
Sequence analysis

A survey of BWT variants for string collections
Davide Cenzato 1,† and Zsuzsanna Lipt�ak 2,†,�

1Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, Venice, 30123, Italy
2Department of Computer Science, University of Verona, Verona, 37134, Italy
�Corresponding author. Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy. E-mail: zsuzsanna.liptak@univr.it (Zs.L.)
†Equal contribution.
Associate Editor: Peter Robinson

Abstract
Motivation: In recent years, the focus of bioinformatics research has moved from individual sequences to collections of sequences. Given the
fundamental role of the Burrows–Wheeler transform (BWT) in string processing, a number of dedicated tools have been developed for comput-
ing the BWT of string collections. While the focus has been on improving efficiency, both in space and time, the exact definition of the BWT
used has not been at the center of attention. As we show in this paper, the different tools in use often compute non-equivalent BWT variants:
the resulting transforms can differ from each other significantly, including the number r of runs, a central parameter of the BWT. Moreover, with
many tools, the transform depends on the input order of the collection. In other words, on the same dataset, the same tool may output different
transforms if the dataset is given in a different order.
Results: We studied 18 dedicated tools for computing the BWT of string collections and were able to identify 6 different BWT variants
computed by these tools. We review the differences between these BWT variants, both from a theoretical and from a practical point of view,
comparing them on eight real-life biological datasets with different characteristics. We find that the differences can be extensive, depending on
the datasets, and are largest on collections of many similar short sequences. The parameter r, the number of runs of the BWT, also shows
notable variation between the different BWT variants; on our datasets, it varied by a multiplicative factor of up to 4.2.
Availability and implementation: Source code and scripts to replicate the results and download the data used in the article are available at
https://github.com/davidecenzato/BWT-variants-for-string-collections.

1 Introduction
The Burrows–Wheeler transform (BWT) (Burrows and
Wheeler 1994) is a fundamental string transformation which
is at the heart of many modern compressed data structures
for text processing, in particular in bioinformatics
(Langmead et al. 2009, Li and Durbin 2010, Langmead and
Salzberg 2012). With the increasing availability of low-cost
high-throughput sequencing technologies, the focus has
moved from single strings to large string collections, such as
the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015), the 10 000 Genomes Project (Genome
10K Community of Scientists 2009), the 100 000 Human
Genome Project (Turnbull et al. 2018), the 1001 Arabidopsis
Project (The 1001 Genomes Consortium 2016), and the 3000
Rice Genomes Project (3K RGP) (Sun et al. 2017). This has
led to a widespread use of compressed data structures on
inputs which are collections of sequences, rather than individ-
ual sequences.

A number of tools have been developed in recent years for
computing the BWT of a collection (multiset) of strings. The
focus has been on efficiently processing datasets of ever in-
creasing sizes, but little attention has been paid to the actual
method used to compute the BWT. This is an issue, as the
BWT was originally defined for a single string, and it is not
immediately clear how to define it for a collection (multiset)
of strings. In fact, there exists more than one way to compute

a Burrows–Wheeler-type transform of multiple strings. Even
though all these methods maintain the properties necessary
for building string indexes on top of the BWT, such as revers-
ibility and LF-property, they differ in other, important, ways.

As we will show in this paper, different tools not only ap-
ply different algorithms to compute the BWT of the input col-
lection, but they output different transforms. Studying 18
publicly available tools, we identified six distinct BWT-var-
iants which are computed by these tools. The tools included
in this study are: BEETL (Bauer et al. 2013), BCR_LCP_GSA
(Bauer et al. 2013), ropebwt2 (Li 2014), nvSetBWT
(Pantaleoni 2014), msbwt (Holt and McMillan 2014),
Merge-BWT (Sir�en 2016), eGSA (Louza et al. 2017),
BigBWT (Boucher et al. 2019), bwt-lcp-parallel
(Bonizzoni et al. 2019), eGAP (Egidi et al. 2019), gsufsort
(Louza et al. 2020), G2BWT (D�ıaz-Dom�ınguez and Navarro
2021), grlBWT (D�ıaz-Dom�ınguez and Navarro 2023),
pfpebwt (Boucher et al. 2021a), cais (Boucher et al.
2021a), r-pfbwt (Oliva et al. 2023), CMS-BWT (Masillo
2023), and optimalBWT (Cenzato et al. 2023). In Table 1,
we give the BWT variants as computed by these 18 tools on a
toy example of five DNA-strings.

The size of BWT-based compressed data structures such as
the RLFM-index (M€akinen and Navarro 2005) or the r-index
(Gagie et al. 2020) is typically measured in the number of
runs (maximal substrings consisting of the same letter) of the

Received: 4 February 2024; Revised: 13 April 2024; Editorial Decision: 11 May 2024; Accepted: 23 May 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(7), btae333
https://doi.org/10.1093/bioinformatics/btae333
Advance Access Publication Date: 24 May 2024
Review

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/7/btae333/7681884 by U
niversity of Verona user on 12 August 2024

https://orcid.org/0000-0002-0098-3620
https://orcid.org/0000-0002-3233-0691
https://github.com/davidecenzato/BWT-variants-for-string-collections

BWT, commonly denoted r. This parameter r has become
central as a measure of the storage space required by these
data structures. Additionally, much recent research effort has
concentrated on the construction of data structures which
cannot only store but query, process, and mine strings in
space and time proportional to r (Bannai et al. 2020, Gagie
et al. 2020, Cobas et al. 2021, Oliva et al. 2021, Boucher
et al. 2024). Moreover, the parameter r (or the related n/r,
the average runlength of the BWT) is also being increasingly
seen as a measure of repetitiveness of the string or strings,
with several recent works theoretically exploring its suitabil-
ity as such a measure, as well as its relationship to other re-
petitiveness measures (Giuliani et al. 2021, Navarro 2021,
Kempa and Kociumaka 2022, Akagi et al. 2023). The param-
eter r is now also being used as a property of the dataset it-
self, e.g. (Bannai et al. 2020, Boucher et al. 2021b, Cobas
et al. 2021).

However, the number of runs varies between the different
BWT-variants, as can be seen on our toy example. This has im-
portant implications not only for the storage space required
for BWT-based compressed data structures, but also for claims
about the level of repetitiveness of the dataset. With competing
non-equivalent methods around, this measure is not well de-
fined. We will explore this question further (Section 4) and
suggest resolving the issue by standardizing the definition.

