Operational and Denotational Seman-
tics of Rewrite Programs

Maria Paola Bonacina, Jieh Hsiang
Department of Computer Science
SUNY at Stony Brook

Stony Brook, NY 11794-4400 USA
{bonacina,hsiang} @sbcs.sunysb.edu

Abstract

In this paper we present a new operational and denotational semantics for
rewrite systems as logic programs. The main feature of our rewrite pro-
grams is that they allow us to define predicates not only by implications as
in Prolog, but also by equivalences. We give a few examples showing how
rewrite programs may turn out to be more effective than Prolog programs in
capturing the user’s intended semantics, because of this additional feature.
Rewrite programs are interpreted by linear completion. Our definition of
linear completion differs from the previous one [10, 9], because we allow sim-
plification of goals by their ancestors. If simplification is allowed, programs
given by equivalences and programs given by implications show a different
behaviour. In the second part of the paper we give a fixpoint character-
ization of rewrite programs and we show that it captures both the proof
theoretic and the model theoretic semantics. Rewrite programs and Prolog
programs for the same predicates have the same fixpoint, i.e. the same set
of ground true facts, although a rewrite program may give fewer answers.
We show that this happens because if predicates are defined by equivalences,
distinct Prolog answers turn out to be equivalent with respect to the rewrite
program. However, for every Prolog answer there is an equivalent answer
given by the rewrite program. This explains why a smaller set of answers
covers the same set of ground true facts.

1 Rewrite programs

Term rewriting systems have been widely applied in functional programming
[5, 12, 13, 15] and to a less extent in logic programming [8, 10, 9, 11, 18].
In case of functional programs the evaluation mechanism is reduction and a
computation consists in reducing a ground input term to an irreducible form,
which represents the output. To perform logic programming the evaluation
mechanism is extended to reduction and linear superposition. This amounts
to a strongly restricted form of Knuth-Bendix completion, termed linear
completion [9]. A computation consists in generating an answer substitution

for a non ground query as it is done in Prolog.

Despite various approaches suggested, there is a common misconception
that rewrite programs have the same semantics as Prolog except for a differ-
ent evaluation mechanism. Surprisingly enough, this is not true in general.
In this paper we present a more precise operational and denotational seman-
tics and show how rewrite programs can avoid certain infinite loops which
occur in similar Prolog programs.

The main reason for the different behaviour of rewrite programs is the
utilization of an inference rule for simplification. We demonstrate its use
with a simple example. The following Prolog program:

append(|[], L, L).

append([X|L1],Y, [X|L2]) : —append(L1,Y, L2).
with the query

?— append(X, [b|Y], [a, b, c|Z]).

generates an infinite set of solutions [1] as shown in Fig. 1.

?-append(X,[bY],[a,b.c|Z])

?—append(L.1,[b|Y],[b,c|Z])

/\

X <—[a] ?—append(L2,[b|Y],[c|Z])
Y <—[c|Z] ‘

?—append(L3,[b|Y],Z)

/\

X <-[a,b,c] ?—append(L4,[b]Y],L2)
Z <= [blY] T
X < [a,b,¢,X’] ?—append(L5,[b]Y],L3)

Z <—[X’,bY] T T

X <— [a,b,C,X’,X”]
7 <-[X,X’,blY]

[
[a,b,c], Z < [b]Y]}
{X « [a,b,e, X'], Z « [X',b]Y]}

la,b,e, X', X", Z + [X', X", b]Y]}

Figure 1: Prolog generates an infinite set of solutions

The rewrite program, on the other hand, is defined as

append(] |, L, L) — true

append([X|L1],Y,[X|L2]) — append(L1,Y, L2)
and the query is

append(X, [b|Y],[a,b,c|Z]) — answer(X,Y, Z).

