
Journal of Automated Reasoning manuscript No.
DOI 10.1007/s10817-022-09628-0 in 66(4):463–497, November 2022

Set of Support, Demodulation, Paramodulation: A
Historical Perspective

Maria Paola Bonacina

Received: 31 March 2021 / Accepted: 2 April 2022 / Published online: 24 May 2022

Abstract This article is a tribute to the scientific legacy of automated reason-
ing pioneer and JAR founder Lawrence T. (Larry) Wos. Larry’s main technical
contributions were the set-of-support strategy for resolution theorem proving,
and the demodulation and paramodulation inference rules for building equal-
ity into resolution. Starting from the original definitions of these concepts in
Larry’s papers, this survey traces their evolution, unearthing the often for-
gotten trails that connect Larry’s original definitions to those that became
standard in the field.

Keywords Resolution · Set of support · Demodulation · Paramodulation

Prologue: Larry Wos, A Recollection

My first encounter with Larry Wos dates to when I was a PhD student at the
State University of New York at Stony Brook and Larry was the head of the
theorem-proving group at the Argonne National Laboratory. I had submitted
to CADE (the international Conference on Automated DEduction) a paper,
co-authored with Siva Anantharaman of the Université d’Orléans, about prov-
ing mechanically with the theorem prover SBR3 a theorem in Lukasiewicz
many-valued logic [2].

 Lukasiewicz had conjectured that a set of five axioms, together with modus
ponens, constitutes an axiomatization of the many-valued logic [171] that
would be later called after him. The conjecture had been proved first by Wa-
jsberg, and then independently by Rose and Rosser [153] and by Chang [62,
64]. Then Meredith [129] and Chang [63] also independently had derived the
fifth axiom from the other four. The latter problem had been brough to my
attention by Daniele Mundici of the Università degli Studi di Milano, as a

Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy, EU. E-mail:
mariapaola.bonacina@univr.it ORCID 0000-0001-9104-2692

2 M. P. Bonacina

challenge for automated theorem provers. My CADE submission with Siva
presented a mechanical proof of the dependency of the fifth axiom in an equiv-
alent equational formulation in Wajsberg algebras, a class of algebras connected
to Lukasiewicz many-valued logic [85,152]. The submission was rejected, and
a referee report said that the reason for rejection was that they had given the
problem to Otter, the theorem prover developed at Argonne, and Otter
also had succeeded. Siva and I continued the investigation of many-valued
logic and Wajsberg algebras, proving other problems with SBR3 [3].

Several months after the CADE rejection, I read in the Newsletter of the
Association for Automated Reasoning (AAR) an article by Larry Wos [182],
presenting the dependency of the fifth axiom, in both formulations, as a chal-
lenge for theorem provers, and citing my unpublished work on the topic. After
consulting with my advisor Jieh Hsiang, I wrote an e-mail to Larry. To my
great surprise, Larry called me on the phone, and we talked for quite a while.
Larry encouraged me to send to the AAR Newsletter my own presentation
of both original and equational formulations of the problem, which appeared
several months later [41]. Lukasiewicz many-valued logic became a source of
challenge problems for theorem provers at Argonne. Larry and I became friends
with that phone call and remained friends ever since.

When Bill McCune served on my PhD defense committee, he invited me to
visit Argonne during the interval between my departure from Stony Brook and
the start of a postdoc at INRIA Lorraine. During that visit I worked with Bill,
but I often had the chance to go for lunch or otherwise meet informally with
Larry. Larry talked fondly and often of his wife Nancy, who, like him, could
not see. Larry loved to make fun of people around him, but would never make
fun of Bill. I thought that Larry had so much respect for Bill, as the author
of Otter, that he would not tease him. It is also possible that Larry knew
that he would not get much satisfaction out of Bill’s reserved personality. At
times I was a bit worried that Larry would tease me, but that never happened.
Perhaps Larry guessed that I would have neither reacted nor let my feelings
show, and hence there was not much fun in trying, or else he respected me for
my conduct in relation to the events around the Lukasiewicz problem.

A few years later, when I was on the faculty of the University of Iowa, Larry
invited me to succeed Bob Veroff as Secretary of the AAR, a job that I was
glad to accept. The following summer I returned to Argonne to discuss research
with Bill, but unfortunately I did not get to meet with Larry. I was delighted
when Larry resumed calling me on the phone to discuss AAR matters, and all
the more so because that was after I had moved to the Università degli Studi
di Verona: a different time zone was obviously no deterrent for Larry when he
wanted to talk on the phone. During one of these conversations he once told
me: ”Don’t you ever leave CADE and the AAR: we can’t do it without you.”
I knew it could not be true, but it is an eloquent example of Larry’s style in
letting people know how much they were appreciated.

My last interaction with Larry was when the late Mark Stickel and I took
the initiative of editing a volume in memory of Bill McCune: Mark and I were
thrilled that Larry contributed the opening chapter in the volume [183]. While

Set of Support, Demodulation, Paramodulation: A Historical Perspective 3

Larry’s preference for the telephone over e-mail was most likely due to the fact
that he could not see, I think that it was also a kind of wisdom, as e-mail lacks
the information that the human voice can convey.

1 Introduction

Larry Wos broke new ground in the design of both fundamental components of
a theorem-proving strategy or proof procedure, namely the inference system and
the search plan. His seminal contributions include the set-of-support strategy
for resolution-based theorem proving [187], and the demodulation [188] and
paramodulation [147] inference rules for equational reasoning. Each of them
had a profound impact on theorem proving.

The idea of set of support was a primer in controlling resolution [149] with
semantic knowledge (i.e., that a part of the problem is satisfiable), opening the
way to semantic or semantically-guided, supported, and goal-sensitive strategies
(e.g., [161,140,162,17,142,59,60]). The set-of-support strategy is also at the
origin of the given-clause algorithm implemented first in Otter (e.g., [128,
127]) and then in many theorem provers (e.g., [157,96,146,180,110,66,159,
170,175]).

With demodulation, Larry Wos posed the problem of well-founded replace-
ment of equals by equals in theorem proving. With the concept of paramodula-
tion, he challenged the field with the Wos–Robinson conjecture on the refuta-
tional completeness of paramodulation without paramodulating into variables
and without functionally reflexive axioms. The successful solution of these
problems involved decades of research, leading to a merger of resolution-based
and completion-based [107,101,8,98,9,6,7,54] theorem proving that shaped
the field of theorem proving for first-order logic with equality. The resulting
inference systems combine resolution, paramodulation, superposition, well-
founded demodulation, and subsumption (e.g., [133,154,99,155,10]). These
inference systems have been called completion-based, rewrite-based, satura-
tion-based, or ordering-based [45], given the key role played by well-founded
orderings on terms, literals, and clauses.

Larry was interested mainly in devising inference rules and search plans,
and refining them through experiments with the Argonne provers. Accord-
ingly, this survey focuses on the history of inference rules and search plans,
and covers neither that of fundamental concepts in theorem proving, such
as completeness, fairness, saturation, redundancy, and canonicity, nor that of
completeness proof techniques, such as semantic trees, proof orderings, trans-
finite semantic trees, and rewrite models.

Furthermore, this survey is about Larry Wos’ contributions, and hence
it considers resolution-based theorem proving and its extensions to equal-
ity reasoning leading to the above mentioned ordering-based inference sys-
tems. There are several other fundamental principles for theorem proving in
first-order logic, including model elimination [118,119], matings [4] or con-
nections [33], all three formalized as tableaux-based strategies (e.g., [18,114,

4 M. P. Bonacina

93,116]), instance-based methods (e.g., [112,38,88,15]), tableaux with instance
generation (e.g., [14,16,20]), model evolution [22,21], SGGS (Semantically-
Guided Goal-Sensitive reasoning) which is model-based, instance-based, and
conflict-driven [59,60], and the list is certainly incomplete.

The interested reader can find complementary material in books (e.g., [65,
120,34,35,113,141,163]), surveys about theorem proving in general (e.g., [136,
37,45,117,139,48]), surveys about resolution, rewriting, and equational rea-
soning (e.g., [76,137,83,11,12,78,130]), and surveys of tableaux-based strate-
gies (e.g., [18,114,93,116]), instance-based strategies (e.g., [103,108]), model-
based methods [51], and conflict-driven methods [47]. This article has historic
contents, but given its focus on one scientist–Larry Wos–it cannot be a well-
rounded account of the early history of theorem proving. Sources dedicated to
the early history of the field (e.g., [68,185,36]) and to its roots in the general
history of mathematics and computer science (e.g., [69]) are available.

This article is organized as follows. Section 2 introduces the theorem-
proving problem, reconstructing the state of the art prior to Larry Wos’ work,
and outlining some of his ideas about the properties that inference rules, search
plans, and proofs ought to have. Sections 3, 4, and 5 are devoted to the set-of-
support strategy, demodulation, and paramodulation, respectively. For each of
them, the main phases of their evolution from Larry’s time to their standard-
ization are outlined, showing the impact of Larry’s ideas. Section 6 discusses
a selection of subsequent research directions whose origins can be connected
to Larry’s work.

2 Setting the Stage: Resolution-based Theorem Proving

The theorem-proving problem is about determining whether a formula ϕ is a
logical consequence of a set of formulae H, written H |=? ϕ, or, equivalently,
whether the formula H ⊃ ϕ is valid, written |=? H ⊃ ϕ. Mechanical theo-
rem proving approaches this problem refutationally, by trying to determine
whether H ∪ {¬ϕ} is unsatisfiable, and in clausal form, by turning H ∪ {¬ϕ}
into an equisatisfiable set S of clauses. A clause is a disjunction of literals with
variables implicitly universally quantified. A set of clauses is understood logi-
cally as their conjunction, where each clause has its own variables. A clause is
a unit clause, if it contains exactly one literal; it is a positive clause, if all its
literals are positive; it is a negative clause, if all its literals are negative; it is a
Horn clause, if it contains at most one positive literal. An ordering is a binary
relation that is irreflexive and transitive. A quasi-ordering is a binary relation
that is reflexive and transitive. An ordering is well-founded, if it admits no
infinite descending chain.

2.1 Expansion and Contraction Inference Rules

In the context of refutational clausal theorem proving, an inference system Γ is
a collection of inference rules that transform sets of clauses. In resolution-based

Set of Support, Demodulation, Paramodulation: A Historical Perspective 5

theorem proving the most important such rule is the binary resolution infer-
ence rule, that combines unification with resolving upon literals of opposite
sign [149]. According to [36], the idea of propositional resolution appeared as
early as 1937 [39], was rediscovered in 1955 [132], and applied to theorem prov-
ing in the Davis–Putnam procedure [70] as well as in another procedure [82].
The basic idea of unification already appeared in the work of Herbrand [95]
and Prawitz [143]. Nonetheless, it was Alan Robinson who understood how
to merge these two ideas in the resolution principle for first-order theorem
proving [149]. Binary resolution generates from two clauses, termed parents, a
new clause, termed binary resolvent, and adds it to the set:

Binary Resolution :
S ∪ {L1 ∨ C, L2 ∨D}

S ∪ {L1 ∨ C, L2 ∨D, (C ∨D)σ} L1σ = ¬L2σ,

where L1 and L2 are the literals resolved upon that unify and have opposite
sign, and C and D are disjunctions of literals. Here, and in the sequel, unifiers
are most general unifiers, abbreviated mgu’s. Binary resolution is accompanied
by factoring, which generates from a clause, termed parent, a new clause,
termed factor, and adds it to the set [149]:

Factoring :
S ∪ {L1 ∨ . . . ∨ Lk ∨ C}

S ∪ {L1 ∨ . . . ∨ Lk ∨ C, (L1 ∨ C)σ} L1σ = L2σ = . . . = Lkσ.

In the original presentation [149], binary resolution and factoring were inte-
grated in the resolution inference rule, so that a resolvent of two clauses C and
D is either a binary resolvent of C and D, or a binary resolvent of a factor of C
and D, or a binary resolvent of C and a factor of D, or a binary resolvent of a
factor of C and a factor of D [65]. Thus, factoring only needs to be applied to
resolution parents. Larry Wos propounded considering binary resolution and
factoring as distinct inference rules (e.g., [187]), so that binary resolution can
be called simply resolution, as we will do from now on.

If a parent is a unit clause, resolution is unit resolution, also a feature of
the Davis–Putnam procedure [70]. Unit resolution is advantageous, because
the resolvent is one literal shorter than the non-unit parent. In general, the
resolvent inherits all the literals of its parents, except the two literals resolved
upon, so that inferred clauses grow longer and longer, and hence more expen-
sive to process. This well-known disadvantage of resolution was later studied
as duplication by combination [138,141].

Resolution and factoring are expansion inference rules, as they fit in the
expansion inference scheme:

Expansion :
S
S′

S ⊂ S′,

where S ⊂ S′ says that the existing set S of clauses is expanded by adding
some clause. Symmetrically, contraction inference rules are rules that contract

6 M. P. Bonacina

the set of clauses, because they delete clauses or replace them by smaller ones
according to the contraction inference scheme:

Contraction :
S

S′
S 6⊆ S′, S′≺mul S,

where S 6⊆ S′ tells that something has been deleted, and S′≺mul S says that
S′ is smaller than S in the multiset extension [77] of a well-founded order-
ing ≺ on clauses. The multiset extension of a well-founded ordering is also
well-founded [77]. The double inference line [49] emphasizes the diversity of
contraction with respect to the traditional notion of inference in logic (e.g.,
natural deduction). Contraction rules that only delete clauses are also called
deletion rules, whereas contraction rules that delete clauses and replace them
by smaller ones are also called replacement rules. Expansion rules and replace-
ment rules together are called generative inference rules [57], because they are
those that generate clauses.

Assuming Th(S) = {C : S |= C}, a generative inference rule is sound, if
S′ ⊆ Th(S): whatever is added is a logical consequence of what pre-existed.
A contraction rule is adequate [49], if S ⊆ Th(S′): whatever is deleted is a
logical consequence of what remains. Adequacy implies monotonicity [53]: a
contraction rule is monotonic if Th(S) ⊆ Th(S′). Soundness and adequacy
together imply Th(S) = Th(S′). An inference system Γ is sound and adequate
if its rules are.

The contraction inference rules for resolution-based theorem proving that
were known prior to Larry Wos’ contributions are tautology deletion, purity
deletion, and subsumption, all three deletion rules. Tautology deletion ap-
peared in the Davis–Putnam procedure [70]:

Tautology Deletion :
S ∪ {L ∨ ¬L ∨ C}

S

Purity deletion appeared first for propositional logic in the Davis–Putnam pro-
cedure [70], and, according to [36], in the procedure in [81]. It was generalized
to first-order logic by integrating it with unification [149]:

Purity Deletion :
S ∪ {L1 ∨ C}

S
if L1 is pure in S ∪ {L1 ∨ C},

where literal L1 is pure in S ∪ {L1 ∨ C} if S contains no clause L2 ∨D such
that L1σ = ¬L2σ. Subsumption also appeared in [149]:

Subsumption :
S ∪ {C, D}
S ∪ {C}

Cσ ⊆ D, |C| ≤ |D|,

where σ is a matching substitution, ⊆ is the subset relation between clauses
viewed as sets of literals, and |C| is the number of literals in clause C. The
original definition [149] did not require that |C| ≤ |D|, because factoring was
integrated into resolution. If resolution and factoring are treated as separate

Set of Support, Demodulation, Paramodulation: A Historical Perspective 7

inference rules, either the |C| ≤ |D| condition must be added, or clauses must
be treated as multisets of literals, in order to prevent a clause from subsuming
its factors:

Subsumption :
S ∪ {C, D}
S ∪ {C}

Cσ ⊆ D,

where ⊆ is the subset relation between clauses viewed as multisets of literals.
From now on, clauses are considered as multisets of literals. On the other
hand, a factor can subsume its parent, and the combination of factoring and
subsumption where a factor is generated and then it subsumes its parent, is
known as condensation [105,127]. If C is a unit clause, subsumption is called
unit subsumption.

Subsumption and unit resolution can be combined into a replacement rule
named Clausal Simplification [155]:

Clausal Simplification :
S ∪ {L1, L2 ∨ C}
S ∪ {L1, C}

L1σ = ¬L2,

where the resolvent C, produced by unit resolution of L1 and L2∨C, subsumes
its non-unit parent L2∨C, because σ is a matching substitution that does not
instantiate the variables in the literals of C.

