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Abstract
We present a method for computing actions of the exponential-like ϕ-functions for a
Kronecker sum K of d arbitrary matrices Aμ. It is based on the approximation of the
integral representation of the ϕ-functions by Gaussian quadrature formulas combined
with a scaling and squaring technique. The resulting algorithm, which we call phiks,
evaluates the required actions by means of μ-mode products involving exponentials
of the small sized matrices Aμ, without forming the large sized matrix K itself.
phiks, which profits from the highly efficient level 3 BLAS, is designed to compute
different ϕ-functions applied on the same vector or a linear combination of actions of
ϕ-functions applied on different vectors. In addition, thanks to the underlying scaling
and squaring techniques, the desired quantities are available simultaneously at suitable
time scales. All these features allow the effective usage of phiks in the exponential
integration context. In fact, our newly designed method has been tested in popular
exponential Runge–Kutta integrators of stiff order from one to four, in comparison
with state-of-the-art algorithms for computing actions of ϕ-functions. The numerical
experiments with discretized semilinear evolutionary 2D or 3D advection–diffusion–
reaction, Allen–Cahn, and Brusselator equations show the superiority of the proposed
μ-mode approach.
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1 Introduction

We consider a system of Ordinary Differential Equations (ODEs) of the form

{
u′(t) = Ku(t) + g(t, u(t)) = f (t, u(t)), t ∈ [0, T ],
u(0) = u0.

(1a)

Here, u : [0, T ] → C
N is the unknown, being N the total number of degrees of

freedom, g : [0, T ] × C
N → C

N is a nonlinear function, and K ∈ C
N×N is a large

sized matrix which can be written as a Kronecker sum, that is

K = Ad ⊕ Ad−1 ⊕ · · · ⊕ A1 =
d∑

μ=1

A⊗μ,

A⊗μ = Id ⊗ · · · ⊗ Iμ+1 ⊗ Aμ ⊗ Iμ−1 ⊗ · · · ⊗ I1.

(1b)

Here and throughout the paper d ∈ N, μ = 1, . . . , d, Iμ is the identity matrix of size
nμ × nμ, the symbol ⊗ denotes the Kronecker product, and, unless otherwise stated,
Aμ ∈ C

nμ×nμ is an arbitrary matrix.
These systems may arise when applying the method of lines to some evolutionary

Partial Differential Equations (PDEs), from different fields of science and engineering,
defined in a spatial domain � ⊆ R

d which is the Cartesian product of d inter-
vals. Typical instances are semilinear advection–diffusion, nonlinear Schrödinger,
or complex Ginzburg–Landau equations, possibly fractional in space. In dimension
d = 2, for example, the Laplace operator � = ∂x1x1 + ∂x2x2 on a rectangular
domain � with homogeneous Dirichlet boundary conditions can be discretized as
K = A2 ⊕ A1 = I2 ⊗ A1 + A2 ⊗ I1 ∈ R

N×N , where Aμ ∈ R
nμ×nμ is the discretiza-

tion matrix of ∂xμxμ with standard second-order finite differences and N = n1n2.
Notice that several other tensor-product approximation techniques lead to Kronecker
sums.Wemention higher-order (non)uniformfinite differences and lumpedmass finite
elements (that yield sparse matrices Aμ), or spectral differentiations (that yield dense
matrices Aμ). Other type of boundary conditions can be considered, as long as it
is possible to write K as a Kronecker sum. In particular, inhomogeneous boundary
conditions of Dirichlet or Neumann type can be encapsulated into the nonlinear term
g.

When system (1) is stiff, a prominent way to numerically integrate it in time is
by using explicit exponential integrators [1]. These schemes require the action of the
exponential and/or of the so-calledϕ-functionswhich, for a generalmatrix X ∈ C

N×N ,
are defined as

ϕ�(X) =
∫ 1

0
f�(θ, X)dθ, f�(θ, X) = θ�−1

(� − 1)! exp((1 − θ)X), � ≥ 1. (2)
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The direct approximation of the matrix ϕ-functions is feasible only when the size of
X is not too large. In this case, the most commonly employed techniques are based
on Padé approximations [2], although other rational methods based on the numerical
inversion by a quadrature formula of the Laplace transform [3] or polynomial methods
based on the truncated Taylor series [4] can be considered. On the other hand, in this
manuscript we are interested in matrices of large size. In this case, it is possible to rely
on methods which directly compute the action of the matrix ϕ-functions on a vector,
or even their linear combination at once. Among them, Krylov methods [5–7] and
other polynomial methods [4, 8–12] are typically employed.

When we consider matrices K which are Kronecker sums (1b), it is possible to
express the action of exp(K ) on a vector v by using the Kronecker product of the
exponentials of the matrices Aμ. In fact, considering again the two-dimensional case
K = A2 ⊕ A1, we have

exp(K ) = exp(I2 ⊗ A1 + A2 ⊗ I1) = exp(I2 ⊗ A1) exp(A2 ⊗ I1)

= (I2 ⊗ exp(A1))(exp(A2) ⊗ I1) = exp(A2) ⊗ exp(A1),

where we used the commutativity of I2 ⊗ A1 and A2 ⊗ I1, the semigroup property of
the exponential function, and the mixed-product property of the Kronecker product.
Therefore, we obtain exp(K )v = (exp(A2) ⊗ exp(A1))v. The same result can be
accomplished by the more computationally attractive formula exp(A1)V exp(A2)

T,
without computing the Kronecker product exp(A2) ⊗ exp(A1) (see References [13,
14]). Here, V is the matrix of size n1 × n2 whose j th column is made by the elements
of v from ( j − 1)n1 + 1 to jn1, for j = 1, . . . , n2. This approach can be generalized
to the computation of the action of the matrix exponential when K is the Kronecker
sum of d arbitrary matrices Aμ through the so-called μ-mode product (see the next
section for more details). With this technique, it is possible to efficiently implement
exponential schemes which require the action of the matrix exponential only, such
as some splitting schemes, Lawson methods, and Magnus integrators. Unfortunately,
such an elegant approach does not directly apply to the computation of the action of
ϕ-functions, since they do not enjoy the aforementioned semigroup property of the
exponential function.

In this paper, we aim at computing actions of ϕ-functions for a matrix K which is
the Kronecker sum of d matrices Aμ using a μ-mode approach, without assembling
the matrix K itself. Moreover, since we are interested in the application to exponential
integrators which may require more than a single ϕ-function evaluation, as in the case
of exponential Runge–Kutta schemes of high stiff order [15, 16], we will derive an
algorithm for the computation of actions of different ϕ-functions on the same vector

{exp(τK )v, ϕ1(τK )v, ϕ2(τK )v, . . . , ϕp(τK )v} (3)

at once, as well as for linear combinations of actions of ϕ-functions

exp(τK )v0 + ϕ1(τK )v1 + ϕ2(τK )v2 + · · · + ϕp(τK )v p, (4)
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where τ is the time step size of the integrator. For an efficient computation of the quan-
tities in formula (3) we will use the scaling and modified squaring method proposed in
Reference [17], while for the linear combination in formula (4) we will derive a new
scaling and squaring procedure. As a byproduct of these techniques, our algorithm can
also output the desired quantities at different time scales, a feature of great importance
in the implementation of certain exponential integrators.

