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Abstract— Image-guided biopsy is the most common tech-
nique for breast cancer diagnosis. Although magnetic reso-
nance imaging (MRI) has the highest sensitivity in breast
lesion detection, ultrasound (US) biopsy guidance is generally
preferred due to its non-invasiveness and real-time image
feedback during the insertion. In this work, we propose an au-
tonomous robotic system for US-guided biopsy of breast lesions
identified on pre-operative MRI. After initial MRI to breast
registration, the US probe attached to the robotic manipulator
compresses the breast tissues until a pre-determined force level
is reached. This technique, known as preloading, will allow
to minimize lesion displacement during the needle insertion.
Our workflow integrates a deformation compensation strategy
based on patient-specific biomechanical model to update the
US probe orientation keeping the target lesion on the US
image plane during compression. By relying on a deformation
model, the proposed system does not require lesion visibility
on US. Experimental evaluation is performed to assess the
performance of the system on a realistic breast phantom with
15 internal lesions, considering different preloading forces. The
deformation compensation strategy allows to improve localiza-
tion accuracy, and as a consequence final probe positioning,
for all considered lesions. Median lesion localization error is
3.3 mm, which is lower than the median lesion radius, when
applying a preloading of 2 N, which guarantees both minimal
needle insertion error and tissue stress.

I. INTRODUCTION

Breast cancer is the most common cancer among women
[1]. Timely identification and analysis of suspicious breast
lesions is critical to reduce the impact of the disease. Al-
though several imaging techniques are available to detect
suspicious lesions, such as mammography, MRI and US,
the only way to confirm the nature of the lesion is tissue
biopsy. The biopsy procedure consists in the collection and
analysis of a sample of cells from the suspicious lesion
obtained with a needle. Proper needle steering towards the
target is achieved by performing the procedure under image
guidance (MRI, X-rays or US). Although MRI has the
highest sensitivity for breast lesion detection, it does not
provide real-time image feedback. Moreover, MRI-guided
biopsy is limited by the cost, the long procedure time, the
need for experienced staff and specific equipment, the use of
intravenous contrast medium and the limited accessibility to
the target lesion [2]. Stereotactic biopsy (i.e., X-rays based) is
also challenging, painful due to the necessary compression,
and invasive for the patient due to the resulting radiation

Authors are with the Department of Computer Science,
University of Verona, 37134 Verona, Italy. Corresponding author:
bogdan.maris@univr.it

The present contribution is supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 742671 (ARS).

Fig. 1: The experimental setup. It includes a 6-DOFs robot
holding the US probe and RGB-D camera, and a realistic
breast phantom. Lesion displacement due to US probe com-
pression is estimated with a patient-specific biomechanical
model, shown in the upper right corner.

burden. US-guided biopsy is the preferred method as it
allows real-time visualization of the needle without using
ionizing radiations, paddle compression or contrast injection
[3]. However, the low US image quality often hinders the
detection of small lesions, which might be not visible in US
[4]. In these cases, the manual biopsy, under US guidance,
is based on the fusion made by an experienced physician
through the cognitive mapping of pre-operatively identified
target in MRI or mammography to the real-time US image
seen on the monitor. In the field of breast MRI automatic
registration, an important result was published in [5]. Here,
the authors used free form deformations based on B-splines
to register the MRI images acquired from the same patient in
two different moments in time. The deformation was caused
by patient movement. Prone to supine registration of MRI
and Computer Tomography was presented in [6]. However,
the multimodal registration of US images acquired under the
pressure of the probe and MRI images for a breast biopsy
procedure is still a research subject.

Instead of directly registering the images, our idea is to use
a biomechanical model of the breast and a deformation com-
pensation algorithm to accurately predict the displacements
of the tumors beforehand. In this context, the use of the robot
is of paramount importance since it can reach a predefined



level of compression force through constant and controlled
increments. The ultimate challenge that our system can solve
is targeting small lesions while following their movement
during the interaction with the US probe. Moreover, with
this system we want to reach and control a constant force
that allows the optimal insertion of the biopsy needle without
further deformation of the tissue.

The implementation of this innovative approach required
the realization of a complete robotic system (Fig. 1) and a
workflow that we describe below.