Contraction inference rules use matching, whereas expansion inference rules
use unification. When contraction is applied to delete or simplify a newly gen-
erated clause with respect to previously existing clauses, it is called forward
contraction. When contraction is applied to delete or simplify previously ex-
isting clauses by a newly generated clause, it is called backward contraction.
Showing his appreciation of the importance of contraction, Larry Wos wrote
that subsumption should have been considered even more important than res-
olution among Alan Robinson’s contributions [186].

2.2 Derivations and Refutational Completeness

Given input set S of clauses and inference system Γ , a derivation by Γ , or Γ -
derivation, is a sequence of the form S0 `Γ S1 `Γ . . . Si `Γ Si+1 `Γ . . ., where
S0 = S, and ∀i, i ≥ 0, Si+1 is derived by applying to Si an inference rule
of Γ . An inference system discovers that S is unsatisfiable, by showing that
S is inconsistent, that is, by deriving from S a contradiction, represented in
clausal form by the empty clause, denoted with 2. A derivation with input S
is a refutation of S, if there exists a k, k ≥ 0, such that 2 ∈ Sk. An inference
system Γ is refutationally complete, if for all unsatisfiable clause sets S given as
input there exists at least a Γ -derivation that is a refutation of S. A derivation
is characterized by the set S∗ =

⋃
i≥0 Si of all input or generated clauses and

the set S∞ =
⋃
j≥0

⋂
i≥j Si of all persistent clauses. The latter set is called the

limit of the derivation.
The inference system with resolution and factoring as expansion inference

rules, and tautology deletion, purity deletion, subsumption, and clausal sim-
plification as contraction inference rules, is sound and adequate, and it is

8 M. P. Bonacina

refutationally complete [149], provided forward subsumption is applied before
backward subsumption [111,120,53]. As remarked in [120], the reason for this
proviso is that the subsumption ordering defined by C l D if Cσ ⊆ D is
not well-founded. More precisely, l is not an ordering, it is a quasi-ordering,
and the induced equivalence relation C

.
= D if C l D and D l C admits

equivalence classes of infinite cardinality. Thus, a derivation can generate an
infinite series of equivalent clauses and an infinite series of subsumption steps
that preempt the resolution steps leading to a contradiction. A solution is to
restrict subsumption as follows (e.g., [155]):

Proper Subsumption :
S ∪ {C, D}
S ∪ {C}

C lD,

where the strict subsumption ordering l, defined by C l D if C l D and
D 6l C, is well-founded. However, this solution prevents the inference system
from subsuming one out of two clauses C and D such that C

.
= D. Such

clauses can be similar clauses or variants. They are similar [60], if Cσ ⊆ D and
Dρ ⊆ C by substitutions σ and ρ that replace variables by variables, possibly
replacing distinct variables by the same. They are variants, if they are equal up
to variable renaming, that is, Cσ ⊆ D and Dρ ⊆ C by substitutions σ and ρ
that are variable renamings, meaning that they replace variables by variables,
without replacing distinct variables by the same. Similar clauses have factors
that are variants.

Example 1 Clauses C = P (x)∨P (y)∨Q(y) and D = P (w)∨Q(w)∨Q(v) are
similar as they satisfy Cσ ⊆ D with σ = {x ← w, y ← w} and Dρ ⊆ C with
ρ = {w ← y, v ← y}). Clauses P (x) ∨Q(y) and P (w) ∨Q(v) are variants.

Assume that all clauses in S∗ are given distinct increasing natural num-
bers as identifiers, as it happens in implementations. For clauses C and D
such that C

.
= D, the solution is to take the lexicographic combination of l

and the ordering on the natural numbers and apply it to pairs (C, n), where
n is the identifier of clause C. This ordering is well-founded, because a lexi-
cographic combination of well-founded orderings is well-founded. Given pairs
(C, n) and (D,m) such that C

.
= D, clause C subsumes D if n < m, that is,

if C was generated before D. Applying forward subsumption before backward
subsumption implements this concept.

2.3 Search Plans, Fairness, Strategies, and Proof Reconstruction

Given a set S of clauses and an inference system Γ , there is in general more
than one way to apply rules in Γ to S. This means that Γ is nondeterministic,
so that the Γ -derivation with input S is not unique. In order to obtain a
deterministic procedure, Γ is coupled with a search plan Σ that chooses at
each stage of the derivation which rule to apply to which clauses. A search
plan Σ is fair for an inference system Γ , if for all input clause sets S, if there
exist refutations of S by Γ , the Γ -derivation driven by Σ is a refutation of S.

Set of Support, Demodulation, Paramodulation: A Historical Perspective 9

A theorem-proving strategy, or proof procedure, is a pair P = 〈Γ,Σ〉, where
Γ is an inference system and Σ is a search plan. Given input set S of clauses,
P generates the unique Γ -derivation driven by Σ. A theorem-proving strategy
P = 〈Γ,Σ〉 is complete, if for all unsatisfiable input clause sets S the Γ -
derivation generated by P is a refutation of S. Thus, if Γ is refutationally
complete and Σ is fair, P = 〈Γ,Σ〉 is complete, and it is a semidecision
procedure for validity in first-order logic.

As both S∗ and S∞ contain many clauses that are unrelated to the gener-
ation of 2, when 2 ∈ Sk, the strategy reconstructs the generated proof in the
form of the ancestor-graph [56] of 2, denoted Π(2). The reconstruction starts
from 2 and proceeds backward until it reaches input clauses, following the
applications of generative rules, whereas applications of deletion rules do not
appear in proofs. Since a clause may be used as premise more than once, Π(C)
is a tree, if different nodes are allowed to have the same clause as label, it is a
directed acyclic graph otherwise. The ancestor-graph Π(C) is defined for all
C ∈ S∗. If C is an input clause, Π(C) has one node labeled by C itself. If C is
generated by a generative rule from premises D1, . . . , Dn, the ancestor-graph
Π(C) has root labeled C and subtrees Π(D1), . . . ,Π(Dn). Since every clause
has its own variables, and variants are treated as distinct clauses, no clause is
generated twice, and Π(C) is uniquely defined for all C ∈ S∗.

2.4 The Theorem Proving Challenge

Theorem proving is a challenging problem, because it requires to balance con-
trasting requirements. The theorem-proving strategy should be complete, but
also efficient in the use of time and memory, as Larry Wos emphasized in his
seminal papers [187,147]. Thus, the inference system should be refutationally
complete, while featuring powerful contraction rules to counter the combina-
torial explosion of expansion inferences. The search plan should be fair, but
not exhaustive as in a breadth-first search. Achieving simultaneously complete-
ness and efficiency is so difficult in theorem proving, that not only in Larry
Wos’ time, but also nowadays, it is standard practice to establish complete-
ness in theory, and then include incomplete strategies in implementations and
experiments. Proving the refutational completeness of an inference system is
crucial to understand it, while playing with incomplete strategies allows the
experimenter to prove more theorems by machine and may give ideas for new,
complete, and more efficient strategies.

For theorem-proving strategies, Larry Wos proposed sensitivity [187], later
renamed goal-sensitivity [141]. The transformation of a problem of the form
H |=? ϕ into a problem of the form S `?Γ 2, where S is the clausal form
of H ∪ {¬ϕ}, loses the information about the distinction between H and ϕ,
information that may be useful for efficiency of the search. A strategy is goal-
sensitive, if it generates only, or preferably, clauses C such that at least a leaf
of Π(C) is labeled by a clause in the clausal form of ¬ϕ. Since being goal-

10 M. P. Bonacina

sensitive may not be beneficial for all problems, a strategy ought to be flexible
with respect to goal-sensitivity [60].

For inference rules, Larry Wos suggested immediacy, convergence, and gen-
erality [147]. The first two properties mean that the inference rule generates
neither intermediate results nor their consequences, a requirement fulfilled by
hyperinferences in Larry’s time, as we shall see in the next section. The com-
bined usage of most general unifiers in expansion inferences, and a well-founded
subsumption ordering for subsumption, fulfilled Larry’s notion of generality,
in the sense of avoiding reasoning with instances when it is possible to reason
with more general clauses.

For proofs, Larry Wos stressed brevity and naturalness [187,147,186]. The
quest for shorter proofs was a main driver of Larry’s experimental work with
Otter, as described in another article of this issue [25]. Naturalness means
that the mechanical proof ought to resemble a human proof. Although this is
a recurring concern in the theorem proving literature (e.g., [151]), the devel-
opment of automated theorem proving has rather led to the discovery of forms
of mechanical reasoning that are different from human reasoning.

Larry Wos designed the set-of-support strategy [187], the demodulation in-
ference rule [188], and the paramodulation inference rule [147], to begin ad-
dressing some of these issues. The following subsections present his ideas,
connecting them with the research that followed.

3 The Set of Support Strategy

The set-of-support strategy was motivated by the objective of reducing irrel-
evant inferences [187] as advocated also in [67]. Larry Wos did not define
formally in [187] the notion of irrelevant inference, but most likely he meant
inferences that do not appear in any proofs. The set-of-support strategy was
inspired by theorem-proving problems H |=? ϕ where H contains the axioms
of a mathematical theory. Indeed, mathematics was Larry’s preferred field of
application for theorem proving. Since H is known to be satisfiable, generating
logical consequences of H alone cannot lead to the discovery of a contradic-
tion. Therefore, the idea of the set-of-support strategy is to forbid resolution
inferences where both parents are in the clausal form of H. While the original
description and completeness proof of the set-of-support strategy [187] were
given for resolution and factoring only, in the next section the set-of-support
strategy is presented for an inference system including the contraction rules
encountered thus far, that are known to preserve the refutational completeness
of resolution.

3.1 The Set of Support Strategy with Contraction

Given the input set S of clauses, obtained by transforming H ∪ {¬ϕ} into
clausal form, the set-of-support strategy partitions S into the set A of the

Set of Support, Demodulation, Paramodulation: A Historical Perspective 11

clauses in the clausal form of H, and the set SOS (acronym of set of support)
of the clauses in the clausal form of ¬ϕ. Therefore, one can write S = A]SOS ,
where] denotes the union of disjoint sets, or A = S \ SOS , where \ denotes
subtraction between sets. If H is satisfiable, hence consistent, so is A. If ϕ is
an implication ψ1 ⊃ ψ2, so that ¬ϕ is ψ1 ∧ ¬ψ2, one can also put in SOS
only the clauses in the clausal form of ¬ψ2, leaving in A the clauses in the
clausal form of H ∪ {ψ1}, provided the resulting A is consistent [188]. Then,
only resolution steps with at most one parent from the complement of the set
of support are allowed, so that the set-of-support strategy is goal-sensitive. All
resolvents are added to the set of support, leading to derivations of the form:

(A0; SOS 0)
Γ̀

(A1; SOS 1)
Γ̀
. . . (Ai; SOS i)

Γ̀
(Ai+1; SOS i+1)

Γ̀
. . . ,

where ∀i, i ≥ 0, Si = Ai]SOS i. For the first component, A0 = A and ∀i, i ≥ 0,
Ai+1 is derived from (Ai; SOS i) in one of the following ways:

– Add a factor of a clause in Ai;
– Delete a clause in Ai by tautology deletion or by purity deletion with

respect to Ai] SOS i;
– Subsume a clause in Ai by a clause in Ai] SOS i;
– Apply clausal simplification to simplify a clause in Ai by a clause in Ai

putting the simplified clause in Ai+1.

For the second component, SOS 0 = SOS and ∀i, i ≥ 0, SOS i+1 is derived
from (Ai; SOS i) in one of the following ways:

– Add a resolvent of a clause in Ai and a clause in SOS i;
– Add a resolvent of two clauses in SOS i;
– Add a factor of a clause in SOS i;
– Delete a clause in SOS i by tautology deletion or by purity deletion with

respect to Ai] SOS i;
– Subsume a clause in SOS i by a clause in Ai] SOS i;
– Apply clausal simplification to simplify a clause in SOS i by a clause in Si

putting the simplified clause in SOS i+1;
– Apply clausal simplification to simplify a clause in Ai by a clause in SOS i

putting the simplified clause in SOS i+1.

Clauses in
⋃
i≥0 SOS i are said to be supported, and a resolution inference is

supported if at least a parent is. In the original presentation of the set-of-
support strategy [187], all the factors of clauses in A are added to A0 in a
pre-processing step, so that ∀i, i ≥ 0, Ai = A0, and only the set of support
is expanded. Adding contraction while preserving the completeness of the set-
of-support strategy requires to distinguish between deletion rules and replace-
ment rules. The addition of a deletion rule is unproblematic: at any stage of
the derivation a clause in either the set of support or its complement can be
deleted by the deletion rule. Since a replacement rule is a generative rule, it
can be added to the set-of-support strategy only in a way that preserves the
consistency of the complement of the set of support: for clausal simplification

12 M. P. Bonacina

this means that when applying L1 to simplify L2 ∨ C to C, the new clause
C can be placed in Ai+1 only if both L1 and L2 ∨ C are in Ai, and must be
placed in SOS i+1 otherwise [55].

Larry Wos suggested two incomplete refinements of the set-of-support
strategy [187]: one is based on a level bound and it forbids generating clause
C if the depth of Π(C) is higher than the bound; the other one is based on a
literal bound and it forbids generating clause C if |C| is higher than the bound.

3.2 Other Supported Strategies

Other supported strategies [140,141,45] can be obtained by giving different
definitions of the initial set of support SOS . In resolution with forward support
SOS contains the positive input clauses. Thus, A contains the non-positive
input clauses and it is satisfied by the all-negative interpretation I− that
satisfies all negative literals. In resolution with backward support SOS contains
the negative input clauses. Thus, A contains the non-negative input clauses
and it is satisfied by the all-positive interpretation I+ that satisfies all positive
literals. In resolution with user support SOS contains any subset of S chosen
by the user, provided that its complement A is satisfiable. Larry Wos’ set-of-
support strategy is an instance of resolution with user support.

Supported strategies where the initial set of support is defined based on
sign are related to sign-based refinements of resolution. Positive resolution,
also known as the P1-strategy [148,99] or P1-deduction [141], requires that
every resolution step has a positive parent. Negative resolution, also known as
all-negative-resolution [141], requires that every resolution step has a negative
parent. Positive resolution is more restrictive than resolution with forward
support, because the latter also allows resolutions between generated non-
positive parents, as long as at least one of them is supported. The same holds
for negative resolution and resolution with backward support, except in the
special case of Horn clauses, because a resolution between a negative clause and
a non-negative Horn clause generates a negative clause, so that only negative
clauses are supported.

3.3 Semantic Strategies and Hyperinferences

The concept of not expanding a satisfiable subset of the set of clauses connects
the set-of-support strategy with semantic resolution [161]. Semantic resolution
restricts resolution by assuming a fixed interpretation I for semantic guidance.
The input set S is partitioned into the subset A = {C : I |= C} of clauses
satisfied by I, and its complement SOS = S \A, called SOS by analogy with
the set-of-support strategy. However, semantic resolution moves the restriction
from the parents (i.e., at most one from A) to the resolvent, by requiring that
no resolvent C such that I |= C is generated. Given a clause N = L1∨. . .∨Lk∨
C, termed nucleus, and k clauses E1 = M1 ∨D1, . . . , Ek = Mk ∨Dk, termed

Set of Support, Demodulation, Paramodulation: A Historical Perspective 13

electrons or satellites, where C and Di, for i = 1 . . . k, are disjunctions of
literals, if there is a simultaneous mgu σ such that Liσ = ¬Miσ for i = 1 . . . k,
semantic resolution generates the semantic resolvent R = (C∨D1∨ . . .∨Dk)σ:

Semantic Resolution :
S ∪ {N, E1, . . . , Ek}

S ∪ {N, E1, . . . , Ek, R}
I 6|= R,

provided that I 6|= R. Since it embeds multiple resolution steps, semantic
resolution is a hyperinference, and it fulfills Larry’s desiderata of immediacy
and convergence [147], because the intermediate resolvents are not generated.
Hyperresolution [148] is an instance of semantic resolution. If I is I−, semantic
resolution yields positive hyperresolution that resolves away all negative literals
in the nucleus with positive satellites to generate a positive hyperresolvent.
If I is I+, semantic resolution yields negative hyperresolution that resolves
away all positive literals in the nucleus with negative satellites to generate a
negative hyperresolvent. Resolution with set of support [187] does not work by
hyperinferences, but it fits in the paradigm of semantic resolution, assuming
an ad hoc interpretation I such that I |= A and I 6|= SOS .