The remainingpart of the paper is structured as follows. InSect. 2webrieflydescribe
the founding basis for the new method, i.e., the μ-mode product, the Tucker operator,
and its coupling with quadrature formulas for the evaluation of ϕ-functions. Section 3,
the main one, is devoted to the description of the new algorithm, which we call phiks
(PHI-functions of Kronecker Sums), for the approximation of actions of ϕ-functions
on the same vector and for linear combinations of actions of ϕ-functions. An important
subsection describes a suitable choice of the scaling parameter and of the quadrature
formula. In particular, for the latter, we propose an effective closed Gaussian formula.
Then, in Sect. 4, we validate our implementation of phiks by running several examples
in dimensions d = 3 and d = 6 which involve different ϕ-functions and their linear
combinations. Moreover, we apply the proposed technique to the numerical solution
of physically relevant 2D and 3D stiff advection–diffusion–reaction equations, with
up to N = 2 · 1003 degrees of freedom, and five different exponential Runge–Kutta
integrators of order up to four. Finally, we draw some conclusions in Sect. 5.

2 A �-mode approach for evolutionary equations in Kronecker form

The founding basis of the technique that we propose in this manuscript is based on the
μ-mode approach for the action of the matrix exponential. Due to its importance, we
briefly recall here themain concepts, and invite a reader not familiar with the following
formalism to check References [18–20] for a thorough explanation with full details.
Let us denote by V an order-d tensor of size n1×· · ·×nd with elements vi1...id , and by
Lμ a matrix of size nμ × nμ of elements �

μ
i j . Then, the μ-mode product of the tensor

V with the matrix Lμ, denoted as V ×μ Lμ, is the tensor W of size n1 × · · · × nd
defined elementwise as

wi1...id =
nμ∑
jμ=1

vi1...iμ−1 jμiμ+1...id �
μ
iμ jμ

.

This corresponds to multiply the matrix Lμ onto the μ-fibers of the tensor V (i.e.,
vectors along direction μ which are generalizations to tensors of columns and rows of
a matrix). The concatenation of μ-mode products with the matrices L1, . . . , Ld , that
is the tensor W with elements

wi1...id =
nd∑
jd=1

· · ·
n1∑
j1=1

v j1... jd

d∏
μ=1

�
μ
iμ jμ

,
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is denoted by V×1L1×2 · · ·×d Ld and referred to asTucker operator. In terms of com-
putational cost, a single μ-mode product requires O(Nnμ) floating point operations,
being N = n1 · · · nd , and it can be implemented by a single matrix-matrix prod-
uct. Consequently, the Tucker operator has an overall computational cost ofO(nd+1)

for the case n1 = . . . = nd = n. It can be realized with d calls of level 3 BLAS
(Basic Linear Algebra Subprograms [21]), whose highly optimized implementations
are available for any kind of modern computer hardware (see, for instance, References
[22–24]).

The relation between the Kronecker product and the Tucker operator is given by
the following Lemma (the proof can be found, for instance, in Reference [19, Lemma
2.1]).

Lemma 1 Let Lμ ∈ C
nμ×nμ be matrices, with μ = 1, . . . , d, and let v ∈ C

N , with
N = n1 · · · nd . Let V ∈ C

n1×···×nd be an order-d tensor such that vec(V ) = v, where
vec denotes the operator which stacks by columns the elements of the input tensor.
Then, we have

(Ld ⊗ Ld−1 ⊗ · · · ⊗ L1)v = vec(V ×1 L1 ×2 · · · ×d Ld).

As observed in the introduction for the case d = 2, since K is a Kronecker sum of
d matrices, we can similarly write

exp(K )v = (exp(Ad) ⊗ exp(Ad−1) ⊗ · · · ⊗ exp(A1)) v

which, using the introduced tensor formalism with Lμ = exp(Aμ), can be computed
as

exp(K )v = vec (V ×1 exp(A1) ×2 · · · ×d exp(Ad)) . (5)

The superiority of such an approach to compute the action exp(K )v has been thor-
oughly analyzed and highlighted in Reference [18] in the context of the numerical
solution of some Schrödinger equations. Also, this technique has been successfully
used in Reference [19] for some (linear) advection–diffusion–absorption equations
with space dependent coefficients.

Formula (5) can be employed to compute the exact solution of system (1) in the
case g(t, u(t)) ≡ 0. In general, it is possible to integrate the system by employing an
integrator of stiff order one such as exponential Euler

un+1 = un + τϕ1(τK ) f (tn, un), (6a)

where un ≈ u(tn) and τ is the time step size, constant for simplicity of exposition. Its
implementation requires the computation of the action of the ϕ1 function on a vector.
An equivalent formulation of the scheme (see Reference [15]) is

un+1 = exp(τK )un + τϕ1(τK )g(tn, un), (6b)
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and a simple way to evaluate the latter is to compute the action of the exponential of
a slightly augmented matrix, that is

exp

([
τK τ g(tn, un)

0 . . . 0 0

])[
un
1

]
,

and take the first N rows of the resulting vector. The advantage of this approach is
that it can be easily generalized to higher order ϕ-functions [8], whose actions are
needed for high stiff order exponential integrators. Indeed, consider the exponential
Runge–Kutta scheme of stiff order two ETD2RK [25]

un2 = un + τϕ1(τK ) f (tn, un),

un+1 = un2 + τϕ2(τK )(g(tn+1, un2) − g(tn, un)),
(7a)

or, equivalently,

un2 = exp(τK )un + τϕ1(τK )g(tn, un),

un+1 = exp(τK )un + τϕ1(τK )g(tn, un) + τϕ2(τK )(g(tn+1, un2) − g(tn, un)).
(7b)

For its implementation, we can compute the actions of the two matrix functions
ϕ1(τK ) and ϕ2(τK ) [formulation (7a)]. Alternatively, we can compute two linear
combinations of actions of ϕ-functions of type exp(τK )v0 + ϕ1(τK )v1 + ϕ2(τK )v2
[formulation (7b)]. To do the latter, it is again possible to use an augmented matrix
approach. In fact, from Theorem 2.1 of Reference [8], we have that the first N rows
of the vector

exp

⎛
⎜⎜⎜⎜⎜⎜⎝
c

⎡
⎢⎢⎢⎢⎢⎢⎣

τK v p v p−1 . . . v2 v1
0 . . . 0 0 1 0 . . . 0
...

...
... 0

. . .
...

...
...

...
...

. . . 0
0 . . . 0 0 0 . . . 0 1
0 . . . 0 0 0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎣

v0
0
...
...

0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

, c ∈ C,

coincide with the vector

exp(cτK )v0 + cϕ1(cτK )v1 + c2ϕ2(cτK )v2 + · · · + cpϕp(cτK )v p.

With this technique, the computation of a single linear combination of actions of
ϕ-functions reduces to the action of the exponential of an augmented matrix.

However, in this context it is not possible to directly apply the μ-mode approach
for computing the action of the matrix exponential, since the augmented matrix is not
anymore a Kronecker sum. The idea is then to take the integral definition of the ϕ-
functions (2) and approximate it by a quadrature rule. By doing so, for the exponential
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Euler scheme introduced in formula (6b) we obtain

un+1 ≈ exp(τK )un + τ

q∑
i=1

wi exp((1 − θi )τK )g(tn, un),

where wi and θi are the quadrature weights and nodes, respectively (see Sect. 3.3
for an effective choice). Since the matrix arguments of the exponential function are
Kronecker sums, it is now possible to employ a μ-mode approach for the efficient
evaluation of its action. In the next section, we give more details and extend this idea
to higher order ϕ-functions and integrators.

