
Efficient Exploration of Cyber-Physical System Architectures
Using Contracts and Subgraph Isomorphism

Yifeng Xiao∗, Chanwook Oh∗, Michele Lora†∗, Pierluigi Nuzzo∗
∗Dept. of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, US

†Dept. of Engineering for Innovation Medicine, University of Verona, Italy
{yifengx|chanwooo|nuzzo}@usc.edu, michele.lora@univr.it

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://https://www.doi.org/10.23919/DATE58400.2024.10546764

Abstract—We present ContrArc, a methodology for the ex-
ploration of cyber-physical system architectures aiming to min-
imize a cost function while adhering to a set of heterogeneous
constraints. We assume a system topology, defined as a graph,
where components (nodes) are selected from an implementation
library, and connections between components (edges) are drawn
from a finite set of possible connection choices. ContrArc uses
assume-guarantee contracts to formalize different viewpoints in
the system requirements, such as timing and power consumption,
as well as the interface of different components, and translate the
exploration problem into a mixed integer linear programming
problem. It then searches for efficient solutions by relying
on contract decompositions and a method based on subgraph
isomorphism to iteratively prune infeasible architectures out of
the search space. Experiments on a reconfigurable production
line and an aircraft power distribution network show up to two
orders of magnitude acceleration in architectural exploration
with respect to comparable approaches.

Index Terms—Assume-guarantee contracts, design space ex-
ploration, cyber-physical systems, subgraph isomorphism.

I. INTRODUCTION

Distinguished by their ability to process data and exe-
cute closed-loop control actions in real time, cyber-physical
systems (CPSs) have been deployed in various domains.
However, the design of CPSs remains challenging for several
reasons, a major one being the heterogeneous design space,
too large to be explored efficiently. We need comprehensive
frameworks enabling the exploration of multiple dimensions
of the design space, factoring in critical system requirements
in terms of timing, workload, and energy consumption, among
others, while enhancing interoperability, often hindered by the
proliferation of domain-specific languages and tools [1], [2].

Several approaches have been proposed to aid the design
of CPSs [3]. Among these, the ones based on assume-
guarantee (A/G) contracts have been shown to offer effective
and rigorous mechanisms for design abstraction and com-
position across heterogeneous domains, scalable requirement
analysis, and system verification via compositional reasoning
[4]–[6]. In the context of architecture exploration, effective
representations of system architectures have been proposed
in terms of parametrized graphs, leading to formulations of
the design problem as a mixed integer linear programming
(MILP) problem, for which efficient encodings and solution
strategies have also been devised [7]–[10]. However, as the
computational cost of solving MILP problems grows exponen-
tially with the size of the architecture, devising novel methods

This research was supported in part by the US NSF under awards 1846524
and 2139982, the ONR under award N00014-20-1-2258, the Okawa Research
Grant, and Siemens. It also received funding from the EU’s Horizon 2020
program under the Marie Skłodowska-Curie grant agreement no. 894237.

Fig. 1 Contract-based architecture exploration.

that can significantly reduce the exploration cost and enhance
scalability is highly desirable.

In this paper, we introduce , a contract-based methodology
for architecture exploration. Inspired by previous approaches
to architecture exploration, we also adopt a “lazy” coordi-
nation scheme between MILP solving and a procedure that
can generate infeasibility certificates to prune out invalid
candidates and accelerate the search [8]. The centerpiece of
our solution is, however, a novel certificate generation method
that combines a contract refinement checking procedure with
a subgraph isomorphism algorithm.

As shown in Fig. 1, given an initial template for the system
architecture, including a set of components and their possible
interconnections, a library of implementations, and the system
requirements, formally captures the requirements as well as
their allocation to the components in terms of A/G contracts,
and explores the design space by formulating a MILP prob-
lem. It first identifies a candidate architecture that satisfies
“local” interconnection and component-level requirements. It
then checks whether this candidate also satisfies “global”
system requirements via contract refinement checking. If the
refinement holds, returns the candidate architecture as the
optimal one. Otherwise, it leverages subgraph isomorphism to
identify similar invalid candidates and iteratively exclude them
from the search space by generating additional constraints for
the MILP problem.

