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Abstract
In this paper, we propose a methodology for deriving a new kind of approximate temporal functional
dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-
window framework and on a multi-temporal relational model. Different features are proposed for the
Observation Window (OW), where we observe predictive data, for the Waiting Window (WW), and
for the Prediction Window (PW), where the predicted event occurs. We then discuss the concept of
approximation for such APFDs, introduce two new error measures. We prove that the problem of
deriving APFDs is intractable. Moreover, we discuss some preliminary results in deriving APFDs
from real clinical data using MIMIC III dataset, related to patients from Intensive Care Units.
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1 Introduction

Knowledge from databases may be expressed by discovering patterns and data dependencies.
Database dependencies express relevant characteristics of datasets, thereby enabling various
critical analyses of data. Functional dependencies (FDs) have been proposed as a way
of mining data, i.e., by discovering those FDs that hold on most data. The considered
approximation may be heterogeneous and deal with both null values, quantitative data, data
deletion/updates, and so on [7, 4, 18, 7, 12, 19].

Temporal Functional Dependencies (TFDs) received some interest since the nineties,
initially as a way for specifying constraints on temporal data [32, 9, 5], and, more recently,
as a mining approach in their approximate version, looking for hidden temporal patterns
inside data [8, 25, 10].

To the best of our knowledge, TFDs have not yet been considered for the prediction task.
Such decision-support task is mainly devoted to the prediction of some (future) event based
on a (past) data history. Thus, as time is an inherent feature of this task, TFDs are interesting
candidates as a formal tool, for discovering the predictivity of the stored data. Within this
context, in this paper we propose and discuss an original temporally-oriented data mining
framework to support the prediction of future events through the identification of recurring
past temporal data patterns, expressed as Approximate Temporal Predictive Functional
Dependencies (APFDs), according to a 3-window -based temporal framework. New kinds of
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4:2 Discovering Predictive Dependencies on Multi-Temporal Relations

error and related thresholds are introduced, to deal with the required approximation. The
main novelty can be summarized in the formalization of a new framework to exploit the
predictive aspect of the APFDs, according to the following specific aspects:

We introduce a new temporal framework based on three temporal windows: observation
window (OW), waiting window (WW), and prediction window (PW). The waiting window
is explicitly introduced to create a time span before the prediction for being able to
(possibly) manage the predicted event.
We define and exemplify the entire framework for the approximate predictive functional
dependencies (APFDs) in a formal way by introducing and characterizing multi-temporal
relations. It allows the representation of temporal patterns (made by attribute values)
related to a set of observed entities (e.g., patients) and characterizes their predictivity,
with respect to a target attribute (e.g., a disease).
We discuss different kinds of error measures, named G3, H3, and J3, to be evaluated
when deriving APFDs;
We discuss the (data) complexity of the problem of checking for APFDs and prove that
is exponential. We then propose a new algorithm for checking APFDs.
We provide some experimental results on real clinical data from patients in Intensive
Care Units, using data from MIMIC III [16], to obtain different APFDs.

With respect to the preliminary proposal of APFDs sketched in [3], as specific novelties,
here we first characterize a new temporal data model, based on relations having multiple
valid times; we introduce the three-window framework and the related APFDs for such model;
we extensively consider the related data complexity; we propose a new algorithm for checking
APFDs; we discuss further experimental evaluation.

Our paper unfolds as follows. Section 2 contains the related work; in Section 3 we
introduce and motivate the 3-window-based framework for prediction, the formalization of
APFDs and their approximation; in Section 4 we discuss the data complexity of deriving
APFDs, and provide a deterministic algorithm that could stop the analysis of a relation, as
soon as it verifies that the relation cannot satisfy the given APFD; in Section 5, we introduce
and discuss some experimental results and finally in Section 6 we draw some conclusions. The
Appendix A completes the description of our approach through the proof of the NP-hardness
of the APFDs-checking problem.

2 Related work

FDs were originally proposed to specify data constraints in the relational setting and then to
derive normalized relational schemata [2].

Let us briefly recall the concept of FD in the context of relational databases [2]. Let r

be a relation over the relational schema R(U) and let X, Y ⊆ U . r fulfills the functional
dependency X → Y (written as r |= X → Y ) if ∀t, t′ ∈ r(t[X] = t′[X], → t[Y ] = t′[Y ]).

In more recent years FDs have been extended in many different directions and with
different goals. Here we mainly consider three different research directions: the first one
deals with the representation of constraints on temporal data through temporal functional
dependencies (TFDs), the second one focuses on the discovery of approximate functional
dependencies (AFDs), and the third one deals with the use of FDs to support prediction and
classification tasks.

TFDs add a temporal dimension to classical FDs to deal with temporal data. In literature,
several kinds of TFDs have been proposed and various representation formalisms have been
developed [5, 15, 29, 30, 31, 9]. In [9] Combi et al. propose a new formalism for the
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representation of TFDs, involving multiple time granularities. They identify four relevant
classes, named pure temporally grouping, pure temporally evolving, temporally mixed, and
temporally hybrid TFDs, respectively.

In [22], the authors face another temporal aspect, which stems from the observation that
frequent constraint violations in a database may be related to the fact that the considered
(mini) world is changing, while the specified constraints remain static. FDs violated by
current data are then identified and some approaches are proposed to suitably modify the
given FD according to the new reality represented through the current data. In [26], the
authors deal with the problem of continuously discovering FDs on dynamic datasets in an
efficient way, and propose an incremental approach to solve it.

AFDs derive from the concept of plain FD. Given a relation r where an FD holds for
most of the tuples in r, we may identify some tuples for which that FD does not hold. In
[18], Kivinen and Mannila introduce three measures, known as G1, G2 and G3 considering,
respectively, the number of violating couples of tuples, the number of tuples that violate
the functional dependency, and finally the minimum number of tuples in r to be deleted
for the FD to hold. Discovering AFDs is a computationally expensive task, and different
algorithms have been proposed to perform the discovery in an efficient way [19]. More
recently, AFDs have been included in the wider scenario of relaxed FDs (RFDs), where not
only exceptions, i.e., violating tuples, are considered, but also similarities among attribute
values and conditional constraints [7, 6].

Temporal data mining techniques merging AFDs with TFDs have been proposed in [8],
where the authors propose approximate temporal functional dependencies (ATFDs), which
are defined and measured either on temporal granules or on sliding windows, and apply them
to mine data from psychiatry and pharmacovigilance domains. They introduce a new error
measure G4, which considers the minimum number of tuples in r which must be modified for
the plain TFD to hold on all the tuples of r. In [1], the authors present AETAS, a system for
the discovery of approximate temporal functional dependencies. The discovered TFDs are
mainly pure temporally grouping TFDs with moving windows, according to the classification
proposed in [9]. Also conditional TFDs are considered, where the moving window may have
different values according to specific values of atemporal attributes. As an interesting aspect
of AETAS, the authors deal with the discovery of TFDs from dirty web data, as well as with
the discovery of the “optimal” duration for the moving window.

Moving to contributions dealing with the use of FDs to support prediction and classification
tasks, in [20] the authors show that if there is a functional dependency between features, it is
likely to affect the classifier negatively. In [21], the authors address the notion of trusting
ML models by using also functional dependencies, discussing on the relationships between
supervised classification and functional dependencies. They consider the issue of estimating
the feasibility of classification over a given dataset using functional dependencies. As far
as we know, few studies till now considered functional dependencies in this context, where,
given a set of features (A1, ..., An, C) where C values represent the class to be classified, the
problem is to understand whether functional dependencies such as A1, ..., Ak −→ Aj influence
the classification performances.

3 The predictive aspects of functional dependencies

In this section, firstly we delineate the problem at hand, and introduce a 3-window model
for the interpretation of predictive temporal data; then we illustrate the definitions needed
to obtain a Predictive Functional Dependency, and finally, we analyze the concept of
approximation for the Predictive Functional Dependencies.

TIME 2023
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Table 1 The multi-temporal relation PatientHistory, with a single atemporal attribute and one
attribute for each valid time.

