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Abstract

Business process compliance checking is an NP-complete problem, due to con-
currency and different mutually exclusive execution paths. Although the complexity
of real life process models usually allows for a brute force approach, environments
with limited resources or computational power (like for instance blockchain environ-
ments) cannot rely on brute force approaches due to the computational complexity of
the problem. In this paper, we present an approach to efficiently check a subclass
of problems involving concurrent sub-processes. Our approach reduces the compu-
tational complexity of concurrent sub-processes from combinatorial to exponential.
We prove the correctness of the approach, we experimentally validate the results and
evaluate the scalability of the approach. We show that our approach is a significant im-
provement for highly concurrent processes and easily outperforms existing brute force
approaches.

Vol. 6 No. 5 2019
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



TOSATTO ET AL.

1 Introduction

One of the aspects related to legal reasoning concerns verifying whether a given behaviour
complies with a set of given regulations. These so-called Compliance Checking procedures
can be applied to sets of behaviours, like for instance a model describing the possible be-
haviours of an agent. The advantage of verifying models describing possible behaviours
is that it ensures that all behaviour allowed by the model is proven to be compliant with a
given set of regulations. This approach is also referred to as Compliance by Design [17],
as it ensures that a model contains, by design, only or at least some compliant behaviours.
Compliance by design is also known as forward compliance, referring to the techniques
focused on preventing compliance breaches, which differ from backward compliance, as
these techniques focus on identifying compliance breaches after they have happened.

Business Process Models are originally designed to formally represent the possible se-
quences of activities to be executed by an organisation to achieve a certain business goal.
In addition to their utility in a legal setting, where they can be used to automatically ver-
ify compliance breaches, these models can potentially be used to represent collections of
agent’s plans and be automatically verified with respect to some given constraints (as as
shown by Governatori and Rotolo [11]).

However, proving compliance by design of business process models is in general NP-
complete, as shown by Colombo Tosatto et al. [6]. Accordingly, no polynomial solutions
are possible for the general problem of proving compliance of business process models.
Most of the current solutions for the problem, like for instance Regorous [12], adopt a
brute force approach over the possible executions of a business process model to prove
its compliance. Despite the high theoretical complexity of the problem, solutions like the
aforementioned Regorous, still seem to offer practical solutions to some real life instances.
Nevertheless, in a number of cases the size of the problem grows enough to not be solvable
by brute force approaches, or in others, the environment may be providing only a limited
amount of computational resources, such as for instance a blockchain. As a result, a more
efficient use of these resources becomes desirable. Part of the complexity of the problem
lies in the process model structure, where even compact structures can potentially represent
an exponential number of possible executions. Within a business process model, certain
sequences of activities can be mutually exclusive, while other activities are concurrent.
Concurrency allows for a combinatorial number of possible execution orders of the activities
involved, as it considers all possible interleaving of the activities unrestricted by explicit
ordering constraints.

To address this issue, we propose an efficient algorithm to prove full compliance of
business process models with respect to a set of given regulations, by verifying whether
a counter-example exists. As such, we provide an approach to resolve compliance over
concurrent paths, such that the computational complexity of verifying compliance is re-
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duced from combinatorial to exponential. To keep the theoretical complexity of the solution
tractable, we restrict the expressivity of the regulations being checked to literals and with no
compensations for eventual violations. Furthermore, we restrict our approach to structured
process models [26], as they allow to verify their soundness and correctness in polynomial
time with respect to the size of the model.

The remainder of the paper is structured as follows: Section 2 discusses the related
work. Section 3 introduces the classic regulatory compliance problem, and provides a high-
level overview of the proposed solution. Section 4 describes the process models and the
decomposition procedure. Section 5 describes the regulations and how D-constraints1 are
generated. Section 6 defines full compliance and how it can be proven through decomposed
processes and D-constraints. Section 7 empirically evaluates the approach against a set of
highly complex models. Finally, Section 8 concludes the paper.

2 Related Work

While the area of business process compliance received substantial research interest the past
decade (Hashmi et al. [17] identify over 180 research papers between 2000 and 2015 spe-
cific to business process regulatory compliance), the study of the computational complexity
properties (and solutions to reduce the search space) and whether the proposed techniques
offer practical solutions has been largely neglected.

For example, Pulvermüller et al. [27] directly verify temporal logic based specifications
on a process, without proper support for different branching options through gateways,
and Awad et al. [2] utilise a reduction technique, which results in an incomplete model.
Ramezani et al. [28] provide a set of generic compliance patterns, but do not offer the same
expressivity as other approaches using defeasible logic or even temporal logic.

Other approaches introduce a large amount of overhead in the state space of the model
encoding the process, which is often the result of ignoring the effect of encoding on the
internal state machine of the model checker (see e.g. Latvala and Heljanko [23], Bianculli
et al. [4], Kherbouche et al. [20], and Kheldoun et al. [19]). In particular, parallel branching
constructs may cause a state space explosion, which only few approaches have successfully
addressed. Some approaches, like the one proposed by Feja et al. [10] simply disregard par-
allel information entirely, such that full compliance cannot be ensured. Other approaches,
such as Liu et al. [24], do interleave parallel branches correctly, but interleave to such an
extent that concurrent executions are linearised entirely, resulting in a state explosion.

Another direction of research has focused on conformance checking, such as for in-
stance van der Aalst et al. [30], where they analyse techniques to verify whether executions

1We discuss the reasoning behind the name used for the alternative representation of the regulation in
Section 3.2.
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actually belong to the allowed behaviour specified in the business process model. Confor-
mance checking is an orthogonal discipline when compared to compliance by design, as
the latter focuses on verifying properties of future executions of business process models,
while the former focuses on verifying properties of existing executions compared to their
corresponding process models. As such, an execution may be conformant (i.e. it matches
an allowed execution specified in the model), but not compliant (i.e. it violates a regula-
tion). Similarly, an execution can be non-conformant (i.e. its behaviour is not specified in
the model), but it is compliant (i.e. it does not violate any regulation).

Although solutions based on temporal logic benefit from the optimisation and efficiency
of modern model checkers (e.g. Awad et al. [3], Elgammal et al. [9], and Pesic et al. [25]),
such approaches do not address the reduction of the search space. Moreover Governatori
and Hashmi [13] show that given certain circumstances, like requiring compensatory obliga-
tions2 and permissions determining whether an obligation is in force, do not allow temporal
logic to soundly model regulatory requirements.

Some solutions have tried to address the complexity of the problem by reducing the
required search space. Groefsema et al. [16], for example, propose a solution using Kripke
structures to reduce the state explosion derived from concurrency components. However,
this approach first creates a full state space, followed by a reduction. In contrast, the ap-
proach presented in this paper does not require a subsequent reduction to be feasible for
model checking, as it directly allows for efficient compliance checking of concurrent pro-
cess constructs.

3 Regulatory Compliance Problem and Our Approach

In this section, we first introduce the classic regulatory compliance problem. Subsequently,
we introduce the idea behind the proposed approach in this paper. The formal details of
both the regulatory compliance problem and the approach are discussed later in the paper.

3.1 The Regulatory Compliance Problem

The regulatory compliance problem is concerned with verifying whether a business process
model is compliant with a given set of regulations. The problem contains two separate
components: the business process model, describing a set of possible executions capable of
achieving the business goal pursued by the model, and the set of regulations defining the
constraints that are required to be fulfilled by each execution in the model.