Larry Wos recognized that semantic resolution is more restrictive than
resolution with set of support, and that completeness of the latter can be
derived from completeness of the former [188], but he was mostly concerned
with the risk that neither hyperresolution nor resolution with set of support
suffice in practice [188]. He was interested in enlarging what he called the unit
sections [188] of a derivation, that is, the stretches of a derivation where the
resolution steps are unit resolution steps. He had already proposed the unit-
preference strategy [184], where unit resolution steps have priority over other
resolution steps. The next move was to devise an inference rule to generate unit
clauses. To this end, Larry Wos applied the hyperinference concept towards a
syntactic property (i.e., being a unit clause) rather than a semantic one. The
result was unit-resulting resolution [188,125], or UR resolution for short. UR
resolution is a hyperinference geared to generate unit clauses. Given a nucleus
N = L1 ∨ . . .∨Lk ∨Lk+1 with k+ 1 literals, and k unit satellites M1, . . . ,Mk

(k ≥ 1), UR resolution generates a unit resolvent:

UR Resolution :
S ∪ {N, M1, . . . ,Mk}

S ∪ {N, M1, . . . ,Mk, Lk+1σ}
∀i, 1≤i≤k, Liσ = ¬Miσ.

If literal Lk+1 is allowed to be absent, UR resolution is allowed to generate 2.
This inference rule appears at the bottom of page 702 and is the main object
of the first definition on page 703 of [188]. The name unit-resulting resolution
appeared only much later [125], leading to the erroneous belief (e.g., [36])
that UR resolution appeared for the first time in [125]. In reality, and not
surprisingly, UR resolution appeared in the same “milieu” of hyperresolution.
This is testified also by the footnote on page 702 of [188], which relates the
concept of UR resolution to that of clash in [150]. The term “clash” refers
to the simultaneous resolution of multiple literals as in hyperresolution and
semantic resolution (e.g., it is used systematically to present hyperinference
rules in [65]).

14 M. P. Bonacina

According to [36], UR resolution was invented independently by Gerd
Veenker in his PhD thesis in 1966, and published the following year [173], the
same year as [188]. While the main contribution of Veenker’s thesis was a com-
plete procedure that can be considered an early forerunner of connection-based
methods [4,33,34], Veenker also proposed a strategy, that he called the NEU
strategy, combining unit resolution and UR resolution as in Wos’ work [188].
An inference system including only unit resolution and UR resolution is incom-
plete, something that was well-known to both Wos and Veenker. Nonetheless,
UR resolution is widely adopted as a useful enhancement, because it accel-
erates the generation of unit clauses that trigger in turn unit subsumption
inferences that eliminate clauses and unit resolution inferences that generate
shorter resolvents.

3.4 The Given-Clause Algorithm

The set-of-support strategy is also at the origin of the main algorithm inside
most resolution-based theorem provers, up to those that represent the state
of the art today (e.g., the E prover [157,159], Spass [180], Vampire [146,
110], Waldmeister [96], Zipperposition [66], and GKC [170]). The reason
is that the set-of-support strategy was built into the Argonne’s provers AURA,
LMA/ITP [122], and Otter [128,127], and Otter’s main algorithm, called
the given-clause algorithm, inspired most subsequent developers.

The given-clause algorithm maintains two lists of clauses, originally named
axioms and sos. If axioms and sos are initialized with the clauses in A and
SOS , respectively, the given-clause algorithm implements the set-of-support
strategy, and it satisfies the invariant that no expansion inference whose premi-
ses are all in the initial axioms will ever be performed. If axioms is initialized
to be empty, and sos is initialized to contain all input clauses, the given-
clause algorithm performs all possible inferences, and it satisfies the above
invariant vacuously. Thus, the connection between the given-clause algorithm
and the set-of-support strategy was weakened by renaming axioms as usable
in Otter and its successor Prover9 [126].

The given-clause algorithm executes a loop, exiting when either a proof
is found, or sos becomes empty, which means that the input set of clauses
is satisfiable, or the prover hits a predefined threshold of time or memory.
At every iteration, the prover selects from sos a clause, termed the given
clause, moves it from sos to usable, and performs all applicable expansion
inferences having as premises the given clause and clauses in usable. The fact
that the given clause moves from sos to usable means that even if usable
and sos initially contain the clauses in A and SOS , respectively, the given-
clause algorithm does not maintain the invariant that the clauses in sos are
supported and those in usable are not supported, another reason for departing
from the names axioms and sos.

If the given clause is the best clause according to some heuristic evaluation
function, the given-clause algorithm performs a best-first search. For exam-

Set of Support, Demodulation, Paramodulation: A Historical Perspective 15

ple, the notion of weight of a clause, defined as the sum of the user-defined
weights of the symbols occuring in the clause, was introduced for this purpose
in Otter [128,127]. Another feature of Otter that became a fixture of the
given-clause algorithm in most provers (e.g., [160]) is the pick-given-ratio

parameter, which allows the strategy to mix best-first and breadth-first search.
If the value of this parameter is k, the given-clause algorithm picks as given
clause the oldest rather than the best clause once every k+ 1 choices. The de-
scription of the given-clause algorithm will be extended to include contraction
after introducing demodulation.

4 The Demodulation Inference Rule

Larry Wos was very interested in applying theorem proving to mathematics,
and since the vast majority of such problems involves equality, he proposed
demodulation [188] as a contraction inference rule to replace equals by equals.

4.1 The Original Definition of Demodulation

Given an equality unit clause, or equation, l ' r, and a clause C[lσ] containing
as subterm an instance lσ of the side l of l ' r, Larry Wos called C[rσ] an
immediate modulant of C[lσ] [188]. Then a k-modulant, for k > 0, is the result
of k such replacement steps, and a modulant is any k-modulant [188]. As a
clause has infinitely many modulants in general, but only finitely many k-
modulants for a fixed k, Larry Wos defined k-modulation as the generation of
a resolvent of parents Ck and Dk, where Ck and Dk are k-modulants of clauses
C and D [188]. However, Larry Wos also defined demodulation as replacement
by a modulant, where each immediate modulant has strictly fewer symbols
than its predecessor, and the final modulant has no immediate modulant with
fewer symbols [188]. Thus, we can formalize his rule as follows:

Demodulation :
S ∪ {l ' r, C[lσ]}
S ∪ {l ' r, C[rσ]}

‖C[lσ]‖ > ‖C[rσ]‖,

where l ' r is called demodulant, ‖C ‖ is the number of symbols in C, and
demodulation is defined as performing only one equational replacement step,
according to the standard style for replacement rules. Subsequently, and es-
pecially in implementations, the name demodulator was also used in place of
demodulant.

However, the intended notion of number of symbols was not made explicit.
If a term is viewed as a string also parentheses contribute to the symbol count,
whereas they do not if a term is viewed as a tree. Also, number of symbols
is ambiguous with respect to how to count repeated occurrences of the same
symbol.

The size of an atom is the number of occurrences of predicate, function,
constant, and variable symbols. For example, ‖ P (f(a), g(a)) ‖ = 5. Assume

16 M. P. Bonacina

that the number of symbols in a clause is defined as the sum of the sizes of the
atoms that occur in the clause. Then, the ordering whereby C is smaller than
D if ‖C ‖ < ‖D‖ is well-founded. The ordering based on size was implemented
in Otter, and remained available alongside with more sophisticated orderings
such as recursive path orderings [74] and Knuth–Bendix orderings [107] that
were introduced later (cf. Sect. 4.2). Since there are infinitely many variants
of a clause and they all have the same size, variants have to be eliminated
by subsumption (cf. Sect. 2.2). Indeed, theorem provers such as Otter apply
subsumption before demodulation, so that if two clauses are variants, one is
deleted by subsumption.

Nonetheless, the size-based ordering does not allow the system to apply as
demodulants many equations that it would be useful to apply, because the two
sides of the equation have the same number of symbols. Also, this ordering
may not allow the system to apply an equation in the desired direction. For
example, ‖x ∗ (y + z)‖ = 5 and ‖x ∗ y + x ∗ z ‖ = 7, so that the distributivity
law x ∗ (y + z) ' x ∗ y + x ∗ z would be applied from right to left.

In summary, Larry Wos’ definition of demodulation is well-founded, but
the problem of well-founded demodulation, in the sense of finding more and
better well-founded orderings to enable the demodulation of clauses, remained
open.

4.2 Well-Founded Demodulation by Rewrite Rules

The discovery of a solution to the problem of well-founded demodulation was
advanced significantly in the context of the Knuth–Bendix completion proce-
dure [107,101]. This procedure works with rewrite rules, where a rewrite rule is
an equation l ' r that is written l→ r because l � r in a well-founded order-
ing � on terms. A rewrite rule reduces or rewrites a term t[lσ]u to t[rσ]u, where
σ is a substitution, the notation t[lσ]u means that lσ occurs as a subterm in
t at position u, and t[rσ]u is the term obtained by replacing the occurrence
of lσ at position u with rσ. Positions are strings of natural numbers: if terms
are viewed as trees and arcs are labeled with natural numbers, every subterm
has a position defined as the string of natural numbers from the root to the
subterm. From now on positions are omitted for simplicity.

Knuth and Bendix defined a well-founded ordering on terms, called since
then the Knuth–Bendix ordering or KBO for short [107,124,121]. A KBO
orders terms based on a precedence and a weighting function. A precedence
is an ordering on symbols that may be partial or total. A weighting function
assigns non-negative weights to symbols. Since the definition is parametric with
respect to precedence and weighting function, it defines a family of orderings.

A KBO is a reduction ordering, meaning that it is well-founded, stable (t �
u implies tσ � uσ for all substitutions σ), and monotonic (t � u implies c[t] �
c[u] for all contexts c, where a context is a term with a hole). Another reduction
ordering is the recursive path ordering [74], or RPO for short, that orders terms
based on a precedence and a status (either multiset [74] or lexicographic [106])

Set of Support, Demodulation, Paramodulation: A Historical Perspective 17

of every symbol. If the status is lexicographic for all symbols, the ordering
is called lexicographic path ordering, or LPO for short. Here too, since the
definitions are parametric with respect to precedence and status, one gets
families of orderings. The interested reader may find more information about
orderings in surveys on rewriting [75,76,78]. Since weights are non-negative,
KBO’s correlate well with size, and therefore incorporate the intuition in Larry
Wos’ definition of demodulation, whereby clauses are made simpler by reducing
the number of symbols.

The Knuth–Bendix completion procedure was formalized as an inference
system [8,6,7] that transforms pairs (E;R), where E is a set of equations, and
R is a set of rewrite rules, such that for all rules l→ r ∈ R it holds that l � r
in a given reduction ordering � on terms. The inference rules of completion
are seen as transforming the equational proofs of the theorems in Th(E ∪ R)
with respect to a proof ordering, that is, a stable, monotonic (with respect to
replacement of subproofs), and well-founded ordering > on proofs [8,6,7,49].
A key property of completion is that the inference rules are proof-reducing [54]
or good [49]: an inference rule deriving (E′;R′) from (E;R) is good, if for all
theorems s ' t ∈ Th(E ∪R) and for all proofs π of s ' t in E ∪R there exists
a proof π′ of s ' t in E′ ∪R′ such that π ≥ π′.

Since the state of the derivation is a pair (E;R), there are three contraction
inference rules that realize well-founded demodulation by reducing a side of
an equation or a side of a rewrite rule. Simplify reduces a side of an equation:

Simplify :
(E ∪ {p[lσ] ' q};R ∪ {l→ r})
(E ∪ {p[rσ] ' q};R ∪ {l→ r})

where ' is symmetric. Compose reduces the right-hand side of a rewrite rule,
so that another rewrite rule is produced:

Compose :
(E;R ∪ {p→ q[lσ], l→ r})
(E;R ∪ {p→ q[rσ], l→ r})

Collapse reduces the left-hand side of a rewrite rule, so that an equation is
produced:

Collapse :
(E;R ∪ {p[lσ]→ q, l→ r})

(E ∪ {p[rσ] ' q};R ∪ {l→ r})
p[lσ] ·� l,

where ·� is the strict encompassment ordering on terms. If an equation in E
has the form s ' s, the Delete inference rule removes it. If an equation p ' q
in E is such that p � q, the Orient inference rule removes p ' q from E and
adds p→ q to R.

The encompassment ordering is obtained by combining the subterm order-
ing and the subsumption ordering on terms. The subterm ordering is defined
by t� s if s = c[t] for some context c. The subsumption ordering on terms is
defined by s l t if t = sϑ for some substitution ϑ. Terms s and t are variants,
written s

.
= t, if s l t and t l s. The encompassment ordering is defined by

18 M. P. Bonacina

t ·� s if t = c[sϑ] for some context c and substitution ϑ. The strict encom-
passment ordering is defined by t ·� s if t ·� s and s 6 ·� t, that is, t = c[sϑ]
where either the context c is not empty or the substitution ϑ is not a variable
renaming.

The purpose of the strict encompassment condition of the Collapse infer-
ence rule is to prevent l→ r from reducing p[lσ] if l and p[lσ] are variants. The
reason is that such a step is not good (in the above sense of proof-reducing)
[8,6,7]. In the Knuth–Bendix procedure the co-existence of two rewrite rules
whose left-hand sides are variants is avoided by giving Simplification higher
priority than Orient. If p ' q and l ' r are two equations such that p � q,
l � r, and p

.
= l, one of them, say p ' q, gets oriented first into p→ q, so that

p→ q simplifies l ' r to q ' r before l ' r may get oriented into l→ r.
If an equation in E can be neither simplified, nor deleted, nor oriented,

the procedure fails. Thus, Knuth–Bendix completion provided only a partial
solution to the problem of well-founded demodulation.

4.3 Well-Founded Demodulation by Equations

Knuth–Bendix completion solved the problem of well-founded demodulation
at the price of considering as demodulants only those equations that can be ori-
ented into rewrite rules by the adopted ordering. This limitation was removed
with the inception of unfailing [98] or ordered [9,6,7] completion, henceforth
completion for short. Completion allows the inference system to use equations
as demodulants provided the applied instance is oriented by the ordering.

Completion is a theorem-proving strategy for problems of the form E |=?

∀x̄.s ' t, where E is a set of equations, the presentation of an equational
theory, and x̄ is the vector of all variables in s ' t [101,98,9,52,42,54]. The
negation of the conjecture yields ŝ 6' t̂, where ŝ and t̂ are s and t, respectively,
with all the variables in x̄ replaced by Skolem constants. The given ordering �
on terms is assumed to be a reduction ordering [9,6,7], or a complete simplifi-
cation ordering (CSO) [98]. A simplification ordering is stable, monotonic, and
with the subterm property, which means that it includes the strict subterm or-
dering (i.e., p� l implies p � l). A simplification ordering is well-founded [74],
hence it is a reduction ordering. A complete simplification ordering is also to-
tal on ground terms. KBO’s, RPO’s, and LPO’s are simplification orderings.
KBO’s and LPO’s are CSO’s if the precedence is total, but not all RPO’s are
CSO’s [10].