If we execute this program by linear completion we get only the first two
answers as shown in Fig. 2.

append(X,[b|Y],[a,b,c|Z]) —> answer(X,Y,Z)

append(L1,[b]Y],[b,c|Z]) —> answer([a]L1],Y,Z)

answer([a],[c|Z] ,Z)—>true/\

append(L2,[b|Y],[c|Z]) —> answer([a,b|L2],Y,Z)

(G1) append(L3,[b|Y],Z) —> answer([a,b,c|L3],Y,Z)

answer([a,b,c],Y,[b|Y]) —> true

(G2) append(L4,[b|Y],L2) —> answer([a,b,c,X’|L4],Y,[X’|L2])

¢Gl

answer([a,b,c|L4],Y,L2) <—> answer([a,b,c,X’|L4],Y,[X’|L2])

(X ¢ [a], Y « [2]}
{X < [a,b,c], Z <« [b|Y]}

Figure 2: Linear completion generates only two answers

The last step, labeled by |, is a simplification step where an ancestor
goal, labeled (G1) in Fig. 2, rewrites the current goal (G2) to a trivial goal
in the form answer() ~ answer(). Since no inference can be applied to
this goal, the execution halts with just two answers.

The reason for this different behaviour is that the Prolog program and
the rewrite program give two different definitions of append. The “program
units” in a rewrite program and in a Prolog program are interpreted in two
different ways. In Prolog, each unit is a clause, where “: —” indicates the
logical if. In rewrite programs, the logical connective “—” means if and only
if. The infinitely many answers in the form

(X < Ja,be, X', X", ..., X", Z+ [X,X",..., X", b|]Y]}

given by Prolog are not equivalent if append is defined by implications, but
they all collapse to the second solution

{X < [a,b,c|, Z < [b]Y]}

if append is defined by bi-implications. The first answer of the rewrite pro-
gram corresponds to the first answer of the Prolog program. The second
answer of the rewrite program corresponds to the second answer of the Pro-
log program and all the proceeding ones.

We can see why this happens by instantiating the query by using the
answer substitutions. If the query is instantiated by the first answer sub-
stitution, it is rewritten to append(|], [b,c|Z], [b,c|Z]) and then to true. If
it is instantiated by the second answer or any of the proceeding ones, it is
rewritten to append([], [b|Y],[b]Y]) and then to true. All the answers but
the first one yield the same true fact if simplification is applied, i.e. if append
is defined by equivalences. All those answers are equivalent to the second
one with respect to the rewrite program so that they are not generated.

Since the intended definition of append is actually

append([X|L1],Y,[X|L2]) if and only if append(L1,Y, L2),

the rewrite system is closer to the intended meaning of the definition than
the Prolog program.

The interpretation of program units as logical equivalences may also help
resolving some loops which may occur in Prolog. For example, consider the
following Prolog clause:

P(X,Y,Z) :—append(X, [b|Y],[a,b, c|Z]), non—member(a, X).
with the query ?7— P(X,Y, 7).

Prolog falls into an infinite loop when evaluating the first clause for P, since
a is a member of X in all the solutions of append(X, [b|Y],[a,b, ¢|Z]). Such
potential loops cannot even be prevented beforehand by using cut. The
rewrite program does not loop and evaluates the second clause of P, since
there are only two answers from evaluating the append subgoal and none of
them satisfies the non—member subgoal.

One may suspect that simplification may throw away too many answers
and change the intended semantics. For instance, consider the following:

Q(X,Y,Z) : —append(X, [b|Y], [a,b,c|Z]), size(X) > 3.
with the query 7— Q(X,Y, Z).

Since in the two answers for the append subgoal generated in the previous
examples the size of X is less than or equal to three, it seems that no
solution would be provided. This is not the case. When Q(X,Y,Z) —
answer(X,Y, Z) is given as the query, the execution generates first the two
solutions to the append subgoal

size([a]) > 3 — answer([a], [c|Z], Z)

size([a, b, c]) > 3 — answer([a,b,c,Y, [b]Y]),

both of which fail to give any solution to the @ problem. Then the execution
continues with the goal

append(L1,[b|Y], L2), size([a, b, ¢, X'|L1]) > 3 — answer([a,b, ¢, X'|L1],
Y, [X'[1]).

Assuming that size is defined as desired, size([a,b,c, X'|L1]) > 3 simplifies
to true and the goal is reduced to

append(L1,[b|Y], L2) — answer([a,b,c, X'|L1],Y,[X'|L2]) (G2).

