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Abstract—We propose a solution for Active Visual Search of objects in
an environment, whose 2D floor map is the only known information. Our
solution has three key features that make it more plausible and robust to
detector failures compared to state-of-the-art methods: (i) it is unsuper-
vised as it does not need any training sessions. (ii) During the exploration,
a probability distribution on the 2D floor map is updated according to an
intuitive mechanism, while an improved belief update increases the effec-
tiveness of the agent’s exploration. (iii) We incorporate the awareness that
an object detector may fail into the aforementioned probability modelling
by exploiting the success statistics of a specific detector. Our solution is
dubbed POMP-BE-PD (Pomcp-based Online Motion Planning with Belief
by Exploration and Probabilistic Detection). It uses the current pose of
an agent and an RGB-D observation to learn an optimal search policy,
exploiting a POMDP solved by a Monte-Carlo planning approach. On
the Active Vision Dataset Benchmark, we increase the average success
rate over all the environments by a significant 35% while decreasing the
average path length by 4% with respect to competing methods. Thus, our
results are state-of-the-art, even without any training procedure. Code at
https://intelligolabs.github.io/unsupervised active visual search/

Index Terms—Active Visual Search, Object Goal Navigation, Partially
Observable Markov Decision Process, Partially Observable Monte Carlo
Planning, Online Policy Learning, Active Vision Dataset Benchmark

1 INTRODUCTION

AMONG the most interesting areas of robotics is the problem
of Active Visual Search (AVS) [1], in which an intelligent

robotic agent must autonomously find an object located far from it,
moving and exploring its surroundings through egocentric visual
sensors. AVS applies in many different contexts, such as the
domotic field [2], [3], [4], personal assistance [5], search and
rescue [6], [7], and the very intriguing Mars exploration [8]. In this
paper we focus on the AVS problem in an indoor environment [9],
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Fig. 1. An agent is initialised in a known environment with the task
of visually searching for a target object, i.e. to localise the object and
approach it. (a) 3D reconstruction of the environment; the agent has to
navigate toward the target (yellow star) through the possible shortest
path (highlighted in green) while avoiding longer trajectories (in orange)
without missing entirely the target (in red). (b) Corresponding 2D grid
map of the scene in our POMCP modelling: blue dots are the possible
object locations, purple crosses are the possible robot poses.

where the only available knowledge is its 2D map. We propose a
method for learning a motion planning policy that decides how to
move an agent based on a perception module to visually detect and
approach a specific object, i.e. the target (see Fig. 1).

AVS in real-world scenarios with egocentric camera views is
a very challenging problem due to the unpredictable quality of
the observations –i.e. object in the far field, motion blur and low
resolution–, partial views and occlusions due to scene clutters
and generalisation to new environment. This has an impact not
only on the object detection but also on the planning policy. To
address this challenge, recent efforts are mostly based on deep
Reinforcement Learning (RL), e.g. deep recurrent Q-network
(DRQN), fed with deep visual embedding [10], [11]. To train
such DRQN models, a large amount of data is required, which are
sequences of observations of various lengths, covering successful
and unsuccessful search episodes from multiple real scenarios or
simulated environments.

In this paper, we take a different perspective and propose an
online reinforcement learning method for AVS. The basic idea is
not to learn a complete policy by using a vast amount of training
data, instead to use an advanced planning approach to learn a
policy that can select the best action based on the environment
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configuration which is built starting from the observations gathered
in the environment. This fundamental shift in the methodology
is carried out considering the Partially Observable Monte Carlo
Planning (POMCP) method [12]. In the following, we will use the
term learning referring to the process of Q-value approximation
from simulations performed using the model of the environment,
instead of referring to a process of function parameter tuning from
data. POMCP has been applied to benchmark problems, such as
rocksample, battleship and pocman (partially observable pacman)
with impressive results, however, its use for robotic applications is
an open and challenging research problem.

In our previous work [13], we introduced POMP, an online
reinforcement learning method, that uses as input the current pose
of an agent and an RGB-D frame to plan the next move that brings
the agent closer to the target object. We modelled the problem as a
Partially Observable Markov Decision Process solved by a Monte-
Carlo planning approach, allowing us to explore the environment
and search for the object at the same time. The main benefit of
this approach is that POMP does not require a training phase,
so being very agile in solving AVS in small and medium real
scenarios. Despite achieving results close to the state-of-the-art
without using any training data, POMP uses real object detectors
that are inaccurate with false positives and miss-detections. As a
consequence, an agent could terminate the exploration in wrong
locations, fooled by the detector, thus decreasing the overall success
rate.

To overcome these problems, in this paper we propose POMP-
BE-PD, an extension of POMP that defines the observation model
in probabilistic terms, allowing us to better handle the false
positives of object detectors, as well as improving the effectiveness
of the agent’s explorations. A visual representation of our approach
is shown in Fig. 2. At each time step, we feed our model with
the agent pose –i.e. position and orientation– in a known 2D map
and an RGB-D frame given by a sensor acquisition. An off-the-
shelf object detector is applied to the RGB image to identify the
bounding box of the target object, if present. The depth channel
of the candidate target proposal is further exploited to obtain the
candidate’s position in the floor map. We use this information to
build a probability distribution over all the candidate locations of
the target object. The policy is learned online by Monte Carlo
simulations, therefore the proposed framework is general and easy
to deploy in any environment. The POMCP exploration terminates
when one location within the belief space exceeds a threshold.

