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Abstract: This paper focuses on developing a predictive model for wind energy production in Italy,
aligning with the ambitious goals of the European Green Deal. In particular, by utilising real data from
the SUD (South) Italian electricity zone over seven years, the model employs stochastic differential
equations driven by (fractional) Brownian motion-based dynamic and generative adversarial net-
works to forecast wind energy production up to one week ahead accurately. Numerical simulations
demonstrate the model’s effectiveness in capturing the complexities of wind energy prediction.
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1. Introduction

In recent years, the global pursuit of sustainable energy solutions has accelerated,
driven by growing concerns over climate change and the reduction of fossil fuel resources.
Within this context, renewable energy sources have emerged as pivotal components in the
transition towards a more sustainable future. Among these, wind energy has garnered
significant attention due to its inherent sustainability, non-polluting nature, and renewable
abundance [1]. In alignment with international sustainability goals, e.g., the European
Green Deal, which aims to achieve climate neutrality by 2050, wind-based power generation
has become increasingly imperative [2].

In addition to the generation of renewable energy, accurately predicting energy con-
sumption and effectively managing the electric network system are critical aspects of
ensuring a reliable and efficient energy supply [3–5]. Precise forecasting of wind power
generation can aid in balancing supply and demand, optimising grid operations, and min-
imising energy waste.

In Italy, wind energy production has experienced constant growth in the last decade,
reflecting the broader global trend towards renewable energy adoption. According to Terna
(https://www.terna.it/en/electric-system/dispatching/renewable-sources, accessed on
18 May 2024), the Italian electricity transmission system operator, wind energy has seen
a significant increase, with a rise of 3 GW in installed capacity over the last 10 years.
Moreover, production is predominantly concentrated in the southern regions of Italy, due
to favourable climate conditions (Figure 1).

Wind’s inherently stochastic, intermittent, and volatile nature poses significant obstacles
to accurately forecasting its energy production [6]. As such, developing robust prediction
models for wind energy production has become a crucial area of research and innovation.
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Predictive modelling typically falls into one of four categories: point forecasting,
interval forecasting, probabilistic forecasting, and scenario generation. Each approach
offers distinct advantages and challenges.

Various techniques can be classified into [7]: physical methods, based on numerical
weather prediction [8]; statistical methods, such as the class of autoregressive moving average
(ARMA) and its modifications [9–11]; machine-learning-based methods, that can deal with
irregular and nonlinear features of wind power series [12–22]; and hybrid approaches, which
combine different technologies to improve the prediction accuracy [23–27].

Figure 1. Left: distribution of wind energy production in Italy. Right: wind power capacity (GW)
from 2013 to 2024. Source: Terna.

This paper focuses on point forecasting, while incorporating elements of probabilistic
modelling. Specifically, the time series of wind energy production is considered a realisation
of a stochastic process representing the solution of a stochastic differential Equation (SDE)
driven by Brownian motion. This solution, a probability distribution on the path space
of possible realisations of wind energy production, is then numerically approximated by
a generative adversarial network (GAN) [28]. Subsequently, a generalisation based on
fractional Brownian motion (fBm) is examined to determine whether the time series of
wind energy production exhibits self-similarity properties.

GANs [29] are utilised in various fields, including image-to-image translation [30],
natural language processing [31], and many others. A detailed introduction to GANs
is provided in Section 2.1.3. Several notable variations of the original GAN architecture
are reviewed, each introducing unique modifications and innovations to address specific
challenges and enhance generative modelling capabilities.