# Patient HR1 VT1 SpO2
2 VT2 Drug3 VT3 ˙AKI V̇T

1 Daisy High 19 High 21 Aspirin 23 False 28
2 Daisy Low 2 High 4 Aspirin 6 False 18
3 Daisy Low 2 Medium 4 Aspirin 6 False 12
4 Daisy Medium 5 Medium 7 Indapamide 9 False 18
5 Luke Low 7 High 8 Ibuprofen 12 True 17
6 Luke Low 7 High 8 Ibuprofen 12 True 21
7 Luke Medium 9 High 13 Sulindac 14 True 18
8 Luke Medium 9 High 13 Sulindac 14 True 21
9 Stevie Medium 4 Medium 7 Metolazone 8 True 13
10 Stevie High 1 Low 2 Aspirin 5 False 8
11 Stevie High 1 Low 2 Indapamide 7 False 8
.. ... ... ... ... ... ... ... ... ...
36 Stevie High 1 Low 2 Aspirin 5 False 25
.. ... ... ... ... ... ... ... ... ...

3.1 A motivating scenario from Clinical Medicine
To illustrate the relevance and the potential meaning of our approach, we consider a real-world
example from the domain of Intensive Care Unit (ICU) focusing on patients suffering from
Acute Kidney Injury (AKI) [28], used as reference throughout the paper. In ICU, Acute
Kidney Injury is a frequent clinical problem, characterized by sudden loss of the ability of the
kidneys to excrete wastes, concentrate urine, store electrolytes, and maintain fluid balance
[27].

In 2012, KDIGO (Kidney Disease: Improving Global Outcomes) published specific
guidelines [17] for the definition of AKI, where a patient receives the diagnosis if one of the
following criteria is satisfied: (i) an increase in serum creatinine by ≥ 0.3 mg/dl ( ≥ 26.5
µmol/l) within 48 h, (ii) an increase in serum creatinine to ≥ 1.5 times baseline within the
previous 7 days and (iii) a urine volume ≤ 0.5 ml/kg/h for 6 hours.

As we are interested in discovering whether some clinical data features allow the early
identification of AKI patients, let us assume that we derive through a suitable query the
(possibly materialized) view PatientHistory. It represents different ordered states of
patients, we would like to associate to a final state, specifying whether the patient has AKI.
Each state is represented by some attribute values and is associated to a valid time (VT),
representing the timepoint when the state information is true in the modeled world [14].
Table 1 (partially) shows a possible instance of PatientHistory describing a clinical history
of three patients, Daisy, Luke, and Stevie, who have some measured vital signs and undergo
five different drugs, some of them specific for the AKI treatment. Such history can be derived
from the data contained in a clinical database [16].

3.2 A 3-window framework for the interpretation of predictive temporal
data

In general, the prediction models exploit the use of two-time windows, namely (i) a data
collection (or observation) window, and (ii) a prediction window. Even though there are
approaches [11, 24] which consider a third temporal window, to the best of our knowledge, a
general and formal prediction framework considering three different time windows has not
yet been considered in the data mining literature.
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Figure 1 The time windows of the proposed framework: (a) the anchored and (b) the unanchored
–sliding window– case.

According to this view, depicted in Figure 1, we can observe:
1. Decisions are taken after gathering information for some time span (Observation Window:

OW).
2. After the moment when the decision is taken, we have to execute all the related actions

and (possibly) wait for a while (Waiting Window: WW). The WW is held to be the
minimum time interval required to act in order to prevent the event in the prediction
window. Indeed, not all the performed actions have an instantaneous effect.

3. The last temporal window refers to when the possible effects of the decision are observable
and thus we can evaluate the suitability of the taken decision (Observation Window:
OW).

It is worth noting that the span of such windows may be different and could be also
composed of a single time-point. Moreover, the Waiting Window could be missing, i.e., of
zero length, in case of decisions having an immediate observable effect.

In general, we may identify different orthogonal features for the introduced time windows.
The first distinction is between (i) anchored and (ii) unanchored time windows. Indeed,

with anchored time windows, we are able to represent specific periods of the considered time
axis. An example of anchored time windows for the motivating scenario could consist of
specifying OW as the first 4 hours from the admission to the ICU, the following 2 hours as
WW (i.e., the fifth and sixth hour after the ICU admission), ending with the PW from the
seventh to the tenth hour after the ICU admission. Figure 1 a) depicts the three anchored
windows, the time-point corresponding to the decision moment, and possible temporal
evolution of some observed quantitative parameter, having some varying behavior. On the
other side, unanchored time windows represent windows that “move” through the time axis,
constraining only the distance between the considered data. An example of such kind of
windows for our scenario could consist in specifying again 4 hours, 2 hours, and 4 hours for
OW, WW, and PW, respectively, but not anchored to any point of the time axis. Figure 1
b) represents two partially overlapping views, representing unanchored time windows. In
this case, we may consider a possibly infinite number of unanchored (sliding) windows, even
by specifying the width of the step size of sliding.

▶ Definition 1 (Unanchored Time-Frame). An unanchored time-frame (uTF) α is a triple
⟨OW, WW, PW ⟩ where OW, WW, and PW are expressed as durations, i.e., time distances.
They allow the representation of three different unanchored windows, which we will use to
observe temporal data.

TIME 2023
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▶ Definition 2 (Anchored Time-Frame). An anchored time-frame (aTF) α is a time-
frame associated to an anchor time point and can be represented through the structure
⟨atp, ⟨OW, WW, PW ⟩⟩, where atp is a (anchor) time point.

A second subtle distinction, which may provide different results for prediction and is
orthogonal with respect to the distinction between anchored and unanchored time windows, is
between (i) fixed-length and (ii) variable-length time windows. Indeed, OW, and consequently
the following WW and PW, could be either of fixed length, without any further constraint
related to the temporal position of data inside it, or of variable length, and thus ending with
the last time point associated with the data to consider in the window.

3.3 A multi-temporal relational model and its connection to the
temporal framework

Let us introduce the concept of multi-temporal relation. Informally, a multi-temporal relation
is characterized by multiple valid times. Each tuple of such relation represents a piece of
history of a given entity, through the values of attributes holding at different (valid) times. A
set of attributes of such relation allows the (optional) identification of the considered entities
(e.g., a patient, an employee) and their characterization. Any other attribute of such relation
is associated with a specific valid time.

▶ Definition 3 (Multi-temporal relation (mt-relation)). Given an overall set of attributes
A and a set of valid time attributes VT , a multi-temporal relation mtr is a relation with
schema WT where W ⊆ A and T = {V T1, ..., V Ti, ....V Tk, V Tk+1} ⊆ VT are k + 1 valid
time attributes.

For a multi-temporal relation schema, a mapping Vtime : T → 2W allows us to specify
the attribute subset associated to a specific valid time. For such mapping, it holds

Vtime(V Ti) ∩ Vtime(V Tj) = ∅ for any i, j with i ̸= j

The (possibly empty) set Z ⊆ W , Z = W −
k+1⋃
i=1

Vtime(V Ti) contains attributes not

associated with any valid time attribute.
For any relation mtr it holds

∀t ∈ mtr(t[V Ti] < t[V Tj ]) for 1 ≤ i < j ≤ k + 1

As we will discuss in the following, the main idea here is to propose a general framework
allowing the definition of “specialized” functional dependencies having the antecedent com-
posed of a set of attributes, called predictive attributes, ordered according to the corresponding
valid times and the consequent defined as the predicted attributes. In order to distinguish
such roles for attributes, we introduce a suitable partition of attributes, according to the
following definition.

▶ Definition 4 (Prediction-oriented partition of mt-relation valid times). Given a multi-temporal
relation mtr with schema WT , where W ⊆ A and T = {V T1, ..., V Ti, ....V Tk, V Tk+1},
attributes in T are partitioned in two sets O, for observation-related valid times, and P, for
prediction-related valid times, where it holds

∀ V To, V Tp((V To ∈ O ∧ V Tp ∈ P) =⇒ ∀t ∈ mtr(t[V To] < t[V Tp]))

For the sake of simplicity and without losing generality, in the following, we assume that
O ≡ {V T1, V T2, ..., V Tk}, while P ≡ {V Tk+1}. According to this choice, we use an overline-
based notation for (ordered) observation-related valid times and the associated attributes.
We use a dot notation for the prediction-oriented valid time and the associated attributes.
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▶ Example 5. The relation view depicted in Table 1 considers attributes according to the
introduced notation. More precisely, in this case O ≡ {V T

1
, V T

2
, V T

3}, P ≡ { ˙V T}, and
Vtime(V T

1) = {HR1}, Vtime(V T
2) = {SpO2

2}, Vtime(V T
3) = {Drug

3}, and Vtime( ˙V T ) =
{ ˙AKI}.