Crucially, our approach exploits the model of the environment
to consider the sensor’s field of view and all the admissible moves
of the agent in the area. For our active visual search scenario, such a
model can be easily obtained by building a map of the environment
to include the position of fixed elements, such as obstacles, walls
or furniture. Our motion policy explicitly exploits the knowledge of
the environment for the visibility modelling, instead other RL-based
strategies [10], [11] implicitly encode such environment knowledge
in a data-driven manner. Once the exploration phase is over, the
probabilistic docking module guides the agent to approach the
target location –i.e. the closest pose with a frontal-facing viewpoint
to the target– as quickly as possible. First, we estimate the shortest
path [14] on the graph of all possible robot poses, and then a path
replanning is used to improve robustness.

With respect to our previous work [13], the main contributions
we make in this paper are:

• a new strategy for improving the robustness with respect

to false positives and miss-detection when using a real
object detector in which we substitute the deterministic
detection with a probabilistic one through a Bayesian
inference considering a probability distribution over all
possible object locations;

• a new strategy for the belief update of POMCP that allows
us to lower the total path length of the exploration and
increase the effectiveness with large state-space environ-
ments;

• a new approach for docking, considering the information
gathered during the exploration to improve the robustness
to the problems discussed above;

• a deeper experimental analysis and results discussion,
providing results for all the scenarios of the Active Vision
Dataset;

• an extended description of the POMCP visual search
method, with more mathematical details and discussion.

2 RELATED WORK

The two main research topics related to this work are AVS and
planning with Partially Observable MDPs. The main works of both
topics are briefly surveyed in the following and original elements
of our contribution with respect to the state-of-the-art highlighted.

2.1 Active Visual Search
Active Visual Search, often referred to as Object Goal Navigation,
is a specific task of Embodied AI research field. Embodied AI,
which learns through interactions with the environment from an
egocentric perspective, is an emerging field of study. Within this
field, AVS is a task focused on detecting and approaching a specific
object [15]. Early approaches exploit intermediate objects –e.g. the
relation between a sofa and a television– to restrict the search area
for the target object. Although intermediate objects are usually
easier to detect because of their size, their spatial relation w.r.t. the
target may be not systematic. A probabilistic approach is proposed
in [16], where the likelihood of the target increases when objects
which are expected to be co-occurring are detected.

AVS with deep learning is viable using Deep Reinforcement
Learning techniques [10], [11], [17], where visual neural embed-
dings are often exploited for action policy training. Han et al. [17]
proposed a deep Q-network (DQN) where the agent state is given
by CNN features describing the current RGB observation and
the bounding box of the detected object. However, this work
assumes that the object must be detected initially. To address
the search task, EAT [10] performs feature extraction from the
current RGB observation, and the candidate target crop generated
by a region proposal network (RPN). The features are then fed
into the Action Policy network. Similarly, GAPLE [11] uses deep
visual features enriched by 3D information, from the depth channel,
for policy learning. Although GAPLE claims to be generalised,
expensive training is the cost to pay as GAPLE is trained with 100
scenes rendered using a simulator House3D based on the synthetic
SUNCG dataset. This limitation is shared with other approaches
that learn optimal policies using Asynchronous Advantage Actor
Critic (A3C) algorithm [18], Long Short Term Memories (LSTM)
architectures [19], and Transformer networks coupled with deep
Q-Learning [20].

Recent efforts from the community include also benchmarking
the AVS task. Challenges including Habitat ObjectNav [21]
encourage methods for enabling an agent initialised at a random
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starting pose in an unknown environment to find a given instance
of an object category using only sensory inputs to navigate, where
large-scale datasets of 3D real-world spaces with densely annotated
semantics are also made available to facilitate training and testing
the models [22]. As the scene map is unknown, most methods aim
to learn the policy by joining the objectives of both semantic
exploration and object search [23]. On top of such semantic
exploration, the perception skills in terms of where to look and
the navigation can be further disentangled [24] for an improved
success rate. Moreover, spatial relations among objects have also
been formulated as graphs and embedded via Graph Convolutional
Networks to guide the navigation policy [25], where external
commonsense knowledge has also shown advantages for the object
localisation via spatial graph learning [3]. In general, RL-based
strategies are dependent on training with a large amount of data in
order to encode the environmental modelling and motion policy.
Differently, our proposed POMCP-based method makes explicit use
of the available scene knowledge and performs efficient planning
for the agent’s path online without additional offline training.

2.2 Monte Carlo Planning

As for optimal policy computation, Partially Observable Markov
Decision Processes (POMDPs) are a popular framework for repre-
senting dynamical processes in uncertain environments and solving
related sequential decision making problems [26]. Computing
exact solutions for non-trivial POMDPs is often computationally
intractable [27], but in the recent years impressive progress was
made to develop approximate solvers. One of the most recent
and efficient strategies for solving POMDPs in an approximate
way is Monte Carlo Tree Search (MCTS) [28], [29], [30].
The main advantage of using MCTS for solving POMDPs is
scalability. MCTS-based strategies compute the policy online,
i.e. only for the specific states (or beliefs, in case of partially
observable environments) the agent visits in its trajectories. This
is fundamental in domains with very large state spaces and in
partially observable environments where the dimension of the
belief space is infinite, since beliefs are probability distributions
over states. In MCTS system states are represented as nodes of a
tree, and actions/observations as edges. Monte Carlo simulations
are performed to generate the tree using specific action selection
strategies, such as the algorithm called Upper Confidence bounds
applied to Trees (UCT) [31], that efficiently balances exploration
and exploitation.