Remarkably, can leverage contract-based decompositions
of architectures and requirements to enhance scalability in
two ways, by either breaking the original MILP problem or
the contract refinement checking problem into smaller sub-
problems. We evaluate the performance of on two kinds of
CPSs, a reconfigurable production line and an aircraft power

distribution network, showing up to two orders of magnitude
speedup with respect to comparable approaches.

II. PRELIMINARIES

We introduce below the main concepts used by .

A. Assume-Guarantee (A/G) Contracts
Let M denote a component, i.e., an element of a system,

characterized by a set of variables Vc and a set of behaviors
[[M]] over Vc. A contract C formally captures a set of
specifications for M using a triple C = (Vc, A,G), where A
and G are sets of behaviors over Vc. A is the assumptions on
the environment of M while G is the guarantees provided by
M , given that the assumptions are satisfied. We say that M is
a valid implementation of C, i.e., M |= C, if all the behaviors
of M are included in the guarantees given the assumptions of
C, i.e., [[M]] ⊆ G∪A. We say that component Ec is a valid
environment of C if all the behaviors of Ec are contained in
the assumptions of C. A contract is consistent if and only if
there exists a valid implementation, i.e., G∪A ̸= ∅, and it is
compatible if there exists a valid environment, i.e., A ̸= ∅.

The refinement relation between contracts allows reasoning
about the replaceability of a contract by another contract. A
contract C ′ can be replaced by a contract C when C refines
C ′, written C ⪯ C ′, i.e., C has weaker assumptions and
stronger guarantees. Contracts can be combined according to
different rules. The composition (⊗) of contracts can be used
to build a system-level contract out of multiple component-
level contracts. The conjunction (∧) of contracts can be
used to combine contracts capturing multiple viewpoints, e.g.,
timing, power, and workload. We use contract refinement to
evaluate whether a composition of component-level contracts
(selected via architectural exploration) meets the requirements
at the system level. We refer the readers to the literature for
further details [4].

B. Architecture Exploration
We build on a formal notion of system architecture in the

literature [8] as follows.

Definition 1 (System Architecture [8]). A system architecture
is a directed graph G = (V,E), where V denotes a set
of components (nodes) and E denotes a set of connections
(edges) between the components. Each node vi ∈ V represents
either a functional component or a connector in the system.
An edge ei,j ∈ E represents a connection from vi to vj , with
i, j ∈ {1, ..., |V |}, where |V | is the cardinality of V .

A template T = (VT, ET) is a system architecture assem-
bled from a set of labeled nodes VT , representing different
types of components, and potential interconnections ET be-
tween them. A node vi labeled with a type ki can be mapped
to implementations in the subset Lki of the implementation
library L. Each component node and implementation has a
set of attributes, such as cost, latency, and throughput.

Definition 2 (Graph Partition and Component Type [8]). A
partition Π = {Π1,Π2, ...} of an architecture G is a set of
nonempty subsets of V such that V is the disjoint union of
these subsets. The index ki for each Πki

represents the type,
e.g., source or sink. A node v ∈ Πki

with type ki can only be
mapped to an implementation in Lki , where L =

⋃
ki
Lki .

Fig. 2 Graph abstractions for the system architecture. Each
color represents a node type; circles and squares represent
components and implementations, respectively.

We frame the exploration problem by introducing binary
variables ei,j ∈ ET to denote the presence or absence of a
connection between components vi and vj in T. Implementa-
tions in L can also be represented as nodes that are connected
to nodes in T by mapping edges. We denote a mapping edge
as a binary variable mi,x which indicates the presence or
absence of a mapping from a node vi ∈ T with type ki to
its implementation vx ∈ Lki , x ∈ {1, ..., |Lki |} [7], [10]. The
mapping template Tmap = (VTmap

, ETmap
) augments VT with

all the implementations in L and ETmap
with all the possible

mappings from the nodes in T to the implementations in L.
As illustrated in Fig. 2, an assignment over all the edges ei,j
of T defines the selected template A; an assignment over all
the edges ei,j and mi,x in Tmap defines the selected mapping
Amap. Finally, we formalize the system requirements in terms
of: (i) a set of system-level contracts Cs := {Cd

s |d ∈ d} from
a viewpoint set d; and (ii) sets of component-level contracts
Cd := {Cd

i |vi ∈ VT} for each d in d. We further express
the sets A and G of the contracts with the corresponding
constraints ϕA and ϕG.