1.1 Overview of methods for defining multi-
string BWT
The classical way of computing text indexes of more than
one string is to concatenate them, adding a different end-
of-string-symbol at the end of each string, and then to com-
pute the index for the concatenated string. This is the method
traditionally used for generating classical data structures such
as suffix trees resp. suffix arrays for multiple strings, and
results in the so-called generalized suffix tree resp. general-
ized suffix array, see e.g. (Gusfield 1997, Ohlebusch 2013).
Applied directly, this method would lead to an unacceptable
increase in the size of the alphabet, from σ, often a small con-
stant in applications, to σþk, where k is the number of
strings in the collection, typically in the thousands or even
tens or hundreds of thousands. One way to avoid this is to
use only conceptually different end-of-string-symbols, i.e. to
have only one dollar-sign and apply string input order to

break ties. This is the method used by most tools, including
ropebwt2 (Li 2014), BCR (Bauer et al. 2013) (with a differ-
ent algorithm which results in the same output), and many
others. Another method to avoid increasing the alphabet size
is to separate the input strings using the same end-of-string-
symbol; in this case, a different end-of-string-symbol has to
be added to the end of the concatenated string to ensure cor-
rectness, as e.g. done by BigBWT (Boucher et al. 2019). An
equivalent solution is to concatenate the input strings without
removing the end-of-line or end-of-file characters, since these
act as separators; or to concatenate them without separators
and use a bitvector to mark the end of each string. Many
studies nowadays use string collections in experiments with-
out turning to dedicated tools for multi-string BWT, e.g.
(Bannai et al. 2020, Kuhnle et al. 2020, Puglisi and Zhukova
2021); often the input strings are turned into one single se-
quence using one of the methods described above, and then
the single-string BWT is computed; it is, however, not always
stated explicitly which was the method used to obtain one se-
quence. Underlying this is the implicit assumption that all
methods are equivalent.

In 2007, Mantaci et al. (2007) introduced the extended
Burrows–Wheeler transform (eBWT), which generalizes the
BWT to a multiset of strings. The eBWT, like the BWT, is re-
versible, and maintains other properties of the BWT such as
fast pattern matching functionality. The eBWT can handle
both linear and circular strings and is thus particularly well
applicable in bioinformatics, since many genomic sequences
are circular, including mitochondrial DNA, bacterial, and
some viral DNA (Boucher et al. 2024).

Since then, however, the term “extended BWT” has come
to be used as a generic term to denote the BWT of a collection
of sequences. This is unfortunate, as the eBWT has several
properties, such as independence from the input order, which
the other methods do not share; and it is defined using a dif-
ferent order relation from the classical BWT (see Section 2).

Two of the tools listed compute the eBWT according to the
original definition, pfpebwt and cais, both (Boucher et al.
2021a). The very recent software lFGSACA (Olbrich et al.
2024, in press), which was brought to our attention during the
review process, also computes the original eBWT; it is, however,
a Cþþ library rather than a command-line tool. All other tools
listed append an end-of-string character to the input strings,

Table 1. Overview of some properties of the six BWT variants considered in this paper and the tools computing them.a

a The colors in the example BWTs correspond to interesting intervals in separator-based variants; the same characters are highlighted in the eBWT to
show their positions, see Section 3.2. (We included lFGSACA, which also computes the eBWT, in brackets, since it is a library and not a command-line tool,
as opposed to all others listed.)

2 Cenzato and Lipt�ak
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/7/btae333/7681884 by U

niversity of Verona user on 12 August 2024

explicitly or implicitly, and as a consequence, the resulting trans-
forms differ from the one defined in Mantaci et al. (2007).
Moreover, the output in most cases depends on the input order
of the sequences (except for those tools that compute what we
term dolEBWT, colexBWT, or optBWT, see Section 3). The ex-
act nature of this dependence differs from one transform to an-
other. The result is that the BWT variants computed by different
tools on the same dataset, or by the same tool on the same data-
set but given in a different order, may vary considerably.

1.2 Multidollar BWT
The BWT-variant which we term mdolBWT is the most gen-
eral one, in the sense that all others, except for the eBWT,
can be simulated by mdolBWT. This is also the variant out-
put by most tools, and it is dependent on the input order:
both the transform itself and the number of runs varies
depending on the order in which the strings are concatenated.
Bentley, Gibney, and Thankachan recently gave a linear-time
algorithm for computing mdolBWT with the minimum num-
ber of runs amongst all input string orders (Bentley et al.
2020). (The same paper includes an NP-hardness result re-
garding finding the best order on the alphabet, which is a dif-
ferent problem.) In order to study the variation of the
parameter r, we first implemented a variant of this algorithm
counting the minimal number of runs, which later led to a
new tool, optimalBWT, computing the optBWT (Cenzato
et al. 2023). We use this tool in our experiments as a baseline
for the number of runs of the other BWT-variants. On our
real-life biological datasets, the parameter r varies by up to a
multiplicative factor of 4.2 between the different variants. It
was shown in Cenzato et al. (2023) that an improvement by
a multiplicative factor of up to 31 can be obtained between
the input order and optBWT, again on real-life biologi-
cal datasets.

1.3 What is not covered
This paper deals with tools for string collections, so we did
not include any tool that computes the BWT of a single
string, such as libdivsufsort, sais-lite-lcp, libsais, or bwtdisk
(Ferragina et al. 2012). Although in many cases, these are the
tools used for collections of strings, the transform they com-
pute depends on the method with which the string collection
was turned into a single string, as explained above. Nor did
we include other BWT variants for single strings such as the
bijective BWT (Gil and Scott 2012, K€oppl et al. 2020), since,
again, these were not designed for string collections.

We did not include Big-xBWT (Gagie et al. 2021), a tool for
compressing and indexing read collections, which computes
the xBWT of Ferragina et al. (2005, 2009), and requires a ref-
erence sequence in addition to the string collection. The xBWT
is not necessarily a permutation of the input characters. Nor is
the tool (Ohlebusch et al. 2018) for reference-free xBWT in-
cluded in this review: even though it does not require a refer-
ence sequence, it, too, computes the xBWT and not the BWT.
Finally, we did not include (Cazaux and Rivals 2019), since its
method for concatenating the input strings (using the same
separator symbol but without an additional end-of-string char-
acter) has not been implemented.

1.4 Our contributions

1) We identify six distinct BWT variants which are com-
puted by 18 publicly available tools, specifically

designed for string collections. We formally describe the
differences between these, identifying specific intervals
to which differences are restricted.

2) We describe the impact on the number r of runs of the
BWT and give an upper bound on how much the colexi-
cographic order (sometimes referred to as “reverse lexi-
cographic order”) can differ from the optimal order of
Bentley et al. (2020).

3) We complement our theoretical analysis with extensive
experiments, comparing the BWT variants on eight real-
life datasets with different characteristics.

4) We suggest a way of standardizing the parameter r, thus
showing how to eliminate the ambiguity caused by the
presence of different BWT-variants.

To the best of our knowledge, this is the first systematic study
of the different BWT variants in use for collections of strings.
In the following, we give the necessary definitions in Section
2. In Section 3, we present the BWT variants and analyze
their differences; we discuss the effects on the repetitiveness
measure r in Section 4. A summary of our experimental
results is given in Section 5. We draw some conclusions from
our study in Section 6. Proofs, details of the experimental
setup, along with the full tables with detailed results on all
eight datasets are included in the Supplementary Material.
Source code and scripts to replicate the results and download
the data used in the article are available at https://github.
com/davidecenzato/BWT-variants-for-string-collections.

A preliminary version of this article appeared in Cenzato
and Lipt�ak (2022).

2 Preliminaries
Let Σ be a finite ordered alphabet of size σ. We use the nota-
tion T ¼ T½1::n� for a string T of length n over Σ, T½i� for the
ith character, and T½i::j� for the substring T½i� � � �T½j� of T,
where i ≤ j; the length of T is denoted jTj, and the empty
string is denoted ε. For a string T over Σ and an integer
m>0, we write T m for the m-fold concatenation of T. A
string T is called primitive if T ¼Um implies T¼U and
m¼1. Every string T can be written uniquely as T ¼Um,
where U is primitive; in this case, we refer to U as rootðTÞ
and to m as expðTÞ. In other words, for every string T it holds
that T ¼ rootðTÞ expðTÞ. Often, an end-of-string character
(usually denoted $) is appended to the end of T; this charac-
ter is not an element of Σ and is smaller than all characters
from Σ. Note that appending a $ makes any string primitive.

