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Abstract Hyperbolic partial differential equations (PDEs) cover a wide range of
interesting phenomena, from human and hearth-sciences up to astrophysics: this un-
avoidably requires the treatment of many space and time scales in order to describe at
the same time observer-sizemacrostructures,multi-scale turbulent features, and also
zero-scale shocks. Moreover, numerical methods for solving hyperbolic PDEs must
reliably handle different families of waves: smooth rarefactions, and discontinuities
of shock and contact type. In order to achieve these goals, an effective approach con-
sists in the combination of space-time-based high-order schemes, very accurate on
smooth features even on coarse grids, with Lagrangian methods, which, by moving
the mesh with the fluid flow, yield highly resolved and minimally dissipative results
on both shocks and contacts. However, ensuring the high quality of moving meshes
is a huge challenge that needs the development of innovative and unconventional
techniques. The scheme proposed here falls into the family of Arbitrary-Lagrangian-
Eulerian (ALE) methods, with the unique additional freedom of evolving the shape
of the mesh elements through connectivity changes. We aim here at showing, by
simple and very salient examples, the capabilities of high-order ALE schemes, and
of our novel technique, based on the high-order space-time treatment of topology
changes.
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1 Introduction

In order to reduce as much as possible the numerical errors due to nonlinear convec-
tive terms, it is possible to exploit the power of Lagrangian methods: with this kind
of algorithms, the new position and configuration of each element of the mesh is re-
computed at each timestep according to the local fluid velocity, so that we can closely
follow the fluid flow in a Lagrangian fashion. In this way the nonlinear convective
terms disappear and Lagrangian schemes exhibit negligible numerical dissipation
at contact waves and material interfaces; moreover they results to be Galilean and
rotational invariant, and they provide, without any additional effort, an automatic
mesh refinement feature even when the cell count is maintained constant, simply by
transporting the mesh elements wherever needed.
The use of Lagrangian methods dates back to the works of [65, 67] and then many

further improvements have been introduced in literature; we cite here only some few
relevant historical examples and review papers [51, 10, 46, 11, 48, 42, 59, 17, 16, 49].
However, ensuring the high quality of a moving mesh over long simulation times

is difficult, therefore a certain degree of flexibility should be allowed in order to avoid
mesh distortion, for example a slightly relaxed choice of the actual mesh velocity w.r.t
the real fluid velocity, as well as the freedom of not onlymoving the control volumes,
but really evolving their shapes and allowing topology and neighborhood changes.
This led to the introduction of Arbitrary-Lagrangian-Eulerian (ALE) schemes of
direct [19, 6, 8] and indirect [45, 44, 5] type. In particular, as stated and shown in [61],
connectivity changes between different time level constitute a valid alternative to
remeshing [44, 5, 45] for preserving or restoring mesh quality in a Lagrangian
setting.
With this in mind, we present here a novel family of very high-order direct

Arbitrary-Lagrangian-Eulerian (ALE)DiscontinuousGalerkin (DG) schemes for the
solution of general nonlinear hyperbolic PDE systems on moving Voronoi meshes
that are regenerated at each timestep and which explicitly allow topology changes in
time, in order to benefit simultaneously from high-order methods, high quality grids
and substantially reduced numerical dissipation; this method has been introduced
for the first time by the two authors in [28].
The key ingredient of our approach is the integration of a space-time conservation

formulation of the governing PDE system over closed, non-overlapping space-time
control volumes [8] that are constructed from the moving, regenerated, Voronoi-type
polygonal meshes which are centroid-based dual grids of the Delaunay triangulation
of a set of generator points: this leads to also consider what we refer to in this work
as crazy degenerate control volumes, or space-time sliver elements, that only arise
when adopting a space-time framework, and would not exist from a purely spatial
point of view! Such degenerate elements provide a clear formal way of handlingmesh
connectivity changes while preserving the high-order of accuracy of the numerical
method.
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1.1 Goals

The goal of this book chapter is to briefly review this novel and promising approach
based on high order direct ALE schemes with topology changes, and to provide
numerical evidence regarding the utility of Lagrangian methods in general, and
in particular of the new technique object of this work, by means of simple and
illustrative benchmarks.