In the proposed method, suspicious lesions are identified
on a pre-operative MRI and their positions are then mapped
to the reference system of the robot already calibrated with
the US image. Reliance on MRI allows to improve the sensi-
tivity of the setup, detecting also those lesions which are not
visible on US. The presence of a robotic manipulator allows
to increase not only the precision but also the repeatability
of the procedure [7].

The specific contributions of this paper are:
1) an autonomous robot-assisted US-guided breast biopsy

system that performs the procedure from initial image
registration to the final positioning of the US probe,
just before needle insertion;

2) a parallel force-position control used to apply a com-
pression that minimizes lesion displacement at needle
insertion time, while continuously keeping the lesion
on the image plane.

3) A dedicated software to implement a deformation
compensation scheme for the tracking of lesion dis-
placement due to the probe compression; the software
is publicly available at https://gitlab.com/altairLab/
robotic breast deformation compensation

The following sections begin with the review of related
works for robot-assisted US-guided biopsy (Section II). We
present our setup and our pipeline in Section III. Section IV
describes the experimental evaluation and the results we
obtained. Discussion is reported in Section V, while con-
clusions and future works are summarized in Section VI.

II. BACKGROUND

The use of a robotic manipulator to automate US scan-
ning has been proposed to improve image acquisition, to
facilitate volumetric reconstruction or to achieve optimal
probe positioning, in different medical applications [8], [9].
Robot-assisted systems for US-guided biopsy have been
recently surveyed in [7]. In the context of the breast, most
of the existing systems employ the robotic manipulator to
stabilize needle holding during the insertion phase [10].
A recent overview of image-guided interventional robotics
with references to US guided robots was published in [11].
Welleweerd et al. proposed to autonomously acquire a set of
2D US images with a 6-DOF robot for 3D US volume recon-
struction, following a trajectory that is adapted to each patient
[12]. This approach focuses on the optimization of acoustic
coupling which minimizes breast deformation during image
acquisition, but does not address the needle insertion phase.
Other systems, such as [13] and [14], have been developed

for autonomous acquisition and reconstruction of a 3D
breast ultrasound volume. However, these approaches rely
on specific hardware that cannot be easily integrated with a
robotic biopsy setup, thus making these systems usable for
lesion detection only. Moreover, such systems deform the
anatomy during acquisition, making the registration with pre-
operative MRI cumbersome. An area of application where
the integration of 3D US imaging and robotic guidance
may lead to autonomous systems is the robotic prostate
biopsy [15]. A complete review of the existing autonomous
capabilities of surgical robots with the introduction of a
practical scale to assess the level of autonomy of current
and future surgical robots may be found in [16], [17].

Some strategies to compensate for tissues deformation due
to US probe compression based on optical flow or confidence
maps have been proposed in the context of blood vessel
scanning [8], [18], [19]. Only few works have integrated
methods to compensate for probe-induced deformations dur-
ing robotic breast US scanning. In [20], the authors introduce
a complete robotic setup for US-guided biopsy of lesions
detected on a pre-operative MRI, and probe-induced lesion
displacement is estimated using optical flow. This approach
does not allow to track out-of-plane lesion movements, and
it has been tested on a simplistic phantom which only
allows very small deformation. Some works have proposed
to track the displacement of internal breast targets due to
US probe compression during freehand US using patient-
specific deformation models [21], [22]. Groenhuis et al.
have incorporated a biomechanical model within a robotic
setup for breast biopsy to compensate for probe-induced
deformations [23]. A robotic setup and software architecture
to assist the radiologist in targeting suspicious tumours under
MRI guidance was published in [24].

There is no strategy to minimize the needle positioning
error in this work, therefore the results were not clinically
satisfactory in all the tested conditions. In fact, some research
works have demonstrated that needle insertion accuracy can
be significantly improved if an additional compression is
applied to the breast tissue with the US probe [25], [26].
In particular, such error decreases with increasing tissue
compression up to a threshold identified in [26] as 2N.
This compression is called preloading. Other frameworks
that implement a variety of needle insertion techniques and
configurations were published in [27].