The Wasserstein GAN (WGAN) [32] introduces the Wasserstein distance for measuring
the difference between the generated and real data distributions. By minimising this
distance, WGAN aims to stabilise the training process and produce higher-quality samples
than traditional GANs. The Conditional GAN (CGAN) [32] extends the GAN framework
by conditioning the generator and discriminator networks on additional information, such
as class labels or auxiliary data. This enables the generation of samples conditioned on
specific attributes, leading to more controlled and targeted synthesis. Ref. [33] provides
probabilistic estimates of the generated data. Ref. [34] improves the original WGAN by
introducing a gradient penalty term to enforce smoothness in the learned distribution.
This regularisation technique helps to alleviate mode collapse and stabilises the training
process. Combining the elements of both GANs and Variational Autoencoders (VAEs) to
leverage the strengths of both frameworks, ref. [35] offers improved stability and control
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over the generated data distribution. Among the hybrid methods involving GANs, in [36],
a CGAN is followed by Single-objective Optimisation; this approach consists of training a
CGAN to generate conditional samples, followed by a single-objective optimisation step
to refine the generated samples further. Also, Ref. [37] is worth mentioning, where a
WGAN is combined with a convolutional neural network (CNN) classifier to improve the
discriminative capabilities of the discriminator network. The Conditional WGAN-GP can
also be integrated with a Support Vector Classifier to enhance discrimination, as in [38].
Finally, the Sequence GAN (SeqGAN) [39] adopts LSTM to capture the temporal correlation,
and then uses GANs coupled with reinforcement learning.

Given the objective of adopting a stochastic approach based on SDEs for modelling
wind power generation, GANs provide a robust and flexible framework. Wind power
generation is characterised by high volatility and inherent randomness, which makes
traditional deterministic models insufficient. GANs are particularly well-suited for this
task due to their ability to capture and generate diverse, complex data patterns through
adversarial training. By using a GAN, the probability distribution of wind power generation
trajectories can be effectively approximated, allowing us to incorporate the stochastic nature
of the process [37,40]. This work is inspired by [41].

The paper’s main contributions are as follows:

• A stochastic approach to wind energy production forecasting in Italy, with a forward
prediction horizon of one week, has been adopted. The time series is treated as an
outcome of a stochastic process, a solution of an SDE.

• The solution distribution is modelled by a GAN whose generator is driven by a
Brownian motion. In addition to [41], the generator is also allowed to be driven by a
fractional Brownian motion (fBm) with an experimentally estimated Hurst exponent.
The results obtained by the two frameworks are then compared. Similar results are
found in [42], where both models show a very close complexity.

The paper is structured as follows: in Section 2, after a brief recall of fBm and SDEs
basics, the architecture is presented; Section 3 presents the data preprocessing, the training
procedure and the results obtained; and finally, Section 4 concludes the paper.

2. Methodology
2.1. Preliminaries

This section discusses the preliminaries underlying fBm, SDEs, and GANs, as well as
notably weak and strong solutions and GANs. By incorporating fBm into the model, the
aim is to capture and leverage the self-similarity structure of the wind energy production
time series.

2.1.1. Fractional Brownian Motion

Fractional Brownian motion (fBm) is a stochastic process characterised by long-range
dependence and self-similarity. Unlike traditional Brownian motion, which exhibits inde-
pendent and identically distributed increments, fBm displays correlated increments with a
power-law decay in autocovariance.

Key properties of fBm include its non-stationary behaviour, continuous sample paths,
and self-similarity across different time scales. The Hurst exponent quantifies the self-
similarity property, denoted by H, which measures the degree of dependence between
distant points in the time series. A Hurst exponent H > 0.5 indicates persistent behaviour,
while H < 0.5 suggests anti-persistent behaviour.

2.1.2. Definition of SDE

Let (Ω,F , P) be a probability space, and let {WH
t }t≥0 be a fBm on R, adapted to its

natural filtration Ft := σ(WH
s : s ≤ t).

Consider a one-dimensional SDE of Itô type:

dXt = b(t, Xt)dt + σ(t, Xt)dWH
t , X0 = x0, (1)
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where {Xt}t≥0 is a continuous-time stochastic process on R adapted to Ft; b(t, Xt) and
σ(t, Xt) are Ft-measurable processes. One could rewrite the SDE equivalently in its integral
form, namely

Xt = x0 +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWH

s . (2)

A realisation of the process {Xt} is called a path. Let us remark that a path is com-
pletely defined once the fBm {WH

t } has taken a realisation on the respective time interval.
Given an fBm {WH

t }, {Xt} is is said to be a strong solution if {Xt} is a continuous-time
stochastic process adapted to Ft, such that it solves Equation (2), whereas {Xt} is said to
be a weak solution if there exists a fBm {WH

t } such that {Xt} is Ft-adapted and solves (2).
Path-wise uniqueness holds if any two strong solutions {Xt}, {X′

t} on (Ω,F , {Ft}, P, {Wt})
are indistinguishable, namely

P(Xt = X′
t for every t) = 1,

i.e., the paths corresponding to the solution are P-a.s. indistinguishable. On the other hand,
weak uniqueness holds if any two strong {Xt}, {X′

t} have the same law, namely

P(Xt = X′
t) = 1 for a.e. t.