As it is no longer necessary to separate equations and rewrite rules, and
completion is seen as theorem proving, the inference system can be written [52,
42,54] as transforming pairs (E; ŝ 6' t̂), where ŝ 6' t̂ is called the target.
The inference rules of completion are good [49] or proof-reducing [42,54] with
respect to all ground theorems, which is enough for theorem proving, since
the target is ground. The objective of the derivation is to reduce ŝ and t̂ to a
common form so as to discover a contradiction with x ' x, the clausal form
of the reflexivity axiom for equality. Accordingly, one can distinguish between

Set of Support, Demodulation, Paramodulation: A Historical Perspective 19

Simplification of the target:

(E ∪ {l ' r}; ŝ[lσ] 6' t̂)
(E ∪ {l ' r}; ŝ[rσ] 6' t̂)

lσ � rσ,

and Simplification of the presentation:

(E ∪ {p[lσ] ' q, l ' r}; ŝ 6' t̂)
(E ∪ {p[rσ] ' q, l ' r}; ŝ 6' t̂)

lσ � rσ, (p[lσ] ·� l ∨ q � p[rσ]),

where l ' r is called a simplifier, and the second condition incorporates the
side condition of Collapse. This side condition for simplification lets l ' r
simplify p[lσ] ' q when p[lσ] is a variant of l, but q is not a variant of r,
provided that q � p[rσ], or, equivalently, q � rσ (if p[lσ]

.
= l, the context p

is empty, σ is a variable renaming, p[lσ] = lσ, and p[rσ] = rσ). For example,
simplifying f(e, x) ' x by f(e, y) ' y is not allowed; simplifying f(e, x) ' h(x)
by f(e, y) ' y is allowed as h(x) � x; simplifying f(e, y) ' y by f(e, x) ' h(x)
is not allowed as y 6� h(y).

The next challenge was to generalize simplification to clauses, as intended
in Larry Wos’ definition of demodulation, while preserving as much as possible
the behavior of simplification in completion. This requires to extend the order-
ing � beyond terms. A step in this direction was achieved with the inference
system in [155]. This system assumes that the ordering � is a CSO on terms
and atoms that satisfies two additional properties. First, for all terms l, r, p,
and q, such that l � r, and for all atoms A, (i) if l�A and the predicate symbol
of A is not ', then (l ' r) ≺ A; and (ii) if l�p or l�q, then (l ' r) ≺ (p ' q).
Second, for all ground terms l, r, and s, and for all ground atoms A, if l � r,
l � s, and (l ' r) ≺ A ≺ (l ' s), then A has the form l ' t for some ground
term t.

This definition is illustrated in [155] with a predicate-first extension of a
CSO � on terms to atoms. It assumes a total precedence on predicate sym-
bols such that ' is the smallest predicate symbol. Then, P (s1, . . . , sm) ≺
Q(t1, . . . , tn) holds if P is smaller than Q in the precedence, or P = Q 6= '
and (s1, . . . , sm) ≺lex (t1, . . . , tn), or P = Q = ' and (s1, s2) ≺mul (t1, t2),
where ≺lex and ≺mul are the lexicographc and multiset extensions of ≺, re-
spectively.

The inference system in [155] includes a simplification inference rule that
allows a simplifier l ' r to simplify a clause C[lσ] to C[rσ], if lσ � rσ and
C[lσ] contains an atom A such that A � (lσ ' rσ). While the simplification
rule of [155] allows some simplification, it does not preserve the behavior of
simplification in completion.

Example 2 Given equations {(1) f(x) ' g(x), (2) g(h(y)) ' k(y)}, target the-
orem f(h(b)) 6' k(b), and precedence f > g > h > k > b, the Simplification
rule of completion allows equation (1) to simplify the target to g(h(b)) 6' k(b),
with matching substitution σ = {x ← h(b)}, since f(h(b)) � g(h(b)) (and
f(h(b)) ·� f(x) if the literal to be simplified were positive). Another step by

20 M. P. Bonacina

the same simplification rule applies equation (2) to simplify g(h(b)) 6' k(b) to
k(b) 6' k(b), with matching substitution ϑ = {y ← b}, since g(h(b)) � k(b)
(and g(h(b)) ·� g(h(y)) in the positive case). On the other hand, the simplifi-
cation rule of [155] cannot perform these steps, and hence cannot yield a refu-
tation by simplification. For example, for the first step, {f(h(b)), k(b)} �mul
{f(h(b)), g(h(b))} does not hold.

The footnote on page 2 of [10] says1 that the method of [155] “does dis-
cuss simplification to some extent, but for practical purposes his simplification
tecniques are inadequate even for the very simplest case – completion of sets
of universally quantified equations.” The issue is the generalization of the or-
dering beyond terms. The inference system of the superposition calculus [10]
–henceforth SP– offered a solution with a systematic way to extend a reduc-
tion ordering on terms to atoms, literals, and clauses. The reduction ordering
is assumed to be complete or completable, which means it is included in a
complete ordering. All RPO’s are completable [10]. The first step is to treat
non-equational literals as equational literals by treating non-equational atoms
like terms, and reading a positive literal L as L ' > and a negative literal ¬L
as L 6' >, where > is a new symbol such that t � > for all terms t.

The second step is to extend the ordering � on terms to literals. This
can be done in one of two ways. One way is to treat an equation p ' q as
the multiset {p, q}, a negated equation p 6' q as the multiset {p, p, q, q}, and
compare literals in the multiset extension of the ordering on terms. The other
one is to treat an equation p ' q as the multiset of multisets {{p}, {q}}, a
negated equation p 6' q as the multiset of multisets {{p,⊥}, {q,⊥}}, where ⊥
is a new symbol such that t � ⊥ � > for all terms t, and compare literals by
taking twice the multiset extension of the ordering on terms. The third step is
to extend the ordering on literals to clauses by taking once more the multiset
extension.

Simplification appears in SP as an instance of an inference rule called
contextual reductive rewriting [10]. If the simplifier is a unit equational clause,
contextual reductive rewriting yields the following rule:

Simplification :
S ∪ {C[lσ], l ' r}
S ∪ {C[rσ], l ' r}

lσ � rσ, C[lσ] � (lσ ' rσ).

The second side condition requires that the applied instance of the simplifier is
smaller than the clause it simplifies. This condition is only superficially similar
to the one of the simplification rule in [155] as the difference is in the ordering.

Example 3 Consider the problem in Example 2. The simplification rule of SP
allows both simplification steps, because {f(h(b)), f(h(b)), k(b), k(b)} �mul
{f(h(b)), g(h(b))} holds for the first step, and {g(h(b)), g(h(b)), k(b), k(b)} �mul
{g(h(b)), k(b)} holds for the second step.

1 This footnote appears on page 2 of the technical report version of [10] available at
https://pure.mpg.de.

Set of Support, Demodulation, Paramodulation: A Historical Perspective 21

However, Simplification of SP and Simplification of completion do not
behave in general in the same way in the purely equational case.

Example 4 If b � c, both the Collapse rule of Knuth–Bendix completion and
the Simplification rule of completion allow f(x) → b to simplify f(b) → c
to b → c, with matching substitution σ = {x ← b}, because f(b) � b and
f(b) ·� f(x). On the other hand, {f(b), c} �mul {f(b), b} does not hold, so
that Simplification of SP does not allow the step.

A comparison of the second condition for Simplification in completion with
the second condition for Simplification of SP explains the difference. Assume
that the ordering on terms is a CSO. The second condition for Simplification
in completion is p[lσ] ·� l ∨ q � p[rσ]. The second condition for Simplification
in SP when an equation l ' r simplifies a unit positive equational clause
p[lσ] ' q is {p[lσ], q} �mul {lσ, rσ}.

If the Simplification rule of completion applies because p[lσ] ·� l holds as
p is not empty, we have p[lσ] � lσ � rσ by the subterm property and the
condition lσ � rσ in both simplification rules. Thus, {p[lσ], q} �mul {lσ, rσ}
follows and Simplification of SP applies.

If the Simplification rule of completion applies because p[lσ] ·� l does not
hold (p is empty and σ is a variable renaming) and q � p[rσ] holds, we have
p[lσ] = lσ, p[rσ] = rσ, and hence q � rσ, so that {p[lσ], q} �mul {lσ, rσ}
follows and Simplification of SP applies.

If the Simplification rule of completion applies because p[lσ] ·� l holds as p
is empty, but σ is not a variable renaming, and q � p[rσ] does not hold, then
{p[lσ], q} �mul {lσ, rσ} does not follow, and Simplification of SP does not
apply. Example 4 illustrates this situation, where completion lets a simplifier
(i.e., f(x)→ b) rewrite a proper instance of its left-hand side (i.e., f(b)) even
if the right-hand side of the simplifier (i.e., b) is larger than the right-hand
side of the rewrite rule to be simplified (i.e., c).

It is also interesting to see how simplification is implemented. For instance,
the E prover [157] distinguishes between Simplification of negative literals and
Simplification of positive literals. The former is

S ∪ {p[lσ] 6' q ∨D, l ' r}
S ∪ {p[rσ] 6' q ∨D, l ' r}

lσ � rσ,

because lσ � rσ implies {p[lσ], p[lσ], q, q} �mul {lσ, rσ}. Indeed, if p is not
empty, {p[lσ], p[lσ], q, q} �mul {lσ, rσ} follows from p[lσ] � lσ � rσ as dis-
cussed above. If p is empty, {lσ, lσ, q, q} �mul {lσ, rσ} follows from lσ � rσ.
Thus, it suffices to consider the literal being rewritten to establish the second
condition of Simplification of SP. On the other hand, Simplification of positive
literals embeds conditions from the inference rules of completion:2

S ∪ {p[lσ] ' q ∨D, l ' r}
S ∪ {p[rσ] ' q ∨D, l ' r}

lσ � rσ,
(∃M∈D.M�(p[lσ] ' q)) ∨ p[lσ] 6� q ∨ p[lσ] ·� l.

2 The inference rule in [157] is reproduced assuming that there is no selection function:
the interested reader may find more details in [10,157].

22 M. P. Bonacina

Consider the second condition. If the first disjunct is true, either {M,>} �mul
{p[lσ], q} or {M,M,>,>} �mul {p[lσ], q}. Either way, M � p[lσ] and M � q,
so that M � p[lσ] � lσ � rσ holds. Thus, either {M,>} �mul {lσ, rσ} or
{M,M,>,>} �mul {lσ, rσ} holds and the second condition of Simplification
of SP is fulfilled. If the second disjunct p[lσ] 6� q is true, the step is an instance
of Simplify or Compose. If the third disjunct p[lσ] ·� l is true, the step is an
instance of Collapse. Although the second disjunct q � p[rσ] in the second
condition of Simplification in completion does not appear, this confirms that
the conditions for simplification from completion are important in the practice.

Larry Wos’ intuition of demodulation as comprising multiple steps, until
no further step can be applied, was captured in the context of completion
and rewriting with the notion of normalization, or reduction to normal form.
A clause C is in normal form with respect to a set S of clauses, if no unit
equational clause in S can simplify it; equivalently, C is irreducible with respect
to S, or S-irreducible. The normal form of C with respect to S is denoted C ↓S ,
where C ↓S = C if C is S-irreducible.

4.4 Demodulation and the Given-Clause Algorithm

Larry Wos was interested in the application of demodulation in the context
of the set-of-support strategy [188], which leads to the more general issue of
the application of demodulation in the given-clause algorithm. The goal is to
ensure that the given-clause algorithm implements an eager-contraction search
plan, namely one where contraction has priority over expansion (e.g., [56]). In
other words, the objective is to prevent a clause that can be deleted or replaced
from playing the role of parent in an expansion inference.

In the given-clause algorithm, when a new clause C is generated by ex-
pansion, C is subject to forward contraction, that is, contraction with respect
to a set S of already existing clauses. The prover tries first the deletion rules.
Thus, C may be deleted by tautology deletion, or by purity deletion, or by
subsumption by a clause in S (forward subsumption), or because it is a unit
equational clause s ' s.

If clause C survives these tests, the prover tries the replacement rules.
Thus, C may be simplified by clausal simplification by a clause in S, or re-
duced to C ↓S by demodulation with the demodulants in S. Let C ↓S represent
the final result of the application of all applicable replacement rules. If C, and
hence C ↓S , is an equation, the test to determine whether it can be oriented
is applied to C ↓S . Thus, the implementation of contraction respects the re-
quirement from completion of orienting equations only after their sides have
been normalized (cf. Sect. 4.2).

Only at this stage clause C ↓S gets an identifier and is appended to the sos
list. Therefore, forward contraction is part of the generation of a new clause.
Indeed, in Otter this phase is called preprocessing of a clause. Also the test
for the generation of the empty clause happens during preprocessing: if C ↓S is
a unit clause the prover tests whether it generates the empty clause with a unit

Set of Support, Demodulation, Paramodulation: A Historical Perspective 23

clause in usable or sos. This is because one wants to get the empty clause as
soon as possible. Thus, the test for a contradiction is applied as soon as a unit
clause is generated, without waiting until it is selected as given clause.

For backward contraction the prover tests whether C ↓S can contract a
previously existing clause D ∈ S. In Otter this phase is called post-processing
of a clause. For all D ∈ S for which this is the case, D is treated like if it were
a newly generated clause, and subjected to forward contraction as described
above. The resulting D ↓S gets a new identifier and is appended to the sos

list. Thus, a clause generated by backward contraction is treated as a clause
generated by expansion.

There are two versions of the given-clause algorithm, named from the Ot-
ter prover [128,127] and the E prover [73,157,158,159], respectively. The two
versions differ primarily in the implementation of backward contraction. In
both versions the set S of clauses in the above description of forward con-
traction is given by usable ∪ sos, meaning the union of the set of clauses in
usable and the set of clauses in sos. On the other hand, the set S of clauses in
the above description of backward contraction is usable ∪ sos in the Otter
version, whereas it is usable in the E version.

The Otter version of the given-clause algorithm aims at maintaining the
set usable ∪ sos inter-reduced or, more generally, contracted [49]. Suppose
that the expansion inferences between a given clause C and the clauses in
usable generate a bunch of new clauses, each of whom is subjected to forward
contraction as described above, so that clauses C0, . . . , Ck get appended to
sos. In the Otter version, the prover tests whether Ci, for all i, 0 ≤ i ≤ k,
can backward-contract any clause in usable ∪ sos. Suppose that for all i,
0 ≤ i ≤ k, backward-contraction by Ci appends clauses Di

0, . . . , D
i
ni

to sos.
Then, for all i, 0 ≤ i ≤ k, for all j, 0 ≤ j ≤ ni, the prover tests whether Dj can
backward-contract any clause in usable∪ sos. The process continues until no
more contraction applies.

Example 5 Suppose that sos contains (1) f(g(x)) ' b and (2) h(f(y)) ' c,
and Otter derives g(z) ' z by some inference and appends it to sos as
(3) g(z) ' z. Otter applies (3) to back-demodulate (1) to f(x) ' b, removes
(1), and appends (4) f(x) ' b to sos. Then Otter applies (4) to back-
demodulate (2) to h(b) ' c, removes (2), and appends (5) h(b) ' c to sos.

The E version of the given-clause algorithm aims at maintaining usable

contracted. The prover tests whether a clause C can backward-contract any
clause in usable only when C is selected as given clause and moved from
sos to usable. As usable may have changed since the time when C was
subjected to forward contraction, the prover first applies the clauses in usable

to contract C, and then applies C to contract the clauses in usable, before
trying the expansion inferences between C and clauses in usable. If a clause in
usable is removed by backward contraction, its descendants in sos are deleted
as orphans. Except for orphan deletion, all backward contraction happens in
usable. The rationale is that maintaining usable contracted is good enough,
because the premises of expansion inferences come from usable.

24 M. P. Bonacina

Example 6 Given the initial situation as in Example 5, E applies no backward
demodulation in sos. Suppose that E selects (3) g(z) ' z as given clause
before (1) and (2). Thus, (3) moves from sos to usable. E applies (3) to
back-demodulate (1) f(g(x)) ' b only when (1) is selected as given clause and
joins (3) in usable. As a result, E deletes (1) and appends (4) f(x) ' b to sos.
Suppose that E selects (4) as given clause before (2), so that (4) moves from
sos to usable. E applies (4) to back-demodulate (2) h(f(y)) ' c only when
(2) is selected as given clause and joins (4) in usable. As a result, E deletes
(2) and appends (5) h(b) ' c to sos. If E selects (2) as given clause before (4),
E applies (4) to back-demodulate (2) only when (4) is selected as given clause
and joins (2) in usable. As a result, E deletes (2), appends (5) h(b) ' c to
sos, and deletes any orphan of (2) in sos.