2A type of obligation that become in force in response to another obligation being violated, and its fulfil-
ment compensates the triggering violation.
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Business Process Models

Business process models are formal representations capable of compactly representing mul-
tiple executions achieving a particular goal. In order to achieve their compactness, business
process models use coordinators ([29]) to specify that some of the executions in the model
have some parts in common, which the model needs to represent only once. These coordi-
nators are capable of representing e.g. mutually exclusive or concurrent paths of executions.
As such, they are based on the semantics of exclusive and parallel gateways as defined in
BPMN 2.0, with the restriction of structuredness as described in Definition 2.

The coordinators allow to compactly represent multiple distinct executions within a
single business process model. More precisely, a business process model can potentially
contain a combinatorial number of executions with respect to the elements composing it.
As a result, brute force approaches are potentially impractical as they require the generation
and analysis of each possible execution contained within a model.

Regulations

The second component of a regulatory compliance problem concerns the regulations defin-
ing the regulatory requirements. These regulations determine which obligations are required
to be fulfilled in each possible execution in the business process model.

Given an execution of a business process model and a regulation, the regulation defines
a triggering condition, which (if satisfied by the execution) sets an obligation in force that
is then required to be fulfilled. Additionally, the regulation also determines a deadline
condition, expressing that when the obligation is in force, it must be fulfilled before or
until the execution satisfies the deadline. This is illustrated graphically in Figure 1. We can
consider an execution to be a sequence of activities each occurring at a distinct point in time.
The interval between the point in time satisfying the triggering condition of a regulation and
the point in time satisfying the corresponding deadline determines the in force interval of
an obligation.

Execution:

Trigger Deadline

Obligation in force

Figure 1: Obligation in force

We consider two types of obligations, achievement and maintenance, each of which
having different properties [6]:
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Achievement When this type of obligation is in force, the fulfilment condition specified by
the regulation must be satisfied by the execution in at least one point in time before
the deadline is satisfied. When this is the case, the obligation in force is considered
to be satisfied, otherwise it is violated.

Maintenance When this type of obligation is in force, the fulfilment condition must be
satisfied continuously until the deadline is satisfied. Again, if this is the case, the
obligation in force is then satisfied, otherwise it is violated.

Types of Compliance

Given an execution and a regulation, if each in force interval determined by the obligation
is satisfied by the regulation, then we can say that this particular execution complies with
the regulation. Similarly, when considering a set of regulations instead of a single one,
an execution is considered to comply with the set, if and only if it satisfied every in force
interval of the obligations determined by the set of regulations.

However, when verifying whether a business process model is compliant with respect
to a set of regulations, different types of compliance can be considered. A business process
model can be either, fully compliant, partially compliant, or not compliant with respect
to a set of regulations. This distinction between the different levels of business process
compliance have been already introduced by Governatori and Rotolo [15].

Fully Compliant A business process model is considered fully compliant, if and only if
each of its possible executions complies with the set of regulations.

Partially Compliant A business process model is considered partially compliant, if and
only if there exists an execution of the business process model that complies with the
set of regulations.

Not Compliant A business process model is considered not compliant, if and only if none
of its possible execution complies with the set of regulations.

3.2 Approach Overview

We now provide an overview of the solution proposed in this paper. First, the solution
focuses on proving whether a business process model is fully compliant with respect to a
given set of regulations.

As we formally define in Section 4, mutual exclusion coordinators in a business pro-
cess model are also referred to as XOR Blocks. Our proposed approach verifies whether
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Process Model

decompose

Decomposed
XOR-free

Process Model

Decomposed
XOR-free

Process Model
D-constraint

check
D-constraint

check

Sub-result Sub-result

Compliance
Result

Figure 2: Approach Overview.

a business process model is compliant with a set of regulations as follows: first, it de-
composes the full business process model into a set of XOR-free Process Models3, which
maintain the expressivity of the original process. That is, the set of executions available in
the original process is the same as the sum of the executions of the set of XOR-free Pro-
cess Models. Second, we represent the set of regulations as D-constraints, allowing us to
verify whether an XOR-free Process Model violates a given regulation. This allows us to
prove full compliance for the verified process in case a violation is not found. We adopt
the name D-constraint to refer to the alternative representation of the regulations, as the new
representation focuses on the differences between subsequent process states introduced by
the execution of tasks (as described in Definition 8, and updated in accordance to the an-
notation of a task being executed as described in Definition 9), which can be understood as
the D between such process states. Finally, the compliance results relative to the XOR-free
Process Models are aggregated, in order to decide whether the original business process
model is fully compliant with the given regulations. The procedure is graphically illustrated
in Figure 2.

4 Business Process Models and Decomposition

In this section, we first introduce the formal syntax and semantics of business process mod-
els. Before introducing the decomposition procedure, we briefly discuss how the structural

3A set of process models not containing mutual exclusion coordinators.
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components of a business process model contribute to the computational complexity of the
problem. Finally, we define the decomposition procedure transforming a generic process
model in a set of process models free of mutually exclusive choices, such that they can be
handled by the solution proposed in this paper.

There exist multiple mainstream business process modelling notations, which include
(among others) BPMN, EPC, and Petri nets. The mapping between these different for-
malisms has been extensively studied and described [31, 8, 22]. Although each of these
graph-oriented formalisms allows to model structured business processes, they require a
formal definition of the restriction to structured processes on top of the definition of the re-
spective modelling notation itself. Therefore, we adopted a formal description that captures
the structured nature of the business process by design, in order to provide a shorter and
more intuitive notation throughout the remainder of this paper.

4.1 Business Process Models

We focus on a particular subclass of processes: Structured Business Processes, which are a
class of processes similar to the structured workflows defined by Kiepuszewski et al. [21].
These processes are defined as a recursive nesting of their components, where each nesting
structure is defined as a process block, as well as the process itself and its atomic compo-
nents, the tasks.

The models used in the sub-problem are both structured and acyclic, such that each
execution in the process model is guaranteed to terminate.

Definition 1 (Process Block). A process block B is a directed graph: the nodes are called
elements and the directed edges are called arcs. The set of elements of a process block are
identified by the function V (B) and the set of arcs by the function E(B). The set of elements
is composed of tasks and coordinators. The coordinators are of 4 types: and_split, and_join,
xor_split and xor_join. Each process block B has two distinguished nodes called the initial
and final element. The initial element has no incoming arc from other elements in B and is
denoted by b(B). Similarly the final element has no outgoing arcs to other elements in B
and is denoted by f (B).

A directed graph composing a process block is defined inductively as follows:

• A single task constitutes a process block. The task is both initial and final element of
the block.

• Let B1, . . . ,Bn be distinct process blocks with n > 1:

– SEQ(B1, . . . ,Bn) denotes the process block with node set
Sn

i=0V (Bi) and edge
set
Sn

i=0(E(Bi)[{( f (Bi),b(Bi+1)) : 1  i < n}).
The initial element of SEQ(B1, . . . ,Bn) is b(B1) and its final element is f (Bn).
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– XOR(B1, . . . ,Bn) denotes the block with vertex set
Sn

i=0V (Bi)[ {xsplit,xjoin}
and edge set

Sn
i=0(E(Bi)[ {(xsplit,b(Bi)),( f (Bi),xjoin) : 1  i  n}) where

xsplit and xjoin respectively denote an xor_split coordinator and an xor_join

coordinator, respectively. The initial element of XOR(B1, . . . ,Bn) is xsplit and
its final element is xjoin.

– AND(B1, . . . ,Bn) denotes the block with vertex set
Sn

i=0V (Bi)[ {asplit,ajoin}
and edge set

Sn
i=0(E(Bi)[ {(asplit,b(Bi)),( f (Bi),ajoin) : 1  i  n}) where

asplit and ajoin denote an and_split and an and_join coordinator, respectively.
The initial element of AND(B1, . . . ,Bn) is asplit and its final element is ajoin.