String S is a conjugate of string T if S¼ T½i::n�T½1::i −1� for
some i 2 f1; . . . ;ng (also called the ith rotation of T). It is easy
to see that a string of length n has n distinct conjugates if and
only if it is primitive. A run in string T is a maximal substring
consisting of the same character; we denote by runsðTÞ the
number of runs of T. For example, runsðCAAGGGAÞ ¼ 4.

For two strings S,T, the (unit-cost) edit distance, or
Levenshtein distance, disteditðS;TÞ is defined as the minimum
number of operations necessary to transform S into T, where
an operation can be deletion or insertion of a character, or
substitution of a character by another. The Hamming dis-
tance distHðS;TÞ, defined only if jSj ¼ jTj, is the number of
positions i such that S½i� 6¼ T½i�. The lexicographic order on Σ�
is defined as follows: S< lexT if S is a proper prefix of T, or if
there exists an index j s.t. S½j�<T½j� and for all i< j, S½i� ¼ T½i�.
The colexicographic order, or colex-order (referred to as

A survey of BWT variants for string collections 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/7/btae333/7681884 by U
niversity of Verona user on 12 August 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae333#supplementary-data
https://github.com/davidecenzato/BWT-variants-for-string-collections
https://github.com/davidecenzato/BWT-variants-for-string-collections

reverse lexicographic order or rlo in Li (2014) and Cox et al.
(2012)), is defined as follows: S< colexT if Srev< lexTrev, where
Xrev ¼X½n�X½n −1� � � �X½1� denotes the reverse of the
string X¼X½1::n�.

For a string T ¼ T½1::n� over Σ, the BWT (Burrows
and Wheeler 1994), BWTðTÞ, is a permutation of the charac-
ters of T, given by concatenating the last characters of
the lexicographically sorted conjugates of T. In Table 2,
we give two examples: BWTðCAGAGAÞ ¼ GGCAAA, and
BWTðCAGAGA$Þ ¼ AGGC$AA.

It follows from the definition of the BWT that two strings
S, T are conjugates if and only if BWTðSÞ ¼ BWTðTÞ. Indeed,
the BWT is reversible up to conjugates: if a string L is the
BWT of some string T, then a string S can be computed in lin-
ear time such that L¼ BWTðSÞ, and thus S is a conjugate of
T. To make the BWT uniquely reversible, one can add an in-
dex to it, marking the lexicographic rank of the conjugate in
input. For example, BWTðCAGAGAÞ ¼ GGCAAA, and the in-
dex 4 specifies that the input was the 4th conjugate in lexico-
graphic order. Alternatively, one adds a $ to the end of T,
which makes the input unique: BWTðCAGAGA$)¼AGGC$AA,
and CAGAGA$ is the only string ending in $ with this BWT.
Note on the example that BWT with and without end-of-
string symbol can be quite different.

An important parameter of the BWT of string T is the num-
ber of runs rðTÞ ¼ runsðBWTðTÞÞ. It is well-known that on re-
petitive inputs, the BWT tends to produce long runs of the
same character, making it amenable to compression via
runlength-encoding (RLE). In our example, rðCAGAGAÞ ¼ 3,
while the original string has 6 runs. This property, referred to
as the clustering effect of the BWT, is taken advantage of by
compressed data structures such as the RLFM-index (M€akinen
and Navarro 2005) or the r-index (Gagie et al. 2020).

Next we define the omega-order (Mantaci et al. 2007) on
Σ�: S�ω T if rootðSÞ ¼ rootðTÞ and expðSÞ< expðTÞ, or if
Sω< lex Tω (implying rootðSÞ 6¼ rootðTÞ), where Tω denotes
the infinite string obtained by concatenating T infinitely
many times. The omega-order relation coincides with the lex-
icographic order if neither of the two strings is a proper pre-
fix of the other. The two orders can differ otherwise, e.g.
GT< lex GTC but GTC�ω GT.

For a multiset of strings M¼ fT1; . . . ;Tkg, the eBWT,
eBWTðMÞ (Mantaci et al. 2007), is a permutation of the
characters of the strings in M, given by concatenating the
last characters of the conjugates of each Ti, for i¼ 1; . . . ;k,
listed in omega-order. For example, the omega-sorted conju-
gates of M¼fGTC;GTg are: CGT, GTC, GT, TCG, TG,
hence, eBWTðMÞ ¼ TCTGG, see Table 2. Again, adding the
indices of the input conjugates, in this case 2 and 3, makes
the eBWT reversible, see Mantaci et al. (2007) for details.

3 BWT variants for string collections
We identified six distinct transforms, listed below, which were
computed by the tools given in Table 1. Let M¼ fT1; . . . ;Tkg

be a multiset of strings, with total length NM ¼
Pk

i¼1
jTij. Since

several of the data structures depend on the order in which the
strings are listed, we implicitly regard M as a list ½T1; . . . ;Tk�,
and write ρðMÞ for a specific input order ρ.

1) extended BWT: eBWTðMÞ of Mantaci et al. (2007) (see
Section 2)

2) dollar-eBWT: dolEBWTðMÞ ¼ eBWTðfTi$jTi 2MgÞ

3) multidollar BWT: mdolBWTðMÞ ¼ BWTðT1$1T2$2
� � �Tk$kÞ, where dollars are assumed to be smaller than
characters from Σ and $1<$2< . . . <$k

4) colexicographic BWT: colexBWTðMÞ ¼mdolBWTðγðMÞÞ,
where γ is the colexicographic (“reverse lexicographic,”
rlo) order of the strings in M.

5) optimal BWT: optBWTðMÞ ¼mdolBWTðoptðMÞÞ,
where optðMÞ is the order given by the algorithm of
Bentley et al. (2020), which minimizes the number of
runs (see Section 4 for details).

6) concatenated BWT: concBWTðMÞ ¼ BWTðT1$T2$ � � �
Tk$#Þ, where #<$.

Because all BWT variants except the eBWT use additional
end-of-string symbols as string separators, we refer to these
by the collective term separator-based BWT variants. In
Table 1, we show the six transforms on our running example
of five DNA-strings, and give first properties of these trans-
forms. For ease of exposition and comparison, we replaced
all separator-symbols by the same dollar-sign $, even where,
conceptually or concretely, different dollar-signs are assumed
to terminate the individual strings. This is the case for
mdolBWT and its special cases, colexBWT and optBWT.
Moreover, the concBWT contains one additional character,
the final end-of-string symbol, here denoted by #, which is
smaller than all other characters; thus, the additional rotation
starting with # is the smallest and results in an additional dol-
lar in the first position of the transform. To facilitate the
comparison with the other transforms, we remove this first
symbol from concBWT and replace the # by $.

It is important to point out that the programs listed in
Table 1 do not necessarily use the definitions given here;
however, in each case, the resulting transform is the one
claimed, up to renaming or removing separator characters,
see Sections 3.1 and 3.2.

