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Abstract

Lower kidney function is known to enhance cardiovascular disease (CVD) risk. It is unclear

which estimated glomerular filtration rate (eGFR) equation best predict an increased CVD

risk and if prediction can be improved by integration of multiple kidney function markers. We

performed structural equation modeling (SEM) of kidney markers and compared the perfor-

mance of the resulting pooled indexes with established eGFR equations to predict CVD risk

in a 10-year longitudinal population-based design. We split the study sample into a set of

participants with only baseline data (n = 647; model-building set) and a set with longitudinal

data (n = 670; longitudinal set). In the model-building set, we fitted five SEM models based

on serum creatinine or creatinine-based eGFR (eGFRcre), cystatin C or cystatin-based

eGFR (eGFRcys), uric acid (UA), and blood urea nitrogen (BUN). In the longitudinal set, 10-

year incident CVD risk was defined as a Framingham risk score (FRS)>5% and a pooled

cohort equation (PCE)>5%. Predictive performances of the different kidney function indexes

were compared using the C-statistic and the DeLong test. In the longitudinal set, a SEM-

based estimate of latent kidney function based on eGFRcre, eGFRcys, UA, and BUN

showed better prediction performance for both FRS>5% (C-statistic: 0.70; 95% CI: 0.65–

0.74) and PCE>5% (C-statistic: 0.75; 95%CI: 0.71–0.79) than other SEM models and differ-

ent eGFR formulas (DeLong test p-values<3.21×10−6 for FRS>5% and <1.49×10−9 for

PCE>5%, respectively). However, the new derived marker could not outperform eGFRcys

(DeLong test p-values = 0.88 for FRS>5% and 0.20 for PCE>5%, respectively). SEM is a

promising approach to identify latent kidney function signatures. However, for incident CVD

risk prediction, eGFRcys could still be preferrable given its simpler derivation.
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Introduction

Chronic kidney disease (CKD) is an age-related pathophysiological condition affecting ~840

million individuals worldwide [1] and predicted to become the fifth global cause of death by

2040 [2]. In addition to increasing the risk of end-stage kidney disease, CKD and kidney dys-

function are known to enhance cardiovascular disease (CVD) risk [3–7].

Kidney function is assessed via the glomerular filtration rate (GFR). Given the impossibility

to measure the true GFR, population-based studies usually estimate it through endogenous

markers such as serum creatinine (SCr) or cystatin C (Cys) or both [8–12]. Additional infor-

mative markers include blood urea nitrogen (BUN), uric acid (UA), and serum albumin (Alb)

[13]. However, none of these markers is the exclusive reflection of kidney function, each one

being influenced by other metabolic pathways and homeostatic conditions [14]. SCr depends

on age, sex, muscle mass and food intake [15]. BUN and UA depend on liver metabolism and

endocrine function [16]. Cys may reflect inflammation [17] and thyroid hormone metabolism

[18]. eGFRcre and eGFRcys are not always consistent with each other and they may differ in

terms of CKD classification [19, 20]. Combining SCr and Cys together usually improves esti-

mate of the true kidney function level [11, 12].

While kidney dysfunction does increase CVD risk. Recently, a combination of ten non-rou-

tinely measured urine and blood kidney biomarkers has been shown to improve CVD risk pre-

diction [21]. However, it is unclear whether and to which extent there is an overlap between

the different standard kidney function markers in predicting CVD risk. Particularly unex-

plored is the possibility to integrate kidney function markers into a structural equation model-

ing (SEM) framework. This technique was widely applied to social and behavioral sciences to

identify non-observable latent traits undergoing observable psychological or psychiatric mani-

festations [22, 23]. Only more recently, SEM has been applied to biomarker research [24]. If

we consider each kidney-related marker as a partial manifestation of the true underlying kid-

ney function level, we can integrate all of them into a SEM framework and obtain an estimate

of the kidney function level as a latent unobserved trait.