Problem 1 (Optimized Architecture Selection). Given a tem-
plate T, the library L, the system-level contracts Cs, the
component-level contracts Cd for each d from a viewpoint
set d, and a cost function c : R|ETmap | → R, select an
architecture that solves the following problem:

min
ei,j ,mi,x

c(ETmap) s.t.
∧

vi∈VT ,d∈d

(ϕAd
i
∧ ϕGd

i
),

⊗
vi∈VT

Cd
i ⪯ Cd

s , ∀d ∈ d.

The solution to Problem 1 will be derived by solving
three sub-problems (Problems 2, 3, and 4), described in the
following sections.

III. CONTRACT-BASED MODELING AND FORMALIZATION

We use A/G contracts to model and formalize both com-
ponent and system requirements and constraints.

A. Architecture Modeling and Interconnection Constraints

We can capture interconnection and mapping con-
straints [8], [10] for architecture components in terms of
contracts as follows. Consider, for example, a node vi selected

from a partition Πki
of an architecture. Let its predecessors

be in Πki−1, its successors in Πki+1, and its potential imple-
mentations in Lki . The assumptions for vi state that vi can
only be mapped to one implementation x if it has at least one
connection with other components. Under these assumptions,
the guarantees for vi ensure that the attributes are also mapped
and the following constraints hold: (i) there are at most M and
N connections to nodes in Πki−1 and Πki+1, respectively; (ii)
if there is at least one connection with a node in Πki−1, then
there must be at least one connection with a node in Πki+1

and vice versa. We then obtain the following interconnection
contract CC

i for vi:

ϕAC
i
:=((

∑
va∈Πki−1

ea,i+
∑

vb∈Πki+1

ei,b>0)→
∑

x∈Lki

mi,x=1)

∧((
∑

va∈Πki−1

ea,i+
∑

vb∈Πki+1

ei,b=0)→
∑

x∈Lki

mi,x=0),

ϕGC
i
:=

∧
j∈ui

(uj,i=
∑

x∈Lki

mi,xUj,x)∧
∑

va∈Πki−1

ea,i≤M

∧((
∑

va∈Πki−1

ea,i>0)→
∑

vb∈Πki+1

ei,b>0)∧
∑

vb∈Πki+1

ei,b≤N

∧((
∑

va∈Πki−1

ea,i=0)→
∑

vb∈Πki+1

ei,b=0),

where ui is the set of attributes for vi, and uj,i and Uj,x

are the values of attribute j for vi and its implementation
x, respectively. The variable uj,i takes the value of Uj,x

when mi,x evaluates to one and it is set to zero if vi is not
instantiated, i.e., mapped to an implementation.

B. Flow Requirements
Various system requirements deals with the flow across the

network of certain elements, e.g., power, products, or mes-
sages, that are delivered from the source to the sink nodes [8],
[10]. Each component can either generate or consume flow,
and the throughput sets a limit on the maximum flow that can
enter the component. We can express flow requirements for
vi with a flow contract CF

i of the form

ϕAF
i
:=fP

i ≥
∑

va∈Πki−1

ea,ifa,i ≥ fC
i ,

ϕGF
i
:=

∑
va∈Πki−1

ea,ifa,i + fS
i ≥

∑
vb∈Πki+1

ei,bfi,b + fC
i ,

where fa,i denotes the input flow from a component va, fi,b
denotes the output flow to a component vb, and fP

i , fS
i , fC

i
are the throughput, the flow generated by vi, and the flow
consumed by vi, respectively. In this contract, if the input
flow remains below the throughput, the sum of the input and
generated flows must at least equal the sum of the output and
consumed flows.