3 Approximation of '-functions of a Kronecker sum

In this section, by using the tools presented in Sect. 2, we describe in detail how
to approximate the action of single ϕ-functions on the same vector and the linear
combination of actions of ϕ-functions, which are the two tasks addressed by the
algorithm phiks. For instance, a ν-stage explicit exponential Runge–Kutta integrator
[1] with time step size τ is defined by

uni = exp(ciτK )un + ciτϕ1(ciτK )g(tn, un) + τ

i−1∑
j=2

ai j (τK )dnj

= un + ciτϕ1(ciτK ) f (tn, un) + τ

i−1∑
j=2

ai j (τK )dnj , 2 ≤ i ≤ ν,

un+1 = exp(τK )un + τϕ1(τK )g(tn, un) + τ

ν∑
i=2

bi (τK )dni

= un + τϕ1(τK ) f (tn, un) + τ

ν∑
i=2

bi (τK )dni ,

(8a)
where

dni = g(tn + ciτ, uni ) − g(tn, un). (8b)

Notice that for ν = 1 this integrator reduces to the exponential Euler method (6), while
for ν = 2, c2 = 1, and b2 = ϕ2 we retrieve the ETD2RK method (7). The generic
scheme (8) can be written in a compact way using the reduced tableau [26]

c2
c3 a32
...

...
. . .

cν aν2 . . . aνν−1

b2 . . . bν−1 bν

123
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Here and throughout the paper, by “reduced tableau” we mean that for each stage and
for the final approximation un+1 we write only the coefficients corresponding to the
perturbation of the underlying exponential Euler scheme. The matrix functions ai j
and bi are linear combinations of ϕ-functions. Thus, each stage uni and the approx-
imation un+1 turn out to be general linear combinations of actions of ϕ-functions,
not necessarily in form (4). In fact, it could be more convenient to compute actions of
different ϕ-functions on the same vector (3), and use them to assemble the stages and
the final approximation (see the discussion in Sect. 4.4.1). We start by describing this
procedure.

3.1 Actions of'-functions on the same vector

Let us consider for the moment the simple second-order exponential Runge–
Kutta method (7a), which requires the computation of ϕ1(τK )τ f (tn, un) and
ϕ2(τK )τ (g(tn+1, un2)− g(tn, un)). We start with the computation of ϕ1(K )v, where,
for clarity of exposition,weomit the time step size τ anduse a generic vectorv.Asmen-
tioned in Sect. 2, the idea is to fully exploit the possibility to apply the Tucker operator
to compute actions of suitable matrix exponentials. Hence, we directly approximate
the integral representation

ϕ1(K )v =
∫ 1

0
exp((1 − θ)K )vdθ (9)

by a quadrature formula. To avoid an impractical number of quadrature points, we
introduce a scaling strategy. Therefore, the quadrature rule is applied to the computa-
tion of ϕ1(K/2s)v, that is

ϕ1(K/2s)v =
∫ 1

0
exp((1 − θ)K/2s)vdθ ≈

q∑
i=1

wi exp((1 − θi )K/2s)v,

where θi and wi are q quadrature nodes and weights, respectively. Notice that we
choose to scale the matrix K by a power of two to employ the favorable scaling and
squaring algorithm [17] for ϕ-functions. The choices of the quadrature formula, of
the number q of quadrature nodes, and of the nonnegative integer scaling s will be
discussed in detail in Sect. 3.3. Then, the evaluation of the integrand above at each
quadrature point θi ∈ [0, 1] can be performed by the Tucker operator

V ×1 exp((1 − θi )A1/2
s) ×2 · · · ×d exp((1 − θi )Ad/2

s), (10)

see formula (5). Finally, to recover ϕ1(K )v from its scaled version, we use the follow-
ing squaring formula (see again Reference [17])⎧⎨

⎩ ϕ1(K/2 j−1)v = 1

2

(
exp(K/2 j )ϕ1(K/2 j )v + ϕ1(K/2 j )v

)
,

exp(Aμ/2 j−1) = exp(Aμ/2 j ) exp(Aμ/2 j ),
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which has to be repeated for j = s, s−1, . . . , 1. To perform the squaring, no fullmatrix
exp(K/2 j ) has to be evaluated in practice. In fact, to compute its action onϕ1(K/2 j )v,
which is available as a tensor, it is enough to compute the Tucker operator with the
small sized matrices exp(Aμ/2 j ). Notice that the idea of approximating the integral
definition of the ϕ-functions by a quadrature formula and computing the action of the
matrix exponential by a Tucker operator has also recently been presented in Reference
[27]. Nevertheless, we decided to report the above description for the sake of clarity
and to introduce later additional features critical for exponential integrators, such as
the effective usage of scaled quantities [see formula (13)] and the extension of the
technique to linear combinations of actions of ϕ-functions (see the next section).

Let us proceed by considering the approximation of the action of ϕ2(K ), that is

ϕ2(K )v =
∫ 1

0
θ exp((1 − θ)K )vdθ. (11)

Comparing integrals (9) and (11) it appears clear that, if we define a common scal-
ing strategy, we can compute the two approximations at once by selecting the same
quadrature nodes and weights, but different integrand functions

exp((1 − θ)K/2s)v and θ exp((1 − θ)K/2s)v.

Therefore, the two quadrature formulas can be implemented with common evaluations
of thematrices exp((1−θi )Aμ/2s) for eachquadrature point θi and eachμ. Their action
on v is computed with a single Tucker operator (10), followed by the multiplication
by the scalar θi needed for the approximation of ϕ2(K/2s)v. After assembling the
quadrature, the steps of the squaring are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ2(K/2 j−1)v = 1

4

(
exp(K/2 j )ϕ2(K/2 j )v + ϕ1(K/2 j )v + ϕ2(K/2 j )v

)
,

ϕ1(K/2 j−1)v = 1

2

(
exp(K/2 j )ϕ1(K/2 j )v + ϕ1(K/2 j )v

)
,

exp(Aμ/2 j−1) = exp(Aμ/2 j ) exp(Aμ/2 j ),

to be repeated for j = s, s − 1, . . . , 1.
The generalization to the computation of the action of the first p ϕ-functions on

the same vector v
{ϕ1(K )v, ϕ2(K )v, . . . , ϕp(K )v}

is straightforward. First, we compute their approximations at the same scaled matrix
by the common quadrature rule, i.e.,

ϕ�(K/2s)v ≈
q∑

i=1

wi
θ�−1
i

(� − 1)! exp((1 − θi )K/2s)v, � = 1, . . . , p. (12a)

123
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Then, we perform the squaring procedure

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ�(K/2 j−1)v

= 1

2�

(
exp(K/2 j )ϕ�(K/2 j )v +

�∑
k=1

ϕk(K/2 j )v

(� − k)!
)
, � = p, p − 1, . . . , 1,

exp(Aμ/2 j−1) = exp(Aμ/2 j ) exp(Aμ/2 j ),

(12b)
for j = s, s − 1, . . . , 1. The action of exp(K ) on v can be computed using an addi-
tional single Tucker operator of type (5). We stress that the relevant computations in
formulas (12) are performed by means of the μ-mode approach, without forming the
large sized matrix K . Notice also that, from formulas (12), we obtain at no additional
cost also ϕ�(K/2 j−1)v, j = 2, . . . , ŝ, where ŝ ≤ s+1 is the number of desired scales.
This feature could be useful for the efficient implementation of exponential integrators
that require, for instance, the quantities

exp(c j K )v, ϕ1(c j K )v, ϕ2(c j K )v,. . . , ϕp(c j K )v, j = 1, . . . , ŝ, (13)

with c j = c/2 j−1 and c ∈ C, as shown in the numerical examples of Sects. 4.3 and
4.4.1.

