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Abstract
Responsible artificial intelligence is the next challenge of research to foster the deployment of autonomous systems in the real
world. In this paper, we focus on safe and explainable design and deployment of autonomous agents, e.g., robots. In particular,
we present our recent contributions to: i) safe and explainable planning, leveraging on safe Reinforcement Learning (RL) and
neurosymbolic planning; ii) effective deployment of RL policies via model-based control; iii) formal verification of the safety
of deep RL policies; and iv) explainable anomaly detection of complex real systems.
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1. Introduction
Artificial Intelligence (AI) and robotics are pervading
everyday activities, from industrial automation [1] to
environmental monitoring [2]. As more and more so-
phisticated autonomous cognitive systems interact with
humans in complex scenarios, the development of re-
sponsible AI solutions [3] becomes a fundamental design
requirement, as prescribed also by the latest international
regulations 1. Responsible AI involves several aspects,
including safety, transparency and trustability [4]. Safety
regards providing guarantees about the behavior of AI
systems, e.g., autonomous robotic systems, in terms of
performance and potential harm to the surrounding en-
vironment or humans. Transparency and trustability are
related to the perception of humans interacting with the
AI system, e.g., the explainability and compliance of the
system’s behaviour to the expectation of humans from a
moral or rational perspective [5].

In this paper, we summarize our main contributions
in the field of responsible AI. We focus on autonomous
agents, e.g., robots, and present our approach to responsi-
ble autonomy at different developmental stages. We first
describe our solutions for safe and explainable planning
in autonomous agents, via safe Reinforcement Learning
(RL) and neurosymbolic approaches. We also analyze
the problem of safe and compliant transfer of a planned
policy on a physical robotic system, combining RL with
model-based control. We then investigate how to provide
formal guarantees of safety for black-box policies, e.g.,
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from deep RL, via formal verification. Finally, we present
solutions for efficient and explainable anomaly detection
in autonomous systems.

2. Safe and explainable planning
We assume the autonomous agent and the environment
are represented as a Markov Decision Process (MDP)
𝑀 = ⟨𝑆,𝐴, 𝑇,𝑅⟩, defining respectively the state space,
the action space, the transition map, and the reward map.
The first approach is based on Safe Policy Improvement
(SPI) [6] and Monte Carlo Tree Search (MCTS) [7], which
performs simulations in a model of the real environment
to estimate the optimal policy online. The second solution
combines MCTS with symbolic and logical reasoning, to
guide the exploration of the RL agent towards better
pathways.

2.1. Safe Policy Improvement with MCTS
Safe RL [9] investigates how to learn policies that max-
imize the performance of the agent, while respecting
safety constraints during learning. One popular approach
is Safe Policy Improvement with Baseline Bootstrapping
(SPIBB) [10]. SPIBB starts from a baseline policy 𝜋0 (e.g.,
a sub-optimal expert-designed policy). The algorithm
then collects a batch dataset of trajectories (i.e., state-
action pairs), and uses the baseline policy on less fre-
quent state-action pairs. However, it does not scale to
large state and action spaces.

To improve scalability, we recently introduced Monte
Carlo Tree Search Safe Policy Improvement with Baseline
Bootstrapping (MCTS-SPIBB) [8]. The algorithm exploits
MCTS to estimate 𝜋𝐼 online, hence it can scale to large
domains, while keeping the asymptotic guarantees of con-
vergence of SPIBB [8]. In [8] we compared MCTS-SPIBB
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Figure 1: Safe Policy Improvement: a) Comparison of per-
formance among SPI algorithms; b) Scalability comparison
between MCTS-SPIBB and SPIBB [8].

with several state-of-the-art SPI algorithms on bench-
mark domains (see Figure 1.a). Furthermore, we showed
that on very large state spaces, such as the standard
SysAdmin benchmark2 with up to 35 machines, MCTS-
SPIBB is the only SPI algorithm capable of computing
improved policies (see Figure 1.b).

2.2. Planning with logics in MCTS
MCTS may require a large number of online simulations
when the state and action spaces are large. This be-
comes even more critical in Partially Observable MDPs
(POMDPs), where part of the state is uncertain, hence a
particle filter must be used to sample and estimate the
actual state of the system, starting from a probability
distribution called the belief. Recent online solvers for
POMDPs, e.g., Partially Observable Monte Carlo Plan-
ning (POMCP) [11] and Determinized Sparse Partially
Observable Trees (DESPOT) [12] require the definition of
task-specific policy heuristics, in order to efficiently bias
the exploration towards most fruitful policies. Moreover,
it is essential to guarantee the exploration of only safe
policies.