3.1 The effect of adding separator symbols
The first obvious difference between the eBWT and the
separator-based variants is their length: eBWTðMÞ has length
NM, while all other variants have length NMþk, since they
contain an additional character (the separator) for each in-
put string.

In all separator-based transforms, the k-length prefix con-
sists of a permutation of the last characters of the input
strings. This is because the rotations starting with the dollars
are the first k lexicographically. On the other hand, in the
eBWT, these k characters occur interspersed with the rest of
the transform; namely, in the positions corresponding to the
omega-ranks of the input strings Ti (see Tables 1 and 3).

In general, adding a $ to the end of the strings introduces a
distinction, not present in the eBWT, between suffixes and

Table 2. BWT of the strings CAGAGA and CAGAGA$, and eBWTof the
string collections fGTC, GTg, and fGTC$,GT$g.

CAGAGA BWT CAGAGA$ BWT fGTC,
GTg

eBWT fGTC$,
GT$g

eBWT

ACAGAG G $CAGAGA A CGT T $GT T
AGACAG G A$CAGAG G GTC C $GTC C
AGAGAC C AGA$CAG G GT T C$GT T
CAGAGA A AGAGA$C C TCG G GT$ $
GACAGA A CAGAGA$ $ TG G GTC$ $
GAGACA A GA$CAGA A T$G G

GAGA$CA A TC$G G

4 Cenzato and Lipt�ak
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/7/btae333/7681884 by U

niversity of Verona user on 12 August 2024

other substrings: since the separators are smaller than all
other characters, occurrences of a substring as suffix will be
listed en bloc before all other occurrences of the same sub-
string, while in the eBWT, these occurrences are listed inter-
spersed with the other occurrences of the same substring.

Example 1. Let M¼ fAACGAC, TCACg and U ¼ AC. U
occurs both as a suffix and as an internal factor; the
characters preceding it are A (internal substring) and
C,G (suffix), and we have eBWTðMÞ ¼
CGACATAACC, dolEBWTðMÞ ¼ CC$GCAAATAC$.

Finally, it should be noted that adding end-of-string sym-
bols to the input strings changes the definition of the order
applied. As observed above, the omega-order coincides with
the lexicographic order on all pairs of strings S;T where nei-
ther is a proper prefix of the other; but with end-of-strings
characters, no input string can be a proper prefix of another.
Thus, on rotations of the Ti$’s, the omega-order equals the
lexicographic order. As an example, consider the multiset
M¼ fGTC$, GT$g from Section 2: we have the following
omega-order among the rotations: $GT, GTC, CGT,
GT$, GTC$, TG, TCG (see Table 2), which coincides with
the lexicographic order. Similarly, adding different dollars
$1, $2, …, $k and applying the omega-order results again in
the lexicographic order between the rotations, with different
dollar symbols considered as distinct characters. This implies:

Lemma 1. Let M¼fT1;T2; . . . ;Tkg be a string
collection. Then

1) dolEBWTðMÞ ¼mdolBWTðlexðMÞÞ, where lexðMÞ
denotes the lexicographic order of the strings in M;

2) mdolBWTðMÞ ¼ eBWTðfTi$i j i¼ 1; . . . ;kgÞ, up to
renaming of dollars.

Regarding the differences among the separator-based BWT
variants, we will show that all differences occur in certain
well-defined intervals of the BWT, and that the differences
themselves depend only on a specific permutation of
f1; . . . ;kg, given by the combination of the input order, the
lexicographic order of the input strings, and the BWT variant
applied. In Table 3, we give the full BWT matrices for all
separator-based BWT variants.

3.2 Interesting intervals
Let us call a string U a shared suffix w.r.t. multiset M if it is
the suffix of at least two strings in M. Let b be the lexico-
graphic rank of the smallest rotation beginning with U$ and
e the lexicographic rank of the largest rotation beginning
with U$, among all rotations of strings T$, where T 2M.
(One can think of ½b; e� as the suffix-array interval of U$.)
We call ½b; e� an interesting interval if there exist i 6¼ j s.t. U is
a suffix of both Ti and Tj, and the preceding characters in Ti

and Tj are different, i.e. the two occurrences of U as suffix of
Ti and Tj constitute a left-maximal repeat. (Put in different
terms, interesting intervals correspond to internal nodes in
the suffix tree of the reverse string, within the subtree of $.)
Clearly, ½1;k� is an interesting interval unless all strings end
with the same character. Note that interesting intervals differ
both from the SAP-intervals of Cox et al. (2012) and from
the tuples of Bentley et al. (2020) [called maximal row ranges
in Manzini (2016)]: the former are the intervals correspond-
ing to all shared suffixes U, even if not left-maximal, while
the latter include also suffixes U that are not shared.

Lemma 2. Any two distinct interesting intervals
are disjoint.

We can now narrow down the differences between any
two separator-based BWTs of the same multiset. The next
proposition states that these can only occur in interesting

Table 3. From left to right we show the eBWT, the dolEBWT, the mdolBWT, the colexBWT, the optBWT, and the concBWT of the string
collection M¼ fATATG;TGA;ACG;ATCA;GGAg.a

a Indices are given with reference to the numbering T1 ¼ ATATG;T2 ¼ TGA;T3 ¼ ACG;T4 ¼ ATCA;T5 ¼ GGA. Note that we give the rotations according to
Lemma 1.

A survey of BWT variants for string collections 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/7/btae333/7681884 by U
niversity of Verona user on 12 August 2024

intervals (part 1). This implies that the dollar-symbols appear
in the same positions in all separator-based variants except
for one very specific case (part 2). Moreover, we get an upper
bound on the Hamming distance between two separator-
based BWTs (part 3).

Proposition 1. Let L1 andL2 be two separator-based BWTs
of the same multiset M.

1) If L1½i� 6¼ L2½i� then i 2 ½b; e� for some interesting
interval ½b; e�.

2) Let I1 resp. I2 be the positions of the dollars in L1 resp.
L2. If I1 6¼ I2 then there are i 6¼ j such that Ti is a
proper suffix of Tj.

3) distHðL1;L2Þ≤
P
½b;e� interestingðe−bþ1Þ.

Proposition 1 implies that the variation of the different
transforms can be explained based solely on what rule is used
to break ties for shared suffixes. We will see next how the dif-
ferent BWT variants determine this tie-breaking rule.

4 Effects on the parameter r
What is the effect of the differences in the BWT variants on
the number of runs of the BWT? As the following example
shows, the number of runs can differ significantly between
different variants.

Example 2. Let M¼fAAAA;AGCA;GCAA;GTCA;CAAA;
CGCA;TCAA;TTCAg. Then there are 28 runs
in mdolBWTðMÞ ¼
AAAAAAAAACACACACACACAC$$GTGTGT$$
AC$$GT$$; colexBWTðMÞ ¼
AAAAAAAAAAAACCCCAACCAC$$GGTTGT$$
AC$$GT$$ has 18 runs.

The results of Section 3 give us a method to measure the
degree to which the BWT variants can differ.

Lemma 3. Let ½b; e� be an interesting interval, and
ðn1; . . . ;nσÞ the Parikh vector of L½b::e�, i.e. ni is the
number of occurrences of the ith character. Let a be
such that na ¼maxini, and Na ¼ ðe −bþ1Þ−na,
the sum of the other character multiplicities.
Then the maximum number of runs in interval
½b; e� is e −bþ1 if na −1≤Na, and 2Naþ1 otherwise.