In the E version of the given-clause algorithm the lists usable and sos were
renamed active and passive, respectively. The E version was born primarily
from a concern that the cost of backward contraction as in the Otter ver-
sion could outweight its benefits. For example, it may happen that the prover
spends a lot of time doing backward contraction, when it would be more ben-
eficial to go ahead with expansion, because an expansion inference with the
next given clause would generate a unit clause that yields the contradiction.
On the other hand, the delay in backward contraction in the E version may
cause the passive list to grow too much, reaching a memory limit, or it may
delay finding a proof. For example, it may happen that the prover goes ahead
to do more expansion, postponing backward demodulation steps in sos that
would generate a unit clause that yields the contradiction.

In practice, most clauses that get deleted are deleted by forward contrac-
tion. Then, expansion and backward demodulation can be seen as two ways
to generate clauses that need to be balanced. One could say that the Otter
version leans toward prioritizing backward demodulation and the E version
leans toward prioritizing expansion. There is no conclusive evidence that one
is better than the other in general. Most theorem provers feature both versions
of the given-clause algorithm, because one pays off on some problems and the
other on others.

5 The Paramodulation Inference Rule

Adding demodulation to resolution does not suffice for refutational complete-
ness in first-order logic with equality. Larry Wos started the research on
paramodulation [147], precisely to complement resolution and demodulation
with an expansion inference rule for equality that would yield a refutation-
ally complete inference system for first-order logic with equality. This quest
turned out to be one of the most fascinating in the history of automated
theorem proving.

Set of Support, Demodulation, Paramodulation: A Historical Perspective 25

5.1 The Original Definition of Paramodulation

Prior to the inception of paramodulation, the only way to reason about equal-
ity in resolution-based theorem proving was to add to the input set the clausal
form of the axioms of equality:

x ' x (Reflexivity)

x 6' y ∨ y ' x (Symmetry)

x 6' y ∨ y 6' z ∨ x ' z (Transitivity)
n∨
i=1

xi 6' yi ∨ f(x̄) ' f(ȳ) (Function Substitutivity)

n∨
i=1

xi 6' yi ∨ ¬P (x̄) ∨ P (ȳ) (Predicate Substitutivity)

for all function symbols f and predicate symbols P of arity n, where x̄ and
ȳ stand for x1, . . . , xn and y1, . . . , yn, respectively. It soon emerged that these
axioms are so general that their presence causes resolution to generate so many
clauses that the efficiency of the inference system is unbearably compromised
in most cases. Thus, George A. Robinson and Larry Wos introduced paramod-
ulation [147] as a generalization of resolution with equality built-in:

Paramodulation :
S ∪ {l ' r ∨ C, M [t] ∨D}

S ∪ {l ' r ∨ C, M [t] ∨D, (C ∨M [r] ∨D)σ} lσ = tσ,

where ' is regarded as symmetric, σ is the mgu of a side l of the equation
l ' r and a subterm t of a literal M in a clause M [t] ∨D, and C and D are
disjunctions of literals. Clause l ' r∨C is called the clause paramodulated from,
or para-from clause for short, and l ' r is the literal paramodulated from, or
para-from literal for short. Clause M [t]∨D is called the clause paramodulated
into, or para-into clause for short, and M [t] is the literal paramodulated into,
or para-into literal for short. The generated clause (C ∨M [r]∨D)σ is termed
a paramodulant.

While the appearance of paramodulation represented a breakthrough, a
proof of refutational completeness could be obtained only under the assump-
tion that the input set includes not only x ' x, but also the functionally
reflexive axioms, that is, the instances of reflexivity of the form f(x̄) ' f(x̄),
for all function symbols f . Furthermore, the original paramodulation inference
rule is very prolific, because the term t paramodulated into can be a variable,
which unifies with any term. However, paramodulation into variables could
not be excluded, because it was necessary to prove a paramodulation lifting
lemma [147] analogous to the lifting lemma used in the proof of completeness
of resolution [149,65]. In order to show that to every paramodulation between
ground instances of clauses corresponds a paramodulation between the gen-
eral clauses themselves, paramodulation into variables was needed, because
the ground term paramodulated into could be the instance of a variable. The

26 M. P. Bonacina

conjecture that paramodulation is refutationally complete without the func-
tionally reflexive axioms and without paramodulating into variables became
known as the Wos–Robinson conjecture.

A first step towards settling the Wos–Robinson conjecture was represented
by the modification method [61]. This method consists of pre-processing the
input set of clauses with respect to the equality axioms (the “modification”
in the name), and then applying resolution and factoring to the modified set
of clauses, without including axioms other than x ' x. The completeness of
resolution, factoring, and paramodulation without functionally reflexive ax-
ioms follows via a simulation argument, provided some paramodulations into
variables are allowed. The Wos–Robinson conjecture was still considered open,
because a direct proof of the refutational completeness of resolution, factor-
ing, and paramodulation, without functionally reflexive axioms, and with no
paramodulation into variables, was not given. Another challenge that remained
open was to prove refutational completeness in the presence of demodulation
and other contraction inference rules.

5.2 Superposition Between Rewrite Rules or Equations

Unaware of paramodulation,3 Knuth and Bendix coined the name superposi-
tion for a related inference rule, which is the main mechanism of the Knuth–
Bendix completion procedure [107,101]. In the formalization of completion as
an inference system [8,6,7], derivation states have the form (E;R), where E
is a set of equations, and R is a set of rewrite rules oriented by a reduction
ordering � on terms (cf. Sect. 4.2). Then, superposition is defined as follows:

Superposition :
(E;R ∪ {l→ r, p[t]→ q})

(E ∪ {p[r]σ ' qσ};R ∪ {l→ r, p[t]→ q}) t 6∈ X, lσ=tσ,

where σ is the mgu of the left-hand side l of a rewrite rule and a non-variable
subterm t of the left-hand side of another rewrite rule, X is the set of variable
symbols, and the generated equation p[r]σ ' qσ is called a critical pair. If the
critical pair cannot be simplified, deleted, or oriented, the procedure fails.

As with demodulation, unfailing [98] or ordered[9,6,7] completion removed
the limitation of working only with rewrite rules, leading to Superposition of
equations:

E ∪ {l ' r, p[t] ' q}
E ∪ {l ' r, p[t] ' q, p[r]σ ' qσ} t 6∈ X, lσ=tσ, lσ 6� rσ, p[t]σ 6� qσ,

where E is a set of equations, and the equations l ' r and p[t] ' q are
allowed to superpose only if their instances according to the mgu σ are either
orientable (i.e., lσ � rσ) or uncomparable (i.e., lσ 6� rσ ∧ rσ 6� lσ ∧ lσ 6= rσ,
abbreviated lσ # rσ). The ordering � on terms is a CSO [98] or a reduction
ordering [9,6,7].

3 Mark E. Stickel, personal communication, October 1996.

Set of Support, Demodulation, Paramodulation: A Historical Perspective 27

This superposition inference rule is less general than paramodulation, as it
applies only to unit equational clauses, but it avoids superposition into vari-
ables, is restricted by the ordering, and is refutationally complete for problems
of the form E |=? ∀x̄.s ' t also in the presence of contraction. The contraction
rules of completion are deletion of equations of the form s ' s, simplifica-
tion, subsumption, and another subsumption rule for equations based on the
encompassment ordering [98]:

Functional Subsumption :
E ∪ {l ' r, p ' q}

S ∪ {l ' r}
(p ' q) ·� (l ' r),

where (p ' q) ·� (l ' r) if p = c[lϑ], q = c[rϑ], and either the context c is not
empty or the substitution ϑ is not a variable renaming.

A challenge related to the Wos–Robinson conjecture was how to obtain an
inference system for first-order logic with equality that avoids paramodulating
or superposing into variables, is restricted by the ordering, is refutationally
complete also in the presence of contraction, and reduces to completion if
given an input of the form E ∪ {ŝ 6' t̂}.

5.3 Paramodulation and Superposition

The next step towards settling the Wos–Robinson conjecture and related
challenges was a proof that an inference system with resolution, factoring,
paramodulation, subsumption, and simplification is refutationally complete for
first-logic with equality, without adding equality axioms other than x ' x and
without paramodulating into variables [133]. A key feature of this approach is
a CSO on terms and atoms that is order-isomorphic to the positive integers.
This ordering is used for simplification, and, in the proof of completeness, to
build semantic trees based on an enumeration of the Herbrand base, where
an equation l ' r appears before any atom that l ' r can simplify. The issue
encountered by Wos and Robinson with the paramodulation lifting lemma is
solved by showing that it suffices to consider substitutions that replace vari-
able by irreducible terms, so that the substitution cannot replace a variable
with a ground term that can be simplified, or, equivalently, paramodulated
into [133,154,99,155].

A KBO is order-isomorphic to the positive integers, provided weights are
positive [133], but RPO’s and most other orderings are not. Thus, the Wos–
Robinson conjecture was considered truly solved only when this requirement
on the ordering was lifted. This result was reached with the proof of refu-
tational completeness of an inference system called the ordered-literal strat-
egy [154,99,155]. The ordered-literal strategy, or, rather, the ordered-literal
inference system features resolution, factoring, paramodulation, and superposi-
tion as expansion inference rules, and tautology deletion, subsumption, clausal
simplification, demodulation, and functional subsumption as contraction infer-
ence rules.

28 M. P. Bonacina

A key characteristic of this inference system, and the reason for its name,
is that the expansion inference rules are restricted to work on literals that are
strictly maximal in a CSO on terms and atoms. Since clauses are multisets
of literals, a literal L is maximal in a clause C if ¬(∃M ∈ C. M � L), or,
equivalently, ∀M ∈ C. L 6≺ M . In other words, the other literals can only be
smaller, equal, or uncomparable. A literal L is strictly maximal in a clause
C if ¬(∃M ∈ C. M � L), or, equivalently, ∀M ∈ C. L 6� M . In other
words, the other literals can only be smaller or uncomparable. If the ordering
is defined on atoms as in [154,99,155], literals are identified with their atoms
when applying the ordering. The proof that the ordered-literal inference system
is refutationally complete without adding equality axioms other than x ' x,
without paramodulating into variables, and without the requirement that the
CSO on terms and atoms is order-isomorphic to the positive integers, was
obtained by working with transfinite semantic trees [154,99,155].

Resolution and factoring are restricted to resolve upon strictly maximal
literals:

Resolution :
S ∪ {L1 ∨ C, L2 ∨D}

S ∪ {L1 ∨ C, L2 ∨D, (C ∨D)σ} L1σ = ¬L2σ, (1), (2)

Factoring :
S ∪ {L1 ∨ . . . ∨ Lk ∨ C}

S ∪ {L1 ∨ . . . ∨ Lk ∨ C, (L1 ∨ C)σ} L1σ = L2σ = . . . Lkσ, (1)

where (1) is ∀M ∈ C. L1σ 6� Mσ and (2) is ∀M ∈ D. L2σ 6� Mσ. These
ordering-based restrictions to resolution and factoring appeared in [99] and
have remained in the subsequent ordering-based inference systems, including
the superposition calculus SP where a reduction ordering on terms is extended
to literals as seen in Sect. 4.3.

For paramodulation and superposition, the challenge of solving the Wos-
Robinson conjecture was intertwined with the challenge of obtaining inference
rules for first-order logic with equality that reduce to the superposition rule
of completion in the purely equational case. In completion superposition is
restricted to work on maximal sides of equations (cf. Sect. 5.2). Thus, collecting
the restrictions on literals and those on sides of equational literals, one gets four
ordering-based conditions. In order to state them, we recall some terminology
and notation that applies to all versions of paramodulation and superposition
in this section. The para-from clause is written l ' r ∨ C, where l ' r is
the para-from literal. The para-into clause is written M [t] ∨ D, where M [t]
is the para-into literal. If the inference system distinguishes the case where
the para-into literal is an equational literal, the para-into clause is written
p[t] ' q ∨D or p[t] 6' q ∨D, where p[t] ' q or p[t] 6' q is the para-into literal,
respectively. One can also say superposed-from and superposed-into with the
analogous meanings. The subterm t is not a variable (i.e., t 6∈ X where X is
the set of variable symbols), and the substitution σ is the mgu of the terms l
and t (i.e., lσ = tσ).

The four ordering-based conditions involved in restricting paramodulation
and superposition are the following:

Set of Support, Demodulation, Paramodulation: A Historical Perspective 29

(i) The para-from literal is strictly maximal in the instance of the para-from
clause: ∀Q ∈ C. (l ' r)σ 6� Qσ;

(ii) The left-hand side of the para-from literal is strictly maximal in the instance
of the para-from literal: lσ 6� rσ;

(iii.a) The para-into literal is strictly maximal in the instance of the para-into
clause: ∀Q ∈ D. M [t]σ 6� Qσ or ∀Q ∈ D. (p[t] ' q)σ 6� Qσ;

(iii.b) If the para-into literal is a negative equational literal p[t] 6' q, it is maximal
in the instance of the para-into clause: ∀Q ∈ D. (p[t] 6' q)σ 6≺ Qσ;

(iv) If the para-into literal is a positive equational literal p[t] ' q, its left-hand
side is strictly maximal in the instance of the para-into literal: p[t]σ 6� qσ.

The ordered-literal inference system in [99] added to resolution and factor-
ing as above the following Paramodulation inference rule:

S ∪ {l ' r ∨ C, M [t] ∨D}
S ∪ {l ' r ∨ C, M [t] ∨D, (C ∨M [r] ∨D)σ} (i), (ii), (iii.a).

Similar to the original paramodulation inference rule (cf. Sect. 5.1), this infer-
ence rule does not distinguish whether the para-into literal is equational or not.
The requirement that t 6∈ X and three ordering-based conditions out of four
represented major restrictions with respect to the paramodulation inference
rule of Robinson and Wos.

Aiming at the challenge of lifting to first-order logic superposition as in
completion, the inference system of [155] replaced the paramodulation in-
ference rule of [99] with two rules, one called superposition and one called
paramodulation. Superposition applies if the para-into literal is a positive equa-
tional literal:

S ∪ {l ' r ∨ C, p[t] ' q ∨D}
S ∪ {l ' r ∨ C, p[t] ' q ∨D, (C ∨ p[r] ' q ∨D)σ} (ii), (iii.a), (iv).

Paramodulation was used if the para-into literal M [t] is a non-equational literal
or a negative equational literal:

S ∪ {l ' r ∨ C, M [t] ∨D}
S ∪ {l ' r ∨ C, M [t] ∨D, (C ∨M [r] ∨D)σ} (ii), (iii.a).

Thus, Superposition has Conditions (ii) and (iv) from superposition in com-
pletion (cf. Sect. 5.2), but both rules had to drop Condition (i). The inference
system in [155] includes the contraction inference rules.4 However, as discussed
in Sect. 4.3, due to the choice of the ordering, demodulation as in [155] does not
reproduce the behavior of the simplification rule of completion in the equa-
tional case. Therefore, the inference system of [155] generalized completion
only as far as the superposition inference rule is concerned.

4 The inference system in [99] does not list the contraction inference rules referring to [154]
for contraction.

30 M. P. Bonacina

The conjecture as to whether an ordering-based inference system is still
refutationally complete, if all four ordering-based conditions are imposed re-
mained open. It was answered affirmatively with the development of the super-
position calculus SP [10]. As already discussed in Sect. 4.3 for demodulation,
a basic, but crucial, ingredient is the appropriate extension of the ordering on
terms to literals. Another key ingredient is the addition of a new expansion
inference rule [10,130]:

Equational Factoring
C ∨ u ' s ∨ u′ ' s′

(C ∨ s 6' s′ ∨ u ' s′)σ uσ = u′σ, uσ 6� sσ, (v),

where Condition (v) is ∀Q ∈ C ∪ {u′ ' s′}. (u ' s)σ 6≺ Qσ. This rule is a
generalization of factoring that can be seen as a conditional factoring rule. If
it holds that uσ = u′σ and sσ = s′σ, that is (u ' s)σ = (u′ ' s′)σ, factoring
can be applied. Equational factoring tests only uσ = u′σ, provided uσ 6� sσ,
and adds sσ ' s′σ as a condition, hence negated, in the generated clause.