To this aim, in [13] we proposed an approach based on
maximum satisfiability modulo theory [14] to probabilis-
tically verify the adherence of the policy computed by
POMCP to a set of user-defined specifications, expressed
in a fragment of first-order logic. In this way, we can
shield undesired actions in MCTS simulations, and in-
crease the explainability of the generated policy thanks
to the logic formalism. However, defining the logical
policy specifications may be tedious and error-prone in
realistic complex domains. For this reason, in [15, 16]
we proposed an approach based on inductive logic pro-
gramming [17] to learn logical policy heuristics from

2SysAdmin: https://jair.org/index.php/jair/article/view/10341/24723

trajectories (belief-action pairs) of POMDP executions
collected offline. Specifically, given a set of task-related
concepts 𝐹 provided by the user to describe the belief
space, offline trajectories are converted to a logical for-
malism, where logical predicates encode concepts in 𝐹 .
As an example, consider the paradigmatic POMDP rock-
sample scenario depicted in Figure 2a, where a robotic
agent must collect valuable rocks (green dots) avoiding
worthless ones (red dots) in a grid world. The state of
the POMDP includes information about the position of
agents and rocks, and the probability (belief) of rocks
to be valuable. The state can be translated to a logical
representation in terms of the following concepts in 𝐹 :
the Manhattan distance D between the agent and each
rock R dist(R,D) and the probability P of a rock R to
be valuable guess(R,P). Defining semantic concepts
about the domain is easier than defining directly policy
specifications, since it simply involves a re-interpretation
of the state formalization.

We preliminarily learn policy specifications from tra-
jectories collected from a rocksample agent operating in a
12×12 grid with 4 rocks. We adopt the logical formalism
of Answer Set Programming (ASP) [18], which represents
the state of the art for planning in first-order logic [19].
Our approach requires relatively few training trajectories
(less than 800 in rocksample) to learn interpretable trans-
parent policy specifications. Moreover, learned heuristics
allow POMCP to use significantly fewer online simula-
tions per step of execution (Figure 2b, achieving compara-
ble performance with respect to expert-designed specifi-
cations (pref ). Finally, the heuristics generalize to unseen
problem instances, e.g., enhancing scalability to larger
grid sizes (Figure 2c) which require a longer planning
horizon, typically challenging for MCTS-based solvers.
In [20], we also showed that this approach can be used
to derive policy explanations of black-box model-free RL
agents, in the context of autonomous driving.

3. Safe deployment in the real
world

The policy computed by a RL-based planner, e.g., POMCP
for POMDPs, cannot always be effectively and safely de-
ployed on a real robotic system. Indeed, MCTS-based
planners perform online simulations based on a model
of the environment, but the chosen policy must be
adapted to the inevitable unmodeled inaccuracies and
non-linearities of the physical plant. To overcome this
problem, in [21] we implemented the two-layer archi-
tecture depicted in Figure 3, combining a high-level con-
troller based on POMCP with a low-level model-based
controller: The low-level controller is designed using
the inverse dynamics technique [22, 23], that allows
to linearize via feedback the system. In particular, let
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Figure 2: a) Rocksample setup; b) Results of [16] with few simulations and c) on larger grids.
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Figure 3: Block diagram of the two-layer architecture

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 be a non-linear dynamical system de-
pending on state 𝑥 and command action 𝑢. The controller
is obtained as 𝑢 = 1

𝑔(𝑥)
(−𝑓(𝑥) + 𝑣), where 𝑣 is an aux-

iliary control signal. Therefore, the low-level controller
exploits the auxiliary control signal 𝑣, which is mapped
as reference values for the controller, to compute the
command 𝑢. The high-level controller is formalized as a
POMDP that exploits the linearized closed-loop model to
select the best local action 𝑢 for the agents. In particular,
the POMCP provides the sub-optimal reference values for
the low-level controller optimizing user-defined objec-
tives, encoded in the reward function. Note, the two-layer
have different control loop sample rates; the low-level
has to be fast since it has to provide the commands to
the agent, while the high-level can be slower since it
generates the reference values for the low-level.

