INFORMATION AND COMPUTATION 120, 263-278 (1995)

Negation as Instantiation

ALESSANDRA D1 PIERRO

Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy

AND

MAURIZIO MARTELLI AND CATUSCIA PALAMIDESSI

Dipartimento di Informatica e Scienze dell'Informaczione, Universita di Genova, via Benedetto XV 3, 16132 Genova, Italy
E-mail: catuscia(a:disi.unige.it.

We propose a new negation rule for logic programming which
derives existentially closed negative literals, and we define a version of
completion for which this rule is sound and complete. The rule is called
“Negation As Instantiation” (NAl). According to it, a negated atom
succeeds whenever all the branches of the SLD-tree for the atom either
fail or instantiate the atom. The set of the atoms whose negation is
inferred by the NAI rule is proved equivalent to the complement of
T.|lw, where T is the immediate consequence operator extended to
non-ground atoms (M. Falaschi et al,, 1989, Theoret. Comput. Sci.
69(3), 289-318). The NAI rule subsumes negation as failure on
ground atoms, it excludes floundering, and can be efficiently
implemented. We formalize this way of handling negation in terms of
SLDNI-resolution (SLD-resolution with Negation as Instantiation).
Finally, we amalgamate SLDNI-resolution and SLDNF -resolution, thus
obtaining a new resolution procedure which is able to treat negative
literals with both existentially quantified variables and free variables,
and we prove its correctness. € 1995 Academic Press, Inc.

1. INTRODUCTION

SLD-resolution and the models a la Tarski of a definite
logic program P are used to characterize, respectively, the
operational and the declarative meaning of P with respect to
the positive literals. In order to infer also negative literals,
Clark (1978) introduced the Negation as Failure rule (NAF),
which nowadays still represents the most widely used treat-
ment of negation in logic programming. The declarative se-
mantics of NAF is given in terms of the completion Comp{ P)
of a definite program P. We recall the classical results:

A s * 0= PEVAO (soundness of

success)

PEAO=3o<Ost. —A4 H—a* O (completeness

of success)

A finitely fails <= Comp(P) =V—14 (soundness and
completeness

of failure).

2
[8)

These results are, however, somehow restrictive. There are
essentially two limits:

1. One of the fundamental aspects of a logic program,
e, the computed answer substitutions, are not charac-
terized.

2. Only a small part of the negative information which
could be drawn from a program is inferred, namely the
universally closed negative literals.

The former fits into the more general problem of capturing,
by means of suitable models, the so-called observable proper-
ties of a program {Falaschi ez al,, 1993) and has been tackled
and solved by Falaschi et al. (1989). In the mentioned paper,
a new declarative semantics based on interpretations con-
taining non-ground atoms was defined, and two different
interpretation notions (the S-semantics and the C-semantics)
were introduced. In particular, it was shown that one of the
two models (the S-semantics) allows for precisely characteriz-
ing the set of computed answer substitutions.

This paper improves the situation with respect to the
second limitation, by presenting a new rule which allows us to
derive existentially closed negative literals. This rule works as
follows: 34 is inferred when all derivations for « A either
fail or instantiate some of the variables of 4. The declarative
justification of this inference is given in terms of an
appropriate reference theory, and the characterization of the
set of existentially closed negative atoms is given in terms of
the immediate consequence operator of the C-semantics.

The basic idea is the following. If all derivations for « A4
in a program P either fail or instantiate some of the
variables of 4, then Y4 is not a logical consequence of the
Clark’s completion of P, Comp(P) (Clark, 1978). Therefore
it is consistent to infer VA4, namely, 3—4. We want to
extend now the theory Comp(P) in order to validly infer
3—1A4. To this purpose, note that if every branch of the
SLD-tree for Pu { <A} either fails or instantiates some of
the variables of A, then for a grounding substitution #

0890-5401 /95 $12.00

Copyright (1 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

264

instantiating all variables to distinct fresh constants, the
SLD-tree for P U {«An} finitely fails. Thus, by the sound-
ness of NAF, we can deduce —14y, and finally 3—4.
Therefore, to obtain the appropriate reference theory, it is
sufficient to extend the underlying language by infinitely
many constant symbols, and consider the completion of P
over the extended language L. Comp,(P). Based on this
concept of “finite instantiation” we define a new negation
rule which we call Negation As Instantiation (NAI) and an
operational semantics for negation, the Failure by Finite
Instantiation set (the FFT set), consisting of all the atoms
whose existentially quantified negation can be inferred.

The fixpoint characterization of the FFI set is obtained by
using the C-semantics, and this leads to the following
analogies with the standard semantics. Let SS be the
{ground) success set, FF the (ground) finitely failure set, and
4 the standard Herbrand base. Furthermore, let 7" be the
standard immediate consequence operator and 7. the
immediate consequence operator of the C-semantics, as
defined in Falaschi er al. (1989). Then

SS={A| Aisgroundand « A4 ——* O}
={A4| Aisground and P E A}
= M (the least Herbrand model)
=Tlw (1)
and

FF={A| Aisground and there exists a finitely
failed SLD-tree for Pu { <A} }

={A| Comp(P) =4}
The set of non-ground atoms which can be refuted with an
empty computed answer substitution is shown in Falaschi
et al. (1989) to be equivalent to the set of (universaily
quantified) atomic consequences (called here NESS for
Non-ground Empty computed answer substitutions Success
Set) and to the least fixpoint of 7. Thus we have
NESS={A| «A+—*1}
={A|PEVA}
=T 1w

Now, denoting by 4, the Herbrand base extended with
non-ground atoms, we will show that

FFI ={ A | there exists a finitely instantiating
SLD-tree for Pu {«—A}}
={A| Comp (P) k= VA4}
=A\T | w.

Di PIERRO, MARTELLI, AND PALAMIDESSI

Therefore FFI is the negative counterpart of NESS in the
same way that FF is the negative counterpart of SS.

We then consider the application of the NAI rule to
programs containing existentially closed negative queries in
the bodies of the clauses. We extend SLD-resolution by
adding the NAI rule to solve these subgoals, thus obtaining
what we call SLDNI-resolution, and we show that it is
correct w.r.t. Comp,(P). Concerning completeness, SLDNI-
resolution does not present the problem of floundering, but
still the existence of non-terminating computations is an
obstacle, as in the case of SLDNF-resolution. The two
approaches to negation, NAF and NAI, are in a sense
orthogonal, hence they can be combined smoothly. We
propose an amalgamation of these notions which should
combine the advantages of both of them. The resulting
system, SLDNFI-resolution, is still correct. It is however
not complete, as one might expect, since it results from the
combination of two incomplete methods.

One drawback of the approaches mentioned so far
(SLDNF, SLDNI, and SLDNFI) is that they are not able
to compute bindings for the variables in negative subgoals.

To solve the problem of getting bindings for negative
literals, other approaches have been proposed, such as
constructive negation (Chan, 1988). Our extension has the
advantage that the implementation of the NAI rule is very
simple and can be obtained by a small modification of the
NAF rule.

1.1. Plan of the Paper

The next section introduces the terminology and the basic
results concerning the semantics of logic programs. In Sec-
tion 3, the notion of Failure by Instantiation is introduced
and characterized both in terms of T and, model-theoreti-
cally, in terms of an appropriate completion of the program.
In Section 4, we extend the NAI rule to a kind of general
programs, called 3 general programs, thus defining
SLDNI-resolution, which is shown to be correct. Finally, in
Section 5, we propose an amalgamation of SLDNF- and
SLDNI-resolution, and we show its correctness.

2. PRELIMINARIES

In this section, we recall the terminology and the basic
results in the semantics of logic programs.
A language consists of three disjoint sets: a set Con of

Sfunction symbols (data constructors), a set Pred of predicate

symbols, and a set Var of variable symbols. Each symbol in
Con and Pred is associated with a number representing its
arity.

