
Sequence analysis

A survey of BWT variants for string collections
Davide Cenzato 1,† and Zsuzsanna Lipt�ak 2,†,�

1Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, Venice, 30123, Italy 
2Department of Computer Science, University of Verona, Verona, 37134, Italy
�Corresponding author. Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy. E-mail: zsuzsanna.liptak@univr.it (Zs.L.)
†Equal contribution.
Associate Editor: Peter Robinson

Abstract
Motivation: In recent years, the focus of bioinformatics research has moved from individual sequences to collections of sequences. Given the 
fundamental role of the Burrows–Wheeler transform (BWT) in string processing, a number of dedicated tools have been developed for comput-
ing the BWT of string collections. While the focus has been on improving efficiency, both in space and time, the exact definition of the BWT 
used has not been at the center of attention. As we show in this paper, the different tools in use often compute non-equivalent BWT variants: 
the resulting transforms can differ from each other significantly, including the number r of runs, a central parameter of the BWT. Moreover, with 
many tools, the transform depends on the input order of the collection. In other words, on the same dataset, the same tool may output different 
transforms if the dataset is given in a different order.
Results: We studied 18 dedicated tools for computing the BWT of string collections and were able to identify 6 different BWT variants 
computed by these tools. We review the differences between these BWT variants, both from a theoretical and from a practical point of view, 
comparing them on eight real-life biological datasets with different characteristics. We find that the differences can be extensive, depending on 
the datasets, and are largest on collections of many similar short sequences. The parameter r, the number of runs of the BWT, also shows 
notable variation between the different BWT variants; on our datasets, it varied by a multiplicative factor of up to 4.2.
Availability and implementation: Source code and scripts to replicate the results and download the data used in the article are available at 
https://github.com/davidecenzato/BWT-variants-for-string-collections.

1 Introduction
The Burrows–Wheeler transform (BWT) (Burrows and 
Wheeler 1994) is a fundamental string transformation which 
is at the heart of many modern compressed data structures 
for text processing, in particular in bioinformatics 
(Langmead et al. 2009, Li and Durbin 2010, Langmead and 
Salzberg 2012). With the increasing availability of low-cost 
high-throughput sequencing technologies, the focus has 
moved from single strings to large string collections, such as 
the 1000 Genomes Project (The 1000 Genomes Project 
Consortium 2015), the 10 000 Genomes Project (Genome 
10K Community of Scientists 2009), the 100 000 Human 
Genome Project (Turnbull et al. 2018), the 1001 Arabidopsis 
Project (The 1001 Genomes Consortium 2016), and the 3000 
Rice Genomes Project (3K RGP) (Sun et al. 2017). This has 
led to a widespread use of compressed data structures on 
inputs which are collections of sequences, rather than individ-
ual sequences.

A number of tools have been developed in recent years for 
computing the BWT of a collection (multiset) of strings. The 
focus has been on efficiently processing datasets of ever in-
creasing sizes, but little attention has been paid to the actual 
method used to compute the BWT. This is an issue, as the 
BWT was originally defined for a single string, and it is not 
immediately clear how to define it for a collection (multiset) 
of strings. In fact, there exists more than one way to compute 

a Burrows–Wheeler-type transform of multiple strings. Even 
though all these methods maintain the properties necessary 
for building string indexes on top of the BWT, such as revers-
ibility and LF-property, they differ in other, important, ways.

As we will show in this paper, different tools not only ap-
ply different algorithms to compute the BWT of the input col-
lection, but they output different transforms. Studying 18 
publicly available tools, we identified six distinct BWT-var-
iants which are computed by these tools. The tools included 
in this study are: BEETL (Bauer et al. 2013), BCR_LCP_GSA 
(Bauer et al. 2013), ropebwt2 (Li 2014), nvSetBWT 
(Pantaleoni 2014), msbwt (Holt and McMillan 2014), 
Merge-BWT (Sir�en 2016), eGSA (Louza et al. 2017), 
BigBWT (Boucher et al. 2019), bwt-lcp-parallel 
(Bonizzoni et al. 2019), eGAP (Egidi et al. 2019), gsufsort 
(Louza et al. 2020), G2BWT (D�ıaz-Dom�ınguez and Navarro 
2021), grlBWT (D�ıaz-Dom�ınguez and Navarro 2023), 
pfpebwt (Boucher et al. 2021a), cais (Boucher et al. 
2021a), r-pfbwt (Oliva et al. 2023), CMS-BWT (Masillo 
2023), and optimalBWT (Cenzato et al. 2023). In Table 1, 
we give the BWT variants as computed by these 18 tools on a 
toy example of five DNA-strings.