Definition 1. Let M be a multiset and varð½b;e�Þ be the
bound on number of runs in ½b; e� from Lemma 3. The
variability of M is

varðMÞ ¼

P
½b;e� interesting varð½b; e�Þ

P
½b;e� interestingðe − bþ1Þ

:

The colexBWT has been shown experimentally to yield
a low number of runs of the BWT (Cox et al. 2012, Li 2014).
This is because it groups the characters in the interesting
intervals in at most σ runs. Even though it does not always
minimize r, we can bound its distance from the optimum.

Proposition 2. Let L be the colexBWT of multiset M,
and let rOPT denote the minimum number of runs
of any separator-based BWT of M. Then
runsðLÞ≤ rOPTþ2 � cM, where cM is the number of
interesting intervals.

The algorithm of Bentley et al. (2020) for the optimal order
for mdolBWT is based on the idea of starting from the colex-
order and then adjusting, where possible, the order of the
runs within interesting intervals in order to minimize charac-
ter changes at the borders, i.e. such that the first and the last
run of each interesting interval is identical to the run preced-
ing and following that interesting interval. This is equivalent
to sorting groups of sequences sharing the same left-maximal
suffix. This sorting can be done on each interesting interval
independently without affecting the other interesting inter-
vals. In Table 3, we show the result on our toy example,
where it reduces the number of runs by 2 w.r.t. colex order.
In the next section, we compare the number of runs of the
non-separator based BWT variants to the optimum.

5 Experimental results
We computed the five BWT variants eBWT, dolEBWT,
mdolBWT, concBWT, and colexBWT, on eight different ge-
nomic datasets. We used the tool optimalBWT to compute
the minimum number of runs (i.e. that of optBWT) and used
this as a baseline for comparison with the r parameter of the
other BWT-variants. For mdolBWT and concBWT, we used
the default input order in which the dataset was downloaded.
The eight datasets have different characteristics: four contain
short reads [SARS-CoV-2 short (Starr et al. 2020), Simons
Diversity reads (Mallick et al. 2016), 16S rRNA short
(Winand et al. 2019), Influenza A reads (Van den Hoecke
et al. 2015)], and four long sequences [SARS-CoV-2 long
(Greaney et al. 2022), 16S rRNA long (Edgar 2018),
Candida auris reads (Woodworth et al. 2019), SARS-CoV-2
genomes (Boucher et al. 2021a)], with the last being whole vi-
ral genomes.

On each of the datasets, we computed the pairwise
Hamming distance between separator-based BWTs. To com-
pare them to the eBWT, we computed the pairwise edit dis-
tance on a small subset of the sequences (for computational
reasons), and the Hamming distance on the small set, for
comparison. We generated the following statistics on each of
the datasets: number of interesting intervals, fraction of posi-
tions within interesting intervals (total length of interesting
intervals divided by total length of the dataset), and the data-
set’s variability (Definition 1).

In Table 4, we give a brief summary of the experimental
results, including these statistics on all eight datasets, as well
as the average pairwise distance and average runlength over
the five separator-based BWT variants; for full results, see the
Supplementary Material.

The experiments showed a high variation in the number of
runs in particular on datasets of short sequences. The highest
difference was between colexBWT and concBWT, by a multi-
plicative factor of over 4:2, on the SARS-CoV-2 short data-
set. In Fig. 1, we plot the average runlength n=r for the four
short sequence datasets, and the percentage increase of the
number of runs w.r.t. ropt. The variation is less pronounced

6 Cenzato and Lipt�ak
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/7/btae333/7681884 by U

niversity of Verona user on 12 August 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae333#supplementary-data

on the one dataset which is less repetitive, namely Simons
Diversity reads. Recall that the mdolBWT and concBWT
vary depending on the input permutation. On most long se-
quence datasets, on the other hand, the differences were quite
small (see Supplementary Material). To better understand
how far the colexBWT is from the optimum w.r.t. the num-
ber of runs, we plot in Fig. 2 (left) the number of runs of
colexBWT w.r.t. to ropt, on all eight datasets. The strongest in-
crease is on short sequences, where the variation among all BWT

variants is high, as well; on the long sequence datasets, with the
exception of SARS-CoV-2 long sequences, the colexBWT is very
close to the optimum; however, note that on those datasets, all
BWTs are close to the optimum.

The average number of runs and the average pairwise
Hamming distance strongly depend on the length of the
sequences. If the collection has a lot of short sequences which
are very similar, then the differences between the BWTs both
w.r.t. the number of runs, and as measured by the Hamming

Table 4. Summary of the results on the eight datasets.a

Dataset No. seq Avg. length Ratio positions
in int. intervals

Variability Avg. Hamming
d. betw. $-sep. BWTs

max n/r min n/r n/r optimal

SARS-CoV-2 short 500 000 50 0.792 0.210 0:11754 31.524 7.494 35.125
Simons Diversity reads 500 000 100 0.107 0.976 0:07195 7.873 5.299 8.133
16S rRNA short 500 000 152 0.741 0.058 0:02982 44.253 18.836 44.873
Influenza A reads 500 000 231 0.103 0.363 0:02609 49.172 23.100 50.275
SARS-CoV-2 long 50 000 1075 0.175 0.037 0:00464 73.204 57.568 74.498
16S rRNA long 16 741 1502 0.047 0.104 0:00289 46.879 45.015 47.140
Candida auris reads 50 000 2483 0.007 0.497 0:00246 1.732 1.726 1.732
SARS-CoV-2 genomes 2000 29 805 0.001 0.148 0:00012 521.610 499.549 523.240

a From left to right we report dataset names, number of sequences and average sequence length, the ratio of positions in interesting intervals, the
variability of the dataset (Definition 1), the average normalized Hamming distance between any two of the separator-based BWT variants (optBWT not
included). In the last column, we report the average runlength of the optBWT, and in the previous two columns, the maximum and minimum average
runlength (n=r) taken over the other five BWT variants.

Figure 1. Results regarding r on short sequence datasets, of all BWT variants. Left: average runlength (n/r). Right: number of runs (percentage increase
with respect to optBWT).

Figure 2. Left: number of runs of the colexBWT with respect to optimal BWT (percentage increase) on all eight datasets. Right: average normalized
Hamming distance variations with respect to variability and fraction of positions in interesting intervals on all datasets.

A survey of BWT variants for string collections 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/7/btae333/7681884 by U
niversity of Verona user on 12 August 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae333#supplementary-data

distance, can be large. This is because there are a lot of maxi-
mal shared suffixes and so, many positions are in interesting
intervals. To better understand this relationship, we plotted,
in Fig. 2 (right), the average Hamming distance against the
two parameters variability and fraction of positions in inter-
esting intervals. We see that the two datasets with highest av-
erage Hamming distance have at least one of the two values
very close to 1, while for those datasets where both values are
very low, the BWT variants do not differ very much.

The input order used by the mdolBWT and the concBWT
is the order in which the input sequences appear when the
dataset is downloaded. Our study shows that only a few in-
put permutations can minimize the number of runs of the
resulting BWT, namely those orders that group the characters
inside the interesting intervals in at most σ runs, such as the
order of Bentley et al. and the colexicographic order. Since
there are k! possible input permutations, selecting an arbi-
trary input order will likely result in a BWT whose number of
runs is much larger than the optimal one, especially on data-
sets with high variability.

