LT:	 T3–T5),	 right	 temporal	 (RT:	 T4–T6),	 left	 centro-	temporal	 (LCT:	
C3–T3),	 right	 centro-	temporal	 (RCT:	 C4–T4),	 left	 parieto-	occipital	
(LPO:	 P3–O1),	 right	 parieto-	occipital	 (RPO:	 P4–02),	 left	 fronto-	
temporal	 (LFT:	 F3–F7–T3–T5),	 right	 fronto-	temporal	 (RFT:	 F4–F8–
T4–T6)	and	z-	axis	(Z:	Fz–Cz–Pz).

The	 nPSD	 was	 estimated	 within	 the	 �	 (2–4 Hz),	 �	 (4–8 Hz),	 � 
(8–13 Hz)	 and	�	 (13–30 Hz)	 frequency	 ranges.	 In	 detail,	 the	 power	
spectrum	 (PSD)	was	 computed	 in	 the	 1–45 Hz	 frequency	 band	 by	
applying	 the	 modified	 Welch	 periodogram	 [27]	 on	 1-	s	 Hamming	
windowed	segments	with	50%	overlap,	and	the	nPSD	measure	was	
obtained as follows:

where F2 − F1 represents the frequency range over which the total 
spectrum	was	computed,	that	is,	1–45 Hz,	f1 and f2 are the boundary 
frequencies	over	which	the	specific	nPSD	measure	was	estimated,	and	
PSD(f)	is	the	PSD	at	the	frequency	f  [28].

On the other hand, the selected nonlinear algorithms considered 
are the following.

	 (i)	PLE	describes	changes	in	the	scale-	free	behaviour	of	the	signal.	
The measure is obtained from the slope of the regression line 
computed	on	the	PSD	of	the	EEGs	in	log–log	coordinates	in	the	
frequency	bands	1–3.5 Hz,	4–7 Hz,	8–12 Hz	and	13–35 Hz	and	
goes	beyond	 the	 classic	 linear	measurement.	 Indeed,	 the	PLE	
represents	the	contribution	of	the	non-	oscillatory	components	
in	the	EEGs,	usually	not	highlighted	by	the	linear	spectral	analy-
sis	performed	through	the	PSD.	In	order	to	highlight	such	com-
ponents and to avoid the influence of those characterized by 
rhythmic behaviour, a peak removal operation was performed 
as suggested by the work of Colombo et al. [29].

	(ii)	 DFA	describes	the	degree	of	signal	self-	similarity	expressed	as	
the	 slope	 of	 a	 regression	 line	 calculated	 from	 the	 root-	mean-	
square	 fluctuations	 of	 the	 signals	 in	 log–log	 coordinates.	 The	
fluctuations are extracted from the integrated and detrended 
signals at different observation windows [30]. The regression 
line	is	then	computed	by	considering	in	log–log	coordinates	how	
the fluctuations change against the increasing size of the obser-
vation windows.

	(iii)	 It	 is	worth	underlining	that,	 from	an	applicative	point	of	view,	
what seems to reflect neuronal activity in its dynamic nature are 
the	so-	called	long	range	temporal	correlations	(LRTC)	present	in	
the time series [31]. For this reason, it was decided to estimate 
the	LRTC	measure,	which	consists	of	applying	the	DFA	proce-
dure	to	the	amplitude	envelopes	of	the	EEG	oscillatory	activity,	
extracted	 by	 applying	 the	 band-	pass	 filter	 (finite	 impulse	 re-
sponse	filter,	order	2000	and	Hamming	window)	in	the	specific	
frequency band of interest and then the Hilbert transform [31]. 
In this case, the considered frequency ranges were �	(4–8 Hz),	� 
(8–13 Hz),	low-	�	(13–20 Hz)	and	high-	�	(20–30 Hz).