III. METHOD

One of the assumptions in the proposed workflow is that
the patient lies in the same position during the robotic
procedure as it was in the pre-operative MRI scanning,
similarly to [12], [20]. This will reduce the errors due to
patient repositioning. In MRI acquisition, the patient lies on
the bed in prone position with bare breasts in a dedicated
compartment. The robotic manipulator is positioned at the
side of the patient’s bed, and a US probe and a depth camera
are attached to its end-effector. The workflow begins with
the segmentation of the breast surface and of the suspicious



lesions on the pre-operative MRI image through a semi-
automatic method [28]. Just before the biopsy procedure,
initial registration is performed to map information from
MRI to the current patient position. Afterwards, the robot
moves to the optimal location on the breast surface to reach
the lesion with the biopsy needle. The robot then starts to
compress the breast with the US probe until the applied
pressure reaches the desired level of preloading. The probe
will deform the tissue during compression. Therefore, we
integrate a deformation compensation scheme that relies
on a patient-specific biomechanical model and allows to
continuously track lesions movement and adjust the US
probe orientation during preloading. In this way, when the
target preloading force is applied, the probe is positioned
such that the lesion lies on the US image plane. This allows
to observe the needle in real time on the US image during
the biopsy needle insertion. Pipeline details are presented in
the following subsections.

A. Initial registration

A registration phase is needed to map the information
extracted from the pre-operative MRI images to the current
breast position. The registration pipeline is markerless and
fully automatic, thus simplifying the operator’s workflow.
Just before the biopsy, the breast anatomy is localized in
the robot reference frame using the camera mounted on the
robot end-effector. As a first step, the robot is placed below
the breast anatomy to acquire a point cloud that includes the
lowest breast points, i.e., around the nipple. The centroid of
this point cloud represents the center of a circular trajectory
that the robot will follow, and corresponds to the point that
the camera will always look at. Current breast shape is
reconstructed by composing multiple point clouds acquired
from different viewpoints while the robot moves on this
trajectory. The segmentation of the acquired point clouds is
based on color selection, in order to keep points belonging to
the breast skin surface only, following the approach described
in [29]. A masking based on the breast bounding box is then
applied to remove possible outlier points. The bounding box
is a cube centered in the estimated centroid of the breast
and with sides twice as long as the maximum size of the
breast model extracted from the MRI. The composition of
the different point clouds is immediate since they lie in the
robot coordinate system.

Before estimating the registration transformation, the
breast surface reconstructed from the point cloud and the
breast surface from segmentation of the pre-operative 3D
model are voxelized relying on the same parameters, in order
to obtain uniform spatial distribution and discretization of
points in the two conditions. Iterative Closest Point (ICP)
algorithm [30] is then used to find the rigid transformation
that aligns the pre-operative and intra-operative breast shape
given as point clouds.

To increase the success of ICP by avoiding local minima
due to large rotations and symmetry of the shape, after
the initial alignment based on centroids, the point cloud is
rotated for 360 degrees around the vertical axis. We assume

that the vertical axis of the two points clouds is similar,
since the breast base is upward and it is falling downward
in both instances (pre- and intra-operative). The rotation is
performed every 10 degrees and ICP is launched after each
rotation.

After a complete set of rotations, the pose where the
algorithm reached the minimum error will be chosen as the
initial transformation. This transformation allows to map the
positions of lesions detected in MRI to the robot reference
system, before any physical interaction takes place.

B. Breast approach

Once registration is complete, the robot moves to the
desired contact point P on the breast surface, as shown
in Fig. 2. P is defined as the closest point on the breast
surface to the centroid X of the suspicious lesion. The US
probe is oriented along a direction d such that the center
of the US image plane (i.e., the US probe y-axis in Fig. 2)
intersects with X, thus maximizing the probability to include
the lesion in the US image plane. As additional constraints,
the orientation of the end-effector is defined such that the
probe x-axis is parallel to the patient’s bed, and the camera
lies farther away from the stretcher with respect to the probe
(see Fig. 1). This constrain allows to maximize the adherence
between the US sensor and the patient’s skin leading to
improved image quality and uniform pressure distribution
at the contact interface, as shown in [20]. Furthermore, the
robot trajectory to reach P is generated to avoid unwanted
collisions with the anatomy. To ensure this, robot motion
is constrained to pass through an intermediate pose before
reaching P. Such pose is defined along the direction going
from the inner lesion to P, and outside of the breast surface.