6 Conclusion
We presented the first study of the different variants of the
BWT for string collections. We found that the transforms
computed by different tools differ not insignificantly, as mea-
sured by the pairwise Hamming distance: up to 12% between
different BWT variants on the same dataset in our experi-
ments. We showed that most current tools implement BWT
variants that are input order dependent, so that the same tool
can produce different outputs if the input set is permuted.
These differences extend also to the number of runs r, a pa-
rameter that is central in the analysis of BWT-based data
structures, and which is increasingly being used as a measure
of the repetitiveness of the dataset itself.

With string collections replacing individual sequences as the
prime object of research and analysis, and thus becoming the
standard input for text indexing algorithms, we believe that it
is all the more important for users and researchers to be aware
that not all methods are equivalent, and to understand the pre-
cise nature of the BWT variant produced by a particular tool.

We suggest further to standardize the definition of the pa-
rameter r for string collections, using either the colexico-
graphic order—implemented by the tool ropebwt2 (Li
2014)—or the optimal order of Bentley et al. (2020)—imple-
mented by the tool optimalBWT (Cenzato et al. 2023). In this
paper, we found that the number of runs can vary by up to a
factor of 4:2 on real-life biological datasets, while in Cenzato
et al. (2023), a factor of 31 was shown on other biological
data. Not only does this heavily impact the space requirements
of BWT-based data structures, but it also means that using the
average runlength n=r as a repetitiveness measure of a dataset
is ambiguous, unless the research community agrees on the
BWT variant being used for the definition of this parameter.

Acknowledgements
We thank Massimiliano Rossi for some cleaned and filtered
datasets, and the anonymous reviewers for valuable
suggestions.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
None declared.

Funding
D.C. is funded by the European Union (ERC, REGINDEX,
101039208). Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research
Council. Neither the European Union nor the granting au-
thority can be held responsible for them. Zs.L. is partially
funded by the MUR PRIN Project PINC, Pangenome
INformatiCs: from Theory to Applications [Grant No.
2022YRB97K], and by the INdAM—GNCS Project
CUP E53C23001670001. This publication has been made
possible thanks to the University of Verona’s Special Funds
for Open Access Publication.

References
Akagi T, Funakoshi M, Inenaga S. Sensitivity of string compressors and

repetitiveness measures. Inf Comput 2023;291:104999.
Auton A, Brooks LD, Durbin RM et al.; 1000 Genomes Project

Consortium. A global reference for human genetic variation. Nature
2015;526:68–74. https://doi.org/10.1038/nature15393

Bannai H, Gagie T, Tomohiro I. Refining the r-index. Theor Comput
Sci 2020;812:96–108. https://doi.org/10.1016/j.tcs.2019.08.005

Bauer MJ, Cox AJ, Rosone G. Lightweight algorithms for constructing
and inverting the BWT of string collections. Theor Comput Sci
2013;483:134–48. https://doi.org/10.1016/j.tcs.2012.02.002.

Bentley JW, Gibney D, Thankachan SV. On the complexity of BWT-
runs minimization via alphabet reordering. In: Proceedings of 28th
Annual European Symposium on Algorithms (ESA 2020), Pisa,
Italy, September 7-9, 2020. Wadern, Germany: Schloss Dagstuhl -
Leibniz-Zentrum f€ur Informatik 2020, Volume 173 of LIPIcs,
15:1–15:13. https://doi.org/10.4230/LIPIcs.ESA.2020.15

Bonizzoni P, Vedova GD, Pirola Y et al. Multithread multistring
Burrows–Wheeler transform and longest common prefix array. J
Comput Biol 2019;26:948–61. https://doi.org/10.1089/cmb.
2018.0230

Boucher C, Gagie T, Kuhnle A et al. Prefix-free parsing for building big
BWTs. Algorithms Mol Biol 2019;14:13–5. https://doi.org/10.
1186/s13015-019-0148-5

Boucher C, Cenzato D, Lipt�ak Zs et al. Computing the original eBWT
faster, simpler, and with less memory. In: Proceedings of 28th
International Symposium on String Processing and Information
Retrieval (SPIRE 2021), Lille, France, October 4-6, 2021. Berlin,
Germany: Springer Volume 12944 of LNCS 2021a, 129–42.
https://doi.org/10.1007/978-3-030-86692-1_11

Boucher C, Cvacho O, Gagie T et al. PFP compressed suffix trees. In:
Proceedings of 23rd Symposium on Algorithm Engineering and
Experiments (ALENEX 2021), Virtual Conference, January 10-11,
2021. Philadelphia, PA: SIAM 2021b, 60–72. https://doi.org/10.
1137/1.9781611976472.5

Boucher C, Cenzato D, Lipt�ak Zs. et al. Indexing the eBWT. Inf
Comput 2024;298:105155. https://doi.org/10.1016/j.ic.
2024.105155

Burrows M, Wheeler DJ. A block sorting lossless data compression al-
gorithm. Technical Report 124, Digital Equipment
Corporation, 1994.

Cazaux B, Rivals E. Linking BWT and XBW via Aho-Corasick automa-
ton: Applications to run-length encoding. In: Proceedings of 30th
Ann. Symp. on Combinatorial Pattern Matching (CPM 2019), Pisa,

8 Cenzato and Lipt�ak
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/7/btae333/7681884 by U

niversity of Verona user on 12 August 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae333#supplementary-data
https://doi.org/10.1038/nature15393
https://doi.org/10.1016/j.tcs.2019.08.005
https://doi.org/10.1016/j.tcs.2012.02.002
https://doi.org/10.4230/LIPIcs.ESA.2020.15
https://doi.org/10.1089/cmb.2018.0230
https://doi.org/10.1089/cmb.2018.0230
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1007/978-3-030-86692-1_11
https://doi.org/10.1137/1.9781611976472.5
https://doi.org/10.1137/1.9781611976472.5
https://doi.org/10.1016/j.ic.2024.105155
https://doi.org/10.1016/j.ic.2024.105155

Italy, June 18-20, 2019. Wadern, Germany: Schloss Dagstuhl -
Leibniz-Zentrum f€ur Informatik, Volume 128 of LIPIcs, 2019,
24:1–24:20. https://doi.org/10.4230/LIPIcs.CPM.2019.24

Cenzato D, Lipt�ak Zs. A theoretical and experimental analysis of BWT
variants for string collections. In Proceedings of 33rd Annual
Symposium on Combinatorial Pattern Matching (CPM 2022),
Prague, Czech Republic, June 27-29, 2022. Wadern, Germany:
Schloss Dagstuhl - Leibniz-Zentrum f€ur Informatik, Volume 223 of
LIPIcs, 2022, 25:1–25:18. https://doi.org/10.4230/LIPICS.CPM.
2022.25

Cenzato D, Guerrini V, Lipt�ak Zs et al. Computing the optimal BWT of
very large string collections. In: Proceedings of 33rd Data
Compression Conference (DCC 2023), Snowbird, UT, USA, March
21-24, 2023. New York, NY: IEEE 2023, 71-80.. https://doi.org/
10.1109/DCC55655.2023.00015

Cobas D, Gagie T, Navarro G. A fast and small subsampled r-index. In:
Proceedings of 32nd Annual Symposium on Combinatorial Pattern
Matching (CPM 2021), Wrocław, Poland, July 5-7, 2021. Wadern,
Germany: Schloss Dagstuhl - Leibniz-Zentrum f€ur Informatik,
Volume 191 of LIPIcs, 2021 13:1–13:16. https://doi.org/10.4230/
LIPIcs.CPM.2021.13.