The size of BWT-based compressed data structures such as 
the RLFM-index (M€akinen and Navarro 2005) or the r-index 
(Gagie et al. 2020) is typically measured in the number of 
runs (maximal substrings consisting of the same letter) of the 
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BWT, commonly denoted r. This parameter r has become 
central as a measure of the storage space required by these 
data structures. Additionally, much recent research effort has 
concentrated on the construction of data structures which 
cannot only store but query, process, and mine strings in 
space and time proportional to r (Bannai et al. 2020, Gagie 
et al. 2020, Cobas et al. 2021, Oliva et al. 2021, Boucher 
et al. 2024). Moreover, the parameter r (or the related n/r, 
the average runlength of the BWT) is also being increasingly 
seen as a measure of repetitiveness of the string or strings, 
with several recent works theoretically exploring its suitabil-
ity as such a measure, as well as its relationship to other re-
petitiveness measures (Giuliani et al. 2021, Navarro 2021, 
Kempa and Kociumaka 2022, Akagi et al. 2023). The param-
eter r is now also being used as a property of the dataset it-
self, e.g. (Bannai et al. 2020, Boucher et al. 2021b, Cobas 
et al. 2021).

However, the number of runs varies between the different 
BWT-variants, as can be seen on our toy example. This has im-
portant implications not only for the storage space required 
for BWT-based compressed data structures, but also for claims 
about the level of repetitiveness of the dataset. With competing 
non-equivalent methods around, this measure is not well de-
fined. We will explore this question further (Section 4) and 
suggest resolving the issue by standardizing the definition.

1.1 Overview of methods for defining multi- 
string BWT
The classical way of computing text indexes of more than 
one string is to concatenate them, adding a different end- 
of-string-symbol at the end of each string, and then to com-
pute the index for the concatenated string. This is the method 
traditionally used for generating classical data structures such 
as suffix trees resp. suffix arrays for multiple strings, and 
results in the so-called generalized suffix tree resp. general-
ized suffix array, see e.g. (Gusfield 1997, Ohlebusch 2013). 
Applied directly, this method would lead to an unacceptable 
increase in the size of the alphabet, from σ, often a small con-
stant in applications, to σþk, where k is the number of 
strings in the collection, typically in the thousands or even 
tens or hundreds of thousands. One way to avoid this is to 
use only conceptually different end-of-string-symbols, i.e. to 
have only one dollar-sign and apply string input order to 

break ties. This is the method used by most tools, including 
ropebwt2 (Li 2014), BCR (Bauer et al. 2013) (with a differ-
ent algorithm which results in the same output), and many 
others. Another method to avoid increasing the alphabet size 
is to separate the input strings using the same end-of-string- 
symbol; in this case, a different end-of-string-symbol has to 
be added to the end of the concatenated string to ensure cor-
rectness, as e.g. done by BigBWT (Boucher et al. 2019). An 
equivalent solution is to concatenate the input strings without 
removing the end-of-line or end-of-file characters, since these 
act as separators; or to concatenate them without separators 
and use a bitvector to mark the end of each string. Many 
studies nowadays use string collections in experiments with-
out turning to dedicated tools for multi-string BWT, e.g. 
(Bannai et al. 2020, Kuhnle et al. 2020, Puglisi and Zhukova 
2021); often the input strings are turned into one single se-
quence using one of the methods described above, and then 
the single-string BWT is computed; it is, however, not always 
stated explicitly which was the method used to obtain one se-
quence. Underlying this is the implicit assumption that all 
methods are equivalent.

In 2007, Mantaci et al. (2007) introduced the extended 
Burrows–Wheeler transform (eBWT), which generalizes the 
BWT to a multiset of strings. The eBWT, like the BWT, is re-
versible, and maintains other properties of the BWT such as 
fast pattern matching functionality. The eBWT can handle 
both linear and circular strings and is thus particularly well 
applicable in bioinformatics, since many genomic sequences 
are circular, including mitochondrial DNA, bacterial, and 
some viral DNA (Boucher et al. 2024).

Since then, however, the term “extended BWT” has come 
to be used as a generic term to denote the BWT of a collection 
of sequences. This is unfortunate, as the eBWT has several 
properties, such as independence from the input order, which 
the other methods do not share; and it is defined using a dif-
ferent order relation from the classical BWT (see Section 2).

Two of the tools listed compute the eBWT according to the 
original definition, pfpebwt and cais, both (Boucher et al. 
2021a). The very recent software lFGSACA (Olbrich et al. 
2024, in press), which was brought to our attention during the 
review process, also computes the original eBWT; it is, however, 
a Cþþ library rather than a command-line tool. All other tools 
listed append an end-of-string character to the input strings, 

Table 1. Overview of some properties of the six BWT variants considered in this paper and the tools computing them.a

a The colors in the example BWTs correspond to interesting intervals in separator-based variants; the same characters are highlighted in the eBWT to 
show their positions, see Section 3.2. (We included lFGSACA, which also computes the eBWT, in brackets, since it is a library and not a command-line tool, 
as opposed to all others listed.)
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explicitly or implicitly, and as a consequence, the resulting trans-
forms differ from the one defined in Mantaci et al. (2007). 
Moreover, the output in most cases depends on the input order 
of the sequences (except for those tools that compute what we 
term dolEBWT, colexBWT, or optBWT, see Section 3). The ex-
act nature of this dependence differs from one transform to an-
other. The result is that the BWT variants computed by different 
tools on the same dataset, or by the same tool on the same data-
set but given in a different order, may vary considerably.