1.2 Structure

The rest of this chapter is organized as follows. We first introduce the class of equa-
tions of interest in Section 2. Next, we briefly summarize the main characteristics
of the employed direct Arbitrary-Lagrangian-Eulerian scheme, focusing in partic-
ular on the space-time approach and its extension to crazy sliver elements, whose
formation, caused by topology changes, will be also addressed in Section 3.2. Then,
the core of this work consists in providing numerical evidence for (i) the key role of
topology changes and sliver elements in a high-order moving mesh code, and (ii) the
clear advantages of Lagrangian schemes on widely adopted benchmark problems.
Finally, we give some conclusive remarks and an outlook towards future work in
Section 5.

2 Hyperbolic partial differential equations

In order to model a wide class of physical phenomena, we consider a very general
formulation of the governing equations, namely all those which can be described by

𝜕𝑡Q + ∇ · F(Q) + B(Q) · ∇Q = S(Q), (1)

whereQ is the vector of the conserved variables,F the non linear flux,B·∇Q the non-
conservative products, and S a nonlinear algebraic source term. Many physical mod-
els can be cast in this form, from the simple shallow water system, some multiphase
flow models, the magnetohydrodynamics equations, up to the Einstein field equa-
tions of general relativity (with appropriate reformulation) or the GPR unified model
of continuum mechanics, see for example [25, 29, 38, 30, 14, 62, 13, 14, 26, 54, 7];
in this work, we will present illustrative results concerning the Euler equations of
gasdynamics.
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3 Numerical method

In this Section we presents a concise description of our direct Arbitrary-Lagrangian-
Eulerian (ALE) Discontinuous Galerkin (DG) scheme on moving Voronoi-type
meshes with topology changes; for any additional details we refer to our recent
paper [28].

At the beginning of the simulation,we discretize ourmoving domain by a centroid-
based Voronoi-type tessellation built from a set of generators (the orange points in
Figure 1), and we represent our data, the conserved variables Q, via discontinuous
high-order polynomials in each mesh polygon (we indicate the degree of the poly-
nomial representation by 𝑃𝑁 ). Then, we let the generators move with a velocity
chosen to be as close as possible to the local fluid velocity, computed mainly from
a high-order approximation of their pure Lagrangian trajectories, with small correc-
tions obtained from a flow-adaptive mesh optimization technique. The positions of
the generators are being continuously updated, and thus their Delaunay triangulation
may change at any timestep and the samewill hold for the dual polygonal tessellation.
Then, a space-time connection between two polygonal tessellations corresponding
to two successive time levels has to be established in order to evolve the solution in
time locally and integrate the governing PDE.

3.1 Direct Arbitrary-Lagrangian-Eulerian schemes

The key idea of direct ALE methods (in contrast to indirect ones) consists in con-
necting two tessellations by means of so-called space-time control volumes 𝐶𝑛

𝑖
,

and recover the unknown solution at the new timestep u𝑛+1
ℎ

directly inside the new
polygon 𝑃𝑛+1

𝑖
, from the data available at the previous timestep u𝑛

ℎ
in 𝑃𝑛

𝑖
. This is

achieved through the integration, over such control volumes, of the fluxes, the non-
conservative products and the source terms, by means of a high-order fully discrete
predictor-corrector ADER method [21, 31]. In this way, the need for any further
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Fig. 1 Space time connectivitywithout topology changes, main space-time control volume (middle)
and a standard sub-space-time control volume (right).
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remapping/remeshing steps is totally eliminated. By adopting the tilde symbol for
referring to space-time quantities, our direct ALE scheme [28, 27] reads∫

𝑃𝑛+1
𝑖

𝜙𝑘u𝑛+1
ℎ =

∫
𝑃𝑛
𝑖

𝜙𝑘u𝑛
ℎ −

∑︁
𝑗

∫
𝜕𝐶𝑛

𝑖 𝑗

𝜙𝑘F (q𝑛,−
ℎ

, q𝑛,+
ℎ

) · ñ +
∫
𝐶𝑛

𝑖

∇̃𝜙𝑘 · F̃(q𝑛
ℎ)

+
∫
𝐶𝑛

𝑖

𝜙𝑘

(
S(q𝑛

ℎ) − B̃(q𝑛
ℎ) · ∇q𝑛

ℎ

)
,

(2)

where 𝜙𝑘 is a set of moving space-time basis functions, while q𝑛,+
ℎ
and q𝑛,−

ℎ
are

high-order space-time extrapolated data computed through the ADER predictor.
Finally, F (q𝑛,−