For the sake of completeness, let us recall that the previous problem admits a unique,
strong solution if, e.g., b(t, Xt) and σ(t, Xt) satisfy Lipschitz conditions, with X0 being
independent of Ft. The process {Xt} is square-integrable for all t; see, e.g., ref. [43] for
details. In the following, the focus is restricted to SDEs that admit a strong solution.

2.1.3. Generative Adversarial Networks

Generally speaking, generative neural network (NN) structures are among the most
relevant methods to generate synthetic data, including wind energy production datasets,
mainly because of their capability to model complex data distributions. These architectures
learn the underlying probability distribution of the data and generate samples that resemble
real observations. Mathematically, a generative NN aims to learn a mapping function
G : Z → X , where Z is the input noise space and X is the data space. GANs have shown
remarkable success in generating high-quality synthetic data within this context.

A GAN is an artificial intelligence model designed to generate new data that closely
resembles a given dataset. It was introduced by Ian Goodfellow and their colleagues in
2014. GANs belong to the broader category of generative models, which aim to learn a
given dataset’s underlying patterns and structures to generate new, realistic samples from
that data distribution. Accordingly, a generative NN is trained to minimise the discrepancy
between the empirical distribution of the training data and the generated distribution.

The key idea behind GANs is to train two neural networks, a generator G and a
discriminator D, in a competitive framework. The generator takes random noise as input
and generates synthetic data samples. The generator’s goal is to create indistinguishable
data from real data. The discriminator evaluates input data and tries to distinguish between
real data from the dataset and synthetic data produced by the generator. The discriminator’s
objective is to classify whether a given sample is real or generated correctly. The training
process involves a back-and-forth competition between the generator and the discriminator:
the generator tries to improve its ability to produce realistic data to fool the discriminator.
Conversely, the discriminator aims to enhance its ability to differentiate between real and
generated data.

Suppose the generator Gθ is parametrised by θ ∈ Θ and the discriminator Dϕ is
parametrised by ϕ ∈ Φ. Then, consider a noise distribution µ on a space X and a target
distribution ν on a space Y . The generator is learned function Gθ : X → Y trained so
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that the (pushforward) distribution Gθ(µ) approximates ν. The generator is optimised
concerning

min
θ

E[Dϕ(Gθ(µ))],

i.e., it minimises a loss function that encourages the generated distribution to be similar to
the target distribution. The discriminator is optimised concerning

max
ϕ

(
E[Dϕ(Gθ(µ))]−E[Dϕ(ν)]

)
,

i.e., it maximises a score function that measures its ability. The loss function of the GAN is,
therefore,

V(Gθ , Dϕ) = E[Dϕ(Gθ(µ))]−E[Dϕ(ν)],

and an equilibrium is reached when the data produced by the generator cannot be distin-
guished from real data. The discriminator is unable to reliably tell the difference, which
translates into the following two-player zero-sum minimax game:

inf
θ

sup
ϕ

V(Gθ , Dϕ).

The training process is performed via stochastic gradient descent techniques, and it
involves iteratively updating the parameters of the generator and discriminator networks
to reach an equilibrium, where the generator produces samples that are indistinguishable
from real data according to the discriminator.

2.1.4. SDEs as GANs

The strong solution to an SDE may be thought of as the unique function F, such that
F(X0, WH) = X almost surely (see Chapter V, Definition 10.9 in [44]). In other words, this
entails that SDEs take a noise distribution WH (Wiener measure, the distribution of fBm)
and return some solution distribution, which is a probability distribution on path space.

In this way, the strong solution of an SDE and the functioning of a GAN share con-
ceptual similarities. In both cases, there is a mapping from a source of randomness (noise)
to a more complex structure, and both are concerned with capturing or replicating certain
probability distributions.