Let Term be the set of terms ¢, «... built on Con and Var.
The Herbrand universe U is the set of all ground terms.
A substitution is a mapping ¢: Var — Term such that the
set Dom(0)={x|0(x)#x} (domain of 0) is finite. The

NEGATION AS INSTANTIATION

codomain of 6 is the set Cod(f)= {t | te Term and
Ix e Dom(0) such that ¢ =6(x)}. For a set of variables V,
the restriction of 0 1o V, denoted by 0, is the substitution
defined by) .(x)=0(x)if xe V, and 8| (x)=x otherwise.
The empty substitution is denoted by ¢. Given a term ¢ and
a substitution 8, 10 denotes the term obtained by replacing
every variable x in ¢ by 0(x). The composition fo of the
substitutions) and o is defined as 0o(x) = x00. The pre-
ordering < on substitutions is defined as <o iff there
exists ¢ such that 00" =0¢. The associated equivalence
relation is called renaming.

The set Arom is a set of objects A4, B.. of the form
plt,, ... t,), where p is a predicate with arity n, and
Vie[l,n],t, € Term. A literal 1s either an atom or the nega-
tion of an atom. The Herbrand Base 4 is the set of all
ground atoms. The application of the substitution 8 to the
atom A is denoted by A¢. The relation 4 < A4’ (4 is more
general than 4') holds iff there exists # such that 480=A".
The relation < is a preorder, and the associated equivalence
relation (still called renaming) will be denoted by =.

We use VA4, 34 to denote respectively Vx, ..Vx,.A
and dx, ..dx,.4, where x,,.. x, are all the variables
occurring in 4.

Two atoms 4 and A" are unifiable iff there exists a sub-
stitution ¢ such that A = A4’0. Such substitution is called
unifier of A and A’. If A and A’ are unifiable, then there
exists a4 smallest unifier w.rt. <, apart from renaming,
which is called the most general unifier (mgu) of A and A,
and denoted by mgu(A, A’). The notion of mgu generalizes
to sequences of atoms or terms in the obvious way.

A definite clause is a formula H< B,, .., B, (n=20),
where H and the B,’s are atoms, “«” and “,” denote logic
implication and conjunction, respectively, and all variables
are universally quantified. H is the fead of the clause and
B, ..., B, is the body. If the body is empty then the clause is
a unit clause. A definite Horn program, (or simply program),
is a finite set of definite clauses P={C,, .., C,}. A goal G is
a formula «A4,, .., A,,, where each A4, is an atom. We will
often refer to them as positive programs and goals.

Given a goal G of the form «—A4,, ..., 4,,, and a program
P. a derivation step G+2> G’ is possible if there exists a
clause H « B, ..., B, which is obtained by renaming in an
appropriate way (see later) one of the clauses in P, such that
! =mgu(A;, H). The resulting goal G’ is «(A4,..,4,,
B,,..B, A, .., A,)0 Theatom 4, is called the selected
atom. A SLD-derivation for Pu{G} is a sequence of
derivation steps G = G, H G, HF2 - 2 G, with
n>0. We denote such a derivation by G +2»* G, with
O=¢ifn=0,and 0=(0,0,---0,_,), 1f n=0, where X arc
the variables of G. In the following, the notation x will be
used to indicate both a set {x,..,x,} and a sequence
Xy, ... X,.. The rule which associates to each (occurrence of)
a goal in a derivation the selected atom is called the selection
rule. When used n a derivation step, a clause has to be

265

renamed so to contain no variables in common with any
goal occurring in the prefix of the derivation until that step
(standardization apart). Without loss of generality, we will
assume that each mgu x generated in a derivation is idenmpo-
tent (i.e., g =) and relevant (i.e., u affects only variables
which occur in the atoms to be unified). If G +2* 1,
where [is the empty goal, the derivation is a SLD-refuta-
tion, and 6 is the corresponding computed answer substitu-
tion (c.as.). An SLD-derivation is failed if it is finite,
maximal (i.e. it is not the prefix of a longer derivation) and
it is not a refutation. A derivation is fair if it is either finite
or every atom which occurs in it is eventually selected.

An SLD-tree for PuU {G} is a way of representing all
derivations for G in P via a fixed selection rule R. It is a
maximal tree such that

(1) the nodes are goals, and the root is G;

(1) the children of a node are all the goals obtained by
performing a resolution step with a renamed clause of P
whose head is unifiable with the atom selected according
to R.

Note that a branch of an SLD-tree corresponds to an SLD
derivation. An SLD-tree is successfud if it contains the empty
clause, and it is finitely failed if it is finite and not successful.
It is fair if all its branches are fair.

We refer to Lloyd (1987) or Apt (1990) for the standard
notions of Herbrand base 4, Herbrand interpretations
1. J. ... and the immediate consequence operator T.

Following Falaschi e al. (1989), we summarize now the
notion of Herbrand structure enriched with variables, and
the corresponding immediate consequence operator.

The Herbrand base with variables is the set of equivalence
classes (quotient set) of the set of all atoms with respect to
the equivalence relation =

A, = Atom, _ .

For the sake of simplicity, we denote the equivalence class
of an atom with the atom itself.

We introduce the following operators on subsets 7, of 4,
which will be useful in the following.

o Down(l,)={A | there exists 4" €/, s.t. A< A"}
s Ground(I,)=1{A| A€l and A4 is ground}.
I, 1s upward closed if Ael, and A< A imply A el

The immediate consequence operator 7T, on Herbrand
interpretations is

T(1,)=1{A] thereexist H— Be P, and a
substitution #/s.t. Bde I, and A = H0)},

266

where P, is the closure of P under renaming and B denotes
a sequence of atoms. We define the following interpreta-
tions:

Tc10=¢
Tetin+1)=T(Tc1n)

Tcto={J Tetn

n < w

and
T(lozﬂv
Toln+1)=Tq(Tc|n)

Telw= () Teln

n<w

The set of non ground atoms which have a refutation with
an empty computed answer substitution is

NESS={A| —A+>*0}.

We recall the model-theoretic and fixpoint characteriza-
tion of NESS, which extends the results in (1):

NESS={A|PEVA}
= M, (the least Herbrand model with variables)

=T.1o.

No negative counterpart of NESS has been studied until
now. In Levi ef al. (1990), the set of non-ground atoms
which have a finitely failed computation {(NGFF) was
introduced and shown equivalent to the set of atoms A4
such that Comp(P) = 134, where Comp(P} is the Clark’s
completion of P (Clark, 1978). However, Levi et al. (1990)
showed that NGFF 1is the counterpart of the set
NGSS={A| «Av2>* 0O}, which is different from NESS.

3. FAILURE BY INSTANTIATION

In this section, we present a new notion of failure and,
correspondingly, a new (non-ground) failure set to be
interpreted as negative information. For this set, we give a
characterization similar to (2), using the 7. operator.
Finally, we show that this set contains exactly the atoms A
for which Comp ,(P) =314 holds, where Comp ,(P) is the
completion of P with respect to the reference language L
(containing infinite constant symbols). This set represents
the actual dual set of NESS.

The operator var returns the set of variables occurring in
an expression (term, atom, goal, ..). For a substitution ¢

DI PIERRO., MARTELLI, AND PALAMIDESSI

and a set of variables V, we define the property Inst(6, V) to
hold iff @ strictly instantiates the variables of V.

DeFiNiTioN 3.1 Let V= {x,, .., x,}, 6 be a substitution
and p a predicate symbol of arity n. We say that Inst(8, V)
holds iff p(x,, ..., x,,) @ € p(x,, ..., X,)).

DerFiNtTiON 3.2 (Finitely Instantiating SLD-Tree). Let
P be a program, G a goal and VS var(G). Let TR be an
SLD-tree for P U {G}. Then

1. TR instantiates V" at level k iff for every branch & of
TR one of the following holds:

o ¢ fails at level' k' <k, or
o Inst(Gy---0,._,, V)istrue, where 8, ..., 0,. _, are the

substitutions labeling the edges of & up to level &’ < k.

2. TRis a finitely instantiating SLD-tree for P U { G} iff
Jk = 1 s.t. TR instantiates var(G) at level k.

DeriniTION 3.3 (Failure by Finite Instantiation). Let P
be a program. The failure by finite instantiation set of P is

FFI = {4 € Atom | there exists a finitely instantiating
SLD-tree for Pu {«A}}.

In the following, we will show that FFI corresponds to the
set of atoms not belonging to 7 | w.