The most influential solver for POMDPs which takes advan-
tage of MCTS is Partially Observable Monte Carlo Planning
(POMCP) [12] which combines a particle filter representation
of the belief, a MCTS-based strategy for computing action Q-
values, and an efficient way to update the agent’s belief. Several
extensions of POMCP have been realised. BA-POMCP [32] extends
POMCP to Bayesian Adaptive POMDPs, allowing the model of the
environment to be learned during execution. A version of POMCP
for scalable planning in multiagent POMDPs is presented in [33],
which it introduced model learning in POMDPs considering also
the uncertainty about model parameters in the belief. A scalable
extension of POMCP for dealing with cost constraints is presented
in [34]. Very recent work focused on the introduction of prior
knowledge about the environment and the policy in POMCP.
In [35] known state-variable relationships are used to improve the
performance of POMCP, in [36] policy improvement is performed
with safety guarantees. In [37] logical rules representing parts of the

POMCP policy are generated using Satisfiability Modulo Theory
(SMT) to improve the explainability of the policy and identify
anomalous action selections due to wrong parameter tuning. Again,
in the research line of merging probabilistic planning and symbolic
approaches, [38], [39] allows to generate shields based on logical
rules to improve the safety of POMCP. The technique has been
further improved in [40], [41] where active approaches and methods
based on Inductive Learning of Answer Set Programs are used to
learn the logic rules. In [42], the authors presented a probabilistic
technique for solving the learning motion planning problem in static
environments. A dynamic probabilistic environment is considered
in [43], incorporating perception uncertainty and incompleteness
into the planning process through a probabilistic approach.

Applications of POMCP can be found in several domains. A
few of them are related to the exploration of partially known
environments [44] and the find-and-follow of people [45] with
robots. Others [46], [47] concern robot navigation using only
POMCP or hierarchical methods approaches with POMCP for
high-level control and neural networks for low-level control.
Popular MCTS-based approaches have been recently used also
for developing agents with superhuman performance in the game
of Go [48], [49]. The approach proposed in this work differentiates
from all works mentioned above because it specialises POMCP to
the AVS domain and introduces methodological improvements to
belief update, probabilistic detection of objects and docking that are
not present in the literature. To the best of our knowledge, the only
works available in the literature about AVS with POMCP are [13],
[50]. The differences between these works are substantial since
[13] uses standard belief update, assumes exact object detection
and employs a naı̈ve docking procedure, while [50] focuses on
completely unknown environments.

3 METHOD

We consider an agent navigating through known environment
with the goal of locating and approaching a specific object.
The agent explores the environment to identify the target object,
determines its location on the map and then moves closer to
it. To be coherent with the related literature, the agent’s pose
at time step t is pt = {xt, yt, θt}, where x and y are the
coordinates on the floor plane, and θ is the orientation. At each
time step the agent takes an action at from a predefined set A:
specifically, the agent can move_forward, move_backward,
rotate_clockwise, rotate_counter_clockwise. Ro-
tations are defined by a fixed angle. When the agent reaches a new
pose pt, it receives an observation which is the output of an object
detector applied to the image acquired by an RGB-D camera. We
model the search space as a grid map (see Figure 1(b)), in which
each cell can be either: (i) “visual occlusion”, if the cell is occupied
by obstacles, such as a wall or a piece of furniture, that prevent
the agent to see through; (ii) “empty”, if the agent is allowed to
enter the cell and thus no objects can be located in there; or (iii)
“candidate”, if none of the above, thus the cell is a possible object
location for the target object.

3.1 Partially Observable Markov Decision Processes
We formulate the AVS problem as a Partially Observable Markov
Decision Process (POMDP), which is a standard framework for
modeling sequential decision processes under uncertainty in dynam-
ical environments [26]. A POMDP is a tuple (S,A,O, T, Z,R, γ),
where S is a finite set of partially observable states, A is a finite set
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Fig. 2. Overall architecture of our proposed method POMP-BE-PD. The red box represents prior knowledge pushed into the POMCP module, the
grey box represents the exploration strategy to detect the target object, the yellow box represents the probabilistic docking strategy to reach the
destination pose and the green box represents the probability distribution over the locations. Math notation: state st, action at, pose pt, observation
ot, POMCP state sequence s{0..Td}, docking state sequence s{Td+1..T}, complete state sequence s{0..T}.

of actions,Z is a finite set of observations, T : S×A→ Π(S) is the
state-transition model,O: S×A→ Π(Z) is the observation model,
R: S ×A→ R is the reward function and γ ∈ [0, 1) is a discount
factor. Agents operating POMDPs aim to maximise their expected
total discounted reward E[

∑∞
t=0 γ

tR(st, at)], by choosing the
best action at in each state st, where t is the time instant; γ reduces
the weight of distant rewards and ensures the (infinite) sum’s
convergence. The partial observability of the state is modelled by
considering at each time-step a probability distribution over all the
states, called the belief B. POMDP solvers are algorithms that
compute, in an exact or approximate way, a policy for POMDPs,
namely a function π: B → A that maps beliefs to actions.

3.2 Partially Observable Monte Carlo Planning

POMCP [12] is an online Monte-Carlo based solver for POMDPs.
It uses Monte-Carlo Tree Search (MCTS) for selecting, at each
time step, an action which approximates the optimal one. Given
the current belief, represented by an unweighted particle filter, the
Monte Carlo tree is generated by performing a certain number of
simulation from the current belief. These simulations generate, in
an efficient way, estimates of the Q-values of all actions from the
current belief. The action with the highest estimated Q-value is
selected and performed in the environment. A big advantage of
POMCP is that it enables to scale to large state spaces because
it never represents the complete policy but it generates only the
part of the policy related to the belief states actually seen during
the plan execution. Moreover, the local policy approximation is
generated online using a simulator of the environment, namely a
function that given the current state and an action provides the new
state and an observation according to the POMDP transition and
observation models.