1.2 Multidollar BWT
The BWT-variant which we term mdolBWT is the most gen-
eral one, in the sense that all others, except for the eBWT, 
can be simulated by mdolBWT. This is also the variant out-
put by most tools, and it is dependent on the input order: 
both the transform itself and the number of runs varies 
depending on the order in which the strings are concatenated. 
Bentley, Gibney, and Thankachan recently gave a linear-time 
algorithm for computing mdolBWT with the minimum num-
ber of runs amongst all input string orders (Bentley et al. 
2020). (The same paper includes an NP-hardness result re-
garding finding the best order on the alphabet, which is a dif-
ferent problem.) In order to study the variation of the 
parameter r, we first implemented a variant of this algorithm 
counting the minimal number of runs, which later led to a 
new tool, optimalBWT, computing the optBWT (Cenzato 
et al. 2023). We use this tool in our experiments as a baseline 
for the number of runs of the other BWT-variants. On our 
real-life biological datasets, the parameter r varies by up to a 
multiplicative factor of 4.2 between the different variants. It 
was shown in Cenzato et al. (2023) that an improvement by 
a multiplicative factor of up to 31 can be obtained between 
the input order and optBWT, again on real-life biologi-
cal datasets.

1.3 What is not covered
This paper deals with tools for string collections, so we did 
not include any tool that computes the BWT of a single 
string, such as libdivsufsort, sais-lite-lcp, libsais, or bwtdisk 
(Ferragina et al. 2012). Although in many cases, these are the 
tools used for collections of strings, the transform they com-
pute depends on the method with which the string collection 
was turned into a single string, as explained above. Nor did 
we include other BWT variants for single strings such as the 
bijective BWT (Gil and Scott 2012, K€oppl et al. 2020), since, 
again, these were not designed for string collections.

We did not include Big-xBWT (Gagie et al. 2021), a tool for 
compressing and indexing read collections, which computes 
the xBWT of Ferragina et al. (2005, 2009), and requires a ref-
erence sequence in addition to the string collection. The xBWT 
is not necessarily a permutation of the input characters. Nor is 
the tool (Ohlebusch et al. 2018) for reference-free xBWT in-
cluded in this review: even though it does not require a refer-
ence sequence, it, too, computes the xBWT and not the BWT. 
Finally, we did not include (Cazaux and Rivals 2019), since its 
method for concatenating the input strings (using the same 
separator symbol but without an additional end-of-string char-
acter) has not been implemented.

1.4 Our contributions

1) We identify six distinct BWT variants which are com-
puted by 18 publicly available tools, specifically 

designed for string collections. We formally describe the 
differences between these, identifying specific intervals 
to which differences are restricted. 

2) We describe the impact on the number r of runs of the 
BWT and give an upper bound on how much the colexi-
cographic order (sometimes referred to as “reverse lexi-
cographic order”) can differ from the optimal order of 
Bentley et al. (2020). 

3) We complement our theoretical analysis with extensive 
experiments, comparing the BWT variants on eight real- 
life datasets with different characteristics. 

4) We suggest a way of standardizing the parameter r, thus 
showing how to eliminate the ambiguity caused by the 
presence of different BWT-variants. 

To the best of our knowledge, this is the first systematic study 
of the different BWT variants in use for collections of strings. 
In the following, we give the necessary definitions in Section 
2. In Section 3, we present the BWT variants and analyze 
their differences; we discuss the effects on the repetitiveness 
measure r in Section 4. A summary of our experimental 
results is given in Section 5. We draw some conclusions from 
our study in Section 6. Proofs, details of the experimental 
setup, along with the full tables with detailed results on all 
eight datasets are included in the Supplementary Material. 
Source code and scripts to replicate the results and download 
the data used in the article are available at https://github. 
com/davidecenzato/BWT-variants-for-string-collections.

A preliminary version of this article appeared in Cenzato 
and Lipt�ak (2022).