Having established this linkage, the next objective is to combine these two methods.

2.2. Architecture
2.2.1. Generator

Let Ytrue be a random variable on dy-dimensional path space, i.e., the space of continu-
ous functions f : [0, T] → Rdy for some fixed time horizon T > 0. Let WH : [0, T] → Rdw be
a dw-dimensional fBm, with dw = 1 whenever H ̸= 1

2 , and V ∼ N (0, Idv) be drawn from
a dv-dimensional standard multivariate normal. The values dw, dv are hyperparameters
describing the noise size. Let

ζθ : Rdv → Rdx ,

µθ : [0, T]×Rdx → Rdx ,

σθ : [0, T]×Rdx → Rdx×dw ,

αθ ∈ Rdy×dx ,

βθ ∈ Rdy ,

where ζθ , µθ , and σθ are (Lipschitz) feedforward neural networks (FFNNs). See Section 2.2.4
for a formal definition of a Lipschitz neural network.
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They are parametrised by θ. The hyperparameter dx describes the size of the hidden
state. By plugging the latter nets into an SDE in place of the corresponding functions and
parameters, a neural SDE is defined:

X0 = ζθ(V),

dXt = µθ(t, Xt)dt + σθ(t, Xt)dWH
t , (3)

Yt = αθXt + βθ , (4)

for t ∈ [0, T], with X : [0, T] → Rx being the (strong) solution to the SDE, with the goal that
Y ≈ Ytrue, according to a metric that will be defined later. Assuming Lipschitz continuity
for µθ and σθ , solution X exists, and is also uniquely defined. As an SDE solution, X is a
Markov process, even though the real data might not satisfy a Markov property. That is
why X is thought of as a hidden state and transformed into Y, representing the real data
process. To generate a path, an initial noise is sampled from V and from the fBm WH ; then,
Equation (3) is solved with the Euler–Maruyama method.

Neural differential equations represent a powerful framework that integrates neural
networks with both deterministic and stochastic processes. The reader is referred to [45–52]
for more insights on neural differential equations and applications.

2.2.2. Discriminator

The discriminator evaluates input data, comparing real data from the dataset to
synthetic data produced by the generator, aiming at correctly classifying whether a given
sample is real or generated.

In this neural SDE-based approach, the previous concept translates into writing an
application that takes as input paths Y : [0, T] → Rdy , and is defined as neural SDE, allowing
the model to be defined continuously. Let

ξϕ : Rdy →Rdh ,

fϕ : [0, T]×Rdh →Rdh ,

gϕ : [0, T]×Rdh →Rdh×dy ,

mϕ ∈ Rdh

(5)

where ξϕ, fϕ, and gϕ are (Lipschitz) FFNNs. They are all parametrised by ϕ. The dimension
h is a hyperparameter describing the size of the hidden state. This allows us to write the
discriminator as an SDE of the form

H0 = ξϕ(Y0),

dHt = fϕ(t, Ht)dt + gϕ(t, Ht)dYt,

D = mϕ · HT ,

(6)

for t ∈ [0, T], with H : [0, T] → Rh being the (strong) solution to this SDE, which exists
given Lipschitz continuity of fϕ, gϕ. The value D ∈ R, a function of the terminal hidden
state HT , is the discriminator’s score for real versus fake. The discriminator follows the
formulation of a neural controlled differential equation (CDE) [47,53] concerning the control
Y. A CDE allows the process H to naturally adapt to incoming data, as changes in Y change
the local dynamics of the system.

2.2.3. Training Loss

In WGANs, the training loss is defined using the Wasserstein distance (also known
as the Earth Mover’s distance) between the distributions of real and generated samples,
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aiming at measuring the difference between the average discriminator scores for real and
generated samples as follows:

Ex∼Pdata [Dϕ(x)]−Ez∼Pnoise [Dϕ(Gθ(z))],

where Gθ represents the overall action of the generator, and Dϕ represents the overall action
of the discriminator [54]. Such minimisation encourages the generator to produce samples
that are indistinguishable from real samples according to the critic’s evaluation. Training is
performed via stochastic gradient descent techniques.