ℎ
, q𝑛,+

ℎ
) is an ALE numerical flux function which takes into account

fluxes across space-time cell boundaries 𝜕𝐶𝑛
𝑖 𝑗
as well as jump terms related to

nonconservative products. In particular, we adopt here a two-point path-conservative
numerical flux function of Rusanov-type [58, 53]

F (q𝑛,−
ℎ

, q𝑛,+
ℎ

) · ñ =
1
2

(
F̃(q𝑛,+

ℎ
) + F̃(q𝑛,−

ℎ
)
)
· ñ𝑖 𝑗 −

1
2
𝑠max

(
q𝑛,+
ℎ

− q𝑛,−
ℎ

)
+ 1
2
©«
1∫
0

B̃
(
𝚿(q𝑛,−

ℎ
, q𝑛,+

ℎ
, 𝑠)

)
· n 𝑑xª®¬ ·

(
q𝑛,+
ℎ

− q𝑛,−
ℎ

)
,

(3)

where 𝑠max is the maximum eigenvalue of the ALE Jacobian matrices evaluated on
the left and right of the space-time interface and the path 𝚿 = 𝚿(q−

ℎ
, q+

ℎ
, 𝑠) is a

straight-line segment path connecting q𝑛,−
ℎ
and q𝑛,+

ℎ
.

We emphasize that the ALE Jacobian matrix is obtained by subtracting the local
normal mesh velocity from the diagonal entries of the system matrix of the quasi-
linear form of the governing equations [63] (the Jacobian of the interface-normal
flux for conservative systems), thus, when the mesh velocity is sufficiently close to
the local fluid velocity, the wavespeed estimates obtained from the eigenvalues are
significantly reduced, leading to a lower associated numerical dissipation than what
would be mandated in the Eulerian context. This, especially but not exclusively, in
conjunction with complete approximate Riemann solvers [20], explains the capabil-
ity of tracking material interfaces and capturing contact discontinuities which are
characteristic of Lagrangian-type schemes.
Next, in order to compute the integrals with high order of accuracy, complete

knowledge of the space-time connectivity between two consecutive timesteps is
required, as opposed to only the spatial information at the two time levels, which
would be enough for a low order scheme [61] or for indirect schemes [45, 44, 5].
When no topology changes occur, the space-time geometrical information is easily

constructed by connecting via straight line segments the corresponding vertexes of
each polygon, obtaining an oblique prism than can be further subdivided into a set of
triangular oblique sub-prisms on which quadrature points are readily available (see
Figures 1 and 3).
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3.2 Topology changes and crazy sliver elements

On the contrary, when a topology change occurs, as in Figure 2, i.e. the number
of edges, the shape, and the neighbors of a polygon evolve within two consecutive
timesteps, the space-time connection between the mesh elements gives raise to
degenerate elements of two types: (i) degenerate sub-space-time control volumes,
where either the top or bottom faces are degenerate triangles that are collapsed
to a segment; (ii) and also crazy sliver space-time elements 𝑆𝑛

𝑖
. The first type of

degenerate elements does not pose any problems, and was already treated in [32].
Instead, space-time sliver elements are a completely new type of control volume. In
particular, they do not exist neither at time 𝑡𝑛, nor at time 𝑡𝑛+1, since they coincide
with an edge of the tessellation at the old and at the new time levels, and for this
reason have zero area in space at the two bounding time levels. However, they have a
non-negligible volume in space-time. The difficulties related to this kind of elements
are due to the fact that for them an initial condition is not clearly defined at time 𝑡𝑛,
and that contributions across these elements should not be lost at time 𝑡𝑛+1, in order
to ensure conservation. All the details on how to successfully extend our direct ALE
scheme also to crazy elements can be found in our recent paper [28].
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Fig. 2 Space time connectivity with topology changes, degenerate sub-space-time control volumes
(middle) and crazy sliver element (right).
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Fig. 3 Space-time quadrature points for third order methods on standard elements (left), lateral
faces (middle) and crazy sliver elements (right).
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We would like to emphasize that topology changes are fundamental for long time
simulations in the ALE framework, in order to avoid explicit data remap steps, and
our crazy sliver elements represent a novel and formally grounded way to allow
for a relatively simple space-time connection around a change of connectivity. The
numerical results shown in Section 4.1 provide a clear proof of the necessity of
topology changes already on the simple situation of the long time evolution of a
stationary isentropic smooth vortex.