Remark 1 Notice that the quadrature rule in formula (12a) is equivalent to

q∑
i=1

wi
θ�−1
i

(� − 1)! exp((1 − θi )(K − σ I )/2s)e(1−θi )σ/2sv, � = 1, . . . , p,

where σ ∈ C is a shift parameter. Given the Kronecker sum structure of K , it is
possible to choose σ as the sum of d shifts σμ, selected in such a way that Aμ − σμ I
has a smaller norm than Aμ (and thus its exponential can be possibly computed in a
more efficient way [8, 28]). A common and effective choice for σμ is the trace of the
matrix Aμ divided by nμ, which corresponds to its average eigenvalue and minimizes
the Frobenius norm of Aμ − σμ I .

We now summarize the number of Tucker operators of the whole procedure inside
phiks needed to obtain the quantities in formula (13). We recall that, if we assume
n1 = . . . = nd = n, the computational cost of a single Tucker operator is O(nd+1).
For each quadrature point we need to compute one Tucker operator. Then, for each
step of the squaring phase, we have p Tucker operators. Finally, we have one Tucker
operator for the computation of exp(K/2 j−1)v for each j = 1, . . . , ŝ. Therefore, the
total number of Tucker operators is

T#(s, ŝ, q, p) = q + sp + ŝ. (14)

We remark that for d ≥ 3 the number T# gives an adequate indication of the compu-
tational cost of the whole procedure, being the Tucker operator the most expensive
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operation. On the other hand, for d < 3 other tasks such as the computation of the
matrix exponential may have a comparable cost (or even higher, in the trivial case
d = 1).

3.2 Linear combination of actions of'-functions

Let us consider for the moment the Runge–Kutta scheme (7b), which requires the two
linear combinations of actions of ϕ-functions exp(τK )un + ϕ1(τK )τ g(tn, un) and
exp(τK )un + ϕ1(τK )τ g(tn, un) + ϕ2(τK )τ (g(tn+1, un2) − g(tn, un)).

We then introduce the compact notation

� j (K )vi1,i2,...,i p = ϕ1(K/2 j )vi1

2 j
+ ϕ2(K/2 j )vi2

22 j
+ · · · + ϕp(K/2 j )vi p

2pj
, p > 1,

with j nonnegative integer and, for simplicity of exposition, we describe in detail the
approximation of �0(K )v1,2. The idea is to apply a quadrature formula to the integral

�0(K )v1,2 =
∫ 1

0
exp((1 − θ)K )(v1 + θv2)dθ

in combination with a scaling strategy. To do so, we first approximate by a common
quadrature rule the scaled linear combinations

�s(K )v2 =
∫ 1

0
exp((1 − θ)K/2s)

v2

2s
dθ ≈

q∑
i=1

wi exp((1 − θi )K/2s)
v2

2s
,

�s(K )v1,2 =
∫ 1

0
exp((1 − θ)K/2s)

(v1
2s

+ θ
v2

22s

)
dθ

≈
q∑

i=1

wi exp((1 − θi )K/2s)
(v1
2s

+ θi
v2

22s

)
.

Notice that the approximations in the above formulas require the common evaluation
of the matrices exp((1 − θi )Aμ/2s) for every quadrature node θi and every μ. In
addition, each of the two approximations needs a single Tucker operator for every θi .
Then, it is possible to perform the squaring procedure of �s(K )v1,2 by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� j−1(K )v1,2 = exp(K/2 j )� j (K )v1,2 + � j (K )v2

2 j
+ � j (K )v1,2,

� j−1(K )v2 = exp(K/2 j )� j (K )v2 + � j (K )v2,

exp(Aμ/2 j−1) = exp(Aμ/2 j ) exp(Aμ/2 j ),
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with j = s, s−1, . . . , 1. The first two rows can be easily verified by computing blocks
(1, 3) and (1, 2) of the squares of the matrices in equality

exp

⎛
⎝2− j

⎡
⎣K v2 v1
0 0 1
0 0 0

⎤
⎦
⎞
⎠ =

⎡
⎣exp(K/2 j ) � j (K )v2 � j (K )v1,2

0 1 2− j

0 0 1

⎤
⎦ .

The generalization to a linear combination of actions of the first p ϕ-functions on
the vectors v�

�0(K )v1,2,...,p = ϕ1(K )v1 + ϕ2(K )v2 + · · · + ϕp(K )v p

requires first the application of the common quadrature rule to the scaled linear com-
binations

�s(K )v p−�+1,p−�+2,...,p ≈
q∑

i=1

wi exp((1 − θi )K/2s)

(
�∑

k=1

θ�−k
i

(� − k)!
v p+1−k

2(�−k+1)s

)
,

(15a)
with � = 1, . . . , p. Then, the squaring procedure

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

� j−1(K )v p−�+1,p−�+2,...,p

= exp(K/2 j )� j (K )v p−�+1,p−�+2,...,p

+
�∑

k=1

� j (K )v p−k+1,p−k+2,...,p

(� − k)!2(�−k) j
, � = p, p − 1, . . . , 1,

exp(Aμ/2 j−1) = exp(Aμ/2 j ) exp(Aμ/2 j )

(15b)

has to be repeated for j = s, s − 1, . . . , 1. Clearly, the action of exp(K ) on the
vector v0 can be added to the linear combination �0(K )v1,2,...,p at the cost of a single
additional Tucker operator of type (5).We stress again that all the computations in (15)
are performed in a μ-mode fashion. Notice also that, from the squaring formula, we
obtain at no additional cost the quantities � j−1(K )v1,2,...,p, j = 2, . . . , ŝ, which can
be employed in the efficient implementation of exponential integrators that require,
for instance, combinations of the form

exp(c j K )v0 + c jϕ1(c j K )v1 + c2jϕ2(c j K )v2 + · · ·+ cpj ϕp(c j K )v p, j = 1, . . . , ŝ,
(16)

with c j = c/2 j−1 and c ∈ C. An explicit example will be presented in the numerical
experiment of Sect. 4.4.2.

We now summarize the number of Tucker operators needed by the whole procedure
inside phiks to obtain the quantities in formula (16). For each quadrature point we
need to compute p Tucker operators. Then, for each step of the squaring phase, we
have p Tucker operators. Finally, we have one Tucker operator for the computation
of exp(K/2 j−1)v0 for each j = 1, . . . , ŝ. Therefore, the total number of Tucker
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operators is
T#(s, ŝ, q, p) = qp + sp + ŝ. (17)

3.3 Choice of s, q, and quadrature formula

The choice of the scaling value s and the number of quadrature points q is based on
a suitable expansion of the error of the quadrature formula. After this selection, the
algorithm is direct and no convergence test or exit criterion is needed. We start writing

ϕ�(K ) =
∫ 1

0
f�(θ, K )dθ =

q∑
i=1

wi f�(θi , K ) + Rq( f�(·, K )), (18)

where Rq( f�(·, K )) is the remainder

Rq( f�(·, K )) = 1

2π i

∮


kq(z) f�(z, K )dz, (19)

see Sect. 4.6 of Reference [29]. Here,  ⊂ C is an arbitrary simple closed curve
surrounding the interval [0, 1] and kq is the kernel defined by

kq(z) =
∫ 1

0

πq(t)

πq(z)(z − t)
dt,

with πq(t) the monic polynomial of degree q with the quadrature points as roots. Now,
we describe a practical procedure to choose the scaling value s and the number of
quadrature points q which balances accuracy and efficiency of the overall algorithms.
In particular, we determine the parameters so that the remainder is below a certain
tolerance, while the number of Tucker operators T# is kept reasonably low to ensure
that the computational cost is not excessive.