2.2.4. Lipschitz Regularisation

Since the Wasserstein distance estimate requires the discriminator’s functional to be a
1-Lipschitz function, the Lipschitz constraint must be enforced. To achieve this, the Gradient
Penalty technique is used [55], penalising the critic’s gradient norm deviation from 1 at
certain input points.

3. Experiments

This section details the experimental procedures carried out to develop and validate
the wind energy production forecasting model. The entire workflow, from raw data to the
forecast of new wind energy data, is outlined in the subsequent subsections and illustrated
in the comprehensive flowchart of Figure 2.
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Figure 2. Flowchart representing the steps from raw data to the forecasting of wind energy.

3.1. Data Preprocessing

The dataset comprises a daily time series in which each observation represents the
daily average wind energy production in the Italian electricity zone SUD. The dataset spans
from 1 January 2015, to 31 December 2021, and it is shown in Figure 3.
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Figure 3. Time series of the daily average wind energy production in SUD zone.

The following data preprocessing procedures have been conducted:

• Missing data and potential outliers have been detected and corrected;
• The logarithmic transformations have been applied;
• The series has been decomposed into trends, seasonal and residual components. More

specifically, the trend has been obtained via a rolling window smoothing of the series;
the analysis of the periodogram allowed to detect the main seasonal component,
i.e., annual periodicity, that was successively isolated with a Fourier decomposition;
and the residual component has been tested for stationarity; both the Augmented
Dickey–Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
confirmed the stationary nature of the residual component.

The residual component was then used to construct the training and test sets for the
GAN model. Specifically, each sample point within the data set represents a 7-day-long
contiguous segment of the underlying time series. The data from 2015-01-01 to 2020-12-31
are used for training; from 2021-01-01 to 2021-09-30 for validation and hyperparameter
tuning; and from 2021-10-01 to 2021-12-31 for testing.

3.2. Model Specification
3.2.1. Software

The PyTorch framework was adopted. The library torchsde [41,56] was used to solve
the SDEs, and the library torchcde [53] for its interpolation schemes and to solve the neural
CDEs used in the classification and prediction metrics.

3.2.2. Computing Infrastructure

Training was performed on GPU NVIDIA A100 80 GB.

3.2.3. Normalisation

All data were normalised to have zero mean and unit variance.

3.2.4. Architectures

Hyperparameters were selected according to hyperparameter tuning. The Python
library ray-tune was used. Every neural network was parametrised as an FFNN with one
hidden layer, width 16, and SiLU activations. Every model’s drift, diffusion and vector
fields also had a sigmoid nonlinearity as their final operation. The neural SDE’s generator
has a hidden state of size x, and the discriminator has a hidden state of size h. These were
both taken as x = h = 16. The Latent ODE, likewise, has an evolving hidden state, which
was also taken as size 16. The Latent ODE samples noise from a customarily distributed
initial condition, which has been taken to have three dimensions. For the model with fBm,
all the hidden sizes and noises were assumed to have dimension one.
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3.2.5. Optimisers

The Latent ODE was trained with Adam [57] with a learning rate of 10−3. The
generator and discriminator of the neural SDE were trained with Adadelta, with a learning
rate of 0.5 × 10−5. The learning rates of the model with fBm were chosen to be equal to
10−1 and 0.5 × 10−5, respectively.

3.2.6. Hurst Index Estimation

One of the pioneering methods for Hurst index estimation is the rescaled range
analysis, commonly known as Range over Standard Deviation (R/S). In this section, we
will describe the approach mentioned above, and estimate the Hurst index; see [58] for
further details.

Generally speaking, this method involves calculating the rescaled range of a time
series, which is the difference between the maximum and minimum cumulative sums of
data divided by the standard deviation. On the one hand, we remark that the key advantage
of R/S analysis lies in its simplicity, making it suitable for initial exploratory analyses; on
the other, sensitivity to data size should be taken into account, and adjustments may be
necessary for optimal results.

3.3. Algorithm to Estimate H

The approach relies on the representation of the Hurst exponent H in terms of the
asymptotic behaviour of the rescaled range as a function of the time span of a time series.
Formally:

E
[

R(n)
S(n)

]
= C · nH as n → ∞ (7)

where:

1. n represents the period of the observations, denoting the number of data points within
a time series of length N under consideration;

2. R(n) denotes the range of the initial n cumulative deviations from the mean;
3. S(n) indicates the range of the series comprising the first n cumulative standard

deviations;
4. C is a positive constant.