Cox AJ, Bauer MJ, Jakobi T et al. Large-scale compression of genomic
sequence databases with the Burrows–Wheeler transform.
Bioinformatics 2012;28:1415–9. https://doi.org/10.1093/bioinfor
matics/bts173

D�ıaz-Dom�ınguez D, Navarro G. Efficient construction of the extended
BWT from grammar-compressed DNA sequencing reads. CoRR,
abs/2102.03961, 2021, preprint: not peer reviewed.

D�ıaz-Dom�ınguez D, Navarro G. Efficient construction of the BWT for
repetitive text using string compression. Inf Comput 2023;
294:105088.

Edgar RC. Updating the 97% identity threshold for 16S ribosomal
RNA OTUs. Bioinformatics 2018;34:2371–5. https://doi.org/10.
1093/bioinformatics/bty113

Egidi L, Louza FA, Manzini G et al. External memory BWT and LCP
computation for sequence collections with applications. Algorithms
Mol Biol 2019;14:6–6:15. https://doi.org/10.1186/s13015-019-
0140-0

Ferragina P, Luccio F, Manzini G Structuring labeled trees for optimal
succinctness, and beyond. In: Proceedings of 46th IEEE Symposium
on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA,
USA, 23-25 October, New York, NY: IEEE 2005., 184–93. https://
doi.org/10.1109/SFCS.2005.69

Ferragina P, Luccio F, Manzini G et al. Compressing and indexing la-
beled trees, with applications. J ACM 2009;57:1–33. https://doi.
org/10.1145/1613676.1613680

Ferragina P, Gagie T, Manzini G. Lightweight data indexing and com-
pression in external memory. Algorithmica 2012;63:707–30.
https://doi.org/10.1007/s00453-011-9535-0

Gagie T, Navarro G, Prezza N. Fully functional suffix trees and optimal
text searching in BWT-runs bounded space. J ACM 2020;67:1–54.

Gagie T, Gourdel G, Manzini G. Compressing and indexing aligned
readsets. In: Proceedings of 21st International Workshop on
Algorithms in Bioinformatics (WABI 2021), Virtual Conference,
August 2-4, 2021. Wadern, Germany: Schloss Dagstuhl - Leibniz-
Zentrum f€ur Informatik, Volume 201 of LIPIcs 2021, 13:1–13:21.
https://doi.org/10.4230/LIPIcs.WABI.2021.13

Genome 10K Community of Scientists. A proposal to obtain whole-
genome sequence for 10,000 vertebrate species. J Hered 2009;100:
659–74. https://doi.org/10.1093/jhered/esp086

Gil JY, Scott DA. A bijective string sorting transform. CoRR abs/
1201.3077, 2012, preprint: not peer reviewed.

Giuliani S, Inenaga S, Lipt�ak Zs et al. Novel results on the number of
runs of the Burrows–Wheeler Transform. In: 47th International
Conference on Current Trends in Theory and Practice of Comp.
Science (SOFSEM 2021), Bolzano-Bozen, Italy, January 25-29,
2021. Berlin, Germany: Springer, Volume 12607 of LNCS 2021,
249–62. https://doi.org/10.1007/978-3-030-67731-2\18

Greaney AJ, Starr TN, Eguia RT et al. A SARS-CoV-2 variant elicits an
antibody response with a shifted immunodominance hierarchy.

PLoS Pathog 2022;18:e1010248. https://doi.org/10.1101/2021.10.
12.464114

Gusfield D. Algorithms on Strings, Trees, and Sequences—Computer
Science and Computational Biology. Cambridge, UK: Cambridge
University Press, 1997.

Holt J, McMillan L. Merging of multi-string BWTs with applications.
Bioinformatics 2014;30:3524–31. https://doi.org/10.1093/bioinfor
matics/btu584

Kawakatsu T, Huang S-SC, Jupe F et al.; 1001 Genomes Consortium.
Epigenomic diversity in a global collection of Arabidopsis thaliana
accessions. Cell 2016;166:492–505. https://doi.org/10.1016/j.cell.
2016.06.044

Kempa D, Kociumaka T. Resolution of the Burrows–Wheeler trans-
form conjecture. Commun ACM 2022;65:91–8.

K€oppl D, Hashimoto D, Hendrian D et al. In-place bijective Burrows–
Wheeler transforms. In: Proceedings of 31st Annual Symposium on
Combinatorial Pattern Matching (CPM 2020), Copenhagen,
Denmark, June 17-19, 2020. Wadern, Germany: Schloss Dagstuhl -
Leibniz-Zentrum f€ur Informatik, Volume 161 of LIPIcs 2020,
21:1–21:15. https://doi.org/10.4230/LIPIcs.CPM.2020.21

Kuhnle A, Mun T, Boucher C et al. Efficient construction of a complete
index for pan-genomics read alignment. J Comput Biol 2020;
27:500–13.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods 2012;9:357–9. https://doi.org/10.1038/nmeth.1923

Langmead B, Trapnell C, Pop M et al. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome
Biol 2009;10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

Li H. Fast construction of FM-index for long sequence reads.
Bioinformatics 2014;30:3274–5. https://doi.org/10.1093/bioinfor
matics/btu541

Li H, Durbin R. Fast and accurate long-read alignment with Burrows–
Wheeler transform. Bioinformatics 2010;26:589–95. https://doi.
org/10.1093/bioinformatics/btp698

Louza FA, Telles GP, Hoffmann S et al. Generalized enhanced suffix ar-
ray construction in external memory. Algorithms Mol Biol 2017;12:
26. https://doi.org/10.1186/s13015-017-0117-9

Louza FA, Telles GP, Gog S et al. gsufsort: constructing suffix arrays,
LCP arrays and BWTs for string collections. Algorithms Mol Biol
2020;15:18. https://doi.org/10.1186/s13015-020-00177-y

M€akinen V, Navarro G. Succinct suffix arrays based on run-length
encoding. Nordic J Comput 2005;12:40–66.

Mallick S, Li H, Lipson M et al. The simons genome diversity project:
300 genomes from 142 diverse populations. Nature 2016;538:
201–6. https://doi.org/10.1038/nature18964

Mantaci S, Restivo A, Rosone G et al. An extension of the Burrows–
Wheeler transform. Theor Comput Sci 2007;387:298–312. https://
doi.org/10.1016/j.tcs.2007.07.014

Manzini G. XBWT tricks. In: Proceedings of 23rd International
Symposium on String Processing and Information Retrieval (SPIRE
2016), Beppu, Japan, October 18-20, 2016. Berlin, Germany:
Springer, Volume 9954 of LNCS, 2016 80–92. https://doi.org/10.
1007/978-3-319-46049-9

Masillo F. Matching statistics speed up BWT construction. In:
Proceedings of 31st Annual European Symposium on Algorithms
(ESA 2023), Amsterdam, Netherlands, September 4-6, 2023.
Wadern, Germany: Schloss Dagstuhl - Leibniz-Zentrum f€ur
Informatik, Volume 274 of LIPIcs, 2023, 83:1–83:15. https://doi.
org/10.4230/LIPICS.ESA.2023.83

Navarro G. Indexing highly repetitive string collections, part I: repeti-
tiveness measures. ACM Comput Surv 2021;54:1–31. https://doi.
org/10.1145/3434399

Ohlebusch E. Bioinformatics Algorithms: Sequence Analysis, Genome
Rearrangements, and Phylogenetic Reconstruction. Bremen,
Germany: Oldenbusch Verlag, 2013.