At the system level, we expect that the overall flow through
the system and the total consumption are bounded by FS

s and
FC
s , respectively. Assuming that the source and sink nodes of

the system are in partition Π1 and Πn, respectively, we obtain
the following contract CF

s :

ϕAF
s
:=

∑
va∈Π1

ea,sfa,s ≤ FS
s ,

ϕGF
s
:=

∑
va∈Π1

ea,sfa,s −
∑

vb∈Πn

es,bfs,b ≤ FC
s ,

where ea,s and es,b represent connections to a source node va
and a sink node vb, and fa,s and fs,b are the corresponding
input (from va) and output (to vb) flows.

C. Timing Requirements
Timing requirements define the time by which a flow

must reach a certain component. We specify the maximum
allowable latency for a component to execute a function
and the jitter, modeling variability in the latency. A timing
contract CT

i for component vi can then be defined as follows:

ϕAT
i
:=

∧
va∈Πki−1

(ea,i → |ta,i − τa,i| ≤ jIi),

ϕGT
i
:=

∧
vb∈Πki+1

(ei,b → |ti,b − τi,b| ≤ jOi)

∧
∧

va,vb

(ea,i ∧ ei,b → τi,b − ta,i ≤ li).

For edge ei,j , τi,j is the nominal time of occurrence of an
event while ti,j is the actual time due to the jitter. Assuming
that the input jitter does not exceed a maximum limit jIi , if a
component is connected, its operation time and output jitter
must be bounded by li and jOi , respectively.

Analogously, we can express system-level timing require-
ments from sources to sinks with a contract CT

s of the form

ϕAT
s
:=

∧
va∈Π1

(ea,s → |ta,s − τa,s| ≤ JI
s),

ϕGT
s
:=

∧
vb∈Πn

(es,b → |ts,b − τs,b| ≤ JO
s)

∧
∧

va,vb

(τs,b − ta,s ≤ La,b
s),

where La,b
s is the maximum latency between source va

and sink vb, τa,s and ta,s are the nominal and actual flow
generation times, τs,b and ts,b are the nominal and actual
consumption times, and JI

s and JO
s are bounds on the source

and sink jitters.

IV. CONTRACT-BASED ARCHITECTURE EXPLORATION

This section details the proposed optimization scheme.

A. MILP-Based Architecture Selection
We start by defining the architecture exploration problem

under component-level contracts.

Problem 2 (Candidate Architecture Selection). Given the
component-level contracts Cd for each d in d, select the
lowest cost candidate architecture Amap such that all the
contracts in

⋃
d∈d Cd are satisfied.

Problem 2 is encoded to the following MILP problem
providing an optimal system architecture that guarantees that
all the viewpoint contracts are also consistent and compatible:

min
ei,j ,mi,x

|VT |∑
i=1

αiβici s.t.
∧

vi∈VT ,d∈d

(ϕAd
i
∧ ϕGd

i
) ∧ ϕc,

(1)

where ϕAd
i

and ϕGd
i

are the contract assumptions and guaran-
tees for all viewpoints d ∈ d of component vi and ϕc is the
conjunction of constraints in set c generated from the infea-
sibility certificates in Problem 4, which initially evaluates to

Fig. 3 Example of candidate architecture from a template.

true (i.e., no constraints). We assume an additive cost function
c =

∑|VT |
i=1 αiβici, where ci is the cost associated with vi after

it is mapped to an implementation, αi is a user-defined weight,
βi is a binary variable that evaluates to one if and only if vi
is instantiated. The solution to Problem 2 is an assignment
to all the variables ei,j and mi,x, which provides the selected
mapping Amap as a candidate architecture. We include logical
operations in the above constraints for convenience. They
can all be translated into linear arithmetic expressions using
standard MILP encoding techniques [11].

B. Contract Refinement Checking

We cast a refinement problem to verify whether the candi-
date architecture satisfies the system-level requirements.

Problem 3 (Contract Refinement Verification). Given the
selected mapping Amap, the system-level contracts Cs, the
component-level contracts Cd for each viewpoint d in d,
check whether the composition of the contracts in Cd refines
Cd

s for each d. If the refinement fails for a viewpoint, return
an invalid architecture Gmap.

Given the composition Cd
c =

⊗
vi∈VA

Cd
i and the system

contract Cd
s for viewpoint d, we check that Cd

c ⪯ Cd
s by

solving a satisfiability problem. Refinement holds if and only
if ϕAd

c
∧ ¬ϕAd

s
and ϕGd

s
∧ ¬ϕGd

c
are both unsatisfiable [6].