By enclosing a process block as defined in Definition 1 along with a start and end task
in a sequence block, we obtain a structured process model.

Definition 2 (Structured Process Model). A structured process model P is a directed graph
composed of a process block B called the main process block. The process P is represented
as a sequence block, as follows: SEQ(start,B,end), where the vertex set of P is V (P) =
V (B)[ {start;end} and its edge set is E(P) = E(B) [ {(start, b(B)), ( f (B), end)}. The
initial element of a structured process model is the pseudo-task start and its final element is
the pseudo-task end.

Example 1 (Structured Process Model). Fig. 3 shows a structured business process contain-
ing four tasks labelled t1, t2, t3, t4. The structured process contains an XOR block delimited
by the xor_split and the xor_join. The XOR block contains the tasks t1 and t2. The XOR

block is itself nested inside an AND block with the task t3. The AND block is preceded by
the start and followed by task t4 which in turn is followed by the end task.

t1

t2

t3

t4

Figure 3: Example of a structured business process.

Considering the structured process in Figure 3 as a sequence block, it can be repre-
sented as follows:

P = SEQ(start,AND(XOR(t1, t2), t3), t4,end)

.
Note that for the process model P, SEQ(AND(XOR(t1, t2), t3), t4) represents the main

process block. The external sequence block of B is absorbed by the sequence block of
process model itself, resulting in the final representation.
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Business Process Executions

In a structured process model, a valid execution identifies a path from the pseudo-task start

to the pseudo-task end, and follows the semantics of the traversed coordinators. An execu-
tion is represented as a sequence of a subset of the tasks belonging to the process.

The possible executions allowed by a process model can be represented using partially
ordered sets, where the ordering constraints represent the structure of the model. Thus a
linear order of tasks following the partially ordered set ordering constraints represents a
valid execution.

Definition 3 (Partially Ordered Set). A partially ordered set P = (S ,�s) is a tuple where
S is a set of elements and �s is a set of ordering relations between two elements of S such
that �s✓ S ⇥S and for which transitivity and antisymmetry4 hold.

Let P1 = (S1,�s1) and P2 = (S2,�s2) be partially ordered sets, we define the following
four operations:

• Union: P1 [P P2 = (S1 [S2,�s1 [ �s2), where [ is the disjoint union.

• Concatenation: P1 +P P2 = (S1 [S2,�s1 [ �s2 [{s1 � s2|s1 2 S1 and s2 2 S2}).

• Linear Extensions: I (P1) = {(S ,�s)|S = S1,(S , �s) is a totally ordered se-
quence and �s1 ✓ �s}.

The associative property holds for Union, and Concatenation.

A serialisation of a process block is a totally ordered sequence of a subset of the tasks.
The sequence must follow the semantics of the coordinators contained in the block, and start
with the block initial element and finish with its final element. Notice that the definition of
serialisation is given as a byproduct of Definition 4.

Definition 4 (Process Block Serialisations). Given a process block B, the set of seriali-
sations of B, written S(B) = {e|e is a serialisation of B}. The function S(B) is defined as
follows:

1. If B is a task t, then S(B) = {({t}, /0)}

2. if B is a composite block with sub-blocks B1, . . . ,Bn let ei be the projection of e on
block Bi (obtained by ignoring all tasks which do not belong to Bi)

(a) If B = SEQ(B1, . . . ,Bn), then S(B) = {e1 +P · · ·+P en|ei 2 S(Bi)}
(b) If B = XOR(B1, . . . ,Bn), then S(B) = S(B1)[ · · ·[S(Bn)

4Antisymmetry: if a �s b and b �s a, then a = b.
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(c) If B = AND(B1, . . . ,Bn), then S(B) = {e|e 2 I (e1 [P · · ·[P en|8ei 2 S(Bi))}.

A serialisation of a process model corresponds to one of its executions, hence the set of
serialisations of a business process model corresponds to the set of possible executions of
the model itself.

Definition 5 (Execution). Given a structured process P whose main process block is B, an
execution of P corresponds to a serialisation of B including the pseudo-tasks start and end.

S(P) = {Pstart +P e +P Pend|e 2 S(B)}

Example 2 (Execution). Consider a business process model P, like the one shown in Ex-
ample 1:

P = SEQ(start,AND(XOR(t1, t2), t3), t4,end)

The corresponding possible executions of P, S(P), are as follows:

e1 : start, t1, t3, t4,end,

e2 : start, t3, t1, t4,end,

e3 : start, t2, t3, t4,end,

e4 : start, t3, t2, t4,end

Annotations

The state of a process is represented using a set of literals. We assume that executing a task
can alter the state of the process, represented using annotations, as described by Governatori
et al. [14]. The state consists of sets of literals associated to the tasks, where a literal is
either an atomic proposition or its negation. A task’s annotation describes the changes in
the process state when the associated task is executed.

Both the state of a process and the annotations of the tasks are represented by sets of
literals, which are required to be consistent.

Definition 6 (Consistent literal set). A set of literals L is consistent if and only if it does not
contain both l and ¬l.

An annotated process is a process whose tasks are associated with consistent sets of
literals.
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t1

t2

t3

t4
¬c ¬t ¬d

c

t

d

Figure 4: Example of an annotated business process.

Definition 7 (Annotated process). Let P be a structured process and let T be the set of
tasks in P. An annotated process is a pair: (P,ann), where ann is a function associating a
consistent set of literals ann : T 7! L to each task in T .

Definition 8 (State). Let ti be a task, and L is a consistent literal set. A state is a tuple
s = (ti,L), and represents the state holding after executing ti.

The state of a process is updated by each task’s execution through an update operator.
This operator is inspired by the AGM belief revision operator [1].

Definition 9 (Literal set update). Let l be the complementary literal as follows:

• l = ¬a if l = a

• l = a if l = ¬a

Given two consistent sets of literals L1 and L2, the update of L1 with L2 (denoted by
L1 �L2) is a set of literals defined as follows:

L1 �L2 = L1 \{l | l 2 L2}[L2

Finally, a trace represents the evolution of the state of a process during one of its exe-
cutions.

Definition 10 (Trace). Given an annotated process (P,ann) and an execution sequence
e = (t1, . . . , tn) such that e 2 S(P), a trace q is a finite sequence of states: (s1, . . . ,sn).
Each state of si 2 q contains a set of literals Li capturing what holds after the execution of
a task ti. Each Li is a set of literals such that:

1. L1 = ann(t1);

2. Li+1 = Li �ann(ti+1), for 1  i < n.

We use Q(B,ann) to denote the set of possible traces resulting from an annotated pro-
cess block (B,ann), where B is a process block and ann is an annotation function.
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Example 3 (Trace). Consider the annotated structured process in Figure 4, containing the
following annotations:

start : {¬c,¬t,¬d}

t1 : {c}

t3 : {t}

end : {d}

The following traces correspond to the executions of P, as illustrated in Example 2, written
Q(P):

q1 : (start;¬c,¬t,¬d),(t1;c,¬t,¬d),(t3;c, t,¬d),(t4;c, t,¬d),(end;c, t,d),

q2 : (start;¬c,¬t,¬d),(t3;¬c, t,¬d),(t1;c, t,¬d),(t4;c, t,¬d),(end;c, t,d),

q3 : (start;¬c,¬t,¬d),(t2;¬c,¬t,¬d),(t3;¬c, t,¬d),(t4;¬c, t,¬d),(end;¬c, t,d),

q4 : (start;¬c,¬t,¬d),(t3;¬c, t,¬d),(t2;¬c, t,¬d),(t4;¬c, t,¬d),(end;¬c, t,d)

4.2 On the Computational Complexity

Colombo Tosatto et al. [6] have shown that the problem of proving whether a business
process model complies with a given set of regulations is an NP-complete problem, when
structured business process models containing both concurrent components and mutually
exclusive ones are used, and the regulations are expressed using literals. The structural
components of business process models contribute to the computational complexity of the
problem. In particular, two major contributors can be identified: XOR and AND process
blocks, each of which will be discussed below.