	(iv)	MSE	estimates	the	sample	entropy	index	(SampEn)	on	different	
scales to quantify the degree of intrinsic randomness in the sig-
nals.	The	SampEn	computes	the	conditional	probability	that	two	
similar sequences of m points remain similar at point m + 1	[32]. 
Thus,	by	considering	different	EEG	sequences	and	by	comput-
ing	SampEn	for	each	of	 them	[33],	 the	MSE	curve	 is	obtained	
and can be evaluated in terms of slopes. In detail, the sequences 
result	through	the	coarse-	grained	procedure	[33], a method that 
generates a new time series by considering the average of � con-
secutive samples of the original signal, where � is defined as a 
scale	factor.	As	the	� value increases, different sequences are 
obtained. In this work, the number of scale factors considered 
is	30	and	the	MSE	parameter	was	evaluated	both	at	low	(l-	MSE	
with 𝜏 < 8)	and	at	high	(h-	MSE	with	𝜏 > 8)	scale	factors,	whilst	
the	parameters	for	the	SampEn	application	are	set	to	m = 2	and	
r = 0.2	times	the	standard	deviation	of	the	given	signals.

Statistical analysis

First, an analysis was conducted to determine whether there were 
differences between groups based on neuropsychological data and 
level of expertise. In this context, an independent samples t test 

nPSD =
1

F2 − F1 ∫
f2

f1

PSD(f)df
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(Mann–Whitney	 U)	 was	 used	 for	 the	 nonparametric	 distribution	
(Shapiro–Wilk,	 p < 0.05).	 The	 Mann–Whitney	 U test was used to 
compare the two groups: beginners and advanced.

A	nonlinear	analysis	was	applied	using	LRTC	within	the	frequency	
bands	4–7 Hz,	8–12 Hz,	13–20 Hz	and	21–30 Hz	for	both	EO	and	EC	
conditions.	Each	channel	(Fp1,	Fp2,	F7,	F3,	Fz,	F4,	F8,	T3,	C3,	Cz,	C4,	
T4,	T5,	P3,	Pz,	P4,	T6,	O1,	O2)	was	analysed	and	the	Mann–Whitney	
U	test	was	applied.	The	same	methods	were	used	to	analyse	MSE	at	
low	frequencies	(l-	MSE)	and	high	frequencies	(h-	MSE),	as	well	as	in	
PLE.	Statistical	significance	was	set	at	α = 0.05.

RESULTS

No	 significant	 differences	were	 found	 in	 cognitive	 tests	 between	
the	two	groups	 (MoCA	p = 0.287;	FAB	p = 0.911).	However,	signifi-
cant	 differences	 between	 groups	 were	 observed	 in	 the	 nPSD	 in	
the	 frequency	 ranges	 2–4 Hz,	 4–7 Hz	 and	 8–13 Hz	 during	 the	 EC	
condition.	The	mean	PSD	decreased	 in	advanced	boxers	across	all	
channels	within	the	4–7 Hz	and	8–13 Hz	frequency	bands	(p = 0.013,	
p = 0.003)	 (Figure 1)	 and	 in	 LF	 (p = 0.038),	 LFT	 (p = 0.023)	 and	 Z	
(p = 0.028)	in	the	1–3.5 Hz	frequency	band	(Figure 2).	No	significant	
differences	in	nPSD	were	found	during	the	EO	condition,	whilst	PLE	
in	 the	F3	 channel	 decreased	during	 the	EC	 condition	 in	 advanced	
boxers	compared	to	beginners	(F3	p = 0.010)	(Figure 3).	No	correla-
tion	was	found	between	the	FAB	test	and	the	F3	channel	in	the	PLE	
EC	condition	(Spearman's	rho	0.260,	p	value	0.866).	Regarding	LRTC,	
a	significant	decrease	was	observed	in	the	4–7 Hz	and	13–20 Hz	fre-
quency bands in advanced boxers, especially in the F3 channel dur-
ing	the	EO	condition	(4–7 Hz,	F3	p = 0.036;	13–20 Hz,	F3	p = 0.036)	