The main phases of the POMCP algorithm are summarized
in the following. (i) Particle initialization. POMCP starts with
a MCTS containing only the root node representing the empty
history h (i.e., no action performed and no observation observed).
The belief state is represented by a particle filter initialized with

a certain number of particles. The particles in the root node are
initialized by a procedure that selects random hidden states (e.g.,
target object positions in our application domain) from a uniform
distribution over all possible hidden states; (ii) Simulations and
node statistics update. At each step, POMCP performs a certain
number of simulations from the current history h to generate
(online) a policy for that specific step (i.e., belief). A particle,
representing a state s of the system, is randomly chosen from the
particle filter of node h which represents the belief state of the
agent. From state s a set of simulation steps1 is performed. At
each step, an action a is selected using UCT when the current
history is inside the tree, and a uniform policy when the current
history is outside the tree. A black-box modelM(s, a) is used to
perform each simulation step, returning a simulated observation
and a simulated reward. When all simulation steps are performed,
the total reward of the simulation is used to update node statistics
about the average return of all simulations passing through h;
(iii) Action selection in the environment. The action that maximizes
the Q-value of the initial node h is selected and performed in the
environment; (iv) Belief update. The observation o obtained from
the environment after performing action a is used to update the
belief. In particular, the next history node h′ = hao is selected
in the tree with the related particle filter, and the rest of the tree
is pruned; (v) Particle reinvigoration. If a lack of particles is
experienced in h′ (because some particles moved to other branches
of the tree rooted in h), then new particles are generated in h′

by computing local transformations on current particles and using
a rejection sampling strategy to decide if the new particles are
compatible with the belief in h′. These particles must contain states
reachable from the previous belief h after performing action a and
observing observation o.

1. The term step is used to identify steps in the environment; the term
simulation step to identify steps in the simulation phase.
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3.3 Exploration, localisation and approach

The methodology here proposed is a specialisation of POMCP
for the AVS problem. It is based on three main elements, defined
in the following, that are used altogether by POMCP to perform
the search of an object in the environment. We assume that n is
the number of possible poses that the agent can assume in the
environment, m is the number of objects in the environment, and k
is the number of locations in which each object can be positioned.

(i) The first element of the proposed framework is a pose graph
G in which nodes represent the n possible poses of the agent and
edges connect only poses reachable by the agent with a single
action. Thus, G is used to constrain the actions that cannot be
performed in the environment. (ii) The second element is the set
H = {1, . . . , k} of all possible indices of locations that each
object can take in the environment. Each index in H corresponds
to a specific position in the topology of the environment where
the search is made. (iii) The third element is a matrix of object
observability L = (li,j) ∈ {0, 1}n×k, where li,j = 1 if the
location j is visible from pose i –i.e. location j is in the field of
view of the agent positioned in i. Matrix L can be deterministically
derived from G and H by a visibility function fL which computes
the visibility of each object from each agent pose, considering
the physical properties of the environment. This matrix is used in
the observation model employed in the simulations. Namely, the
observation model returns 1 if the target object is observed from
the current pose, 0 otherwise. More formally, it returns 1 if the
agent is in position î ∈ G and the target object is in a position
ĵ ∈ H for which l̂i,ĵ = 1. Notice that the position of the target
object in each specific simulation is known because it is defined in
the particle sampled at the beginning of the simulation.

On the other hand, observations in the environment are based on
the object detector. Both for the environment and in the simulator,
we give a positive reward if the object is observed; otherwise, a
negative reward is provided (corresponding to the energy spent to
perform the movement) and the POMCP-based search is continued.
To prevent the agent to visit the same poses more than once, the
agent maintains an internal memory vector that collects all the
poses already visited during the current run. Every time the agent
re-visits a pose it receives a high negative reward. After every step
in the environment, the agent receives from the object detector an
observed value 1 if the target object has been observed, 0 otherwise.

The belief of the agent at each time step is an approximated
probability distribution over all the candidate object locations in
the environment, that represents the POMCP hidden state. If the
object is not observed within a fixed amount of moves, the method
terminates and reports a search failure.

3.3.1 Belief update

In our original formulation of POMP [13], belief is updated using
the standard POMCP strategy. A problem with this approach is
related to the cardinality of our state space. In AVS, the state
space describes both the agent’s pose and the target’s location.
Because the object can be in any location, and the number of
simulations is limited, it may happen that some states are not
considered during the simulation phase and can only be recovered
during reinvigoration. If they are not recovered, they are removed
from the belief and cannot be recovered anymore, even if they are
valid positions. Another issue with this approach is that, during
reinvigoration, the new particles are sampled from the previous
belief. This creates a feedback loop in which particles that survive

the belief update, have a higher chance of being chosen during
reinvigoration. Thus, in situations where the number of simulations
is limited, it is possible for the belief to become confined to a sub-
space within the state space. In POMP-BE-PD, we change the belief
update and resampling procedure to overcome these issues. The
belief is initially generated by sampling particles from a uniform
distribution over all states –i.e. candidate object locations. An
auxiliary variable pp stores the current list of object locations not
been observed yet, where pp = {j ∈ H | j not yet observed}. The
set is initialised as pp = H. At each time step, the agent acquires
observations about the locations within the current FOV through
the object detector, and it updates pp removing the observed
positions that do not contain the searched object. The new belief
is sampled from a uniform distribution over locations satisfying
the pp constraint –namely, having the searched object in positions
belonging to H \ pp. This way to update the belief is beneficial in
terms of performance, as shown in our experiments below.