The two-layer approach is tested in a scenario where
an aerial drone has to reach a target area, avoiding some
no-fly zones and minimizing fuel consumption or attitude
error. Therefore, the reward function is composed of four
contributions: an attractive potential component to reach
the target, a repulsive component to avoid the no-fly zone,
the fuel consumption and the heading error. The last
two components are weighted to rank between different
objectives. Figure 4 shows the trajectory followed by
the drone optimizing only the fuel consumption (black
line), both fuel and attitude (red dashed line) and only the
attitude error (green dotted line). The black line follows
the shortest path to minimize the fuel, the red line follows
the shortest path but near the target position the attitude
error component increases to align the drone with the
desired attitude (black arrow). The green line follows the
optimal path to minimize only the attitude.

Figure 4: Drone paths. The black and blue arrows are, respec-
tively, the desired yaw angle and drone initial yaw angle

(b)(a)

Figure 5: Realistic robotic scenarios: a) robotic mapless navi-
gation; b) autonomous colonoscopy navigation.

4. Formal verification of deep RL
Trained RL policies, especially model-free RL policies
encoded in a Deep Neural Network (DNN), do not guar-
antee to provably meet the safety standards required in
the real world. For instance, DNNs are vulnerable to the
so-called adversarial inputs, i.e., minimal input variations
that fool the system to output an undesired value (or
action) [24]. Consequently, in recent years, Formal Ver-
ification (FV) of DNNs (aka DNN-Verification) has been
developed to provide formal guarantees on the behavior
of these systems [25]. In particular, given a predefined
safety property, the goal of DNN-Verification is to assert
whether at least one input configuration exists that vio-
lates the property. However, given the non-convex and
non-linear nature of DNNs, verifying safety properties
in the worst case has been shown to be an NP-complete
problem [26]. Moreover, the standard binary response
of DNN-verification (safe vs. unsafe) does not provide
sufficient information to compare the safety of different
DNNs.



Table 1
Results of model selection. SAT indicates property violation.
Θ’s denote the safety property not to touch the colon wall in
any cardinal direction.

Safety Properties
Θ↑ Θ↓ Θ← Θ→ FV selection

Method SAT SAT SAT SAT Safe models
PPO 300 246 80 167 0

L-PPO 221 198 53 161 3

To overcome these limitations, in [27], we proposed a
novel quantitative formulation of the DNN-verification
problem, allowing to enumerate all unsafe regions for a
given domain of interest and thus rank the models on the
portion of unsafe regions they may have. However, we
showed that this problem turns out to be #P-hard. Hence,
in [28] we proposed 𝜖-ProVe. Exploiting a controllable
underestimation of the output reachable sets obtained
via statistical prediction of tolerance limits [29], the al-
gorithm provides a tight —with provable probabilistic
guarantees— lower estimate of the (un)safe areas.

We validated DNN-Verification in realistic robotic
safety-critical scenarios. In particular, in [30], we showed
that DNN-Verification can be used to rank different suc-
cessful DNN models according to the level of safety,
verifying collision avoidance in robotic mapless navi-
gation. We then applied a similar pipeline in a more
safety-critical domain, namely autonomous colonoscopy
navigation for colorectal detection with deep RL [31]
(Figure 5). In particular, we trained an agent to navigate
the endoscope in patient-specific colon models based on
endoscopic images, using Constrained RL (CRL) to im-
pose a safety cost for the agent to touch colon walls at
the training stage. Nevertheless, due to the Lagrangian
relaxation implemented by CRL to perform constrained
optimization, safety may not be guaranteed. Hence, we
adopted a model selection strategy that harnesses FV to
evaluate the safety of a vast pool of trained policies to
select the one the meets all the behavioral preferences
specified. The results of our study are reported in Ta-
ble 1 over 300 trained models, finding 3 completely safe
models that provably meet the safety requirements.