3.3 ADER-ALE algorithm: the predictor step

The predictor step represents an essential ingredient for obtaining high-order in time
in a fully-discrete one-step procedure: it yields a local solution of the governing
equations (1) in the small q𝑛

ℎ
, inside each space-time element, including the crazy

elements. The solution is local in the sense that it is obtained by only considering
the initial data in each polygon, the governing equations and the geometry of 𝐶𝑛

𝑖
,

without taking into account interactions between 𝐶𝑛
𝑖
and its neighbors. Such local

solution is computed for each standard space-time control volume 𝐶𝑛
𝑖
and for each

crazy control volume 𝑆𝑛
𝑖
, in the form of a high order polynomial in space and in

time, which serves as a predictor solution, to be used for evaluating all the integrals
in the corrector step (2), i.e. the final update of the solution from 𝑡𝑛 to 𝑡𝑛+1.

3.4 A posteriori sub-cell FV limiter

High-order schemes that can be seen as linear in the sense of Godunov [34], may
develop spurious oscillations in presence of discontinuities. In order to prevent this
phenomenon, in the case of a DG discretization we adopt an a posteriori limiting
procedure based on the MOOD paradigm [15, 47, 31]: we first apply our unlimited
ALE-DG scheme everywhere, and then (a posteriori), at the end of each timestep,
we check the reliability of the obtained solution in each cell against physical and
numerical admissibility criteria, such as floating point exceptions, violation of pos-
itivity or violation of a relaxed discrete maximum principle (and see [35, 39] for
further criteria). Next, we mark as troubled those cells where the DG solution cannot
be accepted. For the troubled cells we now repeat the time evolution by employing,
instead of the DG scheme, a more robust finite volume (FV) method. Moreover,
in order to maintain the accurate resolution of our original high-order DG scheme,
which would be lost when switching to a FV scheme, the FV scheme is applied on a
finer sub-cell grid that accounts for recovering the optimal accuracy of the numerical
method performing a reconstruction step.
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4 Numerical examples

In order to provide simple and clear numerical evidence of the effectiveness of the
proposed ALE schemewith topology changes we consider here the well known Euler
equations, that can be cast in the form (1) by choosing

Q =

©«
𝜌

𝜌𝑢

𝜌𝑣

𝜌𝐸

ª®®®¬ , F =

©«
𝜌𝑢 𝜌𝑣

𝜌𝑢2 + 𝑝 𝜌𝑢𝑣

𝜌𝑢𝑣 𝜌𝑣2 + 𝑝

𝑢(𝜌𝐸 + 𝑝) 𝑣(𝜌𝐸 + 𝑝)

ª®®®¬ , B = 0, S = 0. (4)

The vector of conserved variablesQ is composed of the fluid density 𝜌, the momen-
tum density vector 𝜌v = (𝜌𝑢, 𝜌𝑣) and the total energy density 𝜌𝐸 ; next, the fluid
pressure 𝑝 is computed using the equation of state for an ideal gas

𝑝 = (𝛾 − 1)
(
𝜌𝐸 − 1

2
𝜌v2

)
, (5)

where 𝛾 (in this work taken to be 𝛾 = 7/5) is the ratio of specific heats. For this
choice of equation of state, the adiabatic speed of sound takes the form 𝑐 =

√︁
𝛾𝑝/𝜌.

In what follows we will present numerical results regarding the following notable
features of Lagrangian schemes and of our direct Arbitrary-Lagrangian-Eulerian
method with variable topology:

i. Flows characterized by strong differential rotations, for example vortices, can
be studied over very long periods only by conceding to the element motion the
additional freedom of introducing topology changes, see Section 4.1;

ii. The use of sliver elements allows to clearly define the space-time evolution of
the solutions in-between discrete time levels and achieves high-order of accuracy
also in presence of many topology changes, see Section 4.1.1;

iii. Lagrangian schemes sharply capture shock waves thanks to the automatic
refinement obtained at the shock locations without needing to increment the
number of mesh elements but simply because the element density increases
wherever needed, see Section 4.2;

iv. Lagrangian schemes minimize dissipation of contact discontinuities, by apply-
ing reduced numerical dissipation when using approximate Riemann solvers. In a
pure Lagrangian context, schemes capable of capturing stationary discontinuities
exactly will do the same also for moving interfaces (since the mesh motion is
specified to follow such features). Moreover, even when such hard constraints
are relaxed in Arbitrary-Lagrangian-Eulerian methods and even using simpler
solvers like the Rusanov flux, the bounding wavespeed estimates and the associ-
ated numerical dissipation can be much lower than what would be mandated in
the Eulerian context, see Section 4.3;

v. Lagrangian schemes discretely preserve the Galilean and rotational invariance
properties of the governing equations, so that they can better capture any events
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(such as the explosion-type problems reported in this work) that may occur in
superposition to a high-speed background flow, see Section 4.3.