(Figure 4).	No	significant	differences	were	observed	in	LRTC	during	
EC	EEG	recording.	Analysis	of	the	MSE	for	each	channel	revealed	a	
significant increase in low frequencies within the advanced group, 
which was particularly evident at the F3 and Fp1 electrodes during 
the	EC	condition	(F3	p = 0.024;	Fp1	p = 0.043)	(Figure 5).	Conversely,	
in the advanced group a decrease in high frequencies was observed 
at	the	O1	and	O2	electrodes	during	the	EO	condition	(O1	p = 0.029;	
O2 p = 0.036)	(Figure 6).

DISCUSSION

The goal of our research was to investigate the effects of concussion 
in	boxers	using	linear	and	nonlinear	EEG	data	analysis.	It	was	found	
that	mean	PSD	and	PLE	significantly	decreased	in	advanced	boxers,	
whilst	MSE	increased	at	low	frequencies	and	decreased	at	high	fre-
quencies compared to beginner boxers.

Nonlinear	 analysis	 of	 brain	 signals	 showed	 similar	 changes	 to	
those	observed	in	the	early	stages	of	AD	[34], which may have simi-
lar	brain	signals	to	asymptomatic	boxers.	AD	is	a	neurodegenerative	
dementia and includes many symptoms common to DP [30].	In	AD	
patients, local synaptic disruptions, due to the aggregation of patho-
logical proteins in the brain, form amyloid plaques and neurofibrillary 
tangles [35,36], which can lead to impaired information processing 
between	neurons.	Vyšata	et	al.	found	that	an	overall	EEG	decrease	in	
the	power	law	exponent	was	associated	with	AD	[37]. Furthermore, 
Stam	et	al.	observed	a	decrease	in	synchronization	and	spontaneous	
fluctuations	in	the	lower	alpha	and	beta	bands	in	AD	patients	[38].

The	 decrease	 in	 LRTC	 in	 the	 frequency	 bands	 4–7 Hz	 and	
13–20 Hz	in	channel	F3	of	advanced	boxers	could	represent	greater	

F I G U R E  1 nPSD,	all	channels,	4–7 Hz	
and	8–13 Hz	(p = 0.013,	p = 0.003).

F I G U R E  2 nPSD,	3.5 Hz	frequency	band	LF	(p = 0.038),	LFT	(p = 0.023)	and	Z	(p = 0.028).
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regularity	of	the	signal.	A	loss	of	complexity	in	the	biological	signal	
may	represent	less	information	transmission	between	neurons	in	AD	
[35,36].

During	the	 linear	analysis	of	the	nPSD,	decreased	mean	power	
was	 found	 in	 the	 advanced	 group	 during	 the	 EC	 condition	 at	 the	
2–4 Hz	(LF,	LFT,	Z),	4–7 Hz	and	8–13 Hz	frequency	bands	 (all	chan-
nels).	These	results	are	comparable	to	the	decreases	in	spectral	den-
sity	observed	in	AD.	Changes	in	the	8–13 Hz	band,	observed	during	
the	 EC	 condition,	 can	 be	 explained,	 at	 least	 in	 part,	 by	 the	 well-	
known desynchronization of alpha power upon opening the eyes. 
However, in this study, two different groups of boxers with different 
experiences were compared, and some of the nonlinear analyses 
performed	are	not	influenced	by	PSD	at	all.

Multiscale entropy methods have been used as potential bio-
markers	of	AD	pathology	and	cognitive	decline	[39,40].	Entropy	 in	
EEG	 signals	 from	AD	patients	was	observed	 to	decrease	on	 short	
scales but increase on long scales compared to healthy subjects. The 
lower	entropy	values	in	AD	and	MCI	showed	a	relative	conservation	
of	 coarse-	grained	 entropy	 and	 a	 selective	 loss	 in	 fine-	grained	 en-
tropy [39]. These multiscale temporal features could be related to 
the functional interaction and neural structural limitations observed 
in individuals with dementia [41].F I G U R E  3 PLE,	eyes	closed	F3	(p = 0.010).