Based on the nature of the requirements, refinement checking
can also be performed compositionally, which breaks the
verification problem into smaller sub-problems. This is the
case when system requirements are specified along paths, e.g.,
by defining bounds on path delays or power consumption
constraints on certain routes. For an in invalid path, the
infeasibility certificate generated in Problem 4 will also be
smaller, hence more effective at reducing the search space.

Definition 3 (Path). A path µ(va, vb) of a graph G is a
sequence of nodes {n(0), ..., n(k)} such that n(0) = va,
n(k) = vb, and ei,i+1 ∈ E for each i ∈ {0, ..., k − 1}.

Let Π1 and Πn be the source type and sink type partitions,
respectively. We can then search for all paths µ(va, vb) such
that va ∈ Π1 and vb ∈ Πn. For example, in the candidate
architecture of Fig. 3, three paths can be identified from Π1 =
{v1, v7} to Π4 = {v4, v6, v10}. For each such path Gmap gen-
erated from Amap, we can compute Cd

p =
⊗

vi∈µ(va,vb)
Cd

i

and check that Cd
p ⪯ Cd

s .
Algorithm 1 details the procedure. We first isolate the path-

specific viewpoint set dp from the other viewpoint set do (line
1). We then search for all paths from the source partition Π1

Algorithm 1 Compositional Refinement Verification

Require: Selected mapping Amap, Requirement viewpoints d, ∀d ∈ d: Component
contracts Cd, System contract Cd

s .
Provide: Invalid architecture Gmap, Violated viewpoint dv .
1: dp,do ← Identify path-specific viewpoints versus other viewpoints from d.
2: Π1,Πn ← Identify sources and sinks in Amap;
3: p← Search paths from Π1 to Πn;
4: for d in dp do
5: for µ in p do
6: Cd

p ←
⊗

vi∈µ Cd
i ;

7: if not Refine(Cd
p , C

d
s) then

8: Gmap ← Generate architecture from µ in Amap;
9: return Gmap, d

10: for d in do do
11: Cd

c ←
⊗

vi∈VA
Cd

i ;

12: if not Refine(Cd
c , C

d
s) then

13: return Amap, d

14: return ∅

to the sink partition Πn (line 2–3). For each viewpoint d ∈ dp,
we verify whether Cd

p ⪯ Cd
s along each path. If the refinement

is infeasible, we return the invalid path architecture Gmap and
d (line 4–9). Otherwise, we verify refinement for each of the
other viewpoints d on the entire architecture candidate and
return Amap and d if it is infeasible (line 10–13).

C. Subgraph Isomorphism-Based Certificate Generation

We use subgraph isomorphism to prune infeasible archi-
tectures. A graph G′ = (V ′, E′) is defined as a subgraph
of another graph G = (V,E) if and only if V ′ ⊆ V and
E′ ⊆ E. The problem of subgraph isomorphism is to extract
all subgraph isomorphic embeddings of G′ in G [12].

Definition 4 (Graph Isomorphism). Given graphs G =
(V1, E1) and H = (V2, E2), we say G is isomorphic to H if
there exists a bijection f : V1 → V2 such that {u, v} ⊆ E1 if
and only if {f(u), f(v)} ⊆ E2.

Problem 4 (Subgraph Isomorphism-Based Constraint Gen-
eration). Given the mapping template Tmap, the selected
mapping Amap, the invalid architecture Gmap and the vio-
lated viewpoint dv from refinement verification, generate a
constraint set c from subgraph isomorphism to exclude invalid
architecture candidates.