Note that this is the same goal (G2) generated in the previous execution for
the append query. In that execution this goal is rewritten by its ancestor
(G1) and it does not yield any answer. In the execution for the @ query all
the ancestors contain a size literal too, so that they do not apply to simplify
the goal (G2), which yields a correct solution

answer([a,b,c, X'], Y, [X',b]Y]) = true.
Then the computation halts as the new goal

append(L1,[b|Y], L3) — answer([a,b,c, X', X"|L1],Y, [X', X" |L3])
is reduced by its ancestor (G2) to

answer([a,b, ¢, X'|L1],Y,[X'|L3]) ~ answer([a,b,c, X', X"|L1],Y, [X’,
X"|L3]).

So far we have seen examples where it is desirable to define predicates by
equivalences. However, not all relations are meant to be defined by equiva-
lences. Still, rewrite programs allow us to define predicates by implications.
For example, for the ancestor relation

ancestor(X,Y) : —parent(X,Y).
ancestor(X,Y) : —parent(Z,Y), ancestor(X, 7).

both clauses are implications. As it was already pointed out in [9], implica-
tions can be written as bi-implications by recalling that P : —@ is equivalent
to PAQ — Q. If we add some facts and a query we get:

parent(jb,lc) — true

parent(jb, gg) — true

parent(gg, wm) — true

ancestor(X,Y), parent(X,Y) — parent(X,Y)

ancestor(X,Y), parent(Z,Y), ancestor(X,Z) — parent(Z,Y),
ancestor(X, Z)

ancestor(jb, Z) — answer(Z).

This program gives the same answers as Prolog, but the computation is
optimized by simplification of goals as shown in Fig. 3.

anc(jb,Z)—>ans(Z)

par(jb,Z),ans(Z)—>par(jb,Z) 4

par(X,Z),anc(jb,X),ans(Z)—>par(X,Z),anc(jb,X)

ans(lc)—>true ans(gg)—>true /

par(X,Z),ans(X),ans(Z)—>par(X,Z),ans(X)

ans(jb),ans(Ic)—>ans(jb) ans(gg),ans(wm)—>ans(gg)

\ ans(jb),ans(gg)—>ans(jb)
/

ans(jb),true=>ans(jb) true,ans(wm)—>true

ans(jb)<—>ans(jb) ans(wm)—>true

{Z +lc}

{Z + g9}
{Z <+ wm}

Figure 3: Optimization of the computation by simplification

The generation of the first two answers is the same as in Prolog. The
third answer is different. Having the goal parent(X, Z), ancestor(jb, X),
Prolog first generates ancestor(jb, jb) twice, fails twice, then generates the
goal ancestor(jb, gg), which yields the answer z <— wm, and a third failing
computation of the goal ancestor(jb,jb). These failing paths are pruned
by rewriting. Simplification by previously generated answers reduces the
number of recursive applications of the definition of ancestor and the amount
of backtracking performed by the interpreter. This is not surprising, since
simplification is very well known as a powerful way to reduce the search
space.

2 Linear completion

As we have seen in the previous section, rewrite programs allow us to dis-
tinguish between mutually exclusive definitions and non mutually exclusive
definitions. A predicate is mutually exclusively defined if it is defined by a
set of clauses such that no two heads unify'. If a predicate A is defined by
a set of clauses

! A more general notion of mutually exclusive clauses appears in [6].

A(fm—i—l) :_Bll o Blpl-

A(t_m+n) : —Bnl e Bnpn-
its rewrite program contains the rules

A(ty) — true

A(ty) — true
A(fm—i—l) — Bll e Blp1

A(t_m+n) — Bnl . Bnpn

if A is mutually exclusively defined and Vi,1 <@ < n, A(tm+i) > Bii ... Bip,,
where > is a simplification ordering 2. Otherwise A is transformed into

A(ty) — true

A(ty,) — true
A(fm+1)B11 . B1p1 — BH . B1p1

A(fm—i—n)Bnl - Bnpn — Bnl - Bnpn

We call the rewrite rules representing facts, implications and bi-implications
fact rules, if-rules and iff-rules. A rewrite program is a rewrite system of
if-rules, iff-rules and fact rules. If a program has only if-rules and fact rules,
then we also call it an if-program. Note that every Prolog program can be
transformed into an if-program. Otherwise it is called an iff-program. We
write ¥ = P and we say that the rewrite program FE corresponds to the
Prolog program P if they define the same predicates.