Let us consider first the case of actions of ϕ-functions on the same vector, as in
formula (12a). Then, given a tolerance δ and starting from the scaling s0 = 0, we look
for the smallest number q0 ∈ [qmin, qmax] of quadrature points such that

‖Rq0( f�(·, K ))‖‖v‖ ≤ δ, � = 1, . . . , p.

We then repeat the procedure for increasing values of the scaling s j ∈ {1, 2, . . .} and
look for the corresponding smallest value q j such that

‖Rq j ( f�(·, K/2s j ))‖‖v‖ ≤ δ · 2�s j , � = 1, . . . , p.

Here, the tolerance is amplified by the factor 2�s j because we take into account that
squaring formula (12b) requires s j divisions by 2�. We continue until the number of
Tucker operators T#(s j̄+1, ŝ, q j̄+1, p) in formula (14) is larger than T#(s j̄ , ŝ, q j̄ , p).
The obtained values s = s j̄ and q = q j̄ are then employed in the approximation of
actions of ϕ-functions applied on the vector v through formulas (12).
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On the other hand, when considering a linear combination of actions of ϕ-functions,
the quantities to be computed in formula (15a), starting from the scaling s0 = 0,
correspond to the integrand functions

�∑
k=1

f�−k+1(θ, K )v p+1−k, � = 1, . . . , p.

Therefore, for a given tolerance δ, we look for the smallest number q0 ∈ [qmin, qmax]
of quadrature points needed for all the values such that

�∑
k=1

‖Rq0( f�−k+1(·, K ))‖‖v p+1−k‖ ≤ δ, � = 1, . . . , p.

Then, similarly to the previous case, we repeat the calculation for increasing values
of the scaling s j ∈ {1, 2, . . .} to obtain the corresponding smallest value q j such that

�∑
k=1

‖Rq j ( f�−k+1(·, K/2s j ))‖ ‖v p+1−k‖
2(�−k+1)s j

≤ δ, � = 1, . . . , p.

We continue this procedure until the number of Tucker operators T#(s j̄+1, ŝ, q j̄+1, p)
in formula (17) is larger than T#(s j̄ , ŝ, q j̄ , p). The obtained values s = s j̄ and q = q j̄
are then employed in the approximation of the linear combination of ϕ-functions
applied to the vectors v1, …, v p through formulas (15).

The previous estimates clearly require computable bounds for the remainders with
different numbers of quadrature points, integrand functions, and scaling parameters.
To avoid cumbersome notation, we explain the procedure for Rq( f�(·, K )) in for-
mula (19). We choose  = r to be the ellipse with foci in {0, 1} and logarithmic
capacity (half sum of its semi-axes) r > 1/4, that is

r =
{
z ∈ C: z = z(ζ ) = reiζ + 1

2
+ e−iζ

16r
, with ζ ∈ [0, 2π)

}
.

Then, we have

‖Rq( f�(·, K ))‖ =
∥∥∥∥ 1

2π i

∮
r

kq(z) f�(z, K )dz

∥∥∥∥
= 1

2π

∥∥∥∥
∫ 2π

0
kq(z(ζ )) f�(z(ζ ), K )

(
reiζ − e−iζ

16r

)
dζ

∥∥∥∥.
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Finally, by using the fact that the numerical range of K (denoted by W(K )), is a
(1 + √

2)-spectral set [30], we estimate in the 2-norm

‖Rq( f�(·, K ))‖2 ≤ 1 + √
2

2π
sup
w∈�

∣∣∣∣
∫ 2π

0
kq(z(ζ )) f�(z(ζ ), w)

(
reiζ − e−iζ

16r

)
dζ

∣∣∣∣,
(20)

being � ⊂ C a smooth, bounded, convex domain which embraces W(K ). In our
situation, we can easily find such a domain without assembling the matrix K . Indeed,
it is possible to show that

W(K ) = W(A⊗1)+W(A⊗2)+· · ·+W(A⊗d) = W(A1)+W(A2)+· · ·+W(Ad),

and W(Aμ) can be estimated [9] with a rectangle �μ obtained by computing the
norms of the Hermitian and the skew-Hermitian parts of the small sized matrices Aμ.
Thus, the rectangle � = �1 +· · ·+�d embracesW(K ) and, thanks to the maximum
modulus principle, the supremum in estimate (20) is attained at the boundary of �,
whichwe suitably discretize.Moreover, we approximate the integral by the trapezoidal
rule.

Concerning the choice of the main quadrature formula (18), we use the Gauss–
Lobatto–Legendre one with anumber of quadrature points in the interval [qmin, qmax] =
[3, 12]. These bounds appear to be adequate for the addressed numerical experiments.
Besides being very accurate, it employs the endpoints of the integration interval [0, 1].
This allows on one side to avoid one Tucker operator of type (10) (since θq = 1), and
on the other to avail of the quantities exp(Aμ/2s) (corresponding to θ1 = 0), which are
needed for the squaring procedures. This shrewdness, together with the fact that we
can avoid computing the Tucker operators for the matrix exponential in formula (16)
if v0 is zero, is taken into account in the actual implementation of the algorithm phiks.
Finally, the evaluation of the kernel kq in estimate (20) is obtained by the recurrence
relation of the underlying orthogonal polynomials (see Reference [31]).

4 Numerical experiments

In this section, we validate our MATLAB1 implementation of phiks and present the
effectiveness of the proposed algorithm for the numerical solution of stiff systems
of ODEs with exponential Runge–Kutta integrators from stiff order one to four. The
implemented algorithm, which works in any space dimension d, employs the function
tucker (contained in the package KronPACK2) to compute the underlying Tucker
operators by means of μ-mode products. In addition, it uses the internal MATLAB
function expm for the approximation of the needed matrix exponentials. Such a func-
tion is based on the double precision scaling and squaring Padé algorithm [32].

Concerning the two-dimensional example described in Sect. 4.3, we compare the
efficiency of our approach with a technique recently introduced for the computa-

1 The code is available at https://github.com/caliarim/phiks and is fully compatible with GNU Octave.
2 https://github.com/caliarim/KronPACK.
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tion of ϕ-functions of matrices that have Kronecker sum structure [33]. The method,
which was developed for the two-dimensional case only, is direct, does not require an
input tolerance, and retrieves the action of a single ϕ-function of order � by solving �

Sylvester equations. This approach has some restrictions on the input matrices (A1 and
−A2 must have disjoint spectra to have a unique solution of the Sylvester equation)
and it may suffer of ill-conditioning for ϕ-functions of high order. The accompanying
software3 of Reference [33] contains the scripts used by the authors to perform their
numerical examples. For our purposes, we extracted the parts devoted to the com-
putation of the ϕ-functions using the MATLAB function sylvester, and collected
them in a function (that we named sylvphi) to be easily employed in our numerical
experiments. In addition, in this two-dimensional example and in all the remaining
three-dimensional ones, we compare our approach with recent and popular algorithms
for computing linear combinations of actions of ϕ-functions for large and sparse gen-
eral matrices, whose code in publicly available. For convenience of the reader, we
briefly describe them in the following.