Fig. 2: US probe positioning during breast approach. The
US image plane is shown in gray, while the target lesion
is green. P is the estimated contact point, X is the lesion
centroid, and d is probe orientation. Probe reference system
is shown in correspondence to the US sensor.

C. Preloading

The US guided biopsy procedure involves the compression
of the breast not only for optimal image acquisition but also
to avoid displacement of the target upon needle insertion,
thus increasing the probability of successful lesion targeting.
In this work, as soon as the contact point P is reached, the



US probe starts compressing the tissue in the direction of
the target lesion until a desired force is reached. The applied
force is measured by a force sensor located in the flange
of the robot. In the compression phase, probe orientation is
continuously adjusted to keep the target within the US image
plane, as described in the following sections.

D. Deformation compensation

During preloading, breast tissue deforms under US probe
compression, causing the lesion to move from its original
position. To cope with this, our pipeline integrates a deforma-
tion compensation strategy that allows to continuously track
lesion position X during compression and to adjust the probe
orientation d. To guarantee the possibility to track US occult
lesions, the proposed deformation compensation strategy is
based on a patient-specific biomechanical model, instead of
e.g. image-based feature tracking [12], [20].

Probe-induced deformations are described using contin-
uum mechanics laws, solved with the Finite Element Method
(FEM). FEM relies on a spatial discretization of the domain,
which, in our case, is achieved by creating a 3D tetrahedral
mesh of the anatomy. FEM allows to solve the equations of
motion on each individual element, then assembles them into
a global equation system:

Ma = f(t,x,v) (1)

where x,v,a are the position, velocity and acceleration
vectors respectively, and t is time. f is the force vector,
which includes the contribution of both internal and external
forces. Internal forces depend on the constitutive model and
patient-specific parameters, while external forces include any
external load, e.g. gravity. M stands for the mass matrix.

The equation system described in (1) needs to be extended
to account for the effects of the interaction between the rigid
probe and the tissues. In this work, we model such interaction
by imposing the impenetrability condition between the two
objects as defined by Signorini’s law [31]. Therefore, a term
that accounts for the contribution of such constraint HTλ is
added to Eq. (1), leading to:

Ma = f(t,x,v) +HTλ (2)

where H is the constraint matrix and λ is the vector of
Lagrange multipliers, which represents the contact force.
In this work, we rely on the backward Euler method for
time integration and a first-order approximation of f . A
direct solver is then used to numerically solve the linearized
system. In particular, the solution process is composed of
three separate phases. First, eq. (2) is solved neglecting the
contribution of constraints, i.e. setting λ = 0. Collision
detection is then performed to detect if the first phase caused
the two bodies to collide. Finally, the iterative Gauss-Seidel
algorithm is used to compute the corrective motion that
ensures the impenetrability condition.

By relying on constraint-based formulation, the contact
condition is solved exactly. Moreover, this approach does
not require prior definition of the contact surface, allowing to
deal with any probe position in input. Although this approach

can be computationally demanding due to the complexity
of the equation system, previous work demonstrated that
a good trade-off between accuracy, computation time and
numerical stability can be achieved, provided that the number
of elements used for spatial discretization is kept below a few
thousands [22].

E. Force-position control
The robot uses a parallel force-position control. The

reference force is the difference between the measured force
on the end-effector and the target preloading force. The pose
reference is given by the output of deformation compensation
module and drives the robot towards the desired trajectory.
The orientation of the end-effector is updated to maintain the
estimated centroid of the suspected lesion in the plane of the
US sensor while keeping the x-axis parallel to the patient’s
bed (Fig. 2).

The procedure ends when the desired preloading com-
pression is reached. The final position estimated by the
biomechanical model is considered as target for the biopsy.

IV. EXPERIMENTAL VALIDATION

The performance of the proposed pipeline with the defor-
mation compensation is tested on the robot-assisted scanning
of a realistic breast phantom.