Ohlebusch E, Stauß S, Baier U. Trickier XBWT tricks. In: Proceedings
of 25th International Symposium in String Processing and
Information Retrieval (SPIRE 2018), Lima, Peru, October 9-11,
2018. Berlin, Germany: Springer, Volume 11147 of LNCS, 2018,
325–33. https://doi.org/10.1007/978-3-030-00479-8\26

A survey of BWT variants for string collections 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/7/btae333/7681884 by U
niversity of Verona user on 12 August 2024

https://doi.org/10.4230/LIPIcs.CPM.2019.24
https://doi.org/10.4230/LIPICS.CPM.2022.25
https://doi.org/10.4230/LIPICS.CPM.2022.25
https://doi.org/10.1109/DCC55655.2023.00015
https://doi.org/10.1109/DCC55655.2023.00015
https://doi.org/10.4230/LIPIcs.CPM.2021.13
https://doi.org/10.4230/LIPIcs.CPM.2021.13
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1093/bioinformatics/bty113
https://doi.org/10.1093/bioinformatics/bty113
https://doi.org/10.1186/s13015-019-0140-0
https://doi.org/10.1186/s13015-019-0140-0
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1007/s00453-011-9535-0
https://doi.org/10.4230/LIPIcs.WABI.2021.13
https://doi.org/10.1093/jhered/esp086
https://doi.org/10.1007/978-3-030-67731-2�8
https://doi.org/10.1101/2021.10.12.464114
https://doi.org/10.1101/2021.10.12.464114
https://doi.org/10.1093/bioinformatics/btu584
https://doi.org/10.1093/bioinformatics/btu584
https://doi.org/10.1016/j.cell.2016.06.044
https://doi.org/10.1016/j.cell.2016.06.044
https://doi.org/10.4230/LIPIcs.CPM.2020.21
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/bioinformatics/btu541
https://doi.org/10.1093/bioinformatics/btu541
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1186/s13015-017-0117-9
https://doi.org/10.1186/s13015-020-00177-y
https://doi.org/10.1038/nature18964
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1007/978-3-319-46049-9
https://doi.org/10.1007/978-3-319-46049-9
https://doi.org/10.4230/LIPICS.ESA.2023.83
https://doi.org/10.4230/LIPICS.ESA.2023.83
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3434399
https://doi.org/10.1007/978-3-030-00479-8�

Olbrich J, Ohlebusch E, B€uchler T. Generic non-recursive sufix array
construction. ACM Trans Algorithms 2024;20:1–42. https://doi.
org/10.1145/3641854

Oliva M, Rossi M, Sir�en J Efficiently merging r-indexes. In: Proceedings
of 31st Data Compression Conference (DCC 2021), Snowbird, UT,
USA, March 23-26, 2021. New York, NY: IEEE 2021, 203–12.
https://doi.org/10.1109/DCC50243.2021.00028

Oliva M, Gagie T, Boucher C. Recursive prefix-free parsing for building
big BWTs. In: Proceedings of 33rd Data Compression Conference
(DCC 2023), 2023, 62–70. https://doi.org/10.1109/DCC55655.
2023.00014.

Pantaleoni J. A massively parallel algorithm for constructing the BWT
of large string sets. CoRR abs/1410.0562, 2014, preprint: not
peer reviewed.

Puglisi SJ, Zhukova B. Document retrieval hacks. In: Proceedings of
19th International Symposium on Experimental Algorithms (SEA
2021), Nice, France, June 7-9, 2021. Wadern, Germany: Schloss
Dagstuhl - Leibniz-Zentrum f€ur Informatik, Volume 190 of LIPIcs
2021, 12:1–12:12. https://doi.org/10.4230/LIPIcs.SEA.2021.12

Sir�en J. Burrows–Wheeler Transform for terabases. In Proceedings of
26th Data Compression Conference (DCC 2016), Snowbird, UT,
USA, March 30 - April 1, 2016. New York, NY: IEEE 2016,
211–20. https://doi.org/10.1109/DCC.2016.17

Starr TN, Greaney AJ, Hilton SK et al. Deep mutational scanning of
SARS-CoV-2 receptor binding domain reveals constraints on fold-
ing and ACE2 binding. Cell 2020;182:1295–310.e20. https://doi.
org/10.1016/j.cell.2020.08.012

Sun C, Hu Z, Zheng T et al. RPAN: rice pan-genome browser for 3000
rice genomes. Nucleic Acids Res 2017;45:597–605. https://doi.org/
10.1093/nar/gkw958

Turnbull C, Scott RH, Thomas E et al. The 100,000 genomes project:
bringing whole genome sequencing to the NHS. Br Med J 2018;361:
k1687. https://doi.org/10.1136/bmj.k1687

Van den Hoecke S, Verhelst J, Vuylsteke M et al. Analysis of the genetic
diversity of influenza a viruses using next-generation DNA sequenc-
ing. BMC Genomics 2015;16:79. https://doi.org/10.1186/s12864-
015-1284-z

Winand R, Bogaerts B, Hoffman S et al. Targeting the 16s rRNA gene
for bacterial identification in complex mixed samples: comparative
evaluation of second (illumina) and third (oxford nanopore technol-
ogies) generation sequencing technologies. IJMS 2019;21:298.
https://doi.org/10.3390/ijms21010298

Woodworth MH, Dynerman D, Crawford ED et al. Sentinel case of
Candida auris in the Western United States following prolonged oc-
cult colonization in a returned traveler from India. Microb Drug
Resist 2019;25:677–80. https://doi.org/10.1089/mdr.2018.0408

© The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–10
https://doi.org/10.1093/bioinformatics/btae333
Review

10 Cenzato and Lipt�ak
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/7/btae333/7681884 by U

niversity of Verona user on 12 August 2024

https://doi.org/10.1145/3641854
https://doi.org/10.1145/3641854
https://doi.org/10.1109/DCC50243.2021.00028
https://doi.org/10.1109/DCC55655.2023.00014
https://doi.org/10.1109/DCC55655.2023.00014
https://doi.org/10.4230/LIPIcs.SEA.2021.12
https://doi.org/10.1109/DCC.2016.17
https://doi.org/10.1016/j.cell.2020.08.012
https://doi.org/10.1016/j.cell.2020.08.012
https://doi.org/10.1093/nar/gkw958
https://doi.org/10.1093/nar/gkw958
https://doi.org/10.1136/bmj.k1687
https://doi.org/10.1186/s12864-015-1284-z
https://doi.org/10.1186/s12864-015-1284-z
https://doi.org/10.3390/ijms21010298
https://doi.org/10.1089/mdr.2018.0408

	Active Content List
	1 Introduction
	2 Preliminaries
	3 BWT variants for string collections
	4 Effects on the parameter r
	5 Experimental results
	6 Conclusion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	References