Given a multi-temporal relation mtr , we are now interested in verifying which tuples
are “fine” with or “contained” in a given time frame. More precisely, we are interested in
eliciting those tuples having the (some of the) k observation-related valid times contained in
the observation window OW , and the last valid time in the prediction window PW . We will
call them consistent with the considered time frame.

In the following, we will introduce different kinds of time-frame consistency, mainly
considering both the partial containment of some valid times in the observation window and
different requirements for the observation window.

Indeed, as for the first aspect, we may be interested in verifying the partial/complete
containment of the k observation-related valid times within the given OW , while for the
second one, we may consider either fixed length OW s, or flexible observation windows, which
end with the last valid time we have to consider in the given OW .
▶ Definition 6 (Time-frame tuple consistency with range and modality). Given a tuple t of a
multi-temporal relation mtr with schema WT , where W ⊆ A and T = {V T1, ..., V Ti, ....V Tk,

V Tk+1} ⊆ VT , and a (either anchored or unanchored) time frame α, we say that t is
time-frame consistent with α according to modality m ∈ {‘flex ′, ‘fixed ′} in the range [i1, i2],
where 1 ≤ i1 < i2 ≤ k, if formula Θ(t, α, m, [i1, i2]) holds.

Formula Θ(t, α, m, [i1, i2]) is defined according to the following cases:
Θ(t, α, ‘fixed ′, [i1, i2]) ≡ t[V T

i2 ] − t[V T
i1 ] ≤ OW ∧ t[ ˙V T ] − t[V T

i1 ] > OW + WW ∧
t[ ˙V T ] − t[V T

i1 ] < OW + WW + PW

–if the time-frame is unanchored–, or
Θ(t, α, ‘fixed ′, [i1, i2]) ≡ t[V T

i1 ] ≥ atp ∧ t[V T
i2 ] ≤ atp + OW ∧ t[ ˙V T ] > atp + OW +

WW ∧ t[ ˙V T ] < atp + OW + WW + PW

–if the time-frame is anchored–, or
Θ(t, α, ‘flex ′, [i1, i2]) ≡ t[V T

i2 ] − t[V T
i1 ] ≤ OW ∧ t[ ˙V T ] − t[V T

i2 ] > WW ∧ t[ ˙V T ] −
t[V T

i2 ] < WW + PW

–if the time-frame is unanchored–, or
Θ(t, α, ‘flex ′, [i1, i2]) ≡ t[V T

i1 ] ≥ atp ∧ t[V T
i2 ] ≤ atp + OW ∧ t[ ˙V T ] − t[V T

i2 ] > WW ∧
t[ ˙V T ] − t[V T

i2 ] < WW + PW

–if the time-frame is anchored–

3.4 Defining Predictive FDs
The overall idea is now to temporally characterize functional dependencies X → Y for the
introduced multi-temporal relational model, by considering for the attribute set X those
attributes related to “past” properties, while attributes Y would be those attributes related to
“future” properties. “Past” and “future” values are evaluated according to a given time-frame
consistency.
▶ Definition 7 (Predictive Functional Dependency (PFD)). Given an mt-relation schema
MTR(ZU

1
U

2
..U

k
U̇ ∪ {V T

1
, V T

2
, .., V T

k
, ˙V T}), a time frame, and a modality m ∈ {“flex ′′,

“fixed ′′}, a Predictive Functional Dependency is expressed as:

SP
h
Q

i
...R

j −−→
α,m

Ẏ with 1 ≤ h < i < ... < j ≤ k

where S ⊆ Z, P
h ⊆ U

h
, Q

i ⊆ U
i
, R

j ⊆ U
j and Ẏ ⊆ U̇ is the predicted attribute set.

TIME 2023
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A PFD holds on an mt-relation mtr with schema MTR in a timeframe TF with modality
m, with an extended range semantics (denoted as mtr |=E

α,m SP
h
Q

i
...R

j → Ẏ ) iff

∀t, t′ ∈ mtr((t[SP
h
Q

i
...R

j ] = t′[SP
h
Q

i
..R

j ] ∧ Θ(t, α, m, [1, k]) ∧ Θ(t′, α, m, [1, k]))
→ t[Ẏ ] = t′[Ẏ ])

A PFD holds on an mt-relation mtr with schema MTR in a timeframe TF with modality
m, with a restricted range semantics (denoted as mtr |=R

α,m SP
h
Q

i
...R

j → Ẏ ) iff

∀t, t′ ∈ mtr((t[SP
h
Q

i
...R

j ] = t′[SP
h
Q

i
..R

j ] ∧ Θ(t, α, m, [h, j]) ∧ Θ(t′, α, m, [h, j]))
→ t[Ẏ ] = t′[Ẏ ])

According to the previous definition, it is straightforward to observe that the given PFD
has to hold, by considering only a subset of mtr , composed of tuples consistent with the
considered time frame, the modality, and the range. Such subset is called time-frame relation
view (TF -view). More formally, the TF -view w is defined as w = TFv(mtr , α, m, [i1, i2]) ≡
{t | t ∈ mtr ∧ Θ(t, α, m, [i1, i2])}. Hereinafter, we will consider a time-frame α = ⟨6, 2, 10⟩,
m = ‘fixed ′, and an extended semantics, i.e., considering the range [1, k].

▶ Example 8. Let us consider the mtr depicted in Table 1. Tuples #10, #11, and #36 are out
of the time frame α. It is straightforward to observe that the PFD Drug

3 −−→
α,m

˙AKI holds.

On the other side, PFDs HR
1
, SpO2

2 −−→
α,m

˙AKI, HR
1 −−→

α,m
˙AKI and SpO2

2 −−→
α,m

˙AKI

do not hold.

3.5 Discovering Approximate PFDs
To mine PFDs in a generic multi-temporal relation we have first to isolate those tuples that
fit, with respect to a given modality and to a given semantics, the considered temporal
frame, composed of OW, WW, and PW. As a second step, we need to deal with some kind
of approximation, as it could happen that some PFDs hold on a subset of tuples of the
time-frame relation view, we consider. Thus, we have to evaluate whether considering such
subset is acceptable with respect to the prediction task supported by the considered PFDs.

In other words, we require a PFD f to be satisfied by most tuples of the TF -view w.
A very small portion of tuples of w is allowed to violate the dependency. In the context
of predictive functional dependencies, we consider one of the measures proposed in [18]
and introduce two other error measures, specifically tailored to the predictive purpose of
approximate PFDs.

Given a TF -view w ⊆ mtr, the first error measure G3 considers the minimum number
of tuples in w to be deleted to obtain a relation s where the given FD holds [18]. In our
context, it is expressed according to the following definition.

▶ Definition 9 (Error measure G3). Given a TF-view w = TFv(mtr , α, m, [1, k]) of an
mt-relation mtr with schema ZU

1
U

2
..U

k
Ḃ ∪ {V T

1
, V T

2
, .., V T

k
, ˙V T}, and a PFD SP

h
Q

i

...R
j −−→

α,m
Ẏ , where S ⊆ Z, P

h ⊆ U
h
, Q

i ⊆ U
i
, R

j ⊆ U
j and Ẏ ⊆ U̇ , and any relation s ⊆ w,

such that s |=E
α,m SP

h
Q

i
...R

j → Ẏ , the error measure G3 is expressed as: G3 = |w| − |s|.
The related scaled measurement g3 is defined as: g3 = G3

|w| .

Let us now introduce some new kinds of error, which may be of interest in the context of
prediction. The first issue is in considering another error, no longer focused on the number
of tuples that we have to delete to satisfy the PFD, but focused on the number of entities
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that we accept to discard for the sake of the PFD. The new error measure H3 permits, for
example, to disregard data of entities with a very low number of tuples, which could create
noise in our dataset.

▶ Definition 10 (Error measure H3). Given a TF-view w = TFv(mtr , α, m, [1, k]) of an
mt-relation mtr with schema ZU

1
U

2
..U

k
Ḃ ∪ {V T

1
, V T

2
, .., V T

k
, ˙V T}, and a PFD SP

h
Q

i

...R
j −−→

α,m
Ẏ , where S ⊆ Z, P

h ⊆ U
h
, Q

i ⊆ U
i
, R

j ⊆ U
j and Ẏ ⊆ U̇ , and any relation s ⊆ w,

such that s |=E
α,m SP

h
Q

i
...R

j → Ẏ , the error measure H3 is expressed as: H3 = |{t[Z] | ∃t ∈
w}| − |{t[Z] | ∃t ∈ s}| The related scaled measurement h3 is defined as: h3 = H3

|{t[Z]|∃t∈w}| .

