
The Clause-Diffusion theorem prover Peers-mcd
(System description)

Maria Paola Bonacina ⋆

Department of Computer Science
The University of Iowa

Iowa City, IA 52242-1419, USA
bonacina@cs.uiowa.edu

Abstract. Peers-mcd is a distributed theorem prover for equational
logic with associativity and commutativity built-in. It is based on the
Clause-Diffusion methodology for distributed deduction and the Argonne
prover EQP. New features include ancestor-graph oriented criteria to sub-
divide the search among the parallel processes. Peers-mcd shows super-
linear speed-up in a case study in Robbins algebra.

Challenge theorems may require the best sequential provers to run for days.
A purpose of building a distributed theorem prover is to solve such problems by
distributing the work among multiple computers. Various approaches to parallel
theorem proving differ in the granularity of parallelism. While systems with
fine-grain parallelism parallelize the basic algorithms of the strategy, systems for
coarse-grain parallelism parallelize the search process. The distributed prover
Peers-mcd belongs to the latter class.

Peers-mcd is the successor of Peers [5], and it is new in several ways: it
implements the Modified Clause-Diffusion method of [2], it incorporates the code
of the prover EQP0.9, which solved the Robbins problem [7], and it uses the MPI
standard for message passing. Peers-mcd features new criteria to subdivide the
inferences among the processes. These criteria are called ancestor-graph oriented

(AGO) criteria, because they are based on the notion of ancestor-graph in the
model of the search space in [4].

Modified Clause-Diffusion

Clause-Diffusion [2, 3] is a methodology for parallel search in theorem prov-
ing. Concurrent, asynchronous deductive processes search in parallel the space
of the problem. Each process executes a theorem-proving strategy, develops its
own derivation, and builds its own database of clauses. As soon as one of them
succeeds, the parallel search halts. The search space is subdivided among the
processes by assigning the clauses to the processes. This allocation of clauses
is logical, not physical: each generated clause belongs to only one process, but
may be stored in the database of many. The inferences are partitioned based on

⋆ Supported in part by the National Science Foundation with grant CCR-94-08667.



the ownership of clauses. In order to preserve completeness, the processes com-
municate clauses by message-passing. Specific characteristics of Modified Clause-
Diffusion include the following. First, it subdivides both expansion inferences and
backward-contraction inferences. The latter is done without preventing or delay-
ing the deletion of redundant clauses. The advantages include less duplication,
and uniform treatment of all clauses, regardless of whether they were generated
by expansion or backward contraction. Second, communication is done in such
a way that both purposes (preserving completeness and assigning the clauses to
the processes) are achieved by one form of communication (broadcasting clauses
as inference messages). As a consequence, fewer messages are generated, there
is only one type of message, and all processes can use the clauses sooner. Third,
the naming scheme (the mechanism for the unambiguous identification of clauses
across the network) guarantees that the successful process can reconstruct the
global proof based on local information.

The AGO criteria

A key component of a Clause-Diffusion strategy is the allocation criterion to
assign clauses to processes. The simplest criterion is rotate, which picks process
p+1 mod N , if there are N processes and p was chosen last. The ancestor-graph

oriented criteria allocate a clause based on information in its ancestor-graph. As-
sume that the search space is represented as a search graph with vertices labelled
by clauses and arcs representing the inferences. Given a generated clause ϕ, its
ancestor-graph is obtained by proceeding backward from ϕ, e.g., if ϕ is generated
from ψ1 and ψ2, its ancestor-graph has ϕ as root and the ancestor-graphs of ψ1

and ψ2 as subgraphs. The data structures in EQP already contain information
on the ancestors, for the purpose of proof reconstruction (the generated proof
is the ancestor-graph of the empty clause). Thus the AGO criteria use infor-
mation that is kept by the prover anyway, with no significant additional work.
The motivation for working with ancestor-graphs is the following. If the parallel
processes search the same part of the space, parallel search may not help. Thus,
a goal of an allocation criterion is to limit the overlap of the parallel searches.
The ancestor-graphs of generated clauses represent the available information on
the search space during the derivation. Therefore, the AGO criteria use this
information to reduce the overlap.

The AGO criteria parents and majority work as follows. The parents criterion
is based on the intuition that clauses which have the same parents should be
assigned to the same process. The idea is that clauses which have the same
parents are spatially close in the search graph. If we assign such clauses to
different processes, we may increase their overlap. Given a clause ϕ, the parents

criterion takes the identifiers of the parents of ϕ and feeds them into a function
f , which returns the number of the process ϕ should be assigned to. Since f is a
function (unique image), all clauses with same parents receive the same process.
The criterion is parametric with respect to f .

The majority criterion is also based on an intuitive notion of proximity in the
search space. Rather than considering proximity between clauses, it considers



proximity between clauses and processes. A clause ϕ should be assigned to a
process which is active near ϕ. Another choice could augment the overlap of
the processes. Since what is known of the search space around ϕ is its ancestor-
graph, the criterion looks for a process whose search overlaps the most with the
ancestor-graph of ϕ. Therefore, ϕ is assigned to a process which owns a majority
of its ancestors.

Experiments

The experiments were executed on a local area network of workstations (HP 715
with 64M), where each process of Peers-mcd runs on a separate workstation. The
times in the following tables are average wall-clock times, expressed in seconds,
for different formulations of a lemma in Robbins algebra.