A. Robotic setup
Our setup is shown in Fig. 1. It includes a 6-DOFs robotic

arm (UR5e, Universal Robotics, Odense, Denmark) holding
a MicrUS probe (Telemed, Vilnius, Lithuania) and an RGB-
D camera (Intel Realsense D435, Intel Corporation, Santa
Clara, CA, USA) by means of a custom-made 3D printed
holder. The Tsai-Lenz hand-eye calibration algorithm [32]
is used for RGB-D camera calibration. The US image is
calibrated to the robot space by means of the CAD design of
the holder and of the probe. This robotic setup is used to test
our pipeline on a multi-modality breast phantom with some
internal dense lesions of different shapes and dimensions
(Model 073, CIRS, Norfolk, VA, USA). The lesions and the
surrounding tissue are visible in both MRI and US.

The robot is placed on the side of the phantom, which is
positioned on the stretcher in supine position. However, the
presented workflow can be directly applied to the clinical
setup with the patient lying prone, by positioning the robot
below the stretcher so to keep the same orientation and
minimize the deformation due to repositioning and gravity
force. The surface models of the phantom as well as 15
internal lesions are generated from the segmentation of the
pre-operative MRI of the phantom.

The breast biomechanical behavior is modelled using
Neo-Hookean material law, initialized with patient-specific
deformation parameters, as estimated on the same phantom
used in our previous experiments [33]. The 3D model of
the phantom is composed of 6,929 tetrahedral elements.
Temporal discretization relies on a time step of 0.02 s.
Gravity force is not included in the equation system (2)
because the MRI of the phantom is acquired supine under
the gravity load.



B. Experiments

The conducted experiments aim at testing the capability
of the presented pipeline to position the US probe such
that the suspicious lesion remains on the image plane, once
the desired compression is reached. In our experiments, we
run the pipeline for each lesion until the target preloading
compression is applied. We repeat the experiments consid-
ering three representative magnitudes F of the preloading
force (1 N, 2 N and 3 N), based on the study from [26].
For each lesion, at each preloading force level, the accuracy
in probe positioning is evaluated by comparing the model-
predicted lesion positions Xmodel with the ground truth
lesion coordinates Xgt.

Ground truth lesion coordinates are extracted from US
images. This was possible since all the internal lesions are
visible on US for the considered phantom. Lesion centroid
is identified on the US image after the lesion outline is
manually segmented. Thanks to the calibration, the centroid
of the lesion identified in the reference of the US image
can be related to its 3D coordinates Xgt in the robot space.
In case the lesion cannot be visualized on the US image,
once the compression is applied, due to inaccurate probe
positioning, the US probe is rotated of ±15 deg around its
x-axis while keeping the contact point fixed. This condition
does not introduce additional compression to the tissues, thus
preventing the lesion from moving. With this motion, the
US image plane sweeps a fan-shaped volume and we record
images at regular steps of 0.5 deg. We then select the US
image with the largest tumor area by visual inspection of all
the saved images and we extract its centroid as described
before.

Localization error at preloading force F relative to tumor
n is computed as Mean Squared Error (MSE):

MSE(F, n) =
√
||Xmodel(F, n)−Xgt(f, n)|| (3)

We compare the performance of the proposed method with
deformation compensation (“DC”) to adjust probe trajectory
during compression, with the same pipeline but without
deformation compensation (“No DC”). When no deformation
compensation is applied, the orientation of the US probe is
maintained constant during the entire compression, and equal
to the initial orientation d. In this case, the lesion is assumed
to move with the same extent and in the same direction as
the US probe.

We assess how the MSE varies depending on the probe
displacement and lesion radius. Probe displacement p is
defined as the distance travelled by the probe from the
initial contact to the end of compression. Lesion radius is
computed as the average distance of all the points on the
lesion surface model and the lesion centroid, as extracted
from pre-operative image.

As a final evaluation, we assess the contribution brought
by the presence of the robotic manipulator with respect to
manual US-guided examination. To do so, we compared
our experimental results with those described in [22], where
authors report a median MSE of 4.2 mm when using the

same formulation described in Section III-D to model probe-
induced deformations and comparable 3D mesh resolution
(i.e., 7,369 elements), on freehand US scanning of the
same breast phantom considered in our work. For consistent
comparison, we compute the median MSE obtained when
considering the same 10 lesions as in [22].