Notice that the belief update strategy used in POMP (which
is inherited by the standard strategy used in POMCP [12]) is
based on rejection sampling [51]. This strategy is known to be
suboptimal in large state spaces [52]. In fact, rejection sampling
in POMP reinvigoration considers only the states related to the
ones in the belief of the previous step. Local transformations of
those states are generated and only new states compatible with
the previous belief are kept in the particle filter. However, during
the reinvigoration process, the random nature of the sampling
procedure can lead to losing certain particles’ belief (i.e., possible
object positions). To cope with this issue, alternative sampling
strategies were designed [52], whose effectiveness was measured
by empirical analysis (since general mathematical analyses are
nontrivial, being the relationship between sampling and outcomes
very complicated). For example, in [52], importance sampling [51]
is used instead of rejection sampling. Our new approach, instead,
re-samples at each step from a set of states explicitly considering
all possible positions of the object not observed so far. This novel
sampling mechanism, which is not based on state transformations
but on the explicit consideration of all possible positions not yet
observed, gives a general improvement in most of the experiments.
The rationale is that the agent considers all possible unobserved
object positions to select an optimal action, instead of focusing on
the positions that are related to previously visited states.

3.3.2 Probabilistic Detection
We equipped our agent with the Target Driven Instance Detector
(TDID) presented in [53], an architecture designed to recognise and
classify specific instances of object classes. Given an image, TDID
returns a list of coordinates representing the associated bounding
box (if any), a score s ∈ [0, 1] and the corresponding class c. In
our work, we consider only detections with an associated score
greater than 0.9. Moreover, given the rate of TP (True Positive),
FP (False Positive) and FN (False Negative), we define:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

On top of that, we define the F1 score as:

F1-score = 2
Precision×Recall
Precision+Recall

,

where F1 ∈ [0, 1] can be interpreted as the harmonic mean of
Precision and Recall.

In POMP [13], the planner terminates the exploration phase
when the object detector identifies the target object inside the FOV.
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(a) Object inside FOV (b) Object outside FOV

Fig. 3. The two cases considered when creating the vector D. Example
derived from Home 003 2. In case (a) the objective is to determine the
location of the object and assign probabilities in the form of a multivariate
normal distribution. In (b), we assign low probabilities to the locations
inside the FOV, and high probabilities to the locations outside it. Note: we
assign different scales to the colorbar for ease of visualisation.

As a consequence, even a single false positive would terminate
the exploration, thus not bringing the agent to the target object. In
POMP-BE-PD we aim to reduce the impact of this problem by
considering the current observation, as well as incorporating the
whole history of observations.

We first define a vector D = {d1, . . . , dk} for the probabilities
to have the target object in location j considering the output of
the object detector with the observation at the current time step.
In other words, at each step in the environment, we reset all dj
with j = 1, . . . , k. We then consider two cases: (i) if the object is
found by the object detector inside the current FOV, we set dj = 0
in locations j outside the FOV and we set the probabilities dj
of locations inside the FOV according to a multivariate normal
distribution with mean in the location j where the object is localised
by the detector (see Fig. 3(a)); (ii) instead, if the object is not
found by the object detector inside the FOV, then we set dj = F1

in locations j inside the FOV and dj = 1 − F1 in locations j
outside the FOV (see Fig. 3(b)). In both cases, we normalise D so
that

∑k
j=1 dj = 1. Notice that F1 is class specific, i.e. it accounts

for the performance of the object detector for the specific object
class.

As a second auxiliary data structure, we define a vector
R = {p1, . . . , pk} of probabilities to have the target object
in location j considering the whole history of observations, i.e.
this represents a global probability using information also from
previous steps. We initialize a uniform probability at time t = 0
as p0j = 1/n, where n is the number of candidate object locations.
For all the subsequent time steps t ≥ 1, the probability is updated
according to the following rule:

ptj =
pt−1j · dtj∑k
i=1 p

t−1
i · dti

(1)

for all j ∈ H. Finally, we define a threshold τ = c
n , where

c ∈ N is a constant that allows us to increase the confidence of our
probabilistic detection. We terminate the POMCP exploration phase
when in the FOV of the current pose we have an object location
j whose probability pj exceeds the threshold. More formally, the
following exit condition must be verified:

(pj ≥ τ) ∧ (Li,j = 1). (2)

Updating the probabilities in a Bayesian way (see Eq. 1)
falls into the general case of Bayesian inference, in which
the parameters of a distribution are estimated by considering

subsequent observations of the environment. Our formulation does
not assume any specific form of the probability distribution, thus
the parametrization is the distribution itself, i.e. the values of the
pdf in each potential location of the object. In this setup, Bayesian
inference is proved to be optimal in the sense that it guarantees to
minimize the overall risk of making incorrect decisions. According
to this procedure, if the object is not in the current FOV, we
assume that it must be in some other location, thus we increase the
corresponding probabilities. Instead, if it is in the current FOV, we
increase the probabilities of the locations near the 3D position of the
object and lower the other ones. Moreover, we do not rely merely
on the object detector output, we rather accumulate knowledge over
time by leveraging the old and current state of the environment.
In Fig. 4 we report an episode in which we can appreciate the
evolution of the probabilities inside an environment.