XOR Blocks

XOR blocks contribute to the computational complexity of the problem by allowing the
representation of multiple possible executions within a single business process model.

An XOR block allows us to represent possible branches in the executions within a
model. The branching factor in an XOR block, represented by the sub-blocks contained,
determines the amount of different possible executions obtainable by executing the block,
as described in Definition 5.

A single XOR block does not substantially contribute to the computationally complexity
of the problem, as it increases the amount of execution available within the model by the
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number of sub-blocks contained. However, nesting XOR blocks does increase the number
of possible executions, as it is no longer polynomial with respect to the business process
structure. Let n be the number of sub-blocks in an XOR block and l be the nesting level.
Then the amount of possible executions in the worst case scenario, where each branch of an
XOR block contains a nested XOR block with n branches, up to a nesting level l, is:

nl

In general, when the branching factor of properly nested XOR blocks is not constant
and not every branch necessarily nests another XOR block, then the number of possible
executions deriving from this structure is calculated by counting the number of branches in
the structure not containing a nested XOR block.

Example 4. Considering the business process model illustrated in Figure 5. The model
contains 3 XOR blocks nested within 2 levels, and each block contains 2 branches. Given
the structure, we can then calculate the number of possible executions of the model, which
is 22 = 4.

t1

t2

t3

t4

t5

t6

Figure 5: Executions in a model containing nested XOR blocks.

In constrast, when multiple XOR blocks are used sequentially, the amount of possible
executions becomes exponential with respect to the number of XOR blocks. Let n be the
number of sub blocks in an XOR block and k the number of XOR blocks. Then in the worst
case scenario, where each block has the same branching factor, the number of possible
executions in a business process model is:

nk

Note that in the general case, where the number of branches in the different XOR blocks
of a model is not the same, assuming that k is the number of XOR blocks in the model and
ni is the number of branches in the block i for some 1  i  k, the number of executions in
the model is calculated as follows:

k

Â
i=1

(ni)
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Example 5. Consider the business process model illustrated in Figure 6. The model con-
tains 2 XOR blocks with 2 branches each. Given the structure, we can then calculate the
number of possible executions of the model, which is 22 = 4.

t1

t2

t3

t4

Figure 6: Executions in a model containing sequential XOR blocks.

Given the amount of possible executions with respect to the size of the model in the
worst case scenario, a brute force analysis of each execution is theoretically intractable. In
other words, it means that the time required to find a solution would exponentially increase
with the size of the problem, hence practically making big enough problems unsolvable
using brute force approaches.

AND Blocks

Similar to XOR blocks, AND blocks contribute to the computational complexity by allowing
a compact representation of multiple different possible executions within a single business
process model.

Contrary to XOR blocks, however, the positioning of AND blocks in the model does
not strongly influence the amount of possible executions available in the business process
model. Let k be the number of AND blocks, n the number of branches in an AND block,
and m the length of the branches of the block in term of executable tasks. The amount of
possible executions in a business process model is combinatorial with respect to the model
structure:

✓
(n⇥m)!
(m!)n

◆k

In the general case, where ni is the number of branches of the block i for 1  i  k, and
mi j is the length of the jth branch of block i for 1  j  ni, the number of executions in a
business process model with k AND blocks is calculated as follows:

k

’
i=1

 
(Âni

j=1(mi j))!

’ni
j=1(mi j !)

!

Example 6. Consider the business process model illustrated in Figure 7. The model con-
tains a single AND block with 3 branches of size 2 each. Given the structure, we can then
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calculate the number of possible executions of the model, which is (2+2+2)!
(2!)3 = 90. However,

if we increase the length of each branch by 1 (adding only 3 activities in total), the number
of possible executions of the model is (3+3+3)!

(3!)3 = 1680.

t1 t2

t3 t4

t5 t6

Figure 7: Executions in a model containing AND blocks.

Note that, as this brief analysis suggests, AND blocks contribute more heavily to the
computational complexity of the problem than XOR blocks.

Complexity of Real-life Business Process Models

Consider for example the SAP R/3 collection of business process models, used by SAP to
customize their R/3 ERP product as documented in [7]. As shown in Table 1, the structural
complexity is reasonable with the most complex model having 86 activities and 6 AND
splits. However, even when selecting the set of sound workflow models, the complexity
in terms of total possible executions can grow as large as 1.76 · 1010. This shows that the
incentive for a more efficient algorithm is not just academic, but a necessity imposed by
real-life model complexities.

Metric Min Max Mean
Activities 3 86 15.98
XOR splits 0 6 0.64
Outdegree XOR 2 9 2.73
AND splits 0 6 1.14
Outdegree AND 2 18 3.14

Table 1: Statistics on SAP R/3 model complexity.

4.3 Process Model Decomposition.

A business process model can be decomposed by splitting each of the XOR blocks within
the process representation in n different processes, where n corresponds to the branches in
the XOR block and each of the new processes contains exactly one of the branches. This
procedure is recursively applied until no XOR blocks are left.
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The decomposition can potentially lead to an exponential number of decomposed pro-
cesses, as can be inferred from the contribution of the XOR components to the compu-
tational complexity. However, the presence of AND blocks still allows a combinatorial
amount of possible executions within the decomposed models. Therefore, a solution is re-
quired to prevent analysis of each possible execution to verify the regulatory compliance of
the model.

Example 7 (Decomposition). Consider the business process model described in Example 1:

P = SEQ(start,AND(XOR(t1, t2), t3), t4,end)

Given that P contains a single XOR block with 2 branches, application of the decompo-
sition procedure leads to the following decomposed processes:

1. P0 = SEQ(start,AND(t1, t3), t4,end)

2. P00 = SEQ(start,AND(t2, t3), t4,end)

A process block serialisation (cf. Definition 4) is constructed through partially ordered
sets operations depending on the type of process blocks, as described in Definition 3. Sub-
sequently, a decomposed process can be represented as a partially ordered set by a recursive
transformation closely following Definition 4, as reported in Definition 11 below:

Definition 11 (Decomposed Process as Partially Ordered Set). A decomposed process P
can be represented as a partially ordered set by applying the following recursive procedure,
P(B), to each of its process blocks in (B):

1. If B is a task t, then P(B) = {({t}, /0)}

2. if B is a composite block with subblocks B1, . . . ,Bn:

(a) If B = SEQ(B1, . . . ,Bn), then P(B) = {P(B1)+P · · ·+P P(Bn)}
(b) If B = AND(B1, . . . ,Bn), then P(B) = {P(B1)[P · · ·[P P(Bn)}.

Example 8 (Decomposed Partially Ordered Sets). Given the two decomposed processes
from Example 7:

1. P0 = SEQ(start,AND(t1, t3), t4,end)

2. P00 = SEQ(start,AND(t2, t3), t4,end)

The corresponding partially ordered sets for the two decomposed processes are the
following:
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1. P(P0) = ({start, t1, t3, t4,end},{start � t1,start � t3, t1 � t4, t3 � t4, t4 � end})

2. P(P00) = ({start, t2, t3, t4,end},{start � t2,start � t3, t2 � t4, t3 � t4, t4 � end})

Each decomposed process contains the possible executions given the same choices in
the XOR blocks, and the execution set of a decomposed process is disjoint from any other
decomposed process obtained. The union of the execution sets of the decomposed processes
is exactly the execution set of the original process model.