Rewrite programs are interpreted by linear completion.

A query 3z2Q1 ... Q, is negated into Q1 ... Q,, — false and written as
a query rule Q1 ...Qy — answer(x), where Z contains all the free variables
in @Q1...Qp. When a rule in the form answer(z)o — true is deduced, Zo
is a solution to the query. The answer literal was used by Dershowitz in [9],
who refers to [14] for its introduction. The state of a computation is defined
by a triple

(E;Ll...Ll—)Rl...Rr;S)

where E is the program, Li...L; — Ry ... R, is the current goal and S is
the set of goal simplifiers. The set S contains all the ancestors of the current

2A simplification ordering is an ordering with the following properties: s > t implies
so > to for all substitutions o (stability), s > ¢ implies c[s] > c[t] for all contexts c
(monotonicity), c[s] > s (subterm property) and > is well founded [7].

goal plus all the previously generated answer rules, i.e. the goal rules in the
form answer(Z)o — true. A goal rule is any rule generated by the program
starting from the query. A computation can be described by a tree, where
each node is labeled by a triple. The root represents the initial state

(E;Q1 ...Qm — answer(z);)

A final state is a state such that either no inference step can be performed
on the current goal or it is an identity. The computation stops when all the
leaves in the tree are labelled by final states. A final state in the form

(E; answer(z)o — true; S)

means that the answer substitution ¢ for the query is found. An answer rule
means a contradiction in the refutational sense, since answer means false
logically. The interpreter builds a refutation starting with the query and
ending with a contradiction:

EUu{Q1...Qnm — answer(z)} o answer(Z)o — true
We also denote it by Etro @1 ... Qmo, meaning that Q1 ... Qo is proved
from program E by linear completion. If a ground query is given, the answer
substitution is empty and we write Etrc Q1 ... Qm-

A computation step transforms the current state in one of the following
ways:

Simplify:

(E;Ll...Ll%Rl...Rr;S)
(E;L, .. I, > R, ... R.;9)

Overlap:

(E;Ll...Ll%Rl...Rr;S)
(E;Ly...L), = R,...R;SU{Ly...Li > Ry...R,.})
Answer:

(E; answer(z)o — true; S)
(E; —; S U {answer(z)o — true})

Delete:

(E;Ll... l’:Ll...Ll;S)
(E;—:9)

where — means ”backtrack”.

In Simplify, Ly ... Ly — Ry ... R, is simplified into a new goal L} ... L) —
R ... R, using EUS. The rewritten goal is discarded. Simplification of goals
by goals is the basic difference between our definition of linear completion
and the one in [9]. In Ouverlap a new goal is generated by overlapping the
current goal with a rule in £. The new goal replaces the current one, which
is added to the simplifiers set. In Answer an answer is found and the answer
rule is put into the simplifier set. Then the interpreter backtracks if possi-
ble. Similarly, in Delete a goal which is an identity is deleted and then the
interpreter backtracks.

Note that no overlap between two program rules, no overlap between two
goal rules and no simplification of program rules are used. The name linear
completion emphasizes that the process is linear with respect to superposi-
tion.

The simplifiers set is a global variable: its modifications on one path
of the computation tree affect the other paths since a current goal at some
node can be simplified by an answer rule reached on another path. A linear
completion interpreter builds the tree sequentially following some search
strategy. For instance a depth first strategy with backtracking as in Prolog
can be adopted. If the goal rule in the current state is such that none of the
above inference rule applies, the interpreter backtracks. This is the case for
instance when the goal rule has the form answer(t) ~ answer(s). Here we
focus on inference rules only, abstracting from the search strategy. In the
following we assume that a fair strategy is adopted whenever needed.