The superposition calculus SP uses only the name superposition [10,130].
In SP even resolution becomes a special case of superposition, because all
literals are transformed into equational literals as seen in Sect. 4.3. However,
for continuity, we refrain from subsuming resolution into superposition, and
we still use the name paramodulation when the para-into literal is not equa-
tional. For Paramodulation the three applicable ordering-based conditions are
restored:

S ∪ {l ' r ∨ C, M [t] ∨D}
S ∪ {l ' r ∨ C, M [t] ∨D, (C ∨M [r] ∨D)σ} (i), (ii), (iii.a).

Superposition affords all four ordering-based conditions:

S ∪ {l ' r ∨ C, p[t] ' q ∨D}
S ∪ {l ' r ∨ C, p[t] ' q ∨D, (C ∨ p[r] ' q ∨D)σ} (i), (ii), (iii.a), (iv),

S ∪ {l ' r ∨ C, p[t] 6' q ∨D}
S ∪ {l ' r ∨ C, p[t] 6' q ∨D, (C ∨ p[r] 6' q ∨D)σ} (i), (ii), (iii.b), (iv),

with the weaker version of the third one (Condition (iii.b) in place of Condi-
tion (iii.a)) when the para-into literal is negative. These versions of paramodu-
lation and superposition, together with resolution, factoring, equational factor-
ing, tautology deletion, subsumption, and simplification form the refutationally
complete inference system SP for first-order logic with equality. The proof of
refutational completeness was obtained by an approach based on rewrite mod-
els [10] that became a standard (e.g., [123]) and was reformulated also in terms
of semantic trees [92].

In summary, the superposition calculus [10,11,12] imposed the strongest
known ordering-based restrictions on expansion rules, and met the challenge
of getting a refutationally complete inference system for first-order logic with
equality that reduces to completion if the input is purely equational.5 For

5 Modulo the discrepancies between simplification in completion and simplification in SP
in the purely equational case as seen in Sect. 4.3.

Set of Support, Demodulation, Paramodulation: A Historical Perspective 31

these reasons, the superposition calculus became the standard ordering-based
inference system.

6 Discussion

With set of support [187], demodulation [188], and paramodulation [147], Larry
Wos contributed three fundamental ideas that have nurtured research on the-
orem proving for decades, and are still fruitful today.

The set-of-support strategy influenced both search plan design, as witnessed
by the given-clause algorithm [128,127], and inference rule design, beginning
with semantic resolution [161]. Since the given-clause algorithm is at the heart
of contemporary provers (e.g., [96,180,110,66,170,159]), it continues to be an
object of study. The design of heuristic evaluation functions for the selection
of the given clause has been an active research topic (e.g., [1,71,128,72,44,
127,160]). For example, the search may employ multiple evaluation functions
by maintaining multiple priority queues with either parallel search [46] or
interleaving [159]. The weight of clauses can be used to break ties when the
best clause according to an evaluation function is not unique [91].

The ideas in the set-of-support strategy and in semantic resolution were
generalized and developed into notions of semantic guidance, goal-sensitivity,
and hyperinference, that had an impact also beyond resolution-based theorem
proving, including tableaux-based methods (e.g., [19,14,17]), instance-based
methods (e.g., [142]), and SGGS [59,60] (see [51] for a survey with an emphasis
on these features).

The challenge of getting the theorem-proving strategy to focus on the con-
jecture to be proved, that Larry Wos meant to address with the set-of-support
strategy, is more relevant than ever, given the growth of large and very large
knowledge bases, in mathematics and other domains (e.g., [145,172]). The
existence of such knowledge bases also poses the problem of applying theo-
rem proving to check their consistency: the meaning and impact of semantic
guidance and goal-sensitivity for this problem is still uncharted territory.

Larry’s concept of irrelevant, or, dually, relevant, inference and clauses
was formalized and generalized [94], and his notion that inferences should
be general resurfaced in investigations of abstraction in resolution theorem
proving (e.g., [135]). The already mentioned instance-based methods (see [45,
103,108,51] for surveys) explore a complementary direction that is often most
fruitful for model building given a satisfiable input.

Larry’s UR resolution hyperinference rule [188] became a standard feature
of resolution-based theorem provers and beyond. For example, UR resolution
was used to generate unit lemmas for PTTP (Prolog Technology Theorem
Proving) provers [167] that implemented model elimination [118,119] on top
of a Prolog engine such as the Warren Abstract Machine [179]. A similar idea
was pursued in a parallel setting [169]. Both sequential and parallel tableaux-
based theorem provers such as SEtheo [115] and CPtheo [86] preprocessed
the input with respect to UR resolution, unit resolution, and unit subsumption.

32 M. P. Bonacina

The thread of research that Larry Wos opened with the notion of demodu-
lation has been a major one in theorem proving and continues to the present.
Well-founded demodulation is a fundamental inference rule for equality in all
reasoning contexts. Under the name of simplification or rewriting, it was gener-
alized to conditional rewriting, or reasoning in Horn equational logic (e.g., [109,
10,50]), and to contextual rewriting (e.g, [189,181,97,90]), with applications
also beyond theorem proving. Furthermore, Larry’s notion of applying the rule
for a predefined number k of steps, as in k-modulation, may still be useful in
practice. For example, it may be employed as a form of pre-processing when
no suitable well-founded ordering orients defining equations in the desired di-
rection [174].

The efficient implementation of demodulation, and more generally contrac-
tion, is an active research topic, because theorem provers may spend a lot of
time performing contraction (e.g, [97]). As it is typical in theorem proving, the
issue is one of finding a good balance between the eagerness and the cost of
contraction. For example, one can distinguish between full-fledged contraction
and cheap simplification (e.g., demodulation by rewrite rules) [158,159] or light
simplification (e.g., demodulation by ground rewrite rules) [80] that are less
expensive and can be applied more eagerly. If given clause C generates a set N
of new clauses, immediate simplification [80] consists of inter-reducing N and
then applying it to backward-contract the clauses in usable. If clause C itself
is deleted in the process, all clauses in N can be deleted as orphans, except
those that justify the deletion of C.

Larry Wos pioneered a paramodulation principle for building equality into
resolution, that many other researchers, over several decades, endeavoured to
bring to maturity, merging it successfully with completion-based theorem prov-
ing (e.g., [107,101,98,9,6,7,54,49]). The resulting ordering-based inference sys-
tems (e.g., [133,99,155,10]) are refutationally complete, combining expansion
inference rules such as resolution, factoring, paramodulation, and superposi-
tion, with contraction inference rules such as subsumption and well-founded
demodulation or simplification. The number of years and people involved,
starting from different angles and with different motivations, shows the great-
ness of Larry’s original insight.

Subsumption and simplification are based on distinct well-founded order-
ings. An abstract framework to treat in a unified manner these two contraction
principles was developed [178]. Another area of investigation is the reproduc-
tion and verification of the proofs of refutational completeness of ordering-
based inference systems (e.g., [12]) in proof assistants [156,178].

Ordering-based inference systems were implemented first in the Otter
theorem prover [128,127], that Larry used for his experiments throughout his
long career, and then in most subsequent resolution-based theorem provers,
up to those that represent the state of the art for first-order logic with equal-
ity (e.g., the E prover [159], Spass [180], Vampire [110], Waldmeister [96],
Zipperposition [174], and GKC [170]). The growth of superposition-based
theorem proving was a main reason for the evolution of the given-clause algo-
rithm from an implementation of the set of support strategy into a general algo-

Set of Support, Demodulation, Paramodulation: A Historical Perspective 33

rithm for implementing multiple strategies. Indeed, the set-of-support strategy
is not complete in general for either ordered resolution in first-order logic, or
paramodulation and superposition in first-order logic with equality, unless the
complement of the set of support is saturated with respect to the inference
system in a preprocessing phase [10], which defeats the spirit of the strategy.
Making reasoning goal-sensitive, or target-oriented, is more challenging in the
presence of equality [54].

The power and flexibility of ordering-based inference systems is witnessed
by the fact that they allow some theory reasoning (e.g., [166,134,104,100,
13,54,89,168,177,79]) yield decision procedures (e.g., [87,164,165,102,5,84]),
get interfaced with other reasoning paradigms (e.g., [23,58,144,80]), form the
basis of approaches to parallel theorem proving (e.g., [42,53,43,46] and [48] for
a survey), and are generalized to higher-order logic as in lambda-superposition
[24,40,28,175,176,26,131,27] and in combinatory superposition [29,30,31,32].

Acknowledgements Parts of this work were done while the author was participating in
a program at the Simons Institute for the Theory of Computing, and visiting the Com-
puter Science Laboratory of SRI International, whose support is greatly appreciated. The
author thanks very much the anonymous reviewers for their precious technical remarks, and
Wolfgang Bibel for his comments on the early history of theorem proving.

References

1. Anantharaman, S., Andrianarivelo, N.: Heuristical criteria in refutational theorem
proving. In: A. Miola (ed.) Proceedings of 1st International Symposium on Design
and Implementation of Symbolic Computation Systems (DISCO), Lecture Notes in
Computer Science, vol. 429, pp. 184–193. Springer, Berlin (1990)

2. Anantharaman, S., Bonacina, M.P.: Automated proofs in Lukasiewicz logic. Tech. rep.,
Department of Computer Science, State University of New York at Stony Brook and
LIFO, Université d’Orléans (1989)

3. Anantharaman, S., Bonacina, M.P.: An application of automated equational reasoning
to many-valued logic. In: M. Okada, S. Kaplan (eds.) Proceedings of 2nd International
Workshop on Conditional and Typed Term Rewriting Systems (CTRS 1990), Lecture
Notes in Computer Science, vol. 516, pp. 156–161. Springer, Berlin (1991)

4. Andrews, P.B.: Theorem proving via general matings. J. ACM 28(2), 193–214 (1981)
5. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based

satisfiability procedures. ACM Trans. Comput. Log. 10(1), 129–179 (2009)
6. Bachmair, L.: Canonical Equational Proofs. Birkhäuser, Boston (1991)
7. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof order-

ings. J. ACM 41(2), 236–276 (1994)
8. Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: Pro-

ceedings of 1st Annual IEEE Symposium on Logic in Computer Science (LICS), pp.
346–357. IEEE (1986)

9. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: H. Aı̈t-
Kaci, M. Nivat (eds.) Resolution of Equations in Algebraic Structures, vol. II: Rewrit-
ing Techniques, pp. 1–30. Academic Press (1989)

10. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection
and simplification. J. Log. Comput. 4(3), 217–247 (1994)

11. Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based theorem prov-
ing. In: W. Bibel, P.H. Schmitt (eds.) Automated Deduction - A Basis for Applications,
Applied Logic Series, vol. I: Foundations - Calculi and Methods, chap. 11, pp. 352–397.
Kluwer Academic Publishers, Dordrecht (1998)

34 M. P. Bonacina

12. Bachmair, L., Ganzinger, H., McAllester, D., Lynch, C.A.: Resolution theorem proving.
In: J.A. Robinson, A. Voronkov (eds.) Handbook of Automated Reasoning, vol. 1,
chap. 2, pp. 19–99. Elsevier, Amsterdam (2001)

13. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierar-
chic first-order theories. Appl. Alg. Eng. Commun. and Comput. 5, 193–212 (1994)

14. Baumgartner, P.: Hyper tableaux – the next generation. In: H. de Swart (ed.) Proceed-
ings of 7th International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX), Lecture Notes in Artificial Intelligence, vol. 1397,
pp. 60–76. Springer, Berlin (1998)

15. Baumgartner, P.: Logical engineering with instance-based methods. In: F. Pfenning
(ed.) Proceedings of 21st International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence, vol. 4603, pp. 404–409. Springer, Berlin (2007)

16. Baumgartner, P., Eisinger, N., Furbach, U.: A confluent connection calculus. In:
H. Ganzinger (ed.) Proceedings of 16th International Conference on Automated Deduc-
tion (CADE), Lecture Notes in Artificial Intelligence, vol. 1632, pp. 329–343. Springer,
Berlin (1999)

17. Baumgartner, P., Fröhlich, P., Furbach, U., Nejdl, W.: Semantically guided theorem
proving for diagnosis applications. In: Proceedings of 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI), vol. 1, pp. 460–465 (1997)

18. Baumgartner, P., Furbach, U.: Variants of clausal tableaux. In: W. Bibel, P.H. Schmitt
(eds.) Automated Deduction - A Basis for Applications, vol. I: Foundations - Calculi
and Methods, chap. 3, pp. 73–102. Kluwer Academic Publishers, Dordrecht (1998)

19. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: J.J. Alferes, L.M.
Pereira, E. Or lowska (eds.) Proceedings of 5th Joint European Workshop on Logic in
Artificial Intelligence (JELIA), Lecture Notes in Artificial Intelligence, vol. 1126, pp.
1–17. Springer, Berlin (1996)

20. Baumgartner, P., Furbach, U., Pelzer, B.: The hyper tableaux calculus with equality
and an application to finite model computation. J. Log. Comput. 20(1), 77–109 (2008)

21. Baumgartner, P., Pelzer, B., Tinelli, C.: Model evolution with equality - revised and
implemented. J. Symb. Comput. 47(9), 1011–1045 (2012)

22. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL
method. Artificial Intelligence 172(4–5), 591–632 (2008)

23. Baumgartner, P., Waldmann, U.: Superposition and model evolution combined. In:
R.A. Schmidt (ed.) Proceedings of 22nd International Conference on Automated
Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 5663, pp. 17–34.
Springer, Berlin (2009)

24. Becker, H., Blanchette, J., Waldmann, U., Wand, D.: A transfinite Knuth-Bendix order
for lambda-free higher-order terms. In: L. de Moura (ed.) Proceedings of 26th Inter-
national Conference on Automated Deduction (CADE), Lecture Notes in Artificial
Intelligence, vol. 10395, pp. 432–453. Springer, Berlin (2017)

25. Beeson, M., Bonacina, M.P., Kinyon, M., Sutcliffe, G.: Larry Wos – Visions
of automated reasoning. J. Autom. Reason. in press (2022). Available at
http://doi.org/10.1007/s10817-022-09620-8

26. Bentkamp, A., Blanchette, J., Cruanes, S., Waldmann, U.: Superposition for lambda-
free higher-order logic. Log. Methods Comput. Sci. 17(2), 1–38 (2021)

27. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for full higher-
order logic. In: A. Platzer, G. Sutcliffe (eds.) Proceedings of 28th International Confer-
ence on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence, vol.
12699, pp. 396–412. Springer, Berlin (2021)

28. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superposi-
tion with lambdas. In: P. Fontaine (ed.) Proceedings of 27th International Conference
on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 11716,
pp. 55–73. Springer, Berlin (2019)

29. Bhayat, A., Reger, G.: Set of support for higher-order reasoning. In: B. Konev,
P. Rümmer, J. Urban (eds.) Proceedings of 6th Workshop on Practical Aspects in
Automated Reasoning (PAAR), CEUR Workshop Proceedings, vol. 2162, pp. 2–16
(2018)

Set of Support, Demodulation, Paramodulation: A Historical Perspective 35

30. Bhayat, A., Reger, G.: Restricted combinatory unification. In: P. Fontaine (ed.) Pro-
ceedings of 27th International Conference on Automated Deduction (CADE), Lecture
Notes in Artificial Intelligence, vol. 11716, pp. 74–93. Springer, Berlin (2019)

31. Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order
logic. In: N. Peltier, V. Sofronie-Stokkermans (eds.) Proceedings of 10th International
Joint Conference on Automated Reasoning (IJCAR), Lecture Notes in Artificial In-
telligence, vol. 12166, pp. 278–296. Springer, Berlin (2020)

32. Bhayat, A., Reger, G.: A Knuth-Bendix-like ordering for orienting combinator equa-
tions. In: N. Peltier, V. Sofronie-Stokkermans (eds.) Proceedings of 10th International
Joint Conference on Automated Reasoning (IJCAR), Lecture Notes in Artificial In-
telligence, vol. 12166, pp. 259–277. Springer, Berlin (2020)

33. Bibel, W.: On matrices with connections. J. ACM 28(4), 633–645 (1981)
34. Bibel, W.: Automated Theorem Proving, 2nd edn. Friedr. Vieweg & Sohn, Braun-

schweig (1987)
35. Bibel, W.: Deduction: Automated Logic. Academic Press, New York (1993)
36. Bibel, W.: Early history and perspectives of automated deduction. In: J. Hertzberg,