5 Regulations and D-Constraints

In this section, we introduce the regulations that the process model must fulfil, along with
an alternative representation of the regulations used by our solution which we refer to as
D-constraints.

5.1 Regulations

The regulations are defined as conditional obligations. This kind of obligations consists
of three conditions: a trigger defining when the obligation becomes in force, a deadline
defining when its in force period terminates, and a condition defining the requirement in the
in force period.

A conditional obligation can be either of the achievement or maintenance type, as rep-
resented in Definition 12 by o 2 {a,m} respectively. The notion of achievement and main-
tenance obligations are inspired by the notion of achievement and maintenance goals in-
troduced by Cohen and Levesque [5], while the full semantics of such notions have been
discussed by Hashmi et al. [18].

Definition 12 (Conditional Obligation). A local obligation w is a tuple ho,c, t,di, where
o 2 {a,m} represents the type of the obligation. The elements c, t and d are propositional
literals in L . c is the condition of the obligation, t is the trigger of the obligation and d is
the deadline of the obligation.

We use the notation w = O
ohc, t,di to represent a conditional obligation.

Definition 13. Given an obligation O
ohc, t,di, the annotation of start is assumed to contain

the negation of each literal in the obligation tuple. The annotation of end is assumed to
contain the literal referring to the deadline.

Definition 13 provides an initial process state where none of the literals defining an
obligation hold. In addition, it ensures that the in force interval of an obligation always
terminates when the process execution ends. Note that obligations are evaluated one at a
time, hence the annotation of start and end depends on the obligation being evaluated.
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Limiting the Expressivity to Literals

Given our goal to reduce the computational complexity of solving sub-problems of verifying
the compliance of business process models, we limit the expressivity of the obligations
defining the requirements to simple propositional literals instead of propositional formulae.
As we discuss later in Section 6, our solution manages to provide a more efficient solution
for the sub-problem considered by avoiding to explicitly analyse each possible execution of
a business process model, which would otherwise lead to a search state explosion.

The advantage of limiting the expressivity of the obligations by including only proposi-
tional literals allows to directly associate the interaction between the obligation’s elements
to tasks in the business process model. This implies that executing one of such tasks would
immediately satisfy one of the elements of the obligation, like the condition, trigger or
deadline.

Such direct association would not be possible if these elements in the obligations were
to be expressed using propositional formulae. In that case, the satisfaction of an obliga-
tion’s element can be potentially influenced by a combination of tasks being executed. For
instance, assuming that the trigger of an obligation to be the formula a ^b , its satisfaction
can be achieved by executing two tasks, one introducing a in the process state, and another
introducing b . Moreover, we would also need to track whether no other tasks are executed
between those and removing such literals from the process state, which would not lead to
the satisfaction of the formula when the second task would be executed. The complication
brought by allowing formulae in the obligation’s elements would require knowing the exact
execution order of the tasks in order to determine whether an obligation is fulfilled. Fur-
thermore, this would be required for each possible execution order of the business process
model, which potentially leads to a intractability problem, as the number of executions of a
business process model is in general combinatorial with respect to the number of elements
composing the model.

Fulfilling Obligations

Before proceeding with the formal introduction of the different obligations, we first intro-
duce two syntactical shorthands to keep the subsequent definitions more compact.

Definition 14 (Syntax Shorthands). To avoid cluttering, we adopt the following shorthands:

• s 2 q such that s |= l is abbreviated as: sl

• A task-state pair appearing in a trace: (t,s) such that l 2 ann(t), is abbreviated as:
contain(l,s)

Note that an in force interval instance of an obligation, having l as trigger, is always
started from a state s , where contain(l,s) is true. Therefore, multiple in force intervals
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of an obligation can co-exist at the same time. However, multiple in force intervals can be
fulfilled by a single event happening in a trace, as shown in the following definitions.

An achievement obligation is fulfilled by a trace if the fulfilment condition holds at least
in one of the trace states when the obligation is in force.

Definition 15 (Comply with Achievement). Given an achievement obligation O
a hc, t, di

and a trace q , q is compliant with O
ahc, t,di if and only if: 8st , 9sc|contain(t,st) and st �

sc and ¬9sd |st � sd � sc.

A maintenance obligation, on the other hand, is fulfilled if the condition holds in each
of the states where the obligation is in force.

Definition 16 (Comply with Maintenance). Given a maintenance obligation O
m hc, t, di

and a trace q , q is compliant with O
mhc, t,di if and only if: 8st , 9sd |contain(t,st) and

st � sd and 8s |st � s � sd ,c 2 s .

The two types of obligations considered in this paper allow to represent a variety of obli-
gations existing in real world scenarios, like e.g requirements to achieve a certain condition
before a deadline, or maintaining a condition for a period of time. We do not claim that
the formalism adopted is sufficient to capture each possible requirement behaviour in real
world scenarios, such as for example an obligation whose applicability condition is related
to another obligation. In this paper, we do not consider these more complex behaviours,
as the additional behavioural complexity would require to explicitly analyse each possible
execution of a business process model in order to verify its compliance state.

5.2 On the Computational Complexity

Previously, we have discussed how the structural components of a business process model
contribute to the computational complexity of the problem of proving regulatory compli-
ance of business process models. In this subsection, we briefly discuss the impact of the
regulatory requirements on the computational complexity of the problem.

Regulatory Complexity

The amount of expressivity allowed into describing the regulatory requirements to be ver-
ified directly influences the computational complexity of the problem. The use of logical
formulae to represent the components of the regulatory requirements significantly influ-
ences the difficulty of finding a solution. As the components of the regulatory requirements
need to be checked against the process state, the use of logical formulae to represent such
components requires the exact execution history leading to a particular state, as any differ-
ence in the execution order can potentially lead to a different state and, hence, a differently
evaluated formula.

982



EFFICIENT FULL COMPLIANCE CHECKING OF CONCURRENT COMPONENTS. . .

However, relying on literals to represent the components of a regulations lifts the re-
quirement of having to know the exact execution history. As a consequence, the verification
can potentially be performed over the structure of the business process model, instead of the
full list of possible executions.

In this paper, we adopt regulatory requirements restricted to be represented using lit-
erals instead of formulae, which allows to focus on the structural components contributing
to the computational complexity of the problem. Despite the simplified regulatory require-
ments, however, Colombo Tosatto et al. [6] have shown that proving partial compliance5 of
a business process model against a set of regulatory requirements is still an NP-complete
problem.

5.3 Translating the Obligations

Instead of checking all subsequent literals over each possible path in the process to ensure
full compliance, we propose to verify whether a trace violates a given achievement obliga-
tion. The main advantage is that the conditions can then be verified directly on the process
model, so that it is no longer required to generate and analyse all possible traces. The failure
condition for achievement obligations is equivalent to the complement of Definition 15, as
shown formally below:

Definition 17 (Achievement Failure). Given an achievement obligation O
ahc, t,di and a

trace q , q is not compliant with O
ahc, t,di if and only if: 9st , sd |contain(t,st) and st �

sd and ¬9sc|st � sc � sd.

In order to compare the failure conditions and the business process model, we need
to standardise the two representations. As such, we transform the failure conditions into
so-called D-constraints, referring to the state update requirements ensuring that a given
obligation is violated when such constraints are met. Therefore, D-constraints only require
to prove the existence of a trace failing the fulfilment requirements, instead of proving that
each possible trace fulfils them.