The aim of our analysis was to assess whether the combination of routinely used kidney

function markers (SCr, Cys, BUN, and UA) into a SEM framework could improve the predic-

tion of CVD risk over the individual markers. To answer this question, we exploited data from

a population-based study with a 10-year follow-up.

Materials and methods

Study design

This work was based on the Microisolates in South Tyrol (MICROS) study, a cross-sectional

population-based study on 1,357 adults conducted in South Tyrol, Italy, in 2002 and 2003 [25,

26]. The study participants are mainly recruited in the following villages: Vallelunga/Langtau-

fers, Martello/Martell, and Stelvio/Stilfs. Of these participants, 733 participated also to the

Cooperative Health Research in South Tyrol (CHRIS) study, an ongoing prospective study

with similar protocol and insisting on same geographical district, which recruited participants

between 2011 and 2018 [27]. We thus split the MICROS baseline sample into a cross-sectional

set, where only baseline data were available (n = 647), and a longitudinal set with ~10-year fol-

low-up (n = 670). We used the cross-sectional set for model development and the longitudinal

set to assess the ability of kidney function estimators developed in the cross-sectional set to

predict incident CVD risk over 10 years. See flowchart in Fig 1. The CHRIS study was

approved by the Ethics Committee of the Healthcare System of the Autonomous Province of

Bolzano (Südtiroler Sanitätsbetrieb/Azienda Sanitaria dell’Alto Adige), protocol no. 21/2011
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(19 Apr 2011). Within their framework, our project has been approved by the Access Commit-

tee for Data and Sample collections of the Institute for Biomedicine (No.344). All participants

gave written informed consent.

Data collection and laboratory analyses

In the MICROS study (baseline), participants’ demographic and clinical history were collected

by interviewers using standardized questionnaires. Blood samples were collected after over-

night fasting. Samples underwent routine biochemical analyses at the local hospital. Serum ali-

quots were stored at -80˚C until subsequent measurement. Serum levels of SCr, Cys, UA,

BUN, and Alb were measured at the Institute for Clinical Chemistry and Laboratory Medicine,

Regensburg University Medical Center, Germany, as previously described [19].

In the CHRIS study (follow-up), routine biochemical measurements were performed at the

Meran/Merano hospital as described previously [28]. Relevant to this study are total choles-

terol (TC) and high-density lipoprotein cholesterol (HDL-C). Considered here are also infor-

mation on antihypertensive therapy, history of diabetes, and smoking habits [29] collected

through computer-assisted interviewer-administered questionnaires, and blood pressure mea-

sured on site in supine position after 20 minutes resting. Questionnaire-based variables for

Fig 1. Analysis flowchart. All study participants are divided into two parts: Model building set (n = 647, left panel) and Longitudinal set (n = 670, right panel).

https://doi.org/10.1371/journal.pone.0280600.g001
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both MICROS and CHRIS, including questions, answer options and coding, are summarized

in S1 Table.

GFR estimation in the MICROS study

GFR was estimated with: the Modification of Diet in Renal Disease (MDRD) study equations

with 4 (eGFRMDRD4) [8] and 6 parameters (eGFRMDRD6) [9]; the 2009 SCr-based Chronic Kid-

ney Disease Epidemiology Collaboration (CKD-EPI) formula (eGFRCKD-EPI Cre 2009) [10]; the

Cys-based CKD-EPI formula (eGFRCKD-EPI Cys) [11]; the new race-free CKD-EPI formula

with both Cre and Cys (eGFRCKD-EPI CreCys) [12]; and the new race-free SCr-based CKD-EPI

formula (eGFRCKD-EPI Cre 2021) [12]. We used the R package “nephro” (ver.1.3) (https://cran.r-

project.org/web/packages/nephro/index.html) [19]. Details are shown in S2 Table.