3.1. The NAI Rule

Clark (1978) defined the Negation As Failure rule, based
on the concept of finite failure. We present here a new rule
for inferring negative information based on the concept of
finite instantiation. We call this rule Negation As Instantia-
tion (NAI) and we define it as

Ae FFI
3—4

The NALI rule subsumes the NAF rule in the sense that for
ground atoms it coincides with the NAF rule, and further-
more it has the advantage of an efficient implementation. To
show that 314 holds we perform an exhaustive search for
a proof of 4. If every possible proof fails or instantiates some
variables of 4 (that is, if it is possible to construct a finitely
instantiating SLD-tree for PU{«A}), then 3714 is
inferred.

3.1.1. Examples

We show some examples to clarify the possible use of the
NAI rule. We consider here positive programs and goals
consisting of only one existentially closed negative literal.

' By level of ¢ we mean the number of nodes in &.

NEGATION AS INSTANTIATION

ExaMmpLE 3.4. Consider the following programs:

Py ={pla) —,
r(b) « }
pP,= {P(X)*“,
r(b)« }.

We have:

Comp(P,) k= —p(b), hence Comp(P) E 31p(x),
and

Comp(P,) E ¥p(x), hence Comp(P,) = 137p(x).

There exists a finitely instantiating SLD-tree for
P, U {<p(x)}, but not for P, U { <p(x)}. Hence the NAI
rule will allow us to derive 3—1p(x) in P;, and not in P,.
Note that neither P, U { «<p(x)} nor P, U { «<p(x)} have a
finitely failed SLD-tree, so no conclusion can be drawn by
the NAF rule, even when extended to deal with non-ground
negative literals as it is done in Apt (1990, Sect. 6). This is
in accordance with the fact that Comp(P,) ¥ Vp(x) for
bothi=1, 2.

EXAMPLE 3.5. The following program defines a predicate
whose third argument is the sum of the others:
P={plus(x,0, x)—,
plus(x, s(y), s(z)) < plus(x, y, 2)}.
We have, for instance, that Comp(P) = 31plus(x, s*(0), y).
From the NAI rule, we can derive 3—1plus(x, s*(0), y); in
fact, Pu {«plus(x,s*(0), y)} has a finitely instantiating

SLD-tree where the goal variable y results instantiated to
s%(x). On the other hand, we have that for all ne w

Comp(P) E 13 plus(x, s7(0), s"(x))

holds, and the NAI rule fails to derive 3—plus(x, s"(0),
s"(x)), since P u { «plus(x, s"(0), s"(x))} has a non-instan-
tiating SLD-refutation.

Let us now consider an example of application of the NAI
rule in the case of a finitely instantiating, but infinite, SLD-
tree.

ExaMpLE 3.6. Consider the following program:
P ={pla)+q(x),
q(x) « gq(x)}.

We have that the SLD-tree for Pu { «<p(y)} is infinite, but
finitely instantiating. In fact, y is instantiated to a already at

267

the second level. Hence the NAI rule allows us to derive
3—p(y), while no conclusion can be derived from the NAF
rule, in accordance with the fact that Comp(P) = Vp(y).

On the other hand, the SLD-tree for Pu {«<gq(y)} is
infinite, but not finitely instantiating. Hence no conclusion
for g can be derived either from the NAI or from the NAF
rule.

In these examples, the relation between the NAI rule and
the completion of a program is not clear, and more
generally it is not clear what is the semantical justification of
such a rule. We will investigate this aspect in Section 3.3,
whereas now we will focus on a characterization of FFJ in
terms of the immediate consequence operator T .

3.2. Fixpoint Characterization of Failure by Instantiation

Let us recall the characterizations of finite failure given in
Apt (1990).

THeoreM 3.7. Let P be a program and A a ground atom.
Then the following are equivalent:

(a) A¢T|w.
(b) AeFF.
(c) Every fair SLD-tree for P U { « A} is finitely failed.

We show that the set FFI enjoys an analogous charac-
terization. In fact, there is a close correspondence between
failure by instantiation and finite failure, as we show in this
section. The basic idea is that a finitely instantiating tree
becomes a finitely failed tree when the variables of the initial
goal are replaced by constant symbols not occurring in the
program. In fact, if the unification of 4 and B requires to
instantiate the variables of 4, then no unification is possible
if we replace the variables of 4 by constant symbols not
occurring in B. In order to exploit this relation in the proofs,
technically, we have to consider Herbrand structures, T, FF,
etc., defined on a language extended with the additional
constant symbols.

Given an expression E, a sequence of variables X and a
sequence of terms 7 of the same length, E[#/X] denotes
the expression obtained from E by replacing verbatim
each variable of ¥ by the corresponding term of £
Furthermore, 6[1/X] is the substitution defined by

OL#/x](y) =0 {/x].

ProrosITION 38. Let A€ Atom, let X be the sequence of
all variables occurring in A, and let d be a sequence of fresh
constant symbols. Assume A e FFI. Then A{d/X] € FF.

Proof. Note that if Pu {«<A[d/¥]} has a non-failed
SLD-derivation, then we obtain a non-failed SLD-deriva-
tion for P L { < A} by replacing verbatim the occurrences of
symbols of d by the corresponding symbols of X in the mgu’s

268

and in the goals. The resulting mgu’s do not bind x, hence
the derivation does not instantiate x. Therefore,

A[d/x] ¢ FF = every SLD-tree TR for P U { < A[d/x]}
has a non-failed branch

=>every SLD-tree TR for P u { <« A(X)}
has a (finite or infinite) non-failed branch
with mgu’s 8,, 8, ... such that
Va. 1nst(8y--- 0, X)

=A¢FFIL |
Let us recall the relation between the operators Tand T'.
given by Levi et al. (1990).
LEMMA 39. For every n, T' | n=Ground(T|n) holds.
Lemma 3.10. T w=Ground(T, | w).

Proof.

AeT|w

Ae (Y Tin

n<w

Vn.AeT|n
< {Lemma 3.9}
VYn.A e Ground(T | n)

<> {upward closedness of T | n; see Definition 6.2
in Falaschi et al. (1989)}

AisgroundandVn. AeT|n
.

Aisgroundand A€ T |w
<

A€ Ground(T. | w). |

PropPOSITION 3.11. AeFFI=A¢ T, | w.

Proof. Let d be a sequence of new constant symbols. We
have
AeFFI
= {Proposition 3.8}
A[d/%]) e FF
= {Theorem 3.7}

DI PIERRO, MARTELLI, AND PALAMIDESSI

Ald/x}¢ T w
= {Lemma 3.10}
A[d/x] ¢ Ground(T | w)
= {upward closedness of T | w}

A¢T w1

Observe that the definition of FFI is existential, in the
sense that 4 e FFI iff there exists at least a selection rule
which gives a finitely instantiating SLD-tree. Since we do
not know a priori which selection rule will have this
property, it might be very expensive to check whether
A e FFI. Fortunately, as in the case of FF, it is possible to
give a universal characterization of FFI in terms of fair
SLD-trees. We will see, in fact, that if 4 € FFI then every fair
SLD-tree for Pu {«—A} is finitely instantiating. To prove
this result we need the following lemma which generalizes
Lemma 5.10 of Apt (1990).

Lemma 3.12. Suppose there exists an infinite fair
SLD-derivation, Gy, Gy, ..., for PU{G}, with G=Gy=
—A,, ., A, and substitutions 6,,60,, ... Then for every
k=0 thereexistsnz=0st.Vie[l,m]. A0y, --8,_,e€T.|k.

Proof. Lemma 5.10 of Apt (1990) states a similar
results, the difference is that it concludes [A4,6,---0,] <
T | k, where [A] stands for the set of the ground instances
of A. The proof is analogous, and proceeds by induction on
k. The claim is clearly true for &k =0. Suppose it is true for
k—1.Letie[1, m]. Since the derivation is fair, there exists
p = 0 such that the atom 4,60, --- 8, , is selected in the goal
G, let G,,, be the goal «B8,,..,B, By inductive
hypothesis, for some s = 0

(B0

iYp+1 7

”Hp+s l]e[l’(I]} < T(l(k-l)
holds. From the definition of 7', we have

AIHO '“Hp-»-,\’ € T('({Bj9p+l "'()p-o-x lje [1’ q]})

Therefore, by monotonicity of 7., we conclude

Ab,---0

i p+seT('lk' l

PrOPOSITION 3.13. Let P be a program and let A€ B,. If
A¢T.|w, then every fair SLD-tree for Pu{—A} is
Sinitely instantiating.