Finally, considering the number of tuples for each entity we accept to discard to satisfy
the PFD, we formalize a last error measure, namely J3. It ensures to maintain enough
“consistent” information for each entity.

▶ Definition 11 (Error measure J3). Given a TF-view w = TFv(mtr , α, m, [1, k]) of an
mt-relation mtr with schema ZU

1
U

2
..U

k
Ḃ ∪ {V T

1
, V T

2
, .., V T

k
, ˙V T}, a PFD SP

h
Q

i

...R
j −−→

α,m
Ẏ , where S ⊆ Z, P

h ⊆ U
h
, Q

i ⊆ U
i
, R

j ⊆ U
j and Ẏ ⊆ U̇ , and any relation

s ⊆ w, such that s |=E
α,m SP

h
Q

i
...R

j → Ẏ , the error measure J3 is expressed as in the
following.

Let w[v] ≡ {t[Z]|t ∈ w ∧ t[Z] = v} and s[v] ≡ {t[Z]|t ∈ s ∧ t[Z] = v}, then

J3 = max
(v∈{t[Z]|t∈s})

{|w[v]| − |s[v]|}

The related scaled measurement j3 is defined as follows:

j3 = max
(v∈{t[Z]|t∈s})

{
|w[v]| − |s[v]|

|w[v]|
}

According to the introduced error measures, we are now able to define an approximate
predictive functional dependency as follows:

▶ Definition 12 (Approximate Predictive Functional Dependency (APFD)). Given a TF-view
w = TFv(mtr , α, m, [1, k]) of an mt-relation mtr with schema ZU

1
U

2
..U

k
Ḃ ∪ {V T

1
, V T

2
, ..,

V T
k
, ˙V T}, w fulfills the APFD

SP
h
Q

i
...R

j ε−−→
α,m

Ẏ

(written as w |=E
α,m SP

h
Q

i
...R

j ε−→ Ẏ ) , where ε = ⟨εg, εh, εj⟩ and S ⊆ Z, P
h ⊆ U

h
, Q

i ⊆
U

i
, R

j ⊆ U
j, Ẏ ⊆ U̇ , if a relation s ⊆ w exists such that s |=E

α,m SP
h
Q

i
...R

j → Ẏ with
g3 ≤ εg ∧ h3 ≤ εh ∧ j3 ≤ εj. In other words, εg, εh, εj are the maximum acceptable errors
defined by the user for g3, h3, and j3, respectively.

▶ Example 13. Suppose that our final goal is to preserve at least the 75% of the tuples
(εg = 0.25), the 80% of the patients (εh = 0.2), and the 50% of the tuples for each patient
(εj = 0.5). In Table 1, the PFD HR

1
, SpO2

2 −−→
α,m

˙AKI is satisfied by considering a
(sub)instance s by deleting tuples #2 and #9 . Thus, in this case, g3 = 2/9, h3 = 1/3, as
any tuples for patient Stevie disappear; and j3 = 1/4 as we delete a tuple of Daisy. It is easy
to see that g3 < εg, h3 > εh, while j3 < εj . On the other side, if we consider the instance
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s′, by deleting tuples #2 and #4, we would observe that the PFD is still satisfied, while
g3 = 2/9, h3 = 0/3, and j3 = 2/4. In this case, all the errors are below or equal to the given
thresholds. Thus, we can say that w |=E

α,m HR
1
, SpO2

2 ϵ−→ ˙AKI with ϵ ≡ ⟨0.35, 0.2, 0.5⟩.
If we set the error thresholds as εg = 0.25, εh = 0.4, and εj = 0.3 (mainly we accept to

discard some more patients, but we increase the number of tuples per patient we want to
preserve), we can observe that s |=E

α,m HR
1
, SpO2

2 → ˙AKI, while s′ ̸|=E
α,m HR

1
, SpO2

2 →
˙AKI. Thus, w |=E

α,m HR
1
, SpO2

2 ϵ−→ ˙AKI also with ϵ ≡ ⟨0.35, 0.4, 0.3⟩.

It is easy to prove that if w |=E
α,m SP

h
Q

i
...R

j ε−→ Ẏ , it will also hold w |=E
α,m

SS1P
h
P

h

1 Q
i
Q

i

1 V
x
...R

j
R

j

1
ε−→ Ẏ , where S1 ⊆ Z, P

h

1 ⊆ U
h
, Q

i

1 ⊆ U
i
, R

j

1 ⊆ U
j , V

x ⊆ U
x

with i < x < j.
As an example, as w |=E

α,m HR
1
, SpO2

2 ε−→ ˙AKI for the TF -view w depicted in Table 1,
it is also the case that w |=E

α,m Patient, HR
1
, SpO2

2 ε−→ ˙AKI. After adding the new
attribute Patient in the antecedent, nothing changes for mt-relation s ⊆ w, for which
HR

1
, SpO2

2 → ˙AKI holds, independently from the values of attribute Patient.
As we are interested in finding the minimum predictive attribute set, here we introduce

the definition of minimal APFDs as follows:

▶ Definition 14 (Minimal APFD). An APFD SP
h
Q

i
...R

j ε−−→
α,m

Ẏ is minimal for w, if

w |=E
α,m SP

h
Q

i
...R

j ε−→ Ẏ and ∀ V ⊂ SP
h

Q
i
...R

j we have that w ̸|=E
α,m V

ε−→ Ẏ .

Minimal APFDs provide the most compact representation of the existing dependencies.

▶ Example 15. Considering the mt-relation w depicted in Table 1, it is straightforward to
observe that the following two APFDs hold for ϵ ≡ ⟨0.25, 0.4, 0.4⟩ and are minimal.

w |=E
α,m HR

1
, SpO2

2 ε−→ ˙AKI, w |=E
α,m Drug

3 ε−→ ˙AKI

As for the minimality of the first APFD, both SpO2
2 ε−−→

α,m
˙AKI and HR

1 ε−−→
α,m

˙AKI

cannot satisfy the first threshold, i.e., g3 ≤ 0.25.

4 The (data) complexity of deriving an APFD

As we said before, to obtain a set s ⊆ w which satisfies an APFD, we have to consider the
three different thresholds.

We reduced the problem in hand to a general 3SAT problem, showing that checking an
APFD considering all the three thresholds belongs to the class NP.

Before starting with the theoretical analysis let us recall that an instance of SAT problem
is a logical formula formed by a conjunction of disjunctive clauses. Namely, each clause
is a disjunction of literals, and the general formula is a conjunction of disjunctive clauses.
Therefore, an instance of SAT is a conjunction of clauses, each of them representable as a
set of literals. In the specific case of 3SAT , each clause has exactly 3 literals [23].

Let us now introduce a simple relation representing any mt-relation. To discuss the
complexity of checking an APFD, it is enough to consider a relation having a single attribute
(Z) representing the entity attribute, a single attribute (A) representing the antecedent, the
predicted attribute (Ḃ). Moreover, let us assume that the domain of all attributes is N or a
subset of it (the predicted values for Ḃ will be either 0 or 1, to represent boolean values).
Thus, we will consider a relation w with schema W (A, Ḃ, Z). Before introducing the two
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problems and then proving the NP-hardness of checking APFDs by a suitable reduction to
an NP problem, let us introduce a simple reformulation of the satisfaction of error thresholds
for G3 and H3 by a relation w in terms of conflict resolution (in the following we will make
use of the standard projection operation π of relational algebra).

▶ Definition 16. Given a relation w ⊂ N3, a natural number 0 ≤ k < |w|, and a natural
number 0 ≤ h < |πZ(w)| we say that w admits a conflict resolution of order (k, h) if there
exists a subset w− ⊆ w such that:
1. |w−| ≤ k

2. for every pair of triplets (a, ḃ, z), (a′, ḃ′, z′) ∈ w \ w− if a = a′ then ḃ = ḃ′;
3. |πZ(w)| − |πZ(w \ w−)| ≤ h.

According to the introduced simplified form of mt-relation and the previous definition
of conflict resolution, we may now represent the problem of checking an APFD as in the
following. It is worth noting that the order (k, h) of the conflict resolution represents the
thresholds for errors G3 and H3, respectively.