EQP implements several strategies for AC-completion. The following tables
refer to the strategies start-n-pair and basic-n-pair of [6]. “Start” means that
the strategy uses (AC)-paramodulation, (AC)-simplification, subsumption and
deletion by weight. “Basic” is the same as “start,” with basic paramodulation
[1, 8] in place of paramodulation. “Pair” means that the search plan works by
the pair algorithm: it selects a pair of equations, performs all inferences between
them, and repeats. The “n” in start-n-pair and basic-n-pair means that the pairs
to be selected are sorted by increasing length (best-first search).

A Robbins algebra is presented by the axiom n(n(x+ y) + n(x+n(y))) = x,
where + is AC. A well-known lemma [9] is to prove that the condition ∃x∃y x+
y = x implies the Huntington axiom (H) n(n(x) + y) + n(n(y) + n(x)) = x. (An
algebra which satisfies H is Boolean.) Either Otter or EQP can prove that H
follows from ∃x x+x = x in less than 20 sec. Thus, the problem reduces to show
that ∃x∃y x+y = x implies ∃x x+x = x. In [6], EQP0.9 finds a proof after 4400
sec with start-n-pair (best “start” strategy), and after 1902 with basic-n-pair

(best result), using max-weight = 30. Peers-mcd can do the problem in 522 sec
with six nodes, strategy start-n-pair, the AGO criterion parents, and the same
max-weight. The speed-up with respect to EQP0.9 is 7 and the efficiency is 1.2:

Strategy Criterion EQP0.9 1-Peers 2-Peers 4-Peers 6-Peers

start-n-pair rotate 3705 3953 1349 1340 1631

start-n-pair parents 3705 3953 933 915 522

start-n-pair majority 3705 3953 997 1043 1187

With the basic-n-pair strategy, 6-Peers marks average wall-clock time 551
with the AGO criterion parents. The average wall-clock time of EQP0.9 is 1661,
so that the speed-up is 3, with efficiency 0.5. A more general target theorem is
∃y∀x x+ y = x. With this formulation, it is sufficient to employ only two nodes
to succeed in 485 sec, by using the AGO criterion majority. The speed-up with
respect to EQP0.9 is 7.5, with efficiency 3.7:

Strategy Criterion EQP0.9 1-Peers 2-Peers

start-n-pair rotate 3649 3809 2220

start-n-pair parents 3649 3809 1591

start-n-pair majority 3649 3809 485



Last, if H itself is given as target theorem, 4-Peers solves the problem in 709
sec, which represents a speed-up of 6.8 with efficiency 1.7:

Strategy Criterion EQP0.9 1-Peers 2-Peers 4-Peers

start-n-pair rotate 4857 4904 3557 1177

start-n-pair parents 4857 4904 1437 2580

start-n-pair majority 4857 4904 872 709

A main strength of Peers-mcd is the capability of exhibiting super-linear
speed-up. This is possible, because Clause-Diffusion does not parallelize the steps
of the sequential strategy. It generates a new parallel search. Because of the
subdivision of work (e.g., a process does not execute certain steps because the
premises belong to others), the processes may generate and select clauses in
different order than the sequential one. Thus, the search space is traversed in a
different way. This approach may be weak in terms of scalability, because adding
more processes may affect adversely the partition of the search space.

For algorithms, a super-linear speed-up by parallelization means that there
is a better sequential algorithm. Analogously, super-linear speed-up by parallel
search may suggest that a better sequential search plan for that problem exi-
sts. This is not unreasonable, since most search plans used in theorem proving
are essentially exhaustive, and not target-oriented. Future developments include
more work with the AGO criteria, and tools for the comparison of distributed
and sequential proofs.

Acknowledgements I would like to thank Bill McCune for the source code of
EQP0.9, and for answering my questions on EQP.

References

1. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and
superposition. In D. Kapur, editor, Proc. CADE-11, volume 607 of LNAI, pages
462–476. Springer, 1992.

2. M. P. Bonacina. On the reconstruction of proofs in distributed theorem proving: a
modified Clause-Diffusion method. J. of Symbolic Computation, 21:507–522, 1996.

3. M. P. Bonacina and J. Hsiang. The Clause-Diffusion methodology for distributed
deduction. Fundamenta Informaticae, 24:177–207, 1995.

4. M. P. Bonacina and J. Hsiang. On the representation of dynamic search spaces in
theorem proving. In C.-S. Yang, editor, Proc. Int. Computer Symp., Dec. 1996.

5. M. P. Bonacina and W. McCune. Distributed theorem proving by Peers. In A. Bun-
dy, editor, Proc. CADE-12, volume 814 of LNAI, pages 841–845. Springer, 1994.

6. W. McCune. 33 Basic test problems: a practical evaluation of some paramodulation
strategies. MCS Division, Argonne National Laboratory, Pre-print P618, 1996.

7. W. McCune. Solution of the Robbins problem. Submitted manuscript, 1996.
8. R. Niewenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Brück-

ner, editor, Proc. ESOP, volume 582 of LNCS, pages 371–389. Springer, 1992.
9. S. Winker. Robbins algebra: Conditions that make a near-Boolean algebra Boolean.

J. of Automated Reasoning, 6(4):465–489, 1990.