Proof. Suppose, by contradiction, that there is a fair
SLD-tree TR for Pu {«A} which is not instantiating at
level k for any k. Then there exists a branch of TR which for
any k does not fail at level &, and its mgu’s do not instantiate
var(A4) up to level k. This means that such a derivation is

NEGATION AS INSTANTIATION

« a refutation with computed answer substitution &, or
e an infinite fair SLD-derivation which does not
instantiate var(A).

In both cases 4 would belong to T |w, against the
hypothesis. In fact, in the former case, by strong soundness
w.r.t. the C-semantics (Corollary 7.1 of Falaschi er al
(1989)),

AeTlwcsTq o

holds, and in the latter case, by Lemma 3.12, we have

Vk.AeTolk=Ae (| Telk=Tc|lw. |

kew

Remark 3.14. 1If every fair SLD-tree with <4 as a
root is finitely instantiating, then there exists a finitely
instantiating SLD-tree for P U { <A}, 1e, A€ FFL

The next theorem collects the results of Proposition 3.11,
Proposition 3.13, and Remark 3.14 and gives the fixpoint
characterization of the set FFL

THEOREM 3.15. Consider a program P and let A€ B,.
Then the following are equivalent:

(a) A¢T o

(by AeFFL

(c) Every fair SLD-tree for Pu{<«A} is finitely
instantiating.

Proof.
(c)=(b) { Remark 3.14}
(b)=>(a) { Proposition 3.11}
(a)=(c) { Proposition 3.13}. |

Note that, analogously to (2}, we have
FFI=2\T.|o.

Although in the proof we have used Herbrand structures
on a language enriched with additional constant symbols,
Theorem 3.15 holds also for a T defined only on the
vocabulary of the program. In fact it is easy to see that the
relations between 7" and T expressed by Lemmata 3.9 and
3.10 still hold when the domain of T is restricted to the
vocabulary of the program, provided that we replace
Ground(T | n) by Ground(Up(T . | n)), and Ground(T . | w)
by Ground{ Up(T | w)), with Up defined as

Up(1,)=1{A|3Bel, such that B A4},

269

where A is an atom in the extended language. The rest of the
proofs carries out without modification.

By an obvious generalization of Proposition 3.11 and
Proposition 3.13, it is possible to extend the previous
theorem to the case of a goal consisting of several atoms.

THEOREM 3.16. Consider a program P and a goal
G= <A, .., A, Then the following are equivalent.

(a)y Jie[l,n]st A, ¢Tq|w.

(b) PuU{G} has a fair finitely instantiating SLD-tree.

(¢} Every fair SLD-tree for Pu |G}
instantiating.

The FFI set is greater than the standard NGFF set. In
fact, Levi et al. (1990) proved that the NGFF set is the
complement (w.r.t. 4,) of the set

is finitely

I,= () Down(T|n)

hew

and, by definition, T.|n< Down(T,|n). Therefore

T | ® <1, holds. Hence we have
NGFF =3\, B\T. | w=FFI.

3.3. Model-Theoretic Characterization of FFI

We give here a validation of the NAI rule in terms of the
model-theoretic semantics. First, we show that we need to
consider a language extended by infinitely many symbols.
The reason is that Comp(P) is not always adequate, in fact
in some cases there are models of Comp(P) which do not
contain enough elements.

ExampLE 3.17. Consider the program

P={p0)«,
pls(x)) + plx)}.
The atom p(x) belongs to FFI (hence the NAI rule would
infer 3—p(x)), but in some models of Comp(P) the formula
I—p(x) is false. More precisely, it is false in those models

which contain only the elements corresponding to the terms
0, s(0), s(s(0)),

An obvious solution is to “force” in the models additional
elements. In the above example, we would need just one, but
in general we might need more of them.

ExampLE 3.18. Consider the program

P={p(a, x)«,
plx, a) <,

plx, x)« }.

270

The atom p(x, y) belongs to FFI, but the formula
3p(x, y) is true only in those models of Comp(P) which
contain at least three distinct elements.

As the previous example shows we must consider a
reference language which contains, besides all symbols
which might occur in the programs, as many new constant
symbols as the number of variables which might occur in
the formulae we want to deal with. Since we are interested
in extending the results to conjuncts of arbitrary length, it is
convenient to consider a language containing infinitely
many additional constants symbols d,, 4,, ..., d,, Wecall
L this language. An alternative approach would be to
consider a language containing at least one constant symbol
and one additional unary function symbol.

DerFiNiTION 3.19. The extended completion of P,
Comp,(P), is defined as IFF(P)u CET,, where IFF(P) is
the collection of completed definitions of predicates in P
(see Apt, 1990) and CET, is the set of the equality and
freeness axioms (EA u FA) for L, as defined, for instance, in
Shepherdson (1988).

Comp ,(P) is an extension of Comp(P), as shown by the
following proposition.

ProrosiTION 3.20. Let F be a { first order) formula. Then
if Comp(P) |= F then Comp ,(P) E F.

Proof. L contains all symbols which occur in P, hence
the axioms of Comp(P) are a subset of the axioms of
Comp ,(P). Therefore, every model of Comp,(P) is also a
model of Comp(P). |

We show now that the assertion Comp ,(P) = 34 can
be appended to the chain of equivalences in Theorem 3.15.
We start with the soundness of the NAI rule.

If A € FFI then Comp,(P) = 3 A.

Proof. Let AeFFI and let x be the sequence of all

variables in 4. Let d be a sequence of symbols not occurring
m P. Then

ProprosITION 3.21.

AeFFI

= {Proposition 3.8}
A[d/x] e FF

= {Theorem 5.32in Apt (1990)}
Comp(P) = "A[d/x]

Comp(P) = 314
= {Proposition 3.20}
Comp,(P)=374. |

DI PIERRO, MARTELLI, AND PALAMIDESSI

To prove the completeness of the NAI rule we use some
results from the literature on the three-valued logic and the
Kunen/Fitting immediate consequence operator @ .. In the
following, we indicate by =, the truth in a three-valued
model. For the basic definitions of these notions see, for
instance, Fitting (1985) or Shepherdson (1988). These
results are formulated within a framework which assumes
an underlying language containing countably infinite sets of
n-adic function symbols and of n-adic predicate symbols, for
each n = 0. Anyway, for our purposes, it is not necessary to
consider such an extension, since the only properties we
need are valid for every kind of language.

We use also the following relation between FFI and FF,
which is the reverse of Proposition 3.8. Actually, it is more
general than the reverse, because the variables here can be
replaced with ground terms whatsoever.

LEMMA 3.22. Let A€ Atom, let X be the sequence of all
variables occurring in A, and let t be a sequence of ground
terms. Assume A[i/x] € FF. Then A € FFI holds.

Proof. Assume that P U {«—A} has a (finite or infinite)
non-failed SLD-derivation with mgu’s 8., 8,, ... such that
Vn.Inst(6, --- 6, X). Then we can replace in the goals and
in the mgu’s of the derivation all occurrences of variables
of X by the corresponding terms of 7, thus obtaining a
non-failed SLD-derivation for Pu { < A[{/x]}. Therefore,

A ¢ FFI = every SLD-tree TR for PU { «— A}
has a (finite or infinite) non-failed branch with

mgu’s f,, 8,, ... such that Va. —1Inst(6, --- 6, X)

= every SLD-tree TR’ for Pu { < A[1/x]}
has a non-failed branch

= A[i/X] ¢ FF. |

We can now prove the completeness of FFI.
ProposiTiON 3.23. If Comp ,(P) |= 31 A then A € FFI.

Proof. Let X be the sequence of variables occurring in 4.