• phipm_simul_iom4 is aKrylov subspace solverwith incomplete orthogonalization
[6] which computes linear combinations of actions of ϕ-functions at different time
scales, by expressing everything in terms of the highest order ϕ-function and using
a recurrence relation.

• kiops5 is another adaptive Krylov subspace solver with incomplete orthogonal-
ization [5]. It computes linear combinations of actions of ϕ-functions at different
time scales by using the augmented matrix technique.

• bamphi6 is a hybrid Krylov-polynomial method [10] for computing linear combi-
nations of actions ofϕ-functions at different time scales, equippedwith a backward
error analysis of the underlying polynomial approximation. In contrast to the pre-
vious methods, it does not require to store a Krylov subspace.

Weused all thesemethodswith an incomplete orthogonalization procedure of length
two. Moreover, since their MATLAB implementations output some information that
can be effectively used for successive calls, such as an estimate of the appropriate
Krylov subspace size, in our numerical experience we obtained overall the best results
by adopting the following strategy: for each call of the routine at a certain time step we
input the information obtained by the same call at the previous time step. In addition,
these three methods, together with phiks, require an input tolerance, but their error
estimates are substantially different. For this reason, we decided to set the tolerance of
each method to a value proportional to both the local error of the used time marching
scheme and the 2-norm of the current approximation un . The proportionality constant
has been selected for each method and each integrator as large as possible among
the powers of two, in such a way that the final error measured with respect to a
reference solution is not affected by the approximation error of the matrix functions.
We believe that running the experiments with tolerances obtained in this way yields a

3 https://github.com/jmunoz022/Kronecker_EI.
4 https://github.com/drreynolds/Phipm_simul_iom.
5 https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/.
6 https://github.com/francozivcovich/bamphi.
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Fig. 1 Relative difference between kiops and phiks, measured in the infinity norm, for the actions
ϕ�(K/2 j )v, � = 1, . . . , p, and for the linear combinations � j (K )v1,2,...,p in the code validation. The
plots refer to j = 0 and d = 3 (top left), j = 1 and d = 3 (top right), j = 0 and d = 6 (bottom left), j = 1
and d = 6 (bottom right)

fair comparison among all themethods, ensuring theminimal effort needed to reach the
accuracy of the considered time marching schemes. The study of a more sophisticated
technique for an effective choice of the tolerances is far beyond the scope of this
manuscript.

All the numerical experimentswere performed on an Intel® Core™ i7-10750HCPU
with six physical cores and16GBofRAM,usingMathWorksMATLAB® R2022a. The
errors were measured in the infinity norm relatively to either the analytical solution,
when available, or to a reference solution computed by the fourth-order integrator (28),
implemented with the phiks routine and a sufficiently large number of time steps.

4.1 Code validation

We extensively tested the phiks routine and we present here the results regarding the
approximation of actions of ϕ-functions on the same vector and linear combinations of
actions ofϕ-functions up to order p = 5. The testmatrices arise from the discretization
by standard second order finite differences of the complex operator (1+ i)/100 · � in
the spatial domain [0, 1]d , for d = 3 and d = 6,with homogeneousDirichlet boundary
conditions. The application vectors v1 = . . . = v p = v are the discretization of

4096(1 + i)
d∏

μ=1

xμ(1 − xμ).
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Table 1 Values of the scaling
parameter s, number of
quadrature points q, and number
of Tucker operators T# to
compute actions of ϕ-functions
on the same vector (top) and
linear combinations of actions of
ϕ-functions (bottom), employed
by phiks in the code validation

d = 3 d = 6

ϕ-functions on the same vector

n 64 81 100 121 8 9 10 11

s 8 8 9 9 3 3 3 4

q 10 12 11 12 11 11 12 10

T# 52 54 58 59 28 28 29 32

Linear combination of ϕ-functions

n 64 81 100 121 8 9 10 11

s 10 11 11 12 5 6 6 6

q 7 7 8 7 8 7 7 7

T# 87 92 97 97 67 67 67 67

The number n of discretization points for each spatial direction ranges from 64 to 121
for d = 3, and from 8 to 11 for d = 6. As a term of comparison we consider the
results obtained with kiops. Both routines were called with input tolerance set to the
double precision unit roundoff value 2−53. We report in Fig. 1 the relative difference
in the infinity norm between the approaches and, for phiks, we collect in Table 1
the values of the scaling parameter s, the number of quadrature points q, and the
number of Tucker operators T# [see formulas (14) and (17)]. Overall, we observe an
homogeneous behavior of the relative difference between kiops and phiks for all the
values of d, n, and �, and a number of Tucker operators required by the routine phiks
which increases very slowly with n.

4.2 Evolutionary advection–diffusion–reaction equation

In this section we consider the following evolutionary Advection–Diffusion–Reaction
(ADR) equation

⎧⎪⎨
⎪⎩

∂t u(t, x1, x2, x3) = ε�u(t, x1, x2, x3) + α(∂x1 + ∂x2 + ∂x3)u(t, x1, x2, x3)

+ g(t, x1, x2, x3, u(t, x1, x2, x3)),

u0(x1, x2, x3) = 64x1(1 − x1)x2(1 − x2)x3(1 − x3),
(21a)

in the spatial domain [0, 1]3, where the nonlinear function g is defined by

g(t, x1, x2, x3, u(t, x1, x2, x3)) = 1

1 + u(t, x1, x2, x3)2
+ �(t, x1, x2, x3). (21b)

Here, �(t, x1, x2, x3) is chosen so that the analytical solution is u(t, x1, x2, x3) =
et u0(x1, x2, x3). Finally, the equation is coupled with homogeneous Dirichlet bound-
ary conditions. The diffusion and advection parameters are set to ε = 0.5 and α = 10,
respectively. After the semidiscretization in space by second-order centered finite
differences we end up with an ODEs system of type (1), with K a matrix with hep-
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Fig. 2 Rate of convergence of the exponential Euler scheme (6b) for the semidiscretization of ADR equa-
tion (21) with n1 = n2 = n3 = n = 20 discretization points (left) and wall-clock time in seconds for
increasing number n of discretization points and 250 time steps up to final time T = 0.1 (right)

Fig. 3 Rate of convergence of the ETD2RK scheme (7b) for the semidiscretization of ADR equation (21)
with n1 = n2 = n3 = n = 20 discretization points (left) and wall-clock time in seconds for increasing
number n of discretization points and 100 time steps up to final time T = 0.1 (right)

tadiagonal structure. This is a three-dimensional variation of a standard stiff example
[15] for exponential integrators.