3.3.3 Probabilistic Docking

Given the object location j ∈ H satisfying the exit condition of
Eq. 2, we first identify the destination pose –i.e. the agent’s pose
î ∈ G that is closest to the target location and points towards it.
Then we use the Dijkstra algorithm [14] to compute the shortest
path between the current pose i ∈ G and the estimated destination
pose î ∈ G. While the agent navigates towards the destination
pose, the object detector is not used since we are confident enough
that the target object is in location j. This strategy achieves better
performance than the Robust Visual Docking introduced in [13]. A
key distinction is that in Robust Visual Docking the object detector
is used along the path, thus, in case of poor performing detectors,
miss-detections and false positives can easily distract the agent
from the final goal, having fatal consequences in the approaching
phase.

4 EXPERIMENTS

We tested our approach on the Active Vision Dataset Bench-
mark [9], a public benchmark for active visual search that
contains more than 30,000 RGBD images taken in 15 different
indoor environments and 33 different target objects. Consistently
with [10], we classify each scene in the dataset as simple,
medium, or hard for the visual search task, where we define a
simple environment consisting of a single small room, a medium
difficult apartment with a large room or with an additional
small room –e.g. a bathroom or an open space–, and finally
a hard apartment with multiple large rooms. We use in our
experiments two simple (Home 005 2 and Home 015 1), three
medium (Home 001 2, Home 016 1, Home 014 2), and three
hard apartments (Home 003 2, Home 004 2, Home 013 1).
Some examples of these scenarios are shown in Fig. 5.

We consider three metrics: Success Rate (SR) [56] is considered
the main metric of this work, and it is defined as the percentage of
times the agent successfully reaches one of the destination poses
(as provided in AVDB) over the total number of trials (a larger
value indicates a more effective search); Average Path Length
(APL) defined as the total number of poses visited by the agent,
among the successful episodes, divided by the number of successful
episodes (a lower value indicates a higher absolute efficiency); and
Success weighted by Path Length (SPL) [56] defined as:

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
, (3)
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(a) Step 1 (b) Step 10 (c) Step 20

(d) Step 33 (e) Step 50 (f) Step 51

Fig. 4. Evolution of the probabilities pj inside Home 016 1 using the proposed approach POMP-BE-PD. In step (a) we initialise the agent in the
environment; we highlight the target position and a false positive area. From step (b) to (c) the robot explores the top area; in step (d) we show the
robustness of our approach to a false positive; finally, in step (e) we identify high probable locations, locating the target in step (f).

(a) Home 005 2 [97] (b) Home 015 1 [265] (c) Home 001 2 [289] (d) Home 014 2 [243]

(e) Home 016 1 [215] (f) Home 003 2 [560] (g) Home 004 2 [490] (h) Home 013 1 [490]
Fig. 5. Corresponding 2D floor maps (not in scale) for the test scenes from AVBD of 3 different difficulty levels (as in [10]). For each environment, we
report the name and, in parenthesis, the number of possible object locations. As the difficulty increases, we can note an increment of possible object
location and more difficult spatial layouts.

TABLE 1
Results on three scenes from AVDB using GT objects annotations. All methods are compared using the protocol defined in [10]. The asterisk (∗)

indicates that the evaluation is performed on a different subset of objects.

Method Easy (Home 005 2) Medium (Home 001 2) Hard (Home 003 2) Avg.

SR ↑ APL ↓ SPL ↑ SR ↑ APL ↓ SPL ↑ SR ↑ APL ↓ SPL ↑ SR ↑ APL ↓ SPL ↑

Random Walk 0.32 74.00 0.06 0.11 74.48 0.02 0.10 79.27 0.02 0.18 75.91 0.03
EAT [10] 0.77 12.20 0.42 0.73 16.20 0.56 0.58 22.10 0.41 0.69 16.80 0.46
DQN(∗) [54] 1.00 11.06 - 0.69 18.15 - - - - - - -
DQN-TAM(∗) [55] 0.98 17.85 - 0.60 24.19 - - - - - - -

POMP [13] 0.98 13.60 0.71 0.73 17.10 0.58 0.56 20.50 0.40 0.76 17.07 0.56
POMP-BE-PD 0.98 11.93 0.71 0.80 17.86 0.60 0.92 24.52 0.58 0.90 18.10 0.63
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where N are the test episodes, li is the length of the shortest path
between the goal and the target for an episode, pi is the length
of the path taken by an agent in an episode and Si is a binary
indicator of success in episode i. In general, a larger value indicates
a higher absolute efficiency. In this work, the term “efficiency”
refers to the effectiveness of the agent’s exploration strategy, aimed
at finding the target goal with the shortest path possible. An episode
is considered successful if the agent reaches the destination pose
given by AVDB in a fixed number of steps (200 in our experiments),
using the initial pose definition given by [9].