Outcome definition at follow-up

In the CHRIS study, we estimated the Framingham risk score (FRS) [30] and the pooled

cohort equation (PCE) score [31]. The FRS estimates the risk of any CVD event, while the PCE

is focused on the risk of hard atherosclerotic CVD. Both risk scores consist of conventional

CVD risk factors (age, sex, TC, HDL-C, systolic blood pressure, antihypertensive therapy, his-

tory of diabetes, and current smoking). Additionally, PCE includes a race term (irrelevant for

our study which was based exclusively on European-ancestry individuals). Based on cutoffs

proposed by the American College of Cardiology and the American Heart Association, we

dichotomized both FRS and PCE risks as “low risk” (score<5%) or “risk” (>5%) [32].

Statistical analysis

In the model-building set, we estimated a latent kidney trait from five different SEM models

(Fig 2): model 1 included the simple biomarkers SCr, Cys, UA, and BUN; model 2 included

eGFRcre (eGFRCKD-EPI Cre 2021), eGFRcys (eGFRCKD-EPI Cys), UA, and BUN; model 3 addition-

ally accounted for sex and age for each variable in model 1; model 4 was like model 3, but

replacing SCr and Cys with eGFRcre and eGFRcys; model 5 was a reduced form of model 4,

incorporating age and sex only for UA and BUN. Goodness of fit was assessed with the confir-

matory factor index (CFI) and the root mean square error of approximation (RMSEA) [33]. In

the longitudinal set, we applied logistic regression analyses to compare the predictive ability

for 10-year CVD risk among ten kidney-related variables (four SEM-based kidney traits and

six eGFR formulas). We created a receiver operating characteristics (ROC) curves to assess the

markers’ predictive performance based on the C-statistics. To test statistical difference of C-

statistics between two kidney indices, we also performed the DeLong test. As an additional

analysis for continuous outcomes (lopg-transformed FRS and PCE), we also performed linear

regression analyses to estimate an explained variance of CVD risk scores by the kidney traits.

All statistical analyses were performed using the statistical software R ver.4.0.0 (http://www.R-

project.org). The R packages of lavaan (ver.0.6–11) [34] is used for SEM analysis and pROC

(ver.1.18.0) [35] is for drawing ROC curves and performing the DeLong test, respectively.

Results

Characteristics of the model-building and longitudinal dataset

Table 1 summarizes the demographic and clinical characteristics of study participants included

in the model-building and longitudinal datasets, respectively. The proportion of females was

similar across the two sets: 57.8% in the model-building set and 55.3% in the longitudinal set.

Participants were older in the model-building as compared to the longitudinal set (mean age:
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49.4 versus 40.2 years, respectively). Accordingly, the model-building set had higher preva-

lence of diabetes and hypertension. Interestingly, whether the eGFR was higher in the model-

building or in the longitudinal-set depended on the GFR estimating equation.

Fig 2. SEM conceptual framework under different assumptions (model 1–5). We developed five models based on different

combinations of kidney biomarkers and demographic variables (sex and age). Circles represent latent variables and squares represent

observed variable. BUN: blood urea nitrogen; Cys: cystatin C; eGFRcre: creatinine-based eGFR (eGFRCKD-EPI Cre 2021); eGFRcys:

cystatin c-based eGFR (eGFRCKD-EPI Cys); SCr: serum creatinine; UA: uric acid.

https://doi.org/10.1371/journal.pone.0280600.g002
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The model-building set

The standardized factor loadings estimated under the different structural equation models are

summarized in Table 2. In general, SCr or eGFRcre (eGFRCKD-EPI Cre 2021) obtained the highest

loading (>0.75 in models 1, 2, and 5), followed by Cys or eGFRcys (eGFRCKD-EPI Cys). In the

five models, loadings displayed different patterns: in model 1, SCr received a much larger

weight than Cys, UA and BUN, which had all similar loadings. Models 2 and 5 gave more

weight to eGFRcre and eGFRcys, compared with UA and BUN. In addition, model 2 gave

more weight to BUN than UA, in contrast to model 5. In model 3, the largest loading was

assigned to SCr, followed by Cys, UA, and BUN. In Model 4, the loadings magnitude was simi-

lar for eGFRcre, eGFRcys and UA, while it was lowest for BUN. In terms of goodness of fit

(Table 2), all models, except model 5, showed a CFI higher than 0.95 indicating good fitting.