4.2.1 Exponential Euler

We start by implementing the exponential Euler scheme (6b) and test its correct order
of convergence for a discretization in space with n1 = n2 = n3 = n = 20 internal
points and a final simulation time T = 0.1 (Fig. 2, left). Then, we test the efficiency
of the underlying methods for computing linear combination (6b), with a number of
discretization points in each direction ranging from n = 64 to n = 121. The results
are presented in Fig. 2, right. We observe that phiks turns out to be at least two times
faster than the other considered methods.
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Table 2 Wall-clock times in seconds and average number of Tucker operators T# per time step for the
solution of the semidiscretized PDE (21) by ETD2RK implemented by two calls of phiks either for the
linear combinations [see formula (7b)] or separately for the functions ϕ1 and ϕ2 [see formula (7a)]

Linear combination of ϕ-functions ϕ-functions on the same vector

n 64 81 100 121 64 81 100 121

Wall-clock 3.97 9.91 21.5 49.5 2.96 6.33 17.8 34.9

T# 20.0 23.0 23.0 26.0 12.0 12.0 15.0 15.0

4.2.2 Exponential Runge–Kutta scheme of order two

We then move to the implementation of the ETD2RK scheme. This integrator is
implemented following the linear combination approach [see formula (7b)] and thus
requires two calls of the algorithms (see the beginning of Sect. 3.2) for each time
step. Again, since we consider four different routines for the approximation of the
actions of matrix functions, we test the correct order of convergence of the schemes.
In addition, we measure the performance of the routines as the discretization in space
becomes finer and finer. The results, collected in Fig. 3, are similar to the exponential
Euler case. We notice that phiks turns out to be almost four times faster than the best
of the other methods, phipm_simul_iom, in the largest size scenario (total number of
degrees of freedom N = 1213).

For comparison, we also implemented the integrator ETD2RK by two calls of the
routine phiks to compute separately the actions of the functions ϕ1 and ϕ2 (see the
beginning of Sect. 3.1). The results are reported in Table 2 and show that this approach
leads to a smaller number of Tucker operators which translates into less wall-clock
time. Predicting which approach gives the smallest computational cost for a generic
integrator is difficult. As a rule of thumb, we suggest to use the version of the algorithm
which requires less calls and, when their number is the same, to prefer the computation
of actions ofϕ-functions on the same vector, since the total number of Tucker operators
T# is smaller [compare formulas (14) and (17)].

4.3 Allen–Cahn equation

In this section we examine an example similar to the one reported in Reference [33],
which describes the Sylvester approach for the computation of the ϕ-functions. It is the
two-dimensional Allen–Cahn phase-field model equation [34] for the concentration u

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t u(t, x1, x2) = �u(t, x1, x2) + 1

ε2
u(t, x1, x2)(1 − u2(t, x1, x2))

=
(

� + 1

ε2

)
u(t, x1, x2) + g(u(t, x1, x2)),

u(0, x1, x2) = u0(x1, x2),

(22a)
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in the spatial domain [0, 1]2, coupled with homogeneous Neumann boundary condi-
tions. The initial condition is given by

u0(x1, x2) = tanh

⎛
⎜⎜⎝

1
4 + 1

10 cos
(
βatan2

(
x2 − 1

2 , x1 − 1
2

))
−
√(

x1 − 1
2

)2 +
(
x2 − 1

2

)2
√
2α

⎞
⎟⎟⎠ . (22b)

We set ε = 0.05, β = 7, α = 0.75, and we discretize in space with second-order
centered finite differences, thus obtaining a system in form (1) with K a matrix with
pentadiagonal structure. We simulate until final time T = 0.025. Notice that the linear
operator�+ 1

ε2
guarantees a unique solution for the corresponding Sylvester equation,

even with homogeneous Neumann boundary conditions. As time marching scheme,
we employ the third-order exponential Runge–Kutta integrator with reduced tableau

c2

c3 γ c2ϕ2,2 + c23
c2

ϕ2,3
γ

γ c2+c3
ϕ2

1
γ c2+c3

ϕ2

(23)

with c3 = 2c2 = 1/2 and γ = (3c3−2)c3
(2−3c2)c2

= −4/5, see formula (5.9) in Reference [15].
Here and in the next tableaux ϕ�, j denotes ϕ�(c jτK ). The implementation involves
the usage only of the ϕ1 and ϕ2 functions, which do not trigger the ill-conditioning of
the Sylvester equation observed in Reference [33]. This integrator requires to compute
the following actions (scaled by proper coefficients)

ϕ1(τK/2 j ) f (tn, un), j = 0, 1, 2,

ϕ2(τK/2 j )dn2, j = 0, 1, 2,

ϕ2(τK )dn3,

see formula (8). The sylvphi routine is then called in total six times: three times to
compute the action of the ϕ1 function at the different scales of K , twice to compute the
action of the ϕ2 function for the scales j = 1 and j = 2 and, finally, once to compute
the action of ϕ2(τK ) to (γ dn2+ dn3)/(γ c2+c3). Therefore, nine Sylvester equations
have to be solved. The other four routines have to be called three times, one for each
of the above rows. In fact, all of them are natively able to produce the action of single
ϕ-functions simultaneously at different scales of K (see, in particular, Sect. 3.1 for
phiks). The results are summarized in Fig. 4. Also in this two-dimensional example,
with numbers of degrees of freedom up to N = 6512, the phiks routine turns out to
be always the fastest by a factor of roughly 1.5 with respect to the other techniques.

4.4 Brusselator model

In this section we apply the μ-mode approach to the block diagonal ODEs system
which arises from the semidiscretization in space of the three-dimensional Brusselator
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Fig. 4 Rate of convergence of the exponential Runge–Kutta scheme (23) for the semidiscretization of
Allen–Cahn equation (22) with n1 = n2 = n = 21 discretization points (left) and wall-clock time in
seconds for increasing number n of discretization points and 20 time steps up to final time T = 0.025
(right)

model [5, 35] for the two chemical concentrations u and v

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u(t, x1, x2, x3) = d1�u(t, x1, x2, x3) − (b + 1)u(t, x1, x2, x3)

+ a + u2(t, x1, x2, x3)v(t, x1, x2, x3),

∂tv(t, x1, x2, x3) = d2�v(t, x1, x2, x3)

+ bu(t, x1, x2, x3) − u2(t, x1, x2, x3)v(t, x1, x2, x3),

u(0, x1, x2, x3) = 642x21 (1 − x1)
2x22 (1 − x2)

2x23 (1 − x3)
2,

v(0, x1, x2, x3) = c,

(24)

in the spatial domain [0, 1]3. The system is completed with homogeneous Neumann
boundary conditions. The semidiscretization in space by finite differences yields the
system

(
u′(t)
v′(t)

)
=
(
K1 0
0 K2

)(
u(t)
v(t)

)
+
(

a + u2(t)v(t)
bu(t) − u2(t)v(t)

)
⇐⇒

w′(t) = K̂w(t) + g(t,w(t)),

(25)

where K1 is the discretization matrix of the linear operator d1�−(b+1) and K2 is the
discretization matrix of the linear operator d2�, both clearly Kronecker sums (1b).
System (25) cannot be written in Kronecker form (1). However, the actions of ϕ-
functions can still be efficiently computed by the proposed approach, since the matrix
K̂ in system (25) is block diagonal. We set a = c = 1, b = 3, d1 = d2 = 0.02,
and, since we are going to employ two exponential integrators of order four, we also
increase the accuracy in space by using finite differences of order four (leading to
matrices K1 and K2 with a 13-diagonal structure), and we simulate until final time
T = 1 employing two fourth-order exponential integrators of Runge–Kutta type.
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4.4.1 An exponential Runge–Kutta scheme of order four with five stages

The first exponential integrator that we consider has reduced tableau

1
2
1
2 ϕ2,3
1 ϕ2,4 ϕ2,4
1
2 a52 a52

1
4ϕ2,5 − a52

0 0 −ϕ2 + 4ϕ3 4ϕ2 − 8ϕ3

(26)

with

a52 = 1

2
ϕ2,5 − ϕ3,4 + 1

4
ϕ2,4 − 1

2
ϕ3,5,

see tableau (5.19) in Reference [15]. It is possible to effectively use the routine phiks
to evaluate ϕ-functions applied to the same vector. In this way, the following quantities
have to be computed

ϕ1(τ K̂/2 j ) f (tn,wn), j = 0, 1,

ϕ�(τ K̂/2 j )dn2, � = 2, 3, j = 0, 1,

ϕ�(τ K̂/2 j )dn3, � = 2, 3, j = 0, 1,

ϕ�(τ K̂/2 j )dn4, � = 2, 3, j = 0, 1,

ϕ�(τ K̂ )dn5, � = 2, 3.