The overlap steps in LC are similar to the resolution steps in Prolog.
Given a goal rule A(u)Ly...L; — R;...R, and a program rule, one of
the three overlapping inferences can be used according to the type of the
program rule:

Overlap with an if-rule:

A(g)Ban—)Ban, A(ﬂ)LlLl—)Rer
(BanLlLl)O'—)(BanRer)O'

Overlap with an iff-rule:

A(g)—>B1...Bn, A(ﬂ)LlLl%Rer
(Bl...BnLl...Ll)O'—>(Rl...Rr)O'

Overlap with a fact rule:

A(8) — true, A(u)L1...L; > Ry... R,
(L1 PN Ll)O' ~ (R1 PN RT)O'

where o is the most general unifier of A(5) and A(@). In the last case the
generated goal is oriented according to a simplification ordering. Here and
in the following we assume that the selected literal in a goal Q1...Q,, is
Q1. There is no loss of generality, because if the selected literal is @); with
j # 1, we can permute the indices so that j = 1. The generated goals
are oriented by a simplification ordering such that goal rules in the form
By ...Bpanswer(t) — By...B, and B;...B, — answer(t) are oriented
from left to right. An overlap step replaces a literal in the goal by a proper
instance of its predicate’s definition. If the defining formula is an implication,
the new set of subgoals is added to both sides of the goal equation. If it is
a bi-implication, it is added to the left side only. An overlap with a fact
deletes a literal in the goal list.

Note that no overlap on an atom different from the head of a rule needs
to be considered. If the atom A(@) in the goal rule A(%)L — R unifies with
an atom A(?) in an if-rule CA(v)B — A(v)B the overlap step generates the
goal

CBRo — BA(v)Lo
which is reduced by its predecessor to

CBRo — BRo.

A following overlap on literal C' between this new goal and the same program
rule will lead to the identity A(v)BRo ~ A(v)BRo.

The key feature of rewrite programs is simplification of the current goal
by program rules, ancestor goal rules and answer rules. If an if-rule AB; ... By,
— By...B, or a fact A — true simplifies a query Q1 ... Q.,, then the atom
Q; such that Ac = @Q; is deleted. If an iff-rule A — B;... B, applies, the
atom @Q; is replaced by (Bj...By)o. The rewrite rules x - true — x and
x - x — x are also implicitly applied. They allow us to delete any repeated
atom and any occurrence of true in a conjunction. Notice that since the
product is associative, commutative and idempotent, we regard conjunc-
tions of atoms as sets of atoms: the left side L of an if-rule or of an ancestor
goal rule matches a side R of the current goal rule if there is a subset of R
which is an instance of L. Simplification is given higher priority than over-
lap. The current goal rule is always fully simplified before the next overlap
step is performed.

3 A fixpoint characterization of rewrite programs

Rewrite programs have operational, model theoretic and fixpoint semantics
like Prolog programs. Let E be a rewrite program, B be its Herbrand base
and P(B) be the set of all subsets of B, i.e. the set of all the Herbrand
interpretations. The operational semantics of F is its success set, {G | G €
B, EtpcG}. The model theoretic semantics is the set {G | G € B, E* =
G = true}, where E* = EU{z-2 =z, x-true > z}. H EtpcQ1...Qno,
we say that o is a correct answer substitution for the query Q1...Q, if
E*E=Q1...Qno = true.

We define a least fixpoint semantics of rewrite programs on the lattice
B ={I' | I' =1U{true},I C B}. B is P(B) where the element true is
added to each subset of B. The order relation on IB is set inclusion C, the
greatest lower bound operation is intersection (] and the least upper bound
operation is union | J. The bottom element is {true} and the top element is
B U {true}.

A function Tg : B — B is associated to a program E as follows:

Definition 3.1 Given a rewrite program E, its associated function is the
function Ty : B — B such that P € Tg(I) if and only if there exists in
E a rule Ay...A, ~ By...B,, (n > 1,m > 1) such that P = A0 and
{Ajo,...,Ai10,Ai10,...,Apo,Bio,...,Byo} C I for somei, 1 <i<mn,
and some ground substitution o. (The double arrow ~ means there is no
distinction between the left hand side and the right hand side.)