The RMSEA indicated excellent fit for model 3 (RMSEA = 0.024), borderline levels for models

1, 2, and 4, and extremely poor fit for model 5. Model 5 was not considered any further for

CVD prediction analysis.

Distribution of the estimated latent kidney traits and their relation with

eGFR equations

The latent kidney trait estimated from model 2 (SEM 2) in the longitudinal set was normally

distributed (Fig 3A). The latent traits estimated with models 1, 3, and 4 were also nearly nor-

mal (S1 Fig). SEM 2 was highly correlated with eGFRCKD-EPI Cre 2021 (Pearson’s correlation

coefficient r = 0.92; Fig 3B), eGFRCKD-EPI Cys (r = 0.75; Fig 3C) and eGFRCKD-EPI CreCys

(r = 0.95; Fig 3D). The positive correlation with eGFR estimates implies that lower SEM 2 indi-

cates lower kidney function. Differently from SEM 2, SEM 1 was poorly correlated with the

Table 1. Baseline characteristics of participants included in the model-building and the longitudinal setsa.

Variables Model-building set (n = 647) Longitudinal set (n = 670)

Women 374 (57.8%) 371 (55.3%)

Age, years 49.4 (19.1) 40.2 (13.5)

Serum creatinine, mg/dl 0.86 (0.17) 0.85 (0.15)

Uric acid, mg/dl 5.46 (1.63) 5.18 (1.31)

Blood urea nitrogen, mg/dl 17.5 (5.1) 16.3 (4.1)

Cystatin C, mg/l 0.83 (0.25) 0.75 (0.13)

Serum albumin, g/dl 4.72 (3.4) 4.76 (3.3)

eGFRCKD-EPI Cre 2009, ml/min/1.73m2 105.9 (23.2) 97.6 (16.9)

eGFRCKD-EPI Cre 2021, ml/min/1.73m2 95.0 (19.4) 100.8 (16.1)

eGFRCKD-EPI Cys, ml/min/1.73m2 100.7 (24.5) 111.3 (15.7)

eGFRCKD-EPI CreCys, ml/min/1.73m2 101.4 (21.3) 109.5 (14.2)

eGFRMDRD4, ml/min/1.73m2 102.8 (24.1) 88.8 (21.9)

eGFRMDRD6, ml/min/1.73m2 102.4 (23.1) 91.2 (19.9)

10-year FRS>5%b,d – 326 (60.9%)

10-year PCE>5%c,d – 216 (40.4%)

Diabetes 30 (5.3%) 8 (1.3%)

Hypertension 133 (23.0%) 69 (11.0%)

aQuantitative variables are presented as mean (standard deviation), while categorical variables are shown as n (%).
bThese analyses were performed in 535 participants without previous CVD clinical history.

CKD-EPI: the Chronic Kidney Disease Epidemiology Collaboration; Cre: creatinine; Cys: cystatin C; FRS:

Framingham risk score; MDRD: the Modification of Diet in Renal Disease study; PCE: pooled cohort equation

https://doi.org/10.1371/journal.pone.0280600.t001
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eGFR estimates and did not capture well the sex stratification (S2 Fig). While accommodating

the sex stratification of kidney function better than SEM 1, SEM 3 and 4 still showed limited

correlation with eGFR estimates (S3 and S4 Figs).