In each of the five lines, only two calls of phiks are needed to compute the desired
actions, due to the block diagonal structure of the matrix K̂ . Indeed, in the first four
lines we can obtain the actions of ϕ-functions simultaneously at j = 0 and j = 1,
thanks to the squaring algorithm (12b). In addition, in the second, third, and fourth
line, both ϕ2 and ϕ3 are produced at different scales. This is not possible for the
routines phipm_simul_iom, kiops, and bamphi. By proceeding with a sequential
implementation of the stages in tableau (26), they would require six calls with the
action of the matrix K̂ , as already noticed in Reference [16]. However, we found that
it is possible to alternatively assemble the stages by computing the following quantities

ϕ1(τ K̂/2 j ) f (tn,wn), j = 0, 1,

ϕ2(τ K̂/2 j )dn2, j = 0, 1,

ϕ2(τ K̂/2 j )dn3, j = 0, 1,

ϕ2(τ K̂/2 j )

22 j
dn4 + ϕ3(τ K̂/2 j )

23 j
(4dn2 + 4dn3 − 4dn4), j = 0, 1,

ϕ2(τ K̂ )(4dn5 − dn4) + ϕ3(τ K̂ )(4dn4 − 8dn5),

(27)

which require again two calls to phiks for each of the five lines, and in total five
calls to the other routines. To ensure a fair comparison, we follow approach (27) with
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Fig. 5 Rate of convergence of the exponential Runge–Kutta scheme (26) for the semidiscretization of
Brusselator model (24) with n1 = n2 = n3 = n = 11 discretization points (left) and wall-clock time in
seconds for increasing number n of discretization points and 20 time steps up to final time T = 1 (right)

all the routines under comparison. As we did in the previous numerical examples,
we check the correct order of convergence of the integrator for different numbers of
time steps and n1 = n2 = n3 = n = 20, and we measure the wall-clock time for
different numbers n of discretization points for each dimension, with n ranging from
40 to 100, leading to a maximum number of degrees of freedom N = 2 · 1003. The
integration is performed up to the final time T = 1. The results are collected in Fig. 5.
Again, phiks performs better than the other methods, being up to 7.5 times faster.
The speed-up is larger than in the previous examples mainly due to the choice of the
spatial discretization, that leads to denser matrices, and which affects all the routines
but phiks (as it is based on a μ-mode approach). The insensitivity of the μ-mode
approach to the density of the matrices was already pointed out in Reference [18].

4.4.2 An exponential Runge–Kutta scheme of order four with six stages

Finally,we consider the exponential Runge–Kutta integrator of order fourwith reduced
tableau

c2

c3
c23
c2

ϕ2,3

c4
c24
c2

ϕ2,4

c5 0 a53 a54
c6 0 a63 a64

0 0 0 b5 b6

(28)

where

a53 = c4c
2
5

c3(c4 − c3)
ϕ2,5 + 2c35

c3(c3 − c4)
ϕ3,5, a54 = c3c

2
5

c4(c3 − c4)
ϕ2,5 + 2c35

c4(c4 − c3)
ϕ3,5,

a63 = c4c
2
6

c3(c4 − c3)
ϕ2,6 + 2c36

c3(c3 − c4)
ϕ3,6, a64 = c3c

2
6

c4(c3 − c4)
ϕ2,6 + 2c36

c4(c4 − c3)
ϕ3,6,
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Fig. 6 Rate of convergence of the exponential Runge–Kutta scheme (28) for the semidiscretization of
Brusselator model (24) with n1 = n2 = n3 = n = 11 discretization points (left) and wall-clock time in
seconds for increasing number n of discretization points and 20 time steps up to final time T = 1 (right)

b5 = c6
c5(c6 − c5)

ϕ2 + 2

c5(c5 − c6)
ϕ3, b6 = c5

c6(c5 − c6)
ϕ2 + 2

c6(c6 − c5)
ϕ3,

and c3 �= c4, c5 �= c6, c6 = (4c5−3)/(6c5−4), see equation (4.10) in Reference [16].
This integrator was designed so that multiple stages can be computed simultaneously.
In fact, stages three and four and stages five and six require the same combination
of ϕ-functions at different intermediate times, and therefore they can be efficiently
implemented by the routines kiops, bamphi, and phipm_simul_iom (the one which
has been originally employed with this integrator). Here, by selecting c4 = 2c3 = 2/3
and c6 = 2c5 = 1 we can do the same with the routine phiks, since the evaluation of a
linear combination at a half time comes for free by the new squaring algorithm (15b).
The results, by setting the remaining free coefficient c2 = 1/3, are reported in Fig. 6.
Since the number of calls needed by this integrator is smaller than in the previous case,
all the methods turn out to be slightly faster. The speed-up of phiks with respect to
the other routines ranges from 4.5 to 8.6, depending on the size of the problem.

5 Conclusions

In this manuscript, we proposed an efficient μ-mode approach to compute actions
of ϕ-functions for matrices K which are Kronecker sums of any number of arbitrary
matrices Aμ. This structure naturally arises when suitably discretizing in space some
evolutionary PDEs of great importance in science and engineering, such as advection–
diffusion–reaction, Allen–Cahn, or Brusselator equations, among the others. The
corresponding stiff system of ODEs can be effectively solved by exponential inte-
grators, which rely on the efficient approximation of the action of single ϕ-functions
or linear combinations of them. Our new method, that we named phiks, approximates
the integral definition of ϕ-functions by the Gauss–Lobatto–Legendre quadrature for-
mula, employs scaling and squaring techniques, and computes the required actions in
a μ-mode fashion by means of Tucker operators and exponentials of the small sized
matrices Aμ, exploiting the efficiency of modern hardware architectures to perform

123



   61 Page 26 of 28 M. Caliari et al.

level 3 BLAS operations. Moreover, it allows to compute the desired quantities at dif-
ferent time scales, feature of great importance in the context of high order exponential
integrators. We tested our approach on different stiff ODEs systems arising from the
discretization of important PDEs in two and three space dimensions, using different
exponential integrators (from stiff order one to four) and different discretization matri-
ces (finite differences of order two or four). As terms of comparison, we considered
another technique for computing actions of ϕ-functions of Kronecker sums of matri-
ces (based on Sylvester equations, and currently limited to two space dimensions) and
more general techniques for computing actions of ϕ-functions. Our method turned out
to be always faster than the others, with speed-ups ranging from 1.5 to 8.6, depending
on the example under consideration. The numerical experiments suggest that phiks
is preferable to existing methods, in particular for problems with denser matrices and
for exponential integrators that can be implemented by computing suitable scales of
the underlying (linear combinations of) ϕ-functions. Interesting future developments
are the application of the method to space-fractional diffusion equations [36] and
second-order in time partial differential equations [37].
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