4.1 Long time evolution of a Shu-type vortical equilibrium

As a first test we consider a smooth isentropic vortex flow defined as similarly to [36].
The initial computational domain is the square Ω = [0; 10] × [0; 10] and boundary
conditions are of wall (slip) type everywhere. The initial condition is given by
some perturbations 𝛿 that are superimposed onto a homogeneous background state
Q0 = (𝜌, 𝑢, 𝑣, 𝑝) = (1, 0, 0, 1), assuming that the entropy perturbation is zero, i.e.
𝛿𝑆 = 0. The perturbations for density and pressure are

𝛿𝜌 = (1 + 𝛿𝑇)
1

𝛾−1 − 1, 𝛿𝑝 = (1 + 𝛿𝑇)
𝛾

𝛾−1 − 1, (6)

with the temperature fluctuation 𝛿𝑇 = − (𝛾−1) 𝜖 2
8𝛾𝜋2 𝑒1−𝑟

2 and the vortex strength 𝜖 = 5.
The velocity field is specified by

Fig. 4 Mesh evolution corresponding to the solution of the stationary rotating vortex of Section 4.1
solved on a moving grid with fixed topology. The mesh quality rapidly deteriorates: elements
are stretched, the timestep size is reduced, and even mesh-tangling occurs, which means that the
simulation may stop entirely.
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𝛿𝑢

𝛿𝑣

)
=

𝜖

2𝜋
𝑒
1−𝑟2
2

(
−(𝑦 − 5)
(𝑥 − 5)

)
. (7)

This is a stationary equilibrium of the system so the exact solution coincides with
the initial condition at any time.
Preserving this kind of vortical solution over long simulation times with minimal

dissipation is a nontrivial task in a moving-mesh context. To achieve this result,
we propose the use of a very high-order scheme (here an ADER-DG method of
order 4) in a Lagrangian framework. We remark that the combination cannot be used
with fixed topology, or advanced remapping techniques, because the quality of the
moving mesh subject to this constraint quickly deteriorates, as is clearly apparent in
Figure 4, where the simulation has to be stopped after about half a vortex rotation

Fig. 5 Stationary rotating vortex solved with our fourth order ALE-DG scheme. Density contours
at 𝑡 = 0 and 𝑡 = 500 and position of a bunch of highlighted elements at different times. Note that
the solution is well preserved for more than eighty complete rotation periods of the yellow elements
and generator trajectories are perfectly circular.
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period. This highlights the well-known fact that, for long time evolution, the mesh
connectivity must be somehow updated. In this work this is naturally achieved by
means of space-time topology changes.
Further, Figure 5 demonstrates that the treatment of topology changes via high-

order integration over crazy sliver elements is actually quite effective. Indeed one can
note that the solution is visually the same at the beginning of the simulation and 500
seconds after, even on a rather coarse mesh of only 957 polygonal elements. More-
over, we take advantage of this test case to also emphasize the high precision of the
mesh movement. The Voronoi-type polygonal cells, as well as the generator points,
in fact can be observed to orbit along perfectly circular trajectories, as evidenced in
Figures 5 and 6.

4.1.1 Order of convergence

Finally, this stationary test case allows to show numerically the order of convergence
of the proposed ALE-DG scheme with topology changes, reported in Table 1 up to
order 4. Furthermore, we present a quantitative comparison with the scheme applied
in a purely Eulerian setting (i.e. on a fixed mesh) and with the classical direct ALE
approach with fixed topology. For the purpose of this test, we consider the domain
Ω = [−10; 30] × [−10; 30], covered with a Voronoi-type tessellation obtained as