Comp,(P) = 3114

= {Theorem 38 in Shepherdson (1988)}
Comp (P) l=5331714

= {Theorem 4.1 in Kunen (1989)}

3—Ais true in @, T n, for some n

—1A[{/x] is true in @, 1 nfor some ground terms 7

NEGATION AS INSTANTIATION

=
A[f/x]isfalsein @, Th

= {Lemma 6 in Shepherdson (1988)}
AL1/x)¢Tpln

=
Allx]¢Tplw

= {Theorem 3.7}
A[i/x] € FF

= {Lemma 3.22}
AeFFL |

From Propositions 3.21 and 3.23 and from Theorem 3.15,
we have the following complete characterization of the NAI
rule:

THeOREM 3.24. Consider a program P and let A€ A, .
Then the following are equivalent:

(a) A¢Tc]w.

(b) AeFFIL

(c) Every fair SLD-tree for Pu{«<A} is finitely
instantiating.

(d) Comp, (P)E= I7A.

Theorem 3.24 generalizes naturally to the case of a goal
consisting of several atoms, i.e., 4 can be substituted by a
conjunction 4, .., 4,.

From Theorem 3.24 and Proposition 3.20, it follows that
the NAI rule is complete also with respect to Comp(P).

COROLLARY 3.25. If Comp(P) = 31 A4 then A e FFI.

Under a stronger hypothesis we can prove soundness too.
Intuitively, if Pu {< A4} has a finitely instantiating SLD-
tree and the instances on 4 given by this tree do not cover
all possible terms of the Herbrand universe of the program,
then for @ instantiating var(A4) to some missing terms,
P U { < A8} should fail. Hence 314 should be captured by
the standard completion. The next definition formalizes this
notion of “non-covering tree.”

DEFINITION 3.26. Let Ae%,, P be a program, TR an
SLD-tree for Pu {«<A} and X the sequence of variables
occurring in A. We say that TR is a non-covering tree for A
iff there exists a grounding substitution ¢ (on the standard
Herbrand universe associated to P) for 4, such that for
every maximal branch & in TR, either

» £ finitely fails, or

« there exists k& such that Ao¢[Af,---0,], where
f,, ..., B, are the substitutions labeling the edges of £ up to
level k.

271

PROPOSITION 3.27. If there exists a non-covering finitely
instantiating SLD-tree for Pu{ <A}, then Comp(P) =
14.

Proof. Consider a non-covering finitely instantiating
SLD-tree TR for Pu{«<A}. Let 0 = {x/f} be the ground
substitution in Definition 3.26. By substituting verbatim /7
for £ in TR, we obtain a finitely failed SLD-tree for
Pu{<Ac}. By the soundness of NAF, we have
Comp(P)} = Ao, hence we conclude Comp(P)E
i—4. |

We give some examples to make clear the sense of the
above proposition.

ExampLE 3.28. Consider the program in Example 3.17
and consider the goal «<—p(x). We have that the (only) SLD-
tree for Pu { <p(x)} is finitely instantiating, and covering
(i.e., not non-covering). In fact, the substitution #= {x/a},
which is the only possible grounding substitution for p(x) in
the language of P, labels a non-failing branch of the tree.
Therefore, Comp(P) k= 3—p(x), whereas Comp, (P)E
J—p(x).

ExampLE 3.29. Consider the program P of Example 3.5
and consider the goal «plus(x, s*(0), y).

We have that the (only) SLD-tree for Pu
{«plus(x, s*(0), y)} is finitely instantiating and non-
covering; in fact the edges of the {only) branch of the tree
are labeled by 6,={y/s(y)}, 0,={y /s(y)}, 0,=
{y./x}. Thus we have, for instance,

plus(0, 52(0), 0) ¢ Ground(plus(x, s*(0), v) 0,0, 0,).

Therefore Comp(P) |= —1plus(0, s%(0), 0), hence Comp(P) =
Iplus(x, s7(0), y).

4. SLDNI-RESOLUTION

In this section, we define an extension of SLD-resolution
based on the treatment of negative information via the NAI
rule. We consider programs possibly containing clauses
with existentially quantified negative queries in the body,
which we call 3—general programs.

The syntax for 31general queries, goals, and programs is
described by the grammar

Queries Q:u=A4[37(Q)|Q,Q
Goals Gi=«Q
Clauses Ci=A«Q| A+,

where 4 € Atom. In the rest of the paper, when there is no
risk of ambiguity, we write 3—Q for 3-1(Q).

The notions of literal and selection rule are extended as
follows.

272

DEeFINITION 4.1, Let Q be a query. The conjuncts of Q,
Conj(Q), is the smallest set such that

e if Q = 4 then Conj(Q) = { A}
» if Q=30 then Conj(Q)={310'}
« if 0= Q,, O, then Conj(Q) = Conj(Q,) v Conj(Q,).

DErFINITION 4.2. A selection rule specifies, for every goal
<, one conjunct of @ (the selected conjunct).

Roughly, the notion of derivation extends as follows. Let
P be a 3—general program, R a selection rule and « Q the
current goal. Let Q' be the selected conjunct. If Q' is an
atom, then we choose a clause 4 « Q" of P, such that A4
unifies with @', and replace Q' by Q”, in Q. Then, we apply
the mgu @ to all variables which are not in the scope
of an existential quantifier. We will use the notation
—((Q\Q'), Q") # to indicate the resulting goal. If such a
clause does not exist, then the derivation fails.

If Q' is of the form 3—Q", then we check whether the
derivation tree for Pu {«<Q"} instantiates the free
variables of Q". If this is the case, then Q' is removed from
« Q. The resulting goal will be indicated with —Q\Q'. If
there exists a refutation for Pu {«Q"} which does not
instantiate the free variables of Q”, then the derivation fails.

The derivation succeeds if it ends with the empty goal.

Note that there are derivations which neither succeed nor
fail. They can be infinite, as in {p«p} U {«<p}, or loop
forever in the attempt to solve a negative conjunct, like in
{pep) v {3} andin {p~3=p} U {+p).

In the following, we denote by freevar(Q) the free
variables in Q, i.e.,

e if Q= A, then freevar(Q)=var(A),
e if Q=310 then freevar(Q) = &,

oif Q= Q,.0,, then freevar(Q) = freevar(Q,) v
Sreevar(Q,).

Following Shepherdson (1989), we formalize the
extended notion of refutation and tree. We call them
SLDNI-refutarion and SLDN/-tree, for SLD with Negation
As Instantiation. First, let us make precise the notion of
application of a substitution to a 3—1general query.

DerFINITION 4.3.
substitution. Then

Let Q be a 3—general query and (0 be a

A6b, if Q=A4,
Q0=10, if Q=370
QIO’ QZ()' if Q:QI’ QZ'

Analogously, the notation Q[d/x] indicates the replace-
ment of d for the free occurrences of X in Q.

DI PIERRO., MARTELLI, AND PALAMIDESSI

DeriniTioN 44 (SLDNI-Resolution). Let P be a
3—general program, R a selection rule and G a 3—general
goal.

o An SLDNI-tree of rank k for P U {G}, via R, is a tree
TR defined as follows:

(a) Every node is a 3general goal and every edge is
labeled by a substitution,
(b)

(c)

the root node is G,

for every node «Q

(1) if the selected conjunct is an atom A, then for
each clause H « Q' in P (standardized apart), if H and 4
are unifiable with mgu 0, then the goal «—((Q\4), Q') fisa
child of « @, and the edge is labeled by 0. If there are no
such children the node is a (failed) leaf node;

(i1) if the selected conjunct is 31Q’ and there exists
a finitely instantiating SLDNI-tree for P U { <0’} of rank
k' <k, then « Q\3—1Q' is the only child of « @, and the
edge is labeled by & If there exists a non-instantiating
SLDNI-refutation of rank k' <k for PU { «<Q'}, then «Q
1s a (failed) leaf node.