C. Results

Obtained results in terms of localization errors with and
without deformation compensation are summarized in Ta-
ble I. The overall accuracy of the system is influenced by
each of the components of the system as follows:

• the pose accuracy of the robotic arm: ± 0.03 mm as
declared by the manufacturer;

• the image acquisition error of the MicrUS probe: ±
0.078 mm;

• the calibration error between the US probe and the
robotic base which depends on the resolution of the
3D printer: 0.5 mm;

• the calibration error between the RGB-D camera and
the robotic arm: ± 1 mm, as given by the calibration
software.

While the ground truth is influenced by the first three
errors (pose, US acquisition and US calibration), therefore
is submillimeter, the overall error of the system will be
influenced by the registration between the reconstructed
surface and the external surface of the breast, as given by
the ICP algorithm after convergence. We estimated this error
at around 2-3 mm averaging on all the points on the surface.
However, these errors will affect both experiments we are
comparing (with and without deformation compensation).

Reported values represent the median MSE achieved for
all the 15 lesions, at the three considered preloading levels.
Table I also reports the distance p travelled by the US probe
in the different conditions and L, the lesion displacement
at each force level. Probe displacement increases with the
applied force as well as lesion displacement, and the obtained
displacements are aligned with those of other similar works
[20], [23].

A preloading force of 2 N is selected as reference for the
following evaluations, since it guarantees a good trade-off
between accuracy in lesion tracking and needle displacement
error. Our results show that this preloading level allows
to keep the median MSE (3.3 mm) below the median
lesion radius (3.6 mm), thus ensuring good tracking accu-
racy. Previous work has demonstrated that needle targeting
error is below 0.4 mm at 2 N, which does not additionally
improve with larger preloading forces [26]. Moreover, the
deformation compensation scheme sometimes encountered
numerical instabilities when using a larger force (i.e., 3 N),
due to the larger input displacement applied.

Fig. 3 reports the localization error obtained for each le-
sion with and without deformation compensation, depending
on the lesion radius, at a preloading force of F =2 N. The ob-
tained MSE is smaller than the radius of the corresponding
lesion if it falls within the vertical gray bar, which represents
lesion radius.



TABLE I: Localization error (MSE) and probe displacement
(p) with deformation compensation (“DC”) and without
deformation compensation (“No DC”) at different preloading
forces. The last row –L– reports the measurements on lesion
displacement at each force level. Values are in mm and
expressed as median (interquartile range).

1 N 2 N 3 N

MSE
DC 2.8 (2.0-3.6) 3.3 (2.7-4.2) 3.9 (3.06-4.3)

No DC 4.8 (3.7-5.6) 6.3 (5.3-7.0) 7.5 (6.8-8.4)

p
DC 8.3 (7.4-10.2) 14.9 (12.7-19.4) 23.9 (18.9-26.1)

No DC 9.0 (8.0-11.5) 15.0 (13.2-18.8) 22.9 (17.9-26.4)

L
DC 5.3 (4.7-7.1) 10.9 (8.8-14.0) 18.8 (14.0-20.5)

No DC 6.2 (5.0-7.8) 11.0 (9.2-13.8) 17.3 (12.3-20.64)

In Fig. 4 we report the localization error, with and without
compensation, against the movement of the probe to analyze
if there is a correlation between the distance traveled by the
probe from the first contact P to the final position.

Finally, the median MSE obtained at a preloading of 2 N
when considering the same 10 internal lesions as [22] is
3.34 mm.

Fig. 3: Localization error for each lesion with and without
deformation compensation, at a preloading force of 2N.
Horizontal dashed lines represent median error values over
all the lesions. Lesions are reported in ascending order
depending on lesion radius, which is represented by the gray
vertical bars.

V. DISCUSSION

This work presents a complete robotic setup for US-guided
breast biopsy that is able to autonomously perform all the
steps from initial registration with pre-operative MRI data to
final US probe positioning, just before needle insertion. The
prototype we described here operates in assistive mode at
autonomy level 2 (Task Autonomy), according to the classi-
fication given in [34], and at LoA 2 (Task-level autonomy)
according to [16]. The main innovative contribution of the
system is the integration of two fundamental components:
preloading technique for minimization of needle insertion
error, and a deformation compensation scheme for lesion
tracking during tissues compression.