Fig. 6 Stationary rotating vortex solved with our fourth order 𝑃3 ALE-DG scheme on a moving
Voronoi-type mesh of 957 elements with dynamical change of connectivity and with the generators
trajectories computed with fourth order of accuracy. Left: We depict the trajectories (in Cartesian
coordinates) of the generators of 3mesh elements (those highlighted respectively in blue, violet and
red) from time 𝑡 = 0 up to time 𝑡 = 250. During this time interval the red mesh element completes
30 revolutions about the origin. Right: we depict the 𝑦 coordinates of the 3 generators (top) and
their radial coordinates (bottom). We would like to emphasize that the trajectories are circular (their
radius is almost constant) for a very long evolution time.
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Table 1 Stationary vortex test case with final time 𝑡 = 4 and 𝑡 = 10. We report here the order of
convergence, on the variable 𝜌 in the 𝐿2 norm, for our DG scheme up to order 4 in the Eulerian case
(left), for a standard Lagrangian method with fixed topology (middle) and for our ALE scheme with
topology changes (right). In the last case we also report the total number of crazy sliver elements
that have been originated during the simulations: the high order of convergence is maintained also
when many sliver elements appear in the mesh. At large times (𝑡 = 10), the ALE scheme with
topology changes, produces numerical errors that are comparable or smaller than those obtained
with the corresponding Eulerian method on a fixed mesh.

Eulerian ALE fixed ALE+sliver

t=4 t=10 t=4 t=4 t=10
ℎ 𝜖 (𝜌) 𝜖 (𝜌) O (𝐿2) 𝜖 (𝜌) O (𝐿2) Sliv 𝜖 (𝜌) Sliv 𝜖 (𝜌) O (𝐿2)

𝑃
1
→

O
2 5.9E-1 4.7E-2 8.3E-2 - 1.4E-1 - 111 4.8E-2 293 9.0E-2 -

4.4E-1 2.8E-2 4.6E-2 2.0 1.1E-1 1.0 192 2.4E-2 514 4.3E-2 2.6
2.9E-1 1.0E-2 1.8E-2 2.4 4.6E-2 2.1 420 9.3E-3 1119 1.5E-2 2.6
2.2E-1 4.9E-3 8.0E-3 2.8 2.4E-2 2.3 789 4.6E-3 2111 6.5E-3 2.9

𝑃
2
→

O
3 5.9E-1 6.7E-3 1.1E-2 - 2.7E-2 - 97 7.3E-3 277 1.0E-2 -

4.4E-1 2.8E-3 3.9E-3 3.6 1.3E-2 2.5 181 2.9E-3 498 3.2E-3 4.0
2.9E-1 9.6E-4 1.1E-3 3.3 6.8E-3 1.6 401 9.7E-4 1066 9.0E-4 3.2
2.2E-1 4.0E-4 4.1E-4 3.4 3.3E-3 2.5 745 4.3E-4 1981 4.1E-4 2.8

𝑃
3
→

O
4 1.7E-0 5.6E-2 8.0E-2 - 5.8E-2 - 2 5.3E-2 4 6.8E-2 -

1.1E-0 1.2E-2 2.2E-2 3.2 2.8E-2 1.8 10 1.3E-2 41 1.9E-2 3.2
8.7E-1 4.7E-3 6.6E-3 4.4 2.0E-2 1.3 36 5.8E-3 110 6.1E-3 4.2
5.9E-1 1.1E-3 1.3E-3 4.2 5.4E-3 3.3 93 1.1E-3 257 1.3E-3 3.9

the centroid-based dual of a Delaunay mesh generated by Ruppert’s algorithm [57].
We report our results at time 𝑡 = 4 (the time at which the ALE simulations with
fixed topology terminate due to mesh tangling) and 𝑡 = 10 (a long simulation time
at which differences in mesh configuration become very significant).
It should be stressed that, due to the absence of discontinuous features or strong

background flows, this test problem is not intended to highlight the capabilities of
movingmesh algorithms, but rather to show the high order convergence of themethod
on smooth flows, while highlighting the necessity for a changing mesh topology.
On the results, we note that the ALE method applied to a fixed mesh topology, in

addition to early termination around time 𝑡 = 4, as shown in Figure 4, also suffers an
increase in numerical errors, to the point that the correct order of convergence cannot
be obtained when the mesh is severely tangled. Instead, the ALE algorithm presented
in this work, not only deals with topology changes without accuracy losses, but in
fact the mesh motion allows to gradually optimize the shape of the elements with
respect to the flow field. This gradual optimization procedure, translates into lower
errors at large times with respect to the Eulerian scheme, for which the mesh is fixed
to its initial generic configuration. We refer also to Figure 7 for a visual illustration
of the different mesh motion approaches.
Finally, we would like to emphasize that in Table 1 we show the numerical errors

obtained at large computational times (𝑡 = 4 and 𝑡 = 10), when computations have
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been carried out for thousands of timesteps and thousands of crazy sliver elements
have appeared (the total number is indicated in the Table), hence showing that the
numerical method is genuinely high order accurate also when sliver elements are
present.