Translation for Achievement

The following definition translates Definition 17 into its D-constraints representation, de-
scribing the required order of state updates proving that a process model contains an execu-
tion violating the given obligation. For convenience, we use tl to denote a task t such that
l 2 ann(t).

5Proving partial compliance requires to prove that a business process model contains at least one execution
that is compliant with a set of regulatory requirements.
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Definition 18 (Achievement Failure D-constraints). Given an achievement obligation
O

ahc, t,di and an execution e , e is not compliant with O
ahc, t,di, if and only if one of the

following conditions is satisfied:

1. 9tt such that:

9t¬c, td |t¬c � tt � td and
¬9tc|t¬c � tc � td and
9t¬d ,¬9td |t¬d � td � tt

2. 9tt such that:

9t¬c,¬9tc|t¬c � tc � tt and
9td ,¬9t¬d |td � t¬d � tt

t
¬d

¬c d
c

d
6

6

66

t
d

¬c

¬d

c

6
6

6
6

AD1 constraints AD2 constraints
Figure 8: Achievement constraints

Figure 8 provides a graphical representation of the D-constraints for achievement obli-
gations. The nodes represent annotations in the tasks and the arrows represent the ordering
relations that must be fulfilled by an execution of the process model to fulfil the D-constraint.
A slashed arrow denotes the required absence of the respective element in the interval iden-
tified by the surrounding elements.

Lemma 1. Given an achievement obligation, executing a task having the obligation’s trig-
ger annotated always results in the obligation being in force in the state after the task’s
execution, where the obligation can be potentially fulfilled or violated.

Proof. Sketch
Either the execution changes the previous state where t was not holding to one where it

is, or t had been holding already.
In the first case, the execution brings a new in force period for the obligation.
In the second case, either the obligation is in force and not fulfilled in the previous state,

or it becomes fulfilled in the previous state. In both cases, the execution of the task brings
the obligation in force again and requires to be fulfilled. ⇤
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Theorem 1. Given an execution e , represented as a sequence of tasks, if e satisfies either
of the Achievement Failure D-Constraints (Definition 18), then e violates the obligation
related to the Achievement Failure D-Constraints.

Proof. Soundness:
First case: Achievement Failure D-Constraint 1

1. From the hypothesis, and Definition 18, it follows that e satisfies the following con-
ditions:

(a) 9tt |9t¬c, td |t¬c � tt � td
(b) 9tt |¬9tc|t¬c � tc � td
(c) 9tt |9t¬d ,¬9td |t¬d � td � tt

2. From 1.(a), and Lemma 1, it follows that: t holds and c does not, in the state holding
after the execution of the task tt .

3. From 2., and 1.(b), it follows that: there is no state included between the state after
executing the task tt and one where d starts holding, where c holds.

4. From 3. and Definition 17, it follows that e would violate the obligation related to the
Achievement Failure D-Constraints.

Second case: Achievement Failure D-Constraint 2

1. From the hypothesis, and Definition 18, it follows that e satisfies the following con-
ditions:

(a) 9tt |9t¬c,¬9tc|t¬c � tc � tt
(b) 9tt |9td ,¬9t¬d |td � t¬d � tt

2. From 1.(a), and Lemma 1, it follows that t holds and c does not, in the state holding
after the execution of the task tt .

3. From 1.(b), it follows that t holds and d holds, in the state holding after the execution
of the task tt .

4. From 2. and 3., it follows that after executing the task tt , t and d hold and c does not
hold.

5. From 4. and Definition 17, it follows that e would violate the obligation related to the
Achievement Failure D-Constraints.
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Completeness:

1. Given a trace violating a given achievement obligation.

2. From 1. and Definition 17 it follows that 9st ,sd |contain(t,st) and st � sd and
¬9sc|st � sc � sd .

3. From 2., it follows that a task with t annotated is executed.

4. From 2., it follows that a task with d annotated is executed.

5. From 2., it follows that ¬c holds and no task with c annotated is executed between
the one with t and the one with d.

6. Following from 3., 4., and 5. two cases are possible:

td � tt this case is covered by the second set of conditions in Definition 18.
tt � td this case covered by the first set of conditions in Definition 18.

7. Thus, all cases are covered and a violating trace is always identified by the Achieve-
ment Failure D-constraints. ⇤

Translation for Maintenance
The translation is also applied to maintenance obligations. Definition 19 describes the fail-
ure condition for maintenance obligations, which is the complement of Definition 16. Def-
inition 20 describes the corresponding D-constraints.

Definition 19 (Maintenance Failure). Given a maintenance obligation O
mhc, t,di and a

trace q , q is not compliant with O
mhc, t,di if and only if:

9st8sd |contain(t,st) and st � sd and 9s¬c|st � s¬c � sd

Definition 20 (Maintenance Failure D-constraints). Given an achievement obligation
O

mhc, t,di and an execution e , e is not compliant with O
mhc, t,di if and only if one of the

following conditions is satisfied:

1. 9tt such that:

9t¬c,¬9tc|t¬c � tc � tt

2. 9tt such that:

9tc,¬9t¬c|tc � t¬c � tt and

8td(9t¬c|tt � t¬c � td)
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Figure 9: Maintenance constraints

Theorem 2. Given an execution e , represented as a sequence of tasks, if e satisfies either
of the Maintenance Failure D-Constraints (Definition 20), then e violates the obligation
related to the Maintenance Failure D-Constraints.

Proof. Soundness:
First case: Maintenance Failure D-Constraint 1

1. From the hypothesis, and Definition 20, it follows that e satisfies the following con-
dition:

(a) 9tt |9t¬c,¬9tc|t¬c � tc � tt

2. From 1.(a), and Lemma 1, it follows that: t holds and c does not, after the execution
of the task tt annotated.

3. From 2. and Definition 19, it follows that e would violate the obligation related to the
Maintenance Failure D-Constraints.

Second case: Maintenance Failure D-Constraint 2

1. From the hypothesis, and Definition 20, it follows that e satisfies the following con-
dition:

(a) 9tt |9tc,¬9t¬c|tc � t¬c � tt and

(b) 9tt |8td(9t¬c|tt � t¬c � td)

2. From 1.(a), and Lemma 1, it follows that t holds and c holds, in the state holding after
executing tt .

3. From 1.(b), and Lemma 1, it follows that after executing the tt , t it is always the case
that in the following states c stops holding before d starts holding.

4. From 2. it follows that after the execution of the task tt , c holds due to the constraint
preventing a task having ¬c annotated to be executed and cancelling c from the pro-
cess state, which is already holding due to the execution of a task with c annotated.
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5. From 3. it follows before the execution of any task having d in its annotation, a task
having ¬c annotated is executed, leading to the removal of c from the process state.

6. From 4. and 5. and Definition 19, it follows that e would violate the obligation related
to the Maintenance Failure D-Constraints.

Completeness:

1. Given a trace violating a given maintenance obligation.

2. From 1. and Definition 19 it follows that 9st 8sd | contain(t,s) and st � sd and
9s¬c|st � s¬c � sd .

3. From 2., it follows that a task with t annotated is executed.

4. From 2., it follows that a task with ¬c annotated is executed.

5. Following from 3., and 4. two cases are possible:

t¬c � tt case covered by the first set of conditions in Definition 20.

tt � t¬c case covered by the second set of conditions in Definition 20.