M. Beetz, R. Englert (eds.) Proceedings of 31st German Annual Conference on Ar-
tificial Intelligence (KI), Lecture Notes in Artificial Intelligence, vol. 4667, pp. 2–18.
Springer, Berlin (2007)

37. Bibel, W., Eder, E.: Methods and calculi for deduction. In: D.M. Gabbay, C.J. Hogger,
J.A. Robinson (eds.) Handbook of Logic in Artificial Intelligence and Logic Program-
ming, vol. I: Logical Foundations, pp. 68–183. Oxford University Press, Oxford (1993)

38. Billon, J.P.: The disconnection method. In: P. Miglioli, U. Moscato, D. Mundici,
M. Ornaghi (eds.) Proceedings of 5th International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX), Lecture Notes in
Artificial Intelligence, vol. 1071, pp. 110–126. Springer, Berlin (1996)

39. Blake, A.: Canonical expressions in Boolean algebras. Ph.D. thesis, University of
Chicago (1937)

40. Blanchette, J., Fontaine, P., Schulz, S., Waldmann, U.: Towards strong higher-order
automation for fast interactive verification. In: G. Reger, D. Treytel (eds.) Proceed-
ings of 1st Workshop on Automated Reasoning: Challenges, Applications, Directions,
Exemplary Achievements (ARCADE), EPiC Series in Computing, vol. 51, pp. 16–23.
EasyChair (2017)

41. Bonacina, M.P.: Problems in Lukasiewicz logic. Newsletter of the Associ-
ation for Automated Reasoning, No. 18, pages 5–12 (1991). Available at
http://aarinc.org/Newsletters/018-1991-06.pdf

42. Bonacina, M.P.: Distributed automated deduction. Ph.D. thesis, Department of Com-
puter Science, State University of New York at Stony Brook (1992)

43. Bonacina, M.P.: On the reconstruction of proofs in distributed theorem proving: a
modified Clause-Diffusion method. J. Symb. Comput. 21(4–6), 507–522 (1996)

44. Bonacina, M.P.: Mechanical proofs of the Levi commutator problem. In: P. Baumgart-
ner, U. Furbach, M. Kohlhase, W.W. McCune, W. Reif, M.E. Stickel, T. Uribe (eds.)
Proceedings of CADE Workshop on Problem Solving Methodologies with Automated
Deduction, pp. 1–10 (1998)

45. Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: M.J. Wooldridge,
M. Veloso (eds.) Artificial Intelligence Today – Recent Trends and Developments, Lec-
ture Notes in Artificial Intelligence, vol. 1600, pp. 43–84. Springer, Berlin (1999)

46. Bonacina, M.P.: Combination of distributed search and multi-search in Peers-mcd.d.
In: R.P. Gore, A. Leitsch, T. Nipkow (eds.) Proceedings of 1st International Joint
Conference on Automated Reasoning (IJCAR), Lecture Notes in Artificial Intelligence,
vol. 2083, pp. 448–452. Springer, Berlin (2001)

47. Bonacina, M.P.: On conflict-driven reasoning. In: N. Shankar, B. Dutertre (eds.) Pro-
ceedings of 6th Workshop on Automated Formal Methods (AFM) May 2017, Kalpa
Publications, vol. 5, pp. 31–49. EasyChair (2018)

48. Bonacina, M.P.: Parallel theorem proving. In: Y. Hamadi, L. Sais (eds.) Handbook of
Parallel Constraint Reasoning, chap. 6, pp. 179–235. Springer, Berlin (2018)

49. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Comput.
Log. 8(1), 180–208 (2007)

36 M. P. Bonacina

50. Bonacina, M.P., Dershowitz, N.: Canonical ground Horn theories. In: A. Voronkov,
C. Weidenbach (eds.) Programming Logics: Essays in Memory of Harald Ganzinger,
Lecture Notes in Computer Science, vol. 7797, pp. 35–71. Springer, Berlin (2013)

51. Bonacina, M.P., Furbach, U., Sofronie-Stokkermans, V.: On first-order model-based
reasoning. In: N. Mart́ı-Oliet, P. Olveczky, C. Talcott (eds.) Logic, Rewriting, and
Concurrency: Essays Dedicated to José Meseguer, Lecture Notes in Computer Science,
vol. 9200, pp. 181–204. Springer, Berlin (2015)

52. Bonacina, M.P., Hsiang, J.: Completion procedures as semidecision procedures. In:
M. Okada, S. Kaplan (eds.) Proceedings of 2nd International Workshop on Conditional
and Typed Term Rewriting Systems (CTRS 1990), Lecture Notes in Computer Science,
vol. 516, pp. 206–232. Springer, Berlin (1991)

53. Bonacina, M.P., Hsiang, J.: On subsumption in distributed derivations. J. Autom.
Reason. 12, 225–240 (1994)

54. Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as semide-
cision procedures. Theoret. Comput. Sci. 146, 199–242 (1995)

55. Bonacina, M.P., Hsiang, J.: On semantic resolution with lemmaizing and contraction
and a formal treatment of caching. New Gener. Comput. 16(2), 163–200 (1998)

56. Bonacina, M.P., Hsiang, J.: On the modelling of search in theorem proving – towards
a theory of strategy analysis. Inf. Comput. 147, 171–208 (1998)

57. Bonacina, M.P., Johansson, M.: Interpolation systems for ground proofs in automated
deduction: a survey. J. Autom. Reason. 54(4), 353–390 (2015)

58. Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem
proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011)

59. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: model
representation. J. Autom. Reason. 56(2), 113–141 (2016)

60. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: inference
system and completeness. J. Autom. Reason. 59(2), 165–218 (2017)

61. Brand, D.: Proving theorems with the modification method. SIAM J. Comput. 4(4),
412–430 (1975)

62. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88,
467–490 (1958)

63. Chang, C.C.: Proof of an axiom of Lukasiewicz. Trans. Am. Math. Soc. 87, 55–56
(1958)

64. Chang, C.C.: A new proof of the completeness of the Lukasiewicz axioms. Trans. Am.
Math. Soc. 93, 74–80 (1959)

65. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving. Academic
Press, New York (1973)

66. Cruanes, S.: Extending superposition with integer arithmetic, structural induction,
and beyond. Ph.D. thesis, École Polytechnique, Université Paris-Saclay (2015)

67. Davis, M.: Eliminating the irrelevant from mechanical proofs. In: Proceedings of 15th
Symposium for Applied Mathematics, pp. 15–30 (1963). Also in J. Siekmann and G.
Wrightson (Eds.) Automation of Reasoning 1 – Classical Papers on Computational
Logic 1957-1966, 315–330, Springer, Berlin, 1983

68. Davis, M.: The prehistory and early history of automated deduction. In: J. Siekmann,
G. Wrightson (eds.) Automation of Reasoning 1 – Classical Papers on Computational
Logic 1957-1966, pp. 1–28. Springer, Berlin (1983)

69. Davis, M.: The Universal Computer. The Road from Leibniz to Turing. Mathemat-
ics/Logic/Computing Series. CRC Press, Taylor and Francis Group (2012). Turing
Centenary Edition

70. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7,
201–215 (1960)

71. Denzinger, J., Fuchs, M.: Goal-oriented equational theorem proving using Team-Work.
In: B. Nebel, L. Dreschler-Fischer (eds.) Proceedings of 18th German Conference on
Artificial Intelligence (KI), Lecture Notes in Artificial Intelligence, vol. 861, pp. 343–
354. Springer, Berlin (1994)

72. Denzinger, J., Fuchs, M.: A comparison of equality reasoning heuristics. In: W. Bibel,
P.H. Schmitt (eds.) Automated Deduction - A Basis for Applications, Applied Logic
Series, vol. II: Systems and Implementation Techniques, chap. 13, pp. 361–382. Kluwer
Academic Publishers, Dordrecht (1998)

Set of Support, Demodulation, Paramodulation: A Historical Perspective 37

73. Denzinger, J., Kronenburg, M., Schulz, S.: Discount: a distributed and learning equa-
tional prover. J. Autom. Reason. 18(2), 189–198 (1997)

74. Dershowitz, N.: Orderings for term-rewriting systems. Theoret. Comput. Sci. 17(3),
279–301 (1982)

75. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3, 69–116 (1987)
76. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: J. van Leeuwen (ed.) Handbook

of Theoretical Computer Science, vol. B, pp. 243–320. Elsevier, Amsterdam (1990)
77. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.

ACM 22(8), 465–476 (1979)
78. Dershowitz, N., Plaisted, D.A.: Rewriting. In: J.A. Robinson, A. Voronkov (eds.)

Handbook of Automated Reasoning, vol. 1, chap. 9, pp. 535–610. Elsevier, Amsterdam
(2001)

79. Dohan, K., Lynch, C.: Equational theorem proving modulo. In: A. Platzer, G. Sutcliffe
(eds.) Proceedings of 28th International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence, vol. 12699, pp. 166–182. Springer, Berlin (2021)

80. Duarte, A., Korovin, K.: Implementing superposition in iProver. In: N. Peltier,
V. Sofronie-Stokkermans (eds.) Proceedings of 10th International Joint Conference on
Automated Reasoning (IJCAR), Lecture Notes in Artificial Intelligence, vol. 12167,
pp. 388–397. Springer, Berlin (2020)

81. Dunham, B., Fridshal, R., Sward, G.L.: A non-heuristic program for proving elemen-
tary logical theorems. In: Proceedings of 1st International Conference on Information
Processing, pp. 282–285. UNESCO House (1960). Also in J. Siekmann and G. Wright-
son (Eds.) Automation of Reasoning 1 – Classical Papers on Computational Logic
1957-1966, 93–98, Springer, Berlin, 1983

82. Dunham, B., North, J.H.: Theorem testing by computer. In: Proceedings of Sympos,
pp. 173–177. Polytechnic Press (1963). Also in J. Siekmann and G. Wrightson (Eds.)
Automation of Reasoning 1 – Classical Papers on Computational Logic 1957-1966,
173–177, Springer, Berlin, 1983

83. Eisinger, N., Ohlbach, H.J.: Deduction systems based on resolution. In: D.M. Gabbay,
C.J. Hogger, J.A. Robinson (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. I: Logical Foundations, pp. 184–273. Oxford University Press,
Oxford (1993)

84. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata.
Math. in Comput. Sci. 6(4), 409–425 (2012)

85. Font, J.M., Rodŕıguez, A.J., Torrens, A.: Wajsberg algebras. Stochastica 8(1), 5–31
(1984)

86. Fuchs, M., Wolf, A.: Cooperation in model elimination: CPtheo. In: C. Kirchner,
H. Kirchner (eds.) Proceedings of 15th International Conference on Automated Deduc-
tion (CADE), Lecture Notes in Artificial Intelligence, vol. 1421, pp. 42–46. Springer,
Berlin (1998)

87. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: Proceedings of 14th Annual IEEE Symposium on Logic in
Computer Science (LICS). IEEE (1999)

88. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In:
Proceedings of 18th Annual IEEE Symposium on Logic in Computer Science (LICS),
pp. 55–64. IEEE (2003)

89. Ganzinger, H., Waldmann, U.: Theorem proving in cancellative Abelian monoids. In:
M.A. McRobbie, J.K. Slaney (eds.) Proceedings of 13th International Conference on
Automated Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 1104, pp.
388–402. Springer, Berlin (1996)

90. Gleiss, B., Kovàcs, L., Rath, J.: Subsumption demodulation in first-order theorem
proving. In: N. Peltier, V. Sofronie-Stokkermans (eds.) Proceedings of 10th Interna-
tional Joint Conference on Automated Reasoning (IJCAR), Lecture Notes in Artificial
Intelligence, vol. 12166, pp. 297–315. Springer, Berlin (2020)

91. Gleiss, B., Suda, M.: Layered clause selection for theory reasoning (short paper). In:
N. Peltier, V. Sofronie-Stokkermans (eds.) Proceedings of 10th International Joint
Conference on Automated Reasoning (IJCAR), Lecture Notes in Artificial Intelligence,
vol. 12166, pp. 402–409. Springer, Berlin (2020)

38 M. P. Bonacina

92. Goubault-Larrecq, J., Jouannaud, J.P.: The blossom of finite semantic trees. In:
A. Voronkov, C. Weidenbach (eds.) Programming Logics: Essays in Memory of Harald
Ganzinger, Lecture Notes in Computer Science, vol. 7797, pp. 90–122. Springer, Berlin
(2013)

93. Hähnle, R.: Tableaux and related methods. In: J.A. Robinson, A. Voronkov (eds.)
Handbook of Automated Reasoning, chap. 3, pp. 101–178. Elsevier, Amsterdam (2001)

94. Haifani, F., Tourret, S., Weidenbach, C.: Generalized completeness for SOS resolution
and its application to a new notion of relevance. In: A. Platzer, G. Sutcliffe (eds.) Pro-
ceedings of 28th International Conference on Automated Deduction (CADE), Lecture
Notes in Artificial Intelligence, vol. 12699, pp. 327–343. Springer, Berlin (2021)

95. Herbrand, J.J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, École
Normale Supérieure, Université de Paris (1930). Published in Travaux Soc. Sciences et
Lettres Varsovie, Cl. 3 (Mathem. Phys.), 1930, and in Engl. transl. in W. D. Goldfarb
(Ed.) Logical Writings of Jacques Herbrand, Reidel, Dordrecht, 1968

96. Hillenbrand, T.: Citius, altius, fortius: lessons learned from the theorem prover wald-
meister. In: I. Dahn, L. Vigneron (eds.) Proceedings of 4th International Workshop
on First-Order Theorem Proving (FTP), Electronic Notes in Theoretical Computer
Science, vol. 86. Elsevier, Amsterdam (2003)

97. Hillenbrand, T., Piskac, R., Waldmann, U., Weidenbach, C.: From search to computa-
tion: redundancy criteria and simplification at work. In: A. Voronkov, C. Weidenbach
(eds.) Programming Logics: Essays in Memory of Harald Ganzinger, Lecture Notes in
Computer Science, vol. 7797, pp. 169–193. Springer, Berlin (2013)

98. Hsiang, J., Rusinowitch, M.: On word problems in equational theories. In: T. Ottman
(ed.) Proceedings of 14th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), Lecture Notes in Computer Science, vol. 267, pp. 54–71. Springer,
Berlin (1987)

99. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving
strategies: the transfinite semantic tree method. J. ACM 38(3), 559–587 (1991)

100. Hsiang, J., Rusinowitch, M., Sakai, K.: Complete inference rules for the cancellation
laws. In: Proceedings of 10th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 990–992 (1987)

101. Huet, G.: A complete proof of correctness of the Knuth–Bendix completion algorithm.
J. Comput. Syst. Sci. 23(1), 11–21 (1981)

102. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification.
In: C.R. Ramakrishnan, J. Rehof (eds.) Proceedings of 14th Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Lecture Notes in
Computer Science, vol. 4963, pp. 265–281. Springer, Berlin (2008)

103. Jacobs, S., Waldmann, U.: Comparing instance generation methods for automated
reasoning. J. Autom. Reason. 38, 57–78 (2007)

104. Jouannaud, J., Kirchner, H.: Completion of a set of rules modulo a set of equations.
SIAM J. Comput. 15(4), 1155–1194 (1986)

105. Joyner Jr., W.H.: Resolution strategies as decision procedures. J. ACM 23(3), 398–417
(1976)

106. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering. Unpublished
note, Department of Computer Science, University of Illinois at Urbana-Champaign
(1980)

107. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: J. Leech
(ed.) Proceedings of Conference on Computational Problems in Abstract Algebras, pp.
263–298. Pergamon Press, Oxford (1970)

108. Korovin, K.: An invitation to instantiation-based reasoning: from theory to practice.
In: R.A. Schmidt (ed.) Proceedings of 22nd International Conference on Automated
Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 5663, pp. 163–166.
Springer, Berlin (2009)

109. Kounalis, E., Rusinowitch, M.: On word problems in Horn theories. J. Symb. Comput.
11(1–2), 113–128 (1991)

110. Kovàcs, L., Voronkov, A.: First order theorem proving and Vampire. In: N. Shary-
gina, H. Veith (eds.) Proceedings of 25th International Conference on Computer-Aided
Verification (CAV), Lecture Notes in Computer Science, vol. 8044, pp. 1–35. Springer,
Berlin (2013)