Intuitively, we match isomorphic embeddings of Gmap in
Tmap and exclude them in the MILP problem to prune
the search space. As detailed by Algorithm 2, if contract
refinement holds (Algorithm 1 returns ∅), we return the
architecture M, generated from Amap, as the optimal solution
of Problem 2. Otherwise, we first disconnect the implemen-
tation nodes from Tmap and Gmap (line 4) and match all
the subgraph isomorphic embeddings of G in T (line 5).
We then search the implementation nodes that violate the
system requirement from L (line 7–8) by comparing the
implementation attributes related to the violated viewpoint dv
with those in the original invalid candidate. For example, if the
latency requirement fails and less latency is expected in the
system, implementations with longer latency will also result in
an invalid architecture. We collect in L+

g the implementation
nodes violating the system requirements. For each isomorphic
embedding G′ in G, if G′ is a path architecture, we ensure
that G′ is not selected together with the implementations in
L+

g (line 12). Otherwise, we allow G′ to still be selected
with implementations from L+

g to satisfy the system-level

Algorithm 2 Generation of Subgraph Isomorphism-Based Constraints.

Require: Mapping template Tmap, Selected mapping Amap, Invalid architecture
Gmap, Violated viewpoint dv .

Provide: Set of constraints c or the selected architecture M.
1: if Gmap = ∅ then
2: M← Generate architecture from Amap;
3: return M;
4: T,G← Detach implementation nodes from Tmap and Gmap;
5: G← SubgraphIsomorphism(T,G);
6: c← ∅;
7: Lg ← Get selected implementation nodes from Gmap;
8: L+

g ← ImplementationSearch(Lg,L, dv);
9: for G′ in G do

10: m← Get mapping variables from nodes of G′ to L+
g ;

11: if Gmap ̸= Amap then
12: c← c ∪ {

∑
v∈E

G′∪m v < |EG′ |+ |VG′ |};
13: else
14: e← Get unselected edges in T that enter or exit from the subgraph G′;
15: c← c∪{

∑
v∈E

G′∪e v > |EG′ |∨
∑

v∈E
G′∪m v < |EG′ |+|VG′ |};

16: return c.

requirements of dv whenever other edges connecting to G′

exist in T (line 14–15).
As an example, consider the architecture in Fig. 3 and

assume that Gmap generated from path µ(v1, v6) with its
mappings to Lg = {va, vc, vf , vg} is invalid since it violates
a latency requirement. Assuming that the latency for each
implementation of v2 (in yellow) satisfies Lb ≥ Lc ≥ Ld ≥
Le, we obtain L+

g = {va, vb, vc, vf , vg}. Paths µ(v1, v4) and
µ(v7, v10) are isomorphic to µ(v1, v6), which generates three
constraints to prune the three architectures. For µ(v7, v10)
and corresponding G′, the constraint can be expressed as
(e7,8+e8,9+e9,10)+(ma,7+mb,8+mc,8+mf,9+mg,10) ≤
|EG′ | + |VG′ | = 7, meaning that path µ(v7, v10) and imple-
mentations from L+

g cannot be selected together at the next
iteration.

To summarize, solving Problems 2 (architecture selec-
tion for component-level contracts), 3 (refinement checking
for system-level contracts), and 4 (search space pruning)
iteratively is equivalent to solving Problem 1. In fact, the
constraints generated in Problem 4 at each iteration will only
exclude architectures that violate the system-level contracts
and the actual feasible space for the exploration problem
remains unchanged. Finally, can also utilize contract-based
decompositions to enhance efficiency by breaking the system
into subsystems and casting separate optimization problems.
We illustrate this approach in Section V-A.

V. EVALUATION RESULTS

We implemented using the Python interface provided by
CHASE [6] for formalization and modeling. We interfaced
our libraries with Gurobi [13], to solve the MILP problems
and check refinements, and with DotMotif [14], to identify
isomorphic subgraphs.

A. Reconfigurable Production Line (RPL)

We applied to the design of a reconfigurable production
line (RPL) system. An RPL includes a source (Src) that
provides elements of a product, machines (M) that process
these elements, and a sink (Sink). Machines are connected by
conveyors (C). Each component in the system is labeled with
a cost c and a subtype s. Nodes Src and M are characterized
by a flow rate fS and throughput fP , respectively. We
assemble products A and B on the left and right production
lines, respectively. Each line has two machines and three

TABLE I Template and library for the RPL example.

-

Type Max # in T Cost fS , fP (elements/min)
(A,B) ×103 A B AB

Source 1,1 0 12 10 -
Machine nA,nB {2, 3, ..., 15} 3, 6, 20 3, 5, 13 10
Conveyor nA,nB 0.5, 1 - - -

Sink 1,1 0 0 0 -

(a) RPL selected mapping (b) EPN selected template

Fig. 4 Architectures for the RPL and EPN case studies.