F I G U R E  4 LRTC,	F3	eyes	open,	4–7 Hz	
(p = 0.036);	13–20 Hz	(p = 0.036).

F I G U R E  5 MSE	low	frequencies,	eyes	
closed	Fp1	(p = 0.043);	F3	(p = 0.024).

F I G U R E  6 MSE	high	frequencies,	eyes	
open	O2	(p = 0.029);	O1	(p = 0.036).
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Two weighted scales were created to measure the low frequen-
cies	 (1–8	short	scales)	and	the	high	frequencies	 (9–20	long	scales).	
The	l-	MSE	in	advanced	boxers	increased	the	flattening	of	the	fine-	
grained	entropy	slope,	whilst	in	h-	MSE	the	coarse-	grained	entropy	
in advanced boxers decreased the steepness and complexity; these 
results are consistent with those of Mizuno et al. [39].

In	advanced	boxers,	a	 significant	 increase	 in	 l-	MSE	was	 found,	
especially	in	the	frontal	lobe	F3,	and	a	decrease	in	h-	MSE	in	the	oc-
cipital	 lobes	O1	 and	O2,	whilst	 in	AD	 the	 affected	 area	 is	mostly	
in	 the	 temporal	 regions.	 Exact	 similarities	 with	 the	 predementia	
stage	could	not	be	determined.	In	the	MCI	stage,	short-	term	mem-
ory associated with the medial temporal lobe is reduced, but the 
lateral temporal and parietal lobes are also affected. In the mod-
erate	 stage	of	AD,	 the	 similarities	 increase	compared	 to	boxers	 in	
advanced stage. In fact, there is a loss of complexity of the frontal 
lobe	in	moderate	AD,	and	the	occipital	lobe	also	deteriorates	in	sev-
eral	AD	cases	[42,43]. The greatest regularity and loss of complexity 
were associated with a decrease in brain dynamic complexity and, 
as	 expected,	 with	 a	 decrease	 in	 EEG	 signal	 complexity	 from	 sub-
jective	cognitive	 impairment	 to	MCI	 to	AD	 [44]. Changes in these 
EEG	signals	originating	from	frontal	areas	can	also	be	explained	by	
the	pathophysiology	of	the	so-	called	DP,	in	which	the	frontal	white	
matter showed signs of glial tau inclusions, involving both astrocytes 
and oligodendrocytes that were involved and secondarily spread to 
other brain regions [45,46].

From a neuropsychological perspective, no significant differ-
ences in cognitive tests between the two groups were found; the 
lack of differences could be due to a ceiling effect. Furthermore, it 
was interesting that the athletes in our study were asymptomatic, 
and	no	correlation	was	found	between	the	F3	channels	 in	the	PLE	
EC	condition	and	the	FAB	test.	Previous	imaging	and	neurophysio-
logical studies have shown that white matter and neurophysiological 
changes occur in tackle football players in the absence of cognitive 
and neuromotor impairments, suggesting that clinical neuropsy-
chological deficits are more difficult to detect [47]. In addition, the 
FAB	test	is	sensitive	to	the	progression	of	the	disease	and	is	there-
fore suitable for monitoring the clinical progression of dementia. 
However,	it	may	not	be	sensitive	for	detecting	CTE	in	asymptomatic	
athletes. Therefore, more sophisticated neuropsychological testing 
should	be	used.	In	conclusion,	our	data	suggest	that	nonlinear	EEG	
data analysis could be a potential neurophysiological biomarker for 
the	asymptomatic	phase	of	CTE	and	could	be	useful	for	monitoring	
health status during the career of athletes, to reduce the risk of fu-
ture neurological injuries.
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