Finally, to address the necessity of running the FV
process only after training due to its computational com-
plexity, in [32] we proposed an unconstrained DRL frame-
work that leverages a novel sample-based method to ap-
proximate local violations of input-output conditions to
foster the learning of safer behaviors inside the training
loop. However, such conditions are typically hard-coded
and require task-level knowledge, making their applica-
tion intractable in challenging safety-critical tasks. To
this end, in [33], we introduced the Collection and Refine-
ment of Online Properties (CROP) framework to collect
and refine safety properties during training. The combi-
nation of CROP with approximate violation inside the

training loop allowed us to obtain a more robust approach
with respect to other existing Safe DRL methodologies in
the context of autonomous navigation, promoting safer
behaviors while maintaining similar or better returns.

5. Explainable and data-efficient
anomaly detection

Autonomous systems operating in the real world are re-
quired to reliably work over long periods of time (Long
Term Autonomy, LTA) under changing and unpredictable
environmental conditions. In this context, anomaly detec-
tion is crucial to promptly identify situations that diverge
from the desired behaviour. Specifically, unsupervised
anomaly detection aims to idenfity anomalies related to
the global behavior of the system [34, 35, 36], monitor-
ing multivariate time series generated from sensors and
actuators and starting from the only knowledge of the
nominal (i.e., anomaly-free) behavior.

We recently proposed two contributions in this area.
namely, an online approach for detecting anomalous be-
haviors of robotic systems involved in complex LTA sce-
narios (HHAD) [37], and an adversarial data augmen-
tation and retraining approach (HHAD-AUG) [38]. In
HHAD [37], we use Hidden Markov Models (HMMs)
to represent the nominal behavior of a robot. We then
evaluate online the dissimilarity between the probability
distribution of multivariate sensor time series in a sliding
window and the emission probability of the related HMM
hidden states. We adopt the Hellinger distance [39] as a
distance measure since it is bounded (thus it lends itself
to simpler interpretation and thresholding) and it is less
noisy, hence more informative and discriminative.

In HHAD-AUG [38], we address the usual lack (or
paucity) of anomalous examples and the noise that char-
acterizes time series of real systems. We propose a data
augmentation method based on perturbed (adversarial)
time series [40], having the advantage of not requiring
any prior knowledge about the application domain and
data conformation. We generate adversarial examples
only for nominal points, optimizing a loss function based
on the Hellinger distance between the observed and the
expected data distributions.

We evaluate our data augmentation and re-training ap-
proach on several public datasets, plus one collected from
our aquatic drones developed in the EU H2020 project
INTCATCH [41]. Results show that (i) the adversarial
generation algorithms can generate meaningful adversar-
ial examples for HHAD, employing them to significantly
improve the performance of HHAD; (ii) our data augmen-
tation method yields higher performance than examples
generated by state-of-the-art augmentation methods; (iii)
adversarial examples generated considering the Hellinger
distance yield higher improvement than examples gen-
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Figure 6: Average F1-score for the original detector HHAD
and augmented detectors [38]: H-AUG (ours, based on
Hellinger distance), L-AUG (ours, based on log-likelihood), R-
AUG (random-based baseline), D-AUG (drift-based baseline),
G-AUG (gaussian-based baseline), and S-AUG (SMOTE-based
baseline) on different training set sizes in the INTCATCH
dataset. Averages are computed over 30 datasets, for each
dataset size.

erated considering standard log-likelihood; (v) the low
computational complexity and high parallelizability of
the proposed method allow for a fast data augmentation
and retraining of HHAD. Figure 6 shows the results on
the INTCATCH dataset [41].

Finally, we have recently addressed the problem of
explainable anomaly detection, in order to provide useful
information about the source of the anomaly for easier
repair. To this aim, in [42] we showed that causal dis-
covery based on Conditional Mutual Information (CMI)
between time series can achieve higher performance than
standard deep learning antomaly detectors, on a bench-
mark robotic dataset of the Pepper service robot3. Our
methodology evaluates the variation of CMI between
time series, thus providing a useful hint to the root cause
of the anomaly. Moreover, it builds a nominal model
of the real physical relations between variables of the
system, thus resulting in higher robustness and more
accurate anomaly detection, compared to DNN methods
(95% vs 90 % F1-score and 100% precision).

6. Conclusion and future works
Our methodologies aim at increasing transparency and
safety at different development levels, from planning to
execution and verification. Our current research direc-
tion includes the online integration of symbolic learning
and formal verification approaches into RL, focusing on
the current scalability issues.

3https://sites.google.com/diag.uniroma1.it/robsec-data
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