4.2 Sedov explosion problem

This test problem is a classic benchmark in the literature [43] and describes the evo-
lution of a strong blast wave that is generated at the origin O = (𝑥, 𝑦) = (0, 0)
of the computational domain Ω(0) = [0; 1.2] × [0; 1.2]. The difficulty of this
benchmark is mainly due to the near zero pressure outer state that may induce
positivity-preservation problems. An exact solution based on self-similarity argu-
ments is available from [60].
The initial condition consists in a uniform density 𝜌0 = 1 and a near zero pressure

𝑝0 imposed everywhere except in the cell 𝑉𝑜𝑟 containing the origin O where it is
given by

𝑝𝑜𝑟 = (𝛾 − 1)𝜌0
𝐸𝑡𝑜𝑡

|𝑉𝑜𝑟 |
, with 𝐸𝑡𝑜𝑡 = 0.979264, (8)

with 𝐸𝑡𝑜𝑡 being the total energy concentrated in the cell containing the coordinate
x = 0. We set 𝑝0 = 10−9 and solve this numerical test with a fourth order 𝑃3 DG
scheme; we employ a coarse mesh 𝑀1 made of 1345 polygonal cells and a finer
mesh 𝑀2 of 6017 polygonal elements.
The density profiles are shown inFigure 8 for various output times 𝑡 = 0.1, 0.5, 1.0.

The obtained results are in perfect agreement with the reference solution and the
symmetry is very good despite using an unstructured grid, as opposed to a regular

Fig. 7 Stationary vortex test case.We showhere an example of amesh employed for the convergence
test case of Section 4.1.1 and of its evolution due to different Lagrangian schemes. In particular,
on the left we show the initial mesh, in the middle the mesh obtained with a standard direct ALE
scheme with fixed topology at time 𝑡 = 4, i.e. just before the simulation terminates due to mesh
tangling, and on the right the mesh obtained at time 𝑡 = 10 with our ALE algorithm dealing with
topology changes, which has gradually adapted to the fluid flow, optimizing the element shapes and
allowing an increased precision for the DG scheme.
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Fig. 8 Sedov explosion problem. Comparison between the exact solution (black), the solution
obtained with a fourth order Eulerian 𝑃3 DG method on the fine mesh 𝑀2 (red) and with our 𝑃3
ALE-DG scheme both on 𝑀2 (blue) and 𝑀1 (green). Our ALE scheme is more accurate than the
Eulerian one even using coarser meshes.

Fig. 9 Sedov explosion problem. In this figure we show the density evolution and the corresponding
mesh movement at different output times computed with our 𝑃3 ALE-DG scheme on the mesh𝑀1
(top) and 𝑀2 (bottom).
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Fig. 10 Sedov explosion problem. 3𝐷 density profile computed with our 𝑃3 ALE-DG scheme
on 𝑀2. In particular, on the right, we highlight in red the so-called troubled cells marked by our
detector on which the a posteriori FV limiter has been employed. We make use of this image to
further emphasize the robustness of our ALE schemes with topology changes also in the presence
of strong shock waves and near-zero pressure outer states.

one built in polar coordinates. Also, one can note that the regularization procedure
applied to the mesh elements does not compromise the natural expansion of the
central cells expected in such an explosion problem. Moreover, one can refer to Fig-
ure 10 for a comparison between our numerical solution (scatter plot) and the exact
solution: the position of the shock wave and the density peak are perfectly captured.
In particular, we have chosen this test case in order to emphasize that Lagrangian

schemes show a superior resolutionw.r.t. Eulerian ones evenwhen both are compared
at very high-order of accuracy, and furthermore that our direct ALE scheme results
more accurate then the Eulerian method, even on a mesh (𝑀1) that is coarser by a
factor of two with respect to the finer mesh 𝑀2.
Finally, we refer to Figure 10 for the behavior of our a posteriori sub-cell finite

volume limiter, which activates only where the shock wave is located and is able to
avoid any spurious oscillations or positivity problems, as can be noticed from the
precise 3𝐷 density profile shown in Figure 10.