Therefore, taking into account the cumulative sums of residuals, the following proce-
dure is implemented:

1. For each specified length n ∈ {n1, . . . , nk = N}, the residuals u = (ui, i ∈ {1, . . . , n})
are extracted from the seasonal decomposition of the observed time series, and the
mean u is subsequently computed;

2. The cumulative deviations are computed as R̂(n) = ∑n
i=1(ui − u);

3. The range is computed as max(R̂(n))− min(R̂(n));
4. S(n) is computed as the standard deviation of the cumulative deviations of R̂(n);

5. The rescaled ranges are obtained as R(n)
S(n) ;

6. A linear regression of the rescaled ranges is fitted against n on a log scale;
7. Ĥ is estimated as the slope of the regression analysis conducted over all the different

k lengths considered.

3.4. Data Size Analysis

An R/S analysis was conducted on the residuals, with the optimal data size determined
as a result of subsequent analysis:

• The rolling standard deviation is computed on a yearly basis;
• Both the minimum and maximum values of the rolling standard deviations are utilised

to delineate a grid of five appropriate diffusion coefficients for the fractional Brownian
motion. The range spans from the minimum value of 0.7423 to the maximum value of
0.8887, with equal spacing between each coefficient;
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• A grid of nine appropriate values for H is also considered, and it spaces evenly from
0.1 to 0.9;

• For each combination of H and the diffusion coefficient, we simulate 1000 trajectories
for the fBm, over 5 years of daily projections;

• The calibration algorithm for H is implemented over the trajectories generated using
different data size, with RMSE computation realised for each data size selected;

• The minimum RMSE for H highlights the optimal data size.

The analysis focuses on a specific set of values chosen for their ability to provide deep
insights into the model’s dynamics while maintaining simplicity. Although this set may
appear limited, each value was meticulously selected to cover a representative spectrum
of scenarios and conditions. Expanding the dataset to include more values would not
significantly enhance our understanding of the model’s behaviour. Additional values
would likely fall within ranges already covered by the selected set, contributing redundant
information without introducing meaningful new insights. Furthermore, a denser dataset
could obscure significant trends or patterns and overwhelm the reader with excessive
data points.

Emphasising a concise yet comprehensive set of values allows for effective assessment
of the model’s performance across key metrics, facilitating clear conclusions without
unnecessary complexity. This approach maximises the efficiency of our analysis, enabling
extraction of valuable insights with minimal noise.

It is noteworthy that the preceding algorithm confirms the optimal window size as the
maximum one.

In this specific case, we consider daily residuals across the Italian geographical area of
interest, spanning from 1 January 2015, to 31 December 2020.

The algorithm described above produces an the value of H of 0.3522, as showed in
Table 1.

Table 1. Estimation results for the Hurst exponent.

Zone Ĥ

SUD 0.3522

3.5. Results

In the simulation methodology, two primary error metrics have been used to assess
the performance of the predictive model: Dynamic Time Warping (DTW) and Maximum–
Minimum Discrepancy (MMD). These metrics offer distinct perspectives on the accuracy
and fidelity of the wind energy production forecasts.

DTW is a technique commonly employed in time series analysis to measure the
similarity between two sequences, accounting for variations in the time axis. By aligning the
sequences non-linearly, DTW accommodates temporal distortions and fluctuations, making
it particularly well-suited for evaluating the performance of time series forecasting models.
In other words, DTW measures the degree of correspondence between the predicted and
observed energy production trajectories, accounting for potential time shifts and variations.

MMD is a statistical measure used to quantify the dissimilarity between probability
distributions. By comparing the maximum difference and minimum difference between
the distributions of predicted and observed wind energy production, MMD captures
discrepancies in both the mean and variance of the distributions. This metric offers a
comprehensive assessment of the model’s predictive accuracy, highlighting deviations in
both central tendency and variability.