6. Thus, all cases are covered and a violating trace is always identified by the Mainte-
nance Failure D-constraints.

⇤

Verifying D-constraints

Verifying whether a business process model satisfies a D-constraint instead of the original
regulation is equivalent to looking for a counter-example falsifying whether a model is fully
compliance. Thus, if such an example cannot be found in any possible execution, then the
business process model is proven to be fully compliant. Note that every possible execution
is implicitly checked by analysing the decomposed business processes as partially ordered
sets, as discussed in Section 4.3.

Translation Complexity

Translating a given obligation in the corresponding set of D-constraints can be done in
constant time, since depending on the type of obligations, the D-constraints need to be
instantiated with the parameters of the obligation.
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6 Verifying Full Compliance

In this section, we show how full compliance is verified for a process model with respect to
a given regulation, by proving that the D-constraints are consistent with the set of partially
ordered set representations of a decomposed process.

In addition, we argue that extending the procedure to prove full compliance against a
set of regulations only requires to iterate the process over each obligation in the set, thus
increasing the complexity of proving compliance for a single regulation by a polynomial
factor.

6.1 Full Compliance

A trace is compliant with a set of obligations if it fulfils all obligations belonging to the set.
Note that according to Definitions 15 and 16 an obligation that is never activated by a trace
is considered to be fulfilled by such a trace.

Definition 21 (Set Fulfilment). Given a trace q and a set of obligations O= {w1, . . . , wn},
q `O, iff:

8wi 2O,(q ` wi)

Otherwise q 6`O.

Finally, a process model is said to be fully compliant with a set of obligations, if and
only if each of its executions fulfils each of the obligations belonging to the given set.

Definition 22 (Process Full Compliance). Given a process (P,ann) and a set of obligations
O.

• Full Compliance: (P,ann) `F
O

iff 8q 2 Q(P,ann),q `O.

6.2 D-constraints Verification

Given a partially ordered set representation of a decomposed business process model and
the D-constraints representation of a given obligation, we illustrate how the constraints can
be verified in the partially ordered sets, signifying that the original business process model
contains at least one execution failing the original obligation.

Relevant Tasks

The first step of the verification consists of populating the sets of relevant tasks. Each set
of relevant tasks contains the tasks having annotated a parameter of the obligation being
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checked. For instance, the set of relevant tasks for d contains every task in the business
process model having d annotated.

From Definition 18 and Definition 20, it follows that viable task sets are required for:
t, c, ¬c, d, and ¬d. These viable task sets are respectively represented as follows: T, C,
antiC, D, antiD. It follows from Definition 13 that the end task always belongs to D.

Algorithm

Intuitively, to prove whether a process model is not fully compliant with a given regulation,
we have to show that there exists a task in the process model having t annotated, and that
it is possible to find instantiations of the relevant tasks for the existential quantifiers6 in the
D-constraints satisfying their ordering conditions.

input : Relevant tasks: T, antiC, C, D, antiD and a partially ordered set representation of a decomposed business
process model P(P0)

output: Whether a partially ordered representation P contains an execution violating w by a trigger of t
1 for tt 2 T do
2 for t¬c 2 antiC do
3 for td 2 D do
4 if t¬c � tt � td compatible with P(P0) then
5 good = true;
6 for tc 2 C do
7 if t¬c � tc � td compatible with P(P0) then
8 good = false;

end
end

9 if good then
10 for t¬d 2 antiD do
11 if t¬d � tt then
12 good = true;
13 for t2d 2 D do
14 if t¬d � t2d � tt compatible with P(P0) then
15 good = false;

end
end

16 if good then
17 return true;

end
end

end
end

end
end

end
end

18 return false;
Algorithm 1: Achievement D-constraint 1 (AD1)

Algorithm 1 illustrates how to verify whether a partially ordered set representation of a

6In Definition 20, the universal quantifier can be understood as it is referring to the earliest happening
element quantified.
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decomposed business process model satisfies the first D-constraint for achievement obliga-
tions. Note that checking whether a given ordering of tasks is compatible with the ordering
of a partially ordered set, appearing in Algorithm 1 in lines 4, 7, and 14, can be done in
polynomial time.

Complexity of Algorithm 1

Let X be the number of tasks in P, and assuming the worst case scenario, where the car-
dinality of each relevant set is X. The computational complexity of Algorithm 1 is the
following:

O(|X|2 ⇥ (|X|+ |X|2))

Thus the computational complexity of Algorithm 1 is polynomial in time with respect to
the size of the process model. Algorithms to verify the other D-constraints closely resemble
Algorithm 17, hence we do not explicitly illustrate and discuss them in this paper. More-
over, as Achievement Failure D-Constraint 1 is the one containing more ordering conditions
(as shown in Definition 18 and Definition 20), the computational complexity of the other
algorithms not explicitly discussed is at most as high as Algorithm 1.

6.3 Proving Full Compliance

Algorithm 2 shows how the algorithms verifying whether the D-constraints are satisfied in a
decomposed business process model can be used to prove whether a business process model
is fully compliant with a given obligation.

input : An obligation w , a set of decomposed processes P and its viable task sets with respect to the obligation
output: Whether the process model corresponding to P is fully compliant with w
foreach decomposed process P0 2 P do

if w is achievement then
if AD1(T, antiC, C, D, antiD, P(P0)) then return false;
if AD2(T, antiC, C, D, antiD, P(P0)) then return false;

else
if MD1(T, antiC, C, D, antiD, P(P0)) then return false;
if MD2(T, antiC, C, D, antiD, P(P0)) then return false;

end
end
return true;

Algorithm 2: Proving Full Compliance

7Other D-constraints checking algorithms would be structurally equivalent to Algorithm 1, with the only
difference that the instantiations of the relevant tasks would be done on the ordering conditions of the other
D-constraints.
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Complexity of Algorithm 2

Let P be the set of the decomposed representations of the original process. The computa-
tional complexity of proving whether the process is compliant with a given regulation is the
following:

O(|P|⇥ (O(AD1)+O(AD2)+O(MD1)+O(MD2)))

As P can be potentially exponential in size with respect to the size of the original pro-
cess, we cannot claim that the complexity of Algorithm 2 is polynomial. However, as the
computational complexity of any brute force approach to solve regulatory compliance is
combinatorial with respect to the size of the problem (see Example 6), the proposed solu-
tion represents a more efficient approach as its computational complexity is exponential in
time with respect to the size of the problem.

Illustrating the Verification

Examples 9 and 10 show how the D-constraints allow to identify fully compliant processes
by analysing their executions. However, note that the thorough analysis of the executions
is given only for illustration purposes, reminding that the proposed approach in the paper
verifies the D-constraints directly on the partially ordered sets, as show by Algorithm 1.

Example 9 (Non-compliance). Consider the annotated business process depicted in Fig-
ure 3 and its corresponding partially ordered sets of Example 8. P0 denotes a concurrent
execution of t1 and t3 after start, followed by t4.

P0 allows two valid executions: e1: start, t1, t3, t4,end and e2: start, t3, t1, t4,end. We
substitute the task’s labels with their annotations, making it easier to observe whether the
D-constraints are fulfilled.
e1: (¬c,¬t,¬d), (c), (t), (), (d)
e2: (¬c,¬t,¬d), (t), (c), (), (d)

Similarly, P00 denotes a concurrent execution of t2 and t3 after start, followed by t4. As
such, P00 allows two valid executions:
e3: (¬c,¬t,¬d), (), (t), (), (d)
e4: (¬c,¬t,¬d), (t), (), (), (d)

Given an obligation O
ahc, t,di, applying the achievement patterns to e1, it is easy to

see that c exists before d. As such, Achievement Failure D-Constraint 1 fails, as it requires
the absence of c before d. Equivalently, there exists no d before t and Achievement Failure
D-Constraint 2 fails immediately as well. Similarly for e2.