4.3 Traveling Sod-type explosion problem

The explosion problem can be seen as a multidimensional extension of the classical
Sod test case. Here, we consider as computational domain a square of dimension
[−1.1; 1.1] × [−1.1; 1.1] covered with a mesh made of 4105Voronoi-type elements,
and the initial condition is composed of two different states, separated by a discon-
tinuity at radius 𝑟𝑑 = 0.5{

𝜌𝐿 = 1, u𝐿 , 𝑝𝐿 = 1, ‖x‖ ≤ 𝑟𝑑

𝜌𝑅 = 0.125, u𝑅, 𝑝𝑅 = 0.1, ‖x‖ > 𝑟𝑑 .
(9)
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In addition, we aim at capturing the evolution of this explosion over a very high
speed moving background (much higher than the speed of sounds): we impose u𝐿 =

u𝑅 = 40, so that at the final simulation time 𝑡 𝑓 = 0.25 the square [−1; 1] × [−1; 1]
will have been displaced by 5 times its initial size.
We would like to underline that this test problem involves three different waves,

therefore it allows each ingredient of our Lagrangian scheme to be properly checked.
Indeed, we have (i) one cylindrical shock wave that is running towards the external
boundary: our high-order scheme does not exhibit spurious oscillations thanks to
the a posteriori sub-cell finite volume limiter; (i) a rarefaction fan traveling in the
opposite direction, which is well captured thanks to the high-order of accuracy of
the DG scheme; and (iii) an outward-moving contact wave, which is well resolved
thanks to the Lagrangian nature of our scheme, in which, since the mesh moves
together with the fluid flow, we can introduce a minimal dissipation when computing
approximate Riemann fluxes.

Fig. 11 Traveling Sod explosion problem. 3𝐷 density profile (z-axis) and limiter activation (red
cells), over a domain located in [8.9; 11.1] × [−1.1; 1.1] at the final time 𝑡 𝑓 = 0.25, obtained with
𝑃2 and 𝑃3 ADER-DG schemes run on a fixed Eulerian mesh (left) and our direct ALE framework
with topology changes (right). The difference on the numerical dissipation between the Eulerian
and the Lagrangian schemes is quite evident. We clarify that these results are obtained solving the
classical Sod explosion problem over a high speed moving background.
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In addition, the high speed moving background allows to show the translational
invariance property of the Lagrangian schemes that indeed perfectly captures the
three waves even when the explosion solution is moving at high speed, while the
Eulerian scheme is heavily affected by the increased numerical dissipation. Nu-
merical evidence of the above statements can be found in Figure 11; moreover, in
Figure 12 we show that for this mild explosion it is really the background motion that
requires the use of Lagrangian schemes, which, while still useful, would be instead
not fundamental on a fixed background.
Finally, we want to remark that, despite the very high dissipation associated with

the high base convective speed, the overall symmetry of the solution, even in the
Eulerian case, is not entirely compromised, thanks to the use of polygonal elements
(see [9] for further discussion on the benefits of adopting polygonal meshes).

5 Conclusion and outlook

The accuracy of our results clearly show that the new combination of very high-
order schemes with regenerated meshes, that allow topology changes, may open new
perspectives in the fundamental research field of Lagrangian methods.
Wewould like to remark that the chosen simple test cases can be seen as prototypes

of classical difficulties in astrophysical applications. Indeed, we have proposed here

Fig. 12 Sod explosion problem: fixed background (left) and high speed traveling background (right).
Comparison between the 𝑃3 DG schemes on fixed Eulerian meshes (red) and in the moving-mesh
ALE framework (blue). This numerical results clearly explain that the Lagrangian schemes allow
to obtain minimally dissipative results not only in a vanishing background flow, but even in a high
speed one, and therefore that Lagrangian methods discretely preserve the Galilean invariance of
the equations. On the contrary the influence of strong background flows on the solution obtained
with Eulerian schemes is immediately apparent.



18 Elena Gaburro and Simone Chiocchetti

a method able to deal with long time simulation of vortical phenomena, as those
necessary for the study of gas clouds evolving around black holes and neutron stars,
and events, like explosions or interactions with near zero pressure states, occurring in
superposition with high speed background flows, as for supersonic or relativistic jets
originating from proto-planetary nebulae, binary stars or nuclei of active galaxies.
Future developments of this work will mainly concern the improvements of its ro-

bustness and effectiveness throughmesh optimization and smoothing techniques [56,
2, 50, 18, 66] and structure preserving algorithms [41, 37, 12, 23, 22, 1, 33] so that
future applications will effectively target in particular supersonic flows in aerody-
namics [3, 64] and astrophysics [30, 55, 52], as well as fluid-structure interaction
problems [4, 40, 24].
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