Set of Support, Demodulation, Paramodulation: A Historical Perspective 39

111. Kowalski, R.A.: Studies in the completeness and efficiency of theorem proving by res-
olution. Ph.D. thesis, University of Edinburgh (1970)

112. Lee, S.J., Plaisted, D.A.: Eliminating duplication with the hyperlinking strategy. J.
Autom. Reason. 9, 25–42 (1992)

113. Leitsch, A.: The Resolution Calculus. Springer, Berlin (1997)
114. Letz, R.: Clausal tableaux. In: W. Bibel, P.H. Schmitt (eds.) Automated Deduction

- A Basis for Applications, vol. I: Foundations - Calculi and Methods, chap. 2, pp.
43–72. Kluwer Academic Publishers, Dordrecht (1998)

115. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SEtheo: a high performance theorem
prover. J. Autom. Reason. 8(2), 183–212 (1992)

116. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In: J.A.
Robinson, A. Voronkov (eds.) Handbook of Automated Reasoning, chap. 28, pp. 2015–
2114. Elsevier, Amsterdam (2001)

117. Lifschitz, V., Morgenstern, L., Plaisted, D.A.: Knowledge representation and classical
logic. In: F. van Harmelen, V. Lifschitz, B. Porter (eds.) Handbook of Knowledge
Representation, vol. 1, pp. 3–88. Elsevier, Amsterdam (2008)

118. Loveland, D.W.: A simplified format for the model elimination procedure. J. ACM
16(3), 349–363 (1969)

119. Loveland, D.W.: A unifying view of some linear Herbrand procedures. J. ACM 19(2),
366–384 (1972)

120. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. North-Holland, Am-
sterdam (1978)

121. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like
properties. In: N. Dershowitz, A. Voronkov (eds.) Proceedings of 14th International
Conference on Logic, Programming and Automated Reasoning (LPAR), Lecture Notes
in Artificial Intelligence, vol. 4790, pp. 348–362. Springer, Berlin (2007)

122. Lusk, E., McCune, W.W., Overbeek, R.: ITP at Argonne National Laboratory. In:
J. Siekmann (ed.) Proceedings of 8th International Conference on Automated Deduc-
tion (CADE), Lecture Notes in Computer Science, vol. 230, pp. 697–698. Springer,
Berlin (1986)

123. Lynch, C.A.: Constructing Bachmair-Ganzinger models. In: A. Voronkov, C. Wei-
denbach (eds.) Programming Logics: Essays in Memory of Harald Ganzinger, Lecture
Notes in Computer Science, vol. 7797, pp. 285–301. Springer, Berlin (2013)

124. Martin, U.: How to choose the weights in the Knuth-Bendix ordering. In: P. Lescanne
(ed.) Proceedings of 2nd International Conference on Rewriting Techniques and Ap-
plications (RTA), Lecture Notes in Computer Science, vol. 256, pp. 42–53. Springer,
Berlin (1987)

125. McCharen, J., Overbeek, R., Wos, L.: Problems and experiments for and with au-
tomated theorem-proving programs. IEEE Trans. on Computers C-25(8), 773–782
(1976)

126. McCune, W.W.: Prover9 and Mace4. See http://www.cs.unm.edu/ mccune/prover9/
127. McCune, W.W.: Otter 3.3 reference manual. Tech. Rep. ANL/MSC-TM-263, Math-

ematics and Computer Science Division, Argonne National Laboratory (2003)
128. McCune, W.W., Wos, L.: Otter – the CADE-13 competition incarnations. J. Autom.

Reason. 18(2), 211–220 (1997)
129. Meredith, C.A.: The dependence of an axiom of Lukasiewicz. Trans. Am. Math. Soc.

87, 54–54 (1958)
130. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: J.A. Robin-

son, A. Voronkov (eds.) Handbook of Automated Reasoning, vol. 1, chap. 7, pp. 371–
443. Elsevier, Amsterdam (2001)

131. Nummelin, V., Bentkamp, A., Tourret, S., Vukmirović, P.: Superposition with first-
class Booleans and inprocessing clausification. In: A. Platzer, G. Sutcliffe (eds.) Pro-
ceedings of 28th International Conference on Automated Deduction (CADE), Lecture
Notes in Artificial Intelligence, vol. 12699, pp. 378–395. Springer, Berlin (2021)

132. van Orman Quine, W.: A way to simplify truth functions. Am. Math. Mon. 62, 627–631
(1955)

133. Peterson, G.E.: A technique for establishing completeness results in theorem proving
with equality. SIAM J. Comput. 12(1), 82–100 (1983)

40 M. P. Bonacina

134. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories.
J. ACM 28(2), 233–264 (1981)

135. Plaisted, D.A.: Abstraction using generalization functions. In: J. Siekmann (ed.) Pro-
ceedings of 8th International Conference on Automated Deduction (CADE), Lecture
Notes in Computer Science, vol. 230, pp. 365–376. Springer, Berlin (1986)

136. Plaisted, D.A.: Mechanical theorem proving. In: R.B. Banerji (ed.) Formal Techniques
in Artificial Intelligence, pp. 269–320. Elsevier, Amsterdam (1990)

137. Plaisted, D.A.: Equational reasoning and term rewriting systems. In: D.M. Gabbay,
C.J. Hogger, J.A. Robinson (eds.) Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. I: Logical Foundations, pp. 273–364. Oxford University Press,
Oxford (1993)

138. Plaisted, D.A.: The search efficiency of theorem proving strategies. In: A. Bundy
(ed.) Proceedings of 12th International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence, vol. 814, pp. 57–71. Springer, Berlin (1994).
Full version: Technical Report MPI I-94-233

139. Plaisted, D.A.: Automated theorem proving. Wiley Interdisciplinary Reviews: Cogni-
tive Science 5(2), 115–128 (2014)

140. Plaisted, D.A., Lee, S.J.: Inference by clause linking. In: Z.W. Ras, M. Zemankova
(eds.) Intelligent Systems: State of the Art and Future Directions, Artificial Intelli-
gence. Ellis Horwood (1990). Long version available as TR90-022, CS Dept., UNC
Chapel Hill, http://www.cs.unc.edu/techreports/90-022.pdf

141. Plaisted, D.A., Zhu, Y.: The Efficiency of Theorem Proving Strategies. Friedr. Vieweg
& Sohn, Braunschweig (1997)

142. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper linking. J. Autom. Reason. 25, 167–
217 (2000)

143. Prawitz, D.: An improved proof procedure. Theoria 26, 102–139 (1960)
144. Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: A.P. Felty, A. Mid-

deldorp (eds.) Proceedings of 25th International Conference on Automated Deduction
(CADE), Lecture Notes in Artificial Intelligence, vol. 9195, pp. 399–415. Springer,
Berlin (2015)

145. Reif, W., Schellhorn, G.: Theorem proving in large theories. In: W. Bibel, P.H. Schmitt
(eds.) Automated Deduction - A Basis for Applications, Applied Logic Series, vol. III:
Applications, chap. 9, pp. 225–241. Kluwer Academic Publishers, Dordrecht (1998)

146. Riazanov, A.: Implementing an efficient theorem prover. Ph.D. thesis, Department of
Computer Science, The University of Manchester (2003)

147. Robinson, G.A., Wos, L.: Paramodulation and theorem-proving in first-order theories
with equality. In: D. Michie, B. Meltzer (eds.) Machine Intelligence, vol. 4, pp. 135–150.
Edinburgh University Press, Edinburgh (1969)

148. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1,
227–234 (1965)

149. Robinson, J.A.: A machine oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

150. Robinson, J.A.: A review of automatic theorem-proving. In: Proceedings of Symp.
Appl. Math., vol. 19. AMS (1967)

151. Robinson, J.A.: Formal and informal proofs. In: R.S. Boyer (ed.) Automated Reason-
ing: Essays in Honor of Woody Bledsoe, Automated Reasoning Series, pp. 267–282.
Kluwer Academic Publishers, Dordrecht (1991)

152. Rodŕıguez, A.J., Torrens, A., Verdú, V.: Lukasiewicz logic and Wajsberg algebras.
Bull. Polish Acad. Sci., Sect. Logic 19(2), 51–55 (1990)

153. Rose, A., Rosser, J.B.: Fragments of many-valued statement calculi. Trans. Am. Math.
Soc. 87, 1–53 (1958)

154. Rusinowitch, M.: Démonstration automatique par des techniques de réécriture. Ph.D.
thesis, Université de Nancy 1 (1987). Published in the series Collection Science Infor-
matique, InterEdition, Paris, France, 1989

155. Rusinowitch, M.: Theorem-proving with resolution and superposition. J. Symb. Com-
put. 11(1–2), 21–50 (1991)

156. Schlichtkrull, A., Banchette, J., Traytel, D., Waldmann, U.: Formalizing Bachmair’s
and Ganzinger’s ordered resolution prover. J. Autom. Reason. 64, 1169–1195 (1991)

http://www.cs.unc.edu/techreports/90-022.pdf

Set of Support, Demodulation, Paramodulation: A Historical Perspective 41

157. Schulz, S.: E – A brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
158. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In:

M.P. Bonacina, M.E. Stickel (eds.) Automated Reasoning and Mathematics: Essays
in Memory of William W. McCune, Lecture Notes in Artificial Intelligence, vol. 7788,
pp. 45–67. Springer, Berlin (2013)

159. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: P. Fontaine
(ed.) Proceedings of 27th International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence, vol. 11716, pp. 495–507. Springer, Berlin (2019)

160. Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-
based theorem proving. In: N. Olivetti, A. Tiwari (eds.) Proceedings of 8th Inter-
national Conference on Automated Reasoning (IJCAR), Lecture Notes in Artificial
Intelligence, vol. 9706, pp. 330–345. Springer, Berlin (2016)

161. Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution. J.
ACM 14(4), 687–697 (1967)

162. Slaney, J., Lusk, E., McCune, W.W.: SCOTT: Semantically constrained Otter. In:
A. Bundy (ed.) Proceedings of 12th International Conference on Automated Deduction
(CADE), Lecture Notes in Artificial Intelligence, vol. 814, pp. 764–768. Springer, Berlin
(1994)

163. Socher-Ambrosius, R., Johann, P.: Deduction systems. Springer, Berlin (1997)
164. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:

R. Nieuwenhuis (ed.) Proceedings of 20th International Conference on Automated
Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 3632, pp. 219–234.
Springer, Berlin (2005)

165. Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local extensions
of ordered structures. J. Multiple-Valued Log. Soft Comput. 13(4–6), 397–414 (2007)

166. Stickel, M.E.: Automated deduction by theory resolution. J. Autom. Reason. 1, 333–
355 (1985)

167. Stickel, M.E.: PTTP and linked inference. In: R.S. Boyer (ed.) Automated Reasoning:
Essays in Honor of Woody Bledsoe, Automated Reasoning Series, pp. 283–296. Kluwer
Academic Publishers, Dordrecht (1991)

168. Stuber, J.: Superposition theorem proving for Abelian groups represented as integer
modules. Theoret. Comput. Sci. 208(1–2), 149–177 (1998)

169. Sutcliffe, G.: A heterogeneous parallel deduction system. In: R. Hasegawa, M.E. Stickel
(eds.) Proceedings of FGCS Workshop on Automated Deduction: Logic Programming
and Parallel Computing Approaches, pp. 5–13 (1992)

170. Tammet, T.: GKC: a reasoning system for large knowledge bases. In: P. Fontaine
(ed.) Proceedings of 27th International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence, vol. 11716, pp. 538–549. Springer, Berlin (2019)

171. Tarski, A., Lukasiewicz, J.: Investigations into the sentential calculus. In: A. Tarski
(ed.) Logic, Semantics and Metamathematics, Lecture Notes in Artificial Intelligence,
chap. 4, pp. 38–56. Clarendon Press, Oxford (1956)

172. Urban, J., Vyskocil, J.: Theorem proving in large formal mathematics as an emerging
AI field. In: M.P. Bonacina, M.E. Stickel (eds.) Automated Reasoning and Mathemat-
ics: Essays in Memory of William W. McCune, Lecture Notes in Artificial Intelligence,
vol. 7788, pp. 240–257. Springer, Berlin (2013)

173. Veenker, G.: Beweisalgorithmen für die prädikatenlogik. Computing 2(3), 263–283
(1967)

174. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret, S.:
Making higher-order superposition work. J. Autom. Reason. in press (2022). Available
at http://doi.org/10.1007/s10817-021-09613-z

175. Vukmirović, P., Blanchette, J., Cruanes, S., Schulz, S.: Extending a brainiac prover
to lambda-free higher-order logic. In: T. Vojnar, L. Zhang (eds.) Proceedings of 25th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), Lecture Notes in Computer Science, vol. 11427, pp. 192–210.
Springer, Berlin (2019)

176. Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-order superposition
prover. In: P. Fontaine, K. Korovin, I.S. Kotsireas, P. Rümmer, S. Tourret (eds.)
Proceedings of 7th Workshop on Practical Aspects in Automated Reasoning (PAAR),
CEUR Workshop Proceedings, vol. 2752, pp. 148–166 (2020)

42 M. P. Bonacina

177. Waldmann, U.: Superposition for divisible torsion-free Abelian groups. In: C. Kirch-
ner, H. Kirchner (eds.) Proceedings of 15th International Conference on Automated
Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 1421, pp. 144–159.
Springer, Berlin (1998)

178. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework
for saturation theorem proving. In: N. Peltier, V. Sofronie-Stokkermans (eds.) Proceed-
ings of 10th International Joint Conference on Automated Reasoning (IJCAR), Lecture
Notes in Artificial Intelligence, vol. 12166, pp. 316–334. Springer, Berlin (2020)

179. Warren, D.H.D.: An abstract Prolog instruction set. Tech. Rep. 309, SRI International
(1983)

180. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: Spass
version 3.5. In: R.A. Schmidt (ed.) Proceedings of 22nd International Conference on
Automated Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 5663, pp.
140–145. Springer, Berlin (2009)

181. Weidenbach, C., Wischnewski, P.: Contextual rewriting in spass. In: B. Konev, R.A.
Schmidt, S. Schulz (eds.) Proceedings of 1st Workshop on Practical Aspects in Auto-
mated Reasoning (PAAR), CEUR Workshop Proceedings, vol. 373, pp. 115–124 (2008)

182. Wos, L.: New challenge problem in sentential calculus. Newsletter of the As-
sociation for Automated Reasoning, No. 16, pages 7–8 (1990). Available at
http://aarinc.org/Newsletters/016-1990-11.pdf

183. Wos, L.: The legacy of a great researcher. In: M.P. Bonacina, M.E. Stickel (eds.)
Automated Reasoning and Mathematics: Essays in Memory of William W. McCune,
pp. 1–14. Springer, Berlin (2013)

184. Wos, L., Carson, D.F., Robinson, G.A.: The unit preference strategy in theorem prov-
ing. In: Proceedings of AFIPS Fall Joint Computer Conference, pp. 615–621. Spartan
Books, New York (1964)

185. Wos, L., Henschen, L.: Automated theorem proving 1965-1970. In: J. Siekmann,
G. Wrightson (eds.) Automation of Reasoning 2 – Classical Papers on Computational
Logic 1967-1970, pp. 1–24. Springer, Berlin (1983)

186. Wos, L., Overbeek, R., Lusk, E.: Subsumption, a sometimes undervalued procedure.
In: J.L. Lassez, G. Plotkin (eds.) Computational Logic – Essays in Honor of Alan
Robinson, pp. 3–40. MIT Press, Cambridge (1991)

187. Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of sup-
port strategy in theorem proving. J. ACM 12, 536–541 (1965)

188. Wos, L., Robinson, G.A., Carson, D.F., Shalla, L.: The concept of demodulation in
theorem proving. J. ACM 14(4), 698–709 (1967)

189. Zhang, H.: Contextual rewriting in automated reasoning. Fundam. Inf. 24(1–2), 107–
123 (1995)

	Introduction
	Setting the Stage: Resolution-based Theorem Proving
	The Set of Support Strategy
	The Demodulation Inference Rule
	The Paramodulation Inference Rule
	Discussion