For e3, there exists no d before t, as in e1 and e2. From start ¬c holds, continues to hold
through t2, and still holds when t occurs in t3. As t1 is not part of the trace, c does not occur
before d. Therefore, e3 fulfils the Achievement Failure D-Constraint 1 pattern and is, as a
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result, not compliant. This is similar for e4. Consequently, the process of Figure 3 is not
fully compliant.

Example 10 (Full compliance). Consider the following annotated business process model:

t1

t2 t3

t4
¬c ¬t ¬d

d

c t

d

Figure 10: Example of a compliant process

This process can be decomposed as follows:

1. P0 = SEQ(start,AND(t1,SEQ(t2, t3)), t4,end)

2. P00 = SEQ(start,AND( /0,SEQ(t2, t3)), t4,end)

The corresponding partially ordered sets for the two decomposed processes are the follow-
ing:

1. P
0 = ({start, t1, t2, t3, t4,end},{start � t1,start � t2, t1 � t4, t2 � t3, t3 � t4, t4 � end})

2. P
00 = ({start, t2, t3, t4,end},{start � t2, t2 � t3, t3 � t4, t4 � end})

P
0 allows three valid executions8:

e1: (¬c,¬t,¬d), (d), (c), (t), (), (d)
e2: (¬c,¬t,¬d), (c), (d), (t), (), (d)
e3: (¬c,¬t,¬d), (c), (t), (d), (), (d)
P
00 allows only one valid execution:

e4: (¬c,¬t,¬d), (c), (t), (), (d).
All four executions have c before t. Given two obligations: O

ahc, t,di and O
mhc, t,di,

the respective D-constraints Achievement Failure D-Constraint 1, Achievement Failure D-
Constraint 2 and Maintenance Failure D-Constraint 1 fail, as they require the absence of
c before t. Maintenance Failure D-Constraint 2 does have c before t, but also requires ¬c
between t and d for every d and fails, therefore, as well for all executions. As none of the
patterns apply to the process, we can conclude that the process is fully compliant.
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Nesting
Level 1 Level 2 Level 3 Executions Dec. Time Check T. Total Time

1 1 · AND2⇥5 – – 252 1 0.08 ms 0.04 ms 0.12 ms
2 1 · AND4⇥5 – – 1.17E+10 1 0.08 ms 0.05 ms 0.12 ms
3 2 · AND2⇥5 – – 63 504 1 0.07 ms 0.04 ms 0.11 ms
4 2 · AND4⇥5 – – 1.38E+20 1 0.08 ms 0.20 ms 0.29 ms
5 1 · AND2⇥5 1 · XOR2⇥5 – 194 480 4 0.06 ms 0.30 ms 0.36 ms
6 1 · AND4⇥5 1 · XOR4⇥5 – 3.43E+20 256 3.13 ms 2.21 ms 5.34 ms
7 1 · AND2⇥5 1 · AND2⇥5 – 2.55E+12 1 0.05 ms 0.14 ms 0.19 ms
8 1 · AND4⇥5 1 · AND4⇥5 – 1.27E+95 1 0.42 ms 2.85 ms 3.27 ms
9 1 · AND2⇥5 1 · XOR2⇥5 1 · AND2⇥5 2.30E+15 4 0.18 ms 0.85 ms 1.02 ms

10 1 · AND4⇥5 1 · XOR4⇥5 1 · AND4⇥5 1.11E+107 256 11.88 ms 120.50 ms 132.38 ms

Table 2: Evaluation models and performance.

7 Evaluation

We implemented the proposed method as a standalone Java tool. We tested our approach
over a set of synthetic process models of increasing complexity, up to the point where the
amount of concurrency is well beyond realistic business scenarios. The models consist of
a set of nested process constructs, which are either a structured AND-block or structured
XOR-block with n branches of m activities long. Each of the synthetic models is randomly
annotated, which ensures that one every three tasks in the model is annotated with a ran-
domly selected set of literals. Figure 11 shows the basic structure of the models.

CONSTRUCT
n⇥m

CONSTRUCT
n⇥m1

CONSTRUCT
n⇥mn

CONSTRUCT
n⇥m1

CONSTRUCT
n⇥mn

. . .

1 . . .

n
t1 tm

. . .

tm

Nesting
level 1

Nesting
level 2

Nesting
level 3

m

m

Figure 11: Synthetic process structure.

All tests were performed on a computer equipped with a quad core Intel R� CoreTM i7-
7700HQ CPU @ 3.80GHz, 16GB RAM, running Ubuntu 16.10 and Java 1.8.0_131. To
eliminate load times, each test was executed five times, where the average time of three
executions was recorded while removing the fastest and the slowest.

8We use again the tasks’ annotation instead of their labels to clearly show whether a D-constraint is satisfied.
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The results are shown in Table 2. The first three columns of the table contain details
about the process structure. The columns under Nesting contain information on the process
structure, by depicting for each nesting level the number of blocks, their type, the number
of branches, and the length of each branch. As such, the column Level 2 describes the
blocks nested in each branch of each block described in Level 1. Similarly, Level 3 contains
information of the blocks nested in each branch of each block in Level 2. The fourth col-
umn, Executions, describes how many different executions are hypothetically possible in the
given model when linearising the concurrent paths to indicate the theoretical complexity of
the models when adopting a brute force approach. The simplest model (1) has 252 possible
executions, while the most complex model (10) has 1.11E+107 possible executions.

The column Dec. contains the number of decomposed processes generated from the
original process and Time contains the time required for their generation. Finally, Check
T. contains the time required to solve all decomposed processes, and Total Time contains
the total time required by the procedure to obtain a result concerning the compliance of the
process. That is, it records the total time required for decomposition and evaluation of the
decomposed processes.

Existing approaches, such as Regorous [12], use brute force, thereby evaluating all pos-
sible executions. Regorous is able to solve the first process and third process from Table 2
in 23 seconds and 47 seconds, respectively. For the other processes, we stopped Regorous
after 10min, without being able to decide on the solution within the given time.

8 Conclusion

In this paper, we proposed an approach capable of efficiently verifying whether process
models comprising concurrency are fully compliant with a set of obligations. Some of the
key contributions of the proposed approach are the introduction of D-constraints, an alter-
native representation of the obligations used to specify the compliance requirements, and
the ability to verify whether a business process model is fully compliant directly analysing
its structure, without explicitly generating its executions. Compared to other approaches
trying to solve the compliance problem through brute force or using heuristics, our pro-
posed approach reduces the overall computational complexity of solving a sub-problem of
the compliance problem by using a divide an conquer approach, while still steering clear
from approximate solutions.

Although theoretically exponential in complexity (due to exclusive paths), we have em-
pirically shown that the combined approach is capable of solving highly complex processes
that are otherwise infeasible using existing brute force approaches. Even processes with
more than 250 possible paths and 1.11E+107 possible executions were checked within
132ms.
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However, the demonstrated performance gain does come at a tradeoff, as brute force
based approaches are capable of solving more expressive instances of the problem than our
approach, as we allow only literals and not formulae. While this limitation prevents us
from compliance checking with full regulatory specifications, it can be successfully used
for many aspects of structural compliance (i.e. conditions about the tasks appearing and
their mutual relationships). Despite the structural limitations over the process model, we
show how our solution can be combined with additional procedures in order to solve more
generic problems.

As future work, we plan to improve the current solution in order to be able to resolve
some of the current limitations. We reckon that a possibility to improve the current approach
is to investigate how the D-constraints introduced in the solution can be generalised, and
potentially reused in a more modular fashion to create efficient solutions for more generic
sub-problems of business process compliance.
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