▶ Problem 1. Given a relation w ⊂ N3, a natural number 0 ≤ k < |w|, and a natural number
0 ≤ h < |πZ(w)| determine whether or not w admits a conflict resolution of order (k, h).

Now, we introduce the problem, well-known in the literature, we will use for the reduction.

▶ Problem 2. Given an instance C of 3SAT in which each clause features only positive literals,
C = {{a1

1, a1
2, a1

3}, . . . , {an
1 , an

2 , an
3 }}, with variable set A = {ai

j : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}, and a
number 0 ≤ p < |C| determine whether or not there exists an assignment σ : A → {0, 1}1

such that |{i : σ(ai
1) = σ(ai

2) = σ(ai
3)}| ≤ p and C is satisfied.

For the sake of brevity, given a clause {ai
1, ai

2, ai
3} in C = {{a1

1, a1
2, a1

3}, . . . , {an
1 , an

2 , an
3 }}

and an assignment σ : A → {0, 1} we say that {ai
1, ai

2, ai
3} is homogeneous w.r.t σ, or

simply homogeneous when σ is clear from the context, if and only if σ(ai
1) = σ(ai

2) =
σ(ai

3). Then, Problem 2 may be equivalently redefined as: given a set of clauses C =
{{a1

1, a1
2, a1

3}, . . . , {an
1 , an

2 , an
3 }} deciding whether or not there exists an assignment σ for the

variables in C that makes C satisfied and at most p clauses of C homogeneous w.r.t σ.
The complexity of Problem 2 is well known, as in the following theorem.

▶ Theorem 17. Problem 2 is NP-Complete [23].

The following theorem proves that checking an APFD according to the introduced error
thresholds is NP-hard.

▶ Theorem 18. Problem 1 is NP-Hard.

Proof. The proof is by reduction from Problem 2 and is reported in Appendix A. ◀

Proved that the Problem 1 is NP-Hard, it is now necessary to find a deterministic
algorithm that could stop the analysis of a relation, as soon as it verifies that the relation
cannot satisfy the given APFD. Algorithm 1 provides the pseudo-code of such algorithm. The
general idea of this algorithm is searching for a solution considering one tuple at a time, until
it is possible to generate a solution, which satisfies the selected thresholds. Throughout the

1 here 0 and 1 represent the logical values false and true, respectively.
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Algorithm 1 DeterministicADC.
Input: an instance w of the relation W , and three real numbers ϵg3 , ϵh3 , and ϵj3 in [0, 1]
Output: a relation s ⊆ w s.t. s |= A→ Ḃ, g3(w, s) ≥ 1− ϵg3 , h3(w, s) ≥ 1− ϵh3 ,

j3(w, s) ≥ 1− ϵj3

▷ Prepare data for initial call according to epsilons
1 begin
2 del← ⌊ϵg3 |w|⌋
3 count← ϵh3⌊|πZ(w)|⌋
4 for z ∈ πZ(w): do
5 thresholds[z]← ⌊ϵj3 |σZ=z(w)|⌋
6 return RecADC(w, del, count, thresholds)

7 Function RecADC(w, del, count, thresholds):
▷ This is the last recursive call before success

8 if w = ∅ then
9 return ∅

10 let a ∈ πA(w)
▷ For each value of B

11 for boolean_val ∈ {0, 1} do
▷ del_tuples: tuples removed according to selection

12 del_tuples← σA=a∧Ḃ=boolean_val(w)
13 s← σA=a∧Ḃ=¬boolean_val(w)
14 out← {}
15 for z ∈ πZ(del_tuples): do
16 thresholds′[z]← thresholds[z]− |σZ=z(del_tuples)|
17 if thresholds′[z] < 0 ≤ thresholds[z] then
18 out← out ∪ {z}

▷ out: the z groups that must disappear, since their tuples passed below
the threshold ϵj3 in the current state

19 if count− |out| ≥ 0 then
▷ count′: represent the z groups still to be considered

20 count′ ← count− |out|
21 del_tuples← del_tuples ∪ σZ=z:z∈out(w)
22 if del − |del_tuples| ≥ 0 then

▷ If the final test succeeds, we proceed with the recursive call on
the updated values

23 del′ ← del − |del_tuples|
24 w′ ← w \ (del_tuples ∪ s)
25 s′ ← RecADC(w′, del′, count′, thresholds′)
26 if s′ ̸= fail then
27 return s ∪ s′

28 return fail

code, w is the entire relation. del, count, thresholds represent the counters that control the
errors. del counts the number of remaining tuples, count controls the number of remaining
entities, and thresholds verifies the number of remaining tuples for each entity. After a
trivial check about the (non) emptiness of relation w, for each value a ∈ πA(w), we try one
boolean value and verify the dependency, if it fails, we try the second boolean value and
verify the dependency. If both choices failed, then the algorithm fails. If one of the boolean
values satisfies the thresholds, we update the counters, building at every step an intermediate
relation s′, as long as the thresholds are satisfied.
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5 Deriving APFDs: an experimental evaluation

Here, we provide some results from an experimental evaluation on real-world clinical data.
We derived APFDs by using a simpler, even sub-optimal, mining algorithm.

5.1 Computing APFDs
As for the first experimental evaluations of the proposed approach, we adopted a sub-optimal
solution, on top of the well-known TANE [13] algorithm, a popular approximate func-
tional dependency detection algorithm, customizing it to mine only approximate functional
dependencies with a fixed consequent, the predicted attribute Ẏ .

To find all minimal non-trivial dependencies, TANE works as follows. It starts the search
from singleton sets of attributes and works its way to larger attribute sets through the
set containment lattice level by level. When the algorithm is processing a set X, it tests
dependencies of the form X\A → A, where A ∈ X. This guarantees that only non-trivial
dependencies are considered. In our proposal, we compute all the Approximate Predictive
Functional Dependencies, considering the three errors, g3, h3, j3.

Given TF -view w and the predicted attribute Ẏ , our approach was mainly based on the
following steps:

Derive s by TANE, such that g3 ≤ εg;
Check on s that h3 ≤ εh;
If the previous check is fine, check that j3 ≤ εj .

It is easy to observe that this approach, while extracting APFDs that are satisfied by w

according to the given thresholds, could exclude other APFDs that are associated to some s,
which is not maximal, i.e., minimal with respect to g3, but still satisfies g3 ≤ εg. And such s

could satisfy also the other thresholds.
It is well known that the complexity of deriving AFDs is exponential in the number of

attributes [13, 19], while the complexity of checking a single dependency is linear in the
number of tuples (data complexity). In our experiments, even though the “maximality” of
s is related to a composite error threshold ε=< εg, εh, εj > and many possible relations s

would be derived to evaluate a single APFD –making the data complexity higher as shown
in the previous section–, the data complexity remains linear, as we rely on TANE, and check
only further thresholds.

5.2 Dataset and data transformation
Our proposal has been applied to the clinical domain of the Intensive Care Unit (ICU) using
the MIMIC III (Medical Information Mart for Intensive Care) [16] dataset, with the aim of
finding significant APFDs for the AKI diagnosis. MIMIC III is a freely accessible relational
database of de-identified patients, hospitalized in the intensive care units at Beth Israel
Deaconess Medical Center between 2001 and 2012.

The data are associated with more than 46 000 patients and almost 60 000 admissions.
The information contained in the database includes demographics, vital sign measures (such
as heart rate, systolic and diastolic pressures, oxygen saturation, and body temperature)
registered at the bedside, laboratory test results, administered drugs, medications and
procedures.

From the original dataset, we used seven tables, transformed through an ETL (Extract,
Transform, Load) process. D_ITEMS and D_LABITEMS were the reference tables needed
to label every measure related to a patient. PATIENTS and ICUSTAYS were used to retrieve
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information about the admission and discharge from the ICU and the age. PRESCRIPTIONS
provided information about the administered medications. We mainly considered four
categories: diuretics, Non-steroidal anti-inflammatory drugs (NSAID), radiocontrast agents,
and angiotensin. LABEVENTS was used to extract information about serum creatinine and
urine and CHARTEVENTS for heart rate, diastolic pressure and oxygen saturation. We
categorized the numerical variables into “low, medium, high” according to clinical literature.