4.1 Quantitative results

We compare our proposed approach POMP-BE-PD against a
random walk baseline –i.e. we allow the agent to randomly select
an action among all the feasible ones at each time step–, and four
state-of-the-art approaches, namely: EAT [10], DQN [54], DQN-
TAM [55], and our previous work POMP [13]. The latter is the only
unsupervised method, while the former three need training data to
learn the policy. Since no official code for published methods is
available, except for EAT, we are only able to compare results with
them following the protocol proposed in [10]. With respect to the
standard protocol defined in the benchmark paper [9], this protocol
provides results only using GT annotations for object detection,
and on a limited number of scenes. Moreover, it uses only a subset
of target objects. DQN and DQN-TAM use only two scenes (one
easy and one medium), thus the average column is not meaningful
for a fair comparison. Additionally, DQN and DQN-TAM use
a different subset of objects in their evaluation. From results
reported in Tab. 1 we can clearly see that our approach POMP-
BE-PD outperforms EAT in terms of SR, with a little increment
in APL, which is reasonable since we are now considering more
challenging situations, as we will deeply explore in Sec. 4.3. As
for the comparison between POMP-BE-PD and DQN, we note that
the DQN approach outperforms our method in the easy scenario,
but in the medium case we outperform the competitor in SR with a
comparable APL. It is worth noting that for achieving these results
both DQN approaches require 13 scenarios for training the best
policy, while our method requires no training at all.

Results using the object detector provided by [53] are reported
in Tab. 3 for POMP and POMP-BE-PD. Again, we can appreciate
a strong increment of 35% of both SR and SPL, mostly due to the
ability of our proposed method to handle more complex cases.

4.2 Ablation studies

We provide also an ablation study to deeply analyse the contribu-
tions of the different terms in our model. In the following we will
answer some questions by comparing the proposed method with
some partial versions of it considering only the new belief update
(called POMP-BE) and considering only the probabilistic detection
(called POMP-PD).

Belief update: Does the new belief update reduce the episode
length? What are the benefits of the new belief update when
navigating difficult scenarios?
In Fig. 6 we aggregate the episodes by their difficulty, grouped
by the minimum path length for the episode to reach the target.
In Fig. 6(a) we aggregated the results for the easy scenario
(Home 005 2 and Home 015 1); in Fig. 6(b) for the hard scenario
(Home 003 2, Home 004 2, Home 013 1); in Fig. 6(c) for the
medium one (Home 001 2, Home 014 2 and Home 016 1);

TABLE 2
Result of different versions of improved POMP with more scenes per
difficulty level in AVD. POMP-BE is POMP with the improved Belief

Update. Result using the ground truth annotations instead of the detector,
using 210 simulations during the planning phase. The new Belief Update

consistently increase the efficiency of the exploration phase, thus
reducing the Average Path length, and increasing the SR and SPL.

Difficulty Scene POMP[13] POMP-BE

SR ↑ APL ↓ SPL ↑ SR ↑ APL ↓ SPL ↑

Easy
Home 005 2 0.94 12.96 0.73 0.93 12.26 0.72
Home 015 1 0.75 23.66 0.45 0.73 17.04 0.52

Avg. 0.84 18.31 0.59 0.83 14.65 0.62

Medium

Home 001 2 0.80 18.20 0.57 0.81 19.95 0.55
Home 014 2 0.76 41.07 0.38 0.90 19.99 0.55
Home 016 1 0.71 29.64 0.39 0.83 36.55 0.50

Avg. 0.76 29.64 0.45 0.85 25.50 0.53

Hard

Home 003 2 0.43 21.90 0.27 0.79 31.93 0.45
Home 004 2 0.45 66.20 0.17 0.57 47.71 0.28
Home 013 1 0.55 49.72 0.27 0.74 53.11 0.41

Avg. 0.48 45.94 0.24 0.70 44.25 0.38

Average 0.67 32.92 0.40 0.79 29.82 0.50

finally for Fig. 6(d) we aggregated the results for all the scenario
present in AVDB. From these charts we can derive that, by
removing from the belief update locations already observed, we can
optimize the exploration phase, thus increasing the effectiveness.
Furthermore, Table 2 analyzes the impact of the new belief update
isolating all the possible causes of error, i.e. we swap the object
detector with the ground truth annotations eliminating the source
of false positive and miss detection both during the planning and
docking phases. In the easy scenario, we have a marginal reduction
in SR (0.01) while reducing the APL and increasing the efficiency
(i.e. SPL). We hypothesise that the simple layout (Fig. 5(a), 5(b))
and the concentration of minimum path length (Fig. 6(a)) do not
allow the belief update to be beneficial. However, the more difficult
the scenario, with more possible object locations and complicated
spatial layouts, the higher the improvement in performance. Starting
from the medium scenario, we increase the SR from 0.76 to 0.85
while decreasing the APL from 29.64 to 25.50, with an increment
of the total efficiency from 0.45 to 0.53. A similar result can be
seen for the hard scenario.

Probabilistic Detection & Docking: Does Probabilistic Detection
reduce the number of false positives? Is there a way to improve
the docking, also considering the knowledge gathered during the
planning?
To answer the first question, we analyze the different types of
failure that can occur during the episodes. More specifically, we
consider three types of errors: (i) Localisation, if during POMCP
exploration the exit condition is verified, but the target object is
not actually present in the FOV. (ii) Docking, if in the last pose of
the POMCP exploration the agent correctly detects the target, but
it fails to reach the successful destination poses defined by AVDB;
(iii) Other, if the error is not categorized as Docking or Localisation,
and if the agent is unable to detect the target object within the
time limit or the agent performs action not allowed during the
path. In Fig. 7 we provide the percentage of error for each planner,
averaged over all scenarios. First of all, we can notice a significant
reduction (∼32% decrease) of false positives when introducing the
Probabilistic Detection approach, thus increasing the robustness of
our method. The new Belief Update, instead, greatly reduces the
error categorized as “Other” (∼30% decrease), thus increasing the
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(a) Easy (b) Hard

(c) Medium (d) All
Fig. 6. We aggregated the episodes by the minimum number of steps to reach the object, thus incorporating the difficulty of the episode. In Figure (a)
the results for the Easy scenarios; in Fig. (b) Hard Scenarios; in Fig. (c) the Medium ones and finally, in Fig. (d), the sum of all scenarios. Results
using the object detector provided by [53], both during planning and docking. Focusing on the POMP-PD method (yellow bar), we can observe the
increment of efficiency and efficacy due to the introduction of the Belief Update (green bar), since both methods do not change the exit condition
during planning (Probabilistic Detection).

efficiency of our method. Moreover, using the knowledge gathered
during the planning provides a reliable mechanism to increase the
robustness during the docking phase. Indeed, if we look at Fig. 7
we can appreciate a ∼35.7% decrease of Docking error.