» TR is finitely instantiating at level i iff it instantiates

freevar(G) at level (see Definition 3.2).

o An SLDNI-refutation & of rank k for PU{G)} is a
sequence of goals &{=G,, G,,..,G,, with G,=G and
G,=0, and an associated sequence of substitutions
fy, ..., 0, _, such that for each i€ [0, n — 1], either

(1) the selected conjunct in G; is an atom A,
there exists a clause H <« Q in P (standardized apart) such
that H is unifiable with 4 with mgu #, and G, , =
< ((G\A), Q) 0,, or

(1) the selected conjunct in G, is 3 Q, there exists
a finitely instantiating SLDNI-tree of rank 4’ <k for
Pu{«<0}, G,,,=G\31Q and f,=e¢ The substitution
(0o - 01— 1) ey 18 the computed answer substitution.

o ¢ is non-instantiating if Inst(6, -- -
false.

0,_4, freevar(G)) is

Note that a particular case of finitely instantiating
SLDNI tree is 4 tree in which all branches fail, which we call
finitely failed SLDNI tree.

4.1. Correctness of SLDNI-Resolution

In this section, we define the completion of a 3—1general
program and we show that the SLDNI-resolution is sound
with respect to it, thus extending the results of Section 3 to
Igeneral programs.

The completion of a 3—igeneral program is just the
straightforward extension of the standard notion of comple-
tion recalled in Definition 3.19. However, we need here to

NEGATION AS INSTANTIATION

give more details about its definition, because we are going
to use it in the proofs.

DEFINITION 45. Let P be a 3J—igemeral program.
Its completion with respect to the extended language L
is defined in the usual way, namely Comp,(P)=
IFF(P) U CET,. The set CET, is the set of the Clark’s
equality axioms for the language L (Clark, 1978). The
set IFF(P) is the collection of completed definitions of
predicates in P, defined as follows.

Let p be a predicate occurring in the program and
Xy, .., X, fresh variables. Assume there are s > 0 clauses in P
defining p (ie., with head predicate p). For ie[1, 5], let
pli,) < O, be the i-th clause in P defining p. Let E; be the
formula 37, f—i A Q., where 7, denotes all the (free)
variables in p(f,) « Q,. The completed definition of p in P is

\V E.

ie[l,s]

p(X)

We remind the reader that the symbol “,” in the queries
has to be interpreted as the logical conjunction “ A.” In the
following, when the program P is clear from the context, we
write = F for Comp,(P) = F.

PropoSITION 4.6. Let P be a 3—general program, and
«Q a 3d—general goal. Consider an SLDNI-tree for

U {0}, Assume the selected conjunct in «Q to be an
atom A. Let x={x,, ..., x,,,} < freevar(Q) (m=0).

1. If « Q' is a child of « Q, with associated substitution
0, then

Comp,(P)E Q< Q.
2. If <@y, ...<Q, (n=0) are all the children of «Q
whose associated substitutions 8., ..., 8, satisfy Vie[l,n]
—nst(0,, X), then

/\ vy, _'Qf[‘i/fgi]»

ie[l.n]

Comp(P) | —Q[d/x] +

where d=d,, ... d, are (some of) the additional constant
symbols of L, and the y/s are all the local variables of the
clauses used in the derivation steps, after renaming.

Proof. 1. This part extends to I—general programs
the result stated (without proof) in Apt (1990, Lemma 3.1).
Let H < Q" be the selected clause. Then

EHeQ"
= HO«— Q"0

= {since A0 = HO}
= A0 Q"0

643:120,2-9

273

(O\A) 0, 40 — (Q\A) 0, 0"

= {since Q' =((Q\A4), Q") 0 =(Q\A) 0, Q"0}
E Q<0
2. Assume A=p(f). Let p(H eV, ,;35.7=

i; A Q;be the completed definition of p, where all variables
are renamed according to the standardization apart. Then

Fao \ 3= ag

EAldx]e \/ 3z

jell.s]

HdIX] =u; n Q).

Observe that, for je[1, 5], if 7 and u; are not unifiable,
then the component F,=3Z. t[d/\]—u A Q) 1s false in
Comp ,(P), hence we can dlstrd it from the disjunction in
the right-hand side.

Analogously, if there exists u, = mgu(Z, u,), but Inst(y,, X)
holds, then 7[d/%] and ii; are not umﬁable hence we can
discard the component F

Finally, if u;= mgu(t #,) and Tnst(y;, X). then
mgu(i[d/x], u)—,uj[d/x,uj] hence
E F, -3z Q_;/‘,[(i/fﬂjl
Let j,,..j,e[l,s] be the indexes such that 3
mgu(f, i,) =p; and "Inst(y;, X). We have
'= A[(?/_] - \/ E:Ik' Q}kﬂjk[‘;/'_’/'l,ik]

kell.n]

= {since Q= (Q\A), A}

FQld/x]1~> \/ 3500\, Q) w,[diu,]
kel[l,n]
<> {definition of the Q/'s, ¥s, and 0,’s}
Eoldx]~ \/ 35,.Q[d/0,]
ie[1.n]
EQldix]— A Vi.Q,[d/x0,]. 1

ie[l,n]

Note that for m=0 (ie, x={J) Proposition 4.6(2)
corresponds to Lemma 3.15 of Lloyd (1987), and for n=0
(i.e., when all resolvents instantiate ¥) it reduces to

Comp,(P) | —Q[d/<].

THEOREM 4.7 (Correctness of SLDNI-Resolution). Let
P be a 3general program and — Q@ a 3general goal. Then

274

1. if Pu{<Q} has an SLDNI-refutation with c.a.s. 6,
then Comp (P) = Q0,

2. if Pu{«<Q} has a finitely instantiating SLDNI-tree,
then Comp, (P) = 31 Q.

Proof. By mutual generalized induction on the rank .

1. For this part we reason by induction w.r.t. both the
rank & and the length »n of the refutation. We use the
lexicographic ordering on pairs {k, »)> of natural numbers.
In this ordering

Ckyyn > <<Kky,ny iffk,<k,or (k;=k,and n; <n,).

If n =0, then —(is the empty goal.
Assume now # > 0. We distinguish the two cases.

(1) The selected conjunct is an atom. Let x be the
mgu and <@’ the resolvent of «— Q. Then Pu { < Q'} has
an SLDNI-refutation of length » —1 with a c.a.s. & such
that Qué' = Q6. By inductive hypothesis, = Q'8 holds.
Hence, by Proposition 4.6(1), we have = Quf', ie, = Q0.

(ii) The selected conjunct is a negative query 3¢,
and Pu {«Q’} has a finitely instantiating SLDNI-tree of
rank k' <k. Furthermore, Pu{«<Q\3—Q'} has an
SLDNI-refutation of length » — 1 with a cass. . Then, by
inductive hypothesis, we have k= 3@ and |= (Q\
3—1Q') 6. Finally observe that (Q\3— Q") 60, 3—Q' =Qf
holds, since, by Definition 4.3, (3—1Q') 8 = 31 Q". Therefore
we have = Q6.

2. For this part we reason by induction w.r.t. both the
rank k and the instantiation level h We use the
lexicographic ordering on pairs {k, 2> of natural numbers.
Note that changing the ordering w.r.t. Part 1 is harmless,
since the mutual inductive hypothesis is done on k strictly
smaller, and k is the first component of the pairs in both the
lexicographic orderings.

Assume that Pu{«Q} has an SLDNI-tree which
finitely instantiates at level # some variables x=
Xy, X, € frecvar(Q). We prove a stronger property,
namely, that Comp,(P) £ —Q[d/x] holds, where d=
d,, .., d, are some of the additional constant symbols of L.
Consider the two cases:

(1) The selected conjunct is an atom. Consider all the
children «<Q,, .., <@, (n=0) of «Q, whose associated
substitutions @,, ..., 8, satisfy —/nst(64,, x). By definition, for
each ie[1l,n], Pu{«<Q,} has an SLDNI-tree which
finitely instantiates X6, at level A, <h (note that X6, is a
sequence of variables). By inductive hypothesis, Vie [1, n],
= 1Q,[d/%0,], hence = Aiertonl ¥y, —1Q,[d/x6,] holds,
where the y, are the local variables of the clauses used in the
derivation steps, after renaming. Finally, apply Proposition
4.6(2).