2 Preliminaries
Let Σ be a finite ordered alphabet of size σ. We use the nota-
tion T ¼ T½1::n� for a string T of length n over Σ, T½i� for the 
ith character, and T½i::j� for the substring T½i� � � �T½j� of T, 
where i ≤ j; the length of T is denoted jTj, and the empty 
string is denoted ε. For a string T over Σ and an integer 
m>0, we write T m for the m-fold concatenation of T. A 
string T is called primitive if T ¼Um implies T¼U and 
m¼1. Every string T can be written uniquely as T ¼Um, 
where U is primitive; in this case, we refer to U as rootðTÞ
and to m as expðTÞ. In other words, for every string T it holds 
that T ¼ rootðTÞ expðTÞ. Often, an end-of-string character 
(usually denoted $) is appended to the end of T; this charac-
ter is not an element of Σ and is smaller than all characters 
from Σ. Note that appending a $ makes any string primitive.

String S is a conjugate of string T if S¼ T½i::n�T½1::i −1� for 
some i 2 f1; . . . ;ng (also called the ith rotation of T). It is easy 
to see that a string of length n has n distinct conjugates if and 
only if it is primitive. A run in string T is a maximal substring 
consisting of the same character; we denote by runsðTÞ the 
number of runs of T. For example, runsðCAAGGGAÞ ¼ 4.

For two strings S,T, the (unit-cost) edit distance, or 
Levenshtein distance, disteditðS;TÞ is defined as the minimum 
number of operations necessary to transform S into T, where 
an operation can be deletion or insertion of a character, or 
substitution of a character by another. The Hamming dis-
tance distHðS;TÞ, defined only if jSj ¼ jTj, is the number of 
positions i such that S½i� 6¼ T½i�. The lexicographic order on Σ�
is defined as follows: S< lexT if S is a proper prefix of T, or if 
there exists an index j s.t. S½j�<T½j� and for all i< j, S½i� ¼ T½i�. 
The colexicographic order, or colex-order (referred to as 
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reverse lexicographic order or rlo in Li (2014) and Cox et al. 
(2012)), is defined as follows: S< colexT if Srev< lexTrev, where 
Xrev ¼X½n�X½n −1� � � �X½1� denotes the reverse of the 
string X¼X½1::n�.

For a string T ¼ T½1::n� over Σ, the BWT (Burrows 
and Wheeler 1994), BWTðTÞ, is a permutation of the charac-
ters of T, given by concatenating the last characters of 
the lexicographically sorted conjugates of T. In Table 2, 
we give two examples: BWTðCAGAGAÞ ¼ GGCAAA, and 
BWTðCAGAGA$Þ ¼ AGGC$AA.

It follows from the definition of the BWT that two strings 
S, T are conjugates if and only if BWTðSÞ ¼ BWTðTÞ. Indeed, 
the BWT is reversible up to conjugates: if a string L is the 
BWT of some string T, then a string S can be computed in lin-
ear time such that L¼ BWTðSÞ, and thus S is a conjugate of 
T. To make the BWT uniquely reversible, one can add an in-
dex to it, marking the lexicographic rank of the conjugate in 
input. For example, BWTðCAGAGAÞ ¼ GGCAAA, and the in-
dex 4 specifies that the input was the 4th conjugate in lexico-
graphic order. Alternatively, one adds a $ to the end of T, 
which makes the input unique: BWTðCAGAGA$)¼AGGC$AA, 
and CAGAGA$ is the only string ending in $ with this BWT. 
Note on the example that BWT with and without end-of- 
string symbol can be quite different.

An important parameter of the BWT of string T is the num-
ber of runs rðTÞ ¼ runsðBWTðTÞÞ. It is well-known that on re-
petitive inputs, the BWT tends to produce long runs of the 
same character, making it amenable to compression via 
runlength-encoding (RLE). In our example, rðCAGAGAÞ ¼ 3, 
while the original string has 6 runs. This property, referred to 
as the clustering effect of the BWT, is taken advantage of by 
compressed data structures such as the RLFM-index (M€akinen 
and Navarro 2005) or the r-index (Gagie et al. 2020).

Next we define the omega-order (Mantaci et al. 2007) on 
Σ�: S�ω T if rootðSÞ ¼ rootðTÞ and expðSÞ< expðTÞ, or if 
Sω< lex Tω (implying rootðSÞ 6¼ rootðTÞ), where Tω denotes 
the infinite string obtained by concatenating T infinitely 
many times. The omega-order relation coincides with the lex-
icographic order if neither of the two strings is a proper pre-
fix of the other. The two orders can differ otherwise, e.g. 
GT< lex GTC but GTC�ω GT.

For a multiset of strings M¼ fT1; . . . ;Tkg, the eBWT, 
eBWTðMÞ (Mantaci et al. 2007), is a permutation of the 
characters of the strings in M, given by concatenating the 
last characters of the conjugates of each Ti, for i¼ 1; . . . ;k, 
listed in omega-order. For example, the omega-sorted conju-
gates of M¼fGTC;GTg are: CGT, GTC, GT, TCG, TG, 
hence, eBWTðMÞ ¼ TCTGG, see Table 2. Again, adding the 
indices of the input conjugates, in this case 2 and 3, makes 
the eBWT reversible, see Mantaci et al. (2007) for details.