Prediction analysis

Overall, 326 (60.9%) individuals were classified at high CVD risk with the FRS, and 216

(38.7%) with the PCE (Fig 4). The second SEM-derived index, SEM 2, showed better perfor-

mance (C-statistic: 0.70; 95% confidence interval, CI: 0.65–0.74) than all other SEM-derived

indexes to predict FRS>5% over 10 years, even if its advantage was not uniform across the

entire sensitivity and specificity spectrum (Fig 5A). SEM 2 AUC was not significantly different

from that of eGFRCKD-EPI Cys (C-statistic: 0.69, 95%CI: 0.65–0.74; DeLong test p-value for

comparison: 0.88; Fig 5B). However, SEM 2 showed better prediction properties than eGFRCK-

D-EPI Cre 2009 (C-statistic: 0.65; 95%CI: 0.60–0.69; p = 3.21×10−6), eGFRCKD-EPI Cre 2021 (C-sta-

tistic: 0.63; 95%CI: 0.58–0.68; p = 2.33×10−9), eGFRCKD-EPI CreCys (C-statistic: 0.63; 95%CI:

0.59–0.68; p = 2.03×10−14), eGFRMDRD4 (C-statistic: 0.57; 95%CI: 0.52–0.62; p<2.2×10−16),

and eGFRMDRD6 (C-statistic: 0.60; 95%CI: 0.55–0.65; p = 6.51×10−14).

For the prediction of a PCE of>5% over 10 years, SEM 2 showed the best predictive perfor-

mance over all other SEM-based markers, uniformly across all sensitivity and specificity levels

(C-statistic: 0.75; 95%CI: 0.71–0.79; Fig 5C). Similar to the FRS case, SEM 2 did not outper-

form the eGFRCKD-EPI Cys (C-statistic: 0.73; 95%CI: 0.69–0.78; p = 0.20; Fig 5D), but it did per-

form better than the eGFRCKD-EPI Cre 2009 (C-statistic: 0.69; 95%CI: 0.65–0.74; p = 1.49×10−9),

eGFRCKD-EPI Cre 2021 (C-statistic: 0.68, 95%CI: 0.63–0.72; p = 2.07×10−13), eGFRCKD-EPI CreCys

(C-statistic: 0.69; 95%CI: 0.64–0.73; p<2.2×10−16), eGFRMDRD4 (C-statistic: 0.60; 95%CI: 0.55–

0.65; p<2.2×10−16), and eGFRMDRD6 (C-statistic: 0.64; 95%CI: 0.59–0.68; p<2.2×10−16).

To corroborate these findings, we also fitted linear regression models on the logarithm of

the FRS and PCE score, to estimate the variance explained by each marker. The regression r-

squared for the FRS was of 0.20 for SEM 2, 0.16 for eGFRCKD-EPI Cys, 0.11 for eGFRCKD-EPI

CreCys, 0.11 for eGFRCKD-EPI Cre 2009, 0.09 for eGFRCKD-EPI Cre 2021, 0.06 for the eGFRMDRD6,

and 0.03 for the eGFRMDRD4. For the PCE, we observed the following r-squared: 0.28 for SEM

2, 0.23 for eGFRCKD-EPI Cys, 0.18 for eGFRCKD-EPI CreCys, 0.16 for eGFRCKD-EPI Cre 2009, 0.14 for

eGFRCKD-EPI Cre 2021, 0.08 for the eGFRMDRD6, and 0.05 for the eGFRMDRD4.

Table 2. Factor loadings and goodness-of-fit statistics for the five SEM models.

Items Model 1 Model 2 Model 3 Model 4 Model 5

Standardized factor loadingsa

SCr/eGFRcre 0.757 0.889 0.621 0.432 0.863

Cys/eGFRcys 0.597 0.856 0.541 0.415 0.886

UA 0.597 -0.393 0.362 -0.309 -0.483

BUN 0.638 -0.561 0.415 -0.441 -0.577

Goodness-of-fit statistics
CFI 0.978 0.977 0.999 0.989 0.612

RMSEA 0.099 0.126 0.024 0.106 0.436

aFactor loadings are all direction-concordant in Models 1 and 3, where SCr, Cys, BUN and UA were included, as all 4 markers have direction-concordant association

with kidney function; in models 2, 4, and 5, we included eGFRcre and eGFRcys, which are associated with function in the opposite direction as compared to BUN and

UA.