We considered two 3-window settings. The first one was characterized by an OW of 72
hours, a WW of 12 hours, and then a PW of 36 hours, where there is the (possible) onset of
the illness according to one of the KDIGO criteria. The second one was characterized by an
OW of 120 hours, a WW of 12 hours, and a PW of 36 hours. Starting from the literature
[33], we considered six measures: creatinine, administered drugs, respiratory rate, oxygen
saturation, and diastolic blood pressure. From a cohort of 50.711 patients, we considered
three different TF -views:

TF -view #1, with four states of the same measure (serum creatinine) to build a sequence
of four values of a measure, where any value is the next of the preceding one (if any),
within the first 3-window setting. In this case, we obtain 2546 subjects (1878 patients
without AKI, 668 patients with AKI) with 3839 rows;
TF -view #2, with four states of the same measure (administered drugs) to build a
sequence of four values of a measure, where any value is the next of the preceding one
(if any), within the second 3-window setting. In this case, we obtain 148 subjects (109
patients without AKI, 39 patients with AKI) with 1047 rows;
TF -view #3 with four states, each one related to a different measure (administered drug,
diastolic blood pressure, respiratory rate, oxygen saturation) with V T

k = V T
k−1 + 1 for

k = 1, .., 3 within the second 3-window setting. In this case, we have 413 subjects (305
patients without AKI, 108 patients with AKI) with 193.173 rows.

With the two 3-window settings, we achieved similar results. First of all, the error values
were completely comparable between the two settings. Secondly, we recorded a similar trend
in all the TF-views. Indeed, the temporal states kept dropping until the results of functional
dependencies consisted of a single antecedent, with the increase of error ϵ.

Regarding serum creatinine, our experiments suggested that creatinine needed a medium-
long history to provide predictive patterns, so considering the 4 measures the difference in
terms of error between functional dependencies that had more than one antecedent state,
and those that had only one state, was very small. With six measures we were able to have
temporal patterns formed by more than one state.

In Table 2, we reported some of the APFDs obtained through the algorithm, with the
corresponding error thresholds. The algorithm took a few minutes for each TF -view to
extract these APFDs.

During the experimental evaluation, we observed that data related to some patients are
completely discarded when mining APFDs. Indeed, dealing with a large population, whatever
the entity under study, it may be common to completely discard some (entity) outliers.

6 Conclusions

In this paper, we introduced a 3-window framework for the specification and evaluation of
Approximate Predictive Functional Dependencies, dealing with the capability of exploiting
data dependencies for the prediction task. The declarative framework, which we represented
through relational calculus queries and formulas, allows one to consider different kinds of
anchored and unanchored time windows.
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Table 2 APFDs from the three TF -views.

APFD εg εh εj TF -view
Creat

1
, Creat

3 → ˙AKI 27.45% 27% 50% #1
Creat

1
, Creat

4 → ˙AKI 27.45% 27% 50% #1
Drug

1
, Drug

2
, Drug

4 → ˙AKI 21% 30% 50% #2
Drug

1
, Drug

2
, Drug

4 → ˙AKI 21% 30% 80% #2
Drug

1
, Drug

2
, Drug

3 → ˙AKI 21% 30% 80% #2
Drug

1
, Drug

3
, Drug

4 → ˙AKI 21% 30% 80% #2
Drug

1
, RespRate

3 → ˙AKI 10% 51% 75% #3
RespRate

3 → ˙AKI 30% 75% 75% #3
Drug

1 → ˙AKI 30% 75% 75% #3
Spo2

4 → ˙AKI 30% 75% 75% #3

Such dependencies have been specified with respect to three different kinds of error
related to: the number of tuples to be deleted for having the corresponding PFD holding,
the number of entities having all tuples deleted for having the corresponding PFD holding,
and the number of tuples we admit to discard for any entity.

We also discussed the computational aspects related to the extraction of APFDs. We
detailed a theoretical analysis of the complexity to derive a relation s ⊆ w considering the
error thresholds G3 and H3. We reduced the problem in hand to a general 3SAT problem,
showing that checking an APFD considering all the three thresholds belongs to the class NP.

We applied our approach to real clinical data, specifically to MIMIC III dataset, obtaining
results that demonstrate the applicability of this new type of temporal pattern mining in
medicine, but also in other contexts where the core of the problem is finding temporal patterns
in the past associated, in a prediction-oriented approach, to following (future) events.

References
1 Ziawasch Abedjan, Cuneyt Gurcan Akcora, Mourad Ouzzani, Paolo Papotti, and Michael

Stonebraker. Temporal rules discovery for web data cleaning. Proc. VLDB Endow., 9(4):336–
347, 2015. doi:10.14778/2856318.2856328.

2 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995. URL: http://webdam.inria.fr/Alice/.

3 Beatrice Amico and Carlo Combi. A 3-window framework for the discovery and interpretation
of predictive temporal functional dependencies. In Martin Michalowski, Syed Sibte Raza Abidi,
and Samina Abidi, editors, Artificial Intelligence in Medicine - 20th International Conference
on Artificial Intelligence in Medicine, AIME 2022, Halifax, NS, Canada, June 14-17, 2022,
Proceedings, volume 13263 of Lecture Notes in Computer Science, pages 299–309. Springer,
2022. doi:10.1007/978-3-031-09342-5_29.

4 Laure Berti-Équille, Hazar Harmouch, Felix Naumann, Noël Novelli, and Saravanan Thirumur-
uganathan. Discovery of genuine functional dependencies from relational data with missing
values. Proc. VLDB Endow., 11(8):880–892, 2018. doi:10.14778/3204028.3204032.

5 Claudio Bettini, Sushil Jajodia, and Sean Wang. Time granularities in databases, data mining,
and temporal reasoning. Springer Science & Business Media, 2000.

6 Loredana Caruccio, Vincenzo Deufemia, Felix Naumann, and Giuseppe Polese. Discovering
relaxed functional dependencies based on multi-attribute dominance. IEEE Trans. Knowl.
Data Eng., 33(9):3212–3228, 2021. doi:10.1109/TKDE.2020.2967722.

7 Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. Relaxed functional dependencies
- A survey of approaches. IEEE Trans. Knowl. Data Eng., 28(1):147–165, 2016. doi:10.1109/
TKDE.2015.2472010.

TIME 2023

https://doi.org/10.14778/2856318.2856328
http://webdam.inria.fr/Alice/
https://doi.org/10.1007/978-3-031-09342-5_29
https://doi.org/10.14778/3204028.3204032
https://doi.org/10.1109/TKDE.2020.2967722
https://doi.org/10.1109/TKDE.2015.2472010
https://doi.org/10.1109/TKDE.2015.2472010


4:16 Discovering Predictive Dependencies on Multi-Temporal Relations

8 Carlo Combi, Matteo Mantovani, Alberto Sabaini, Pietro Sala, Francesco Amaddeo, Ugo
Moretti, and Giuseppe Pozzi. Mining approximate temporal functional dependencies with
pure temporal grouping in clinical databases. Comput. Biol. Medicine, 62:306–324, 2015.
doi:10.1016/j.compbiomed.2014.08.004.

9 Carlo Combi, Angelo Montanari, and Pietro Sala. A uniform framework for temporal functional
dependencies with multiple granularities. In International Symposium on Spatial and Temporal
Databases, pages 404–421. Springer, 2011.

10 Carlo Combi and Pietro Sala. Mining approximate interval-based temporal dependencies.
Acta Informatica, 53(6-8):547–585, 2016. doi:10.1007/s00236-015-0246-x.

11 Abdur Rahim Mohammad Forkan and Ibrahim Khalil. A clinical decision-making mechanism
for context-aware and patient-specific remote monitoring systems using the correlations
of multiple vital signs. Computer methods and programs in biomedicine, 139:1–16, 2017.
doi:10.1016/j.cmpb.2016.10.018.

12 Chris Giannella and Edward Robertson. On approximation measures for functional dependen-
cies. Inf. Syst., 29(6):483–507, August 2004. doi:10.1016/j.is.2003.10.006.

13 Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient
algorithm for discovering functional and approximate dependencies. The computer journal,
42(2):100–111, 1999. doi:10.1093/comjnl/42.2.100.

14 Christian S. Jensen and Richard T. Snodgrass. Valid time. In Ling Liu and M. Tamer
Özsu, editors, Encyclopedia of Database Systems, Second Edition. Springer, 2018. doi:
10.1007/978-1-4614-8265-9_1066.

15 Christian S Jensen, Richard T Snodgrass, and Michael D Soo. Extending existing dependency
theory to temporal databases. IEEE Transactions on Knowledge and Data Engineering,
8(4):563–582, 1996. doi:10.1109/69.536250.