3 BWT variants for string collections
We identified six distinct transforms, listed below, which were 
computed by the tools given in Table 1. Let M¼ fT1; . . . ;Tkg

be a multiset of strings, with total length NM ¼
Pk

i¼1
jTij. Since 

several of the data structures depend on the order in which the 
strings are listed, we implicitly regard M as a list ½T1; . . . ;Tk�, 
and write ρðMÞ for a specific input order ρ.

1) extended BWT: eBWTðMÞ of Mantaci et al. (2007) (see 
Section 2) 

2) dollar-eBWT: dolEBWTðMÞ ¼ eBWTðfTi$jTi 2MgÞ

3) multidollar BWT: mdolBWTðMÞ ¼ BWTðT1$1T2$2 
� � �Tk$kÞ, where dollars are assumed to be smaller than 
characters from Σ and $1<$2< . . . <$k 

4) colexicographic BWT: colexBWTðMÞ ¼mdolBWTðγðMÞÞ, 
where γ is the colexicographic (“reverse lexicographic,” 
rlo) order of the strings in M. 

5) optimal BWT: optBWTðMÞ ¼mdolBWTðoptðMÞÞ, 
where optðMÞ is the order given by the algorithm of 
Bentley et al. (2020), which minimizes the number of 
runs (see Section 4 for details). 

6) concatenated BWT: concBWTðMÞ ¼ BWTðT1$T2$ � � �
Tk$#Þ, where #<$. 

Because all BWT variants except the eBWT use additional 
end-of-string symbols as string separators, we refer to these 
by the collective term separator-based BWT variants. In  
Table 1, we show the six transforms on our running example 
of five DNA-strings, and give first properties of these trans-
forms. For ease of exposition and comparison, we replaced 
all separator-symbols by the same dollar-sign $, even where, 
conceptually or concretely, different dollar-signs are assumed 
to terminate the individual strings. This is the case for 
mdolBWT and its special cases, colexBWT and optBWT. 
Moreover, the concBWT contains one additional character, 
the final end-of-string symbol, here denoted by #, which is 
smaller than all other characters; thus, the additional rotation 
starting with # is the smallest and results in an additional dol-
lar in the first position of the transform. To facilitate the 
comparison with the other transforms, we remove this first 
symbol from concBWT and replace the # by $.

It is important to point out that the programs listed in  
Table 1 do not necessarily use the definitions given here; 
however, in each case, the resulting transform is the one 
claimed, up to renaming or removing separator characters, 
see Sections 3.1 and 3.2.

3.1 The effect of adding separator symbols
The first obvious difference between the eBWT and the 
separator-based variants is their length: eBWTðMÞ has length 
NM, while all other variants have length NMþk, since they 
contain an additional character (the separator) for each in-
put string.

In all separator-based transforms, the k-length prefix con-
sists of a permutation of the last characters of the input 
strings. This is because the rotations starting with the dollars 
are the first k lexicographically. On the other hand, in the 
eBWT, these k characters occur interspersed with the rest of 
the transform; namely, in the positions corresponding to the 
omega-ranks of the input strings Ti (see Tables 1 and 3).

In general, adding a $ to the end of the strings introduces a 
distinction, not present in the eBWT, between suffixes and 

Table 2. BWT of the strings CAGAGA and CAGAGA$, and eBWTof the 
string collections fGTC, GTg, and fGTC$,GT$g.

CAGAGA BWT CAGAGA$ BWT fGTC,  
GTg

eBWT fGTC$, 
GT$g

eBWT

ACAGAG G $CAGAGA A CGT T $GT T
AGACAG G A$CAGAG G GTC C $GTC C
AGAGAC C AGA$CAG G GT T C$GT T
CAGAGA A AGAGA$C C TCG G GT$ $
GACAGA A CAGAGA$ $ TG G GTC$ $
GAGACA A GA$CAGA A T$G G

GAGA$CA A TC$G G
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other substrings: since the separators are smaller than all 
other characters, occurrences of a substring as suffix will be 
listed en bloc before all other occurrences of the same sub-
string, while in the eBWT, these occurrences are listed inter-
spersed with the other occurrences of the same substring.

Example 1. Let M¼ fAACGAC, TCACg and U ¼ AC. U 
occurs both as a suffix and as an internal factor; the 
characters preceding it are A (internal substring) and 
C,G (suffix), and we have eBWTðMÞ ¼
CGACATAACC, dolEBWTðMÞ ¼ CC$GCAAATAC$.   