BUN: blood urea nitrogen; CFI: confirmatory factor index; eGFRcre: creatinine-based eGFR (eGFRCKD-EPI Cre 2021); eGFRcys: cystatin C-based eGFR (eGFRCKD-EPI Cys);

RMSEA: root mean square error of approximation; SCr: serum creatinine; SEM: structural equation model; UA: uric acid.

https://doi.org/10.1371/journal.pone.0280600.t002
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Discussion

In a population-based study of European individuals, we applied SEM to four kidney markers.

Our aim was to assess whether the integration of multiple markers could outperform standard

kidney function estimates based on a single marker in terms of incident CVD risk prediction.

By leveraging an independent longitudinal dataset, we found that a SEM-based kidney

Fig 3. The distribution of latent kidney trait from model 2 (SEM 2). Panel A: Histogram of SEM 2. Panel B: Scatter plot for SEM 2 and eGFRCKD-EPI Cre 2021.

Panel C: Scatter plot for SEM 2 and eGFRCKD-EPI Cys. Panel D: Scatter plot for SEM 2 and eGFRCKD-EPI CreCys.

https://doi.org/10.1371/journal.pone.0280600.g003
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function index and eGFRcys performed better than all other commonly used GFR formulas,

in terms of predicting 10-year incident CVD risk.

The motivation to fit a structural equation model came from previous studies that tried to

combine multiple markers of kidney health. Lee AK et al. [21] reported that integration of vari-

ous kidney biomarkers improved the prediction accuracy of CVD mortality compared with

conventional kidney indices. As manifest variables, they used ten kidney biomarkers, includ-

ing kidney injury molecule-1 (KIM-1) and uromodulin. Another experimental study estimated

latent kidney function traits based on different biomarkers and examined the performance in

animal model [36]. They used a two-factor model for latent variables, where the two factors

represented kidney damage and kidney function, incorporating KIM-1 and other biomarkers.

These studies used specific molecular markers of tubular injury and tubular reserve, which are

not commonly measured in clinical practice. Our attempt was instead based on common

Fig 4. Distribution of Framingham risk score (FRS) and pooled cohort equation (PCE) in longitudinal set. Pink- and

blue-colored density plots corresponds to FRS and PCE, respectively. The grey dotted line indicates the cut-off value for

dichotomization (5%).

https://doi.org/10.1371/journal.pone.0280600.g004
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Fig 5. Comparisons of receiver operating characteristics (ROC) curves for Framingham risk score (FRS)>5 for general CVD risk estimation and pooled

cohort equation (PCE)>5 for risk estimation of hard atherosclerotic cardiovascular disease in 10 years. Panel A: Comparisons of the C-statistics for

FRS>5 within SEM-based latent kidney traits. Panel B: Comparisons of the C-statistics for FRS>5 with the 2nd SEM model (SEM 2) and eGFR equations.

Panel C: Comparisons of the C-statistics for PCE>5 within SEM-based latent kidney traits. Panel D: Comparisons of the C-statistics for PCE>5 with the 2nd

SEM model (SEM 2) and eGFR equations. The x-axis shows specificity ranging from 1 to 0, while the y-axis shows sensitivity ranging from 0 to 1. The right-

hand table summarizes the C-statistics and its 95% confidence intervals in descending order. CKD-EPI: the Chronic Kidney Disease Epidemiology

Collaboration; Cre: creatinine; Cys: cystatin C; eGFR: estimated glomerular filtration rate; MDRD: the Modification of Diet in Renal Disease study; SEM:

structural equation modeling.

https://doi.org/10.1371/journal.pone.0280600.g005
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markers that, together with basic demographic variables such as age and sex, are measured in

most population-based studies. This would have broadened clinical utility of our results.