To measure the impact of Probabilistic Detection, in Tab. 3 we
conduct an ablation study isolating the Probabilistic approach from
the belief update, both using the detector during the planning and
docking. In all the scenarios, POMP-PD increments the SR by a
large margin (19% - 25%) over our previous formulation POMP,
while maintaining, on average, the same SPL. However, we note an
increment of the APL. This is not surprising: indeed, if the agent
needs to be more confident and robust against false positives, it
must require more steps to increase the probability of the target
location, and bring that to be ≥ the threshold τ .

4.3 Qualitative results

In Fig. 4 we visualise an episode by our proposed approach, in
which it is possible to appreciate the evolution of the probability
distribution over the locations and the robustness to a false positive.
The starting pose is defined in Fig. 4(a). From Fig. 4(b) to 4(c)
the agent explores the top part of the environment without success.
In Fig. 4(d) the robot encounters a false positive: the update rule
defined in Eq. 1 with the generated probability map are providing
a robust framework for not stopping the exploration. Indeed, the
standard POMP defined in [13], in the same situation, would
have stopped the episode. Moreover, we can note that in the area
unexplored by the agent (the right part of the environment) we are
raising the probabilities: if we do not locate the target elsewhere,
the object must be in this area. Finally, in Fig. 4(e) we locate a zone
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TABLE 3
Results of POMP and variations of POMP-BE-PD with more scenes per difficulty level in AVD using the real detector provided by [53].

Difficulty Scene POMP[13] POMP-BE POMP-PD POMP-BE-PD (Proposed)

SR ↑ APL ↓ SPL ↑ SR ↑ APL ↓ SPL ↑ SR ↑ APL ↓ SPL ↑ SR ↑ APL ↓ SPL ↑

Easy
Home 005 2 0.60 17.90 0.40 0.58 16.18 0.41 0.81 26.08 0.42 0.79 22.70 0.45
Home 015 1 0.49 34.76 0.22 0.45 38.76 0.23 0.55 35.34 0.23 0.54 30.50 0.26

Avg. 0.54 26.33 0.31 0.52 27.47 0.32 0.68 30.71 0.33 0.67 26.60 0.35

Medium

Home 001 2 0.40 20.73 0.24 0.39 19.36 0.24 0.50 31.00 0.24 0.57 28.50 0.31
Home 014 2 0.53 47.60 0.25 0.60 18.52 0.38 0.60 45.79 0.24 0.66 21.38 0.37
Home 016 1 0.29 50.23 0.12 0.28 47.05 0.13 0.36 57.73 0.12 0.41 53.26 0.16

Avg. 0.41 39.52 0.20 0.42 28.31 0.25 0.49 44.84 0.20 0.55 34.38 0.28

Hard

Home 003 2 0.19 26.60 0.10 0.33 30.53 0.18 0.39 62.36 0.13 0.48 42.86 0.20
Home 004 2 0.42 69.84 0.15 0.55 47.31 0.26 0.44 70.26 0.14 0.54 61.93 0.20
Home 013 1 0.25 61.41 0.12 0.31 77.09 0.14 0.26 62.80 0.09 0.34 54.38 0.15

Avg. 0.29 52.62 0.12 0.40 51.64 0.19 0.36 65.14 0.12 0.45 53.06 0.18

Average 0.40 41.13 0.20 0.44 36.85 0.25 0.49 48.92 0.20 0.54 39.44 0.27

Fig. 7. Percentage of error of POMP, POMP-PD and POMP-BE-PD,
averaged over all scenarios. The errors are categorised into three
types: Localisation, Docking and Other. We used the object detector
provided by [53], during both planning and docking.

with a high probability of containing the target, and in Fig. 4(f) we
locate the searched object.

5 CONCLUSION

In this paper we presented POMP-BE-PD, our proposed approach
to solve Active Visual Search (AVS) in known environments. Based
on a POMCP planner, POMP-BE-PD learns the policy online by
efficiently exploiting the information of the 2D floor map of the
environment; as a consequence, our method does not require any
expensive training, both in time and computational resources. To
cope with imperfect object detectors, with a high number of false
positives and miss-detection that could have a dramatic effect on the
overall success rate, we transitioned from a deterministic detection
to a Probabilistic one. After every step in the environment, a

Bayesian inference, combined with a probability distribution over
all possible object locations, allows us to reduce the false positives
error by 32%. Consequently, to handle the restricted belief space of
the original POMCP in the AVS domain, we introduce a new belief
update considering, at each time step, all the possible positions that
have not been observed yet. We evaluate extensively our method,
following the AVDB benchmark, achieving state-of-the-art results.
On top of that, with several ablation studies, we demonstrated the
strength of our method. On average over all the environments, we
increase the success rate by a significant 35% while decreasing the
average path length by 4% with respect to our previous formulation
POMP.
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