Finally, it should be noted that adding end-of-string sym-
bols to the input strings changes the definition of the order 
applied. As observed above, the omega-order coincides with 
the lexicographic order on all pairs of strings S;T where nei-
ther is a proper prefix of the other; but with end-of-strings 
characters, no input string can be a proper prefix of another. 
Thus, on rotations of the Ti$’s, the omega-order equals the 
lexicographic order. As an example, consider the multiset 
M¼ fGTC$, GT$g from Section 2: we have the following 
omega-order among the rotations: $GT, $GTC, C$GT, 
GT$, GTC$, T$G, TC$G (see Table 2), which coincides with 
the lexicographic order. Similarly, adding different dollars 
$1, $2, …, $k and applying the omega-order results again in 
the lexicographic order between the rotations, with different 
dollar symbols considered as distinct characters. This implies:

Lemma 1. Let M¼fT1;T2; . . . ;Tkg be a string 
collection. Then   

1) dolEBWTðMÞ ¼mdolBWTðlexðMÞÞ, where lexðMÞ
denotes the lexicographic order of the strings in M; 

2) mdolBWTðMÞ ¼ eBWTðfTi$i j i¼ 1; . . . ;kgÞ, up to 
renaming of dollars. 

Regarding the differences among the separator-based BWT 
variants, we will show that all differences occur in certain 
well-defined intervals of the BWT, and that the differences 
themselves depend only on a specific permutation of 
f1; . . . ;kg, given by the combination of the input order, the 
lexicographic order of the input strings, and the BWT variant 
applied. In Table 3, we give the full BWT matrices for all 
separator-based BWT variants.

3.2 Interesting intervals
Let us call a string U a shared suffix w.r.t. multiset M if it is 
the suffix of at least two strings in M. Let b be the lexico-
graphic rank of the smallest rotation beginning with U$ and 
e the lexicographic rank of the largest rotation beginning 
with U$, among all rotations of strings T$, where T 2M. 
(One can think of ½b; e� as the suffix-array interval of U$.) 
We call ½b; e� an interesting interval if there exist i 6¼ j s.t. U is 
a suffix of both Ti and Tj, and the preceding characters in Ti 

and Tj are different, i.e. the two occurrences of U as suffix of 
Ti and Tj constitute a left-maximal repeat. (Put in different 
terms, interesting intervals correspond to internal nodes in 
the suffix tree of the reverse string, within the subtree of $.) 
Clearly, ½1;k� is an interesting interval unless all strings end 
with the same character. Note that interesting intervals differ 
both from the SAP-intervals of Cox et al. (2012) and from 
the tuples of Bentley et al. (2020) [called maximal row ranges 
in Manzini (2016)]: the former are the intervals correspond-
ing to all shared suffixes U, even if not left-maximal, while 
the latter include also suffixes U that are not shared.

Lemma 2. Any two distinct interesting intervals 
are disjoint.   

We can now narrow down the differences between any 
two separator-based BWTs of the same multiset. The next 
proposition states that these can only occur in interesting 

Table 3. From left to right we show the eBWT, the dolEBWT, the mdolBWT, the colexBWT, the optBWT, and the concBWT of the string 
collection M¼ fATATG;TGA;ACG;ATCA;GGAg.a

a Indices are given with reference to the numbering T1 ¼ ATATG;T2 ¼ TGA;T3 ¼ ACG;T4 ¼ ATCA;T5 ¼ GGA. Note that we give the rotations according to 
Lemma 1.
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intervals (part 1). This implies that the dollar-symbols appear 
in the same positions in all separator-based variants except 
for one very specific case (part 2). Moreover, we get an upper 
bound on the Hamming distance between two separator- 
based BWTs (part 3).

Proposition 1. Let L1 andL2 be two separator-based BWTs 
of the same multiset M.   

1) If L1½i� 6¼ L2½i� then i 2 ½b; e� for some interesting 
interval ½b; e�. 

2) Let I1 resp. I2 be the positions of the dollars in L1 resp. 
L2. If I1 6¼ I2 then there are i 6¼ j such that Ti is a 
proper suffix of Tj. 

3) distHðL1;L2Þ≤
P
½b;e� interestingðe−bþ1Þ. 

Proposition 1 implies that the variation of the different 
transforms can be explained based solely on what rule is used 
to break ties for shared suffixes. We will see next how the dif-
ferent BWT variants determine this tie-breaking rule.

4 Effects on the parameter r
What is the effect of the differences in the BWT variants on 
the number of runs of the BWT? As the following example 
shows, the number of runs can differ significantly between 
different variants.

Example 2. Let M¼fAAAA;AGCA;GCAA;GTCA;CAAA;
CGCA;TCAA;TTCAg. Then there are 28 runs 
in mdolBWTðMÞ ¼
AAAAAAAAACACACACACACAC$$GTGTGT$$ 
AC$$GT$$; colexBWTðMÞ ¼
AAAAAAAAAAAACCCCAACCAC$$GGTTGT$$ 
AC$$GT$$ has 18 runs.   