DI PIERRO, MARTELLI, AND PALAMIDESSI

(ii)) The selected conjunct is a negative query 3—1Q'.
Consider the two cases:

(a) Pu{«<Q'} has a SLDNI-refutation of rank
k' <k with a c.a.s. 8 such that —1Inst(8, freevar(Q')), namely
there exists 8" such that 0’88’ = Q'. By inductive hypothesis,
= Q'8 holds, hence we deduce &= Q'0¢', ie, = Q'. By
simple formula manipulation, we have

F o

E 13ng

=

E (Q\I1Q)[d/x] v 130

F ((Q\31Q)[d/x], 310",

Finally, observe that (Q\3—1Q")[d/x], 3110’ = Q[d/x].
(b) Pu{<Q'} has a finitely instantiating SLDNI-
tree of rank k' <k, so the (only) child of «— Qis < Q\IQ’
and = 371Q’ holds. By hypothesis, PuU { <~ Q\3—Q’'} hasa
SLDNI-tree which finitely instantiates x at level A’ < h. By
inductive hypothesis we have = —(Q\31Q')[d/%]. By
simple formula manipulation,

E (Q\I Q') d/¥]

E (O\IQ)[d/x] v IQ’

E ((Q\31Q")[d/x],31Q").
(Q\I1 Q") d/x],

Finally, use again

310 =Q0[d/x]. 1

the equality

4.2. Incompleteness of SLDNI-Resolution

The SLDNF-resolution is known to have two major
drawbacks from which incompleteness arises. The first is
what Clark (1978) called a floundering, which occurs when
a derivation ends in a goal containing only non-ground
negative literals. The more restricted use of NAF imposes
that in this situation the computation arrests without any
conclusion (neither success nor failure). The more liberal
version (see for instance Lloyd (1987, Sect. 15) allows to go
on in some cases: « 14 succeeds if <4 has a failed SLD-
tree, and it fails if —A4 has a refutation which does not
instantiate the variables of A. However, the computation
still arrests if none of these possibilities occurs. In particular,

NEGATION AS INSTANTIATION

this happens when « 4 has a refutation which instantiates
the variables of A.

The second problem is what Shepherdson (1985) calls a
dead end, and it is related to loops. In case there is an infinite
fair computation for « A, then the mainstream evaluation
of «——14 is stuck because no answer is received about the
subsidiary evaluation.

The SLDNI-resolution excludes floundering, but it
suffers from the dead end problem.

ExaMPLE 4.8.

P={p«3g(x),
p+q(x),
g(x) < g(x)}.

As one can easily verify, Comp, P)E p holds, but
Pu {«<p} has no refutations. This is due to a dead end:
neither SLDNI-refutations nor finitely instantiating
SLDNI-trees can be constructed for the subgoal «¢g(x).

Of course, if the program and the query are positive (i.e.,
they do not contain existential negative conjuncts), the dead
end problem cannot occur because the NAI rule is never
invoked during the computation. So, in this case, we have
for the NAl-rule a completeness result (see Proposition
323 and its extension to the non-atomic goals) which
we, paraphrasing Shepherdson’s terminology, call 3—
completeness of SLDNI-resolution.

Observe that 3—1completeness is a further way to intend
completeness in addition to the three ones considered by
Shepherdson (1988) for SLDNF-resolution:

If Comp(P) = Q6, then P U { —Q}
succeeds withac.as. 0’ s.t. & < 6.

If Comp(P) = —3Q,
then P u { « O} fails.

If Comp(P) = 30
then P U { < Q} succeeds.

(f-completeness)
(—1-completeness)

{3-completeness)

We can consider #-completeness as the dual concept of
—-completeness, both from a logical and from an opera-
tional point of view.

The I—1completeness can be thought of as the dual
concept of 3-completeness and stated as follows:

If Comp (P) = 31Q then
P u {«Q} instantiates freevar(Q).

(3—completeness)

5. AMALGAMATING NAF AND NAI

A major limitation of the language presented in Section 4
is that the negative components of a query cannot share

275

variables with the positive ones. The situation is in a sense
opposite to what happens in SLDNF-resolution, where, in
order to avoid floundering, all the variables in negative
literals must occur in some positive atom too (in the clause
or in the query). It comes then naturally to try an
amalgamation of NAF and NAI in order to reduce the
limitations of the two methods. This can be done by
allowing the presence of expressions like 3x—Q, where ¥ is
a (possibly empty) sequence of variables, and by modifying
the NAI rule so that < 35— Q is evaluated successfully in P
if there exists a tree which finitely instantiates ¥. The NAF
rule and the NAI rule are particular instances of this rule,
obtained with X = ¢ and X = freevar(Q) respectively.

Concerning the treatment of failure, it is still correct to
infer the failure of Pu {«3x—1Q} when there exists a
refutation for Pu {«Q} which does not instantiate the
variables of Q. Note that, for correctness, it is necessary to
consider all variables of Q, not only ¥. This is similar to the
NAF case.

ExaMpLE 5.1. Consider the program

P={p<3dmg,
g+ 3x7r(x, y),

r(x, a) < }.

A rule allowing to derive the falsity of ¢ from the refutation
of « —1r(x, y) would be incorrect, because Comp,(P) { p.
It would also be inconsistent, because actually Comp,(P)
k= —p. Note that such a refutation instantiates y.

The arrest of the computation (with no conclusion) is
limited to the situation in which there exists a refutation
instantiating freevar(Q)\x. Note that our treatment of
negation (for ¥= (J) is more general than the standard
SLDNF-resolution as formalized, for instance, by Lloyd
(1987). Usually SLDNF-resolution requires a selected
negative literal to be ground; otherwise, it flounders. We
allow the selected conjunct to be not ground, and stop the
computation (with no conclusion) only if there exists a
refutation instantiating its free variables.

The language amalgamating NAF and NAI is defined as

Queries

Qu=A4|3xO)| 0.0
Goals G:=«(Q

Clauses Ci=A—Q|A~,
where Ae Atom and Xe Var. As usual, we omit the
parentheses when there is no risk of ambiguity.

Note that this language allows us to express various kinds
of general formula in the body of clauses. For instance, —1Q
can be expressed as IZF1Q; VXQ can be expressed

276

as 13x1Q; 3x(Q, - @,) can be expressed as 3x¥—
(@1, T1Q,); etc.

The notion of conjunct is modified according to the new
grammar in the obvious way. So, a conjunct is either an
atom or an expression of the form 3x—Q. As one would
expect, the application of a substitution to a query
generalizes as follows:

A0 if 0=4
00=1{3%(—Q0,,) if Q=310
QlH’Qzﬁ if Q=Q1sQ2-

From this definition, it is clear that quantified negative
conjuncts can now communicate, i.e., share variables, with
the other conjuncts.

We present now the resolution mechanism for the
amalgamated language, which we call SLDNFI-resolution.
This is obtained by modifying Definition 4.4 according to
the above described treatment of formulas like 3x—Q.

DEFINITION 5.2 (SLDNFI-Resolution).

e The notion of SLDNFI-tree is obtained by replacing
point c(ii) in Definition 4.4 by the following condition:

(ii)

— if there exists an SLDNFI-tree for P U { < Q'} of

rank &' < & which finitely instantiates x, then « Q\3x—Q' is
the only child of « @, and the edge is labeled by «.

— if there exists an SLDNFI-refutation for

Pu{«Q'} of rank k'<k which does not instantiate

freevar(Q'), then —Q is a (failed) leaf node. (Note that the

restriction concerning instantiation involves all the
variables of @', not only X).

if the selected conjunct is 3x @', then

e The notion of SLDNFI-refutation is obtained by
replacing the corresponding point (ii) in Definition 4.4 by
the condition:

(i1) the selected conjunct in G, is 3X1Q, there exists
an SLDNFI-tree of rank &' <k for P U { —Q} which finitely
instantiates ¥, G,, , =G \Ix1Q and #,=¢.

The following result states the correctness of SLDNFI-
resolution, thus generalizing Theorem 4.7.

THEOREM 5.3 (Correctness of SLDNFI-Resolution).
Let P be an amalgamated program, « Q an amalgamated
goal and X < freevar(Q). Then

1. if Pu{«<Q} has an SLDNFI-refutation with c.a.s. 6,
then Comp ,(P) E Q8,

2. if Pul«<Q} has an SLDNFI-tree finitely instan-
tiating X, then Comp,(P)} = IxQ.