Lemma 3.1 Given a rewrite program E, Ty is continuous, that is for every
non decreasing chain X1 C Xo C ... of elements in B, Tp(U{Xi | i <w}) =
HTe(X;) | i <w}.

It follows that T has the properties of continuous functions on a lattice.
Namely the least fixpoint of Ty is an ordinal power of Tg:

lfp(Te) =T tw

where ordinal powers are defined on IB in the usual way:
T 10 = {true}

(Tt (n—1)) if n is a successor ordinal

TTn:{U{TTk‘ | k <n} if nis a limit ordinal.

For example, the least fixpoint of the rewrite program for the ancestor re-
lation is obtained as follows:
Tg({true}) = {true, parent(jb,lc), parent(jb, gg), parent(gg, wm)}
T2 ({true}) = Tg({true}) U {ancestor(jb,lc), ancestor(jb, gg),
ancestor(gg,wm)}
lfp(Tg) = Ta({true}) = T2 ({true}) U {ancestor(jb,wm)}.

4 Equivalence of proof theoretic, model theoretic
and fixpoint semantics

We show now that [fp(Tg) is a fixpoint characterization of both the oper-
ational and model theoretic semantics of a program E. These results are
obtained through a few steps. The proofs are omitted due to their length
and can be found in the full version of the paper [4].

Lemma 4.1 For all conjunctions of atoms Q1 ...Qm, Q1 ...Qm <5« true
if and only if V5,1 < j <m, Qj <. true.

The following theorem establishes the soundness of linear completion, i.e.
that all the answers given by linear completion are correct answer substitu-
tions:

Theorem 4.1 If Etrc Q1 ...Qmo then E* = Q1 ...Qno = true.

We now restrict our attention to ground queries. First we prove a lemma
which allows us to split the problem of proving a ground conjunction into
the subproblems of proving its single atoms:

Lemma 4.2 VQi...Qn € B, EFrc Q1 ...Qm if and only if Vi, 1 < j < m,
EtrrcQ);.

Intuitively this result holds because since the query is ground, there is no
computation of an answer substitution and the processes of reducing to true
the literals in the query are independent processes. Next we show that all
ground queries proved by linear completion from E are equivalent to true:

Theorem 4.2 VQi...Qn € B, EFpcQ1...Qm if and only if Q1 ... Qp <5
true.

These results allow us to relate the fixpoint semantics of a rewrite program
FE to its operational semantics:

Theorem 4.3 VQi...Qn € B, Q1...Qnm <5 true if and only if Vi, 1 <
i<m, Q; €fp(TE).

Therefore, the fixpoint semantics [fp(Tg) captures both the operational and
model theoretic semantics of the rewrite program E':

Theorem 4.4 VG € B, G € Ifp(Tg) if and only if Etro G.

Theorem 4.5 VG € B, G € lfp(Tk) if and only if E* = G = true.

5 Denotational semantics of rewrite programs

The above fixpoint characterization of rewrite programs is basically equiva-
lent to the fixpoint characterization of Prolog programs. The fixpoint seman-
tics of a Prolog program P is [fp(Tp) = Tp T w, where Tp is the function
Tp : P(B) — P(B) such that A € Tp(I) if and only if there exists in P a
clause A’ : =By ... By, (m > 0) such that A = A'o and {Byo...Byo} C I
for some ground substitution o [16, 1]. The following theorem shows that
the two semantics are indeed the same.

Theorem 5.1 If E = P, then lfp(Tr) = lfp(Tp).

This theorem shows that a Prolog program and a rewrite program defining
the same predicates have the same model. For a ground atom G, Etc G,
G true, E* = G = true, G € lfp(Tg), G € lfp(Tp), P = G and
Ptproog G are all equivalent. However, the behaviour of the two programs
P and F may be different. We show in the following that even if a rewrite
programs F may generates less answers than the corresponding Prolog pro-
gram P, for all answers given by P there is an answer given by E which is
F-equivalent.

We first prove that all the answers given by linear completion are also
given by Prolog. This result follows from completeness of SLD-resolution.