1 2 3 4 5

100

101

102

103

Problem Size (n)

R
un

tim
e

(s
)

ArchEx

(a) Comparison with ArchEx [7].

0 5 10 15 20
0

20

40

Problem Size (n)

R
un

tim
e

(s
)

Comp.
w/o. Comp.

(b) Impact of compositionality.

Fig. 5 Runtime as a function of the problem size.

conveyors along the path. The provided components and
implementations are shown in Table I, where nA and nB

are the problem parameters. Figure 4(a) depicts the selected
mapping for a scenario with nA = 3 and nB = 2 where the
red nodes are available components in T and the blue nodes
are implementations in L.

Figure 5(a) shows the results obtained by with respect to
ArchEx [7], a comparable system architecture exploration tool
based on effective MILP formulations. The horizontal axis
represents the maximum number of machines and conveyors
(nA=nB=n) in T while the vertical axis shows the runtime
of the exploration process. outperformed ArchEx in every
experiment, while finding optimal architectures with the same
cost. The runtime gap increases with the problem size.

We further evaluated the impact of compositional explo-
ration provided by . We partitioned the system and synthesized
each subsystem independently. We aggregated the production
line components of the line for product B to create Comb B,
connected to the conveyors in line A as shown in Figure 4(a).
Assuming a maximum throughput fP for Comb B, we first
synthesized the architecture of line A. Then, we synthesized
the architecture for line B, assuming the selected architecture
for line A. To check the compatibility between the selected
production lines A and B, it was sufficient to verify that
the composition of component-level contracts from line B
for each viewpoint refines the system-level contract defined

TABLE II Evaluation of the effectiveness of different solution methods on the EPN example with various templates.
Max # in T # of # of Only subgraph isomorphism Only decomposition Complete
(L,R,APU) variables constraints Time (s) # of iterations Time (s) # of iterations Time (s) # of iterations

1,0,0 454 195 0.57 3 0.58 3 0.56 3
2,0,0 1178 592 4.78 8 10.53 28 2.50 4
3,0,0 2280 1281 50.21 12 84.77 104 8.52 6
4,0,0 3868 2352 6.31×103 18 4.45×103 231 20.55 4

1,1,0 1138 576 11.18 22 10.72 24 9.15 24
2,1,0 2374 1383 4.09×103 93 4.82×102 320 27.12 20
2,2,0 4004 2508 2.73×104 152 5.59×103 1581 1.55×102 34

1,1,1 1294 666 62.79 85 13.89 30 16.26 31
2,1,1 2604 1532 1.57×102 56 1.99×102 168 40.94 26
2,2,1 4320 2726 2.35×103 60 3.87×103 1353 1.06×102 23

Average 4.04×103 50.9 1.07×103 384.1 38.67 17.5
Ratio 104.36 2.91 27.68 21.95 1.00 1.00

for Comb B. The runtime with and without compositional
exploration is shown in Fig. 5(b). Compositional exploration
becomes more effective as the problem size increases.

B. Aircraft Electrical Power Distribution Network (EPN)
We applied to the exploration of an aircraft electric power

distribution network (EPN). An EPN delivers power from
generators (GEN) to a set of loads via AC and DC buses.
Rectifier units (RU) are used to convert AC power to DC
power. A selected EPN template is shown in Figure 4(b).
Components are grouped based on their locations, i.e., on
the left (L) or right (R) side, with the following types:
generators (LG/RG/MG), where MG is used for auxiliary
power units (APU), AC buses (LB/RB), RUs (LR/RR),
DC buses (LD/RD), and loads (LL/RL). APUs can be
connected to both the left and right sides.