16 Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016. doi:10.1038/sdata.
2016.35.

17 Arif Khwaja. Kdigo clinical practice guidelines for acute kidney injury. Nephron Clinical
Practice, 120(4):c179–c184, 2012.

18 Jyrki Kivinen and Heikki Mannila. Approximate inference of functional dependencies from
relations. Theor. Comput. Sci., 149(1):129–149, 1995. doi:10.1016/0304-3975(95)00028-U.

19 Sebastian Kruse and Felix Naumann. Efficient discovery of approximate dependencies. Proc.
VLDB Endow., 11(7):759–772, 2018. doi:10.14778/3192965.3192968.

20 Ohbyung Kwon and Jae Mun Sim. Effects of data set features on the performances of
classification algorithms. Expert Systems with Applications, 40(5):1847–1857, 2013. doi:
10.1016/j.eswa.2012.09.017.

21 Marie Le Guilly, Jean-Marc Petit, and Vasile-Marian Scuturici. Evaluating classification
feasibility using functional dependencies. In Transactions on Large-Scale Data-and Knowledge-
Centered Systems XLIV, pages 132–159. Springer, 2020. doi:10.1007/978-3-662-62271-1_5.

22 Mirjana Mazuran, Elisa Quintarelli, Letizia Tanca, and Stefania Ugolini. Semi-automatic
support for evolving functional dependencies. In Evaggelia Pitoura, Sofian Maabout, Georgia
Koutrika, Amélie Marian, Letizia Tanca, Ioana Manolescu, and Kostas Stefanidis, editors,
Proceedings of the 19th International Conference on Extending Database Technology, EDBT
2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016, pages
293–304. OpenProceedings.org, 2016. doi:10.5441/002/edbt.2016.28.

23 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991. doi:
10.1016/0022-0000(91)90023-X.

24 Parivash Pirasteh, Slawomir Nowaczyk, Sepideh Pashami, Magnus Löwenadler, Klas Thunberg,
Henrik Ydreskog, and Peter Berck. Interactive feature extraction for diagnostic trouble codes

https://doi.org/10.1016/j.compbiomed.2014.08.004
https://doi.org/10.1007/s00236-015-0246-x
https://doi.org/10.1016/j.cmpb.2016.10.018
https://doi.org/10.1016/j.is.2003.10.006
https://doi.org/10.1093/comjnl/42.2.100
https://doi.org/10.1007/978-1-4614-8265-9_1066
https://doi.org/10.1007/978-1-4614-8265-9_1066
https://doi.org/10.1109/69.536250
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1016/0304-3975(95)00028-U
https://doi.org/10.14778/3192965.3192968
https://doi.org/10.1016/j.eswa.2012.09.017
https://doi.org/10.1016/j.eswa.2012.09.017
https://doi.org/10.1007/978-3-662-62271-1_5
https://doi.org/10.5441/002/edbt.2016.28
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X


B. Amico, C. Combi, R. Rizzi, and P. Sala 4:17

in predictive maintenance: A case study from automotive domain. In Proceedings of the
Workshop on Interactive Data Mining, pages 1–10, 2019. doi:10.1145/3304079.3310288.

25 Pietro Sala, Carlo Combi, Matteo Mantovani, and Romeo Rizzi. Discovering evolving temporal
information: Theory and application to clinical databases. SN Comput. Sci., 1(3):153, 2020.
doi:10.1007/s42979-020-00160-9.

26 Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis Hempfing,
Torben Mayer, and Daniel Neuschäfer-Rube. Dynfd: Functional dependency discovery in
dynamic datasets. In Melanie Herschel, Helena Galhardas, Berthold Reinwald, Irini Fundulaki,
Carsten Binnig, and Zoi Kaoudi, editors, Advances in Database Technology - 22nd International
Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29,
2019, pages 253–264. OpenProceedings.org, 2019. doi:10.5441/002/edbt.2019.23.

27 Robert W Schrier, Wei Wang, Brian Poole, Amit Mitra, et al. Acute renal failure: definitions,
diagnosis, pathogenesis, and therapy. The Journal of clinical investigation, 114(1):5–14, 2004.
doi:doi:10.1172/JCI22353.

28 Shigehiko Uchino, Rinaldo Bellomo, Donna Goldsmith, Samantha Bates, and Claudio Ronco.
An assessment of the rifle criteria for acute renal failure in hospitalized patients. Critical care
medicine, 34(7):1913–1917, 2006. doi:10.1097/01.CCM.0000224227.70642.4F.

29 Victor Vianu. Dynamic functional dependencies and database aging. Journal of the ACM
(JACM), 34(1):28–59, 1987. doi:10.1145/7531.7918.

30 Jef Wijsen. Design of temporal relational databases based on dynamic and temporal functional
dependencies. In James Clifford and Alexander Tuzhilin, editors, Recent Advances in Tem-
poral Databases, Proceedings of the International Workshop on Temporal Databases, Zürich,
Switzerland, 17-18 September 1995, Workshops in Computing, pages 61–76. Springer, 1995.
doi:10.1007/978-1-4471-3033-8_4.

31 Jef Wijsen. Temporal fds on complex objects. ACM Trans. Database Syst., 24(1):127–176,
1999. doi:10.1145/310701.310715.

32 Jef Wijsen. Temporal Dependencies, pages 3955–3961. Springer, 2018. doi:10.1007/
978-1-4614-8265-9_396.

33 Zhenxing Xu, Jingyuan Chou, Xi Sheryl Zhang, Yuan Luo, Tamara Isakova, Prakash Ad-
ekkanattu, Jessica S Ancker, Guoqian Jiang, Richard C Kiefer, Jennifer A Pacheco, et al.
Identifying sub-phenotypes of acute kidney injury using structured and unstructured electronic
health record data with memory networks. Journal of biomedical informatics, 102:103361,
2020. doi:10.1016/j.jbi.2019.103361.

A Data Complexity

In this Appendix, we first provide the proof of Theorem 18 and then discuss some algorithmic
issues.

Proof of Theorem 18. The proof is by reduction from Problem 2. Let C = {{a1
1, a1

2, a1
3}, . . . ,

{an
1 , an

2 , an
3 }} and p an instance of Problem 2. We introduce the following relation wC =

{(ai
j , 0, 2i) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3} ∪ {(ai

j , 1, 2i + 1) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}. It is easy to
observe that |wC | = 6|C| and wC may be generated in polynomial space from C. Let us
define a function clause : wC → {1, . . . , n} defined as:

clause(ai
j , ḃ, z) =


z
2 if z is even
(z−1)

2 otherwise
.

Let us observe that function clause is well-defined and maps each element (ai
j , ḃ, z) ∈ wC

to the index of the clause which corresponds to it in the above construction. Now we prove
that (C, p) is a positive instance of Problem 2 if and only if (wC , |wC |, p) is a positive instance
of Problem 1.
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For the left-to-right direction, let us assume that C = {{a1
1, a1

2, a1
3}, . . . , {an

1 , an
2 , an

3 }}
and p is a positive instance of Problem 2. Let A be the set of all and only variables
which appear in C. Thus, there exists an assignment σ : A → {0, 1} and at most p

distinct indexes i1, . . . ip such that σ(aik
1 ) = σ(aik

2 ) = σ(aik
3 ) for each 1 ≤ k ≤ p. Let

w−
C = {(ai

j , 1, 2i) : σ(ai
j) = 0} ∪ {(ai

j , 0, 2i + 1) : σ(ai
j) = 1}. Let us observe that w−

C ⊆ wC .
For proving that w−

C satisfies the three conditions of Definition 16 for the pair (|wC |, p) we
need to prove the following useful property:

(OddEvenProperty) for each 1 ≤ i ≤ n we have that {2i, 2i + 1} ∩ πZ(wC \ w−
C ) ̸= ∅.

Informally speaking property (OddEvenProperty) states that for every possible value
2i ∈ πZ(wC \ w−

C ) it is not the case that both 2i and 2i + 1 do not belong to πZ(wC \ w−
C ).

Let us assume by contradiction that there exists an index i with 1 ≤ i ≤ n for which
2i /∈ πZ(wC \ w−

C ) and 2i + 1 /∈ πZ(wC \ w−
C ). Thus, for each j with 1 ≤ j ≤ 3 all the tuples

of the form (ai
j , 1, 2i) and (ai

j , 0, 2i + 1) belong to w−
C . Let us take any index j with 1 ≤ j ≤ 3.