Theorem 5.2 If E=P, if EFrcQ1...Qmnmo, then there exists an answer
0, PFprolog @1 - .- Qmb, such that o = 0p for some substitution p.

We now prove that linear completion is complete as well by proving that all
Prolog answers are represented by some answers given by linear completion.

In the following we assume that all queries are single literal queries.
There is no loss of generality because a query Q1 ...Q,, — answer(Z) can
be written as a single literal query by introducing a new predicate symbol
N, anew programrule N - Q1...Qor NQ1...Qm — Q1 ...Qp and the
query N — answer(z).

First of all we prove that rewrite programs and Prolog programs give the
same answers if linear completion is restricted to overlap steps only, i.e. no
simplification is performed. This is straightforward, since overlap steps and
resolution steps clearly correspond.

Theorem 5.3 Let LC’ be a subset of the linear completion interpreter per-
forming overlap steps only. If E* = GO = true, i.e. 0 is a correct answer
for G, there exists a computed answer o, Etpcr Go, such that 8 = op for
some substitution p.

In order to prove an analogous result for linear completion with simplification
we first need to prove two more lemmas.

Lemma 5.1 If linear completion generates a computation path (E;G —
answer(Z);0) 5o (B;W — Vi)i a(BE; Hy)brpo(E; R ~ R;), where the
goal H is simplified to an identity by its predecessor W — V', then H is
Z(WX) — Z(VX) for some substitution X and literals Z. (The hyphen _ in
(E; H;) means that the third component is not relevant.)

Lemma 5.2 Given a query G, if there exists an answer 6 generated by
LC', i.e. Ebpci GO, then there ewists an answer o generated by LC, i.e.
E }_LC Go.

We can finally state our completeness result:

Theorem 5.4 Let E be an iff-program. If E* = GO = true, i.e. 0 is a
correct answer for G, there exists a computed answer o, EtpocGo, such
that GO <%, Gop for some substitution p.

Theorem 5.5 If E = P, if Ptpyyog GO, then there exists an answer o
given by linear completion, E'Frc Go and a substitution p, such that GO <.
Gop.

6 Discussion

In this paper we have given the operational and denotational semantics of
a notion of rewrite programs. We have shown that its operational seman-
tics, via linear completion, is both sound and complete with respect to the
denotational semantics.

The main difference between rewrite programs and Prolog programs is
that rewrite programs differentiate between predicates which are mutually
exclusively defined and those which are not. A predicate is mutually ex-
clusively defined if the head of each of its clauses is logically equivalent to
its body. A typical such example is the usual definition of append. Rewrite
programs, with their simplification power, can take advantage of these defi-
nitions to prevent certain infinite loops which are otherwise unavoidable in
pure Prolog.

Rewrite programs and linear completion have already been discussed in
[10, 9, 11, 18]. The approach proposed in the first three papers does not allow
simplification, thus cannot fully utilize the power of rewriting. Our approach
is similar to [18], although they did not study the case where a predicate is
defined as an implication and not as a logical equivalence. Neither did they
explain the semantics of their method. Techniques for loop detection in the
execution of Prolog programs have received considerable attention. In [2, 3]
loop checking mechanisms based on subsumption are studied. The basic
idea in these loop checks is to eliminate the current goal if it is subsumed
by one of its ancestors. The pruning effect of this kind of loop checks can
turn out to be similar to the effect of our simplification of goals by ancestors.
However, simplification as it is done in linear completion is more powerful in
general, since it also includes simplification by program rules and by answer
rules. More importantly, we believe that our approach is more natural and
easier to understand, since simplification is a natural consequence of writing
program units as equations.

Rewrite programs have the curious property of being denotationally
equivalent to Prolog on the ground level while yield less answers in general.
This is because certain answers equivalent under the equivalence relation
defined by the program “collapse” into one. However, rewrite programs are
also guaranteed not to lose any necessary answers. That is, they will in-
deed generate answers where there are some, as we have shown both in the
examples and in the theorems. We feel that when a predicate symbol is
supposed to be mutually exclusively defined, our semantics is more desirable
than Prolog since it captures the intended meaning more accurately.