The implementation of DTW and MMD together provides complementary perspec-
tives on the models’ performance, encompassing both the temporal dynamics and the
distributional characteristics of the generated data. Latter metrics allow us to effectively
evaluate the quality, accuracy, and consistency of the wind energy production predictions
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produced by the mentioned models, thus providing a comprehensive assessment of their
comparative performance.

The experimental errors are shown in Table 2; they indicate comparable performance
for the two models, both with and without the inclusion of fBm.

Table 2. Experimental results.

Metric Neural SDE Neural SDE with fBm

DTW 3.3078 3.0743
MMD 0.1042 0.1091

To better visualise the level of agreement, in Figures 4a and 5a, 50 samples from the
true distribution are plotted against 50 from the learned distribution.

The level of agreement between the real and generated distributions is visually as-
sessed by examining the overlap and spread of the trajectories. Both the real and generated
trajectories exhibit a comparable spread as they evolve over time, suggesting that the model
has effectively learned the variability and stochastic nature of the wind energy production,
maintaining a consistent level of divergence comparable to the real data. In addition,
the paths of the real and generated trajectories display similar patterns and fluctuations,
implying that the model has accurately captured the underlying dynamics and trends of
the wind energy production.

In addition to the trajectory comparison, the marginal distributions of the real and
generated paths at specific time steps (t = 1, 2, 3, 4, 5) are presented in Figures 4b and 5b.
These histograms provide a more granular view of the model’s performance at each
individual time point. The overlap between the real and generated distributions at each
time step indicates that the model not only captures the general trend, but also the specific
probabilistic characteristics of the data. This overlap reinforces the conclusion that the
generated data are statistically similar to the real data. The close agreement between the
real and generated distributions at these individual time points underscores the model’s
effectiveness in predicting wind energy production.

Since the model has been trained on the residual component of the wind energy
production time series, the predictions generated by the model correspond to this residual
part. To reconstruct the actual time series of wind energy production, it is necessary to
reintroduce the trend and seasonal components that were isolated during the preprocessing
steps. Figure 6 shows the recovered time series from the predicted residuals after adding
the trend and seasonal components.

Then, the Mean Absolute Percentage Error (MAPE) has been calculated on the recov-
ered time series (in logarithmic form) to assess the accuracy of the model’s predictions.
The resulting MAPE value is approximately 13-14%, as shown in Table 3. Although this
error rate is not the lowest achievable, it is still within a satisfactory range, indicating
that the model performs reasonably well in capturing and predicting the wind energy
production dynamics.

Table 3. MAPE (%) computed on the reconstructed time series after adding trend and seasonality.

Metric Neural SDE Neural SDE with fBm

MAPE 13.40 14.29
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(a)

(b)
Figure 4. (a) Sample paths from the real and the generated processes. (b) Left to right: marginal
distributions at t = 1, 2, 3, 4, 5.

(a)

(b)
Figure 5. (a) Sample paths from the real and the generated processes for the model with fBm. (b) Left
to right: marginal distributions at t = 1, 2, 3, 4, 5 for the model with fBm.
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(a)

(b)
Figure 6. (a) Actual versus predicted wind energy production (in log scale). (b) Actual versus
predicted wind energy production with fBm (in log scale).

4. Conclusions

In this study, predictive models for wind energy production in Italy were applied
and evaluated, implementing GANs to capture the stochastic nature of wind behaviour.
The investigation aimed to address the challenges associated with precise wind energy
prediction, which is crucial for sustainable energy planning and management.

Through extensive numerical simulations and analyses, the effectiveness of the pro-
posed approach in accurately forecasting wind energy production has been demonstrated.
By treating the wind energy production time series as a realisation of a stochastic process,
the complex dynamics and uncertainties inherent in wind generation have been successfully
modelled.

Despite the introduction of fBm, comparable errors were observed between the
two models.

This can be attributed to the linear transformation (4) that may mitigate the contri-
bution of the fBm, resulting in similar error profiles between the models. The observed
limited impact may be attributed to the consideration of fBm with dimensionality restricted
to 1. Future research could explore the generalisation of the generation algorithm for fBm
to encompass higher dimensions, as well as other models for characterising long-range
dependency, such as the fractional Lévy stable motion (fLsm). With two parameters, α and
H, the latter could characterise local irregularity and global persistence separately.
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