The results of Section 3 give us a method to measure the 
degree to which the BWT variants can differ.

Lemma 3. Let ½b; e� be an interesting interval, and 
ðn1; . . . ;nσÞ the Parikh vector of L½b::e�, i.e. ni is the 
number of occurrences of the ith character. Let a be 
such that na ¼maxini, and Na ¼ ðe −bþ1Þ−na, 
the sum of the other character multiplicities. 
Then the maximum number of runs in interval 
½b; e� is e −bþ1 if na −1≤Na, and 2Naþ1 otherwise.  

Definition 1. Let M be a multiset and varð½b;e�Þ be the 
bound on number of runs in ½b; e� from Lemma 3. The 
variability of M is   

varðMÞ ¼

P
½b;e� interesting varð½b; e�Þ

P
½b;e� interestingðe − bþ1Þ

:

The colexBWT has been shown experimentally to yield 
a low number of runs of the BWT (Cox et al. 2012, Li 2014). 
This is because it groups the characters in the interesting 
intervals in at most σ runs. Even though it does not always 
minimize r, we can bound its distance from the optimum.

Proposition 2. Let L be the colexBWT of multiset M, 
and let rOPT denote the minimum number of runs 
of any separator-based BWT of M. Then 
runsðLÞ≤ rOPTþ2 � cM, where cM is the number of 
interesting intervals.   

The algorithm of Bentley et al. (2020) for the optimal order 
for mdolBWT is based on the idea of starting from the colex- 
order and then adjusting, where possible, the order of the 
runs within interesting intervals in order to minimize charac-
ter changes at the borders, i.e. such that the first and the last 
run of each interesting interval is identical to the run preced-
ing and following that interesting interval. This is equivalent 
to sorting groups of sequences sharing the same left-maximal 
suffix. This sorting can be done on each interesting interval 
independently without affecting the other interesting inter-
vals. In Table 3, we show the result on our toy example, 
where it reduces the number of runs by 2 w.r.t. colex order. 
In the next section, we compare the number of runs of the 
non-separator based BWT variants to the optimum.

5 Experimental results
We computed the five BWT variants eBWT, dolEBWT, 
mdolBWT, concBWT, and colexBWT, on eight different ge-
nomic datasets. We used the tool optimalBWT to compute 
the minimum number of runs (i.e. that of optBWT) and used 
this as a baseline for comparison with the r parameter of the 
other BWT-variants. For mdolBWT and concBWT, we used 
the default input order in which the dataset was downloaded. 
The eight datasets have different characteristics: four contain 
short reads [SARS-CoV-2 short (Starr et al. 2020), Simons 
Diversity reads (Mallick et al. 2016), 16S rRNA short 
(Winand et al. 2019), Influenza A reads (Van den Hoecke 
et al. 2015)], and four long sequences [SARS-CoV-2 long 
(Greaney et al. 2022), 16S rRNA long (Edgar 2018), 
Candida auris reads (Woodworth et al. 2019), SARS-CoV-2 
genomes (Boucher et al. 2021a)], with the last being whole vi-
ral genomes.

On each of the datasets, we computed the pairwise 
Hamming distance between separator-based BWTs. To com-
pare them to the eBWT, we computed the pairwise edit dis-
tance on a small subset of the sequences (for computational 
reasons), and the Hamming distance on the small set, for 
comparison. We generated the following statistics on each of 
the datasets: number of interesting intervals, fraction of posi-
tions within interesting intervals (total length of interesting 
intervals divided by total length of the dataset), and the data-
set’s variability (Definition 1).

In Table 4, we give a brief summary of the experimental 
results, including these statistics on all eight datasets, as well 
as the average pairwise distance and average runlength over 
the five separator-based BWT variants; for full results, see the 
Supplementary Material.

The experiments showed a high variation in the number of 
runs in particular on datasets of short sequences. The highest 
difference was between colexBWT and concBWT, by a multi-
plicative factor of over 4:2, on the SARS-CoV-2 short data-
set. In Fig. 1, we plot the average runlength n=r for the four 
short sequence datasets, and the percentage increase of the 
number of runs w.r.t. ropt. The variation is less pronounced 
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on the one dataset which is less repetitive, namely Simons 
Diversity reads. Recall that the mdolBWT and concBWT 
vary depending on the input permutation. On most long se-
quence datasets, on the other hand, the differences were quite 
small (see Supplementary Material). To better understand 
how far the colexBWT is from the optimum w.r.t. the num-
ber of runs, we plot in Fig. 2 (left) the number of runs of 
colexBWT w.r.t. to ropt, on all eight datasets. The strongest in-
crease is on short sequences, where the variation among all BWT 

variants is high, as well; on the long sequence datasets, with the 
exception of SARS-CoV-2 long sequences, the colexBWT is very 
close to the optimum; however, note that on those datasets, all 
BWTs are close to the optimum.