The best model from our analyses was SEM 2, which pooled together eGFRcre (eGFRCK-

D-EPI Cre 2021), eGFRcys (eGFRCKD-EPI Cys 2012), BUN, and UA, with factor loadings of 0.889,

0.856, -0.561, and -0.393, respectively. The factor loadings reflect the relation of the four mark-

ers with the true kidney function: positive and substantially equivalent for eGFRcre and

eGFRcys, and negative and substantially smaller for BUN and UA. In terms of CVD risk pre-

diction, taken as a binary trait, this model showed similar performance to using eGFRcys

alone. When using linear modeling, SEM 2 explained a larger proportion of the FRS and the

PCE than eGFRcys. It is worth highlighting that SEM 2 and eGFRcys outperformed eGFR-

crecys in CVD risk prediction. A previous study reported that a combination of eGFRcre- and

eGFRcys-based categories could improve prediction of CVD mortality in intensive care [37],

but this may be a very different context compared to a general population situation, where

most individuals are healthy or have a low burden of disease. The question remains as to why

the performance of a single biomarker, eGFRcys, was not much inferior to SEM. A plausible

reason might be that eGFRcys reflects both kidney function and components of the cardiovas-

cular risk that are less dependent on kidney function. For instance, cystatin C levels are associ-

ated with obesity. A previous study has reported that eGFRcys reflects CVD risk better than

eGFRcre [38]. This is in line with our results that show that eGFRcys outperformed all other

eGFR estimates in terms of 10-year CVD risk prediction. The result that SEM 2 performed

similar or slightly better than eGFRcys supports SEM 2 as a better solution than eGFR esti-

mates not based on cystatin C. We believe that further explorations of SEM of kidney function

should be attempted. In particular, two-factor modeling that separates the kidney function and

the kidney damage aspects seems promising, especially in terms of CVD risk prediction. This

study can be a first step towards more extensive research on multivariate approaches to kidney

function modeling.

The main strength of our analysis was the presence of two independent sets, one used for

model development and a second, longitudinal set used for model testing. Most studies have

only performed either a search for the best-fitting SEM model or an association test between an

outcome and a SEM-based index based on an arbitrary model [39–41]. In fact, our 3rd SEM

showed the best goodness of fit in the model building set, but this model did not show the best

predictive ability in the longitudinal analysis. Combining results from the model building set

(proving sufficient goodness of fit for SEM 2) and the longitudinal set (showing that SEM 2 was

the best predictor), we followed a pragmatic approach focused on the purpose of our investiga-

tion. The fact that the two independent sets were derived from the same population in the same

geographical region has probably provided further consistency across the two analyses.

The main limitation of our study was the lack of an objective GFR measurement to assess

the performance of the latent trait estimation, although this limitation is common to most

population-based studies. An additional limitation was the small sample size, implicating too

few incidents cardiovascular events over the 10-year follow-up. Based on self-reported CKD

and CVD events, in our study we observed an incidence of about 1%, which did not bear suffi-

cient statistical power to assess the predictive performances of the fitted models. For this rea-

son, we assessed the predictive ability of fitted models against the two CVD risk scores, the

FRS and PCE score, which reflect pre-clinical conditions preceding CVD onset. Further stud-

ies that consider objective CVD events are warranted to confirm the significance of our

approach. Finally, the generalizability and transportability of the estimated latent kidney func-

tion trait should be explored in different settings: our study participants were recruited from a

specific geographical location in the Italian Alps, which might not be representative of differ-

ent locations and demographic characteristics.
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Conclusion

Applying SEM to multiple, conventional kidney function markers is a promising approach to

identify the underlying, unobserved true kidney function level. However, in an application

that assessed the ability of kidney function markers to predict incident CVD risk over 10 years,

SEM-based modeling was almost equivalent or just slightly better than eGFRcys, and both of

them outperformed all other solutions. Given its simpler implementation over SEM, eGFRcys

is probably still the best marker to assess the effect of kidney function on incident CVD risk.
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27. Pattaro C, Gögele M, Mascalzoni D, Melotti R, Schwienbacher C, De Grandi A, et al. The Cooperative

Health Research in South Tyrol (CHRIS) study: rationale, objectives, and preliminary results. J Transl

Med. 2015; 13:348. https://doi.org/10.1186/s12967-015-0704-9 PMID: 26541195
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