Proof. Slight modification of the proof of Theorem 4.7.
In 1{ii) replace 3@ by 3z—Q’, and observe that

DI PIERRO, MARTELLI. AND PALAMIDESSI

EIZQ =k (321Q')0, and that
(310" 6= Q0.

In 2(ii)(a) and 2(ii)}(b) replace 3—Q' by 3z,
and observe that (Q\3Z—Q')[d/Z], 3z1Q' =Q[d/Z].
Furthermore, in 2(ii}{a) observe that = Q' = | ViQ' <«
E 3z0"

The rest of the proof remains the same. ||

(Q\IZZ110) 6,

As a particular case of Theorem 5.3, when ¥= ¢ we
obtain:

Remark 54. If Pu{<Q} has a finitely failed
SLDNFI-tree, then Comp,(P) = —Q, ie., Comp,(P) =
V0.

This can be used as a basis for the introduction of a
“direct” universal quantifier in the language, thus improving
the efficiency of the interpreter. We do not investigate
further this possibility here, but we give an example of how
this construct could be used,

ExampPLE 5.5. In logic programming, sets are usually
represented as lists, and the “membership” relation is
defined as

Member = {member(x, [x|y]) <,

member(x, [z| y]) < member(x, y)}.
Consider now the subset relation, formally expressed by

YeZ<eVx(xeY=Xxe2Z),

YcZ<=Vx1(xeY AXx¢Z)
In our language this relation can be defined by the program

P = {subset(y, =) « Vx1(member(x, y),

—imember(x, =))} U Member,

where VxQ is an abbreviation for —3x—Q and —Q
is an abbreviation for IZF— Q. When we try to refute
«—subset(t, u), we have to evaluate three nested negations
before evaluating «member(x, t), Timember(x, u). By using
Remark 5.4, we could instead directly infer

Yx—1(member(x, t), "imember(x, u))

from the finite failure of the tree for Py {+—member(x,),
\member(x, u)}.

Note that the program for subset in Example 5.5 is
“complete” w.r.t. the positive use, in the sense that, given

NEGATION AS INSTANTIATION

two ground lists ¢, ¥ which represent two sets 7, U with
T< U, then P U { «subset(t, u)} has an SLDNFI-refutation.

On the other hand, it is not complete w.r.t. the negative
use, in the sense that if 77& U, then P U {« ~subset(t, u)}
gives no answer, because the SLDNFI-resolution only
generates SLDNFI-refutations for Pu {«—member(x, t),
—member(x, u)} which instantiate x to elements of T\U.

The negative counterpart of the relation subset could
better be defined by

P= {not_subset(v, o) <« member(x, y), Timember(x, :)}.

In fact, Pu{« subser(t,u)} succeeds if T U. Con-
cerning completeness, SLDNFI-resolution suffers from
the floundering problem as well as SLDNF-resolution. This
problem is, however, limited to the case in which
there is a refutation instantiating the free variables of a
selected negative conjunct. Obviously, to the purpose of
approximating completeness as much as possible, it is better
to delay the selection of a negative conjunct until all the
positive literals have been resolved, and all possible
bindings generated.

Thanks to the capability to deal with existentially quan-
tified conjuncts, hence with local variables, our treatment
of negation fits better than negation as failure to be the
operational counterpart of the completion semantics.

ExamPLE 5.6. Consider the program

P={p(x)=g(x, y),

qlx, a)«,

rb)«—}.
We have Comp(P) |= p(x), but, due to the local variable y,
the standard SLDNF-resolution would not derive the suc-
cess of P u { < p(x)}, not even when modified according to
Definition 5.2.

On the other hand, in our language P would be naturally
written as
P ={p(x)—3yTg(x, y),

gix,a)—,

r(b) < }
and P’ U {<p(x)} has an SLDNFI-refutation with empty
substitution.

We end this section with another example.

ExaMmpLE 5.7. Consider a binary operation op, defined
in logic programming by a ternary relation p,, (ie.,

277

PoptX, ¥, 2) <> 0p(x, y)=z). The neutral elements, formally
defined as

neutral(x) < Vy(op(x, y) = y) A (op(y, X) = y),
can be defined in our language by
reutral(x) < 713y (p (X, ¥, ¥), Pl v, X, ¥)).
The opposite can be defined as
not_neutral(x) « Tneutral(x)
or, more simply,

notneutral(x) < 3y—p,(x, y, y),

not_neutral(x) < y=p,. (v, x, y).

6. CONCLUSIONS AND FUTURE WORK

We have defined a failure set (the FFI set) which is the
negative counterpart of the atomic consequences set of a
program. This set is operationally characterized as the set of
atoms for which every SLD-derivation either fails or instan-
tiates some variables. Then, we have shown that FFI is the
set of atoms whose existentially quantified negation is a
logical consequence of the completion of the program P.
This model-theoretic characterization has given the founda-
tions of a new rule for the treatment of negated atoms, the
Negation As Instantiation rule, which infers 3—4 if
P U {«A} has a “finitely instantiating” SLD-tree. The NAI
rule is as easy to implement as the NAF rule, and it is
orthogonal to it. We have combined the two rules into an
interpreter called SLDNFI-resolution, of which we have
proved the correctness.

The obstacles to completeness are the loops and the
uninstantiated variables. Our idea is to try the approaches
of Drabent and Martelli (1991) and of Kunen (1989) in
order to overcome the problem of the loops, and to find a
restriction similar to allowdness in order to avoid the
problem of the variables.

ACKNOWLEDGMENTS

We acknowledge Professor H. Blair for his helpful comments. We also
thank the anonymous referees, whose criticism and suggestions greatly
contributed to the improvement of this paper.

Received April 23, 1992; final manuscript received May 16, 1994

REFERENCES

Apt, K. R. (1990), Logic Programming, in “Handbook of Theoretical
Computer Science, Vol. B, Formal Models and Semantics” (J. van
Leeuwen, Ed.), pp. 493-574, Elsevier, Amsterdam.

Chan, D. (1988), Constructive Negation Based on the Completed

278

Database, in “Proceedings, Fifth Intermational Conference on Logic
Programming” (R. A. Kowalski and K. A. Bowen, Eds.), pp. 111-125, The
MIT Press, Cambridge, MA.

Clark, K. L. (1978), Negation as failure, in “Logic and Data Bases”
(H. Gallaire and J. Minker, Eds.), pp. 293-322, Plenum Press, New York.

Drabent, W., and Martelli, M. {1991), Strict completion of logic programs,
New Generation Computing 9 (1), 69-79.

Falaschi, M., Levi, G., Martelli, M. and Palamidessi, C. (1989),
Declarative modeling of the operational behavior of logic languages,
Theoret. Comput. Sci. 69 (3), 289-318.

Falaschi, M., Levi, G.. Martelli, M., and Palamidessi, C. (1993), A model-
theoretic reconstruction of the operational semantics of logic programs,
Inform. and Comput. 103 (1}, 86-113.

Fitting, M. (1985), A Kripke-Kleene semantics for logic programs,
J. Logic Programming 2 (4), 295-312.

DI PIERRO, MARTELLI, AND PALAMIDESSI

Kunen, K. (1989), Signed data dependencies in logic programs, J. Logic
Programming 7 (3), 231-245.

Levi, G., Martelli, M., and Palamidessi, C. (1990), Failure and success
made symmetric, in “Proceedings, North American Conference on Logic
Programming” {S. Debray and M. Hermenegildo, Eds.), pp. 3-22, The
MIT Press, Cambridge, MA.

Lloyd, J. W. (1987), “Foundations of Logic Programming,” 2nd ed.,
Springer-Verlag, Berlin.

Shepherdson, J. C. (1985), Negation as failure 11, J. Logic Programming 2
(3), 185-202.

Shepherdson, J. C. (1988), Negation in logic programming, in “Founda-
tions of Deductive Databases and Logic Programming” (J. Minker,
Ed.), pp. 19-88, Morgan Kaufmann, Los Altos, CA.

Shepherdson, J. C. (1989), A sound and complete semantics for a version
of negation as failure, Theorer. Comput. Sci. 65 (3), 343-371.