The average number of runs and the average pairwise 
Hamming distance strongly depend on the length of the 
sequences. If the collection has a lot of short sequences which 
are very similar, then the differences between the BWTs both 
w.r.t. the number of runs, and as measured by the Hamming 

Table 4. Summary of the results on the eight datasets.a

Dataset No. seq Avg. length Ratio positions  
in int. intervals

Variability Avg. Hamming  
d.  betw. $-sep. BWTs

max n/r min n/r n/r optimal

SARS-CoV-2 short 500 000 50 0.792 0.210 0:11754 31.524 7.494 35.125
Simons Diversity reads 500 000 100 0.107 0.976 0:07195 7.873 5.299 8.133
16S rRNA short 500 000 152 0.741 0.058 0:02982 44.253 18.836 44.873
Influenza A reads 500 000 231 0.103 0.363 0:02609 49.172 23.100 50.275
SARS-CoV-2 long 50 000 1075 0.175 0.037 0:00464 73.204 57.568 74.498
16S rRNA long 16 741 1502 0.047 0.104 0:00289 46.879 45.015 47.140
Candida auris reads 50 000 2483 0.007 0.497 0:00246 1.732 1.726 1.732
SARS-CoV-2 genomes 2000 29 805 0.001 0.148 0:00012 521.610 499.549 523.240

a From left to right we report dataset names, number of sequences and average sequence length, the ratio of positions in interesting intervals, the 
variability of the dataset (Definition 1), the average normalized Hamming distance between any two of the separator-based BWT variants (optBWT not 
included). In the last column, we report the average runlength of the optBWT, and in the previous two columns, the maximum and minimum average 
runlength (n=r) taken over the other five BWT variants.

Figure 1. Results regarding r on short sequence datasets, of all BWT variants. Left: average runlength (n/r). Right: number of runs (percentage increase 
with respect to optBWT).

Figure 2. Left: number of runs of the colexBWT with respect to optimal BWT (percentage increase) on all eight datasets. Right: average normalized 
Hamming distance variations with respect to variability and fraction of positions in interesting intervals on all datasets.
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distance, can be large. This is because there are a lot of maxi-
mal shared suffixes and so, many positions are in interesting 
intervals. To better understand this relationship, we plotted, 
in Fig. 2 (right), the average Hamming distance against the 
two parameters variability and fraction of positions in inter-
esting intervals. We see that the two datasets with highest av-
erage Hamming distance have at least one of the two values 
very close to 1, while for those datasets where both values are 
very low, the BWT variants do not differ very much.

The input order used by the mdolBWT and the concBWT 
is the order in which the input sequences appear when the 
dataset is downloaded. Our study shows that only a few in-
put permutations can minimize the number of runs of the 
resulting BWT, namely those orders that group the characters 
inside the interesting intervals in at most σ runs, such as the 
order of Bentley et al. and the colexicographic order. Since 
there are k! possible input permutations, selecting an arbi-
trary input order will likely result in a BWT whose number of 
runs is much larger than the optimal one, especially on data-
sets with high variability.

6 Conclusion
We presented the first study of the different variants of the 
BWT for string collections. We found that the transforms 
computed by different tools differ not insignificantly, as mea-
sured by the pairwise Hamming distance: up to 12% between 
different BWT variants on the same dataset in our experi-
ments. We showed that most current tools implement BWT 
variants that are input order dependent, so that the same tool 
can produce different outputs if the input set is permuted. 
These differences extend also to the number of runs r, a pa-
rameter that is central in the analysis of BWT-based data 
structures, and which is increasingly being used as a measure 
of the repetitiveness of the dataset itself.

With string collections replacing individual sequences as the 
prime object of research and analysis, and thus becoming the 
standard input for text indexing algorithms, we believe that it 
is all the more important for users and researchers to be aware 
that not all methods are equivalent, and to understand the pre-
cise nature of the BWT variant produced by a particular tool.

We suggest further to standardize the definition of the pa-
rameter r for string collections, using either the colexico-
graphic order—implemented by the tool ropebwt2 (Li 
2014)—or the optimal order of Bentley et al. (2020)—imple-
mented by the tool optimalBWT (Cenzato et al. 2023). In this 
paper, we found that the number of runs can vary by up to a 
factor of 4:2 on real-life biological datasets, while in Cenzato 
et al. (2023), a factor of 31 was shown on other biological 
data. Not only does this heavily impact the space requirements 
of BWT-based data structures, but it also means that using the 
average runlength n=r as a repetitiveness measure of a dataset 
is ambiguous, unless the research community agrees on the 
BWT variant being used for the definition of this parameter.
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