Fig. 4: Localization error for each lesion with and without
deformation compensation, at a preloading force of 2N.
Horizontal dashed lines represent median probe displacement
over all the lesions. Lesions are reported in ascending order
depending on probe displacement, which is represented by
the gray vertical bars. This order is chosen to facilitate
visualization of the relationship between probe penetration
and simulation error. The number of each lesion is kept
consistent with that used in Fig. 3.

The presence of the deformation compensation scheme
allows to improve the tracking of internal targets during
compression. Obtained results in terms of lesion localization
accuracy, when using our pipeline, outperform those obtained
when the deformation compensation scheme is not used for
all the considered preloading forces, with an improvement
of 48% at both 2 and 3 N (Table I). Fig. 3 and 4 show that
the deformation compensation strategy allows to improve the
localization accuracy for all the considered lesions except
one (where the error is aligned with the one obtained without
deformation compensation). This exception is due to the
position of the lesion in question, which is located in the
lowest part of the phantom, close to the boundary conditions
(our method assumes that the points on the boundary do
not move). Accurate lesion tracking is essential to position
the US probe such that the lesion remains on the US image
plane, ensuring an optimal view on both the target and the
needle during biopsy.

Combining the obtained results with the findings from
previous work [26], we can conclude that the best trade-
off between the localization error and the needle targeting
error can be achieved using a preloading force of 2 N. Such
force allows also to minimize the applied tissue stress. When
relying on a preloading of 2 N, we are able to keep the
lesion localization error below lesion radius in 7 out of 15
lesions, whereas this happens for 2 lesions only when the
deformation compensation scheme is not used (Fig. 3). It
is worth highlighting that the presence of the deformation
model is fundamental to limit the error in case of the smallest
lesions, which are the most challenging to track and generally
the most difficult to be visualized in US images. Internal
lesions are visible in US images in the considered phantom



since they were necessary to provide ground truth lesion
positions during tissue compression. However, by relying on
a deformation model, our pipeline does not require lesions
to be visible on the US images but it is sufficient to know
their initial position from the pre-operative MRI. Moreover,
Fig. 4 shows that our method allows to keep the error limited
even for large input deformations, i.e. around 20 mm.

The improved accuracy could be reached thanks to the
use of patient-specific parameterization of the deformation
model, which was available for the considered phantom.
In the real clinical practice, deformation parameters can be
either initialized with values obtained from the literature
or they can be estimated using dedicated imaging (e.g.
elastography [35]) or analytically [36].

The localization error obtained with the proposed robotic
system improves the one obtained by [22] on a similar
experimental setup, but on freehand scanning. Improvement
in the results can be explained by the presence of the robotic
manipulator, which enhances the precision in tracking and
positioning of the US probe, and measuring the applied force.

The main limitation of the conducted experimental evalua-
tion is that needle insertion is not performed in the conducted
experiments to avoid introducing irreversible damages to
the phantom. However, the contribution of the presented
pipeline with deformation compensation could be assessed
even without including the biopsy phase. Although we could
not directly assess the needle targeting error, we assume that
such error is bounded thanks to the preloading technique, as
reported in [26].

VI. CONCLUSION

In this work we demonstrated how a robotic system with
deformation compensation may overcome the limitations of
the standard breast biopsy procedure in targeting lesions
that potentially are not seen in the US image. This system
is prepared for needle insertion with minimal displacement
thanks to the preloading technique. The integration of a
deformation model proves fundamental to improve US probe
positioning during compression, to maintain the target within
the US image plane.

This first prototype focused on the validation of the
deformation compensation while reaching a target. The other
components of the system (e.g. external surface acquisition
and registration) will be refined in future works in order to
allow to the robot to reach an accuracy below the lesion
radius for all targets.

In future works, we will improve the experimental val-
idation by including the needle insertion phase to assess
needle targeting error. Moreover, we will investigate the use
of the deformation model to compensate for needle-induced
deformations as well. Toward the clinical implementation,
the next step on the development of our system will be
to measure the force applied by a physician during an US
guided breast biopsy, so to assess whether the literature
assumption of a 2N pressure is compliant with the clinical
practice. The understanding of the forces involved in the
breast biopsy and the possibility to measure them in a robotic

guided procedure, may also play a role in the overall safety
of the intervention.
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