We aim to generate an EPN architecture that satisfies a
set of interconnection, power, and timing requirements while
minimizing the overall cost. We explore EPN systems with an
increasing number of components in the template, as detailed
in Table II. The “Max # in T” column indicates the number of
components on both the left and right side for each component
type, along with the number of APUs. For each type of
node, four implementations are provided in the library. The
“# of variables” and “# of constraints” columns report the
size of the MILP problem. We evaluated three scenarios:
(i) “only subgraph isomorphism” applies only the subgraph
isomorphism technique without any further decomposition
strategy; (ii) “only decomposition” involves only contract
decompositions for refinement checking while disabling the
subgraph isomorphism certificates; and (iii) “Complete ”
enables both methods.

As shown in Table II, the decomposition of the system
architecture reduced the complexity of the refinement check-
ing procedure, resulting in decreased runtime, while subgraph
isomorphism was capable of excluding all isomorphic embed-
dings in a single iteration, thus taking fewer iterations to find a
feasible architecture. achieved up to two orders of magnitude
acceleration, on average, compared to the “only subgraph
isomorphism” case, and it required 20 times fewer iterations
compared to the “only decomposition” case. When a template
consists of two sides, it tends to generate a larger search space,
which explains the difference in runtime between templates
with the same number of components, as in template “3,0,0”
versus “2,1,0”. Moreover, introducing an APU in the template
as an additional power source in the middle makes it easier to

satisfy the power supply requirements, which accounts for the
improvement observed for template “2, 1, 1” versus template
“2, 1, 0”.

VI. CONCLUSION

We presented , an efficient methodology for system archi-
tecture exploration based on A/G contracts. enables modeling
and exploration of system architectures compositionally as
well as methods using subgraph isomorphism to iteratively
prune infeasible architectures out of the search space. We
demonstrated its effectiveness on two case studies. Future
work includes extensions to incorporate contracts in different
formalisms and other graph-based algorithms to enhance
efficiency.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. IEEE
Int. Symp. Object Orient. Real Time Distrib. Comput., May 2008.

[2] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette et al.,
“Toward a science of cyber–physical system integration,” Proc. IEEE,
vol. 100, 2011.

[3] S. A. Seshia, S. Hu, W. Li et al., “Design automation of cyber-
physical systems: Challenges, advances, and opportunities,” IEEE
Trans. Comput.-Aided Design of Integr. Circuits and Syst., vol. 36, 2016.

[4] A. Benveniste, B. Caillaud, D. Nickovic et al., “Contracts for system
design,” Foundations and Trends in Electronic Design Automation,
vol. 12, 2018.

[5] P. Nuzzo, A. L. Sangiovanni-Vincentelli et al., “A platform-based design
methodology with contracts and related tools for the design of cyber-
physical systems,” Proc. IEEE, vol. 103, 2015.

[6] P. Nuzzo, M. Lora, Y. A. Feldman et al., “CHASE: Contract-based
requirement engineering for cyber-physical system design,” in Proc.
Design Autom. Test Europe, 2018.

[7] D. Kirov, P. Nuzzo, R. Passerone, and A. Sangiovanni-Vincentelli,
“ArchEx: An extensible framework for the exploration of cyber-physical
system architectures,” in Proc. Design Autom. Conf., 2017.

[8] P. Nuzzo, N. Bajaj, M. Masin et al., “Optimized selection of reliable
and cost-effective safety-critical system architectures,” IEEE Trans.
Comput.-Aided Design of Integr. Circuits and Syst., 2019.

[9] D. Kirov, P. Nuzzo, R. Passerone et al., “Optimized selection of wireless
network topologies and components via efficient pruning of feasible
paths,” in Proc. Design Autom. Conf., 2018.

[10] D. Kirov, P. Nuzzo, A. Sangiovanni-Vincentelli et al., “Efficient encod-
ings for scalable exploration of cyber-physical system architectures,”
IEEE Trans. Comput.-Aided Design of Integr. Circuits and Syst., 2023.

[11] W. L. Winston, Operations research: applications and algorithms.
Cengage Learning, 2022.

[12] F. Bi, L. Chang, X. Lin et al., “Efficient subgraph matching by
postponing cartesian products,” in Proc. Int. Conf. Management of Data,
2016.

[13] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[14] J. K. Matelsky, E. P. Reilly, E. C. Johnson et al., “DotMotif: an open-
source tool for connectome subgraph isomorphism search and graph
queries,” Scientific Reports, vol. 11, 2021.