It should not be too difficult to incorporate our treatment of mutually
exclusively defined predicates into a Prolog interpreter. It requires elimi-
nating a few backtracking points and keeping the ancestor goals around for
simplification purposes. However, the cleaner semantics and the prevention
of certain loops may justify the extra effort spent. We are also interested
to see whether negation can be incorporated into our framework, since a
negative fact = A simply means a rule A — false.

Acknowledgements

This research was supported in part by grants CCR-8805734, INT-8715231
and CCR~8901322, funded by the National Science Foundation. The first

author is also supported by Dottorato di ricerca in Informatica, Universita
degli Studi di Milano, Italy.

References

1]

2]

K.R.Apt and M.H.Van Emden. Contributions to the Theory of Logic
Programming. J. ACM, 29,3:841-862, July 1982.

K.R.Apt, R.N.Bol and J.W.Klop. On the Safe Termination of PROLOG
programs. Proc. of the Sixth Int. Conf. on Logic Programming, G.Levi
and M.Martelli eds., 353-368, MIT Press, Cambridge MA, 1989.

R.N.Bol, K.R.Apt and J.W.Klop. On the Power of Subsumption and
Context Checks. Proc. Int. Symp. on Design and Implementation of
Systems for Symbolic Computation, A.Miola ed., 131-140, Capri, Italy,
April 1990.

M.P.Bonacina, J.Hsiang. Operational and Denotational Semantics
of Rewrite Programs. Technical report, Dept. of Computer Science,
SUNY, Stony Brook, NY, March 1990.

R.M.Burstall, D.B.MacQueen and D.T.Sannella. HOPE: An experi-
mental applicative language. Conf. Record of the 1980 LISP Conf.,
136-143, Stanford, CA, 1980.

S.K.Debray and D.S.Warren. Functional Computations in Logic Pro-
grams. ACM Trans. on Programming Languages and Systems, 11,3:451—
481, July 1989.

N.Dershowitz. Orderings for term rewriting systems. J. of Theoret.
Comp. Sci., 17,3:279-301, 1982.

N.Dershowitz, J.Hsiang, N.A.Josephson and D.A.Plaisted. Associative-
commutative rewriting. Proc. of the Fighth Int. Joint Conf. on Artificial
Intelligence, A.Bundy ed., 940-944, Karlsrue, Germany, 1983.

N.Dershowitz. Computing with Rewrite Systems. Information and Con-
trol, 65:122-157, 1985.

N.Dershowitz and N.A.Josephson. Logic Programming by Completion.
Proc. of the Second Int. Conf. on Logic Programming, 313-320, Uppsala,
Sweden, 1984.

[11]

[12]

[13]

[14]

[17]

18]

N.Dershowitz and D.A.Plaisted. Logic Programming Cum Applicative
Programming. Proc. IEEE Symp. on Logic Programming, 54—66, Boston
MA, 1985.

K.Futatsugi, J.A.Goguen, J.P.Jouannaud and J.Meseguer. Principles of
OBJ2. Conf. Record of the 12th Annual ACM Symp. on Principles of
Programming Languages, New Orleans, LA, 1985.

J.A.Goguen and J.Meseguer. Equality, types, modules and (why not?)
generics for logic programming. J. Logic Programming, 1,2:179-210,
1984.

C.C.Green. The Application of Theorem-proving to Question-
answering. Ph.D. Thesis, Dept. of Computer Science, Stanford Uni-
versity, Stanford, CA, 1969.

C.M.Hoffmann and M.J.O’Donnell. Programming with Equations.
ACM Trans. on Programming Languages and Systems, 4,1:83-112, Jan.
1982.

R.A.Kowalski and M.H.Van Emden. Predicate Logic as a Programming
Language. J. ACM, 4,23, 1976.

J.W.Lloyd. Foundations of Logic Programming. Second edition,
Springer Verlag, Berlin, 1987.

P.Réty, C.Kirchner, H.Kirchner and P.Lescanne. NARROWER: A new
Algorithm for Unification and its Application to Logic Programming
Proc. of the First Int. Conf. on Rewrite Techniques and Applications,
J.P.Jouannaud ed., Dijon, France, May 1985.