We have (ai
j , 1, 2i), (ai

j , 0, 2i + 1) ∈ w−
C . By definition of w−

C from (ai
j , 1, 2i) ∈ w−

C we have
that σ(ai

j) = 0, and from (ai
j , 0, 2i + 1) ∈ w−

C we have that σ(ai
j) = 1 (contradiction).

Now we are ready to prove that conditions 1., 2., and 3. of Definition 16 are satisfied by
the pair |wC | and p and thus (wC , |wC |, p) is a positive instance of Problem 1. Condition 1. of
Definition 16 imposes that |w−

C | ≤ |wC | which is trivially satisfied since w−
C ⊆ wC . Condition

2. of Definition 16 imposes that for every pair of triplets (ai
j , ḃ, z), (ai′

j , ḃ′, z′) ∈ wC \ w−
C if

ai
j = ai′

j′ , i.e., they represent the occurrence of the same variable possibly in two distinct clauses
we have ḃ = ḃ′. Let us assume by contradiction that this is not the case, then there exists
(ai

j , 0, z), (ai′

j′ , 1, z′) ∈ wC \ w−
C for some z, z′ ∈ {2, . . . , 2n + 1} with ai

j = ai′

j′ . By definition
of w−

C the fact that (ai
j , 0, z) ∈ wC \ w−

C means that σ(ai
j) = 0 while (ai′

j′ , 1, z′) ∈ wC \ w−
C

means that σ(ai′

j′) = 1 since ai
j = ai′

j′ we have a contradiction.
Condition 3. of Definition 16 imposes that |πZ(wC)| − |πZ(wC \ w−

C )| ≤ p. Let us assume
by contradiction that there exist p + 1 distinct indexes 2 ≤ i1 < . . . < ip+1 ≤ 2n + 1 such
that ij /∈ πZ(wC \ w−

C ) for every 1 ≤ j ≤ p + 1. This means that for every 1 ≤ j ≤ p + 1 if
ij is even (resp., odd) then (ai

q, 1, ij) ∈ w−
C (resp., (ai

q, 0, ij) ∈ w−
C ) for each 1 ≤ q ≤ 3 and

thus by definition of w−
C we have σ(ai

q) = 0 for each 1 ≤ q ≤ 3, thus the clause ij/2 (resp.,
(ij − 1)/2) is homogeneous w.r.t to σ.

Since, σ is a “witness” that (C, p) is a positive instance of Problem1 we have that
is the number of clauses homogeneous w.r.t σ is at most p. Since we just proved that
2 ≤ i1 < . . . < ip+1 ≤ 2n + 1 may be associated to p + 1 homogeneous clauses then there
exist 1 ≤ j′ < p + 1 such that ij′ is even and ij′+1 = ij′ + 1 because at least two distinct
indexes among i1, . . . , ip+1 must be mapped to the same clause. However, by applying the
(OddEvenProperty) on ij′ , ij′+1 we have that at least one among ij′ and ij′+1 must belong
to πZ(wC \ w−

C ) and thus we have a contradiction.
For the right-to-left direction, let us assume that wC and (|wC |, p) is a positive instance

of Problem 1. Thus, there exists w−
C ⊆ wC and a function f : A′ → {0, 1} with A′ ⊆ A such

that:
for all (a, ḃ) ∈ πAḂ(wC \ w−

C ) we have ḃ = f(a);
|πZ(wC)| − |πZ(wC \ w−

C )| ≤ p.
Let us assume w.l.o.g. that w−

C is minimal, that is for every (a, ḃ) ∈ πAḂ(w−
C ) we have that

there exists (a, ḃ′) ∈ πAḂ(wC \ w−
C ) with ḃ ̸= ḃ′. In other words, any tuple in πAḂ(w−

C )
“conflicts” with at least one tuple in πAḂ(wC \ w−

C ). Under this assumption, we may easily
prove that A′ = A. Let us assume by contradiction that A′ ⊂ A. Thus, there exists a ∈ A\A′

such that (a, 0), (a, 1) ∈ πAḂ(w−
C ). If we take w=

C = w−
C \ {(a, 0, z) : (a, 0, z) ∈ w−

C } we have



B. Amico, C. Combi, R. Rizzi, and P. Sala 4:19

that wC \w=
C admits a (|wC |, p′) conflict resolution with p′ ≤ p since, informally speaking, we

are possibly “reducing” the size of w−
C . By construction, we have that {(a, 0, z) : (a, 0, z) ∈

w−
C } ≠ ∅ because since a ∈ A we have that there exists at least one clause {ai

1, ai
2, ai

3} in C

for which ai
j = a for some j ∈ {1, 2, 3} and thus (a, 0, 2i + 1) ∈ wC . Thus, we can conclude

that w−
C is not minimal (contradiction). By having A′ = A we can now claim that f is also

a completely defined assignment for C. Let us prove that f is an assignment that makes at
most p clauses in C homogeneous. Let us assume by contradiction that f makes at least
p + 1 distinct clauses homogeneous and let i1 < . . . < ip+1 be the indexes of such clauses.
By construction and by minimality of w−

C , let us assume that for every 1 ≤ h ≤ p + 1 either
(aih

j , 0, 2i+1) ∈ wC \w−
C for every j ∈ {1, 2, 3} – in such a case f(aih

1 ) = f(aih
2 ) = f(aih

3 ) = 0–,
or (aih

1 , 0, 2i) ∈ wC \ w−
C for every j ∈ {1, 2, 3} – in such a case f(aih

1 ) = f(aih
2 ) = f(aih

3 ) = 1.
This means that for each 1 ≤ h ≤ p + 1, if f(aih

1 ) = f(aih
2 ) = f(aih

3 ) = 1, we have
2ih ∈ πZ(wC \ w−

C ) and 2ih + 1 /∈ πZ(wC \ w−
C ). Symmetrically, for each 1 ≤ h ≤ p + 1

if f(aih
1 ) = f(aih

2 ) = f(aih
3 ) = 0 we have 2ih /∈ πZ(wC \ w−

C ) and 2ih + 1 ∈ πZ(wC \ w−
C ).

Let U = {2i1, 2i2 + 1, . . . , 2ip+1, 2ip+1 + 1}. We can conclude that πZ(wC \ w−
C ) ∩ U and

πZ(w−
C ) ∩ U is a bi-partition of U with |πZ(wC \ w−

C ) ∩ U | = |πZ(w−
C ) ∩ U | = p + 1.

Since we have (πZ(w−
C ) ∩ U) ∩ πZ(wC \ w−

C ) = ∅ and trivially πZ(w−
C ) ∩ U ⊆ πZ(wC),

we have that (πZ(w−
C ) ∩ U) ⊆ (πZ(wC) \ πZ(wC \ w−

C )) and, thus, |πZ(w−
C ) ∩ U | = p + 1

≤ |πZ(wC)| − |πZ(wC \ w−
C )|. Thus |πZ(wC)| − |πZ(wC \ w−

C )| ≥ p + 1 (contradiction). ◀

As we just proved, the problem of verifying any APFD even only considering H3 is
NP-Hard. Algorithm 2 represents a guess and check non-deterministic algorithm to solve the
general problem, namely to verify all three errors. This algorithm shows that the verification
of the three errors is an NP-complete problem. In the following algorithms, the symbol ▷

precedes comments.

Algorithm 2 ApproximateDependencyCheck.
Input: an instance w of relation W , and three real numbers ϵg3 , ϵh3 , and ϵj3 in [0, 1]
Output: a relation s ⊆ w s.t. s |= A→ Ḃ, g3(w, s) ≥ 1− ϵg3 , h3(w, s) ≥ 1− ϵh3 ,

j3(w, s) ≥ 1− ϵj3

1 begin
2 guess s ⊆ w

▷ Check if s |= A→ Ḃ

3 for v ∈ πA(s) do
4 if |πḂ(σA=v(s))| ≥ 2 then
5 fail

▷ Check g3(w, s)
6 if |s|

|w| < 1− ϵg3 then
7 fail

▷ Check h3(w, s)
8 if |πZ (s)|

|πZ (w)| < 1− ϵh3 then
9 fail

▷ Check j3(w, s)
10 for z ∈ πZ(s): do
11 if |σZ=z(s)|

|σZ=z(w)| < 1− ϵj3 then
12 fail

13 return s
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